Simulation and Data Life Cycle Labs at SCC

Rossella Aversa, Elnaz Azmi, Max Fischer, Markus Götz

SDL Particle and Astroparticle Physics

Local Site
- Users
 - User Interface
 - Resource Pool
- Access Point

External Site
- Resource Pool
- Scheduling and Account Management

The COBalD/TARDIS software suite developed in a joint effort lead by the SDL PAP enables the transparent access of users to remote compute resources such as HPC systems.

HoreKa is the major compute resource provider to the German overlay batch system (OBS) for HTC jobs of scientists from particle and astroparticle physics. The OBS is operated by GridKa and SDL PAP using COBalD/TARDIS.

SDL Earth System Science

Effective and computationally efficient approximation of environmental simulations using machine learning methods that yields outputs acceptable for domain scientist

- Structure
- Forcing
- States

Using similarities to approximate complex simulations through machine learning
- Tuning the uncertainty of the approximated model by adjusting the number of clusters while considering the corresponding computation time
- Replacing compute-intensive simulations with neural networks models
- Execution of environmental simulations using less computing resources

SDL Engineering for Energy and Mobility

- UN estimates ~50% of building energy used for thermal conditioning
- Thermal bridges areas with high thermal conductivity → lost energy
- 70 GB RGBTH multi-spectral drone data collected, published as open data
- Automatic detection: data-parallel SWIN-T transformer
- Measurement of energy for AI

SDL Materials Science

To enable the data and metadata management, the infrastructure architecture of JL-MDMC adopts many HMC tools and services as key building blocks, which are also used in other projects related to materials science.

The MDMC-NEP Glossary of Terms describes the lifecycle of entities and data collected in nanoscience and materials science research studies, from the fabrication of a material to the scientific publication, and then archived for further data discovery and data sharing.

DOI: 10.5445/IR/1000169007

https://github.com/KIT-HELMHOLTZ/COBalD-TARDIS

https://zenodo.org/record/7022736

UN estimates ~50% of building energy used for thermal conditioning

Thermal bridges areas with high thermal conductivity → lost energy

70 GB RGBTH multi-spectral drone data collected, published as open data

Automatic detection: data-parallel SWIN-T transformer

Measurement of energy for AI

HoreKa is the major compute resource provider to the German overlay batch system (OBS) for HTC jobs of scientists from particle and astroparticle physics. The OBS is operated by GridKa and SDL PAP using COBalD/TARDIS.

SDL Engineering for Energy and Mobility

- UN estimates ~50% of building energy used for thermal conditioning
- Thermal bridges areas with high thermal conductivity → lost energy
- 70 GB RGBTH multi-spectral drone data collected, published as open data
- Automatic detection: data-parallel SWIN-T transformer
- Measurement of energy for AI

SDL Materials Science

To enable the data and metadata management, the infrastructure architecture of JL-MDMC adopts many HMC tools and services as key building blocks, which are also used in other projects related to materials science.

The MDMC-NEP Glossary of Terms describes the lifecycle of entities and data collected in nanoscience and materials science research studies, from the fabrication of a material to the scientific publication, and then archived for further data discovery and data sharing.

DOI: 10.5445/IR/1000169007