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Abstract

Lately, the rapid advancement of nanofabrication technologies has paved the way for the
flourishing of nanophotonics. The latter attempt to mold the flow of light in ever more
sophisticated ways. Today they find many technological applications in various fields,
from biochemistry, till communications, and information technology, just to name a few.

As a result, there is an ever growing need to study, model, and design ever more
complicated nanophotonic systems. Semi-analytical methods in nanophotonics can provide
rather efficient ways to obtain unique insights into the systems. Nevertheless, they are
typically characterized by severe limitations regarding their scope of applicability and
are rarely preferred against computationally expensive, yet versatile, full-wave numerical
methods. Arguably, abolishing the existing boundaries of applicability of semi-analytical
methods can provide valuable agency to the further development of nanophotonics.

The T-matrix method belongs to such a class of semi-analytical methods in electro-
magnetic scattering theory. It is based on a matrix representation of the linear scattering
system connecting the incident and scattered fields, which are expanded upon a finite ba-
sis set of elementary waves. The method excels in dealing with complex multi-scattering
phenomena involving large ensembles of scatterers. The present thesis aims to enrich the
available toolkit of semi-analytical methods in light-scattering by pushing against the ex-
isting limitations of the T-matrix method and stretching its scope of applicability. Specif-
ically, we present three cases of generalized T-matrix methods tailored to the particular
characteristics of the nanophotonic systems that they model.

First, we develop a T-matrix-based Floquet-Mie theory to semi-analytically model light
scattering from spheres made of time-varying materials. Time-varying systems in nanopho-
tonics recently attract lots of attention. Recent experiments of all-optical modulation in
transparent conducting oxides, as well as other semiconductors, have demonstrated rather
fast and considerably strong modulation of the material properties of such media. Tem-
poral modulation provides an extra degree of freedom in nanophotonic systems and allows
for the observation of several novel phenomena. We demonstrate that the T-matrix of
a time-modulated sphere is characterized by inelastic scattering processes. Moreover, we
drive time-modulated spheres into lasing states by means of parametric Mie resonances
and discuss the breaking of electromagnetic reciprocity in such time-varying systems.

Next, we introduce the topological skeleton method to overcome a fundamental limita-
tion of the conventional T-matrix method known as the problem of the Rayleigh Hypoth-
esis. The problem is related with the inherently invalid representation of the near-fields of
non-spherical scatterers and constitutes a major impediment that has been plaguing the
applicability of the T-matrix method for multi-scattering calculations with strong near-
field coupling among the scatterers. We develop a distributed T-matrix formalism that
transcends the problem of the Rayleigh Hypothesis.

Finally, motivated by recent experimental observations, we study the directional cou-
pling of emitters into waveguides by employing a generalized T-matrix description of the
system and studying its properties. We decompose the general emissions into a set of
chiral multipolar eigenstates and we study the directionality of each eigenstate indepen-
dently. We conduct a symmetry analysis of the T-matrix of the system and we study the
evanescent part of the transverse angular spectrum of the emissions, where we identify
the prominent role of the transverse angular momentum of the emissions in governing the
directionality of the coupling.
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1 — Introduction

Between 1885 and 1889 Heinrich Hertz, as a professor at the University of Karlsruhe, has
been conducting a series of experiments attempting to verify Maxwell’s newly developed
electromagnetic theory [1]. In those experiments, Hertz transmitted and received radio
waves in his laboratory, proving experimentally that light consisted of electromagnetic
waves of short wavelength, as Maxwell’s theory had already predicted. By 1901, Guglielmo
Marconi would be already transmitting the first transatlantic Morse code radio signal,
opening the doors to the commercialization of radio communications [2].

A couple of years after Hertz’s departure from Karlsruhe, Gustav Mie arrived in Karl-
sruhe to work as an assistant in Hertz’s lab with his former equipment. About a decade
after Mie completed his habilitation there, he published his seminal paper on the theoret-
ical study of plasmon resonance absorption of gold colloid nanoparticles [3, 4]. Mie theory
treated analytically the problem of light scattering by spherical objects and provided a
reference solution to a canonical problem of light interaction with matter. It constitutes
today the archetype of electromagnetic scattering theory [5].

Since then, science has been endeavoring to master electromagnetic waves, and cap-
italize with ever more sophisticated ways on their fundamental ability to interact with
matter, transfer energy, and carry information. Arguably, the last decades the use of elec-
tromagnetic waves had a tremendous impact on addressing human needs, and transform-
ing, modernizing and expanding our productive forces. Today, we have several prominent
examples of the significance of this scientific quest to tame light. It is telling that the first
two of the six priorities of the EU Commission for the period 2019-2024 are titled as ”A
European Green Deal”, and ”A Europe fit for the digital age” [6].

On the one hand, harnessing solar energy with optimal efficiency is paramount for
the strategic decarbonization of energy production, and the optimized manipulation of
solar electromagnetic waves has been instrumental in modernizing the technology of solar
cells [7–14].

On the other hand, artificial intelligence, cloud computing, and the internet of things
are major drivers of the digital transformation of our economy. Faster communication
of large amount of information is becoming increasingly important. It requires, though,
communication in high frequencies where larger bandwidths are available and, to that end,
significant advances in the technology of optical communications are taking place [15–23].

Simultaneously, with the rise of artificial intelligence the processing of large amounts
of data leads to an ever increasing demand in computational power. Meanwhile, the
significance of mastering the most modern lithographic processes in a ”chip war” era
cannot be overstated [24]. The development of high-precision optical elements is a cardinal
point of the high-end extreme ultraviolet lithography technology [25–27].

Besides this, the maturation of nanofabrication technologies has paved the way to
various other applications of nanophotonics in fields such as data storage [28, 29], light
emitting diodes [30–32], flat lenses for smartphone cameras [33, 34], optical sensing for
biomedical applications [35–38], and quantum technologies [39, 40], just to name a few.

As a result, novel numerical methods for nanophotonics that are capable to address
the modern challenges are required [41]. On the one hand, the necessity for the analysis
and modeling of phenomena involving ever more complicated ways of light interacting
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Chapter 1. Introduction

with matter at the nanoscale arises. For this, the unveiling of the internal dynamics of
a nanophotonic system is often required to shed light on the actual physical mechanisms
that give birth to the observed phenomena. On the other hand, the simulation and design
of ever more complicated devices to manipulate electromagnetic waves becomes also a
necessity. Quite often, the fully-numerical simulation of modern nanophotonic systems,
which are frequently characterized by a disparity of the involved optical length scales, can
be expensive, if possible at all. The main problem that arises here is the ”gray zone” that
exists between the regime of applicability of ray optics solvers and that of conventional
full-wave solvers. While the former require that the geometrical features of the system
are much larger than the wavelength of light, the latter are only able to treat systems
that are usually not larger than a few dozens of cubic wavelengths. Computational inverse
design for nanophotonic devices has evolved considerably the last years, with a few ap-
proaches standing out: 1) free-form shape optimization [42, 43], 2) topology optimization
with the adjoint method [44, 45], and 3) deep learning with artificial neural networks [46,
47]. However, regardless of the approach, its further development requires access to fast,
large-scale numerical simulations of nanophotonic systems. Only recently, GPU-optimized
FDTD solvers that are able to efficiently simulate, e.g., a quite large metasurface of di-
mensions of 100 square wavelengths have been reported [48–50].

In various cases, the Transition Matrix (T-matrix) method can offer solutions to such
challenges that arise in the field of numerical methods in nanophotonics. The T-matrix
method belongs to a class of semi-analytical methods that deal with problems of scattering
of electromagnetic waves [51–60]. The method is based on matrix descriptions of the linear
nanophotonic system. Two finite dimensional Hilbert spaces are constructed: one for the
incident field and another for the scattered field. Then, the T-matrix that constitutes a
compact representation of the nanophotonic system within the considered Hilbert spaces
can be calculated [61–65]. Each element of the T-matrix represents the strength of the
transition from an input (i.e., incident) to an output (i.e., scattered) state. Consequently,
the T-matrix is generally able to provide the response of the nanophotonic system upon
an arbitrary excitation, and, in that sense, it can fully describe the inner dynamics of the
system.

A major advantage of the T-matrix method is that it can solve complex multiple-
scattering problems rather efficiently in an hierarchical way. Once the T-matrix of each
individual scatterer is known, then the T-matrix of the full system of an aggregate of
scatterers can be obtained semi-analytically without much computational effort, and, fur-
thermore, even get coupled straightforwardly to some planar interface [54–56, 66]. This is
because, in such semi-analytical methods, the propagation of the fields in the free back-
ground medium to account for multi-scattering interactions is cheaply performed semi-
analytically. Moreover, note that, by virtue of the fully analytical Mie theory, the T-matrix
method excels for spherical scatterers, but can, generally, still be used for the case of arbi-
trary scatterers. Recently, the method has been employed to model efficiently large-area
metasurfaces [58, 67]. Moreover, an interesting technique has been recently proposed to
drastically increase the computational efficiency of the T-matrix method, although it still
remains unexplored [68].

This thesis attempts to push against the traditional boundaries of the applicability
range of the T-matrix method by proposing three exemplary generalizations of the method
tailored to the particular characteristics of some modern nanophotonic systems.

First, we generalize the T-matrix method for the case of light scattering from time-
varying scatterers, i.e., from scatterers whose electromagnetic material properties vary
in time. In what follows, let us briefly introduce the underlying physics of time-varying
nanophotonic systems.

Tunable nanophotonic systems for the dynamic control of light have been recently

4



gaining significant attention. Several methods to modulate the response of the tunable
systems have been reported. The first method is electrical modulation. Here, the case of
electrostatic gating of graphene stands out [69, 70], but we also have the case of electrical
tuning of microwave metamaterials with varactor diodes [71, 72], and the case of electri-
cal tuning of metamaterials with liquid crystal that is forced to change from an isotropic
to a nematic phase through an externally applied voltage bias, which changes its optical
properties [73]. Similarly, the optical properties of liquid crystal can be modulated ther-
mally: there is a threshold temperature that changes the liquid crystal from the isotropic
to the nematic phase [74]. Thermal modulation with other phase change materials or,
also, with silicon has been reported as well [75]. However, those modulation methods can
only provide rather slow tunability with respect to optical frequencies. The modulation
frequency of thermal tuning can vary from a couple of KHz till around 0.1 MHz, whereas
the modulation frequency of electrical tuning can reach up to several GHz. Moreover,
while the thermal modulation strength is typically rather small, well below 1%, a quite
large modulation strength can be achieved with the electrical tuning of 2D materials like
graphene [76].

Therefore, at this point we would like to differentiate between ”tunable” and ”time-
varying” nanophotonic systems. With the latter term, we refer to systems whose material
properties vary fast enough with respect to the frequency of light, being characterized,
also, by a considerable modulation strength.

Recent experiments have been proposing rather fast all-optical modulation in infrared
frequencies for transparent conductive oxides, such as Aluminium-Doped Zinc Oxide and
Tin-Doped Indium Oxide, operated in their Epsilon-Near-Zero spectral regime [77–80]. In
all-optical modulation we have a pump laser that boosts electrons from the valence to the
conduction band of such doped semiconductors that are characterized by strong nonlinear
properties, which are mediated through the existence of real electron states. Transition
through those states is realized by photocarrier excitation which has as a result the redis-
tribution of electrons between the valence and the conduction band. This induced mobility
of the electrons is what finally modulates the material properties of the medium [81]. The
pulse duration of the pump, together with the rate of photon-absorption by the electrons,
as well as the recombination time of the photocarriers are factors that limit the speed
of the all-optical modulation of the medium [82, 83]. For Aluminium-Doped Zinc Oxide,
the recombination time of the photocarriers was measured to be below 100fs, whereas
the average induced carriers concentration was measured to be around 5% of the intrinsic
carrier concentration of the medium [79]. Note, though, that the modulation strength
strongly depends on the intensity of the pump, which is typically required to be quite
high. Finally, let us also mention that transitions through virtual states in nonlinear
processes (such as four-wave-mixing and sum-frequency-generation) are also possible and
even are much faster. However, they typically exhibit quite lower modulation strengths.
Gallium Arsenide, having a direct band gap, demonstrates stronger modulation strengths
in comparison to, e.g., Silicon which has an indirect band gap [84–87].

A plethora of novel interesting phenomena has been already observed in time-varying
nanophotonic systems, which, therefore, recently attract lots of attention. Arguably, the
temporal variation of material properties unlocks a new dimension of control in elec-
tromagnetic systems [88, 89]. Recently, a wide range of novel optical effects has been
observed for periodically time-varying media, known as photonic time crystals (PTCs).
Phenomena such as magnetless nonreciprocity [90–96], frequency conversion and Doppler
shift [97–99], amplification, [100–102], and others [103–109]. Furthermore, there has been
several studies of time-varying meta-atoms [110–114]. Generalizing the T-matrix method
for the analysis of time-varying scatterers, opens new doors to the study of such exotic
phenomena.
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Chapter 1. Introduction

Next, in our second considered exemplary case of genaralization of the T-matrix
method, we move on to address a rather fundamental problem that typically plagues the
conventional T-matrix method. It is famous as the problem of the ”Rayleigh Hypothesis”.
In what follows, let us briefly introduce the problem.

In 1907, Lord Rayleigh studied the diffraction of waves from gratings [115]. His famous
hypothesis back then was that the reflected field by the grating could be represented
everywhere above the grating -even inside the region of the corrugations- as a superposition
of a discrete set of plane waves propagating/decaying along the diffraction orders of the
grating. Rayleigh used this hypothesis to enforce the interface conditions at the surface
of the grating and, finally, solve the diffraction problem. Since then, the problem of the
Rayleigh Hypothesis has been imbued with a more generalized content that concerns the
region of validity of analytical representations of fields. In that sense, the problem of the
Rayleigh Hypothesis becomes relevant for all semi-analytical methods in nanophotonics
that employ such analytical representations of the fields. Initially constituting a topic
of scientific dispute, the Rayleigh Hypothesis has been revisited multiple times from a
mathematical, physical, or engineering point of view. Still today, more than a century
later, it surprisingly remains an active topic of scientific research [116–138].

A year after the seminal work of Lord Rayleigh, Gustav Mie solved the canonical
problem of light scattering by a sphere. As a representation of the scattered field, he
employed a multipolar series where the origin was the center of the sphere. Indeed, that
constituted a natural representation for his case due to the spherical geometry of the
scatterer. However, the strength of the paradigm of Mie’s representation was such that
it still resonates today: we commonly keep employing the same representation Mie used
to treat scatterers of non-spherical geometry [55, 66]. Unfortunately, though, here comes
the devil of the Rayleigh Hypothesis indoors; it is known that such a representation is
guaranteed to be valid only outside a sphere that circumscribes the scatterer. Using
spherical waves to represent the scattered field from non-spherical scatterers is the three-
dimensional analogue of Rayleigh’s problematic usage of plane waves to represent the
reflected field by a non-planar grating, even inside its corrugations.

The first major mathematical treatment of the problem of the Rayleigh Hypothesis
came several decades later when Millar highlighted the critical role of the analytic prop-
erties of the fields, i.e., the properties of the analytic continuation of the scattered fields
within the domain of the scatterer [116]. Since then, physicists and engineers have strug-
gled to capitalize on the insights that the state-of-the-art mathematical understanding of
the problem provided. Besides this, they have been also working to develop alternative
practical methods to semi-analytically solve wave scattering problems that are not plagued
with spurious effects related to the problem of the Rayleigh Hypothesis, which the existing
conventional methods typically face.

Importantly, representations of the fields that unlock access to the near-fields of the
scatterers are essential for the semi-analytical modeling of multi-scattering phenomena
involving scatterers placed in proximity, inside that problematic near-field region of each
other. Modeling the electromagnetic coupling of nanoemitters such as molecules/quantum
dots with nanoantennas, or modeling the electromagnetic coupling of an array of tightly
packed nanoparticles whose circumscribing spheres intersect with each other, are two in-
dicative examples where semi-analytical modeling methods, employing Mie’s conventional
representation, typically fail to address the Rayleigh Hypothesis issue. As a result, this
ends up posing as a fundamental challenge to the applicability of the method itself. Ev-
idently, the problem of the Rayleigh Hypothesis, being exactly related to the region of
validity of the analytical representations of the fields, plays a pivotal role in all such semi-
analytical methods, since it directly affects their major advantage as a method: that of
the cheap semi-analytical propagation of the fields in the background medium to account
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for the multi-scattering interactions.

To deal with this problem, a plethora of methods employing alternative representa-
tions, usually based on a scheme with a spatial distribution of discrete sources, has been
reported in the literature, including the Discrete Sources Method, the Null Field Method
with Discrete Sources, the Multiple Multipole Method, the Method of Auxilliary Sources,
the Global Polarizability Matrix Method [57, 139–144]. Those alternative methods pro-
vided improved representation schemes for the fields that practically helped to model with
greater accuracy the scattering from particles with extreme geometries. They had their
respective limitations, but, arguably, their most important problem was the lack of much
evidence, maybe apart from intuition or some empirical rules [144], for the optimal place-
ment of the discrete sources representing the scattered fields from a particle of arbitrary
geometry. In this thesis, we will be introducing a novel discrete-sources-based representa-
tion scheme for the fields that generalizes the T-matrix method in a way that transcends
the problem of the Rayleigh Hypothesis, allowing for the practical use of the method for
scatterers of arbitrary geometry.

Finally, in the third considered exemplary case of generalization of the T-matrix
method, we construct a T-matrix representation of a waveguiding system excited by nearby
emitters. This generalization case of the T-matrix argues for T-matrix representations of
linear nanophotonic systems beyond the conventional ones that treat a finite scatterer as
a ”black box” and only focus on its interaction with the outer environment. In our case,
we use the constructed generalized T-matrix to study the directionality of the coupling of
the emissions to the waveguide. In what follows, let us briefly introduce the underlying
physics of this problem.

Recently, there have been several experiments demonstrating directional coupling of
light radiated by emitters into waveguide modes. For example, pronounced directionality
has been shown in the collection of atomic emissions by optical fibers [145] and quantum
dot emissions by waveguides [146–152]. Furthermore, other experiments have shown pro-
nounced directional coupling of focused light beams into waveguides, either directly [153],
or mediated by a scatterer [154, 155]. The directionality effect demonstrated by those
experiments highlights the potential to route light and classify emissions according to the
electromagnetic properties that actually determine the preferential coupling direction.

Different theoretical approaches have been developed to analyse the underlying physics
and understand the effect of observed directionality [156–169]. In particular, the concepts
of transverse spin and spin-momentum locking in evanescent waves have been put forward
as the origin of the directionality. However, the use of the photonic spin introduces an
ambiguity: In the context of the common separation of the optical angular momentum
into orbital and spin parts [170], the spin of the photon is often simultaneously connected
to both angular momentum and helicity/handedness [165, 171–173]. This ambiguity may
cause confusion and raises the question of which of the two generally distinct proper-
ties actually dictates the directional coupling. The answer to this question may imply
fundamentally different characteristics and applications of the directional coupling effect.
Importantly, while on the one hand, the angular momentum of the emissions is related
with the rotational properties of the emissions, on the other hand, the helicity/handedness
of the emissions is related with their chiral properties.

Apart from the ambiguity between the angular momentum and the helicity of the emis-
sions, there is another point of ambiguity that characterize the experimental observations,
and is related with the selected quantization axis of the emissions, i.e., the axis with re-
spect to which the emissions are characterized by a well-defined angular momentum. Note
that, in general, there are two common ways to experimentally select the quantization
axis of the emissions. One either needs to use an external bias of a static magnetic field
(e.g. in [145, 146, 148]), or, otherwise, the axis of propagation of a circularly polarized
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Chapter 1. Introduction

incident beam is the one that selects the quantization axis of the emissions (e.g. in [147,
154]). Note that, when a magnetic bias is used for such selection, the signals originat-
ing from emissions with opposite angular moment with respect to the selected bias axis
are spectrally distinguished due to the occurring Zeeman splitting that lifts their spectral
degeneracy. One of three different options of quantization axes, which we call transverse
axis [145, 154, 155], vertical axis [146–149, 164], and longitudinal axis [153], is typically
selected in the experiments. However, note that the concept of spin-momentum locking
only applies naturally to the transverse angular momentum case. Clarifying the quali-
tative differences between the three different quantization axes is therefore essential to
appreciate the underlying physics and to properly design the experiments.

Moreover, the dipolar approximation is routinely made to characterize the emitter.
This precludes the theoretical study and prediction of possible directional coupling effects
for the light emitted from higher-order multipolar transitions of atoms, molecules, and
quantum dots [174–179]. However, note that, while the numerical simulation of systems
excited with dipolar emitters is straightforward, this is not really the case for multipolar
emissions of higher order which require special technical treatment for their injection inside
the numerical simulations.

In this thesis, we are interested to address those issues and unveil the electromagnetic
properties of the emissions that actually drive the observed directional phenomena in
the experiments by studying the symmetries and the inner dynamics of the generalized
T-matrix that represents such nanophotonic systems.

Structure of the thesis

The thesis is divided into six chapters. After introducing the reader to the topics to be
studied in this first chapter, in the second chapter, we present the foundational elements
of electromagnetic theory on which this thesis is based. We discuss general principles of
electromagnetism that govern linear nanophotonic systems such as the electromagnetic
properties of the media, causality and stability, energy and photon number conservation,
reciprocity. Moreover, we present an eigenmode analysis of infinite, homogeneous, and
isotropic media, and we also discuss electromagnetism under the prism of the helicity
operator. Finally, we briefly recall the basics of waveguiding systems, and we introduce
some basic abstract notions of the T-matrix method.

In the third chapter, we study the scattering of electromagnetic waves from spheres
made of time-varying media. First, we discuss the physics of the eigensolutions of the elec-
tromagnetic wave equation in bulk time-varying media, and, then, we develop a Floquet-
Mie theory that solves the problem of light scattering from time-modulated spheres with a
generalized T-matrix method. We verify our results against full-wave simulations. Finally,
we demonstrate how such spheres can be driven to lasing states by means of parametric
Mie resonances, and we discuss the reciprocity symmetry under the prism of the T-matrix
of the system.

The fourth chapter addresses the problem of the Rayleigh Hypothesis in the context
of the T-matrix method. First, we present a theoretical analysis of the problem, and,
then, we propose a solution to the problem of the Rayleigh Hypothesis by introducing the
topological skeleton method to attain novel representations of the fields that transcend the
problem. Furthermore, we formulate a distributed T-matrix based on the new representa-
tions of the fields, we demonstrate how it can be calculated with full-wave simulations, and
we develop the generalization of the conventional multi-scattering theoretical formulation
to account for the newly introduced distributed T-matrices.

In the fifth chapter, we study the physics of directional coupling of emitters into waveg-
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uides under the prism of the generalized T-matrix of the system. First, we construct a
Hilbert space that is suitable to represent chiral emissions as the input of the T-matrix of
the waveguiding system, and, then, we present numerical results of the directionality of
the T-matrix of an exemplary system. To theoretically interpret our results, we conduct
a symmetry analysis of the T-matrix, and we study the transverse angular spectrum of
the emissions, which sheds light on our observations and highlights the prominent role
of transverse angular momentum of the emissions in governing the directionality of the
couplings.

Finally, the thesis concludes with the sixth chapter, in which we briefly summarize our
findings and provide an outlook for future research.
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2 — Foundational elements of electro-
magnetic theory

2.1 Introduction

In this chapter, we will introduce the basic theoretical background on which the analysis
of the following chapters is based. In the first section, we introduce Maxwell’s equations
which, together with the general constitutive relations that characterize linear media,
comprise the backbone of electromagnetic theory. In the second section, we discuss the
notions of causality and stability and the implications that they have for the response of the
media. In the third section, we present the generalized Poynting’s theorem and we discuss
the energy and photon number conservation in optical systems. In the fourth section, we
discuss electromagnetic reciprocity, which is a symmetry typically characterizing optical
systems. In the fifth section, we present the sets of eigenmodes of homogeneous and
isotropic media that we will frequently use in the following chapters of the thesis. In the
sixth section, we introduce the helicity operator and briefly discuss how it can assist the
analysis of chiral electromagnetic phenomena. In the seventh section, we briefly present
the basics of the electromagnetic theory for waveguides. Finally, in the last section of this
chapter, we theoretically introduce the T-matrix methods to analyze linear electromagnetic
systems.

2.2 Maxwell’s equations and constitutive relations

From a classical, microscopic electromagnetic perspective, every material is spatially in-
homogeneous and varies in time; it is constituted by a collection of point charges. The
electromagnetic waves inside the media are governed by the microscopic Maxwell equa-
tions. However, the spatiotemporal microscopic variations, e.g. nuclear vibrations or
electronic orbital motions, typically take place on temporal scales much shorter than the
oscillation period of light and on spatial scales that are much shorter than the wavelength
of light. Therefore, by introducing spatiotemporal averages of the involved physical quan-
tities, it is convenient to resort to a macroscopic description of electromagnetic waves.
Maxwell’s equations, in their macroscopic form, read as follows:

∇× H̃(r, t)− ∂

∂t

[
ε0Ẽ(r, t) + P̃e(r, t)

]
= J̃(r, t), (2.1)

∇× Ẽ(r, t) +
∂

∂t

[
µ0H̃(r, t) + P̃m(r, t)

]
= 0, (2.2)

∇ ·
[
ε0Ẽ(r, t) + P̃e(r, t)

]
= ρ̃(r, t), (2.3)

∇ ·
[
µ0H̃(r, t) + P̃m(r, t)

]
= 0. (2.4)

Ẽ(r, t) and H̃(r, t) correspond to the macroscopic electric and magnetic fields respec-
tively, whereas P̃e(r, t) and P̃m(r, t) correspond to the macroscopic electric and magnetic
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polarization densities, respectively. Note that the magnetic polarization density is re-
lated with the macroscopic magnetization of the medium M̃(r, t) in the following way:
P̃m(r, t) = µ0M̃(r, t). ρ̃(r, t) and J̃(r, t) denote the macroscopic free charge and current
densities, respectively, and are related to each othere with the charge continuity equa-
tion: ∇ · J̃(r, t) = −∂ρ̃(r, t)/∂t. ε0 is the dielectric permittivity of vacuum and µ0 is the
magnetic permeability of vacuum. Note that we use the symbol ·̃ to denote a functional
dependency on time. All the aforementioned time-dependent quantities are real-valued.

To solve Maxwell’s equations, we need to accompany them with the constitutive rela-
tions. These constitutive relations physically describe the way a medium gets polarized
in the presence of electromagnetic fields. In their most general form, the constitutive
relations of a linear medium read as follows:

[
P̃e(r, t)

P̃m(r, t)

]
=

ˆ +∞

−∞

ˆ
R3

χ̃(r, r− r′, t, t− t′) ·
[
Ẽ(r′, t′)

H̃(r′, t′)

]
d3r′dt′, (2.5)

where χ̃ =

[
ε0χ̃ee

√
ε0µ0χ̃em√

ε0µ0χ̃me µ0χ̃mm

]
, (2.6)

and χ̃ee, χ̃em, χ̃me, χ̃mm are the electric-electric, electric-magnetic, magnetic-electric, and
magnetic-magnetic, susceptibility dyadic (3x3) tensors, respectively. The spatial integral
shall span the whole space that is occupied by the polarized medium. Note that the
susceptibility tensor χ̃ is actually the response function of the medium, which only in
frequency domain is typically named as susceptibility. However, since in what follows
we will frequently refer to quantities in both time and frequency domain alternately, we
will refer to the response function of the medium as the susceptibility tensor as well,
for simplicity. Moreover, note that the linearity of the system implies that the induced
polarization in the medium is linearly dependent on the electromagnetic fields, i.e., it does
not depend on higher powers of them. Nonlinear phenomena are generally weak, and only
become prominent once we operate the system in a regime of large field intensities. We
will avoid such considerations in this thesis.

Here, let us highlight some specific classes of media:

➢ For a homogeneous medium, i.e., one that possesses continuous translation symmetry
in space, χ̃(r, r−r′, t, t−t′) is invariant with respect to its first argument. In this case,
an arbitrary translation of the electromagnetic field in space, i.e., the transforma-

tion
[
Ẽ(r, t), H̃(r, t)

]
→
[
Ẽ(r+ d, t), H̃(r+ d, t)

]
, always gives equally displaced in-

duced polarizations in space, i.e.,
[
P̃e(r, t), P̃m(r, t)

]
→
[
P̃e(r+ d, t), P̃m(r+ d, t)

]
,

for arbitrary spatial translations d.

➢ For a stationary medium, i.e., one that possesses continuous translation symmetry in
time, χ̃(r, r−r′, t, t− t′) is invariant with respect to its third argument. In this case,
an arbitrary translation of the electromagnetic field in time, i.e., the transformation[
Ẽ(r, t), H̃(r, t)

]
→
[
Ẽ(r, t+ t0), H̃(r, t+ t0)

]
, always gives equally displaced in-

duced polarizations in time, i.e.,
[
P̃e(r, t), P̃m(r, t)

]
→
[
P̃e(r, t+ t0), P̃m(r, t+ t0)

]
,

for arbitrary temporal translations t0.

➢ For a medium with local response, we have that χ̃(r, r − r′, t, t − t′) = δ(r −
r′)χ̃local(r, t, t − t′), where δ(r − r′) is the Dirac delta distribution. Typically, non-
local effects can be neglected since the characteristic length scale of the medium is
much shorter than the wavelength of light. However, non-local effects become more
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pronounced in artificial metamaterials. There, non-locality gives rise to spatial dis-
persion, i.e., a spatial spreading of the response of the medium. The polarization
induced at some point in space depends on the fields at the vicinity of that point.

➢ For a medium with instantaneous response, we have that χ̃(r, r − r′, t, t − t′) =
δ(t− t′)χ̃instant(r, r−r′, t). In contrast to spatial dispersion, temporal dispersion, i.e.,
a non-instantaneous response of the medium, cannot be easily ignored, especially at
high temporal frequencies where the media typically possess resonances. Temporal
dispersion effects correspond to a temporal spreading of the response of the medium.
In the next section, we will discuss the effect of causality, which constraisn that
temporal spreading of the response of the medium to be one-directional, specifically
only allowing for memory effects.

➢ In general, when the tensor χ̃(r, r − r′, t, t − t′) is a full 6x6 tensor, the medium
is called bi-anisotropic, whereas, when the tensors χ̃ee, χ̃em, χ̃me, χ̃mm become a
scalar multiple of the 3x3 identity matrix, the medium is called bi-isotropic. When
χ̃em = χ̃me = 0, the medium is called anisotropic, and when, furthermore, the
tensors χ̃ee, χ̃mm become a scalar multiple of the 3x3 identity matrix the medium is
called isotropic. Moreover, if χ̃mm = 0, the medium is called non-magnetic.

By making use of the following Fourier-transform pair:

X̃(t) =
1√
2π

ˆ +∞

−∞
X(ω)e−iωtdω ←→ X(ω) =

1√
2π

ˆ +∞

−∞
X̃(t)eiωtdω, (2.7)

the macroscopic Maxwell equations take the following form in the frequency domain:

∇×H(r, ω) + iω [ε0E(r, ω) +Pe(r, ω)] = J(r, ω), (2.8)

∇×E(r, ω)− iω [µ0H(r, ω) +Pm(r, ω)] = 0, (2.9)

∇ · [ε0E(r, ω) +Pe(r, ω)] = ρ(r, ω), (2.10)

∇ · [µ0H(r, ω) +Pm(r, ω)] = 0, (2.11)

whereas the constitutive relations take the following form in the frequency domain:

[
Pe(r, ω)
Pm(r, ω)

]
=

ˆ +∞

−∞

ˆ
R3

χ(r, r− r′, ω − ω′, ω′) ·
[
E(r′, ω′)
H(r′, ω′)

]
d3r′dω′, (2.12)

where χ =

[
ε0χee

√
ε0µ0χem√

ε0µ0χme µ0χmm

]
. (2.13)

Let us highlight that, since χ̃(r, r− r′, t, t− t′) is a real-valued function, we have that

χ(r, r− r′, ω − ω′, ω′) = χ∗(r, r− r′,−ω + ω′,−ω′), (2.14)

where we use the symbol (∗) to denote complex conjugation.
Importantly, note that for a stationary medium whose susceptibility tensor in time

domain is invariant with respect to its third argument, we have that χ(r, r−r′, ω−ω′, ω′) =
δ(ω−ω′)χstationary(r, r−r′, ω). It implies that the constitutive relations of the medium do
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not introduce coupling between the fields of different frequencies ω, which is otherwise the
case. Spectral coupling, i.e., violation of the conservation of frequency, is an important
property of systems without continuous translation symmetry in time.

Finally, let us also note, that non-local but homogeneous media are conveniently ana-
lyzed in momentum instead of real coordinate space, i.e., when an extra Fourier transform
is performed to shift in the domain of spatial frequencies. That is because the continuous
translation symmetry in space of such media (in analogy with that in time discussed in
the previous paragraph) conserves spatial frequencies, i.e., linear momentum. However,
non-local effects go beyond the scope of this thesis and we refrain from introducing such
a further step in our analysis here. We will keep considering, though, non-locality in the
next sections of this chapter just for reasons of completeness of the presented theoretical
analysis of the linear electromagnetic systems under study. Note, also, that throughout
this thesis, we will only focus on electrodynamics and avoid considerations of electrosta-
tics, i.e., we will consider only electromagnetic fields with vanishing spectral content at
zero frequency.

2.3 Causality and stability: two fundamental properties of
electromagnetic media, and their consequences on how
to phenomologically model material properties

In this section, we will discuss the implications of two fundamental properties that charac-
terize electromagnetic media: causality and stability. It will be important especially in the
context of time-varying media, as we can derive based on these two principles a mathe-
matical framework concerning how to phenomenologically express the materials properties
of dispersive and time-varying media.

The principle of causality states that there cannot be any response of the electromag-
netic system before it gets excited, i.e., the medium is polarized only after its excitation
by the electromagnetic fields; the past reflects on the present, but the future does not.
Moreover, no non-local response of the system can occur faster than the vacuum speed of
light, c0. Algebraically, this physical requirement translates into the following property of
the susceptibility tensor for media:

χ̃(r, r− r′, t, t− t′) = 0, for t− t′ ≤
∣∣r− r′

∣∣ /c0. (2.15)

We consider causality a fundamental property of the electromagnetic media studied in this
thesis.

Another fundamental property that characterizes the considered electromagnetic media
is stability. By this, here, we mean that the response function of the medium, χ̃(r, r −
r′, t, t− t′), is finite everywhere and, with respect to its last argument, decays at least as
fast as O(1/(t − t′)2), as (t − t′) → ∞ [180]. This implies that a finite excitation of the
medium gives always a finite response that dies out over a long enough period of time.

Therefore, a real-valued function, f̃(t), which abides with the principles of causality
and stability, has the following properties: 1) f̃(t) = 0 for t ≤ 0, 2)f̃(t) is finite everywhere,
and 3) lim

t→∞
f̃(t) decays at least as fast as O(t−2). Let us now consider its Fourier transform

f(ω) and study some of its properties.

First of all, as shown in Ref. [180], the above three conditions of f̃(t) suffice to satisfy
the Cauchy-Riemann conditions for the function f(ω) everywhere in the upper-half space
including the real axis, Im {ω} ≥ 0, with Im{·} denoting the imaginary part of a quantity.
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This means that causality and stability imply the analyticity of f(ω) in the upper half-
plane.

Moreover, following Section 7.10 of Ref. [181], and making use of the same properties
of causality and stability, we can derive the following power series expansion of f(ω):

f(ω) =
∞∑

n=1,2,...

1

(−iω)n+1

∂nf̃

∂tn
(0), (2.16)

which implies that, for |ω| → ∞, the absolute value and the real part of f(ω) decay with
a rate of O(1/|ω|2), whereas the imaginary part of f(ω) decays with a rate of O(1/|ω|3).
In view of this result, and by virtue of Cauchy’s integral theorem applied for the complex
contour of the circle with infinite radius |ω| → ∞, we can deduct that f(ω) cannot be
an entire function, i.e., analytic everywhere in the complex frequency plane, since that
would imply that it is zero everywhere. Therefore, the analyticity of f(ω) has to be broken
somewhere in the lower half-plane.

As a next step, based on the above results, let us assume that f(ω) is a meromorphic
function possessing a countable number of simple poles in the lower half space Im {ω} < 0.
Consequently, we can expand f(ω) in the following Laurent series:

f(ω) =
∞∑

i=−1,0,...

ai(ω0)(ω − ω0)
i, with a−1(ω0) =

∑
n

a−1,nδ(ω0 − ωn), (2.17)

where ωn (Im {ωn} < 0) denotes the complex frequencies of the poles of f(ω). We also
introduced the coefficients a−1,n. By making use of Cauchy’s residue theorem, we can
finally get the following pole expansion of f(ω):

˛
C∞

f(ω′)

ω′ − ω
dω′ =

˛
Cω

f(ω′)

ω′ − ω
dω′ +

∑
n

˛
Cωn

f(ω′)

ω′ − ω
dω′ ⇒

0 = 2πif(ω) + 2πi
∑
n

a−1,n

ωn − ω
⇒

f(ω) =
∑
n

a−1,n

ω − ωn
, (2.18)

where C∞, Cω and Cωn denote integration over closed contours in the complex plane with
the first being a circular contour around |ω′| → ∞, the second being a circular contour
around |ω′ − ω| → 0 and the last being a circular contour around |ω′ − ωn| → 0.

Last but not least, the analyticity in the upper half-plane (Im {ωn} ≥ 0) gives the
following Kramers-Kronig relation that mutually associates the real with the imaginary
part of f(ω) [182]:

f(ω) =
1

πi
P.V.

{ˆ +∞

−∞

f(ω′)

ω′ − ω
dω′
}

(2.19)

=
2

π
P.V.

{ˆ +∞

0

ω′Im {f(ω′)} − iωRe {f(ω′)}
ω′2 − ω2

dω′
}
, (2.20)

with P.V.{·} denotes the Cauchy principal value of the improper integral. Moreover,
because, as we’ve shown above, the imaginary part of f(ω) decays with a rate of O(1/|ω|3)
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for |ω| → ∞, we can apply the superconvergence theorem, so that, from the latter Kramers
Kronig relation together with Eq. (2.16), we get the following sum rule [182]:

∂f̃

∂t
(0) = − lim

ω→∞

[
ω2Re {f(ω)}

]
=

2

π

ˆ +∞

0
ωIm {f(ω)} dω. (2.21)

Let us now apply the above mathematical results, based on the properties of causality
and stability, to the particular case of the generalized susceptibility tensor. To begin with,
from Eq. (2.19), we readily get (after performing an extra Fourier transform for the third
argument) the following generalized Kramers Kronig relation:

χ(r, r− r′, ω − ω′, ω′) =
1

πi
P.V.

{ˆ +∞

−∞

χ(r, r− r′, ω − ω′′, ω′′)

ω′′ − ω′ dω′′
}
. (2.22)

In order to derive a sum rule for the generalized susceptibility tensor based on Eq. (2.21),
we need to further specify its asymptotic behavior for large arguments. This is done on
physical grounds, even though the section so far has been dealing with purely algebraic
manipulations. Specifically, following Ref. [181], we have the physical requirement that
for large enough frequencies all the electrons of the medium, which are constant over
time within a given volume, should behave like a plasma, i.e., like free, unbound electrons
with the electric field acting on them. The equation of motion of such electrons (ignoring
the magnetic field contribution in the Lorentz force as comparatively minor in strength,
and ignoring also the damping from the ionic collisions and any non-local effects as in-
significant) is simple: mer̈ = qeE(r, t), and gives the following asymptotic behavior of the
generalized susceptibility tensor:

lim
ω′→∞

[
ω′2χ(r, r− r′, ω − ω′′, ω′)

]
= −δ(r− r′)δ(ω − ω′′)

[
I 0
0 0

]
Ne(r)q

2
e

me
, (2.23)

where I is the 3x3 identity matrix and 0 is a 3x3 matrix full of zeros. Ne(r) is the
electron density of the medium, while qe and me are the charge and the mass of the
electron, respectively. Using the latter equation together with Eq. (2.21), we readily get
the following sum rule for the generalized susceptibility tensor:

δ(r− r′)δ(ω − ω′′)

[
I 0
0 0

]
πNe(r)q

2
e

2me
=

ˆ +∞

0
ω′Im

{
χ(r, r− r′, ω − ω′′, ω′)

}
dω′. (2.24)

Moreover, in view of Eq. (2.18), and assuming that the function of the generalized
susceptibility tensor is separable with respect to its two last arguments, i.e., χ̃(r, r −
r′, t, t − t′) = χ̃(1)

(r, r − r′, t)χ̃
(2)

(r, r − r′, t − t′), and, also, that χ̃(2)
(r, r − r′, t − t′) is

meromorphic with respect to its last argument in frequency domain, we can perform the
following pole expansion of the generalized susceptibility tensor by introducing the tensors
χn(r, r− r′, ω − ω′) and the resonance frequencies ωn(r, r− r′):

χ(r, r− r′, ω − ω′, ω′) =
∑
n

χn(r, r− r′, ω − ω′)

ω′ − ωn(r, r− r′)
, (2.25)

which we can recast into the following form so that it abides with the symmetry χ(r, r−
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r′, ω − ω′, ω′) = χ∗(r, r − r′,−ω∗ + ω′∗,−ω′∗) that is a generalization of Eq. (2.14) for
complex frequencies:

χ(r, r− r′, ω − ω′, ω′) =
∑
n

χn(r, r− r′, ω − ω′)

ω′ − ωn(r, r− r′)
−

χ∗
n(r, r− r′, ω′ − ω)
ω′ + ω∗

n(r, r− r′)
. (2.26)

In the above equation, it is considered, without loss of generality, that Re {ωn} is positive,
with Re{·} denoting the real part of a quantity. If, furthermore, we impose the physical
requirement for the asymptotic behavior of Eq. (2.23), we, first, get that the nominators
in the fractions of the above equation are equal. This equality implies a real-valued inverse
Fourier transform of χn(r, r− r′, ω − ω′) with respect to its last argument. Moreover, we
get the following generalized sum rule:

∑
n

−2Re
{
ωn(r, r− r′)

}
χn(r, r− r′, ω − ω′) = δ(r− r′)δ(ω − ω′)

[
I 0
0 0

]
Ne(r)q

2
e

me
.(2.27)

Finally, the generalized susceptibility tensor gets the following expression:

χ(r, r− r′, ω − ω′, ω′) =
∑
n

−2Re {ωn(r, r− r′)}χn(r, r− r′, ω − ω′)

−ω′2 + 2iIm {ωn(r, r− r′)}ω′ + |ωn(r, r− r′)|2
. (2.28)

The latter equation constitutes a Lorentz-pole expansion of the generalized susceptibil-
ity tensor. Its physical content can be elucidated once we study the simple case of homoge-
neous, local, non-magnetic, and isotropic media, where the generalized susceptibility tensor

takes the following simplified form: χ(r, r−r′, ω−ω′, ω′) = ε0δ(r−r′)
[
I 0
0 0

]
χee(ω−ω′, ω′),

with χee(ω−ω′, ω′) being a scalar function. In that case, we can define the following quan-
tities:

ωp =

√
Neq2e
meε0

, (2.29)

fn(ω − ω′) = −2Re {ωn}χee,n(ω − ω′)ω−2
p , (2.30)

γn = −2Im {ωn} , (2.31)

ω0,n = |ωn|, (2.32)

with ωp being the plasma frequency of the medium, fn(ω − ω′) being the oscillator
strengths, γn being the damping coefficient of the oscillator, and ω0,n being the oscillator’s
central frequency. Those definitions readily give the following reformulated Lorentz-pole
expansion (following from Eq. (2.28)):

χee(ω − ω′, ω′) = ω2
p

∑
n

fn(ω − ω′)

−ω′2 − iγnω′ + ω2
0,n

. (2.33)

with ∑
n

fn(ω − ω′) = δ(ω − ω′) (2.34)
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being the f-sum rule of Eq. (2.27) rewritten in the new formalism. Moreover, taking the
inverse Fourier transform of the latter expression, we get the following f-sum rule in time
domain:

∑
n

f̃n(t) = 1/
√
2π, (2.35)

with f̃n(t) required to be a real-valued function, as we discussed above, in order to comply
with the asymptotic behavior of Eq. (2.23).

Let us highlight now that Eq. (2.33) corresponds to the superposition of the response
functions of Lorentz oscillators with time-varying electron densities Ñe,n(t) =

√
2πf̃n(t)Ne.

The physical picture corresponds to the case of having Ñe,n(t) electrons per unit volume
oscillating within the potential of the n-th Lorentz harmonic oscillator. The respective
electric dipole moments, p̃e,n(r, t), obey the following equation of motion [181]:

[
∂2

∂t2
+ γn

∂

∂t
+ ω2

0,n

]
p̃e,n(r, t) =

q2e
me

Ẽ(r, t), (2.36)

and the total electric polarization of that medium is given by

P̃e(r, t) =
∑
n

P̃e,n(r, t) =
∑
n

Ñe,n(t)p̃e,n(r, t). (2.37)

With the new formulation, it becomes clear that the f-sum rule of Eq. (2.35) simply states
that the sum of the electrons oscillating within the potentials of the different Lorentz
oscillators should be always constant and equal to the total electron density of the medium:

∑
n

Ñe,n(t) = Ne. (2.38)

The solution of the differential equation of Eq. (2.36) is known to be:

p̃e,n(r, t) =

ˆ +∞

−∞
α̃ee,n(t− t′)Ẽ(r, t′) dt′, (2.39)

where

α̃ee,n(t) =
1√

ω2
0,n −

γ2
n
4

q2e
me

H(t)e−
γn
2
t sin

(
t

√
ω2
0,n −

γ2n
4

)
(2.40)

is the electric polarizability kernel of the Lorentz oscillator and H(t) is the Heaviside step
function. From the latter equation, together with Eqs. (2.5,2.6,2.37), we readily get the
susceptibility of the medium in time domain

χ̃ee(t, t− t′) =
1

ε0

∑
n

Ñe,n(t)α̃ee,n(t− t′), (2.41)
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with χ̃ee(t, t− t′) being the inverse Fourier transform of χee(ω − ω′, ω′).
As we’ve shown, the above-described model for the susceptibility of a time-varying

medium nicely respects the principles of causality and stability, however, it has a significant
drawback from another physics point of view. As we see from Eq. (2.37), the electric
polarization density of the n-th Lorentz oscillator P̃e,n at time t induced by an electric
field impulse at time t′ is not proportional to the electron density of the n-th Lorentz
oscillator at the time of the impulse excitation t′, Ñe,n(t

′). We can attempt to fix this
problem by slightly modifying our model. Specifically, we need to drop the previous
assumption that the function of the generalized susceptibility tensor χ̃(r, r − r′, t, t − t′)
is separable with respect to its two last arguments and express the susceptibility of the
medium as

χ̃ee(t, t− t′) =
1

ε0

∑
n

Ñe,n(t
′)α̃ee,n(t− t′). (2.42)

Note the slight difference between the last equation and Eq. (2.41). In this way, we
managed to correct the old model in a way that only the available electrons per unit
volume within the potential of each Lorentz oscillator get excited by the electric field
at each moment. In this case, it is easy to show that P̃e,n obeys the following partial
differential equation:

[
∂2

∂t2
+ γn

∂

∂t
+ ω2

0,n

]
P̃e,n(r, t) =

q2e
me

Ñe,n(t)Ẽ(r, t), (2.43)

and that the corresponding electric susceptibility takes the following form in frequency
domain:

χee(ω − ω′, ω′) = ω2
p

∑
n

fn(ω − ω′)

−ω2 − iγnω + ω2
0,n

. (2.44)

Note, again, the slight difference between the latter equation and Eq. (2.33). It is im-
portant to note that the latter model of the susceptibility also respects the principles of
causality and stability, and that it obeys the same f-sum rules as the previous model (see
Eqs. (2.34,2.35)). Moreover, note how either of the two above presented models collapse
to well-known expressions for the stationary case where Ñe,n(t) is constant over time and,
therefore, Ne,n(ω − ω′) =

√
2πfn(ω − ω′)Ne is proportional to δ(ω − ω′).

Furthermore, we would like to highlight that the last presented model for the suscepti-
bility is still plagued by an unphysical aspect. In this model, once the electrons get excited
by the electric field, they oscillate to infinity according to the damped oscillations described
by the electric polarizability kernel of Eq. (2.40), contributing to the polarization of the
medium. However, this physical picture fails to account for the temporal variations of
the electron density of the medium. Some electrons, after they get excited by the electric
field, at a later moment are ”removed” from the medium before they manage to ”finish”
their damped oscillations. In order to account for this problem, a further modification
of our phenomenological model for the electric susceptibility of the medium could be the
following:

χ̃ee(t, t− t′) =
1

ε0

∑
n

α̃ee,n(t− t′)
ˆ Ñe,n(t′)

0
H
(
τ(n′, t′)− t

)
dn′, (2.45)
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where τ(n′, t′) is equal to the minimum time greater than t′ for which we have that
Ñe,n(τ(n

′, t′)) < n′. Here, we integrate over the variable n′ to separately account for the
excitation of each electron available in the medium at a given time t′. The introduced
Heaviside step function accounts for the lifetime of each electron in the medium. Accord-
ing to this model, each electron associated with the variable n′ shall obey a Lorentzian
differential equation whose damping coefficient, though, goes to infinity during temporal
windows where we have Ñe,n(t) > n in order to account for the ”removal” of the electron
from the medium during those windows in time. Let us note that such kind of considera-
tions discussed here, could be potentially ignored, though, if we assume that the oscillatory
decay of the electrons happens much faster compared to the time scale of the temporal
variations of the electron density of the medium.

Finally, we would like to emphasize that the above described models are all phenomeno-
logical models that we constructed just based on the principles of causality and stability
of the system, together with some extra basic physical considerations that we imposed to
improve further the model. For example, let us note that in the above analysis, specifically
for the derivation in Eq. (2.18), we have tacitly assumed for simplicity the analyticity of the
function f(ω) all along the real frequency axis. This entails the absence of Drude type of
oscillators in the pole expansion of the generalized susceptibility tensor, which correspond
to a pole at zero frequency (ω0,n = 0). Such kind of extra terms, can be straightforwardly
taken into consideration in the analysis, in order to account for the additional presence
of free charge carriers in the medium, which is commonly the case for conductors with
available intraband transitions.

It is crucial to highlight that, although such phenomenological mass-spring-damper
models of the media (as is the Lorentz oscillator model) may provide a quite simple
modeling of the response of the medium upon electromagnetic excitation, behind them
there is always the quite more complicated quantum mechanical reality of the dynamics
within the medium. Generally, such phenomenological Lorentz-pole-based models for the
susceptibility can provide a good description of the response of the media though [183]. In
fact, in the sixth chapter of Ref. [184], it is shown that a similar Lorentz-pole expansion
of the response of a medium can be reached by following a quantum description of the
optical properties of crystals. Specifically, the resonance frequencies of the crystal (ω0,n)
in the quantum description are associated with interband transitions of the electrons from
the valence to the conduction band that are characterized by non-vanishing dipole matrix
elements and a large joint density of states (JDOS) [81]. Large JDOS occurs at critical
points of the electronic band structure of the crystal, where the valence and conduction
bands have the same slope locally. Photons with energy similar to the energy difference
between the valence and conduction band at the critical points are, therefore, efficiently
absorbed. On the other hand, in the quantum description, Drude-type of poles in the
optical response function of a crystal are associated with intraband transitions and have
oscillator strengths related to the curvature of the bands at the positions where they cross
the Fermi level.

A non-phenomenological quantum description of non-stationary media, whose optical
properties are modulated in time through some external physical mechanism, may be
essential in providing physically accurate models (i.e., models that capture properly the
physics of the realistic external modulation mechanism) of the linear optical response of
such media that is represented by the susceptibility tensor χ(r, r−r′, ω−ω′, ω′). However,
we would like to note that such a quantum description of non-stationary media goes beyond
the scope of this thesis and, unfortunately, to the best of our knowledge, is an interesting
open research topic that is not yet studied in the relevant literature. For this reason, in
this thesis, we will simply adopt the Lorentz-pole-based phenomenological models that we
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developed in this section to describe in a more abstract way the optical response function
of non-stationary media.

2.4 Generalized Poynting’s theorem and conservation of en-
ergy and photon number in linear media

In this section, we will discuss the electromagnetic energy balance, as well as the pho-
ton number balance within a general non-local, non-homogeneous, bi-anisotropic linear
medium with both spatial and temporal dispersion, as introduced in Section 2.2.

The flow of electromagnetic energy inside a medium is dictated by the differential
equation of Poynting’s theorem, which is a simple algebraic derivation following from the
macroscopic Maxwell equations in time domain. It reads as follows:

Ẽ · J̃+ Ẽ · ∂P̃e

∂t
+ H̃ · ∂P̃m

∂t
+

1

2

∂

∂t

(
ε0

∣∣∣Ẽ∣∣∣2 + µ0

∣∣∣H̃∣∣∣2)+∇ ·
(
Ẽ× H̃

)
= 0. (2.46)

We can identify the following terms in the above expression:

➢ The first term is the power density provided by the electromagnetic field to the
external free sources:

P̃source(r, t) = Ẽ · J̃. (2.47)

This can be shown by calculating the work done by an electromagnetic field on
external free moving charges (with speed v) through the macroscopic Lorentz Force

law: ∂Wsource = ρ̃∂3r
(
Ẽ+ µ0v × H̃

)
· v∂t = Ẽ · J̃∂3r∂t.

➢ The second term is the power density provided by the electromagnetic field to the
bound moving charges of the medium:

P̃medium(r, t) = Ẽ · ∂P̃e

∂t
+ H̃ · ∂P̃m

∂t
. (2.48)

The two terms can be shown to be the power density provided by the electromagnetic
field to the polarization and magnetization of the medium, respectively [185].

➢ The third term is the local gain power density of the electromagnetic field:

P̃field(r, t) =
1

2

∂

∂t

(
ε0

∣∣∣Ẽ∣∣∣2 + µ0

∣∣∣H̃∣∣∣2) , (2.49)

since the local electromagnetic energy density is equal to 1
2

(
ε0

∣∣∣Ẽ∣∣∣2 + µ0

∣∣∣H̃∣∣∣2).
➢ The last term is the divergence of the Poynting vector S̃(r, t) = Ẽ× H̃ representing

the local outflow power density of the electromagnetic field:

P̃outflow(r, t) = ∇ · S̃. (2.50)

21



Chapter 2. Foundational elements of electromagnetic theory

Therefore, Poynting’s theorem can be rewritten as the following equation of energy con-
servation:

P̃sources(r, t) + P̃medium(r, t) + P̃field(r, t) + P̃outflow(r, t) = 0, (2.51)

i.e., the outflow of electromagnetic power per unit volume is equal to the power per unit
volume provided by the external free sources, the polarized medium, and the electromag-
netic field.

The total energy absorbed by the medium is given by the following formula:

Wmedium =

ˆ +∞

−∞

ˆ
R3

P̃medium(r, t)d
3rdt (2.52)

= −
ˆ +∞

−∞

ˆ
R3

ω Im {E ·P∗
e +H ·P∗

m} d3rdω (2.53)

=

¨ +∞

−∞

¨
R3

[
E(r, ω)
H(r, ω)

]†
·W(r, r′, ω, ω′) ·

[
E(r′, ω′)
H(r′, ω′)

]
d3rd3r′dωdω′, (2.54)

with the 6x6 matrix W being given by

W =

[
Wee Wem

Wme Wmm

]
, (2.55)

with

Wee =
ωε0
2i

[
χee(r, r− r′, ω − ω′, ω′)− ω′

ω χ†
ee(r′, r′ − r, ω′ − ω, ω)

]
, (2.56)

Wem =
ω
√
ε0µ0

2i

[
χem(r, r− r′, ω − ω′, ω′)− ω′

ω χ†
me(r′, r′ − r, ω′ − ω, ω)

]
, (2.57)

Wme =
ω
√
ε0µ0

2i

[
χme(r, r− r′, ω − ω′, ω′)− ω′

ω χ†
em(r′, r′ − r, ω′ − ω, ω)

]
, (2.58)

Wmm = ωµ0

2i

[
χmm(r, r− r′, ω − ω′, ω′)− ω′

ω χ†
mm(r′, r′ − r, ω′ − ω, ω)

]
. (2.59)

Here, the symbol (†) denotes the conjugate transpose of a matrix. We got Eq. (2.53) by
plugging the Fourier transform of Eq. (2.48) in Eq. (2.52), and then we used Eqs. (2.12,2.13)
to get Eq. (2.54).

Importantly, note that the matrix W has the following symmetry property:

W(r, r′, ω, ω′) = W†(r′, r, ω′, ω). (2.60)

Therefore, we can recast Eq. (2.54) into the following Hermitian quadratic form, in Dirac
notation, by introducing the self-adjoint operator Ŵ (which we assume to be compact):

Wmedium = ⟨EMfield| Ŵ |EMfield⟩ . (2.61)

In view of the latter equation, according to the spectral theorem for a compact self-adjoint
operator, we can formulate the following properties of the operator Ŵ that reflect on the
energy absorption properties of the system for arbitrary electromagnetic fields:
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➢ For Ŵ being a positive semi-definite operator, i.e., in the case that all its eigenvalues
are non-negative, we get that Wmedium ≥ 0, i.e., the system is passive.

➢ Specifically, for Ŵ = 0̂, i.e., for W(r, r′, ω, ω′) = 0, we get that Wmedium = 0, i.e.,
the system is lossless and conserves energy. Hence, let us highlight that energy
conservation manifests itself as a symmetry condition of the generalized suscepti-
bility tensor given by the equation W(r, r′, ω, ω′) = 0. Note that, for the special
case of a stationary system, the latter condition, W(r, r′, ω, ω′) = 0, boils down
to well-known expressions characterizing lossless media: χee,stationary(r, r − r′, ω) =

χ†
ee,stationary(r

′, r′ − r, ω), χem,stationary(r, r − r′, ω) = χ†
me,stationary(r

′, r′ − r, ω) and

χmm,stationary(r, r − r′, ω) = χ†
mm,stationary(r

′, r′ − r, ω). We would like to highlight
that in this case, apart from a global, we also have a local conservation of energy,
since the system operator is diagonal with respect to r, For the same reason, i.e.,
because in that case the system operator is diagonal with respect to ω as well, we
also have energy conservation for each individual frequency ω. Moreover, Fourier-
transforming the susceptibility tensors from the real (r, ω)- into the momentum
(k, ω)-space, we can also get similar expressions for the case of homogeneous but
non-local, stationary systems. In the last case, apart from globally, energy is also
conserved for each individual momentum k, since the system operator is diagonal
with respect to it.

➢ For Ŵ being a negative definite operator, i.e., in the case that all its eigenvalues are
negative, we get that Wmedium < 0, i.e., the system is active.

➢ For Ŵ being an indefinite operator, i.e., in the more general case that its eigenvalues
take both positive and negative values, the system may behave either as active or
passive depending on the particular electromagnetic fields.

Let us now formulate the generalized Poynting theorem in its integral form in frequency
domain. For this, we consider an arbitrary finite volume V enclosed by a surface S (whose
pointing-outwards normal unit vector we denote with n̂) that shall contain all space that
encompasses non-local interactions. By integrating Eq. (2.51) over time and space V ,
we get that the total energy absorbed by the polarized medium inside V is given by the
formula:

Wmedium,V =

ˆ +∞

−∞

ˆ
V
P̃medium(r, t)d

3rdt

= ⟨EMfield| ŴV |EMfield⟩
= −Wsources,V −Woutflow,V , (2.62)

where, in the above energy conservation equation, we have defined the quantities

Wsources,V =

ˆ +∞

−∞

ˆ
V
Re {E · J∗} d3rdω, (2.63)

Woutflow,V =

ˆ +∞

−∞

‹
S
n̂ · S d2rdω, (2.64)

with S = Re {E×H∗} (2.65)

being the Poynting vector in frequency domain, representing the electromagnetic power
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flux density. The quantityWsources,V denotes the total electromagnetic energy absorbed by
the free external sources, whereas the quantityWoutflow,V denotes the total electromagnetic

energy that flowed outside the surface S enclosing the volume V . With ŴV we denote the
same operator as in Eq. (2.54), but with the spatial integrals spanning only the volume V .
We get Eqs. (2.63-2.65) by integrating over time and space V , and Fourier transforming
Eqs. (2.47,2.50), respectively. For the latter term, we also made use of Gauss’s theorem
to convert the initial volumetric integral of the divergence of the Poynting vector into the
final surface integral. The generalized Poynting theorem in its integral form simply states
that the total energy absorbed by a medium inside V is equal to the total energy provided
by the sources inside V minus the total net energy that flowed outside V .

Importantly, note that, in view of the discussion above and specifically Eqs. (2.56-2.59),
a non-stationary medium that does not break energy conservation is generally unrealistic.
Actually, according to Noether’s theorem, energy conservation is directly related with
the symmetry of continuous translation over time, which, in our case, is broken by a
non-stationary system. In a later chapter, we will make use of this property to drive a
sphere made from a non-stationary material into a lasing state by means of parametric
oscillations.

We would like to highlight that, while energy conservation in stationary systems is
equivalent to photon number conservation, this is not the case for non-stationary systems.
Since the energy of a photon of frequency ω is equal to ℏω, with ℏ being the reduced
Planck constant, we can get the following expression for the total number of photons
absorbed inside the medium, Nmedium, by dividing the integrand of the spectral integral
of Eq. (2.53) -recasted into a form involving integration over positive, only, frequencies-
with the single photon energy ℏω:

Nmedium = −2

ℏ

ˆ +∞

0+

ˆ
R3

Im {E ·P∗
e +H ·P∗

m}d3rdω (2.66)

=

¨ +∞

−∞

¨
R3

[
E(r, ω)
H(r, ω)

]†
·N (r, r′, ω, ω′) ·

[
E(r′, ω′)
H(r′, ω′)

]
d3rd3r′dωdω′, (2.67)

with the 6x6 matrix N being given by

N =

[
N ee N em

Nme Nmm

]
, (2.68)

with

N ee =
ε0
2iℏ

[
ω
|ω|χee(r, r− r′, ω − ω′, ω′)− ω′

|ω′|χ
†
ee(r′, r′ − r, ω′ − ω, ω)

]
, (2.69)

N em =
√
ε0µ0

2iℏ

[
ω
|ω|χem(r, r− r′, ω − ω′, ω′)− ω′

|ω′|χ
†
me(r′, r′ − r, ω′ − ω, ω)

]
, (2.70)

Nme =
√
ε0µ0

2iℏ

[
ω
|ω|χme(r, r− r′, ω − ω′, ω′)− ω′

|ω′|χ
†
em(r′, r′ − r, ω′ − ω, ω)

]
, (2.71)

Nmm = µ0

2iℏ

[
ω
|ω|χmm(r, r− r′, ω − ω′, ω′)− ω′

|ω′|χ
†
mm(r′, r′ − r, ω′ − ω, ω)

]
. (2.72)

Proceeding in the same way like before, we can recast Eq. (2.67) into the following Hermi-
tian quadratic form, in Dirac notation, by introducing the self-adjoint operator N̂ (which
we assume to be compact):
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Nmedium = ⟨EMfield| N̂ |EMfield⟩ . (2.73)

Note that, for N̂ = 0̂, i.e., for N (r, r′, ω, ω′) = 0, we get that Nmedium = 0, i.e., the
system conserves the number of photons. Moreover, it is evident from the above equations
that for stationary systems the condition N̂ = 0̂ is equivalent to the condition Ŵ = 0̂,
i.e., for stationary systems energy conservation simultaneously implies photon number
conservation, which is not generally the case for non-stationary systems. Importantly,
it is also evident from the above equations that a non-stationary system, apart from
breaking energy conservation as we discussed before, generally breaks also the photon
number conservation. However, we can identify a special class of media that conserves
the number of photons as long as they have the following three properties: 1) they are
dispersionless, i.e., they are characterized by an instantaneous response, 2) they do not
couple frequencies of opposite signs and 3) their susceptibility tensors have the following
symmetries in time domain:

χ̃ee,instant(r, r− r′, t) = χ̃T
ee,instant(r

′, r′ − r, t), (2.74)

χ̃em,instant(r, r− r′, t) = χ̃T
me,instant(r

′, r′ − r, t), (2.75)

χ̃mm,instant(r, r− r′, t) = χ̃T
mm,instant(r

′, r′ − r, t). (2.76)

The second required property that we just mentioned practically implies though that
photon number conservation inside such a class of dispersionless, non-stationary media
does not hold true for arbitrary electromagnetic fields: in order that the number of photons
are conserved we need to operate the system in large enough frequencies compared to
the bandwidth of the susceptibility tensors, so that we practically avoid the undesired
coupling between positive and negative frequencies, which could spoil the photon number
conservation.

Furthermore, starting from the following equation, which can be derived directly from
Maxwell’s equations:

Re {iω (E ·P∗
e +H ·P∗

m) +E · J∗ +∇ · (E×H∗)} = 0, (2.77)

we can get the following photon number conservation equation in analogy to the general-
ized Poynting theorem in its integral form:

Nmedium,V = −Nsources,V −Noutflow,V , (2.78)

with

Nmedium,V = −2

ℏ

ˆ +∞

0+

ˆ
V
Im {E ·P∗

e +H ·P∗
m}d3rdω

= ⟨EMfield| N̂V |EMfield⟩ , (2.79)

Nsources,V =

ˆ +∞

0+

ˆ
V

2Re {E · J∗}
ℏω

d3rdω, (2.80)

Noutflow,V =

ˆ +∞

0+

‹
S

2n̂ · S
ℏω

d2rdω. (2.81)
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It is straightforward to show that the three above quantities represent the total number of
photons that are absorbed by the medium inside volume V , the total number of photons
absorbed by the free external sources inside volume V and the total number of photons
that flowed outside the surface S enclosing the volume V , respectively. In a similar fashion
like before, with N̂V we denote the same operator as in Eq. (2.67), but with the spatial
integrals spanning only the volume V , which is arbitrary but shall contain all space that
encompasses non-local interactions.

Finally, we would like to highlight, that, quite interestingly, time-varying media with
traveling wave space-time modulation have been recently identified to possess eigenmodes
that conserve the number of pseudo-photons, which are considered to be photons of puta-
tive negative energies for negative frequencies [186–188]. Specifically, the number of such
pseudo-photons absorbed inside the medium is given by the following formula:

N ′
medium = −1

ℏ

ˆ +∞

−∞

ˆ
R3

Im {E ·P∗
e +H ·P∗

m} d3rdω (2.82)

=

¨ +∞

−∞

¨
R3

[
E(r, ω)
H(r, ω)

]†
·N ′(r, r′, ω, ω′) ·

[
E(r′, ω′)
H(r′, ω′)

]
d3rd3r′dωdω′, (2.83)

with the 6x6 matrix N ′ being given by

N ′ =

[
N ′

ee N ′
em

N ′
me N ′

mm

]
, (2.84)

with

N ′
ee =

ε0
2iℏ

[
χee(r, r− r′, ω − ω′, ω′)− χ†

ee(r′, r′ − r, ω′ − ω, ω)
]
, (2.85)

N ′
em =

√
ε0µ0

2iℏ

[
χem(r, r− r′, ω − ω′, ω′)− χ†

me(r′, r′ − r, ω′ − ω, ω)
]
, (2.86)

N ′
me =

√
ε0µ0

2iℏ

[
χme(r, r− r′, ω − ω′, ω′)− χ†

em(r′, r′ − r, ω′ − ω, ω)
]
, (2.87)

N ′
mm = µ0

2iℏ

[
χmm(r, r− r′, ω − ω′, ω′)− χ†

mm(r′, r′ − r, ω′ − ω, ω)
]
. (2.88)

Importantly, in view of the above it is straightforward to show that a dispersionless
medium with the symmetry properties of Eqs. (2.74-2.76) always conserves the number of
such pseudo-photons, no matter whether there is coupling between frequencies of opposite
signs. Conservation of the number of true photons (N = 0) becomes equivalent to the
conservation of the number of pseudo-photons (N ′ = 0) only when there is zero coupling
between frequencies of opposite sign. In the next section, we will discuss how a class of
non-stationary media can exhibit reciprocity in terms of the fluxes of the number of such
pseudo-photons.

2.5 Generalized electromagnetic reciprocity in linear media

A fundamental symmetry that commonly characterizes electromagnetic systems is reci-
procity. The etymology of the word reciprocity comes from the latin phrase reque proque,
meaning ”backward as forward”. In the context of electromagnetism, reciprocity implies
the following symmetry for a system: if we consider two arbitrary current distributions
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exciting the same system, J̃A(r, t), J̃B(r, t) and generating the field distributions ẼA(r, t),
ẼB(r, t) respectively, then, in a reciprocal system, there exists a moment in time τ where
the hypothetical total exchange of energy between the external current J̃A and the electro-
magnetic field generated by J̃B, reversed in time with respect to t = τ , i.e., ẼB(r, 2τ − t),
is equal to the hypothetical total exchange of energy between the external current J̃B and
the electromagnetic field generated by J̃A, reversed in time with respect to t = τ , i.e.,
ẼA(r, 2τ − t). That hypothetical total exchange of power between a monochromatic cur-
rent distribution J̃A(r, t) and a time reversed monochromatic field ẼB(r, 2τ − t) is known
in the literature as the reaction of the field ẼB with the current source J̃A [189, 190]. In
that sense, generalizing the concept of reaction to the non-monochromatic case, and re-
ferring to exchange of total energies instead of powers by introducing an extra integration
over time, we can say that electromagnetic reciprocity essentially implies that the total
reaction of ẼB on J̃A is equal to the total reaction of ẼA on J̃B.

We have shown that the exchange of power density between an electromagnetic field
and an external current source within it is given by Eq. (2.47). Using that expression we
can cast the above generalized definition of Lorentz reciprocity into the following equation
(see also Eq. (68) in [190]):

ˆ +∞

−∞

ˆ
R3

J̃A(r, t) · ẼB(r, 2τ − t)d3rdt =
ˆ +∞

−∞

ˆ
R3

J̃B(r, t) · ẼA(r, 2τ − t)d3rdt, (2.89)

or, else, in frequency domain:

ˆ +∞

−∞

ˆ
R3

[JA(r, ω) ·EB(r, ω)− JB(r, ω) ·EA(r, ω)] e
−2iωτd3rdω = 0. (2.90)

When a system is reciprocal, there exists at least one moment in time τ for which two
arbitrary source distributions with their generated fields obey the above equations of
generalized Lorentz reciprocity.

Here, it is illustrative to introduce the Dyadic Green’s functon (DGF) of the electro-
magnetic system, which constitutes the impulse response function of the linear system
connecting the generated electric field with the external current sources:

E(r, ω) =

ˆ +∞

−∞

ˆ
R3

↔
G(r, r′, ω, ω′) · J(r′, ω′)d3r′dω′. (2.91)

Then, we can reformulate the reciprocity condition for a system, using the last two equa-
tions, in terms of the following symmetry of its DGF:

↔
G(r, r′, ω, ω′) =

↔
G

T

(r′, r, ω′, ω) e2i(ω−ω′)τ , (2.92)

where (T) denotes a transposition of the dyadic tensor.

Note that, for a stationary system, for which there can be no coupling between the
different frequencies due to the continuous translation symmetry over time, if the condition
of reciprocity holds true, it holds true for arbitrary τ . Actually, the well-known definition
of reciprocity for stationary systems does not involve this particular point of reflection in
time τ . However, here we needed to introduce τ to generalize the definition of reciprocity
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-expressed as a symmetry relation between exchanges of energy, instead of power now-
for non-stationary systems. Nevertheless, our generalized definition of reciprocity reduces
to the well-known definition of reciprocity for stationary systems. For example, note
that Lorentz reciprocity for stationary systems is expressed by Eq. (2.90) without the
integration over frequency, which is the result of it holding true for arbitrary τ [190].
Similarly, Eq. (2.92) can collapse into the well-known symmetry condition of the DGF of

a reciprocal stationary system:
↔
Gstationary(r, r

′, ω) =
↔
G

T

stationary(r
′, r, ω) [190].

Let us now consider an electromagnetic system whose non-local interactions and sources
are confined inside an arbitrary space V , which is bounded by surface S (whose pointing-
outwards normal unit vector we denote with n̂), and proceed to formulate the generalized
Lorentz reciprocity theorem [190]. We start with the following algebraic equation that can
be derived directly from Maxwell’s equations in frequency domain for the A and B sets of
sources distributions and fields that they generate:

JA ·EB − JB ·EA =

∇ · [EA ×HB −EB ×HA]− iω [EB ·Pe,A −EA ·Pe,B −HB ·Pm,A +HA ·Pm,B] . (2.93)

After an integration in space and frequency, application of Gauss’s theorem, and use of the
constitutive relations in frequency domain, the above equation readily gives the generalized
Lorentz reciprocity theorem that takes the following form:

ˆ +∞

−∞

ˆ
V
[JA(r, ω) ·EB(r, ω)− JB(r, ω) ·EA(r, ω)] e

−2iωτd3rdω =

ˆ +∞

−∞

‹
S
n̂ · [EA(r, ω)×HB(r, ω)−EB(r, ω)×HA(r, ω)] e

−2iωτd2rdω +

¨ +∞

−∞

¨
V

[
EB(r, ω)
HB(r, ω)

]T
·R(r, r′, ω, ω′) ·

[
EA(r

′, ω′)
HA(r

′, ω′)

]
d3rd3r′dωdω′ (2.94)

with the 6x6 matrix R being given by

R =

[
Ree Rem

Rme Rmm

]
, (2.95)

with

Ree =
ωε0
ie2iωτ

[
χee(r, r− r′, ω − ω′, ω′)− ω′

ω e
2i(ω−ω′)τχT

ee(r
′, r′ − r, ω′ − ω, ω)

]
, (2.96)

Rem =
ω
√
ε0µ0

ie2iωτ

[
χem(r, r− r′, ω − ω′, ω′) + ω′

ω e
2i(ω−ω′)τχT

me(r
′, r′ − r, ω′ − ω, ω)

]
, (2.97)

Rme =
ω
√
ε0µ0

−ie2iωτ

[
χme(r, r− r′, ω − ω′, ω′) + ω′

ω e
2i(ω−ω′)τχT

em(r
′, r′ − r, ω′ − ω, ω)

]
, (2.98)

Rmm = ωµ0

−ie2iωτ

[
χmm(r, r− r′, ω − ω′, ω′)− ω′

ω e
2i(ω−ω′)τχT

mm(r
′, r′ − r, ω′ − ω, ω)

]
.(2.99)

Note that we can make the surface integral in Eq. (2.94) vanish by considering that S
is the surface of a sphere of radius optically much larger than the domain enclosing the
system and the free current sources. There, in the far-field region, the fields should behave
like outgoing spherical waves, with the electric field being perpendicular to the magnetic
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2.5. Generalized electromagnetic reciprocity in linear media

field and both being tangential to the spherical surface S, which makes the surface integral
vanish. Then, since in a reciprocal system the first integral term containing the current
sources should vanish for arbitrary fields and sources, we get that the last integral term in
Eq. (2.94) should ideally vanish as well. This only happens for R(r, r′, ω, ω′) = 0, which
implies particular symmetries for the generalized susceptibility tensor of the system. Note
that for the special case of a stationary system the condition R(r, r′, ω, ω′) = 0 boils
down to well-known expressions for reciprocity in stationary media (see e.g. Eq. (2.3.67)
in [191], Eq. (50) in [190], Eqs. (3.67,3.68) in [192]):

χee,stationary(r, r− r′, ω) = χT
ee,stationary(r

′, r′ − r, ω), (2.100)

χmm,stationary(r, r− r′, ω) = χT
mm,stationary(r

′, r′ − r, ω), (2.101)

χem,stationary(r, r− r′, ω) = −χT
me,stationary(r

′, r′ − r, ω). (2.102)

The material parameter conditions of the latter equations have been shown to hold true
by all linear, causal media characterized by microscopic reversibility in thermodynamic
quasi-equilibrium [190]. Specifically, they constitute a manifestation of the Onsager-
Casimir reciprocity relation for irreversible processes, known also as the ”fourth law of
thermodynamics” [190, 192–195]. The Onsager-Casimir reciprocity relation is based on
the time reversal symmetry of the equations governing the motion of elementary particles,
which is the case for microscopic Maxwell’s equations governing the motion of charges. It
constitutes a symmetry relation of generalized susceptibility tensors which connect ”On-
sager forces” (i.e., the causative agents) with ”Onsager fluxes” (which are associated with
such motion of elementary particles) that both exhibit either an even or odd time-reversal
symmetry. In our particular case above, the ”Onsager forces” and ”Onsager fluxes” are
the electromagnetic fields and the macroscopic polarization densities of the medium, re-
spectively [196]. Note that the electric field and the electric polarization density, being
polar vectors, exhibit an even time-reversal symmetry, whereas the magnetic field and
the magnetic polarization density, being axial vectors (i.e., pseudovectors), exhibit an odd
time-reversal symmetry. The Onsager-Casimir reciprocity relation supports the Lorentz
reciprocity theorem for stationary systems by killing the last integral term in Eq. (2.94)
from the microscopic point of view of statistical mechanics.

However, the generalization of the Lorentz reciprocity theorem to non-stationary sys-
tem lacks such support from the microscopic level: unfortunately, as of now, we do not
have a generalized Onsager-Casimir reciprocity relation for the susceptibility tensors of
non-stationary systems from statistical mechanics. In fact, in view of Eqs. (2.96-2.99) it
becomes evident that it is unrealistic for a non-stationary system to be reciprocal, i.e.,
to fulfill the condition of R(r, r′, ω, ω′) = 0. Indeed, time-varying systems are known to
exhibit non-reciprocity and, recently, have been strategically used to design devices that
break electromagnetic reciprocity [197–199]. Non-stationary systems provide a viable al-
ternative route to electromagnetic non-reciprocity, which has been traditionally achieved
either through external magnetic field biases that break time-reversal symmetry or through
nonlinear elements [190, 200].

Exactly because of the aforementioned lack of support from the microscopic level,
we can attempt to quest for alternative ways to generalize the (well-established for sta-
tionary systems) symmetry of electromagnetic reciprocity to the more general case of
non-stationary systems. Specifically, it is interesting to check whether the generalization
of electromagnetic reciprocity can be conducted in terms of symmetries in the exchanges
of number of photons between sources and time-reversed fields, instead of symmetries
in the exchange of energies as we discussed above. Those two symmetries of exchanges
are equivalent for stationary systems, but are not equivalent for non-stationary systems.
Specifically, we can postulate the following alternative generalized Lorentz reciprocity
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equation in frequency domain by dividing Eq. (2.90) with the energy of a single photon
ℏ|ω|:

ˆ +∞

−∞

ˆ
R3

1

ℏ|ω|
[JA(r, ω) ·EB(r, ω)− JB(r, ω) ·EA(r, ω)] e

−2iωτd3rdω = 0. (2.103)

This definition of generalized Lorentz reciprocity practically states that there is a moment
in time τ for which the total exchange of photons between an arbitrary source distribu-
tion and the time-reversed -with respect to τ - field generated by some other arbitrary
source distribution is equal to the total exchange of photons between the second source
distribution and the time-reversed -with respect to τ - field generated by the first source
distribution. Similarly as before, the above equation of generalized Lorentz reciprocity
implies the following symmetry condition for the DGF of the medium:

↔
G(r, r′, ω, ω′) =

∣∣∣ ω
ω′

∣∣∣ ↔
G

T

(r′, r, ω′, ω) e2i(ω−ω′)τ . (2.104)

Moreover, proceeding in a similar fashion like before, we can postulate the following alter-
native formulation of the Lorentz reciprocity theorem in terms of a balance in the number
of photons instead of an energy balance as was the case for Eq. (2.94). Specifically, we
have:

ˆ +∞

−∞

ˆ
V

1

ℏ|ω|
[JA(r, ω) ·EB(r, ω)− JB(r, ω) ·EA(r, ω)] e

−2iωτd3rdω =

ˆ +∞

−∞

‹
S

1

ℏ|ω|
n̂ · [EA(r, ω)×HB(r, ω)−EB(r, ω)×HA(r, ω)] e

−2iωτd2rdω +

¨ +∞

−∞

¨
V

[
EB(r, ω)
HB(r, ω)

]T
·R′(r, r′, ω, ω′) ·

[
EA(r

′, ω′)
HA(r

′, ω′)

]
d3rd3r′dωdω′ (2.105)

with the 6x6 matrix R′ being given by

R′ =

[
R′

ee R′
em

R′
me R′

mm

]
, (2.106)

with

R′
ee =

=iε0
ℏe2iωτ

[
ω
|ω|χee(r, r− r′, ω − ω′, ω′)− ω′

|ω′|e
2i(ω−ω′)τχT

ee(r
′, r′ − r, ω′ − ω, ω)

]
, (2.107)

R′
em =

√
ε0µ0

iℏe2iωτ

[
ω
|ω|χem(r, r− r′, ω − ω′, ω′) + ω′

|ω′|e
2i(ω−ω′)τχT

me(r
′, r′ − r, ω′ − ω, ω)

]
, (2.108)

R′
me =

i
√
ε0µ0

ℏ,e2iωτ

[
ω
|ω|χme(r, r− r′, ω − ω′, ω′) + ω′

|ω′|e
2i(ω−ω′)τχT

em(r
′, r′ − r, ω′ − ω, ω)

]
, (2.109)

R′
mm = iµ0

ℏe2iωτ

[
ω
|ω|χmm(r, r− r′, ω − ω′, ω′)− ω′

|ω′|e
2i(ω−ω′)τχT

mm(r
′, r′ − r, ω′ − ω, ω)

]
.(2.110)

Again, we can get rid of the surface integral term of Eq. (2.105) by extending the volume
of integration V to infinity. Moreover, we can see that for the generalized Lorentz reci-
procity in terms of number of photons to hold, we need the last volumetric integral term
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2.5. Generalized electromagnetic reciprocity in linear media

in Eq. (2.105) to vanish for arbitrary source distributions inside V . This requires that
R′(r, r′, ω, ω′) = 0, which practically implies particular symmetries for the susceptibility
tensor of the system. In view of Eqs. (2.107-2.110) it becomes evident that: 1) we still
get the well-known symmetry conditions of the susceptibility tensors for reciprocity in
stationary media, and 2) it still appears generally unrealistic for non-stationary media to
exhibit reciprocity even in terms of exchanges in number of photons, instead of energy.

However, our quest for a generalization of electromagnetic reciprocity for non-stationary
media does not stop here. In what follows, we will demonstrate that, interestingly enough,
there exists a class of non-stationary media that exhibits reciprocity, once we generalize
the latter in terms of exchanges in number of the pseudo-photons that we firstly discussed
at the end of the previous section. We remind that those pseudo-photons differ from true
photons in that they are considered to have negative energies for negative frequencies,
i.e., the single pseudo-photon energy is considered to be ℏω instead of ℏ|ω| that is the
energy of the true photon. Therefore, by assuming a quantization of energies in terms
of pseudo-photons instead of true photons, we can get an alternative generalized Lorentz
reciprocity equation as the following slight modification of Eq. (2.105):

ˆ +∞

−∞

ˆ
R3

1

ℏω
[JA(r, ω) ·EB(r, ω)− JB(r, ω) ·EA(r, ω)] e

−2iωτd3rdω = 0, (2.111)

This definition of generalized Lorentz reciprocity practically states that there is a moment
in time τ for which the total exchange of pseudo-photons between an arbitrary source dis-
tribution and the time-reversed -with respect to τ - field generated by some other arbitrary
source distribution is equal to the total exchange of photons between the second source
distribution and the time-reversed -with respect to τ - field generated by the first source
distribution. Similarly as before, the above equation of generalized Lorentz reciprocity
implies the following symmetry condition for the DGF of the medium:

↔
G(r, r′, ω, ω′) =

ω

ω′

↔
G

T

(r′, r, ω′, ω) e2i(ω−ω′)τ . (2.112)

Moreover, proceeding in a similar fashion like before, we can postulate the following alter-
native formulation of the Lorentz reciprocity theorem in terms of a balance in the number
of pseudo-photons:

ˆ +∞

−∞

ˆ
V

1

ℏω
[JA(r, ω) ·EB(r, ω)− JB(r, ω) ·EA(r, ω)] e

−2iωτd3rdω =

ˆ +∞

−∞

‹
S

1

ℏω
n̂ · [EA(r, ω)×HB(r, ω)−EB(r, ω)×HA(r, ω)] e

−2iωτd2rdω +

¨ +∞

−∞

¨
V

[
EB(r, ω)
HB(r, ω)

]T
·R′′(r, r′, ω, ω′) ·

[
EA(r

′, ω′)
HA(r

′, ω′)

]
d3rd3r′dωdω′ (2.113)

with the 6x6 matrix R′′ being given by

R′′ =

[
R′′

ee R′′
em

R′′
me R′′

mm

]
, (2.114)

with
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R′′
ee =

=iε0
ℏe2iωτ

[
χee(r, r− r′, ω − ω′, ω′)− e2i(ω−ω′)τχT

ee(r
′, r′ − r, ω′ − ω, ω)

]
, (2.115)

R′′
em =

√
ε0µ0

iℏe2iωτ

[
χem(r, r− r′, ω − ω′, ω′) + e2i(ω−ω′)τχT

me(r
′, r′ − r, ω′ − ω, ω)

]
, (2.116)

R′′
me =

i
√
ε0µ0

ℏ,e2iωτ

[
χme(r, r− r′, ω − ω′, ω′) + e2i(ω−ω′)τχT

em(r
′, r′ − r, ω′ − ω, ω)

]
, (2.117)

R′′
mm = iµ0

ℏe2iωτ

[
χmm(r, r− r′, ω − ω′, ω′)− e2i(ω−ω′)τχT

mm(r
′, r′ − r, ω′ − ω, ω)

]
. (2.118)

Similarly as before, for the generalized Lorentz reciprocity in terms of number of pseudo-
photons to hold, we need the last volumetric integral term in Eq. (2.113) to vanish for
arbitrary source distributions inside V . This requires that R′′(r, r′, ω, ω′) = 0, which
practically implies particular symmetries for the susceptibility tensor of the system. First
of all, let us not that, again, we still get the well-known symmetry conditions of the
susceptibility tensors for reciprocity in stationary media. What is actually interesting
here, though, is that we can identify a class of non-stationary media that can exhibit such
reciprocity in terms of pseudo-photons. The first property of such class of media that
we can identify is that they are characterized by an instantaneous response, i.e., they are
dispersionless. In such case, in view of the inverse Fourier transform of Eqs. (2.115-2.118),
the reciprocity condition R′′

instant(r, r
′, ω, ω′) = 0 can be translated into the following three

equations:

χ̃ee,instant(r, r− r′, t) = χ̃T
ee,instant(r

′, r′ − r, 2τ − t), (2.119)

χ̃em,instant(r, r− r′, t) = −χ̃T
me,instant(r

′, r′ − r, 2τ − t), (2.120)

χ̃mm,instant(r, r− r′, t) = χ̃T
mm,instant(r

′, r′ − r, 2τ − t). (2.121)

Note the reflection in time with respect to τ in the right-hand side of the above equations.
We have just shown that such dispersionless media can be characterized by electro-

magnetic reciprocity in terms of number of pseudo-photons, as long as their time-varying
dielectric permittivity exhibits an even time-reversal symmetry with respect to some mo-
ment in time τ (e.g. for the exemplary case of an assumed non-magnetic, isotropic and
local medium). Reference [76] refers to this condition as a generalized gauge-invariant
time reversal symmetry of the system. Actually, there are several references in the litera-
ture regarding this type of electromagnetic reciprocity characterizing non-stationary and
dispersionless systems: see for example Eq. (117) in [190], [76, 201–203]. We would like
to emphasize that, in all those works, the authors refer to reciprocity in their systems in
terms of fluxes of number of true photons, but, to be precise, their considered systems
actually exhibit reciprocity in terms of fluxes of number of pseudo-photons, as we dis-
cussed above. Those two are equivalent only if the system is operated at large enough
frequencies so that there is practically no coupling between fields of positive and negative
frequencies (which is the case in those works). Only then, the vanishing of the last integral
of Eq. (2.113) directly implies the vanishing of the last integral of Eq. (2.105), which is
what makes the two reciprocities in terms of fluxes of true photons and pseudo-photons
equivalent. Finally, let us note that the required lack of material dispersion for such reci-
procity is usually difficult to justify on physical grounds, since it requires the operation of
the medium at a spectral range that is far from its material resonances. Nevertheless, this
is most commonly adopted in literature as a simple model of time-varying media. Hence,
such considerations of electromagnetic reciprocity do become relevant there. In a next
chapter, we will derive the symmetry that reciprocity in terms of pseudo-photons implies
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for an arbitrary scattering system in terms of its T-matrix representation (which we will
introduce in the last section of this chapter).

2.6 Eigenmodes of the electromagnetic wave equation of lo-
cal, stationary, homogeneous and isotropic media

In this section we will discuss the eigenmodes of the electromagnetic wave equation of
source-free, local, stationary, homogeneous and isotropic media and then we will also
present the expansions of the DGF in terms of such eigenmodes. The harmonic electro-
magnetic wave equation of such a medium can be directly derived fromMaxwell’s equations
and reads as follows:

(
∇×∇×−k2

)
E = 0, (2.122)

where k denotes the wavenumber of the harmonic electromagnetic wave, which is related
with the frequency of the wave ω and the material properties of the medium according to
the dispersion relation k2 = ω2εµ (or k = ω

√
εµ), with ε, µ being the dielectric permittivity

and the magnetic permeability of the medium respectively. By employing the vector
identity ∇ × ∇× = ∇∇ · −∇2 and taking into consideration that the electromagnetic
fields in source-free space are solenoidal, we can recast the previous wave equation in the
following alternative form:

(
∇2 + k2

)
E = 0. (2.123)

Next, we can search for analytical solutions ψk(r) to the correspondent scalar wave equa-
tion (Helmholtz equation) by making use of the method of separation of variables. Actu-
ally, it has been shown that there are eleven coordinate systems under which the Helmholtz
equation in three-dimensional space is separable [204, 205]. To separate the solutions in
three parts we need to introduce two separation constants. Those are essentially eigenval-
ues that correspond to a couple of commuting spatial symmetry operators in the enveloping
algebra of the Helmholtz operator for each such coordinate system [204, 205]. Overall, to-
gether with the wavenumber k we end up with a set of three eigenvalues that characterize
our eigensolutions. Here we will just focus on the three most common out of those eleven
coordinate systems: the Cartesian, cylindrical, and spherical one. Once we express the
Laplace operator into each of the three coordinate systems and solve the wave equation,
we readily get its Cartesian, cylindrical, and spherical eigensolutions, which are the plane,
cylindrical, and spherical waves, respectively.

Plane waves may exhibit a continuous translation symmetry along the x- and y-axis
and because the linear momentum operators along the x- and y-axis, (P̂x, P̂y), are the
generators of such spatial translations respectively, plane waves are characterized, as a
result, by the following set of their corresponding eigenvalues (kx, ky). On the other hand,
cylindrical waves may exhibit a continuous translation symmetry along the z-axis and a
continuous rotation symmetry along the z-axis, and because the linear momentum operator
along the z-axis and the total angular momentum operator along the z-axis, (P̂z, Ĵz), are
the generators of such spatial translations and rotations respectively, cylindrical waves are
characterized, as a result, by the following set of their corresponding eigenvalues (kz, µz).
Finally, spherical waves have a 3D rotational symmetry and may exhibit as well a contin-
uous rotation symmetry along the z-axis. Moreover, the total angular momentum squared
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operator, Ĵ2, commutes with the total angular momentum operator along any arbitrary
axis -the z-axis included, Ĵz-, which is the generator of rotations with respect to such ar-
bitrary axis. Therefore, spherical waves are characterized, as a result, by the following set
of eigenvalues, (ν, µz), that correspond to those two spatial symmetry operators (Ĵ2, Ĵz)
respectively. To be more precise here, the eigenvalue of the Ĵ2 operator is ν(ν + 1).

Furthermore, two of the three coordinates of each coordinate system are associated
with the two commuting spatial symmetry operators providing the two extra eigenvalues
to the scalar eigenwaves. Specifically, in the Cartesian coordinate system the coordinates
(x, y) are associated with the commuting operators (P̂x, P̂y), whereas in the cylindrical
coordinate system the coordinates (ϕ, z) are associated with the commuting operators
(P̂z, Ĵz) and in the spherical coordinate system the coordinates (θ, ϕ) are associated with
the commuting operators (Ĵ2, Ĵz). The second order differential equation with respect to
the remaining third coordinate -after we apply the method of separation of variables- has
two linearly independent families of solutions. It is convenient to pick a particular set of
them depending on a desired asymptotic behavior at infinity, or at the origin. In what
follows, we will use the index (ι) to differentiate between those two types of solutions.

We define the following kets in an abstract Dirac notation: |kx kz k⟩(ι), |µz kz k⟩(ι),
|µz ν k⟩(ι), to refer to the eigenstates of the scalar Helmholtz equation in the Cartesian,
cylindrical, and spherical basis, respectively, i.e., the scalar Cartesian, cylindrical, and
spherical waves. Their spatial representation is given below:

|kx ky k⟩(ι) ≡ ψ(ι)(r; kx, ky, k) = ei(kxx+kyy+ι
√

k2−k2ρz), (2.124)

|µz kz k⟩(ι) ≡ ψ(ι)
µz
(r; kz, k) = Z(ι)

µz
(kρρ) e

iµzϕeikzz, (2.125)

|µz ν k⟩(ι) ≡ ψ(ι)
µzν(r; k) = γµzν z

(ι)
ν (kr) Pµz

ν (cosθ)eiµϕ, (2.126)

where k2 = k2x + k2y + k2z and kρ =
√
k2x + k2y =

√
k2 − k2z and ι in the Cartesian case

takes the values ±1 to refer to plane waves that propagate/decay along ±ẑ, respectively.
µz, the total angular momentum operator along the z-axis, takes integer values and for
the spherical case its absolute value is bounded by ν, the total angular momentum or

multipolar order of the spherical waves. Z
(ι)
µz (x) denotes the cylindrical Bessel (ι = 1)

and the cylindrical Hankel functions of the first (ι = 3) or second (ι = 4) kind, of order

µz, respectively. Whereas, z
(ι)
ν (x) denotes the spherical Bessel (ι = 1) and the cylindrical

Hankel functions of the first (ι = 3) or second (ι = 4) kind, of order ν, respectively.
Bessel functions are regular everywhere and are useful to expand standing waves. They
are the arithmetic average of the Hankel functions of the first and second kinds. Whereas,
Hankel functions of the first kind, diverge for small arguments but due to their asymptotic
behavior at infinity (and with respect to our adopted time convention), can be used to
expand outgoing/radiating waves. On the other hand, Hankel functions of the second
kind due to their asymptotic behavior at infinity, can be used to expand incoming waves.

Pµz
ν (x) are the associated Legendre functions of the first kind and γµzν =

√
(2ν+1)(ν−µz)!

4πν(ν+1)(ν+µz)!

are some normalization coefficients.

According to Ref. [204], we can construct a set of solenoidal eigenmodes to the vectorial
wave equation by making use of the scalar eigenmodes that we just discussed. We will call
those eigenmodes as Vector Planar/Cylindrical/Spherical Harmonics (VPHs/VCHs/VSHs).
First, we have the transverse electric (TE) vectorial eigenmodes -known as eigenmodes of
magnetic type- that are defined as:

FM(r; k) = ∇× [vψ(r; k)] , (2.127)
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where v is some vector appropriate for each particular coordinate system and ψ(k, r)
are the scalar solutions of the Helmholtz equation in that system. TE eigenmodes are
polarized perpendicularly to v. Moreover, we also have the transverse magnetic (TM)
vectorial eigenmodes -known as eigenmodes of electric type- that are defined as:

FN(r; k) =
∇×
k

FM(r; k). (2.128)

In contrast to TE eigenmodes, the vectorial field of the curl of TM eigenmodes is polarized
perpendicularly to v. We will introduce the symbol α which will be taking the values M,N
to refer to TE and TM eigenmodes, respectively. Note, that there is also a third family
of vectorial solutions to the Helmholtz wave equation, but it is longitudinal, i.e., they are
used to expand electromagnetic fields in a space that hosts sources [204]. Note, also, that
the TE and TM modes have the following symmetry:

Fβ(r; k) =
∇×
k

Fα(r; k), (2.129)

where β ̸= α.
We define the following kets in an abstract Dirac notation: |α kx kz k⟩(ι), |αµz kz k⟩(ι),

|αµz ν k⟩(ι), to refer to the eigenstates of the vectorial Helmholtz equation in the Cartesian,
cylindrical and spherical basis, respectively.

Specifically, the spatial representation of VPHs reads as follows:

|M kx ky k⟩(ι) ≡ F
(ι)
M (r; kx, ky, k) =

1

kρ
∇×

[
ẑψ(ι)(r; kx, ky, k)

]
= −iϕ̂k̂ ψ

(ι)(r; kx, ky, k), (2.130)

|N kx ky k⟩(ι) ≡ F
(ι)
N (r; kx, ky, k) =

∇×
k

F
(ι)
M (r; kx, ky, k)

= −θ̂(ι)
k̂
ψ(ι)(r; kx, ky, k), (2.131)

where:

ϕ̂k̂(kx, ky, k) =
−kyx̂+ kxŷ

kρ
, (2.132)

θ̂
(ι)

k̂
(kx, ky, k) = ι

√
k2 − k2ρ
kkρ

(kxx̂+ kyŷ)−
kρ
k
ẑ. (2.133)

are the azimuthal and polar unit vectors that correspond to the unit vector parallel to the
wavevector of propagation of the plane wave:

k̂ = (kxx̂+ kyŷ + kzẑ) /k (2.134)

= x̂ sin θk̂ cosϕk̂ + ŷ sin θk̂ sinϕk̂ + ẑ cos θk̂, (2.135)

respectively, with the azimuthal and polar angles of propagation being given by the fol-
lowing formulas:

35



Chapter 2. Foundational elements of electromagnetic theory

ϕk̂(kx, ky) = arctan(kx, ky) = i ln [(kx + iky) /kρ] , (2.136)

θk̂(kx, ky, k, ι) = arccos(kz/k) = −i ln
[
ι
√

1− (kρ/k)2 + ikρ/k

]
. (2.137)

According to the equations above, there is a direct one-to-one connection between (kx, ky, k, ι)
and (θk̂, ϕk̂, k) and, therefore, sometimes from next on it will be convenient to refer to the
VPHs with the kets |α θk̂ ϕk̂ k⟩ (≡ Fα(r; θk̂, ϕk̂, k)). The spatial representation of VCHs
reads as follows:

|M µz kz k⟩(ι) ≡ F
(ι)
M,µz

(r; kz, k) =
1

kρ
∇×

[
ẑψ(ι)

µz
(r; kz, k)

]
= eikzzeiµzϕ

[
iµz

Z
(ι)
µz (kρρ)

kρρ
ρ̂− ∂Z

(ι)
µz (kρρ)

∂ (kρρ)
ϕ̂

]
, (2.138)

|N µz kz k⟩(ι) ≡ F
(ι)
N,µz

(r; kz, k) =
∇×
k

F
(ι)
M,µz

(r; kz, k)

= eikzzeiµzϕ ×[
i
kz
k

∂Z
(ι)
µz (kρρ)

∂(kρρ)
ρ̂− µz

kz
k

Z
(ι)
µz (kρρ)

kρρ
ϕ̂+

kρ
k
Z(ι)
µz
(kρρ) ẑ

]
.

(2.139)

And finally, the spatial representation of VSHs reads as follows:

|M µz ν k⟩(ι) ≡ F
(ι)
M,µzν

(r; k) = ∇×
[
rψ(ι)

µzν(r; k)
]

= iz(ι)ν (kr)fM,µzν(r̂), (2.140)

|N µz ν k⟩(ι) ≡ F
(ι)
N,µzν

(r; k) =
∇×
k

F
(ι)
M,µzν

(r; k)

= ν(ν + 1)
ψ
(ι)
µzν(r; k)

kr
r̂+ z̃(ι)ν (kr)fN,µzν(r̂), (2.141)

where we have defined the following functions:

fM,µzν(r̂) = γµzν

[
θ̂τ (1)µzν(θ) + iϕ̂τ (2)µzν(θ)

]
eiµzϕ, (2.142)

fN,µzν(r̂) = γµzν

[
θ̂τ (2)µzν(θ) + iϕ̂τ (1)µzν(θ)

]
eiµzϕ, (2.143)

z̃(ι)ν (x) =
1

x

∂

∂x
[x z(ι)ν (x)], (2.144)

τ (1)µzν(θ) = µz
Pµz
ν (cosθ)

sinθ
, (2.145)

τ (2)µzν(θ) =
∂Pµz

ν (cosθ)

∂θ
. (2.146)

Note that the functions fα,µzν(r̂) are orthonormal in the following sense:

ˆ 2π

0
dϕ

ˆ π

0
sinθdθ fα,µzν(r̂) ·

[
fα′,µ′

zν
′(r̂)
]∗

= δαα′δµzµ′
z
δνν′ . (2.147)
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Let us also define here the generalized spherical Bessel functions z
(ι)
α,ν(x) = δαMz

(ι)
ν (x) +

δαNz̃
(ι)
ν (x), which will be useful in a next chapter. Note that, sometimes, we may refer to

those TE and TM VSHs, as VSHs of well-defined parity, since they are invariant under
parity transformation: r→ −r (they may only pick a minus sign).

Next, let us introduce some analytical transformations between the VPHs, VCHs, and
VSHs that will be useful in the next chapters of this thesis. Specifically, the transformation
of VPHs into a series of regular (ι = 1) VCHs reads as follows:

|α θk̂ ϕk̂ k⟩ =
∑
µz

Cµz(ϕk̂) |αµz
[
kz = k cos θk̂

]
k⟩(1) , (2.148)

where the transformation coefficients are given by:

Cµz(ϕk̂) = iµze−iµzϕk̂ . (2.149)

The opposite transformation, i.e., the expansion of VCHs into an angular spectrum of
VPHs, is given by the formulas below:

|αµz kz k⟩(1) =
1

2π

ˆ 2π

0
dϕk̂ C−µz(ϕk̂) |α

[
θk̂ = arccos(kz/k)

]
ϕk̂ k⟩ , (2.150)

|αµz kz k⟩(3) =
1

π

ˆ
Cϕ0

dϕk̂ C−µz(ϕk̂) |α
[
θk̂ = arccos(kz/k)

]
ϕk̂ k⟩ ,

, for xcosϕ0 + ysinϕ0 > 0, (2.151)

where for the radiating (ι = 3) VCHs we need to take into account also evanescent waves
by integrating over a contour on the complex azimuthal-angle-of-propagation plane with
Cϕ0 = [ϕ0 − π/2 + i∞, ϕ0 − π/2] ∪ [ϕ0 − π/2, ϕ0 + π/2] ∪ [ϕ0 + π/2, ϕ0 + π/2 − i∞] and
ϕ0 ∈ [0, 2π].

Furthermore, the transformation of VPHs into a series of regular (ι = 1) VSHs is given
by the formula below:

|α θk̂ ϕk̂ k⟩ =
∑

νµz ,α′

4πSα
α′,−µzν(π − θk̂, ϕk̂) |α

′ µz ν k⟩(1) , (2.152)

where the transformation coefficients are given by:

Sα
α′,µzν(θk̂, ϕk̂) = i3−νγµzν τ

(1+δαα′ )
µzν

(
θk̂
)
eiµzϕk̂ . (2.153)

The opposite transformation, i.e., the expansion of VSHs into an angular spectrum of
VPHs, is given by the formulas below:

|αµz ν k⟩(1) =
1

4π

∑
α′

ˆ 2π

0
dϕk̂

ˆ π

0
sinθk̂dθk̂ S

α′
α,µzν(θk̂, ϕk̂) |α

′ θk̂ ϕk̂ k⟩ , (2.154)

|αµz ν k⟩(3) =
1

2π

∑
α′

ˆ 2π

0
dϕk̂

ˆ
C±

sinθk̂dθk̂ S
α′
α,µzν(θk̂, ϕk̂) |α

′ θk̂ ϕk̂ k⟩ ,

for z ≷ 0, (2.155)
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where for the radiating (ι = 3) VSHs we need to take into account also evanescent waves
by integrating over a contour on the complex polar-angle-of-propagation plane with C+ =
[0, π2 − i∞] and C− = [π2 + i∞, π].

Finally, let us also expand the Dyadic Green’s function of such a local, stationary,
homogeneous, and isotropic medium in terms of its just discussed eigenmodes. The wave
equation of the medium (with wavenumber k(ω)) once we include current sources J reads
as follows:

(
∇×∇×−k2

)
E = iωµJ, (2.156)

and, therefore, its solution with respect to the DGF of the medium,
↔
G. is given by:

E(r, ω) = iωµ

ˆ
R3

↔
G(r, r′; k) · J(r′, ω)d3r, (2.157)

with the DGF of the medium being the solution of the following differential equation:

(
∇×∇×−k2

) ↔
G(r, r′; k) =

↔
I δ(r− r′), (2.158)

with
↔
I being the unit dyad. According to [206], avoiding to refer to the singularity at

r = r′, the expansion of the DGF of such a medium in terms of series of either VPHs:

↔
G(r, r′; k) ≡ i

8π2

∑
α

¨ +∞

−∞

dkxdky√
k2 − k2ρ

×

×

{
F
(−)
α (r; kx, ky, k)⊗ F

(+)
α (r′;−kx,−ky, k), for z < z′,

F
(+)
α (r; kx, ky, k)⊗ F

(−)
α (r′;−kx,−ky, k), for z > z′,

(2.159)

or VCHs:

↔
G(r, r′; k) ≡ i

8π

∑
µz ,α

(−1)µz

ˆ +∞

−∞
dkz ×

×

{
F
(1)
α,µz(r; kz, k)⊗ F

(3)
α,−µz

(r′; = kz, k), for ρ < ρ′,

F
(3)
α,µz(r; kz, k)⊗ F

(1)
α,−µz

(r′;−kz, k), for ρ > ρ′,
(2.160)

or VSHs:

↔
G(r, r′; k) ≡ ik

∑
νµz ,α

(−1)µz ×

×

{
F
(1)
α,µzν(r; k)⊗ F

(3)
α,−µzν(r

′; k), for r < r′

F
(3)
α,µzν(r; k)⊗ F

(1)
α,−µzν(r

′; k), for r > r′
(2.161)

reads as above. We denote with the symbol (⊗) the tensor product between the two vector
fields.
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2.7 Electromagnetic fields as eigenstates of the helicity op-
erator: an appropriate framework to study electromag-
netic chirality

In this section, we will introduce the Riemann-Silberstein vectors, i.e., the eigenstates
of the helicity operator, which can provide an alternative representation of Maxwell’s
fields. We will briefly discuss why such an alternative framework for electromagnetism is
convenient to study phenomena of electromagnetic chirality. Finally, we will also discuss
the emergence of an alternative set of eigenmodes of the vectorial Helmholtz wave equation
with well-defined helicity.

The helicity operator Λ̂ is defined as [207]:

Λ̂ =
Ĵ · P̂
|P̂|

=
∇×
k
, (2.162)

where Ĵ = −ir × ∇ + Ŝ is the total angular momentum operator vector and Ŝ is the
vector of spin-1 matrices. P̂ = −i∇ is the linear momentum vector operator. The latter
equation above constitutes a particular representation of the helicity operator for the case
of monochromatic fields that obey Eq. (2.123).

Let us now introduce the helicity basis as an alternative framework of electromag-
netism. To begin with, we consider a local, stationary, and isotropic medium with no
magnetoelectric coupling inside which a distribution of dipolar emitters (such us e.g.
molecules) and external sources are embedded. Maxwell’s equations there take the follow-
ing form then:

∇×E = iωµH+ iωpm, (2.163)

∇×H = −iωεE− iωpe + J, (2.164)

∇ · [εE+ p] = ρ, (2.165)

∇ · [µH+m] = 0, (2.166)

with ε, µ being the dielectric permittivity and the magnetic permeability of the medium,
respectively, and pe,pm denote the electric and magnetic dipole moments, respectively.
Note that the magnetic dipole moment in the literature is commonly defined as m =
pm/µ0, but here we use different conventions to be consistent with our initial ones. This
as well implies that the polarizabilities that we will be introducing in what follows shall
differ also from their conventional definitions.

By introducing the following quantities to transit to the new, helical basis:

Gλ =
E+ λiZH√

2
, (2.167)

pλ =
(pe/ε) + λiZ(pm/µ)√

2
, (2.168)

we can recast the above Maxwell’s equations into the following alternative form:

Λ̂Gλ = λGλ + λpλ + λ
iJ

ωε
√
2
, (2.169)

∇ · [Gλ + pλ] =
ρ

ε
√
2
, (2.170)
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with λ = ±1 being the eigenvalues of the helicity operator Λ̂, with corresponding eigen-
states the Riemann–Silberstein vectors Gλ [207]. pλ denotes the helical dipole moments
embedded inside the medium, k = ω

√
µε is the wavenumber of the medium and Z =

√
µ/ε

is its wave-impedance. Note that, once we look at the interface conditions of the electro-
magnetic fields between two media, we can show that there is no scattering of fields of
opposite helicity from one medium to the other as long as the two media share the same
wave-impedance. Importantly, note also that the eigenstates of helicity are defined with
respect to the electromagnetic properties of a particular background medium characterized
by ε, µ. What is an eigenstate of well-defined helicity for that medium, may be a mixture
of helical eigenstates in another medium (e.g. free space) that does not have the same
wave-impedance.

In view of the above definitions, we can also recast the polarizability tensor of the
emitters in the helicity basis. Specifically, we have:

[
pe

pm

]
=

[
αee αem

αme αmm

]
·
[
E
H

]
⇒

[
p+

p−

]
= AH ·

[
G+

G−

]
, with : (2.171)

AH =

[
α++ α+−
α−+ α−−

]
=

[
αee
2ε + αmm

2µ −
i(αem−αme)

2
√
µε

αee
2ε −

αmm
2µ + i(αem+αme)

2
√
µε

αee
2ε −

αmm
2µ −

i(αem+αme)
2
√
µε

αee
2ε + αmm

2µ + i(αem−αme)
2
√
µε

]
.

(2.172)

In Eq. (2.169), we can see that, for a source-free medium, the Riemann-Silberstein vectors
of opposite helicity λ only couple to each other through the polarizability tensor of the
dipolar emitters. Emitters that do not couple the two helical fields are called dual [208].
The polarizability tensor of a dual emitter has the following symmetries:

α+− = α−+ = 0, or equivalently :
αee

ε
=

αmm

µ
, αem = −αme. (2.173)

Let us here relate the property of duality with electromagnetic chirality. An object
is said to be chiral if it lacks any mirror symmetry plane. Chirality comes from the
greek word ”χειρ”, meaning ”hand”, which is our most familiar chiral object. Therefore,
we frequently refer to chirality as handedness. The mirror image of a chiral object is
called its enantiomer. Importantly, while helicity commutes with arbitrary translations
and rotations, it anticommutes with any mirror symmetry transformation with respect to
an arbitrary axis, i.e., any such arbitrary mirror transformation of electromagnetic fields
of well-defined helicity flips the helicity sign and, as a result, the reflected fields never
coincide with the initial ones no matter how we translate or rotate them. That is the
actual geometric definition of chirality. Therefore we can say that electromagnetic fields
of pure helicity are chiral. Such chiral light comes also into pairs of enantiomers which
we label through the eigenvalue of helicity λ = ±1. Consequently, we can see that dual
emitters always preserve the chirality of the fields in that regard. Finally, note that
electromagnetic fields of generally mixed helicity can also be chiral, though, i.e., they
can still lack the ability to be superimposed on their mirror images by translations and
rotations.

Chiroptical sensing, i.e., probing the geometrical chirality of an object with electromag-
netic waves, finds numerous applications from biochemistry to nanotechnology. Chiroptical
sensing techniques provide means to differentiate between the two enantiomers through
optical measurements, which can be of major importance in biochemistry, for example.
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Roughly speaking, the final goal is to probe the target sample with light and imprint the
chiral properties of the sample on the chirality of light that can be afterwards optically
measured. Arguably, and as we shall see in what follows, the helicity basis provides there-
fore an appropriate framework of electromagnetism to analyze and design optical systems
with respect to their interaction with chiral light.

Nevertheless, designing a realistic experiment and constructing a measurement that
properly imprints the geometric chirality of the sample on the chirality of light is far from
trivial. The optical measurement needs to detect the presence of chirality in the sample
and also needs to distinguish between the two enantiomeric samples. It should also be
insensitive to rotations and translations of the sample. Ideally, it should also be able
to somehow quantify the degree of chirality of the sample, i.e., the degree of geometric
dissimilarity between the two enantiomers. The above pose as rather strict requirements
for the design of an experimental measure of the chirality of the sample. In what follows
we will effectively relax the requirement for invariance of the sample under rotations and
translations by introducing random disorder and we will briefly present a common example
of experimental measure of the geometric chirality of a target sample probed by chiral light.

A medium that hosts a dense, large ensemble of randomly places and oriented dipolar
emitters, is commonly described macroscopically considering an averaged polarization with
a corresponding isotropic -due to the rotational averaging- susceptibility tensor:

⟨
[
pe

pm

]
⟩ =

[
Pe,av

Pm,av

]
=

[
εχee,avI

√
µεχem,avI√

µεχme,avI µχmm,avI

]
·
[
E
H

]
, (2.174)

which we can recast in the helicity basis by definingPλ,av = [(Pe,av/ε) + λiZ(Pm,av/µ)] /
√
2:

[
P+,av

P−,av

]
= χH,av ·

[
G+

G−

]
, with : (2.175)

χH,av =

[
χ++,avI χ+−,avI
χ−+,avI χ−−,avI

]
=

[
χee,av+χmm,av−i(χem,av−χme,av)

2 I
χee,av−χmm,av+i(χem,av+χme,av)

2 I
χee,av−χmm,av−i(χem,av+χme,av)

2 I
χee,av+χmm,av+i(χem,av−χme,av)

2 I

]
, (2.176)

where, again, for the averaged induced polarization to be dual, we get the following con-
ditions:

χ+−,av = χ−+,av = 0, or equivalently : χee,av = χmm,av, χem,av = −χme,av. (2.177)

In terms of the induced averaged polarizations, a parity transformation of a large
random ensemble of emitters should correspond to a large random ensemble of its enan-
tiomers. Note that the parity transformation flips helicity. Also, note that the electric
field and the electric polarization density, being polar vectors, are odd under parity sym-
metry and, on the other hand, the magnetic field and the magnetic polarization density,
being axial vectors, i.e., pseudovectors, are even under parity symmetry. This has, as a
result, the following symmetry between the helical susceptibility tensors of an averaged
medium hosting some emitters and another averaged medium hosting their enantiomers
(noted with prime below):

χ′
H,av =

[
χ′
++,avI χ′

+−,avI

χ′
−+,avI χ′

−−,avI

]
=

[
χ−−,avI χ−+,avI
χ+−,avI χ++,avI

]
. (2.178)
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Note that an achiral averaged medium is characterized by the symmetry χ′
H,av = χH,av,

since then enantiomers are identical. Such is the case when χem,av = χme,av = 0.
Circular dichroism, which measures the differential absorption of an optical system

upon illumination with helical fields of opposite helicity, is a measure commonly used for
chiroptical sensing. According to Eq. (2.53), the absorption density of the averaged chiral
medium is given by:

Aav(r, ω) = −ωIm
{
E ·P∗

e,av +H ·P∗
m,av

}
(2.179)

= −ωε
∑
λ

Im
{
Gλ ·P∗

λ,av

}
(2.180)

= −ωε
∑
λ,λ0

Im
{
χ∗
λλ0,avGλ ·G∗

λ0

}
. (2.181)

Let us now assume the following:

• The field exciting the chiral emitters is practically identical to the background field,
i.e., the field that exists inside the background system without the presence of the
chiral emitters. This is normally a pretty realistic assumption.

• The background system is non-absorbing and therefore does not contribute to the
CD signal.

With the above assumptions, we can get the following simplified definition of circular
dichroism density:

CD(r, ω) = A+
av(r, ω)−A−

av(r, ω)

= −ωε
∑
λ,λ0

Im
{
χ∗
λλ0,av

[
G+

λ ·G
+∗
λ0
−G−

λ ·G
−∗
λ0

]}
, (2.182)

where Gλ′
λ denotes the background fields of helicity λ under the excitation of the back-

ground system with a field of well-defined helicity λ′. Moreover, let us assume now the
following:

• The chiral medium stays invariant upon an isometric transformation (which includes
an arbitrary combination of translations, rotations, and reflections), so that for each
point in space r, there exists some other image point rimage(r) for which we have
χλλ0,av(r, ω) = χλλ0,av(rimage(r), ω).

• The background fields have the symmetry: G±
λ (r, ω) = R(r) · G∓

−λ(rimage(r), ω),
with R(r) being some unitary matrix (such as, e.g. a rotation matrix). Such is
the case, for example, when the background system and the two illuminations of
opposite helicity possess some mirror symmetry [209].

Then, under such additional assumptions and in view of Eqs. (2.178,2.182), it becomes
straightforward to show that the quantity CD(r, ω) + CD(rimage(r), ω) is opposite to the
same quantity corresponding to the enantiomeric averaged chiral medium. This, also,
directly gives that the quantity is equal to zero for an achiral averaged medium. The total
circular dichroism is measured as the spatial average of that quantity, and it becomes
evident that it provides a means to differentiate between the two chiral enantiomers,
which shall give a circular dichroism signal of opposite sign. Note that strong chiral fields

42



2.7. Electromagnetic fields as eigenstates of the helicity operator: an appropriate
framework to study electromagnetic chirality

facilitated by a resonant optical system can enhance the magnitude of the CD signal,
which is typically order of magnitudes weaker than the absorption signals themselves.
Importantly, note that in Ref. [209] it is argued that the CD signal can be enhanced when
the background field is of pure helicity. This is rather rarely the case, though, and actually
requires that the background system is appropriately designed to be dual (Gλ′

λ ∝ δλ,λ′)
or anti-dual (Gλ′

λ ∝ δλ,−λ′) in order to achieve such purity of helicity for the background
fields [209].

In view of the above exemplary discussion, one can further appreciate the role of
the helicity basis framework in facilitating the analysis of electromagnetic chirality in
optical systems. Apart from the measure of the circular dichroism, which constitutes a
rather common technique for chiroptical sensing, in a next chapter, we will investigate an
alternative setup for chiroptical sensing, that has been recently proposed in the literature
and that is based on the principle of spin-orbit coupling of emitters to waveguides [210].
Specifically, we will study the directional coupling of multipolar emitters of well-defined
helicity into waveguides.

Let us now proceed further and present the eigenmode basis sets upon which we can ex-
pand fields of well-defined helicity λ in homogeneous space. Such fields obey the following
source-free differential equation (see Eq. (2.169)):

Λ̂Gλ = λGλ. (2.183)

In view of the symmetry of the TE/TM eigensolutions given by Eq. 2.129, -which we can
rewrite here in Dirac notation (omitting the reference to the remaining two eigenvalues of
the eigenstates) by using the helicity operator as follows: |β k⟩ = Λ̂ |α k⟩, with β ̸= α- we
can straightforwardly get the eigenstates of well-defined helicity λ in terms of the already
defined TE/TM eigenstates. They are defined as follows:

|λ k⟩ =
|M k⟩+ λ |N k⟩√

2
(2.184)

and are solutions to Eq. (2.183), i.e., they are eigenstates of the helicity operator Λ̂ |λ k⟩ =
λ |λ k⟩. Note that the helical eigenmodes essentially constitute an alternative to the
TE/TM polarization basis for the fields.

We will refer to the VPHs, VCHs, and VSHs with well-defined helicity with the fol-
lowing kets |λ kx kz k⟩(ι) (|λ θk̂ ϕk̂ k⟩), |λ µz kz k⟩

(ι), |λ µz ν k⟩(ι), respectively. For example,
by referring to the formulas of the previous section, the spatial representation of helical
VPHs is analytically given by:

|λ θk̂ ϕk̂ k⟩ ≡ Fλ(θk̂, ϕk̂, k; r) = êλ(k̂)e
ikk̂(θk̂,ϕk̂)·r, (2.185)

with the polarization vector of the helical plane wave being given by:

êλ(k̂) =
−λθ̂k̂ − iϕ̂k̂√

2
(2.186)

= x̂
−λcosθk̂cosϕk̂ + i sinϕk̂√

2
+ ŷ
−λcosθk̂sinϕk̂ − i cosϕk̂√

2
+ ẑ

λsinθk̂√
2

. (2.187)

Importantly, note that helical VPHs with λ = 1(λ = −1) correspond to left(right)-handed

43



Chapter 2. Foundational elements of electromagnetic theory

circularly polarized plane waves. Similarly, by referring to the formulas of the previous
section, we can get analytical expressions for the spatial representation of helical VCHs
and VSHs, as well. Expressions for the transformations between helical VPHs, VCHs, and
VSHs can also be straightforwardly obtained, as well.

Furthermore, the Dyadic Green’s Function of Eq. (2.183) obeying the differential equa-
tion:

Λ̂
↔
Gλ(r, r

′; k) = λ
↔
Gλ(r, r

′; k) +
↔
I δ(r− r′), (2.188)

is related with the Dyadic Green’s Function of the corresponding Helmholtz equation
according to the equation below (see Eq. (1.17) in page 43 of [211]):

↔
Gλ(r, r

′; k) =
[
∇×

↔
I + λk

↔
I
] ↔
G(r, r′; k), (2.189)

where
↔
I denotes the unit dyad. The expansion of the helical DGF into the eigenmodes of

source-free homogeneous isotropic media is also straightforwardly done by making use of
the last equation and Eqs. (2.159-2.161).

Before closing this section, we would like to present a local conservation law of elec-
tromagnetic chirality that has been extensively studied in the literature lately [212, 213].
In analogy to Poynting’s theorem dictating the flow of electromagnetic energy in media,
the electromagnetic chirality conservation law follows directly from Maxwell’s equations
in frequency domain (Eqs. (2.8,2.9)) and it reads as follows (for our adopted conventions
in macroscopic Maxwell’s equations):

∇ ·Xflux(r, ω) + Xmedium(r, ω) + Xsources(r, ω) = 0, (2.190)

where:

• Xflux denotes the flux of electromagnetic chirality and is in units of power flux density
[Watts/m2]. It is defined as:

Xflux =
c0
2ω

(E∗ ×∇×H−H∗ ×∇×E) , (2.191)

=
c0

2ωiZ0

∑
λ

λG∗
0,λ ×∇×G0,λ, (2.192)

where we have introduced the Riemann-Silberstein vectors G0,λ = [E+ λiZ0H] /
√
2

of well-defined helicity λ = ±1 in free space (whose wave-impedance we denote with
Z0). Importantly, note that it is straightforward to show that the above expression
on the infinite sphere in free space is real-valued and is exactly equal to the difference
between the power flux density of transverse waves of positive helicity and those of
negative helicity. That is to say that it is indicative of the difference of the power
flux between left- and right-handed photons, with a positive chirality flux implying
a relative abundance of left-handed photons of positive helicity.

• Xmedium denotes the exchange of electromagnetic chirality between the electromag-
netic fields and the polarized medium. It is in units of power density [Watts/m3],
and it is defined as:
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Xmedium =
−ic0
2

(Pe · ∇ ×E∗ +E∗ · ∇ ×Pe +Pm · ∇ ×H∗ +H∗ · ∇ ×Pm) ,

(2.193)

=
−ic0ε0

2

∑
λ

λ
(
P0,λ · ∇ ×G∗

0,λ +G∗
0,λ · ∇ ×P0,λ

)
, (2.194)

where P0,λ = [Pe/ε0 + λiZ0Pm/µ0] /
√
2 are defined as the polarization density vec-

tors of well-defined helicity λ = ±1 in free space (i.e., a polarization density generat-
ing fields of well-defined helicity in free space). An achiral medium should conserve
the chirality of the fields and, therefore, should have zero total chirality exchange
with them.

• Xsources denotes the exchange of electromagnetic chirality between the electromag-
netic fields and the external current sources. It is in units of power density [Watts/m3],
and it is defined as:

Xsources =
c0
2ω

(J · ∇ ×E∗ +E∗ · ∇ × J) , (2.195)

=
c0

2
√
2ω

∑
λ

(
J · ∇ ×G∗

0,λ +G∗
0,λ · ∇ × J

)
. (2.196)

Finally, applying the divergence theorem for a volume V enclosed by a surface S, the law
of conservation of electromagnetic chirality in its integral form reads as follows:

‹
S
n̂ ·Xflux(r, ω) d

2r = −
ˆ
V
Xmedium(r, ω) + Xsources(r, ω)d

3r. (2.197)

2.8 Eigenmodes of waveguiding systems

In this section, we will briefly discuss the fundamentals of the electromagnetic analysis of
waveguiding systems, which will be considered in a later chapter. We will focus on non-
absorbing and non-magnetic waveguides made of isotropic dielectrics. We will consider
them to be translationally invariant and aligned along the x-axis, which will be the optical
axis of the waveguide.

Let us first discuss the emergence of some eigenvalues that characterize the eigenmoges
of such waveguiding systems, based on spatial symmetry arguments. To begin with, the
translation invariance of the waveguide with respect to the x-axis implies that the system
is diagonal with respect to the linear momentum along the x-axis, kx. Therefore, kx
constitutes the first appropriate eigenvalue for the waveguided modes.

We would like to highlight that, apart from the continuous translation symmetry,
the waveguide belongs also to some point group. Each point group is characterized by
a number of irreducible representations that transform in a particular way under the
symmetry elements of the point group. We can use additional eigenvalues corresponding to
particular symmetry elements of the group to characterize the eigenmodes of the waveguide
with respect to the irreducible representation of the point group that it belongs. Let us
mention some common examples of waveguides and the point groups that they belong to,
as well as the eigenvalues that we can introduce to differentiate between eigenmodes of
different irreducible representations.
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For example, waveguides on top of substrates or waveguides with claddings such as
ridge, or rib, or slot, or strip-loaded waveguides, typically belong to the Cs point group
that has two irreducible representations that can be characterized through the eigenvalue
of the mirror symmetry with respect to some axis that is perpendicular to the optical
axis. Let us call this eigenvalues σv = ±1. On the other hand, we can commonly have
waveguides, such as maybe buried waveguides, that have a higher degree of symmetry,
belonging to the C2v point group that has four irreducible representations that can be
characterized through the eigenvalues of two mirror symmetries with respect to two such
symmetry axes that are perpendicular to each other and both, also, perpendicular to the
optical axis. Let us call those eigenvalues σv1 = ±1, σv2 = ±1, respectively. In what
follows in this section, we will use the generic index i that will be considered to span all
such eigenvalues of the point group of the waveguide. In this section, we will use the
generic index i to be considered to span all the possible eigenvalues of the point group of
the waveguide. Therefore, in abstract Dirac notation, we can use the following kets to refer
to the eigenmodes of the waveguide |i kx ω⟩. Note, that we added as an extra eigenvalue
the frequency ω, since the waveguide apart from the aforementioned spatial symmetries
posseses also a continuous translation symmetry in time.

Let us now follow Ref. [214] and postulate the following Ansatz for the electric and
magnetic fields of the eigenmodes of the waveguide:

Ei(r, ω; kx) = ei(y, z, ω; kx)e
ikxx, (2.198)

Hi(r, ω; kx) = hi(y, z, ω; kx)e
ikxx, (2.199)

Then we can apply this Ansatz to the Helmholtz wave equation of a dielectric medium that
is characterized by a relative dielectric permittivity εr(y, z) and get as a result differential
equations that the fields ei(y, z, ω; kx),hi(y, z, ω; kx) should obey. For example, for the
electric field we have:

[
∇2

⊥ + εr(y, z)k
2
0 − k2x

]
ei(y, z, ω; kx) = [∇⊥ + ikxx̂] · [ei(y, z, ω; kx) · ∇⊥ (ln (εr(y, z)))] ,

(2.200)

where k0 denotes the wavenumber of free space and the subscript ”⊥” refers to the plane
perpendicular to the optical axis. Similarly, we can get another differential equation for
the magnetic field profile of the mode (see Eq. (11.40b) in [214]).

Note that, for a non-absorbing waveguide, we can choose the eigenmodes to have
purely real transverse (to the optical axis) components of the electromagnetic fields,
and purely imaginary longitudinal components. Moreover, we have then the following
symmetries between two counterpropagating modes ei(y, z, ω;−kx) = e∗i (y, z, ω; kx) and
hi(y, z, ω;−kx) = −h∗

i (y, z, ω; kx).
There is a discrete set of even number of bounded modes (Nm(ω)) that the waveguide

supports for a given frequency ω. They come in pairs of counterpropagating modes with
opposite kx and same index i. Any electromagnetic field can be expanded on that dis-
crete basis set of bounded modes, plus some extra term of non-bounded radiating fields.
Specifically, we can write for the electric field (and similarly for the magnetic field):

E(r, ω) = Erad(r, ω) +

Nm(ω)∑
j=1

Aj(ω)Eij (r, ω; kx,j), (2.201)
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where Aj(ω) are some complex amplitudes and we use the index j to span all the set
of bounded modes at that frequency. We use the index ij to refer to the point group
eigenvalues that characterize the j-th bounded mode and the variable kx,j to denote the
linear momentum along the x-axis of the j-th bounded mode.

Next, let us define the following inner product between two electromagnetic fields:

⟨EM(1),EM(2)⟩ (x) =

¨
S∞(x)

1

2

[
E(1)∗(r)×H(2)(r) +E(2)(r)×H(1)∗(r)

]
· x̂ dydz,

(2.202)

where integration is being performed over an infinite plane perpendicular to the optical
axis of the waveguide. In Ref. [214] it is first shown that the radiating fields are orthogonal
to the bounded modes with respect to that inner product, i.e., we have that:

⟨EMrad,EMbound
j ⟩ (x) = 0. (2.203)

Moreover, it is shown that the bounded modes can be orthonormalized with respect to
that inner product, i.e., we have that:

⟨EMbound
j ,EMbound

j′ ⟩ (x) = sgn(kx,j)δjj′ . (2.204)

Note that modes with different index j correspond to modes with different sets of (i, kx).
Importantly, note that the normalization is with respect to unit power flux of the bounded
modes along sgn(kx,j)x̂, with sgn(·) denoting the sign function.

By making use of the above orthogonality properties, we can readily get the complex
amplitudes of the bounded modes upon some arbitrary excitation (that results in a total
field that we refer to with the ket |EM⟩) as follows:

Aj(ω) = sgn(kx,j) ⟨EMbound
j ,EM⟩ (x). (2.205)

Finally, note that the power captured by each bounded waveguided mode is given by:

Pj(ω) = |Aj(ω)|2 . (2.206)

2.9 Introduction to the T-matrix method for linear electro-
magnetic systems

In this section, we will introduce the fundamental notions behind the transition matrix
(T-matrix) theoretical methods that can be employed to model linear electromagnetic
systems, i.e., electromagnetic systems that are comprised by media whose polarization
linearly depends on the electromagnetic fields through first order susceptibility tensors.
Note that, operating an electromagnetic system in the linear regime typically implies low
intensities of light, since otherwise weak nonlinear effects can become pronounced.
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Let us consider the general case of a linear electromagnetic system characterized by the
susceptibility tensor χ(r, r− r′, ω − ω′, ω′) (see Eq. (2.12)) and some appropriate bound-
ary conditions, e.g. the Silver-Müller radiation condition at infinity. The electromagnetic
fields are a solution of Maxwell’s equations, which we can write in the following abstract
form: Ĥ(χ)ψ = s, where Ĥ(χ) is a linear operator representing Maxwell’s equations in
the medium, ψ represents the electromagnetic fields and s represents the external cur-
rent sources. The fields can be decomposed into a sum of incident and scattered fields:
ψ = ψinc + ψsca. The incident fields are normally a solution of Maxwell’s equations in
a background medium characterized by a susceptibility tensor χb (normally that of free
space, where χb = 0) and, therefore, are nontrivial solutions of source-free Maxwell’s equa-
tions inside there: Ĥ(χb)ψinc = 0. Hence, we have that the scattered fields are solutions
of:

Ĥ(χ)ψsca = ssca. with : ssca = s−
[
Ĥ(χ)− Ĥ(χb)

]
ψinc. (2.207)

where the second term in the right-hand side of the last equation corresponds to an
equivalent polarization current distribution emanating from the presence of incident fields
exciting the system apart from the sources s. By defining the Green’s operator of Ĥ(χ)
as its inverse Ĝ(χ) = Ĥ−1(χ) we have that:

ψsca = Ĝ(χ)s+ T̂(χ)ψinc, (2.208)

where we have introduced the T-matrix operator whose definition reads as follows:

T̂(χ) = Ĝ(χ)Ĥ(χb)− Î. (2.209)

That is to say that the T-matrix is a linear operator that relates the scattered with the
incident fields in the absence of external current sources:

ψsca = T̂(χ)ψinc. (2.210)

Note that the linear operator Ĝ(χ)Ĥ(χb) relates the total fields ψ with the incident fields
ψinc: ψ = Ĝ(χ)Ĥ(χb)ψinc. Notably, in view of Eq. (2.208), we have that while the T-
matrix operator gives the scattering response of the system upon some background field
excitation, the Green’s function of the system gives the scattering response of the system
upon its excitation by external sources. Hence, in what follows in this section, we will
always consider the external sources to be far away from our optical system, so that they
effectively represent a background field excitation.

We would also like to remark that our definition of the T-matrix operator here differs
from the definition of another T-matrix operator, T(χ), that recently attracts attention in
the literature [215–219]. There, T(χ) relates the induced polarization currents in the sys-
tem (instead of the scattered field) with the incident field. Once represented in frequency
domain, the relation between the two T-matrix operators for non-magnetic systems reads
as: T̂(χ) = −iĜ(χb)Ω̂T(χ), where Ω̂ is a diagonal operator over frequency ω with entries
the frequencies themselves. In what follows, we will always refer to T̂(χ) as the T-matrix
operator of the optical system.
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The linearity of the T-matrix operator implies that if the response of the system, once

excited separately by two incident fields ψ
(1)
inc, ψ

(2)
inc, leads to the scattered fields ψ

(1)
sca, ψ

(2)
sca,

respectively, then for a(1), a(2) being some arbitrary complex scalars, we have that, once the

system gets excited by the superposition of the fields a(1)ψ
(1)
inc + a(2)ψ

(2)
inc, then its response

shall be a(1)ψ
(1)
sca + a(2)ψ

(2)
sca.

Note that the T-matrix operator in its most general abstract form is a continuous
infinite-dimensional operator relating incident fields in spatio-spectral space with scattered
fields in spatio-spectral space. However, in practice we like to have finite and discrete
representations of the T-matrix operator. For this, we need to quantize the representations
of the incident and scattered fields. This generally requires the expansion of the incident
and scattered fields into the eigenmodes corresponding to the zeros of the system operators
Ĥ(χb), Ĥ(χ), respectively.

Regarding the incident fields, for the typical case of the background medium being free
space, we have analytical basis sets of eigenmodes in terms of the VPHs/VCHs/VSHs that
we discussed in a previous section. For example, a pulse of some arbitrary vector beam
exciting the system can be conveniently represented on a basis of plane waves:

Einc(r, t) =
∑
α

ˆ +∞

−∞

ˆ π

0

ˆ 2π

0
Ainc

α (θk̂, ϕk̂, ω)Fα(θk̂, ϕk̂, ω/c0; r)e
−iωt sin θk̂dϕk̂dθk̂dω,

(2.211)

where c0 is the speed of light in free space and Ainc
α (θk̂, ϕk̂, ω) are some complex coeffi-

cients appropriately defined to represent the excitation. The continuous integrals in the
above representation of the incident field can be properly discretized to lead to quantized
representations. However, sometimes it is more convenient to use a series of spherical or
cylindrical waves, instead of plane waves, to represent the incident fields. For example,
the excitation of finite sized systems sometimes is conveniently represented by a series of
spherical waves that can converge fast within the finite domain of the system with only a
few terms, leading to a more compact representation (i.e., one with lower dimensionality)
of the incident field. For the same reason, for cylindrical-like systems it could be more
convenient to expand the incident field into a series of cylindrical waves with respect to
the main axis of the system. Reducing the dimensionality of the representation of the
fields is of course always desirable in practice.

On the other hand, regarding the quantization of the scattered fields, the situation
gets more complicated. In general, the eigenmodes that correspond to the zeros of Ĥ(χ)
are known in the literature as quasinormal modes (QNMs) [220]. They take their name
from the fact that they constitute eigenmodes of typically non-Hermitian systems, i.e.,
open systems without energy conservation due to material and radiation losses. Their
eigenfrequencies are, therefore, complex, and the spectral support of each QNM is mainly
along a compact segment of the real frequencies axis. Note that the zeros of Ĥ(χ) corre-
spond to the poles of the T-matrix operator T̂(χ) and, therefore, a pole expansion of the
T-matrix operator is possible [221–224]. So, ideally, we would expand the scattered fields
in terms of a finite set of the QNMs of the system. Then, once the QNMs of the system
are calculated, it is straightforward to fill the entries of the T-matrix of the system by pro-
jecting the response of the system upon an excitation with a single individual element of
the basis set for the incident fields, on the QNM basis (see e.g. Eq. (4) in [225]). However,
the calculation of the QNMs of the system is itself, typically, not that trivial task. The
QNMs and the corresponding complex eigenfrequencies of simple systems such as planar
slabs, or cylindrical, or spherical scatterers, can be calculated analytically [226–229]. Some
more complicated systems, such as arrays of spheres for example, could also be treated
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in a semi-analytical way. However, in the general case, the calculation of QNMs is done
purely numerically with, e.g., some finite element method (FEM) solver, and, therefore,
can be quite computationally expensive, especially for optically large systems. There, the
calculations are typically performed inside a finite domain bounded by perfectly matched
layers (PMLs), which give rise to unphysical PML modes that one needs to distinguish
against. The continuation of the fields of the QNMs outside the simulation domain needs
to be performed semi-analytically a posteriori. Note, also, that the proper normalization
of QNMs has also given rise to some academic disputes [230, 231]. We are not going to
expand further on the aspects related with the QNMs, since this goes out of the scope of
this thesis; however, arguably, QNMs could provide a means to construct the full T-matrix
operator of a system.

Nevertheless, we are typically interested in only some smaller part rather than the full
T-matrix operator, i.e., we may only care about the response of the system -that is to
say the scattered fields- inside a subspace of the system. For example, 1) we may only
care about the scattered fields in the far-field region of a scatterer -where we can treat the
near-field region of the scatterer as a black box-, or 2) in a multiport system of waveguide
ports connected with an optical circuit we may only care about the fields coupled to the
waveguide ports -where, again, we can treat the near-field region with the optical circuit
of the multiport system as a black box-. Those two are some rather common examples
where we are only interested in the fields inside a subregion of the real-space representation
of the scattered fields. This may facilitate the significant simplification of the T-matrix
operator: it can provide us with some neat modal basis set that we can employ to reach
a quantized, ”reduced” representation of the original T-matrix operator. Specifically, we
can use as a basis set the eigenmodes of a simpler system (let’s refer to it as Ĥ(χ′)) that
is identical to our actual system Ĥ(χ) inside the subdomain of interest (let’s call it Vs).
For example, we can always use a series of radiating VSHs (i.e., the radiating solutions of
free space) as a basis set to expand the scattered fields from a scatterer embedded in free
space. Similarly, we can always use the eigenmodes of each individual waveguide (i.e., the
eigenmodes of the infinite translationally invariant waveguide embedded in free space) as
a basis set to expand the waveguided fields in the far-field region of a multiport system.
It is the same principle that is being used, for example, in the Fourier Modal Method
(FMM), or else Rigorous Coupled Wave Analysis (RCWA). There, we have a multilayer
system, with each layer being a slice of finite thickness from a 2D photonic crystal with
discrete translation symmetries laterally, and the fields inside each layer are represented
by the semi-analytically retrieved eigenmodes of the infinite translationally invariant 2D
photonic crystal, which are used as a basis set to expand the fields in that subregion of
the system.

Arguably, such a reduction of the representation of the T-matrix operator potentially
enables us to use eigenmodes of simpler systems -that can be efficiently, either (semi-)
analytically or with rather low computational effort, retrieved- to represent the fields of
the original complex system inside some subdomain of interest. In a next chapter, we will
employ a T-matrix operator that connects the radiated fields of an emitter, expanded in a
multipolar basis of well-defined helicity, with the complex amplitudes of the guided modes
of an adjacent waveguide. We will calculate such a T-matrix to study the directional
coupling of the multipolar emissions to the waveguide.

Moreover, other considerations can help us to reduce further the representation of the
T-matrix operator. Specifically, our system may be invariant with respect to some symme-
tries. Such invariance under symmetry transformations can render it diagonal with respect
to some properly selected eigenvalues, and we may be interested about the response of
the system associated only with some range of those eigenvalues. For example, stationary
systems are diagonal with respect to frequency ω and we may be interested to work only
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with a reduced representation of the T-matrix operator that is associated with a particu-
lar frequency of interest. Likewise, translationally invariant systems along some axis are
diagonal with respect to the linear momentum along that axis and we may be interested
to study the response of the system upon some particular illumination direction, which
enables us also to work with an appropriately reduced representation of the T-matrix op-
erator by focusing on the part associated with the linear momentum component of our
interest. As another example, we can mention the case of rotationally symmetric systems
that are diagonal with respect to the projection of the angular momentum along their
axis of symmetry. In such a case, we may be interested in probing the system with vector
beams of particular orbital angular momentum propagating along the symmetry axis of
the system. And then, we can also work with a reduced representation of the T-matrix
operator of the system by focusing on the part associated with the angular momentum
eigenvalues of our interest.

It becomes obvious that employing a set of eigenmodes with appropriately chosen
eigenvalues, tailored to the symmetries of the system, becomes instrumental in attaining
a reduced, quantized representation of the T-matrix operator. In a next chapter, we will
develop a Floquet Mie theory to study light scattering from a non-stationary sphere whose
electromagnetic properties vary periodically in time. The T-matrix operator correspond-
ing to such a scattering system is not diagonal any more with respect to frequency, since
the continuous translation symmetry of the system over time is broken and replaced by
a discrete translation symmetry in time. The latter renders our scattering system a tem-
poral photonic crystal which we can better study after we introduce a temporal Floquet
frequency that diagonalizes its T-matrix operator in frequency domain.

Having discussed the above fundamental aspects pertained to the T-matrix theory, let
us now move to more practical aspects associated with the T-matrix method as a tool to
analyze electromagnetic scattering processes. Arguably, Mie theory has provided us with
the archetype of electromagnetic scattering theory: that of light scattered by a sphere
[3]. The Mie coefficients constitute the elements of the T-matrix of a spherical scatterer
embedded inside an infinite medium and give the scattered field outside with respect to the
incident field, with both being represented in a basis of VSHs. Waterman introduced later
the notion of the T-matrix [232–234], and since then there have been significant efforts to
extend its scope for more complicated scattering systems [235].

Waterman’s T-matrix corresponds to a particular category of T-matrix operators:
those that treat a scattering system as a black box and focus only on the scattered fields
outside the scattering system that get radiated upon some excitation with an incident
field. This category of T-matrices is practically quite special, as we shall see, and attracts
a lot of attention. Arguably, its major strength is associated with the remarkably efficient
way that it can be used to deal with multi-scattering phenomena of scatterers embedded
inside a medium [236]. It is not a coincidence that in the last decades, the development of
T-matrix methods has been largely driven by the scientific community that was interested
in light scattering from aerosols in the atmosphere [237, 238]. Recently, there has also been
interest in the method for the modeling of the optical response of disordered media [239].
In what follows, we will discuss the generalization of the methods that make use of such
”black box” type of T-matrices to model the coupling of scatterers with their environment
to deal with complex multi-scattering phenomena in a hierarchical way. Our final goal is
to divide an extended optical system into constituent subsystems and construct a matrix
representation of light interaction with the individual subsystems, and, finally, use it to
connect all of them together.

Let us consider a finite linear optical system. That system we can recast into a hi-
erarchical optical network as long as we are able to divide it into a finite number of
subdomains/components, Nc, (and let’s call the subdomains Vi, with i taking values from
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1 till Nc) that are connected with each other via some closed surface interfaces that they
share (which we can call Σj , with the index j running through all such interfaces). We
require that in the vicinity of the designated ports/interfaces we have a fixed homoge-
neous medium, which is a significant restriction to the process of dividing the system
into subdomains. As we will discuss in what follows, this requirement aims to facilitate
the employment of a basis set of electromagnetic waves to expand the incident and scat-
tered fields across the ports. Each subdomain Vi is topologically of genus gi, depending
on the number of inclusions that it has. The number of ports connected to Vi is then
Np,i = gi + 1. We will refer to them as Σj(in), with n being an index that takes values
from 0 till Np,i− 1. As a convention, we consider that the port with n = 0 is the one fully
enclosing Vi in its interior and we call it the ”parent” port. We call the rest of the ports
with 0 < n ≤ Np,i − 1 as the ”children” ports, that are gi in number. Note that we can
construct a tree representation of such a hierarchical optical network that can assist our
analysis of the system. See Fig. 2.1 for a sketch of such a process of recasting an optical
system into a hierarchical optical network.
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Hierarchical optical network analyzed via the T-matrix method 

Figure 2.1: Facilitating the analysis of complex, multi-scale optical systems
through a multi-scattering approach between its constituent subsystems via
the T-matrix method that recasts the system into a hierarchical optical net-
work. Each subsystem is represented by its own T-matrix, and the coupling
between the subsystems can be represented by a tree diagram.

Let us now consider each subdomain Vi as an isolated, independent scattering system
which can only be illuminated by some excitation emanating from the exterior of Vi and
illuminating Vi through its Np,i ports. Note that we would also like to avoid the case of
any non-local coupling between the constituent subsystems (it is still fine to have non-
local interactions inside the subsystem, though, since we are generally treating it as a
black box), so that the interaction between the subsystems takes place solely by means
of a scattering process through the ports/interfaces. Importantly, note that for such an
abstracted scattering component we consider the homogeneous material in the vicinity of
each port to be extended everywhere outside of Vi, both at the infinite exterior domain and
inside the inclusions that it may have. We want to construct a T-matrix representation
of such an abstracted scattering component, where we consider as an input the incident
fields emanating from the exterior of Vi and as an output the scattered fields outside of Vi.
The ability to construct such matrix representations of the subsystems, mathematically,
is related with the compactness of the operator of the subsystem [240]. Let us assume,
now, a finite basis set with which the field over the port Σj can be expanded into a set
of modes that are standing waves in the interior of Σj (let’s refer to the corresponding

52



2.9. Introduction to the T-matrix method for linear electromagnetic systems

amplitudes of this expansion with the complex vectors ψstnd,j) and a set of modes that are
radiating inside the exterior of Σj (which we represent with a complex vector ψrad,j), once
we assume there an infinite homogeneous background medium assigned with the material
of the port. We can introduce now the T-matrix of the considered abstracted subsystem
of Vi, T̂i, that will connect the incident through the ports fields (ψinc,i) inside Vi, with
the scattered through the ports fields outside Vi (ψsca,i). We can write then the following
equation in a matrix form:

ψsca,i = T̂i · ψinc,i, ⇒ (2.212)
ψrad,j(i0)

ψstnd,j(i1)
...

ψstnd,j(igi )

 =


T̂i,00 T̂i,01 · · · T̂i,0gi

T̂i,10 T̂i,11 · · · T̂i,1gi
...

...
. . .

...

T̂i,gi0 T̂i,gi1 · · · T̂i,gigi

 ·

ψstnd,j(i0)

ψrad,j(i1)
...

ψrad,j(igi )

 . (2.213)

Note that the scattered fields from the parent port are of radiating type, while those from
the children ports are of standing wave type. Conversely, while the incident fields from
the children ports are of radiating type, those from the parent port are of standing wave
type.

We can now start from the last two ”generations” of our tree representing the hier-
archical optical network and recombine the children nodes with their parent into a single
new ”family” node, in an attempt to account for multi-scattering processes taking place
among them (ingoring for now the rest of their environment as homogeneous space). Our
goal is to substitute the two generations with an effective T-matrix representing the inter-
action of the whole ”family”, now, with its environment. That effective T-matrix, which

we will call as ˆ̃Ti (with the index i referring to the subdomain index of the parent of the
family), will be of zero genus topologically, since we will have already taken into account
multi-scattering interactions within the family, i.e., it will treat the family as a ”black
box” and will only represent its interaction with its outside environment, that of the older
generations. Note that, proceeding like this, we can climb the tree upwards, generation
by generation, finally getting the T-matrix that represents the extended family of all the
generations, which will allow us to treat the whole optical system as a black box and
represent its interaction with the background medium through its final T-matrix.

In order to calculate the effective T-matrix of the families at the bottom generations of

the tree (let’s call them ˆ̃Tf , with the index f standing for ”family”) we proceed as follows.
First, note that the nodes of the bottom generation of the tree are always of zero genus
topologically. Let’s assume the index nc taking values from 1 till gp (the topological genus
of the parent), which denotes the number of the children of the considered family. This
means that applying Eq. (2.213) for the subsystem of each child we get that:

ψrad,c,nc = T̂nc · ψstnd,c,nc , (2.214)

while applying the same equation for the subsystem of the parent we have:
ψrad,p

ψstnd,c,1
...

ψstnd,c,gp

 =


T̂p,00 T̂p,01 · · · T̂p,0gp

T̂p,10 T̂p,11 · · · T̂p,1gp
...

...
. . .

...

T̂p,gp0 T̂p,gp1 · · · T̂p,gpgp

 ·

ψstnd,p

ψrad,c,1
...

ψrad,c,gp

 , (2.215)

where we use the symbol ”p” to refer to the T-matrix of the parent subdomain and,
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also, to the parent port of the parent subdomain. Whereas, we use the symbol ”c” to
refer to the children ports of the parent subdomain. Combining the above two formulas
readily gives the following relation for the effective T-matrix of the family (recombined
parent+children) system:

ψrad,p = ˆ̃Tf · ψstnd,p , (2.216)

with:

ˆ̃Tf = T̂p,00 +


T̂p,01

T̂p,02
...

T̂p,0gp


T

·


T̂1 0 · · · 0

0 T̂2 · · · 0
...

...
. . .

...

0 0 · · · T̂gp

 ·

Î− T̂p,11T̂1 −T̂p,12T̂2 · · · −T̂p,1gpT̂gp

−T̂p,21T̂1 Î− T̂p,22T̂2 · · · −T̂p,2gpT̂gp
...

...
. . .

...

−T̂p,gp1T̂1 −T̂p,gp2T̂2 · · · Î− T̂p,gpgpT̂gp


−1

·


T̂p,10

T̂p,20
...

T̂p,gp0

 , (2.217)

where we have used the symbol ”f” to denote the ”family” effective T-matrix. The resulting
family effective T-matrix borrows the ports of the parent to interact with the outer world
and is of zero genus topologically. We can apply the above procedure multiple times and
ascend the tree till the oldest generation to eventually get the final T-matrix of the whole
system. This will allow us to represent its scattering response inside free space upon an
arbitrary excitation.

The multi-scattering T-matrix theory that we developed with our derivation above is
quite abstract and general, but it does find practical applications in some simple scattering
scenarios. Let us discuss some of the practical aspects in view of Fig. 2.1. There, in the
family tree of the optical system, we denote with blue color the subdomains that are not
parents, i.e., they are of zero genus topologically. Out of those, the subdomains V3 and
V11 are simple spheres embedded in free space. Thus, their corresponding T-matrices can
be computed analytically with simple Mie theory. From a computational perspective this
is, of course, advantageous. However, the rest of the subdomains, V4,V7,V8, and V10,
need to have their T-matrices calculated numerically, which could be computationally
expensive. Moreover, we can observe that the parent domains V2,V6,V9, denoted with
green color in the tree, host practically homogeneous space. Therefore, their T-matrices
can be calculated analytically, since their elements simply correspond to propagation of
waves in homogeneous space. That is actually the major advantage of conventional T-
matrix methods applied to multi-scattering processes: the propagation of waves between
different sites is simply performed there analytically by making use of the translation
addition theorem for VSHs, for example. In that case, such translation matrices are
represented by the non-diagonal elements of the T-matrix of the parent subdomain in
Eq. (2.215). Note, also, that Eq. (75) in Ref. [235] is just a particular representation of our
Eqs. (2.214,2.215) above. Moreover, developed theories dealing with stratified, multilayer
spherical scatterers or with spherical inclusions constitute also a particular manifestation
of our equations above [241–243].

On the other hand, note that the parent domains V1,V5, denoted with red color in
the figure, do not host a homogeneous medium, and, therefore, their T-matrix needs to be
calculated numerically by assuming a homogeneous space continuation inside the domain
of the children ports and outside the domain of the parent port. However, depending
on the optical size of the system, this can be unnecessarily computationally expensive,
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unless some proper boundary conditions are enforced over the children ports, so that large
chunks of space, where simple propagation inside homogeneous media takes place, does
not get included inside the simulation domain. In a scattering wave formalism, a special
boundary condition enforcing the field over the children ports to be a superposition of the
standing wave type of modes of the port would be rather beneficial in terms of reducing
the computational costs.

Let us note that such a process of retrieving the T-matrix of a large and complex system
in a hierarchical way, may be instrumental in attaining its response without requiring
rather demanding computational resources. Simulating a smaller subdomain of the big
system should only require a fraction of the computational resources needed to simulate
the whole system fully numerically. We require, though, to simulate the response of
subsystems upon multiple excitations, but this is also efficiently done, for example with
the FEM method in frequency domain, or with the Boundary Element Method (BEM).
Once we invert the numerical matrix of the system; then, getting the response of the
system upon different excitations is simply a fast matrix-vector multiplication. Arguably,
such a modular T-matrix-based analysis of complex optical systems, is, also, especially
beneficial in cases that we have large systems composed by a small number of modules
that are repeated in space, and whose T-matrix, therefore, only needs to be calculated
once.

To sum up, we have deployed a generalized T-matrix method to analyze complex op-
tical systems as hierarchical optical networks where multi-scattering processes take place
between the nodes of the network and through the scattering ports that connect them.
Note that, such a ”black box” type of T-matrix operator is closely related with the scat-
tering matrix (S-matrix, Ŝ(χ)) of the system. The important difference is that, while
the T-matrix relates the scattered fields with the incident fields (standing waves), the S-
matrix relates outgoing waves with incoming waves over the ports of the system. The two
matrices are related with the following equation: Ŝ(χ) = Î + 2T̂(χ) [233]. The S-matrix
methods celebrate this year an anniversary of two hundred years. Arguably, we can trace
its origins back to the Fresnel equations describing reflection and transmission of light
through a planar interface [244]. Specifically, Fresnel’s coefficients practically constitute
the elements of a reduced representation of the S-matrix operator describing the simplest
electromagnetic scattering system: that of a single planar interface. In the realm of ge-
ometrical optics, the simple ray transfer matrix (ABCD matrix) of an optical element
such as a lens, does also actually constitute a ray optics representation of the S-matrix
operator of such an electromagnetic system [245]. The S-matrix has been extensively used
to model stacked planar layers of homogeneous and bi-anisotropic media [246]. Moreover,
it has been, accompanying the Fourier Modal Method (FMM) -or else Rigorous Coupled
Wave Analysis (RCWA)- to include also bi-anisotropic layers in the stack with homogene-
ity along the stacking axis but with structural periodicity laterally [247]. Furthermore,
it has been used as a module to complement FEM methods in frequency domain, where
it was used as a semi-analytical module facilitating the rather efficient incorporation of a
multilayer stack inside the simulation domain [248]. Importantly, the S-matrix method is
widely used in photonic integrated circuits (PICs), where it facilitates the modular design
of the circuit, with each element being typically connected with the rest of the system
through waveguide ports. There, a basis set of incoming and outgoing waves of bounded
modes is neatly defined, once we disregard any radiative coupling among the modules of
the system [249, 250].

Note that, in layered systems, the coupling between the layers through the interface
ports is naturally performed in terms of incoming and outgoing waves instead of incident
and scattered waves, since incident waves would require the simultaneous excitation of
both sides of the layer (which would correspond to an incident standing wave), but this
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is not a very convenient approach. Similarly, it is only natural to perform the coupling
between subdomains in a multiport system in terms of incoming and outgoing waves,
instead of incident and scattered waves. Those two are some exemplary cases where the
S-matrix analysis of the system is preferential. The rest of the analysis that we previously
performed for the T-matrix approach remains largely the same. Here, we will only spot
the key differences between the T-matrix and S-matrix analysis of complex optical systems
recasted into hierarchical optical networks. As we discussed already, the most important
difference is that we need to employ a different basis set to expand the fields at the vicinity
of the ports, that is in terms of incoming and outgoing waves. Specifically, Eq. (2.212)
would need to take the following form instead:

ψout,i = Ŝi · ψin,i, (2.218)

Note that the incoming fields through a port inside a subdomain are equal to the outgoing
(from the same port) fields from a neighboring subdomain, and, also, the opposite. Let
us, also, mention another practical difference between the two matrix methods. The
numerical calculation with full-wave simulations of the S-matrix of a subdomain of non-
zero genus topologically, requires setting up proper absorbers at the boundaries of the
simulation domain. For example, one would need to place perfectly matched layers (PMLs)
in curvilinear coordinates that absorb outgoing waves at the parent port, but, on the other
hand, absorb incoming waves at the children ports.

Layer of general 3D geometry: 
Get its S-matrix with full-wave solver (e.g. FEM) 

Layer of ensemble of embedded scatterers: 
Get its S-matrix as follows: 
1)Get the T-matrix of embedded individual scatterers  
2)Solve the multi-scattering system 
3)Transform from VSHs to VPHs to get the S-matrix 
special care for non-spherical scatterers is needed) 

Layer of periodic, 2.5D geometry: 
Get its S-matrix with RCWA(FMM) 

Stacked homogeneous, bi-anisotropic layers: 
Get the S-matrix with SMM 

S-matrix analysis of layered optical system 

Couple all layers together via their S-matrices 
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Figure 2.2: Sketch of the S-matrix analysis of a layered optical system. Each
subsystem is represented by its own S-matrix, which is optimally retrieved
by employing an appropriate method. The coupling between the layers is
performed on a plane-wave basis whereas the coupling between the scatterers
in the middle layer is typically performed on a spherical-wave basis.

In Fig. 2.2 we sketch a potential application of the S-matrix method that treats the
coupling between the layers of a stratified optical system. Equation (25) of Ref. [246],
which constitutes the cornerstone of such S-matrix method (SMM), can be used to stack
layers whose incoming and outgoing waves are represented in the VPHs basis with the S-
matrix method. Using the T-matrix method to solve for multi-scattering processes taking
place among an ensemble of scatterers embedded inside an homogeneous space, we are
able to retrieve the S-matrix of such a layer in the middle of the stack, which can be used

56



2.9. Introduction to the T-matrix method for linear electromagnetic systems

for the modeling of the coupling with the rest of the layers. Different techniques can be
employed to efficiently calculate the S-matrices of the different layers.

Before closing this section, we would like to highlight that we intentionally left our
theoretical analysis of the T-matrix methods rather abstract. A key ingredient for the
practical implementation of those T-matrix methods is actually the adoption of particular,
and not abstract, basis sets to appropriately expand the input and output fields of the
matrix representations of the systems. It’s only then that the matrices that we have been
using for the analysis get materialized and become disposable for practical use. Apart from
special cases, the preparation of appropriate basis sets to expand the electromagnetic
inputs and outputs of an optical system interacting with its environment, is far from
trivial. Very practical issues such as the completeness and the domain of validity of the
adopted representations, or the minimization of the dimensionality of the representations
for efficient numerical calculations, need to be taken into account. Note that typically,
the T-matrix methods involve solving dense linear systems of equations, whereas other
numerical full-wave methods (like the FEM method) are characterized by sparse matrix
representations. However, what makes the T-matrix methods in many cases preferential
is typically their significantly lower dimensionality of the problem.

In a next chapter, we will present a novel representation of radiating fields from scat-
terers of arbitrary geometry that can be used to tackle the famous problem of the Rayleigh
Hypothesis, that is related with the problematic representation of the scattered fields in
the near-field region of non-spherical scatterers when we use a simple series of radiating
spherical waves for the representation of the output of the T-matrices.
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3 — EM scattering from spherical scat-
terers made of time-varying mate-
rials: a T-matrix-based analysis

3.1 Introduction

In this chapter, we will discuss time-varying scattering systems under the prism of the
T-matrix formalism. First of all, in the second section, we discuss electromagnetism in
bulk time-varying media. We derive the generalized dispersion relation of such media, and
we study the band structure of periodically modulated media leading to photonic time
crystals. Finally, we construct the spatiospectral eigenmodes of such bulk media, and we
study an exemplary case of employing such a modal analysis to homogenize them. Next,
in the third section, we develop a Floquet-Mie theory that provides the T-matrix of time-
varying spherical scatterers (also multilayered ones), and we discuss its structure based
on an exemplary case. In the fourth section, we provide several numerical comparisons
between results obtained with our Floquet-Mie theory and results from a full-wave, time-
domain solver, showing an excellent agreement between the two. In what follows, in the
fifth section, we discuss the breaking of energy conservation in time-varying scatterers, and
we demonstrate that their T-matrices possess singular modes characterized by negative
absorption, i.e., indicating generation of energy. We, also, present results of driving a time-
varying sphere into a lasing state by parametric Mie resonances. We show that the latter
additionally allow for the engineering of the radiation pattern of the amplified emissions.
Finally, in the last section, we discuss generalized reciprocity in time-varying scatterers,
and we derive the symmetries that it entails with respect to their T-matrices.

3.2 Electromagnetic waves inside bulk time-varying media

In this section, we will analyze the physics of electromagnetic waves inside bulk time-
varying media. Specifically, we will consider the case of linear, homogeneous, isotropic,
non-magnetic media, without spatial dispersion. First, we will develop an eigenmode
analysis of electromagnetic waves inside such media, we will discuss then the generalized
dispersion relation of such media, and, finally, we will present an exemplary case of how
such a modal analysis of the media can be used to homogenize them. The numerical
calculations in this section have been performed in collaboration with Dr. Grigorii Ptitcyn.

The constitutive relations of such media in frequency domain reads as follows:

[
Pe(r, ω)
Pm(r, ω)

]
=

ˆ +∞

−∞
ε0χee(ω − ω′, ω′)

[
I 0
0 0

]
·
[
E(r, ω′)
H(r, ω′)

]
dω′, (3.1)

with χee(ω − ω′, ω′) being the susceptibility that characterizes the bulk medium. Please
note, the first frequency argument is the consequence of the time-variation, whereas the
second frequency argument is the ordinary dispersion. It practically relates linearly the
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electric polarization density Pe(r, ω) induced at frequency ω with a monochromatic electric
field E(r, ω′) of frequency ω′ that polarizes the medium (see Section 2.2).

Combining Eqs. (2.8, 2.9) with the aforementioned constitutive relations, gives us the
following integro-differential equation that the electric field inside such a bulk medium
obeys:

∇×∇×E(r, ω) = k20(ω)

E(r, ω) +

+∞ˆ

−∞

χee(ω − ω′, ω′)E(r, ω′)dω′

 , (3.2)

where k0(ω) = ω
√
µ0ε0 = ω/c0 is the wavenumber of free space. Note that, for dispersion-

less media, the susceptibility χee(ω − ω′, ω′) becomes invariant with respect to its second
argument and the wave equation simplifies [251].

Next, let us calculate the eigensolutions of the above homogeneous integro-differential
equation. Importantly, note that its operator is non-diagonal in terms of the frequency
ω: the constitutive relations of the time-varying medium introduce coupling among the
fields of different frequencies. These eigensolutions will be the fundamental solutions to
the source-free Maxwell’s equations of such a medium and, therefore, they are of major
importance since they can be used as a basis set to expand the fields inside such a medium.

To calculate them, it is instrumental to make use of the method of separation of
variables. Specifically, we seek for solutions of the electric field E(r, ω) that have the
following form:

E(r, ω) =

ˆ
A(κ)Sκ(ω)Fκ(r)dκ, (3.3)

where A(κ) is a complex amplitude that we introduced. Importantly, note that in this
Ansatz that we introduced, the dependency of the eigensolutions on the spatial and fre-
quency arguments is separated. Specifically, we introduce the separation constant κ2, and
we obtain the following set of coupled (through the separation constant) equations for the
spatial and vectorial part of the eigensolutions, Fκ(r), and for the spectral and scalar part
of the eigensolutions, Sκ(ω):

∇×∇× Fκ(r) = κ2Fκ(r), (3.4)

k20(ω)

Sκ(ω) + +∞ˆ

−∞

χee(ω − ω′, ω′)Sκ(ω
′)dω′

 = κ2Sκ(ω). (3.5)

Note that, both of the above equations constitute themselves eigenvalue type of equations
with κ2 being their common eigenvalue. Fκ(r) is the corresponding eigensolution of the
differential operator of the first equation and Sκ(ω) is the corresponding eigensolution of
the integral operator of the second equation.

We can straightforwardly recognize that the first equation for the spatial and vec-
torial profile of the eigensolution, Fκ(r), is an ordinary monochromatic electromagnetic
wave equation with wavenumber κ. We have explored in detail the eigensolutions of this
differential equation in section 2.6. Equation (3.4) shares the same eigensolutions with
Eq. (2.122) and we refer the reader to section 2.6 for a detailed discussion of those. We
remind that we have identified three types of eigensolutions for the electromagnetic wave
equation: the planar waves (VPHs), the cylindrical waves (VCHs), and the spherical waves
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(VSHs). For example, VPHs can be used to expand the fields inside a homogeneous half
space (or planar slab), while VCHs can be used to expand the fields inside a homogeneous
infinite cylinder (or cylindrical shell), and VSHs can be used to expand the fields inside a
homogeneous sphere (or spherical shell). In a next section of this chapter, we will focus on
the case of electromagnetic scattering by time-varying spherical scatterers, and, therefore,
we will employ the VSHs as a basis set to expand the fields inside the scatterers.

From Eqs. (2.10, 3.3 and 3.5) we get that the spatial eigenfunctions Fκ(r) in source-
free space are solenoidal for κ ̸= 0, i.e., ∇ · Fκ(r) = 0 for κ ̸= 0. On the other hand,
when κ = 0, it is straightforward to show from Eqs. (2.9, 3.3 and 3.4) that the magnetic
field becomes irrotational, i.e., ∇ ×H(r, ω) ∝ Sκ(ω)∇ × ∇ × Fκ(r) = 0, for κ = 0. For
vanishing wavenumbers κ, we have a non-zero induced electric charge density distribution
since the divergence of F0(r) does not have to be zero in that case. Such implications that
arise for κ = 0, where the electric field ceases to be solenoidal, will be disregarded in what
follows. In a next section of this chapter, this will allow us to expand the fields inside the
source-free time-varying scatterer using only the solenoidal (TE and TM) spherical waves
while avoiding the third multipolar family of longitudinal spherical waves [204].

Let us now discuss the second equation (Eq. (3.5)) that we got by applying the method
of separation of variables to the electromagnetic wave equation. This equation is obeyed
by the spectral part of the eigensolutions, Sκ(ω). It constitutes the generalization of
the dispersion relation of homogeneous, local, and isotropic, time-varying media. This
becomes obvious once we take its stationary limit, which reads as follows:

{
κ2 − k20(ω)[1 + χee,stationary(ω)]

}
Sκ(ω) = 0, (3.6)

which implies that we have a wavenumber κ(ω) = k0(ω)
√
1 + χee,stationary(ω) for each

frequency ω. For non-stationary media, the situation though becomes more complicated.
The important thing to notice here is that, due to the time-variance of the medium, the
symmetry of invariance of the system under continuous temporal translations is broken,
and, therefore, a coupling among different frequency components arises. In fact, once
we assume that the integral operator on the left-hand side of Eq. (3.5) is compact, then
by virtue of the spectral theorem of compact operators we can deduce that the equation
has a countable number of eigensolutions -the spectral eigenfunctions Sκ(ω)-, each with
its corresponding eigenvalue κ2, i.e., its corresponding wavenumber. That is to say that
now we have waves-eigenmodes of particular spectral composition (which is implied by
the eigenfunctions Sκ(ω)) that propagate inside the time-varying medium with different
wavenumbers κ (which are the corresponding eigenvalues to the eigenfunctions Sκ(ω)).
This is a major difference between eigenwaves inside stationary and time-varying media.

To solve Eq. (3.5), it is instrumental to consider a periodicity in the temporal vari-
ation of the non-stationary medium. Note that non-periodic time-varying media can be
practically treated also as artificially periodic with a period that is large enough to allow
for the relaxation of the system within a period. Media that periodically vary in time
have been attracting recently considerable attention from the scientific community and
they are known as photonic time crystals (PTCs) [252, 253]. They are characterized by a
discrete translation symmetry in time: χ̃ee(t, t−τ) = χ̃ee(t+jTm, t−τ), with Tm being the
modulation period and j ∈ Z. Consequently, the Fourier transform of the electric suscep-
tibility becomes discrete: χee(ω−ω′, ω′) =

∑
j δ(ω−ω′− jωm)χ

′
ee,j(ω), with ωm = 2π/Tm

being the modulation frequency of the periodically time-varying medium. Hence, for such
a system with discrete translational symmetry in time, it is instructive to introduce a
new eigenvalue, the Floquet frequency Ω, which we can consider to take values within
the frequency range (0, ωm). Electromagnetic fields with well-defined Floquet frequency
Ω possess the following discrete translation symmetry in time:
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T̂t(t0) | ˜EM(r, t; Ω)⟩ ≡ | ˜EM(r, t+ t0; Ω)⟩ = e−iΩt0 | ˜EM(r, t; Ω)⟩ , for t0 = jTm, j ∈ Z
(3.7)

where with T̂t(t0) we denote the temporal translation operator with translation t0, and
with the abstract notation | ˜EM(r, t; Ω)⟩ we denote such a (complex-valued) electromag-
netic field.

After we introduced periodicity in the time-variance of the medium, i.e., after we
restricted our analysis to PTCs, Eq. (3.5) takes the following discretized form:

k20(Ωj)

[
Sκ(Ωj) +

NΩ∑
l=1

χee(Ωj − Ωl,Ωl)Sκ(Ωl)

]
= κ2(Ω)Sκ(Ωj), (3.8)

where

Ωj = Ω+ (j + j0 − 1)ωm (3.9)

with j = 1, 2, . . . , NΩ and j0 being an integer that we chose appropriately for the truncated
spectral window of interest. NΩ is the total number of frequencies of the discretized and
truncated spectrum. Note that, for practical purposes, we also introduced a truncation of
the infinite spectrum. By letting j0 → −∞ and NΩ → +∞ we can lighten the spurious
effects of spectral truncation. In general, NΩ needs to be chosen large enough, and j0 needs
to be chosen such that significant numerical leakage of the spurious truncation errors inside
our spectral region of interest is avoided.

We see that the Floquet frequency Ω constitutes an appropriate eigenvalue to charac-
terize PTCs. It characterizes an infinite periodic comb of frequencies (with period ωm)
passing through the frequency Ω. Equation (3.9) gives the frequencies of such a spec-
tral comb within an arbitrarily truncated spectral window. Importantly, because of the
medium’s periodic time modulation, only the frequencies contained in each such spectral
comb are coupled to each other. There is no coupling among frequencies belonging to
spectral combs of different Floquet frequencies Ω. Therefore, for each Floquet frequency
Ω, Eq. (3.8), repeated for all values of the index j, forms a linear system of equations that
can be written in matrix form as follows:

K̂(Ω) · S⃗κ(Ω) = κ2(Ω) S⃗κ(Ω), (3.10)

where we have defined the vector:

S⃗κ(Ω) = [Sκ(Ω1) · · · Sκ(ΩNΩ
)]T , (3.11)

and the matrices:

K̂(Ω) = k̂2
0(Ω) ·

[
Î+ χ̂ee(Ω)

]
, (3.12)

k̂0(Ω) = diag [k0(Ω1) · · · k0(ΩNΩ
)] , (3.13)

with the j-th-row-, l-th-column-element of the matrix χ̂ee(Ω) being equal to χee(Ωj −
Ωl,Ωl).

As a result, in the eigenvalue type of equation (3.10), we end up with a matrix K̂(Ω) of
finite dimensions NΩ × NΩ, whose NΩ eigenvalues κ2i (Ω) and corresponding eigenvectors

S⃗κi(Ω) can be calculated numerically for each Floquet frequency Ω. Note that we use the
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index i = 1, . . . , NΩ to enumerate the eigenvalues and their corresponding eigenvectors.
Note, also, that in the limit of Tm → ∞, j0 → −∞, NΩ → ∞, we get the general
case of non-periodically modulated time-varying media. In this case, the discrete set of
eigenvalues κ2i (Ω) becomes a continuum of eigenvalues κ in the complex plane, and the

corresponding eigenvectors S⃗(κi)(Ω) become the original spectral eigenfunctions Sκ(ω).

As discussed before, the matrix χ̂ee(Ω) is diagonal for a stationary medium, and,
therefore, so is K̂(Ω). As a result, we get a direct relation between the eigenvalues κi(Ω)
and the frequency dependent wavenumbers inside the medium, contained on the main
diagonal of the matrix K̂(Ω) for the different frequencies of the considered truncated
spectral comb. The eigenvectors S⃗(κi)(Ω) are then monochromatic, and there is no coupling

among frequencies. However, upon temporal modulation, the matrix K̂(Ω) is not diagonal
and to each eigen-wavenumber κi(Ω) corresponds an eigenvector S⃗κi(Ω) whose elements
characterize the spectral content of the mode distributed among each of the NΩ frequencies
of the considered truncated spectral comb.

Finally, for a truncated frequency spectrum, the expansion of the fields in Eq. (3.3)
inside a PTC can now take the following form within the Hilbert space H of finite di-
mensions constructed for a periodically modulated, time-varying medium:

E(r, ω) =

ˆ ω−
m

0+

NΩ∑
i,j=1

Ai(Ω)δ(ω − Ωj)Sκi(Ωj)Fκi(r)dΩ, (3.14)

with Ai(Ω) being complex amplitudes. The above equation constitutes our general Ansatz
to expand fields inside PTCs. We can rewrite it in abstract Dirac notation in the following
way:

|EM⟩ =

ˆ ω−
m

0+

NΩ∑
i=1

Ai(Ω) |κi(Ω) Ω⟩ dΩ, with : (3.15)

|κi(Ω) Ω⟩ ≡
NΩ∑
j=1

δ(ω − Ωj)Sκi(Ωj)Fκi(r). (3.16)

In Fig. 3.1 we present an exemplary case where we study the temporal dispersion of
electromagnetic waves inside bulk PTCs. To start with, we consider the simple case of
a stationary dispersive medium described by a single Lorentz-type oscillator with nat-
ural resonance frequency ω0,n, damping coefficient γn = ω0,n/8 and bulk electron den-
sity N0 = 11ω2

0,nmeε0/q
2
e (see Eq. (2.44) and the analysis of phenomenological models

of electromagnetic media included in that section). The medium’s electric susceptibility

χ0(ω) =
q2eN0

meε0
1

ω2
0,n−ω2−iγnω

is plotted in Figure 3.1(a).

Then, we study the effect of a time-variation in such a dispersive medium by assuming
that the bulk electron density of the Lorentz oscillator varies time-harmonically according
to Ñe,n(t) = N0 [1 +M cos(ωmt)], with M being a modulation amplitude. According to
Eq. (2.44), the susceptibility of such a medium is given by:

χee(ω − ω′, ω′) =
χ0(ω)√
2πN0

Ne,n(ω − ω′), (3.17)

with

Ne,n(ω − ω′) =
√
2πN0

[
δ(ω − ω′) +M

δ(ω − ω′ + ωm) + δ(ω − ω′ − ωm)

2

]
.(3.18)
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Figure 3.1: Temporal dispersion of electromagnetic waves inside bulk PTCs:
(a) The electric susceptibility of an unmodulated medium with Lorentzian
dispersion. (b) The folding of the band structure the weak modulation
strength limit. (c) Spectral combs of the PTC characterized by a Floquet
frequency Ω, among which there exists spectral coupling due to the periodic
temporal modulation of the medium. (d) The band structure diagram for
the case of large modulation strength, where a band gap appears. (e) Plot of
the spectral content of the eigenmodes |Sκi(Ωj)|, highlighting the introduced
spectral coupling. (f) Plot of the eigenvalues, i.e., the wavenumbers κi, that
correspond to the eigenmodes presented in (e). Adapted with permission
from Ref. [A1] © John Wiley and Sons.

First, it is instructive to study the limiting case of very small modulation strengths
M → 0. In analogy to periodically spatially modulated materials, this case would cor-
respond to an empty-lattice approximation. That is to say that we still introduce the
periodicity even though there is practically no modulation. In this case, the integral op-
erator in Eq. (3.5) remains predominantly diagonal, with very small off-diagonal terms
proportional to the modulation strength M (see Eq. (3.18)). This property indicates a
weak spectral coupling among frequencies, which implies that the spectral eigenfunctions
Sκ(ω) tend to delta distributions, i.e., they tend to associate a unique wavenumber κ
to each frequency ω, as is the case for the usual dispersion relation of stationary media.
Therefore, we get that κ(ω)→

√
[1 + χ0(ω)]ω2/c20, as M → 0. In Fig. 3.1(b), we demon-

strate how the band structure of such a system is formed by folding the wavenumbers κ(ω)
into the fundamental spectral band. We consider that this spectral band encompasses all
the Floquet frequencies Ω from 0 to ωm. The blue dashed lines show the band struc-
ture formed by folding the solid blue line within the fundamental spectral band for the
case where ωm = ω0,n/2. The folding takes place periodically, and we denote the folding
frequencies by the dashed purple lines.

Next, in Fig. 3.1(c), we illustrate the truncated discrete spectral response of a system
periodically modulated at a frequency ωm and excited by a periodic excitation. The
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superperiod of the combined periodicities of the modulation and excitation is denoted
with Tp = 2π/ωp, with ωp = ωm/Np, and with Np ∈ N. Note that the spectrum can
be separated into a set of Np finite combs of frequencies with a periodicity of ωm. We
highlight each such comb of frequencies corresponding to a different Floquet frequency Ω
with a different color. As we discussed before, inside such a PTC coupling occurs only
among the frequencies of each such spectral comb. Here, a truncated spectral window of
NΩ bands is illustrated, which corresponds, also, to the number of frequencies of each such
truncated spectral comb.

As a next step, we study the dispersion relation of the PTC for the case of a strong
modulation M = 0.9. For our exemplary case, we consider a modulation frequency ωm =
ω0,n/10. Specifically, we solve Eq. (3.10) numerically and calculate the eigenvalues and
eigenvectors that correspond to each Floquet frequency Ω, i.e., to each spectral comb. In
Fig. 3.1(d), we plot the band structure of the PTC, i.e., the set of eigenvalues/wavenumbers
that correspond to each Floquet frequency Ω. Note that the color of the line in this
figure encodes the imaginary part of the eigenvalues/wavenumbers. Generally, positive
and negative imaginary values should be expected to correspond to spectral eigenmodes
with predominant spectral content over positive and negative frequencies, respectively.

In Fig. 3.1(d), we focus on the region of eigenvalues with a small real part, i.e., on
the first bands of the band structure. There, we can observe that a band gap in the
lower band is introduced by the strong temporal modulation of the medium [101, 254,
255]. Opening a band gap is indicative of strong first order spectral coupling between the
almost symmetric positive and negative frequencies of the spectral comb. That symmetry
is perfect at the center of the band structure where Ω = ωm/2 and this is where the
band gap actually opens. Note that in our exemplary case, we only open the band gap
between the first two bands, because our periodic modulation consists of a single harmonic
modulation of frequency ωm, introducing a first order coupling between frequencies of
opposite sign that solely reside in the first two bands. Introducing higher harmonics
in the periodic modulation of the medium (i.e., of frequencies 2ωm, 3ωm, etc.) would
facilitate the opening of band gaps of the higher bands as well. That is because there
would be direct coupling between frequencies of opposite sign residing within those bands.
Finally, note that inside the momentum band gap there are typically two modes that
have purely imaginary eigenfrequencies of opposite sign [255]. The amplifying mode of
the two is responsible for parametric amplification effects in time-modulated media. In a
next section, we will drive a time-modulated sphere into a lasing state by means of such
parametric amplification effects.

In Fig. 3.1(e), we plot the eigenvectors, and in Fig. 3.1(f), we plot the corresponding
eigenvalues of the subsystem with Floquet frequency Ω = ωm/200. Note that Fig. 3.1(f)
is a cut of the band structure of Fig. 3.1(d) at Ω/ωm = 1/200. The eigenmodes are
ordered with respect to ascending eigenmode central frequency. The latter is defined as
the following sum:

∑
j Ωj |Sκi(Ωj)|2. In view of Fig. 3.1(e), we can observe that each

eigenmode has a different spectral content distributed over the frequencies of the spectral
comb characterized by the particular Floquet frequency Ω. Note, also, that the spectral
support of the eigenmodes becomes wider for those that mainly support high frequencies,
whereas for the eigenmodes that mainly support the frequencies Ωj/ω0,n ≈ ±1 the spectral
support becomes minimally narrow, since there the resonant material losses of the Lorentz-
oscillator prevent further strong spectral coupling. Moreover, note that modes 30 and 31
belong to the two lowest bands of the band structure and they are the ones that form the
band gap. They have a spectral content in the lower frequencies of the spectral comb and
they can exhibit first order spectral coupling between positive and negative frequencies,
which, as we discussed before, is responsible for the opening of the band gap at Ω = ωm/2.
On the other hand, modes 1-21 and 42-60, whose eigenvalues have a large imaginary part,
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correspond to the points of the blue/red lines in Figure 3.1(d) that are almost parallel to
the x-axis and interfere inside the band gap region. Furthermore, as discussed previously,
the matrix with the eigenvectors plotted in Figure 3.1(e) shall approach the identity matrix
in the limit of vanishing modulation M → 0. Hence, the degree of non-diagonality of the
matrix Ŝ(Ω) is indicative of the strength of the spectral coupling that gets introduced by
the temporal modulation of the medium.

In Fig. 3.1(f), we plot the eigenvalues/wavenumbers associated with the corresponding
eigenvectors of Fig. 3.1(e). They are also sorted in a similar way. Let us note the re-
semblance of Fig. 3.1(f) with the unmodulated case illustrated in Fig. 3.1(b). The sorted
wavenumbers of the strongly-modulated case appear to be quite similar to those of the un-
modulated case. However, we can still have quite significant deviations, as it is indicated
by the presence of the open band gap in Figure 3.1(d). Those deviations are stronger as
the Floquet frequency Ω approaches half of the modulation frequency ωm.

Before closing this section, and to further appreciate the modal analysis of bulk PTCs
that we just presented, let us also discuss a simple method to homogenize such media. Let
us focus on the simple case of dispersionless PTCs with instantaneous response where the
constitutive relation reads as follows:

P̃e(t) = ε0χ̃ee,instant(t)Ẽ(t), (3.19)

where the susceptibility χ̃ee,instant(t) varies periodically in time with a period of Tm =
2π/ωm.

The homogenization of the PTC consists of finding an effective stationary susceptibility
to describe the evolution of the polarization of the medium accurately enough:

Pe(ω) = ε0χee,eff(ω)E(ω). (3.20)

Recently, the homogenization of time-varying media has been attracting lots of attention
by the scientific community and, for example, in Ref. [256] it was shown that, employing
the transfer matrix method to describe the evolution of waves inside such PTCs, we can get
the following theoretical expression for the effective susceptibility of homogenized PTCs
(note that it is dispersionless, i.e., it has no frequency dependence):

χtheo
ee,eff(ω) =

1

1
Tm

Tḿ

0

1
1+χ̃ee,instant(t)

dt

− 1. (3.21)

Let us now proceed with a numerical analysis of the generalized dispersion relation
that characterizes such a PTC, with our final goal being to numerically estimate and
verify the theoretical prediction of the effective susceptibility that homogenizes such a
medium. For this, we first need to acquire the eigenvalues/wavenumbers κi(Ω) and the
corresponding eigenvectors S⃗κi(Ω) with the spectral content of each eigenmode of the
PTC. We do this by solving Eq. (3.10). As a next step, we identify modes of the PTC
with maximal spectral content ratio at some frequency ω, i.e., we find the index of the mode
i = i′(ω) that maximizes the quantity |Sκi(Ωj = ω)|2, for i = 1, 2, . . . .NΩ. The closest that
quantity is to one (which is its upper limit), the closest that the i-th eigenmode of the
PTC corresponds to a monochromatic mode with frequency ω. Therefore, we can call
this metric (|Sκi(Ωj = ω)|2) as the degree of monochromaticity of the i-th eigenmode of
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the PTC. It is desirable to maximize the degree of monochromaticity since an effective,
homogenized medium possesses continuous translation symmetry in time. Therefore, it
is characterized by monochromatic modes since there is no spectral coupling. Once we
have identified the presence of such a mode with a close to unity spectral content ratio
(|Sκi′(ω)

(Ωj = ω)|2 → 1), which is an indicator for the homogenizability of the medium, we

collect its corresponding eigenvalue κi′(ω)(Ω), and we estimate numerically the dispersive
effective susceptibility of the medium by making use of the following formula:

χnum
ee,eff(ω) =

κ2i′(ω)(Ω)

k20(ω)
− 1. (3.22)

Figure 3.2: Homogenization of PTC with instantaneous response given by
the susceptibility χ̃ee,instant(t) = 1 +M cos(ωmt): (a) The numerical esti-
mation of the effective susceptibility. (b) The theoretical estimation of the
effective susceptibility. (c) The spectral content ratio, i.e., the degree of
monochromaticity of the eigenmode of the PTC. A value close to one cor-
responds to a quasi-monochromatic eigenmode, which is indicative of the
homogenizability of the PTC. (d) Relative difference between the numeri-
cally obtained and the theoretical effective susceptibility of the considered
PTC.

Let us now consider the exemplary case where χ̃ee,instant(t) = 1+M cos(ωmt), with M
being a modulation strength, and attempt to compare the numerical with the theoretical
predictions of the effective susceptibility that homogenizes such a PTC. The susceptibility
of such a medium in frequency domain is given by:

χee,instant(ω − ω′, ω′) = δ(ω − ω′) +M
δ(ω − ω′ + ωm) + δ(ω − ω′ − ωm)

2
, (3.23)

and, as described earlier, can be used to fill elementwise the matrix χ̂ee(Ω) in order to
solve Eq. (3.10).

In Fig. 3.2(a) we plot the numerically extracted (by making use of Eq. (3.22)) effective
susceptibility of the considered PTC and in Fig. 3.2(b) we plot its theoretically predicted
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(from Eq. (3.21)) effective susceptibility. We can generally observe a good agreement
between the two. As expected, the effective susceptibility is close to one, i.e., its non-
modulated value, for small modulation strengths M . Moreover, for large modulation
strengths close to unity the effective susceptibility approaches the value of 0.8, i.e., smaller
than its non-modulated value.

A major difference between the numerical and the theoretical effective susceptibility
arises around the frequency ω = ωm/2. There, we have the regime of the opening of
the band gap of the PTC, where there is strong coupling between positive and negative
frequencies. As we can see from Fig. 3.2(c), in this regime, we have a low degree of
monochromaticity for the eigenmode of the PTC, i.e., it is not a regime where the medium
is homogenizable. Note that this predominantly happens only around the frequency ω =
ωm/2, because our periodic modulation consists of only a single sinusoidal harmonic. As
we discussed previously, the introduction of higher harmonics in the periodic modulation
can, in a similar way, open the band gap at higher frequencies as well.

Figure 3.2(d) plots the relative difference between the numerical and theoretical pre-
dictions. We can see that there is nearly perfect agreement between the two in the large
modulation frequency limit of ω/ωm → 0. Moreover, as was to be expected, the ho-
mogenizability of the medium depends significantly on the modulation strength, which
is responsible for the strength of the spectral couplings that get introduced through the
temporal modulation of the medium. For small modulation strengths we generally have
quasi-monochromatic modes of high degree of monochromaticity, whereas, as the modula-
tion strength approaches unity, we see that the degree of monochromaticity of the modes
deteriorates, which is an indication that the medium cannot be accurately homogenized
in that regime.

Note, also, that for ω > ωm/2 we generally have a numerical overestimation of the
effective permittivity of the medium, whereas for ω < ωm/2 we generally have a numerical
underestimation of the effective permittivity of the medium. Arguably, attempts to ho-
mogenize the medium for ω > ωm/2 and large modulation strengths should be treated with
extra care. We would like to emphasize that, while in our numerical analysis we focus our
attention on specific modes of the PTC that exhibit maximal degree of monochromatic-
ity at the frequency of interest, simultaneously there generally exists a plethora of other
modes that the medium supports and can couple with, which can hinder significantly in
practice attempts to homogenize the medium.

Finally, let us note that we used a large number of frequencies in the truncated spectral
combs (NΩ = 150) to conduct the modal analysis of the medium and get the numerically
predicted values of the effective susceptibilities with high accuracy.

3.3 Floquet-Mie theory: a T-matrix approach to study light
scattering by a periodically time-varying spherical scat-
terer

In this section, we will develop a T-matrix-based Floquet-Mie theory that treats semi-
analytically the problem of light scattering from a sphere made of a medium whose elec-
tromagnetic properties vary periodically in time. We will also treat the more general
problem of a multilayer spherical scatterer consisting of a core and multiple shells, and
we will provide numerical results discussing the structure of an exemplary case of such a
T-matrix. The numerical simulations in this section have been performed in collaboration
with Dr. Grigorii Ptitcyn.

In Fig. 3.3 we plot an illustration of the considered scattering system that we will an-
alyze via the T-matrix method in this section. We consider that the electric susceptibility
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Figure 3.3: Illustration of light scattering by a sphere whose material prop-
erties are externally modulated with a frequency of ωm. In an inelastic scat-
tering process, a monochromatic excitation of such a scatterer at frequency
ω0, gives a polychromatic scattering response at the spectral diffraction or-
ders. The illustration was drawn by Dr. Grigorii Ptitcyn and adapted by
Maria Labrianidou. Adapted with permission from Ref. [A1] © John Wiley
and Sons.

of the spherical scatterer of radius R is externally modulated with some frequency ωm,
and we proceed with the analysis of how light interacts with such a scattering system.
The electromagnetic properties of the bulk medium that comprises the considered spher-
ical scatterer have been studied in depth in the previous section. For simplicity, we will
consider that the spherical scatterer is embedded inside free space, but an extension of
our upcoming analysis to the general case of an isotropic and homogeneous embedding
medium is rather straightforward.

Our Floquet-Mie theory mainly stands on top of two pillars. The first pillar is the
analytical representation of the incident (Einc), scattered (Esca) fields outside the scatterer,
and of the induced field inside the scatterer (Eind) by employing an appropriate basis set
of spherical waves. The second pillar is the enforcement of the interface conditions for the
continuity of the tangential components of the fields across the surface of the scatterer.

We begin by expanding the incident field in the following series of regular VSHs [257]:

Einc(r, ω) =
∑
νµz ,α

Ainc
α,µzν(ω)F

(1)
α,µzν(r; k0(ω)), (3.24)

where k0(ω) = ω/c0 is the free-space wavenumber and Ainc
α,µzν(ω) are some complex co-

efficients that are considered to be known. Note that, while the above expansion of the
incident field is defined all over space, we will make use of it only at r > R.

Accordingly, the scattered field can be expanded in the following series of radiating
VSHs [257]:

Esca(r, ω) =
∑
νµz ,α

Asca
α,µzν(ω)F

(3)
α,µzν(r; k0(ω)), for r > R, (3.25)

where Asca
α,µzν(ω) are some unknown complex coefficients to be determined. It is important

to note that by defining the wavenumber of free space as k0(ω) = ω/c0, instead of k0(ω) =
|ω|/c0, we ensure that we can use the VSHs that involve the spherical Hankel functions of
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the 1st kind to refer to outgoing spherical waves also at negative frequencies. Otherwise, for
the convention k0(ω) = |ω|/c0, we would need to switch to VSHs that involve the spherical
Hankel functions of the 2nd kind in order to have outgoing spherical waves for negative
frequencies. Note that the two alternative conventions are equivalent, since the spherical

Hankel functions of the 1st and 2nd kind have the symmetry h
(1)
ν (−x) = (−1)νh(2)ν (x).

Finally, we can use the Ansatz of (3.14) introduced in the previous section to expand
fields inside PTCs, and write the following expansion of the field induced inside the sphere
in terms of a finite series of regular VSHs:

Eind(r, ω) =

ˆ ω−
m

0+

NΩ∑
i,j=1

∑
νµz ,α

Aind
α,µzνi(Ω)δ(ω − Ωj)Sκi(Ωj)F

(1)
α,µzν(r;κi(Ω))dΩ, for r < R.

(3.26)

Aind
α,µzνi

(Ω) are some unknown complex coefficients to be determined. Note that they are
not a function of the frequency ω, but rather a function of the Floquet frequency Ω. They,
also, depend on the index i that spans all the spectral eigenmodes that belong to Ω. Note,
also, that the frequencies Ωj are functions of the Floquet frequency Ω (see Eq. (3.9)).
Moreover, we would like to highlight that the eigenvalues that we calculate numerically
by solving Eq. (3.10) are the wavenumbers squared κ2i (Ω). However, for the expansion
of the fields, we select the principle branch of the square root to get the wavenumbers

κi(Ω) = +
√
κ2i (Ω). Note that the choice of the branch of the square root here does

not really play a role, since for regular VSHs we have the symmetry F
(1)
α,µzν(r;−κi) =

(−1)νF(1)
α,µzν(r;κi). This relation follows from the respective symmetry of spherical Bessel

functions. Therefore, picking the other branch of the square root would simply lead to an
equivalent representation.

We would like to emphasize that the dispersion relation of the electromagnetic fields
in free space is different than that inside the medium of the sphere, which is a PTC.
Therefore, while for the incident and scattered fields we employed an expansion of the
fields into a series of spherical waves that respects the dispersion relation of free space,
for the induced field inside the spherical scatterer we employed an expansion into a series
of spherical waves that respects the dispersion relation of the bulk PTC that the sphere
is made of. As we discussed previously, due to the periodic time variance of the medium,
it is instructive to introduce as an eigenvalue the Floquet frequency Ω that characterizes
spectral combs among which there is spectral coupling. Inside the scatterer, there is
no unique wavenumber corresponding to each frequency anymore, and instead, we have
a bunch of wavenumbers corresponding to modes of different spectral composition with
respect to the frequencies of the spectral combs.

To conclude with the first pillar of our Floquet-Mie theory, note that the respective
series expansions of the incident, scattered, and induced magnetic fields can be taken
by making use of the Maxwell-Faraday equation (2.9), together with the property of
Eq. (2.129).

As a next step, after we introduced finite-dimensional representations of the fields, to
solve our electromagnetic scattering problem we need to specify the unknown complex
amplitudes Asca

α,µzν(ω), A
ind
α,µzνi

(Ω) given the amplitudes Ainc
α,µzν(ω). This can do this by

imposing the following interface conditions on the surface of the sphere:

r̂×
[
Eind(r, ω)−Esca(r, ω)−Einc(r, ω)

]∣∣∣
r=R

= 0, (3.27)

r̂×
[
Hind(r, ω)−Hsca(r, ω)−Hinc(r, ω)

]∣∣∣
r=R

= 0. (3.28)
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Those interface conditions enforce the continuity of the tangential components of the fields
across the spherical surface of the scatterer, according to Maxwell’s equations. To proceed
further, we need to make use of the following orthogonality property of the VSHs: [258]

¸
SR

[
r̂× F

(ι)
α,µzν(r;κ)

]
· F(ι′)

α′,−µ′
zν

′(r;κ′)ds

(−1)µz+δαNR2z
(ι′)
α′,ν(κ

′R)
= δα′βδµ′

zµzδν′ν z
(ι)
α,ν(κR), (3.29)

where integration is done over the spherical surface SR of radius R, upon which we need to

enforce the above interface conditions. With z
(ι)
α,ν(x) we denote the generalized spherical

Bessel functions which we have defined in the sixth section of the previous chapter.
Finally, by substituting Eqs. (3.24-3.26) into Eqs. (3.27, 3.28), and by making use of

Eq. (3.29), we readily get the following inhomogeneous system of equations that needs to
be solved to calculate the unknown amplitudes:

∑
i

Aind
α,µzνi(Ω)Sκi(Ωj)z

(1)
α,ν(xi) = Asca

α,µzν(Ωj)z
(3)
α,ν(xj) +Ainc

α,µzν(Ωj)z
(1)
α,ν(xj), (3.30)∑

i

κi(Ω)Aind
α,µzνi(Ω)Sκi(Ωj)z

(1)
β,ν(xi) = k0(Ωj)

[
Asca

α,µzν(Ωj)z
(3)
β,ν(xj) +A

inc
α,µzν(Ωj)z

(1)
β,ν(xj)

]
,

(3.31)

where we have defined xi = κi(Ω)R and xj = k0(Ωj)R. Let us note that the last two
equations are equivalent to Eqs. (22, 23) of Ref. [114]. Notice that those equations couple
the incident and scattered complex amplitudes among the frequencies of each spectral
comb characterized by a Floquet frequency Ω.

Next, by introducing the following definitions of column vectors

A⃗inc
α,µzν(Ω) =

[
Ainc

α,µzν(Ω1) · · · Ainc
α,µzν(ΩNΩ

)
]T
, (3.32)

A⃗sca
α,µzν(Ω) =

[
Asca

α,µzν(Ω1) · · · Asca
α,µzν(ΩNΩ

)
]T
, (3.33)

A⃗ind
α,µzν(Ω) =

[
Aind

α,µzν1(Ω) · · · A
ind
α,µzνNΩ

(Ω)
]T
, (3.34)

and the following NΩ ×NΩ matrices:

Ŝ(Ω) =
[
S⃗κ1(Ω) · · · S⃗κNΩ

(Ω)
]
, (3.35)

κ̂(Ω) = diag[κ1(Ω) · · · κNΩ
(Ω)] , (3.36)

Ẑ(ι)
α,ν(Ω) = diag

[
z(ι)α,ν(κ1(Ω)R) · · · z(ι)α,ν(κNΩ

(Ω)R)
]
, (3.37)

ˆ̊
Z(ι)
α,ν(Ω) = diag

[
z(ι)α,ν(k0(Ω1)R) · · · z(ι)α,ν(k0(ΩNΩ

)R)
]
, (3.38)

together with the definitions in Eqs. (3.11, 3.13), we can recast the above set of equations
in the following matrix form:

[
Ŝ · Ẑ(1)

α,ν − ˆ̊
Z
(3)
α,ν

Ŝ · κ̂ · Ẑ(1)
β,ν −k̂0 · ˆ̊Z(3)

β,ν

]
·

[
A⃗ind

α,µzν

A⃗sca
α,µzν

]
=

[
ˆ̊
Z
(1)
α,ν 0̂

0̂ k̂0 · ˆ̊Z(1)
β,ν

]
·

[
A⃗inc

α,µzν

A⃗inc
α,µzν

]
, (3.39)
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where β ̸= α, 0̂ is a matrix with dimensions NΩ ×NΩ filled with zeros and the matrix k̂0

has been introduced in the previous section. Note that, in the above equation, we dropped
for simplicity the dependencies on the Floquet frequency Ω.

Let us introduce now the following T-matrix:

T̂α,ν(Ω) =

[
T̂11

α,ν T̂12
α,ν

T̂21
α,ν T̂22

α,ν

]
=

[
Ŝ · Ẑ(1)

α,ν − ˆ̊
Z
(3)
α,ν

k̂−1
0 · Ŝ · κ̂ · Ẑ

(1)
β,ν − ˆ̊

Z
(3)
β,ν

]−1

·

[
ˆ̊
Z
(1)
α,ν 0̂

0̂
ˆ̊
Z
(1)
β,ν

]
. (3.40)

By introducing, also, the following two T-matrices with dimensions NΩ ×NΩ:

T̂ind
α,ν(Ω) = T̂11

α,ν + T̂12
α,ν , (3.41)

T̂sca
α,ν(Ω) = T̂21

α,ν + T̂22
α,ν , (3.42)

we finally end up with the following expressions for the complex amplitudes of the induced
and scattered fields that are connected with the incident amplitudes via the introduced
T-matrices:

A⃗ind
α,µzν(Ω) = T̂ind

α,ν(Ω) · A⃗inc
α,µzν(Ω), (3.43)

A⃗sca
α,µzν(Ω) = T̂sca

α,ν(Ω) · A⃗inc
α,µzν(Ω). (3.44)

The last two equations solve the scattering problem that we studied. The T-matrix
T̂ind

α,ν(Ω) can be used to calculate the field induced inside the scatterer, whereas the T-

matrix T̂sca
α,ν(Ω) can be used to calculate the scattered field outside the scatterer.

Let us now briefly discuss the generalization of the T-matrix method that we just
presented for the case of a multilayer spherical scatterer with Nl coating layers. Each
layer, together with the core of the scatterer, is considered to have different material
properties, but the whole system overall shall possess a discrete translation symmetry in
time with a period of Tm = 2π/ωm. Moreover, we employ again the Floquet frequency
Ω spanning the range between zero and ωm to construct spectral combs among which
there will be spectral couplings. We consider again the spherical scatterer to be embedded
in free space. Note, that each individual layer of the scatterer and its core shall have a
different modulation frequency or may even be stationary. The important thing is that,
overall, the whole system shall be characterized with a super-periodicity specified by Tm,
i.e., the different modulation frequencies must be commensurable. We consider that the
material properties of the core of the scatterer is characterized by a set of wavenumbers

κ
(c)
i (Ω) and corresponding spectral eigenvectors S⃗

(c)
κ1 (Ω) with elements S

(c)
κi (Ωj), whereas

the l-th layer (with l = 1, 2, . . . , Nl) is characterized by a set of κ
(l)
i (Ω) and corresponding

spectral eigenvectors S⃗
(l)
κ1 (Ω) with elements S

(l)
κi (Ωj). Similarly as in Eqs. (3.35, 3.35), we

also define the square matrices Ŝ(c), Ŝ(l), κ̂(c), κ̂(l) that characterize the material properties
of the core and each layer of the scatterer. The outer radius of the l-th layer is denoted
with R(l) and the radius of the core is denoted with R(c) ≡ R(l=Nl+1). l = 1 corresponds
to the outermost layer.

The representations of the incident and scattered field outside the scatterer remain
identical to those of Eqs. (3.24, 3.25). The representation of the field inside the core of
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the spherical scatterer is the same as that of Eq. (3.26) involving only standing wave type
of VSHs:

Ecore(r, ω) =

ˆ ω−
m

0+

NΩ∑
i,j=1

∑
νµz ,α

Acore
α,µzνi(Ω)δ(ω − Ωj)S

(c)
κi

(Ωj)F
(1)
α,µzν(r;κ

(c)
i (Ω))dΩ,

for r < R(c). (3.45)

However, the representation of the field inside the l-th layer shall involve both incoming
and outgoing spherical waves (which correspond to the spherical Hankel functions of the
first and second kind respectively) and reads as follows:

E(l)(r, ω) =

ˆ ω−
m

0+

NΩ∑
i,j=1

∑
νµz ,α

δ(ω − Ωj)S
(l)
κi
(Ωj)[

A(l),out
α,µzνi

(Ω)F(3)
α,µzν(r;κ

(l)
i (Ω)) +A(l),in

α,µzνi
(Ω)F(4)

α,µzν(r;κ
(l)
i (Ω))

]
dΩ,

for R(l+1) < r < R(l). (3.46)

Defining the following square, diagonal matrices with the generalized spherical Bessel
functions:

Ẑ(ι,l,l′)
α,ν (Ω) = diag

[
z(ι)α,ν(κ

(l)
1 (Ω)R(l′)) · · · z(ι)α,ν(κ

(l)
NΩ

(Ω)R(l′))
]
, (3.47)

we can proceed in the same way as previously and enforce the interface conditions for the
continuity of the tangential fields across all spherical interfaces of the multilayer scatterer,
and, finally, get a set of linear equations that connect the unknown complex coefficients
with the known incident complex coefficients. Specifically, by enforcing the interface con-
ditions on the outer layer interface, the l-th in-between layer interface and the core layer
interface, gives the following system of equations, respectively:

[
Ŝ(1) 0̂

0̂ k̂−1
0 · Ŝ(1) · κ̂(1)

]
·

[
Ẑ
(3,1,1)
α,ν Ẑ

(4,1,1)
α,ν

Ẑ
(3,1,1)
β,ν Ẑ

(4,1,1)
β,ν

]
·

[
A⃗(1),out

α,µzν

A⃗(1),in
α,µzν

]
=[

ˆ̊
Z
(1)
α,ν

ˆ̊
Z
(3)
α,ν

ˆ̊
Z
(1)
β,ν

ˆ̊
Z
(3)
β,ν

]
·

[
A⃗inc

α,µzν

A⃗sca
α,µzν

]
, (3.48)

[
Ŝ(l) 0̂

0̂ Ŝ(l) · κ̂(l)

]
·

[
Ẑ
(3,l,l)
α,ν Ẑ

(4,l,l)
α,ν

Ẑ
(3,l,l)
β,ν Ẑ

(4,l,l)
β,ν

]
·

[
A⃗(l),out

α,µzν

A⃗(l),in
α,µzν

]
=

[
Ŝ(l−1) 0̂

0̂ Ŝ(l−1) · κ̂(l−1)

]
·

[
Ẑ
(3,l−1,l)
α,ν Ẑ

(4,l−1,l)
α,ν

Ẑ
(3,l−1,l)
β,ν Ẑ

(4,l−1,l)
β,ν

]
·

[
A⃗(l−1),out

α,µzν

A⃗(l−1),in
α,µzν

]
, (3.49)

[
Ŝ(Nl) 0̂

0̂ Ŝ(Nl) · κ̂(Nl)

]
·

[
Ẑ
(3,Nl,c)
α,ν Ẑ

(4,Nl,c)
α,ν

Ẑ
(3,Nl,c)
β,ν Ẑ

(4,Nl,c)
β,ν

]
·

[
A⃗(Nl),out

α,µzν

A⃗(Nl),in
α,µzν

]
=

[
Ŝ(c) 0̂

0̂ Ŝ(c) · κ̂(c)

]
·

[
Ẑ
(1,c,c)
α,ν 0̂

0̂ Ẑ
(1,c,c)
β,ν

]
·

[
A⃗core

α,µν

A⃗core
α,µν

]
. (3.50)

This system of equations can be solved with the transfer matrix method. There, the
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coefficients of the fields inside one layer are related with the coefficients of the fields inside
a previous layer via a transfer matrix that is straightforwardly given by the equations
above. Cascading those transfer matrices by proceeding serially, layer by layer, provides
a global transfer matrix that connects the coefficients of the fields in free space with the
coefficients of the fields at the core of the multilayer spherical scatterer. Such approach,
enables us to solve the problem and calculate the T-matrix of the scatterer connecting
the incident with the scattered field coefficients. However, this method was proven to
be numerically unstable since the condition number of the linear set of equations can be
in practice rather large. This holds especially for large multipolar orders. In such case,
special care needs to be taken, and, potentially, a proper preconditioning of the system
of equations is required for its numerically stable solution. In practice, calculating the
elements of the desired T-matrix column-wise by exciting separately with each incident
monochromatic multipole of unitary complex amplitude and solving the above system of
equations, has proven to give significantly more numerically stable results.

Finally, let us discuss some important symmetry properties of the above T-matrices,
which arise from the spatio-temporal symmetries of the corresponding scattering system
that they represent. Note that the symmetries of the T-matrix of a multilayer sphere is
identical to that of a homogeneous sphere since the two possess the same symmetries. First
of all, because the considered scatterer is non-stationary, we end up having a T-matrix
that is non-diagonal with respect to the frequency ω. As we discussed, this property im-
plies an inelastic scattering process. In the particular case of a time-modulated scatterer
with discrete translational symmetry over time, i.e., for the case of periodic modulation,
the Floquet theorem applies and we get a T-matrix that is block diagonal over frequency
ω, with each block involving a comb of frequencies characterized by the Floquet frequency
Ω and a period of ωm = 2π/Tm. This is the sole change that the structure of the T-matrix
undergoes due to the introduced periodic time-variance of the scattering system: the sym-
metry of the invariance of frequency during the scattering process is broken. Nevertheless,
the spatial symmetries of the system of the spherical scatterer continue to be the same as
in the stationary case. That is to say, that a rotationally invariant scatterer with respect to
the z-axis, gives a T-matrix that is diagonal with respect to the eigenvalue µz, the angular
momentum along the z-axis, the rotational invariance of the scatterer along an arbitrary
axis, due to its spherical symmetry, implies a T-matrix that is also diagonal with respect
to the multipolar order ν. Furthermore, due to the parity symmetry of the scatterer, i.e.,
due to its invariance with respect to a point inversion, we also get a T-matrix that is
diagonal with respect to the eigenvalue α, since the TE and TM VSHs of fixed multipolar
order ν (mod 2) have an opposite parity symmetry.

Scatterers of different, non-spherical geometry, shall generally break those spatial sym-
mmetry properties of their T-matrices, allowing for non-zero T-matrix transitions between
the different components of the basis sets that represent the input and output fields. Sym-
metry protected zeros of the T-matrix elements, i.e., of the scattering channels, shall loose
their protection by symmetry in such a case. Note, though, that while the T-matrices
of non-stationary spherical scatterers are rather efficiently computed semi-analytically
with the methods that we just presented in this section, the numerical calculation of the
T-matrices of non-stationary scatterers of arbitrary geometry is rather computationally
heavy. It would generally require the operation of multiple frequency domain full-wave
solvers in parallel, one for each frequency of a considered spectral comb, that are coupled
through each other with the spectrally non-diagonal susceptibility tensors of the period-
ically time-varying media that comprise the scatterers. However, we can still make use
of the T-matrices of individual spherical scatterers to efficiently study more complicated
multi-scattering systems. Conventional, T-matrix-based multiscattering methods can be
generalized to study such systems. Specifically, in Ref. [A2], we study the optical re-
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sponse of lattices of periodically arranged time-varying spherical scatterers. The band
structure of exotic, four dimensional photonic crystals, with the fourth-dimension being a
synthetic one, that of the temporal frequency, can, therefore, be also studied in this way.
Spatiotemporal photonic crystals are recently attracting significant attention, since they
generally offer hybrid energy-momentum band gaps, inside which light can propagate in
extraordinary new ways [109].

Figure 3.4: The T-matrix elements of a time-varying and dispersive sphere:
(a) Plot of the absolute value of the Mie coefficients that correspond to the
non-modulated sphere. (b-e) Plots of the T-matrix elements of the sphere
with introduced strong, periodic time modulation, for different multipolar
orders. The periodic time modulation of the scatterer leads to an inelastic
scattering process with spectral coupling taking place among the different
input and output spectral diffraction orders ωsca = ωinc + boωm. Adapted
with permission from Ref. [A1] © John Wiley and Sons.

In order to facilitate the discussion of the structure of the T-matrices that we have been
calculating, let us now demonstrate some numerical results from an exemplary case of a
T-matrix of a homogeneous and dispersive spherical scatterer whose material properties
are periodically modulated in time.

Figure 3.4(a) plots the Mie coefficients (up to the quadrupolar order), i.e., the ele-
ments of the T-matrix, of the exemplary scatterer in the unmodulated case [257]. We
consider the same material dispersion as the one used in Fig. 3.1(a), and we consider the
radius of the sphere R to be equal to the free-space wavelength that corresponds to the
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resonance frequency of the Lorentz oscillator that characterizes the material dispersion
of the sphere, i.e., R = 2πc0/ω0,n. In Fig. 3.4(a), at very low frequencies, we observe
the Rayleigh scattering region where the Mie coefficients diminish rapidly in amplitude.
At low frequencies, away from the resonance frequency of the Lorentz oscillator where
the material losses are minimized, we note the appearance of sharp and densely packed
multipolar resonances. On the other hand, at frequencies larger than the resonance fre-
quency of the Lorentz oscillator, we have a material with negative dielectric permittivity
(see Fig. 3.1(a)). This indicates the presence of multipolar modes of much lower quality
factors that are spectrally well-separated.

Next, we introduce time modulation to the material from which the sphere is made.
Specifically, we consider that the bulk electron density of the material is again modulated
harmonically with a modulation frequency of ωm = ω0,n/10 and a modulation strength
of M = 0.9. This was also the exemplary case that we studied in Figs. 3.1(d-f). In
Figs. 3.4(b-e), we plot the absolute values of the elements of T-matrices of such a time-
modulated sphere, which are given by Eq. (3.42). We plot our results in a logarithmic
scale and we consider multipoles up to the quadrupolar order. Note that we combine the
calculated results for the T-matrices of all the Floquet frequencies in a single plot. While
the x-axis corresponds to the frequency ωinc of the incident multipolar excitation, the
y-axis corresponds to the scattered band order of the radiating multipoles. The output
frequency ωsca of the radiated multipole at a scattering band order bo is given by the
following formula: ωsca = ωinc+boωm. A zero scattering band order (bo = 0) corresponds to
the case where the frequencies of the incident and scattered multipoles coincide. Therefore,
in the limit of low modulation strengths M → 0, we shall have a predominant response
solely at the zero scattering band order, bo = 0. The color of the plots encodes the
amplitude of a radiated multipole at frequency ωsca once the sphere is excited by a single
multipole of unit amplitude at frequency ωinc. Note, also, that the white diagonal lines in
Figs. 3.4(b-e) denote an output frequency being zero, i.e., ωsca = 0.

Let us now discuss some interesting features that we observe in Figs. 3.4(b-e). First
of all, we see that, due to the temporal modulation of the material properties of the
sphere, the scatterer scatters light with an inelastic scattering process: a monochromatic
excitation gives rise to a polychromatic response. We generally get a resonant scattering
transition for the doubly resonant case where the sphere is at resonance simultaneously at
the input and output frequencies ωinc and ωsca. This, of course, happens predominantly
when the input and output frequencies coincide. However, there are also some other cases
where such a resonant inelastic scattering process takes place. For example, we can see
that there are strong transitions along diagonal lines parallel to the white ones, where we
have a constant output frequency ωsca that shall be associated with a sharp multipolar
resonance supported by the sphere there. We can observe that such sharp resonances have
a significant spectral echo predominantly in negative scattering band orders. The strength
of those transitions, though, weakens as the spectral distance between the input and output
frequencies increases. Additionally, we observe the emergence of sharper features with
even stronger transitions that appear as a beating pattern along those diagonal spectral
lines. We can associate these features with the simultaneous presence of sharp multipolar
resonances at the respective input frequencies, leading to enhanced double-resonant effects.
The periodicity of the beating pattern along those diagonal spectral lines is related to the
modulation frequency ωm and it indicates a spectral echo of a multipolar resonance at
the input frequency. Another rather interesting feature that we can observe, is that there
even emerges some coupling between input and output frequencies of opposite sign. This
can lead to interesting phenomena such as parametric amplification [259, 260] and non-
reciprocity [96]. Finally, let us note that, as expected, for low input frequencies, the
response of the sphere is weak, especially for larger multipolar orders, since in this case
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the optical size of the sphere is small.

3.4 Numerical comparison of the semi-analytical Floquet-
Mie theory against a full-wave solver

In this section, we will compare results obtained from the semi-analytical Floquet-Mie
theory that we developed in the previous section, against results from a full-wave solver,
specifically from a time-domain finite element solver [261]. The numerical simulations
in this section have been performed in collaboration with Dr. Grigorii Ptitcyn and Dr.
Theodosis Karamanos.

Before proceeding, let us define a couple of observable scattering quantities, specifically
the total scattered and absorbed power by an arbitrary scatterer. Following Eq. (5.18) of
Ref. [257], as well as our conventions for the Fourier transforms of the fields (Eq. (2.7)) and
the expressions of Eqs. (3.24, 3.25) for the expansion of incident and scattered fields into
a series of VSHs, we readily get the following expressions for the total scattered energy
W sca:

W sca =

ˆ ω−
m

0+

NΩ∑
j=1

P sca(Ωj) dΩ

=

ˆ ω−
m

0+

NΩ∑
j=1

∑
νµz ,α

∣∣Asca
α,µzν(Ωj)

∣∣2
Z0k20(Ωj)

dΩ, (3.51)

and for the total extinction energy W ext:

W ext =

ˆ ω−
m

0+

NΩ∑
j=1

P ext(Ωj) dΩ

= −
ˆ ω−

m

0+

NΩ∑
j=1

∑
νµz ,α

ℜ
{[
Ainc

α,µzν(Ωj)
]∗Asca

α,µzν(Ωj)
}

Z0k20(Ωj)
dΩ, (3.52)

where P sca(ω), P ext(ω) are the total scattered and extinction powers, respectively, and Z0

is the wave-impedance of free space. Note that the total absorbed energy is given by:

W abs =W ext −W sca. (3.53)

In our comparisons in this section, we will focus on comparing the scattered near-fields both
in time and frequency domain, as well as the far-field scattered power spectra. Locating
the spherical scatterers at the origin of the coordinate system, we will be exciting them
with an x-polarized plane wave propagating along the z-axis and having a Gaussian pulse
envelope with width T0 and carrier frequency ω0. In time domain is given by:

Ẽinc(r, t) = E0 x̂e
− (t−t0−z/c0)

2

2T2
0 cos[ω0(t− t0 − z/c0)], (3.54)

whereas its representation in the frequency domain is given by
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Einc(r, ω) = x̂ eiωz/c0
E0T0
2

[
e−

T2
0 (ω0−ω)2

2 + e−
T2
0 (ω0+ω)2

2

]
eiωt0 , (3.55)

with t0 being a time delay that we introduce for the proper injection of the incident pulse
inside the simulation domain of the time-domain full-wave solver. Specifically, in our
simulations we choose to temporally center our excitation pulse at t0 = 8T0, and we also
set E0 = 1V/m.

Expanding the plane wave x̂eiωz/c0 in a series of VSHs around the origin of the coor-
dinate system (see Eq. (2.152)), we get the following expression for the incident spherical
amplitudes in the representation of Eq. (3.24):

Ainc
α,µzν(ω) = E0T0π i

ν+1γ−1ν

[
δµz ,1 + (−1)δαNδµz ,−1

] [
e−

T2
0 (ω0−ω)2

2 + e−
T2
0 (ω0+ω)2

2

]
eiωt0 .

(3.56)

Note that the above equation holds true only for positive frequencies ω. For the negative
frequencies we can make use of the following symmetry property that satisfies the condition
for real fields in time domain: Ainc

α,µν(−ω) = (−1)ν+µ+δαN
[
Ainc

α,−µν(ω)
]∗
. Let us also note

that, while for our semi-analytical calculations we use an infinitely extended plane wave, for
the full-wave simulations we make use of a paraxial Gaussian beam with an optically large
waist to approximate the plane-wave excitation in our numerical setup. This discrepancy
may lead to only minor differences in our comparisons.

We will begin the numerical comparisons with two cases of light scattering by a ho-
mogeneous sphere made of a periodically time-varying medium, where again we adopt the
same Lorentz oscillator model with sinusoidally modulated bulk electron density to account
for material dispersion and temporal modulation (see Eqs. (3.17, 3.18)). Importantly, note
that the electromagnetic properties of the time-varying media in the full-wave solver are
imposed by embedding the partial differential equation that the electric polarization den-
sity of the considered media obey (Eq. (2.43)), in accordance with the susceptibility tensor
of Eq. (3.17). In parallel with Maxwell’s equations, the time-domain full-wave solver dis-
cretizes, also, in time and solves the Lorentzian differential equation for the polarization
of the medium.

We name the first case as “slow modulation, weak dispersion” since we consider a
relatively slow but still strong modulation of the medium of the scatterer and an excitation
in a spectral window characterized by weak material dispersion, i.e., far away from the
resonance of the Lorentz oscillator. On the other hand, our second case also considers a
strong modulation amplitude, but now with a fast modulation frequency and, moreover,
we consider an excitation in a spectral window centered around the resonance frequency
of the Lorentz oscillator, where we encounter maximal dispersion. Hence, we name this
second case as “fast modulation, strong dispersion”. The parameters of the simulations
for the two considered cases are listed in Table (3.1).

Figure 3.5 includes our results for the first case of “slow modulation, weak dispersion”
that we study. First, we compare the fields at two arbitrarily chosen spatial points in the
near-field region of the scatterer, with the one being behind (point A) and the other above
(point B) the scatterer. Specifically, in Fig. 3.5(a) we compare the time domain signals
of the x-component of the scattered electric field at point A and the y-component of the
scattered magnetic field at point B. We use the label ”Analytical” to refer to our results
from the Floquet-Mie theory, and we use the label ”Numerical” to refer to our results
from the full-wave solver. The transient signals enable us to observe echoes of the incident
pulse after the impact, where we can see an excelent agreement between the two methods.
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quantities given with respect to the slow modulation, fast modulation,
Lorentz oscillator resonant frequency ω0,n weak dispersion strong dispersion

damping coefficient: γn ω0,n/8 ω0,n/120

bulk electron density: N0 11ω2
0,nmeε0/q

2
e 1.12ω2

0,nmeε0/q
2
e

modulation strength: M 0.9 0.9

modulation frequency: ωm ω0,n/15 ω0,n/2

pulse central frequency: ω0 0.3ω0,n ω0,n

pulse temporal width: T0 2.9× 2π/ω0,n 1.934× 2π/ω0,n

sphere radius: R 7.095 c0/ω0,n 1.824 c0/ω0,n

position of observation point A: rA (0,0,1.43R) (0,0,2.432R)

position of observation point B: rB (1.43R,0,0) (2.432R,0,0)

radius of spherical surface of observation 1.43R 2.432R

spectral window of observation (statistics) [0.1ω0,n, 0.93ω0,n] [0.827ω0,n, 1.172ω0,n]

Table 3.1: The parameters of the two simulated cases for the numerical
comparison.

Figure 3.5: Comparisons between analytical and numerical results for the
“slow modulation, weak dispersion” case: (a) Comparison of time domain
near-field signals at points A,B. (B) Comparison of the frequency domain
near-field spectra at points A,B. (c) Log. relative difference statistics be-
tween the analytical and numerical results, for the scattered fields over a
spherical surface of observation in the near-field region of the scatterer and
over a spectral window of observation. (d) Comparison of the far-field scat-
tered power spectra. Adapted with permission from Ref. [A1] © John Wiley
and Sons.

Moreover, in Fig. 3.5(b), we also compare the spectra of the scattered electric (mangetic)
field at point A (B) in frequency domain. There, we observe again an excelent agreement
between the two methods and we can also see the inelastic scattering process taking place
with significant spectral leakage outside of the spectral window of our excitation. Note
that the light-blue shaded regions in the figure highlight the temporal/spectral window
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where 99% of the energy of the incident Gaussian pulse resides.
Next, in Fig. 3.5(c) we plot the probability distribution of the logarithmic relative

difference between the fields calculated analytically and numerically. These plots involve
the error statistics among a considered large distribution of points over a spherical surface
surrounding the scatterer (in its near field region), and, also, over a broadband spectral
window. See Table (3.1) for the radius of the spherical surface and the location of the
spectral window. We can observe that the recorded relative errors are mainly distributed
within the range of [1%, 10%].

Finally, in Fig. 3.5(d) we plot the normalized far-field scattered power spectra to-
gether with their multipolar decomposition. Solid lines denote the analytical results,
whereas cross markers denote the numerical results. The values of the total scattered
power are plotted with a black solid line. The individual multipolar contributions (up to
the quadrupolar order) are plotted with colored solid lines. The scattered power spectra
are normalized to the spectral peak of the total power flux of the incident field passing
through the geometrical cross-section of the scatterer. Equation (3.51) is used to evaluate
the scattered power with respect to the scattered multipolar amplitudes Asca

α,µzν(ω). While
those are readily available within the Floquet-Mie theory, we use a surface integral (see,
e.g., also Eq. (5.175) from Ref. [257]) to extract them from the full-wave simulations by
evaluating projections of the scattered fields, located over the spherical surface of observa-
tion in the near-field region of the scatterer, on the multipolar basis of VSHs. Specifically,
by making use of the orthogonality property of Eq. (2.147), we evaluate the following
integrals over a closed spherical surface SR′ surrounding the scatterer to get the scattered
spherical amplitudes:

Asca
α,µzν(ω) =

(−i)δαM

R′2z
(3)
α,ν(k0(ω)R′)

‹
SR′

Esca(r, ω) · [fα,µzν(r̂)]
∗ d2r. (3.57)

We observe again a an excellent agreement between the two methods all over across the
rich multipolar spectrum.

Figure 3.6: The effect of ignoring dispersion in the “slow modulation, weak
dispersion” case: (a-d) Similarly as Fig. 3.5(a-d). Adapted with permission
from Ref. [A1] © John Wiley and Sons.

Next, before moving to our second case study, let us discuss the effect of ingoring
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dispersion in our model. It is common in the literature of electromagnetism in time-
varying media to ignore dispersion, and we would like to highlight in what way this can
compromise our models and results. In Fig. 3.6, we study the same case as in Fig. 3.5, but
now the ”Analytical” part of our results that get compared refers to results obtained from
the Floquet-Mie theory but with the dispersion effects ”turned off”. Specifically, instead
of using Eq. (3.17) to model the time varying medium, we neglect dispersion and adopt
the following susceptibility tensor (note the slight difference between the previous and the
new formula):

χee(ω − ω′, ω′) =
χ0(ω0)√
2πN0

Ne,n(ω − ω′). (3.58)

Note, also, that we leave dispersion intact for our full-wave simulations. What we observe
is the emergence of relatively small differences in the measurements. That is mainly
because we excite the sphere in a spectral region of small frequencies where dispersion is
weak. However, the inelastic scattering response at larger frequencies (where dispersion
becomes prominent) is characterized by significantly larger discrepancies. As indicated in
Fig. 3.6(c) the relative differences in the near fields often exceed 100%.

Figure 3.7: Comparisons between analytical and numerical results for the
“fast modulation, strong dispersion” case: (a-d) Similarly as Fig. 3.5(a-d).
Adapted with permission from Ref. [A1] © John Wiley and Sons.

Next, we move to our second case study of ”fast modulation, strong dispersion”. Our
results for this case are plotted in Fig. 3.7. Similarly as in Fig. 3.5, we generally see an
excellent agreement between the analytical and the numerical results, even though now we
operate our scattering system in a more challenging regime where the modulations are fast
and the material dispersion is strong. Note that the inelastic scattering process is weaker
in comparison to our previous study case. This is because we excite the scatterer in a
spectral region around the Lorentz oscillator where the material losses get maximal, hin-
dering the efficient spectral leakage to neighboring frequencies through inelastic scattering
processes. Note the weak echo of the multipolar resonances that get directly excited by
the illuminating Gaussian pulse inside the light-blue-shaded region at frequencies larger
than 1.25ω0,n. In contrast to our previous case study, here the modulation frequency
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is (marginally) larger than the spectral width of the illuminating pulse, allowing for a
practically clean spectral separation of the elastic and inelastic scattering processes.

Figure 3.8: The effect of ignoring dispersion in the “fast modulation, strong
dispersion” case: (a-d) Similarly as Fig. 3.5(a-d). Adapted with permission
from Ref. [A1] © John Wiley and Sons.

Finally, in Fig. 3.8 (similarly as with Fig. 3.6) we illustrate again the effect of ignoring
material dispersion for the ”fast modulation, strong dispersion” case study. As it was to
be expected, in this case the effects of ignoring material dispersion lead to much more
prominent discrepancies compared to the previous case study. Now, there are striking
differences between the compared spectra and transient signals. Transparent conducting
oxides (TCOs), such us aluminium-doped zinc oxides (AZOs) and tin-doped indium ox-
ides (ITOs), operated in their epsilon-near-zero (ENZ) regime have been recently studied
and proposed as material platforms that can exhibit relatively pronounced time-varying
properties. Yet their time-varying material properties have been commonly modeled with
dispersionless models, even though dispersion in the ENZ regime is typically rather strong
[79, 262, 263]. Accounting for dispersion in such cases should be instrumental to achieve
an accurate modeling of the optical response of such time-varying systems.

Importantly, let us highlight that the full-wave simulations are considerably more de-
manding in terms of required computational resources in comparison to calculation of the
Floquet-Mie theory. For example, while the full-wave simulation for the first case study
lasted for 12 days requiring 110 gigabytes of RAM, and for the second case study it lasted
for 5 days requiring 43 gigabytes of RAM, the semi-analytical algorithm implementing the
Floquet-Mie theory uses less than 2 gigabytes of RAM to calculate T-matrices and only
needs approximately 15 seconds for both case studies. The differences in computational
efficiency are striking.

We will close this section with a last set of simulations where we compare analytical
and numerical results for the case of a multilayer spherical scatterer. Specifically, we will
be considering a spherical scatterer comprised of a core and two coating layers, with each of
those three concentric subdomains being characterized by different generalized dispersion
relation. We borrow all the simulation parameters from the ”slow modulation, weak
dispersion” case and we introduce modifications relative to them according to Table 3.2.

In Fig. 3.9, we plot a comparison of the scattered fields at points A and B of the previous
study case (”slow modulation, weak dispersion”) both in time and frequency domain. We
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first layer second layer core

Lorentz oscillator frequency: ω0,n 1× 1.1× 0.85×
damping coefficient: γn 1× 0.7× 1.5×
bulk electron density: N0 1× 1.5× 1×
modulation strength: M 1× 0× 2/3×

sphere radius: R 1× 22/35× 12/35×

Table 3.2: The parameters for the simulation of the considered multilayer
sphere. The ones that are not mentioned in this table are identical to those
from the ”slow modulation, weak dispersion” case in Table 3.1, whereas
the ones that are mentioned are expressed relative to the correspondent
quantities there.

Figure 3.9: Comparisons between analytical and numerical results for the
case of a multilayer spherical scatterer: (a) Comparison of time domain
near-field signals at points A,B. (B) Comparison of the frequency domain
near-field spectra at points A,B.

can observe again a good agreement between the fields calculated with the full-wave solver
and the Floquet-Mie theory algorithm. Note, though, that the system of equations in the
multilayer case becomes numerically ill-conditioned more easily than before and special
attention is required especially in cases where the T-matrix encompasses large spectral
ranges or involves radiuses that differ a lot in length. The described situation deteriorates
for large multipolar orders.

3.5 Time-varying scatterers as active optical components:
driving a time-modulated sphere into a lasing state

In this section, we will discuss the breaking of energy conservation in time-varying scat-
terers through a T-matrix-assisted analysis. Specifically, we will perform a singular value
decomposition of the T-matrix of a time-varying spherical scatterer and demonstrate how
it is characterized by a set of active singular modes that are able to generate electromag-
netic energy, i.e., transform energy obtained from the external temporal modulation of the
media into radiating photons. Moreover, as an exemplary case we will present results of
driving a time-varying spherical scatterer into a lasing state and we will discuss the dif-
ferences against lasing states obtained from active but stationary media. The numerical
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simulations in this section have been performed in collaboration with Dr. Grigorii Ptitcyn
and Dr. Viktar Asadchy.

To begin with, we want to refer the reader to Section 2.4 where we have been discussing
fundamental aspects of energy conservation in time-varying media. There, we have shown
that a fundamental property of such media is their ability to break electromagnetic energy
conservation. In fact, as we shall see in this section with specific examples, the external
modulation of the medium is able to provide energy to the electromagnetic fields. That is to
say that time-varying optical nanostructures/components can act as active elements inside
optical systems. The photons generally interact with the matter and exchange energy,
and, in the case of active behavior, energy is extracted from the externally temporally
modulated matter and is provided to the photons.

Let us employ the T-matrix method to study under its prism such phenomena of
breaking of energy conservation in time-varying scatterers. First, it is instructive to per-
form a singular value decomposition of the T-matrix of the scatterer, which is a technique
that allows us to decompose the scattering system with respect to the orthonormal set of
singular modes that characterize it [264, 265]. We will focus on spherical scatterers that
we studied previously, but our results can be straightforwardly generalized to arbitrary
non-spherical scatterers.

Specifically, we apply the singular value decomposition of the following T-matrix
weighted by the free space wavenumbers:

k̂−1
0 (Ω) · T̂sca

α,ν(Ω) · k̂0(Ω) = Ûα,ν(Ω) · Σ̂α,ν(Ω) · V̂†
α,ν(Ω), (3.59)

where Σα,ν(Ω) are diagonal matrices that contain the singular values σα,νs(Ω) of the de-

composition, and Ûα,ν(Ω), V̂α,ν(Ω) are matrices whose columns contain the corresponding
left- and right-singular vectors, u⃗α,νs(Ω), v⃗α,νs(Ω), respectively. Note that the right- and
left-singular vectors contain the incident and scattered multipolar spectra of the singular
modes of the time-varying scattering system. And they can be used as a complete or-
thonormal basis upon which we can expand the similarly weighted multipolar amplitudes
of the incident and scattered fields. Specifically, by expanding the following vectors on the
full basis of the right-singular vectors:

k̂−1
0 (Ω) · A⃗inc

α,µzν(Ω) =

NΩ∑
s=1

S incα,µzνs(Ω)v⃗α,νs(Ω), (3.60)

where S incα,µzνs(Ω) = v⃗†α,νs(Ω) · A⃗inc
α,µzν(Ω) are complex coefficients, we can depart from

Eqs. (3.51-3.53) and arrive to the following alternative expressions for the total scattered,
extinction and absorbed energies:

W sca =
1

Z0

ˆ ωm

0

∑
νµz ,α

NΩ∑
s=1

σ2α,νs
∣∣S incα,µzνs

∣∣2 dΩ, (3.61)

W ext = − 1

Z0

ˆ ωm

0
dΩ

∑
νµz ,α

NΩ∑
s,s′=1

σα,νs′ℜ
{[
S incα,µzνs

]∗ S incα,µzνs′ v⃗
†
α,νs · u⃗α,νs′

}
, (3.62)
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W abs = − 1

Z0

ˆ ωm

0
dΩ

∑
νµz ,α

NΩ∑
s=1

σα,νs
∣∣S incα,µzνs

∣∣2 [σα,νs + ℜ{v⃗†α,νs · u⃗α,νs}]+
NΩ∑

s,s′=1
s′ ̸=s

σα,νs′ℜ
{[
S incα,µzνs

]∗ S incα,µzνs′ v⃗
†
α,νs · u⃗α,νs′

}
, (3.63)

where we dropped the dependence of the quantities on the Floquet frequency Ω for sim-
plicity. Note that the sum in the last row of the last equation for the absorbed energy
corresponds to couplings among the different singular modes.

Since the singular modes are orthogonal to each other (specifically we have: u⃗†α,νs ·
u⃗α,νs′ = v⃗†α,νs · v⃗α,νs′ = δss′), we can assume an excitation by a single right singular mode
v⃗α,νs and ignore the sum in the last row of the last equation. In view of Eqs. (3.61 and
3.63), let us define then the following ratio:

P abs
α,νs(Ω)

P sca
α,νs(Ω)

= −1−
ℜ
{
v⃗†α,νs · u⃗α,νs

}
σα,νs

. (3.64)

The sign of this ratio specifies whether the spherical scatterer behaves like an active (nega-
tive sign) or passive (positive sign) optical element once excited by the particular singular

mode. Specifically, we get that there is generation of energy when ℜ
{
v⃗†α,νs · u⃗α,νs

}
>

−σα,νs (note that the singular values σα,νs are always positive). In the particular case
where the weighted T-matrix becomes singular, we get a singular value σα,νs that goes to
infinity. Then, that ratio approaches the limit value of −1 and all the energy that gets
generated by the time-varying spherical scatterer gets radiated at infinity. This happens
in the absence of any incident field, i.e., such a case corresponds to a lasing eigenstate of
the time-varying spherical scatterer. It is a self-standing solution of electromagnetic waves
that the system can host in the absence of any external excitation. In view of Eq. (3.40) -for
a homogeneous spherical scatterer and similarly also for a multilayer spherical scatterer-,
this happens when the determinant of the following matrix becomes zero:

dα,ν(Ω) = Det

([
Ŝ · Ẑ(1)

α,ν − ˆ̊
Z
(3)
α,ν

k̂−1
0 · Ŝ · κ̂ · Ẑ

(1)
β,ν − ˆ̊

Z
(3)
β,ν

])
= 0. (3.65)

Then the scattering system of equations possesses non-trivial solutions. The spectral
composition of the multipolar lasing states is given (in terms of the multipolar amplitudes
of the induced and scattered fields) by the eigenvectors that correspond to the vanishing
eigenvalues of the above matrices. We will demonstrate later how we can reach such lasing
states by operating the scattering system in the regime of parametric oscillations.

Let us now make use of the time-varying spherical scatterer studied in Fig. 3.4 as an
exemplary case and search for the possibility of realizing negative total absorption, even
though the dispersive model of the Lorentz oscillator that is employed there is rather lossy
around the resonant frequency of the oscillator. Note that such an observation has already
been reported in Ref. [114], but for a lossless system without material dispersion.
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To this end, we perform a singular value decomposition of the weighted T-matrices that
correspond to each spectral comb with a specific Floquet frequency (Eq. (3.59)). Then,
we consider an excitation of our scattering system with each right-singular vector of the
decomposed matrices, i.e., we consider excitations with S incα,µνs(Ω) = δαα′δµµ′δνν′δss′δ(Ω−
Ω′) sweeping the values of α′, s′,Ω′, with µ′ being arbitrary and ν ′ fixed to 1 as we focus
on the dipolar response of the system. For all such excitations of our system, we observe
the ratio of absorbed and scattered powers (see Eq. (3.64)). Note that exciting the system
with a single right-singular vector means that we excite only a single spectral comb of
some Floquet frequency, with a particular spectral distribution of the power over the
frequencies of the comb. Simultaneously, our excitation consists of a single incoming
multipole (dipole). Therefore, it is a quite special excitation, not only spectrally but also
spatially. However, an arbitrary excitation of the system can be decomposed into this
basis of right-singular vectors. Exciting our system, though, with a single singular mode
enables us to ignore the inter-modal couplings due to the terms in the last row of Eq. (3.63)
and, therefore, facilitates and simplifies our analysis.

Figure 3.10: Singular value decomposition of the weighted T-matrix of the
time-varying sphere studied in Fig. 3.4 revealing the presence of singular
dipolar modes characterized by negative absorption, i.e., a transfer of en-
ergy from the time-varying matter to the photons in an inelastic scattering
process: (a,d) Plots of the ratio of the absorbed and scattered powers under
the system’s excitation with its singular modes. Plots of the output (b,e)
and input (c,f) discrete spectra of the left- and right-singular vectors of the
singular modes that demonstrate maximally negative absorption for each
Floquet frequency Ω. Adapted with permission from Ref. [A1] © John Wi-
ley and Sons.

We plot our results in Fig. 3.10. Note that the singular modes are ordered in a descend-
ing order of their respective singular values, i.e., in a descending order of total scattered
power, as it is implied by Eq. (3.61). In Fig. 3.10(a,d), we observe that for many of the
spectral combs with varying Floquet frequency Ω, there exist singular modes that demon-
strate significantly negative values of absorbed power. That is to say that those are modes
where significant transfer of energy from the time-varying matter to the photons of the
electromagnetic field takes place during the inelastic scattering process. Note that, as
we discussed before, in the regime of parametric oscillations, under careful tuning of the
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parameters of our system, we can reach ratios of P abs/P sca that approach the value of −1.
The spectral content of the right-singular vectors, v⃗α,1s0(Ω), which correspond to sin-

gular modes that demonstrate a maximally negative absorption (indicated with the index
s0), is plotted in logarithmic scale and for each Floquet frequency in Fig. 3.10(c,f). Note
that these singular modes can be excited only with this particular illumination of the
corresponding right-singular vectors. The black-colored columns of the figure indicate an
absence of a singular mode with negative absorption for that particular Floquet frequency.
In Figs. 3.10(b,e), we plot the norm of the elements of the corresponding left-singular
vectors u⃗α,1s0(Ω). Those vectors contain information about the spectral content of the
scattered fields once the system gets excited by the corresponding right-singular vectors.
Importantly, we observe that the input and output spectra of the singular modes that
demonstrate negative absorption are characterized by a spectral distribution of power
predominantly over the low frequencies where the material losses due to dispersion are
low.

Note that, due to the presence of a lossy spectral region and the size of the considered
sphere, we do not find any singular mode with negative absorption for the quadrupolar
modes. It only becomes possible for spheres of larger size where modes of higher quality
factor and multipolar order are supported. It is rather remarkable, though, that negative
absorption can be achieved even in the presence of strong material losses once we optimize
the system’s excitation. Finally, let us note that the presence of the third row of Eq. (3.63),
corresponding to inter-modal couplings, allows for the possibility of attaining negative
absorption under other, more complicated, excitation schemes, that generally involve a
superposition of such singular modes.

Let us now explore the regime of parametric oscillations in time-varying scatterers. A
parametric oscillator is a harmonic oscillator whose physical properties/parameters vary
in time. A typical mechanical example is that of a pendulum whose length is modulated
in time, with a historic example being the “Botafumeiro”: an 80 kg incensory at the
Cathedral of Santiago de Compostela, whose chain is periodically pulled up and down via
a pulley by monks, reaching speeds of 68km/h over arc lengths of 65m within 17 modulation
cycles [82]. Already by 1831 and 1887, respectively, Michael Faraday and Lord Rayleigh
have noticed the special case of oscillations being exciting by forces of double the frequency
of the oscillation [266, 267]. Those are known as parametric resonances and are known
to lead to an exponential growth of the oscillations rather than the linear growth that
characterized the typical case of a driven harmonic oscillator at its resonance frequency.
For an intuitive understanding of the difference between the two type of oscillations it is
instructive to look at the familiar mechanical example of pumping a playground swing.
There, two methods of energy insertion have been identified and they correspond to the
parametric and to the driven oscillations. While a parametric oscillation involves the
systematic raising and lowering of the swinger’s center of mass along the swing’s radial
axis by standing and squatting at key points in the swing arc, with double the frequency
of the oscillation, a driven oscillation may be conceived as rocking back and forth at the
oscillation frequency [268].

In analogy to the mechanical parametric oscillators, (degenerate) optical parametric
oscillators are used to convert input pumping light waves from a laser into output light
waves of half the frequency of the input pump. It consists of an optical resonator of high
quality factor, that efficiently traps light of the output frequency, and of a nonlinear crystal
that acts as a gainy medium by converting the input pump light to the output light of
half the frequency, via a half-frequency-generation process, that is able to compensate the
losses that occur within a cycle of oscillation and, finally, drive the parametric oscillations
[269, 270].

Here, similarly, we will drive a spherical scatterer into the regime of parametric os-

87



Chapter 3. EM scattering from spherical scatterers made of time-varying materials: a
T-matrix-based analysis

cillations. The spherical scatterer can trap light and act as a resonator. However, the
quality factor of its resonances is typically low, although it can become significantly larger
for large optical sizes of the scatterer. A quasinormal mode analysis can reveal the res-
onances of a stationary scatterer [228]. In our case, there is no nonlinear gainy medium
that downconverts the pump light waves into the light waves of lower frequency through
a half-frequency generation process like it is the case with the typical optical parametric
oscillators. Instead, this optical gain is provided now by the external temporal modulation
of the medium with a frequency that is double the oscillator frequency. Therefore, we will
look for parametric resonances as eigenmodes of our system for the Floquet frequency
Ω = ωm/2.

Figure 3.11: Plot of the conditions for parametric oscillations in a time-
modulated spherical scatterer exhibiting parametric Mie resonances. Calcu-
lated for (a) NΩ = 24 and (b) NΩ = 2 number of frequencies. Adapted with
permission from Ref. [A3] © American Physical Society.

For our exemplary study, we will consider a homogeneous sphere made of a medium
whose susceptibility is described again by the same model of a single Lorentzian harmonic
oscillator whose bulk electron density gets modulated harmonically in time. The bulk
electron density of the unmodulated medium we select to be N0 = 12.25ω2

0,nmeε0/q
2
e

and the modulation frequency is fixed to ωm = ω0,n/2. We also consider a vanishing
damping coefficient γn. The real part of the permittivity of the considered unmodulated,
time-invariant medium at the lasing frequency ωlas = ωm/2 of the parametric oscillations
is ℜ{εinv(ωlas) = 14.07}. Next, we vary the radius of the sphere and the modulation
strength and search numerically for solutions of Eq. (3.65) which allows us to identify
cases of parametric Mie resonances. We do this for both electric and magnetic type of
multipoles of up to the third multipolar order. We plot the results in Fig. 3.11. We
observe that the parametric Mie resonances appear as contours in our 2D design space.
In Fig. 3.11(a) the results are plotted for NΩ = 24 frequencies considered inside the
spectral comb of Ω = ωm/2, while in Fig. 3.11(b) they are plotted for NΩ = 2 only, i.e.,
for ω = ±ωm/2. Importantly, note that the two figures have very good agreement for
small modulation strength M < 0.3. This indicates that parametric Mie resonances are
mainly an effect of direct first-order coupling between the two frequencies ω = ±ωm/2
via the external temporal modulation. However, for larger modulation strengths there
appears to be efficient secondary spectral coupling to higher frequencies as well, and
the multipolar parametric resonances become polychromatic. As a result, we get more
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pronounced deviations between Fig. 3.11(a) and Fig. 3.11(b) in this regime.
Having identified the regimes where we can drive the scatterer to a lasing state by

means of parametric oscillations, we will now attempt to additionally engineer the radi-
ation pattern of the lasing state. We are able to do this since the multipolar contours
with the conditions of the parametric Mie resonances intersect each other, and, therefore,
we have cases of particular modulation strengths and sphere radiuses that simultane-
ously correspond to parametric oscillations of two different types of multipoles. Increasing
the dimensionality of design space, e.g., by considering a multilayer spherical scatterer,
potentially would enable us to design special cases where more than two parametric Mie
resonances of different type overlap. Different multipoles have different radiation patterns,
and, therefore, their superposition with appropriately selected amplitudes and phases can
lead to the engineering of the emitted radiation pattern. We can get the far-field radiation
pattern of the scatterer upon some excitation simply by taking the far-field approximation
of the radiating VSHs. For this we make use of the following large argument approxi-

mation of the generalized Hankel functions of the first kind: z
(3)
α,ν(x)

x>>1−−−→ eix

x (−i)ν+δαM .
This property, together with Eqs. (3.25,2.140,2.141), readily gives:

[Esca(r, ω)]r→∞ =
eik0r

k0r

∑
νµz ,α

Asca
α,µzν(ω)(−i)

νfα,µzν(r̂). (3.66)

Let us now focus on engineering two particular extraordinary cases of radiation pat-
terns: the well-known cases of the first and second Kerker conditions [271]. The first Kerker
condition implies a vanishing back-scattering, whereas the second Kerker condition im-
plies a vanishing forward-scattering in the radiation pattern. While commonly framed for
dipolar emitters, we can generalize the Kerker conditions for arbitrary multipolar order
[272]. For this, we need to apply the following two properties:

γµzντ
(ι)
µzν(0) =

γ−1ν

2
[(−1)ιδµz ,−1 − δµz ,1] , (3.67)

γµzντ
(ι)
µν (π) = (−1)ν+ιγ−1ν

2
[(−1)ιδµz ,−1 − δµz ,1] , (3.68)

on Eq. (3.66) to get:

[Esca(r, ω)]r→∞,θ=0,ϕ=0 = θ̂
eik0r

k0r

∑
ν,α

(−i)ν γ−1ν

2

[
(−1)δαMAsca

α,−1ν(ω)−Asca
α,1ν(ω)

]
+ iϕ̂

eik0r

k0r

∑
ν,α

(−i)ν γ−1ν

2

[
(−1)δαNAsca

α,−1ν(ω)−Asca
α,1ν(ω)

]
, (3.69)

[Esca(r, ω)]r→∞,θ=π,ϕ=0 = θ̂
eik0r

k0r

∑
ν,α

iν
γ−1ν

2

[
Asca

α,−1ν(ω)− (−1)δαMAsca
α,1ν(ω)

]
+ iϕ̂

eik0r

k0r

∑
ν,α

iν
γ−1ν

2

[
Asca

α,−1ν(ω)− (−1)δαNAsca
α,1ν(ω)

]
. (3.70)

The first generalized Kerker conditions for zero back-scattering read as follows:

∑
ν,α

iν
√
2ν + 1(−1)δαMAsca

α,1ν(ω) =
∑
ν,α

iν
√
2ν + 1Asca

α,−1ν(ω) = 0, (3.71)
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whereas the second generalized Kerker conditions for zero forward-scattering are given by
the following formula:

∑
ν,α

(−i)ν
√
2ν + 1(−1)δαMAsca

α,−1ν(ω) =
∑
ν,α

(−i)ν
√
2ν + 1Asca

α,1ν(ω) = 0, (3.72)

Next, we identify two cases: case A and case B (see Fig. 3.11). While in case A we
have overlapping parametric Mie resonances of electric dipole and magnetic dipole type, in
case B we have overlapping parametric Mie resonances of electric quadrupole and magnetic
octupole type. As we mentioned in Section 2.6, VSHs of well-defined parity are eigenstates
of the parity operator. Specifically, we have Π̂ |αµz ν k⟩(ι) = (−1)ν+δαM |αµz ν k⟩(ι), with
Π̂ being the parity transformation operator [A4]. This implies that at the vicinity of case
A we are able to search for a first Kerker condition of zero back-scattering, while at the
vicinity of case B we are able to search simultaneously for both first and second Kerker
conditions. Since the two parametric Mie resonances of case B are of the same parity, by
proper engineering of the relevant multipolar amplitudes and phases so that we satisfy the
generalized Kerker conditions of Eqs. (3.71,3.72), we can make both forward- and back-
scattering vanish. Note that a zero forward-scattering, i.e., the second Kerker condition,
contradicts the optical theorem for passive scatterers, but such a contradiction does not
exist for non-stationary scatterers.

(a) (b)
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Figure 3.12: Engineering the radiation pattern of parametrically amplified
emissions from time-modulated spherical scatterers exhibiting parametric
Mie resonances: (a) Case A: emission with generalized first Kerker condi-
tions satisfied. (b) Case B: emission with generalized both first and second
Kerker conditions satisfied. The figure was plotted by Dr. Viktar Asadchy.
Adapted with permission from Ref. [A3] © American Physical Society.

In fact, we assume an excitation of an x-polarized plane wave propagating along +z,
and we search at the vicinity of points A and B, where the parametric amplification shall
still be large, but finite, once we move away from the contours hosting the parametric Mie
resonances, where the T-matrices of the scatterers become singular. By fine adjustments
to the parameters of the model, we are able to locate an approximate first Kerker con-
dition satisfying approximately Eq. (3.71) at the vicinity of point A around M = 0.68,
Rωm/2c0 = 1.048 and exciting at a frequency of ωinc = 0.498ωm. The radiation pattern
of this case is illustrated in Fig. 3.12(a) and, indeed, exhibits nearly zero back-scattering.
Moreover, similarly, by fine tuning of the parameters of the model, we are able to locate
a case at the vicinity of point B where we have simultaneously the approximate satisfac-
tion of both first and second Kerker conditions of Eqs. (3.71,3.72). This happens around
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M = 0.093, Rωm/2c0 = 1.481 and exciting at a frequency of ωinc = 0.4995ωm. The ra-
diation pattern of this case is illustrated in Fig. 3.12(b) and, indeed, exhibits nearly zero
back- and forward scattering.

Note that in both cases A and B we are rather close to the conditions of parametric Mie
resonances where absorbed power approaches the limit of minus infinity. Yet, both cases A
and B exhibit rather high negative absorption because of strong parametric amplification.
Specifically, for case A we have a ratio of absorption to geometric cross section around
−2627.5 and a ratio of scattering to geometric cross section around 2629.2 (note that their
ratio approaches the value of minus one, as we discussed previously). This is a rather
strongly amplified emission if one takes into consideration that the ratio of scattering to
geometric cross section for the same unmodulated sphere is just 5.5. Similarly, for case B
we have a ratio of absorption to geometric cross section of −857.5 and a ratio of scattering
to geometric cross section of 858.3, with its equivalent for the unmodulated case being
just 2.53.

Figure 3.13: Parametric Mie resonances in time-modulated spherical scatter-
ers VS Mie resonances in time-invariant spherical scatterers made of a gainy
medium (grey dots). Adapted with permission from Ref. [A3] © American
Physical Society.

Finally, let us compare the case of parametric Mie resonances with the case of Mie
resonances that occur in time-invariant spherical scatterers made of a gainy medium that
is modelled with a complex dielectric permittivity εinv with ℑ{εinv} < 0. In Fig. 3.13 we
do this comparison for the same system that we have been studying the parametric Mie
resonances before. The plot in Fig. 3.13 considers also NΩ = 2 number of frequencies for
the calculations and is identical to that of Fig. 3.11(b) but it is plotted in logarithmic scale
or modulation strengths and for multipoles up to the fifth order. With gray dots we plot
the conditions for Mie resonances in time-invariant spherical scatterers with gain. For a
fair comparison we choose ℜ{εinv} = 14.07 to be equal to the real part of the permittivity
of the unmodulated scatterer at ω = ωm/2.

Interestingly, we observe that the gray dots appear near the local minima of the curves
of the respective curves of parametric Mie resonances. However, note that, while the x-
position of the grey dots is indeed related with those corresponding minima of the curves,
since it has to do with the real part of the eigenfrequencies of the quasinormal modes of
the unperturbed sphere, the y-positions of the grey dots and the minima of the curves
does not necessarily coincide. We were able to get varying relative positions in the y-
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direction for different values of ℜ{εinv} (see the supplementary material of Ref. [A3]).
However, there shall be an indirect connection between the two, since either an increase
of the imaginary part of the permittivity of the sphere, or an increase of the strength of
the modulation of the sphere, both constitute different means of providing gain to the
system that compensates for the radiative losses of the unperturbed sphere. As a result,
the complex eigenfrequencies of the quasinormal modes of the spherical scatterers move in
the complex frequency plane and eventually cross the real frequency axis, if enough gain is
provided. While monitoring the motion of the eigenfrequencies of the stationary scattering
system for an increasing imaginary part of the permittivity is trivial (see Eqs. (30, 31)
in Ref. [228]), that is not the case for the time-modulated sphere, where an eigenmode
analysis is required to monitor the motion of the poles of the scattering system in the
complex frequency plane as we increase the modulation strength. The curves that we
plot in Fig. 3.13 essentially give the parameters for which the complex eigenfrequencies
of the modulated spherical scatterers cross the real frequency axis. Note that, after this
point, increasing further the level of gain in the system shall push the eigenfrequencies in
the upper half of the complex frequency plane. Importantly, this renders the scattering
system unstable. Note that, even though we require stability for the response of the bulk
time-modulated medium, the spherical scattering system can still become unstable [273].
Special care needs to be taken then, since the Fourier transform that we employ in the
first place for our analysis is not defined in the unstable regime.

Finally, note that the striking difference to be observed, though, is that the parametric
Mie resonances of the time-modulated scatterers appear in curves in the design space,
whereas the ordinary lasing Mie resonances for stationary, gainy spheres appear in isolated
points in the design space. This makes it way more difficult in practice to engineer the
radiation pattern of the lasing emissions in the second case: engineering the overlap of
points is indeed more challenging than engineering the crossing of contours.

Before closing this section, we would like to highlight one last point: Notice how in
Fig. 3.13 it appears possible to get parametric Mie resonances with fairly low modulation
strengths even for spheres as small as the one that we studied. For example, note that
we get a parametric Mie resonance of magnetic type and multipolar order ν = 5 for
modulation strengths as low as M = 2.27×10−4 and for Rωm/2c0 just below 2.5. This
is a rather significant finding, since one would expect that such optically small spheres
would only exhibit resonances of a low quality factor and would therefore require rather
large modulation strengths to compensate for their large radiation losses and drive the
scatterer into a regime of parametric oscillations. Large modulation strengths are hard
to achieve, since they typically require high intensities of the pump that modulates the
medium, which can actually cause damage and ”burn” the scatterer. We would like to
note that in our study here we considered the simplified case of vanishing material losses.
We expect that a further increase of the modulation strength shall be generally required
to compensate for the additional material losses and drive a lossy spherical scatterer into
a regime of parametric oscillations.

3.6 Reciprocity breaking in time-varying scatterers: a T-
matrix analysis

In this section, we will discuss how the symmetries of reciprocity reflect upon the T-matrix
of periodically modulated scatterers. We will do this for all three cases of generalized
reciprocity described in Section 2.5: reciprocity in terms of exchanges of energy, reciprocity
in terms of exchanges in number of true photons, and reciprocity in terms of exchanges in
number of pseudo-photons.

In the context of the T-matrices of the scatterers, there are no external sources assumed
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to be present. Instead, in our physical picture, we have an incident and scattered field in
the homogeneous, isotropic space surrounding the scatterer, and we need to find relations
between those fields belonging to two different scattering processes A,B when the scatterer
is reciprocal. Since we assume that the scatterer is a PTC with discrete translation
symmetry in time, we introduce the Floquet frequency Ω, and we break the full spectrum
into spectral combs, each characterized by a specific Ω. Since there is no spectral coupling
among the different spectral combs, we can work with each one individually. The total
field outside the scatterer is the superposition of the incident and scattered fields, which
we decompose into a series of VSHs:

E(r, ω) =

ˆ ω−
m

0+

NΩ∑
j=1

Ej(r,Ω)dΩ, with :

Ej(r,Ω) =
∑
νµz ,α

Ainc
α,µzν(Ωj)F

(1)
α,µzν(r; kj) +A

sca
α,µzνF

(3)
α,µzν(r; kj), (3.73)

where kj = njΩj/c0 is the wavenumber of the outer space surrounding the scatterer at
frequency ω = Ωj and with refractive index nj . The corresponding magnetic field is given
by:

Hj(r,Ω) =
1

iZj

∑
νµz ,α

Ainc
β,µzν(Ωj)F

(1)
α,µzν(kj ; r) +A

sca
β,µzνF

(3)
α,µzν(kj ; r), (3.74)

with β ̸= α and Zj being the wave-impedance of the surrounding medium at ω = Ωj .
For a reciprocal scatterer in terms of exchanges of energies, we have thatR(r, r′, ω, ω′) =

0. The reciprocity theorem of Eq. (2.94) applied for a spherical surface SR of radius R
enclosing the scatterer and for an absence of external sources, then reads as:

∑
j

‹
SR

n̂ ·
[
EA

j (r,Ω)×HB
j (r,Ω)−EB

j (r,Ω)×HA
j (r,Ω)

]
e−2iΩjτd2r = 0. (3.75)

Substituting Eqs. (3.73 and 3.74) in the above equation, and applying the orthogonality
property of Eq. (3.29), as well as the following property of the generalized spherical Bessel
functions:

z(1)α,ν(x)z
(3)
β,ν(x)− z

(1)
β,ν(x)z

(3)
α,ν(x) =

i(−1)δαN

x2
, (3.76)

we readilly get the following equation of reciprocity in terms of relations of the complex
spherical amplitudes of the fields:

c20
∑
νµz ,α

(−1)µz
∑
j

e−2iΩjτ

Ω2
jn

2
jZj

[
Ainc,B

α,µzν(Ωj)Asca,A
α,−µzν(Ωj)−Ainc,A

α,µzν(Ωj)Asca,B
α,−µzν(Ωj)

]
= 0. (3.77)

Finally, assuming monochromatic single multipole excitations in the above equation, we
can retrieve the following symmetry for the T-matrix of a periodically modulated scatterer
that is reciprocal in terms of exchanges of energies (expressed in Dirac notation):
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⟨α′ µ′z ν
′ Ωj′ | T̂R=0(Ω) |αµz ν Ωj⟩ = (−1)µz+µ′

ze2i(Ωj′−Ωj)τ
Ω2
j′n

2
j′Zj′

Ω2
jn

2
jZj

× ⟨α − µz ν Ωj | T̂R=0(Ω) |α′ − µ′z ν ′ Ωj′⟩ . (3.78)

Similarly, we can get the following symmetry for the T-matrix of a periodically modulated
scatterer that is reciprocal in terms of exchanges of number of true photons (R′(r, r′, ω, ω′) =
0). By applying all the above on Eq. (2.105) instead of Eq. (2.94):

⟨α′ µ′z ν
′ Ωj′ | T̂R′=0(Ω) |αµz ν Ωj⟩ = (−1)µz+µ′

ze2i(Ωj′−Ωj)τ
|Ωj′ |3n2j′Zj′

|Ωj |3n2jZj

× ⟨α − µz ν Ωj | T̂R′=0(Ω) |α′ − µ′z ν ′ Ωj′⟩ . (3.79)

Furthermore, we can similarly get the following symmetry for the T-matrix of a periodically
modulated scatterer that is reciprocal in terms of exchanges of number of pseudo-photons
(R′′(r, r′, ω, ω′) = 0), by applying all the above on Eq. (2.113) instead of Eq. (2.94):

⟨α′ µ′z ν
′ Ωj′ | T̂R′′=0(Ω) |αµz ν Ωj⟩ = (−1)µz+µ′

ze2i(Ωj′−Ωj)τ
Ω3
j′n

2
j′Zj′

Ω3
jn

2
jZj

× ⟨α − µz ν Ωj | T̂R′′=0(Ω) |α′ − µ′z ν ′ Ωj′⟩ .(3.80)

Note that all those generalized reciprocity symmetries of the T-matrices of arbitrary scat-
terers modulated periodically in time, collapse to the well-known reciprocity condition for
stationary scatterers (see Eq. (5.34) in Ref. [257]).

Figure 3.14: The susceptibilities of two periodically modulated, non-
dispersive media with instantaneous response. The one, possessing a time
reversal symmetry with respect to t = τ is reciprocal with respect to ex-
changes of pseudo-photons, whereas the other is non-reciprocal.

Remember, as we discussed in Section 2.5, that we were not able to identify realistic
non-stationary material parameters that can satisfy the two first reciprocity conditions.
However, we were able to identify a class of non-stationary material parameters that can
satisfy reciprocity in terms of exchanges of pseudo-photons. The susceptibility tensors of
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such reciprocal, non-stationary media shall have the symmetry properties of Eqs. (2.119-
2.121). Those reciprocal time-varying media should be non-dispersive, i.e., characterized
by a instantaneous response, and should also possess a time-reversal symmetry of their
susceptibility with respect to a moment in time t = τ . In Fig. 3.14, we illustrate an
example of such reciprocal medium and a counterexample of a non-reciprocal medium
that lacks such time-reversal symmetry. Let us note once again that reciprocity in terms
of exchanges in number of pseudo-photons is equivalent to the reciprocity in terms of
exchanges in number of true photons, only when there is no spectral coupling between
frequencies of opposite sign. The parametric oscillations in time-modulated scatterers
studied in the previous section is a typical example of such spectral coupling between
frequencies of opposite sign.

Furthermore, note that due to the ratios of frequencies that appear in the relations
above (Eqs. (3.78-3.80)), it is predicted that the spectral transitions from a lower to a
larger frequency in a reciprocal time-varying scatterer shall generally be stronger than the
spectral transition from a large to a smaller frequency. This is certainly not the case for
the T-matrix illustrated in Fig. 3.4, since the considered scatterer there breaks reciprocity.
Note that those ratios of frequencies in our relations essentially arise from the fact that
our input and output states of the constructed T-matrix are not normalized in terms of
energy, or number of true photons or number of pseudo-photons.

Time-varying scatterers that break such generalized reciprocity conditions can be used
as optical components that, e.g., implement in the spectral dimension the functions of
isolators and circulators, which are characterized by T-matrices -reduced in the spectral
dimension and normalized either with respect to energy or number of true- or pseudo-
photons- like the ones below [201]:

T̂isolator =

[
0 0
1 0

]
, T̂circulator =

0 0 1
1 0 0
0 1 0

 . (3.81)
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4 — Transcending the problem of the
Rayleigh Hypothesis: from the To-
pological Skeleton method towards
the distributed T-matrix

4.1 Introduction

In this chapter, we will study some aspects concerning the region of validity of the repre-
sentations of the fields employed to construct the T-matrices of scatterers. Conventional
representations based on localized multipolar series are known to suffer by the problem
of the Rayleigh Hypothesis. Roughly speaking, these representations are unable to rep-
resent accurately the near-fields of a non-spherical scatterer. In the second section of
this chapter, we elaborate on the theoretical foundations of the problem of the Rayleigh
Hypothesis and briefly describe the state-of-the-art in understanding and treating the
problem. Next, in the third section of this chapter, we propose a solution to the problem
of the Rayleigh Hypothesis, by introducing a novel representation scheme of the fields
based on a distribution of multipolar sources across the topological skeleton of the scat-
terer. We discuss the theoretical and practical aspects of the topological skeleton method,
and, furthermore, we present several examples and assess the performance of the method
by comparing the near-fields reconstructed semi-analytically with the topological skele-
ton method against full-wave simulations. We demonstrate how the method is suitable
to overcome the problem of the Rayleigh Hypothesis. Next, in the fourth section of this
chapter, we construct a distributed T-matrix to represent scatterers of arbitrary geometry,
employing the topological-skeleton-based representations of the fields that we developed.
We present a four-step method to calculate such a distributed T-matrix by making use
of a full-wave solver. Specifically, a prolate spheroid is considered as an example of our
introduced technique in this section. Finally, in the last section of this chapter, we develop
a generalization of the well-established multiple light scattering theoretical framework to
account for the distributed T-matrices and we also provide an illustrative numerical ex-
ample.

4.2 The problem of the Rayleigh Hypothesis in scattering
of electromagnetic waves

In this section, we will introduce the problem of the Rayleigh Hypothesis. It is a funda-
mental problem pertinent to the scattering of electromagnetic (and not only) waves. We
will briefly review the state-of-the-art treatment of the problem, and we will specifically
discuss the central role of the analytic properties of the fields.

Let us begin by considering a surface S that encloses a localized stationary scatterer.
The scatterer is embedded inside an infinite linear, isotropic, stationary and homogeneous
medium. Since we restrict ourselves to the stationary case, the scattering problem can be
solved for each frequency individually. We denote in the following with k(ω) and Z(ω) the
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(generally frequency-dependent) wavenumber and wave-impedance that characterize the
embedding medium, respectively. The treatment of a generic scattering problem requires
the representation of the incident fields everywhere inside S and the representation of
the scattered fields everywhere outside S. Such representations allow to construct the T-
matrix of the scatterer. The T-matrix treats the scatterer as a ”black box” that responds
to an external excitation, and the T-matrix can be considered in the multi-scattering
formalism discussed in Section 2.9. As discussed in the following, the problem of the
Rayleigh Hypothesis is related with the region of validity of analytic representations of
those fields: the problem arises when that region of validity does not fully coincide with
the ”physical domain” of the fields, i.e., either everywhere inside (for the incident field)
or everywhere outside (for the scattered field) of S.

We can start the technical discussion by employing a Stratton-Chu-type integral repre-
sentation of the incident and scattered fields that is valid everywhere inside their respective
physical domains [206, 257, 274]. To derive them, we use at first the following property of
vector fields, known as the Green’s vector identity:

P · (∇×∇×Q)−Q · (∇×∇×P) = ∇ · [Q× (∇×P)−P× (∇×Q)] , (4.1)

where P andQ are some vector fields. Applying that identity to some electric field E(r0, ω)

and the Dyadic Green’s function
↔
G(r, r0; k) of the infinite background medium, which

obey the wave equations of Eqs. (2.156, 2.158), respectively, and integrating over some
arbitrary volume V0 bounded by some surface S0, and, finally, applying the divergence
theorem, gives us the following formula:

E(r, ω)δ(r ∈ V0) = iωµ

ˆ
V0

↔
G(r, r0; k) · J(r0, ω)d3r0

+

ˆ
S0

↔
G(r, r0; k) ·

[
n̂′(r0)×∇×E(r0, ω)

]
+∇×

↔
G(r, r0; k) ·

[
n̂′(r0)×E(r0, ω)

]
d2r0, (4.2)

where δ(r ∈ V0) takes the value 1 for r ∈ V0 and the value 0 otherwise. n̂′(r0) is the unit
vector normal to the surface S0 that points towards the interior of V0. Let us now use the
above formula to derive expressions for the incident and the scattered fields. Applying it
for the space occupied by the scatterer VSin enclosed by the surface S, and considering
that J(r0, ω) = 0 inside S, gives us the following expression for the incident field that is
valid everywhere inside its physical domain:

Einc(r, ω)δ(r ∈ VSin) = −
ˆ
S

↔
G(r, r0; k) ·

[
n̂(r0)×∇×Einc(r0, ω)

]
+∇×

↔
G(r, r0; k) ·

[
n̂(r0)×Einc(r0, ω)

]
d2r0, (4.3)

where here we choose n̂(r0) to point outwards of S. Next, we apply Eq. (4.2) to the total
field in the presence of the scatterer in the infinite space surrounding the scatterer, VSout .
That domain is bounded by the surface S and the surface bounding a sphere of infinite
radius S∞. Decomposing the total field into the incident and the scattered field, and noting
that: 1) the surface integral of the incident field over S for r ∈ VSout vanishes according to
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Eq. (4.3), 2) the surface integral of the incident field over S∞, together with the volumetric
integral involving the external current sources inside VSout , gives the incident field there,
3) the surface integral of the scattered field over S∞ for r ∈ VSout vanishes. It vanished
because it holds that:

↔
G(r, r0; k) · [n̂(r0)×∇×Esca(r0, ω)] +∇×

↔
G(r, r0; k) · [n̂(r0)×Esca(r0, ω)] = 0.

for r ≪ r0, r0 ∈ S∞, (4.4)

That statement we get from the far-field expressions of the scattered fields (see Eqs.(2.94,
2.95) in [257]), together with the far-field expression of the DGF and its curl (see Eqs. (8.55,
8.57) in [275]). Combining all these aspects, we can express the scattered field as:

Esca(r, ω)δ(r ∈ VSout) =

ˆ
S

↔
G(r, r0; k) · [n̂(r0)×∇×Esca(r0, ω)]

+∇×
↔
G(r, r0; k) · [n̂(r0)×Esca(r0, ω)] d

2r0. (4.5)

The expression is valid everywhere inside its physical domain. Note that we derive the
latter equation by considering the case of a finite three-dimensional scatterer enclosed by
S. However, it can be similarly derived for cylindrical-like and planar-like scatterers.

The problem of the Rayleigh Hypothesis arises once we attempt to expand the DGF
in the above expression into an analytical series of eigenwaves, either a series of VPHs,
or VCHs, or VSHs. In view of Eqs. (2.159-2.161), let us remind that, due to the point
singularity at r = r0, the expansion of the DGF in terms of such eigenwaves becomes
discontinuous across the surface defined by fixing the coordinate that is not associated
with the two commuting symmetry operators employed for the expansion of the DGF
into a series of eigenwaves to that of the respective coordinate of the position of the
point source. See, e.g., Eq. 7.2.63 in Ref. [204], and, also, our discussion in Section 2.6
regarding the relation between the coordinates, the commuting symmetry operator and
their eigenvalues. Specifically, the expansions take the following branch forms:

↔
G(r, r0; k) ≡

∑
α

¨ +∞

−∞
dkxdky


↔
G

−
α (r, r0; kx, ky, k), for z < z0,

↔
G

+

α (r, r0; kx, ky, k), for z > z0,
(4.6)

↔
G(r, r0; k) ≡

∑
µz ,α

ˆ +∞

−∞
dkz


↔
G

−
α,µz

(r, r0; kz, k), for ρ < ρ0,
↔
G

+

α,µz
(r, r0; kz, k), for ρ > ρ0,

(4.7)

↔
G(r, r0; k) ≡

∑
νµz ,α


↔
G

−
α,µzν(r, r0; k), for r < r0,

↔
G

+

α,µzν(r, r0; k), for r > r0,
(4.8)

for the case of an expansion into a series of VPHs, VCHs, and VSHs, respectively. The
full expressions are given in Eqs. (2.159-2.161). We can observe the planar, cylindrical and
spherical surfaces of discontinuity of the DGF that pass through the point of singularity
in the three cases above. As a result of the above, it becomes obvious that, selecting
a particular branch of the above expansions of the DGF into the eigenwaves of the ho-
mogeneous background medium, shall generally compromise the region of validity of the
resulting representations of the scattered field, generally restricting access to a part of its
physical domain.
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Specifically, let us assume that the surface S of our scatterer is bounded by the two
planes z = min {z0}, z = max {z0}, or by the cylindrical surface ρ = max {ρ0}, or by
the spherical surface r = max {r0}. Then, in view of Eqs. (4.5-4.8), and as long as we
pick a single branch of the above expansions of the DGF, we can observe that: 1) a
representation of the scattered field in plane waves guarantees access to the fields in the
regions z > max {z0} (or z < min {z0}), 2) a representation of the scattered field in
cylindrical waves guarantees access to the fields in the region ρ > max {ρ0} (i.e., outside
the infinite cylinder that circumscribes the scatterer), 3) a representation of the scattered
field in spherical waves guarantees access to the fields in the region r > max {r0} (i.e.,
outside the sphere that circumscribes the scatterer). Therefore, these representations are
only valid inside a part ṼSout of the physical domain VSout . The remaining part of the
physical domain, VSout\ṼSout , corresponds to a ”restricted space”. In that space, the
validity of our representation of the scattered field is not guaranteed. Consequently, note
that a representation of the scattered field in plane/cylindrical/spherical waves constitutes
a natural choice for planar/cylindrical/spherical-like scatterers, respectively, in the sense
that it allows for a valid representation of the scattered fields in the largest part of their
physical domain.

Importantly, let us now highlight that the analytic properties of the scattered fields
have been at the core of the discussion around the problem of the Rayleigh Hypothesis.
First of all, we should note that, actually, a series representation of the scattered field in
the eigenwaves that we just described, generally, provides access to some small part of
that ”restricted volume” VSout\ṼSout . That is to say that the above-mentioned boundaries
of the regions of validity of the discussed representations are generally not the ”hard
boundaries”. In fact, it has been mathematically shown that the position of the ”hard
boundaries” is related to the analytic properties of the scattered field [138].

First of all, Kyurkchan et al. note in [137, 138] the following:

• The scattered field, being a solution to the Helmholtz equation, hence a ramifying
analytic function, has a unique analytic continuation inside the non-physical do-
main up to a convex envelope inside S containing the singularities of the analytic
continuation.

• Singularities of the analytic continuation of the scattered field inside S always exist
since the scattered field is an analytic function that vanishes at infinity according to
the radiation condition.

• The positions of the singularities inside S depends on the geometry of the surface S
and on the position of potential singularities of the excitation source, which appear
as image-singularities of the analytic continuation of the scattered field inside the
scatterer. Note that such image-singularities may appear from the presence of sin-
gularities inside neighboring scatterers as well. This can render the task of locating
the presence of singularities rather cumbersome and, most importantly, dependent
on the actual scattering scenario in which the individual scatterer gets involved.

Furthermore, Kyurkchan et al. highlight the following two points regarding the Rayleigh
Hypothesis under the prism of the analytic continuation properties of the scattered fields
[137, 138].

The first point is that a series representation of the scattered field in plane waves
converges only in the region z > max {zs} (or z < min {zs}), where zs refers to the z-
coordinate of the singularities of the analytic continuation of the scattered fields inside
S. Similarly, a series representation of the scattered field in terms of cylindrical waves
converges only in the region ρ > max {ρs}, where ρs refers to the ρ-coordinate of the
singularities of the analytic continuation of the scattered fields inside S. Moreover, a
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series representation of the scattered field in terms of spherical waves converges only in
the region r > max {rs}, where rs refers to the r-coordinate of the singularities of the
analytic continuation of the scattered fields inside S. The above generally constitute less
severe restrictions concerning the regions of validity of the fields compared to the ones
that we had initially, since, for a smooth surface S, we have that max {zs} < max {z0}
(and min {zs} > min {z0}), max {ρs} < max {ρ0}, and max {rs} < max {r0}.

(a) (b) (c) 

S 
S’ 

Figure 4.1: The regions of validity of analytical representations of the scat-
tered fields of a scatterer bounded by surface S (denoted with gray color)
in terms of series of a) plane waves, b) cylindrical waves, and c) spherical
waves. With green color, we denote the part of the physical domain where
the representation is valid, whereas with red color we denote the part of it
where it is not. Surface S′ encloses all the singularities of the analytical
continuation of the scattered fields that are located inside the scatterer (de-
noted with brown color). Adapted from Ref. [A5].

This first highlighted point sheds light on the case of the Rayleigh Hypothesis that
plagues representations of the scattered field based on a series of plane waves or a series
of localized cylindrical/spherical waves (with fixed origin). One of the first treatments of
the original Rayleigh Hypothesis issue actually showed -by making use of conformal trans-
formations to study the analytic continuation properties of the fields- that the diffracted
field by a sinusoidal grating with profile y = b cos(kx), can be represented everywhere in
the physical domain -even inside the area of the corrugations- as a series of plane waves,
only under the condition of kb < 0.448. This condition assures that all the singularities of
the analytic continuation of the fields are located below the plane y = −b [116, 133, 138].

Moreover, it has been recently numerically demonstrated that, for spheroids, an ex-
pansion of the scattered field in terms of a series of spherical waves emanating from the
origin of the scatterer is valid only outside the sphere circumscribing the two foci of the
spheroid, instead of the whole spheroid [130, 131]. This can be theoretically explained
from the fact that the foci of the ellipse coincide with the singularities of the analytic
continuation of the fields inside such a scatterer [137, 138]. The latter numerical simu-
lations revealed another significant aspect of the presence of singularities: in the region
where such series representations of the scattered fields fail to represent the fields with
validity, they usually fail blatantly. The errors inside this ”restricted volume” typically
become orders of magnitude larger than the actual fields because, there, the series of the
representation diverges due to the presence of the singularities [130, 131].

In Fig. 4.1, we illustrate the regions of validity of such series representations of the
scattered field for the three cases of VPHs, VCHs and VSHs. It is important to note
that the regions of validity of such representations of the fields are directly related with
the coordinate systems with respect to which we expand the DGF into eigenwaves. Ex-
pansions into eigenwaves with respect to rotated/translated coordinate systems generally
modify the region of validity of the representations. Along this line, there have been sev-
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eral recent attempts to circumvent the problem of the Rayleigh Hypothesis by alternative
roundabout ways that involve an interplay of different representations of the scattered
fields, i.e., employing expansions into eigenwaves with respect to appropriately trans-
lated/rotated coordinate systems. In [276–278], an interplay between representations in
terms of spherical and plane waves has been employed to grant access to the fields in-
side the circumscribing sphere of the scatterers. In that case, modeling their coupling to
planar interfaces or neighboring scatterers in close proximity became feasible. That work
demonstrated that a plane wave representation of the scattered fields could unlock access
to an arbitrarily oriented half-space tangential to the scatterer. Furthermore, an interplay
between representations of the scattered field in spherical waves with displaced origins was
employed in Ref. [279]. That was done to move the spherical boundaries of the regions of
validity of the representations arbitrarily. That technique facilitated the solution of the
scattering problem of a dimer of disks with high aspect ratios placed at closed proximity.

Note that such approaches involve analytical transformations among the different rep-
resentations employed to solve the scattering problem, and this, although analytically
relatively straightforward, numerically it might be challenging [278]. However, in any
case, such approaches to the problem of the Rayleigh Hypothesis avoid dealing with the
core of the problem since they maintain problematic representations of the scattered fields
that are not valid everywhere needed in the physical domain. Arguably, such an interplay
between different field representations to access the fields into different sub-regions of the
physical domain VSout , although on the one hand allows for the proper treatment of dif-
ferent parts of the scattering problem, on the other hand increases the complexity of the
problem and may lead to unnecessary computational overhead also.

The second highlighted point is that an alternative integral representation of the scat-
tered field in terms of radiation emanating from distributed current sources across a surface
S′ exists. Such representation provides full access to the fields in the entire physical do-
main VSout , as long as the support of the currents, i.e., surface S′, circumscribes all the
singularities of the analytic continuation of the scattered field, and gets circumscribed by
the surface of the scatterer, S, too (see Fig. 4.1). Assuming that we know a priori that
S′ circumscribes all those singularities, we can proceed in the same way as we derived
Eq. (4.5), but now integrating over the space VS′out bounded by S′ (instead of S) and S∞.
Due to the analytic continuation of Esca inside the volume bounded by S and S′ (which
practically means the analytic continuation of the solution of the Helmholtz equation of
the scattered field inside that ”unphysical” domain), we can get the following alternative
formula:

Esca(r, ω)δ(r ∈ VS′out) =

ˆ
S′

↔
G(r, r0; k) · [n̂(r0)×∇×Esca(r0, ω)]

+∇×
↔
G(r, r0; k) · [n̂(r0)×Esca(r0, ω)] d

2r0. (4.9)

Hence, with the latter equation, we end up with a representation of the scattered field based
on a current distribution over a more compact (with which, in this work, we mean more
compressed/economical) support of currents, S′, than the surface S, where the current
sources are distributed in the representation of Eq. 4.5. Note that there are several semi-
analytical methods to solve scattering problems, such as the Method of Auxiliary Sources
or the Multiple Multipoles Method, which adopt such an integral representation of the
scattered field based on a distribution of radiating auxiliary current sources inside the
scatterer [144, 280, 281]. There, it has been numerically demonstrated in several cases
that such methods have a stable performance only when the auxiliary radiating current
sources are distributed over a closed contour that circumscribes all the singularities of
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the analytic continuation of the fields inside the non-physical domain [138, 282]. Initially,
a substantial problem with these methods was the optimal placement of these auxiliary
sources inside the scatterer, and, arguably, the analytic properties of the continuation of
the fields inside the scatterer provided significant guidance in that regard. An algebraic
theoretical framework that locates a priori the position of the shape-related singularities
inside a scatterer of arbitrary geometry has been developed [137, 138]. However, one could
claim that, in practice, the scientific community has barely capitalized on this analysis so
far. This is probably related to the mathematical complexity of the task of locating the
singularities of the analytic continuation of the fields in the case of an arbitrary scattering
problem. As mentioned already, apart from the standard geometry-related singularities,
extra image singularities related to the field exciting the scatterer (including, also, the field
scattered back from neighboring scatterers) may exist as well. Unfortunately, this would
imply the need for varying representation schemes adapted each time to the scattering
scenario that the scatterer gets involved in. This constitutes an undesired complication.

4.3 Solution: A new representation of the fields based on
multipolar sources distributed across the topological ske-
leton of the scatterer

In this section, we provide a general solution for the representation of the scattered fields
that provides a path to overcome the problem of the Rayleigh Hypothesis while transcend-
ing such considerations of the analytic properties of the fields discussed in the previous
section. Importantly, our method shall provide an all-around representation to represent
the fields radiated by a scatterer of arbitrary geometry, being involved in an arbitrary
scattering scenario. To achieve this, we will begin with the most general representation
of the scattered fields given by Eq. (4.5), and we will apply the technique of employing
expansions of the fields with respect to translated coordinate systems, in such a way that
introduces the method of discrete sources distributed across the topological skeleton of
the scatterer.

Figure 4.2: Illustration of the geometry of the problem (in 2D) with the scat-
terer bounded by S and its topological skeleton Σ. Adapted from Ref. [A5].
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Working on Eq. (4.5), our first step is to consider the following change of reference
frame for the DGF, which consists of a shift of the origin of the multipolar sources by a
displacement rσ(r0) that depends on each r0 point of the surface of the object S:

↔
G(r, r0; k) =

↔
G(r− rσ(r0), r0 − rσ(r0); k), (4.10)

where:

rσ(r0) = r0 − n̂(r0)R(r0)σ(r0), (4.11)

with R(r0) being the radius of the largest circle (sphere in 3D) that can be inscribed inside
S, without intersecting it, and tangentially to point r0 (see Fig. 4.2). σ(r0) is some function
that takes values within the range [0,1]. After introducing such a change of reference frame,
we additionally make exclusively use of the second branch of the expansion of the DGF of
Eq. (2.160) in terms of cylindrical waves (for 2D scatterers, translationally invariant along
the z-axis), or the second branch of the expansion of the DGF of Eq. (2.161) in terms of
spherical waves (for 3D scatterers). Finally, as a result, we arrive to representations of the
scattered field valid everywhere inside the physical domain VSout . For 2D scatterers the
representation reads as:

Esca(r, ω) ≡
∑
α,µz

ˆ +∞

−∞
dkz

ˆ
C
dr0Asca

α,µz
(r0; kz, ω)F

(3)
α,µz

(r− rσ(r0); kz, k),

for r ∈ VSout , (4.12)

with C being the contour of the cross-section of the scatterer in the z = 0 plane, and the
complex amplitudes are given by:

Asca
α,µz

(r0; kz, ω) =
i

8π
(−1)µz

ˆ +∞

−∞
dz0 ×[

F
(1)
α,−µz

(r0 + z0ẑ− rσ(r0);−kz, k) · [n̂×∇×Esca(r0 + z0ẑ, ω)]

+kF
(1)
β,−µz

(r0 + z0ẑ− rσ(r0);−kz, k) · [n̂×Esca(r0 + z0ẑ, ω)]
]
.

(4.13)

For 3D scatterers the expansion reads as:

Esca(r, ω) ≡
∑
α,µzν

ˆ
S
d2r0Asca

α,µzν(r0;ω)F
(3)
α,µzν(r− rσ(r0); k),

for r ∈ VSout , (4.14)

and the complex amplitudes are given by:

Asca
α,µzν(r0;ω) = ik(−1)µz

[
F
(1)
α,−µzν(r0 − rσ(r0); k) · [n̂×∇×Esca(r0, ω)]

+kF
(1)
β,−µzν

(r0 − rσ(r0); k) · [n̂×Esca(r0, ω)]
]
. (4.15)
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Note the translation of the origins of the VCHs and VSHs in the above equations. We
ended up with a representation scheme of the scattered field in terms of a distribution of
multipolar sources over a closed surface inside the scatterer. Importantly, note that the
position of each such elementary source is determined according to Eq. (4.11) relevant to
the position of a point r0 on the surface S of the scatterer (see Fig. 4.2 and Eqs. (4.12,
4.14)). Furthermore, the amplitude of each such elementary source of the representation is
directly specified by the tangential electric and magnetic scattered fields at the same point
r0 on the scatterer’s surface S (see Eqs. (4.13, 4.15)). However, even though we assign
them such specific values here, it is important to note that those amplitudes are generally
not unique. This can be easily deduced from the fact that the left-hand side of Eq. (4.3)
vanishes for r ∈ VSout , and, therefore, its right-hand side can be added to the right-hand
side of Eq. (4.5). This would alter arbitrarily the surface currents there, and, therefore,
the corresponding amplitudes of the representations. Any tangential field distribution that
belongs to a standing wave whose continuation inside VSin does not possess any singularity
generates a vanishing field inside VSout once propagated there through the Stratton-Chu
formula of Eq. (4.5).

In this way, we have finally reached a representation of the scattered field that is valid
everywhere inside the physical domain VSout . To do this, we employed a representation for
the individual radiation of each surface current [n̂×Esca(r0, ω)] , [n̂×∇×Esca(r0, ω)] at
each point r0 that is valid everywhere in VSout . This was achieved by placing the center
of the expansion of the DGF, that acts on those particular surface currents, somewhere
on top of a linear segment inside the scatterer (see the green linear segment in Fig. 4.2)
that constitutes the locus of the centers of all circles (spheres in 3D) that are tangent on
S at r0, and that do not intersect S at any other point. Once such centers of expansion
are chosen, the series expansion of the second branch of the employed DGFs in Eqs. (4.7,
4.8) is valid everywhere in |r− rσ| > |r0− rσ|, and, therefore, everywhere in VSout . In this
way, we manage to hide at the interior of the scatterer the surfaces where the branches
of Eqs. (4.7, 4.8) lie for each individual surface current, |r − rσ| = |r0 − rσ| (see the
yellow dashed circles in Fig. 4.2). And, as a result, we get a representation of Esca(r, ω)
that is valid everywhere in VSout . As long as the representation of the radiation of each
surface current is valid everywhere in VSout , the collective radiation emanating from all
those surface currents, i.e., the representation that we employ for the scattered field in
Eqs. (4.12, 4.14), shall be valid as well.

Actually, Eqs. (4.12, 4.14) correspond to a family of representations of the scattered
field. Specifically, we have a different representation with multipolar sources distributed
over different surfaces inside the scatterer corresponding to each function σ(r0). In the
limiting case that σ(r0) = 0, ∀ r0, we have the sources distributed exactly across the
surface of the scatterer S. This case corresponds to representations used in classical surface
integral methods [283]. The major disadvantage here is that the kernel has singularities
located exactly across the surface S, which typically results in a poor convergence of the
fields’ representation when the observation point r approaches S, i.e., in the vicinity of
the scatterer. Nevertheless, we can push the singularities of the kernel further inside the
scatterer by letting σ(r0) take non-zero values. Specifically, taking the other limiting
case of σ(r0) = 1, ∀ r0, we reach a representation that is based on multipolar sources
distributed across the surface Σ, which is defined as: rΣ(r0) = rσ(r0)|σ(r0)=1, ∀ r0 . This
zero-volume-enclosing surface, Σ, is by definition the topological skeleton of the scatterer
(see Fig. 4.2).

The topological skeleton of an object is also known as its medial axis. It is defined as
the locus of the centers of circles (spheres in 3D) that are tangent to its outer surface at
two or more points, where all such circles (spheres in 3D) are contained inside the object
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[284]. The topological skeleton of an object was first introduced by Blum in 1967 as a tool
for biological shape recognition [285]. The medial axis, together with the associated radius
function of the maximally inscribed circles (spheres in 3D), which we denote as R(r0), is
known as the medial axis transform (MAT) of the object. The MAT is a complete shape
descriptor, i.e., we can use it to reconstruct the shape of the original object. Therefore,
in that sense, it constitutes a compressed way to encode the shape of the object. Apart
from medical imaging applications, the topological skeleton has found a wide variety of
applications in computer graphics, animation, visualization, digital inspection, computer
design, pattern recognition, robotics, collision detection, etc., where a compact shape
representation supporting shape analysis and synthesis is important [284]. Let us note,
that the ”skeletonization” of an object is a quite mature field of research, and several
methods exist to calculate the topological skeleton of a given object, with Voronoi diagrams
usually playing a central role in that regard [286–288].

From the physical point of view, let us note the following regarding the introduced
topological-skeleton-based representation of the scattered fields. On the one hand, we can
claim that it constitutes an optimal representation since it provides the locus of the most
compact support of multipolar sources that is able to overcome the problem of the Rayleigh
Hypothesis for an arbitrary scattering scenario involving the considered scatterer. We
would like to emphasize that, even though the topological skeleton does not necessarily pass
through the singularities of the analytic continuation of the scattered fields, yet it provides
a representation of the scattered field that is valid everywhere in VSout . In fact, assuming
the a priori knowledge of the analytic properties of the scattered fields, then the most
optimal and compact representation that does not suffer from the problem of the Rayleigh
Hypothesis, would, instead, be the one based on a distribution of multipolar sources across
the topological skeleton of the surface S′, that is enclosed by S, and that encloses all the
singularities of the analytic continuation of the fields inside the scatterer. However, we
want to avoid such considerations since the resulting representations cannot be generalized
to an arbitrary scattering scenario involving the considered scatterer. On the other hand,
by placing the multipolar sources on the topological skeleton Σ, we also managed to move
the singularities of the representation of the scattered field as far away from the surface of
the scatterer S as possible. In that sense, this is the optimal placement of the distribution
of the sources among all cases of different σ(r0), guaranteeing better convergent properties
of the near-fields. However, as it can be seen in Fig. 4.2, the topological skeleton Σ
touches the surface of the scatterer S at its sharp edges. Note that such points always
host singularities. However, this is not the case for a smooth surface S.

It is important to note that not all parts of the topological skeleton are equally signifi-
cant. On the one hand, there may be significant small parts of the topological skeleton that
are responsible for the radiation of a big part of the surface currents. Take, for example, a
sphere whose topological skeleton is a single point at its center. In Lorenz-Mie theory, that
point hosts the origin of a multipolar series of radiating VSHs that validly represents the
scattered fields all over the physical domain VSout . On the other hand, it can frequenctly
be the case that large parts of the topological skeleton correspond to only a minor part
of the radiating surface currents. In such a case, ”pruning” such insignificant parts of the
topological skeleton can lead to a more compact representation of the fields. Nevertheless,
this comes at the cost of sacrificing the guaranteed access to a valid representation of the
fields at a small enough region of the physical domain in the vicinity of the scatterer.

Equations (4.12, 4.14) constitute an infinite-dimensional representation of the scattered
fields allowing us to transcend the problem of the Rayleigh Hypothesis. However, for prac-
tical purposes, it is required to render those representations finite-dimensional. Therefore,
we need to replace the integrals in Eqs. (4.12, 4.14) with finite sums. This process leads to
the discretization of the topological skeleton Σ, which is substituted by a set of N points
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Figure 4.3: The effect of the discretization of the topological skeleton of a
prolate spheroid on the region of validity of the representation (green region).
Adapted from Ref. [A5].

(located at ri) that act as centers of multipolar expansions for the field that is radiated
by the surface currents distributed over a surface Si, that is part of S =

∑N
i=1 Si (see

Fig.4.3). Specifically, for finite-dimensional representations of the scattered field based on
those of Eqs. (4.12, 4.14), we can get the following expansion in terms of series of VCHs
for 2D scatterers:

Esca(r, ω) ≡
N∑
i=1

∑
α,µz

ˆ +∞

−∞
dkzAsca

α,µz ,i(kz, ω)F
(3)
α,µz

(r− ri; kz, k),

for
√
(x− xi)2 + (y − yi)2 > Ri, ∀ i, (4.16)

with C =
∑N

i=1Ci and with the complex amplitudes being given by:

Asca
α,µz ,i(kz, ω) =

i

8π
(−1)µz

ˆ +∞

−∞
dz0

ˆ
Ci

dr0 ×[
F
(1)
α,−µz

(r0 + z0ẑ− ri;−kz, k) · [n̂×∇×Esca(r0 + z0ẑ, ω)]

+kF
(1)
β,−µz

(r0 + z0ẑ− ri;−kz, k) · [n̂×Esca(r0 + z0ẑ, ω)]
]
,

(4.17)

while for the case of 3D scatterers, we have the following expansion in terms of series of
VSHs:

Esca(r, ω) ≡
N∑
i=1

∑
α,µzν,i

Asca
α,µzν,i(ω)F

(3)
α,µzν(r− ri; k), for |r− ri| > Ri, ∀ i, (4.18)

with the complex amplitudes being given by:
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Asca
α,µzν,i(ω) = ik(−1)µz

ˆ
Si

d2r0

[
F
(1)
α,−µzν(r0 − ri; k) · [n̂×∇×Esca(r0, ω)]

+kF
(1)
β,−µzν

(r0 − ri; k) · [n̂×Esca(r0, ω)]
]
. (4.19)

Note that the resulting Eqs. (4.16, 4.18) are only valid outside the union of circles
(spheres in 3D) that are centered at r = ri, have a radius of Ri, and contain inside them
the surface current sources that are distributed over the surface Si (highlighted with light
blue color in Fig. 4.3) that is associated with the i-th center of multipolar expansion of the
discretized topological skeleton at ri. In Fig. 4.3, we illustrate the effect of discretization of
the topological skeleton of a prolate spheroid on the region of validity of the representation
of the scattered fields. As we increase the dimensionality of the representation, i.e., as
we increase the number of the multipolar centers of expansion, we unlock access to the
near-fields closer and closer to the surface of the scatterer S. For example, already with
six points only, we see that we have restricted the problematic near-field region (with
red color in Fig. 4.3b) rather significantly. Note that the full topological skeleton of a
prolate spheroid of semi-minor axis a and semi-major axis b (along z) is a linear segment
connecting the points (x, y, z) = (0, 0,±(b2 − a2)/b). Importantly, let us note that those
two points are not the foci of the spheroid, which have been identified to be the singular
points of the analytic continuation of the scattered fields inside a prolate spheroid [130,
131, 137, 138].

Finally, let us comment on three more aspects related with the topological-skeleton-
based representations of the scattered field that we ended up with:

• The surface bounding the union of spheres defined by |r− ri| = Ri does not generally
constitute a hard boundary for the region of validity of the representation of the
scattered fields. Instead, the multipolar series at each center of expansion of the
discretized topological skeleton are expected to converge everywhere outside the
sphere defined by |r− ri| = R′

i, with R
′
i ≤ Ri being the radius of the smallest sphere

that encloses all the singularities of the analytic continuation of the fields that are
radiated by the surface current sources distributed across Si.

• The region of validity of the finite-dimensional representation of the scattered fields
that we introduced is not unique since the complex amplitudes are not unique. First,
as we discussed before, the radiating surface current distribution generating the
scattered field in VSout is not unique (see Eq. (4.9)). Furthermore, an arbitrary and
non-optimal assignment of the radiating surface currents to the N multipolar centers
of expansion (which, let us consider fixed here), may still lead, on the one hand, to
multipolar amplitudes that accurately represent the far-field, but, on the other hand,
may obstruct the access to the near-fields, since, then, the surface bounding the union
of spheres defined by |r− ri| = Ri gets modified.

• The maximum multipolar order of the sources placed at r = ri needed to accurately
represent the fields emanating from the corresponding radiating surface currents
distributed across Si shall depend on the radius Ri (in fact on the optical distance
kRi). Points of the topological skeleton placed at a large optical distance from the
surface of the scatterer S shall generally require a larger number of multipoles for
their expansions compared to points closer to S.

In Fig. 4.4, we demonstrate the number of multipoles needed to achieve convergence
for the reconstruction of the fields radiated by a dipolar emitter in free space (denoted
with d). We study this multipolar convergence as a function of 1) the optical distance
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Figure 4.4: Study of the number of multipoles required to achieve conver-
gence for the reconstruction of the fields radiated by a dipolar emitter in
free space. a) The geometry of the problem. The magenta star indicates the
position of the multipolar expansion. The blue vector indicates the position
and orientation of the dipolar emitter. The red curve indicates the cross-
section of a spherical cap over which we calculate the convergence of the
representation of the radiated fields. b-e) Maps of the minimum multipolar
order needed (νmin) to achieve an average error below either 1% (b,d), or
10% (b,d), for the case of either an electric dipole (b,c) or a magnetic dipole
(d,e) emitter. Adapted from Ref. [A5].

between the emitter and the observation point (R0/λ), and 2) the optical distance
between the emitter and a center of multipolar expansion (denoted with a magenta
star) that is used to represent the radiation of the emitter (dz/λ). Note that the
fields radiated by the emitter have a singularity at its position, which can be thought
of in analogy to the singularities of the analytic continuation of the fields that are
radiated by the surface currents on Si and that are represented by a multipolar
expansion with respect to a center at ri. We observe that: 1) the larger the optical
distance dz/λ, the larger the number of multipoles needed for convergence, and 2)
the larger the distance R0/λ, the smaller the number of multipoles that are needed
for convergence. Note that, for a fixed dz/λ, after some ”threshold” value of R0/λ, as
we move away from the singularity, i.e., as we move away from the near-field region
of the radiated fields, the number of multipoles needed for convergence remains
practically unchanged concerning R0/λ.

In what follows, let us demonstrate the performance of the method of the topolo-
gical skeleton numerically. Specifically, we are interested in studying how it practically
deals with the problem of the Rayleigh Hypothesis, i.e., how well it provides an accurate
representation of the near-field of a scatterer.

In our indicative example, we consider as a scatterer an axially symmetric object with
a rather complex shape resembling that of a seahorse. In Fig. 4.5, the white-shaded region
indicates the cross-section of such a scatterer along a meridian plane. The scatterer is
embedded in free space and made of an isotropic, non-magnetic material with a refractive
index of n = 3.477. Regarding the optical size of the considered scatterer, note that it
is circumscribed by a sphere of radius half the wavelength of light in free space (λ). We
consider the excitation of the scatterer by a monochromatic (with frequency ω0), TE-
polarized regular VSH of angular momentum along the z-axis, µz = 0, and multipolar
order, ν = 2 (see Eq. (2.140) for its definition).

First, we perform a full-wave numerical simulation with a finite element solver JCM-
suite [248] to calculate the electromagnetic response of the scatterer under such excitation.
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Figure 4.5: Numerical example with a comparison of the performance of
different analytical representations of the scattered field, elucidating their
relation with the problem of the Rayleigh Hypothesis. a) Plot of the norm
of the scattered near-field of a sub-wavelength, axially symmetric seahorse
(with its cross-section along a meridian plane being white-shaded) excited
by a regular VSH, as it was calculated by a full-wave solver. Plots of the
logarithmic relative error, E , in the representation of the scattered near
fields by: b) the conventional case of a single center of multipolar expansion
of the fields (magenta star), c) a dense distribution of multipolar sources
across the entire topological skeleton of the seahorse (magenta line), d) a
dense distribution of multipolar sources across the topological skeleton of
the seahorse with its tail being truncated and substituted by a single origin
of multipolar expansion (magenta star) to represent the radiation of the
tail specifically. The plots are given for different truncation orders, νmax,
of the infinite multipolar sums. The dashed magenta circles in (b) and (d)
indicate the theoretical regions of validity of the representations. Adapted
from Ref. [A5].

Note that, by exploiting the axial symmetry of both the geometry and the excitation, we
performed the simulations in two dimensions, and, thus, we were able to reach an accuracy
of the recorded near-fields up to at least the fourth significant digit. We used finite elements
of size λ/50 and polynomial order 10. We recorded the scattered field within the near-field
zone, inside a sphere of radius 0.65λ containing the scatterer. In Fig. 4.5a, we plot the
norm of the scattered field, |Esca(r, ω0)|, as it was recorded from the full-wave simulation.
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Next, we aim to study and compare how the problem of the Rayleigh Hypothesis is
manifested in that particular example, once we employ different analytical representation
schemes attempting to reconstruct the target scattered near-field that we got from the
full-wave simulations. For this, we record the tangential field components at as many as
6000 points on the contour of the surface of the scatterer across a meridian plane, and we
use them to get the complex amplitudes of the different analytical representations that
we want to compare. To facilitate the comparisons, we establish the following logarithmic
relative error metric:

E(r, ω0) = log10


∣∣∣Esca

analytical(r, ω0)−Esca
numerical(r, ω0)

∣∣∣∣∣Esca
numerical(r, ω0)

∣∣
 , (4.20)

where Esca
analytical(r, ω0) stands for the analytically reconstructed field based on the particu-

lar representation and Esca
numerical(r, ω0) stands for the field that was calculated numerically

from the full-wave solver.

The first case that we study is that of the conventional representation of the scattered
field based on a single center of multipolar expansion at r = 0 (magenta star in Fig. 4.5b).
Specifically, knowing the tangential scattered fields at the surface of the scatterer from
the full-wave solver, we employ Eq. (4.19) to get the amplitudes of such a representation
of the scattered field. As discussed already, this representation of the fields is a priori
guaranteed to be valid only outside the minimal sphere that circumscribes the scatterer
(r > max {r0}). To check this, we use the numerically calculated amplitudes to analytically
reconstruct the near-fields by making use of Eq. (4.18), and, then, we calculate the log.
relative error E(r) by comparing them against the numerical results. In Fig. 4.5b, we show
color plots of E(r, ω0) for increasing multipolar order of truncation of the infinite series
(νmax). The dashed magenta line denotes the spherical shell of r = max {r0}, inside of
which the Rayleigh Hypothesis is expected to be violated. Indeed, we observe that, for
νmax = 10, we barely have any errors recorded in the dark blue region outside the magenta
sphere, indicating a convergence of the series there. To be precise, small errors can be
observed even a bit inside that sphere. As we discussed previously, the hard boundary
of validity of such a representation is not the magenta sphere but a sphere of a generally
smaller radius that circumscribes all the singularities of the analytic continuation of the
scattered field inside the region of the scatterer.

Importantly, note that by increasing νmax, on the one hand, we achieve better and
better convergence of the series representation of the fields closer and closer to that spher-
ical shell enclosing the singularities. But, on the other hand, we get a worse and worse
divergence of the series representation of the fields in the physical domain contained in-
side the spherical shell that encloses the singularities. Such divergence of the fields in that
region has already been observed in Ref. [130, 131]. In our exemplary case, whereas, for
νmax = 1, we observe a relative error of an order of magnitude larger than the norm of the
scattered near-field, for νmax = 10, a relative error of twelve orders of magnitude larger
than the norm of the scattered near-field is to be observed.

Such large errors emanating from the divergence of such series representation of the
fields in the near-field region of the scatterer, may at first suggest that the existing semi-
analytical method of multiple light scattering, based on such conventional representations
of the fields in terms of localized series of VSHs, would always become useless for model-
ing the near-field coupling between closely placed scatterers. In practice, this is seemingly
not strictly the case, though. Quite surprisingly, in Ref. [131], it was demonstrated with
counterexamples featuring near-field interactions between dimers of prolate spheroids, that
sufficiently convergent results can be obtained in unexpected near-field regions when a very

111



Chapter 4. Transcending the problem of the Rayleigh Hypothesis: from the
Topological Skeleton method towards the distributed T-matrix

large number (∼ 40) of multipolar contributions is considered for the multi-scattering cal-
culations (increasing the dimensionality of the problem dramatically, though). Note that,
eventually, this additionally requires that the calculations are performed with quadruple-
precision arithmetic to account for the interactions between multipoles of high order prop-
erly. Those results seem to suggest that the problem of the Rayleigh Hypothesis within
the context of multi-scattering calculations is not intrinsic, i.e., associated with the inher-
ently problematic analytic properties of the adopted representations of the fields. Instead,
it appears to be a problem of numerical nature if we are always able to get convergent
solutions for the general multi-scattering problem associated with an arbitrary geometric
setup by ever increasing the multipolar truncation order and the arithmetic precision used
for the calculations. However, on the one hand, whether this suggestion is true in its
generality remains an interesting open question, and, on the other hand, even in such a
case, it is evident that such problematic numerical issues stem from the analytic aspects
of the problem. We would like to highlight that the topological skeleton method presented
here provides representations of the scattered field that converge everywhere outside the
scatterers for general geometries and that require only a reasonable number of multipoles.

In our second case study, we consider the newly introduced representation scheme
for the scattered fields, which is based on a distribution of multipolar sources across the
topological skeleton of the scatterer. First, we construct the topological skeleton of the
axially symmetric seahorse based on a constrained Delaunay Triangulation method [288]
(see the magenta solid line in Fig. 4.5c for a cross-section of the topological skeleton of the
seahorse along a meridian plane). Then, we employ again Eq. (4.19) to get the amplitudes
and use them to represent the scattered field in terms of radiating VSHs distributed over
the topological skeleton of the seahorse with Eq. (4.18). Note that we densely discretize
the meridian cross-section of the topological skeleton using N = 6000 points as well.
That is to say that we assign each considered elementary radiating surface current to a
distinct center of multipolar expansion. The integration over the azimuthal dimension of
the skeleton is performed adaptively, resembling a perfectly fine discretization along the
azimuthal dimension. In Fig. 4.5c, we plot again the calculated log. relative errors of the
considered representation scheme for increasing multipolar order for the truncation of the
series. We can observe that, by νmax = 10, an accuracy of more than three significant
digits is achieved almost all over the near-field region we monitor. Actually, already by
νmax = 3, we get an acceptable convergence of the series representation of the fields. We
verify like this that the topological skeleton method can fully transcend the problem of
the Rayleigh Hypothesis in our exemplary case. Let us highlight again that the closer the
observation point to the surface of the scatterer, the larger the number of multipoles needed
for an accurate representation of the fields. In other numerical examples not presented
here, where the gradients of the scattered fields were stronger, indicating the presense of
singularities of the analytic continuation of the fields closer to the surface of the scatterer,
we observed a slower rate of convergence of the multipolar series expansion of the fields.

Next, in our last case study, we consider another representation scheme for the scat-
tered fields with which we aim to study the discretization effects of the topological skeleton
method. Specifically, as in the previous case, we begin with the full topological skeleton
of the seahorse, but now we truncate its tail and employ a single center of multipolar ex-
pansion to represent the radiating fields emanating from the surface currents distributed
across the tail of the seahorse. The magenta star in Fig. 4.5d denotes that introduced
center of multipolar expansion. Let us highlight that, due to the axial symmetry, the star
represents a ring of multipolar sources rather than a single multipolar center. Interest-
ingly, note that the Discrete Sources Method, to facilitate the study of light scattering
from axially symmetric and oblate objects, commonly employs multipolar sources with
origins placed in the complex z−plane, and those sources actually constitute the image
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of such a ring of sources in the real space [142]. Next, we use again Eq. (4.19) to get
the amplitudes of our new representation. However, now, the dimensionality of the rep-
resentation is reduced to N = 4451, as we truncated 1550 points belonging to the tail
of the skeleton of the seahorse and substituted them with a single origin of expansion.
What we expect is that this representation of the fields provides access to the near-fields
everywhere outside a torus that is centered at the magenta star and that circumscribes
the truncated tail of the seahorse. The dashed magenta circle in Fig. 4.5d indicates a
cross-section of this torus along a meridian plane where we plot a map of the calculated
log. relative errors E(r, ω0) again. Indeed, we observe that such a representation still
provides great accuracy of the reconstructed fields everywhere outside the aforementioned
torus (actually, to be precise, everywhere outside the torus -of a bit smaller radius- that
circumscribes the singularities of the analytic continuation of the fields radiated by the
truncated tail of the seahorse). Hence, we can deduce that in practice the dimensionality
of the topological-skeleton-based representation of the fields can be significantly reduced
to a small enough number of centers of multipolar expansions by sacrificing the access of
the representation to a small enough near-field region in the vicinity of the scatterer. For
example, we saw in Fig. 4.3 that only six properly placed centers of multipolar expansion
can be already enough to provide a good representation of the scattered near-fields by a
prolate spheroid with an aspect ratio of three. Nevertheless, more complicated geometries
generally require representations of higher dimensionality.

Finally, let us highlight the following two key observations regarding the number of
multipoles needed in practice for sufficient convergence of the aforementioned multipolar
series representations of the scattered field:

1. the smaller the optical distance between the observation point and the spherical
(cylindrical in 2D) shell enclosing the singularities of the analytic continuation of
the field represented by the particular multipolar center of expansion, and

2. the larger the optical distance between the multipolar center of expansion and the
aforementioned singular shell, i.e., the larger the radius of the shell,

the more multipoles are needed for the convergence of the series representation of the field
(see also Fig. 4.4 and the related discussion).

We would like to note that the above observations imply quite significant limitations for
methods based on dipolar-only representations, such as e.g., in [57]. Such representations
can only be practically applicable either for scatterers that are sufficiently optically small,
or for distributions of dipolar sources that are placed at close enough optical distances
from the surface of the scatterer (this would correspond, for example, to the non-optimal
case of the representation of Eqs. (4.12, 4.14) with small values of σ(r0)). However, in
the latter case, the dimensionality of the representation would typically be significantly
increased, though, since it would generally require the spatial distribution of a significantly
larger number of centers of expansion (although, with a fewer number of multipoles -6 for
dipoles- at each center).

Furthermore, let us support the above-mentioned observations on the convergence
of the infinite multipolar series of the representations of the scattered field with some
additional exemplary numerical results.

In Fig. 4.6, we perform a statistical analysis of the convergence among several instances
of 2D scatterers with varying geometry We illuminate them with monochromatic (of fre-
quency ω0) TE-polarized plane waves propagating along varying directions. Specifically,
the angle of the illuminating plane waves is varied with a step of 5o (for all non-trivial
excitation angles with respect to the geometry of the scatterer). The scatterers are again
considered to be inscribed inside a circle of radius half the free space wavelength. They
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Figure 4.6: Statistical analysis of the convergence among several instances
of 2D scatterers with varying geometry, illuminated by monochromatic, TE-
polarized plane waves propagating along varying directions on the xy-plane:
a) Illustration of the geometry of the considered 2D scatterers with blue
color and their topological skeleton with red color. b) Plot of the statistics
of the log. relative errors E(r, ω0) recorded for the topological-skeleton-based
representations, as a function of the distance between the observation point
and the surface of the scatterer, and for varying truncation orders of the
multipolar series (|µz|max). Adapted from Ref. [A5].

are made of a material of refractive index n = 3.477 and embedded in free space. Eleven
rectangular scatterers are considered with varying aspect ratios from one to ten. The
surface and the topological skeleton of each scatterer are finely discretized using a large
number of 12.000 points.

Specifically, we plot the statistics of the log. relative errors recorded for the topological-
skeleton-based representations, as a function of the distance between the observation point
and the surface of the scatterer. We observe that a smaller optical distance between
the observation point and the scatterer generally requires a larger number of multipoles
for sufficient convergence. As we highlighted above, we have a slower convergence rate
for small distances between the observation point and the singularities of the analytic
continuation of the scattered fields inside the scatterer. Furthermore, we would also like
to highlight that the rate of such convergence varies significantly among our case studies.
Note, for example, the different rates of convergence that we characteristically can observe,
e.g., in the case of |µz|max = 5, and, also, in comparison with the rest multipolar truncation
orders. As we have already discussed, the convergence additionally depends on the distance
between the multipolar center of expansion and the surface of the scatterer. For the cases
of scatterers where such distance between the topological skeleton and the surface of the
scatterer becomes large (like for rectangular scatterers of low aspect ratio), we observe
a slower convergence rate, i.e., more multipoles are needed to accurately represent the
near-fields.

Finally, in Fig. 4.7, we demonstrate the rate of convergence of the multipolar series
for the case of a cylinder illuminated by a dipolar emitter placed in close proximity on
top of it. Note that the emitter is known to induce an image singularity in the analytic
continuation of the scattered fields of the cylinder at a small distance from its surface.
Specifically, we study the case of a cylindrical disk with axial symmetry to the z-axis and
with an aspect ratio of six, inscribed inside a sphere of radius one third of the free space
wavelength λ, made of a material of refractive index n = 3.477 and embedded in free
space. We excite it with a monochromatic (of frequency ω0), z-oriented electric dipole
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Figure 4.7: An exemplary study of the convergence of the topological-
skeleton-based representation of a radiating field with a singularity located
closely to the physical domain. Such is the case of the response of a cylin-
drical disk excited by a dipole emitter at close proximity (denoted with the
magenta star in the figure). a) The logarithm of the norm of the scattered
by the disk field upon such an excitation. b) Maps of the log. relative error
E for the topological-skeleton-based representation of the fields for increas-
ing truncation orders of the multipolar series. Adapted from Ref. [A5].

placed at a distance of λ/50 on top of the disk, which is illustrated with a magenta star
in Fig. 4.7a. There, we plot the logarithm of the norm of the scattered by the disk field
upon such an excitation. Indeed, we can observe the strong gradients of the field which
are indicative of the presence of the image singularity in the analytic continuation of the
fields inside the disk, at close proximity to the surface of the scatterer and the physical
domain of the fields. In Fig. 4.7b, we plot maps of the log. relative error E(r, ω0) for the
topological-skeleton-based representation of the fields for increasing truncation orders of
the multipolar series. The magenta line denotes the topological skeleton of the cylinder.
Note that here we use 8.250 unevenly distributed (we considered a denser discretization
at the region of strong gradients of the incident field) points for the fine discretization of
both the surface of the cylinder and the topological skeleton over the meridian plane.

In this case, we observe a slower convergence rate of the multipolar series in the
topological-skeleton-based representation of the scattered field. Although, theoretically, we
can still achieve convergence all over the near-field region, we observe that a larger number
of multipoles are needed for convergence, i.e., the convergence of the multipolar series in
this case is poorer. That holds especially in the region close to the image singularity
inside the disk, which locally induces strong gradients to the near-fields. Even though
full convergence was achieved for the near fields in the case study of Fig. 4.5c already
for a truncation of the multipolar series at νmax = 10, this is clearly not the case here.
Radiating VSHs of higher multipolar orders, above νmax = 10, are needed to be added to
the series in this case to achieve convergence of the near fields.

4.4 Construction of the distributed T-matrix assisted by
topological-skeleton-based representations of the fields

In this section, we will introduce the distributed T-matrix of a scatterer, where we will em-
ploy a topological-skeleton-based representation of the incident and scattered fields. Such
approach will lead us to a representation of the T-matrix of the scatterer that transcends
the problem of the Rayleigh Hypothesis. We will describe a method that consists of four
steps to calculate the distributed T-matrix of a scatterer with the help of a full-wave solver.
The numerical simulations with the full-wave solver in this section have been performed
in collaboration with M.Sc. Nanda Perdana.

Note that this section will focus on 3D scatterers, but, in analogy, an extension to
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Figure 4.8: Illustration of the geometry of the problem.

2D scatterers is straightforward. Similarly as before, we consider an arbitrary stationary
scatterer of arbitrary geometry bounded by a closed surface S (blue line in Fig. 4.8) and
embedded inside a background medium that is homogeneous, isotropic and stationary,
and is characterized by a wavenumber k(ω) and a wave-impedance Z(ω). Furthermore,
we consider a surface S+ (yellow line in Fig. 4.8) that: 1) fully encloses the scatterer in
its interior, and, 2) is comprised by a union of spherical patches, S+

i (light yellow line in
Fig. 4.8), that belong to N auxiliary spheres centered inside S at positions r+i , with radii

R+
i , and with S+ =

∑N
i=1 S

+
i . Moreover, the spherical patches are considered to have a

minimum distance dmin and a maximum distance dmax from the surface of the scatterer S
(points with minimum and maximum such distance from S are denoted with white dashed
lines in Fig. 4.8). The surface S+ divides the whole space into two regions: its interior,
VS+in (the white plus the red region in Fig. 4.8), and its exterior, VS+out (the green region
in Fig. 4.8). The centers of the auxiliary spheres r+i can be considered as a discretized
version of the topological skeleton of the scatterer (for vanishing dmin), and, together
with their respective radii R+

i , they constitute a discretized version of the Medial Axis
Transform of the scatterer (a compact shape descriptor of S). Finally, for a given surface
S and for given dmin, dmax we consider an optimization process that determines r+i , R

+
i ,

while minimizing the number of the spheres N . In Fig. 4.8, we illustrate the geometry of
the problem for the exemplary case of a scatterer of the shape of a rotationally symmetric
prolate spheroid.

We will consider the surface S+ to be the input/output surface/port of the scatterer
(see also the discussion for scattering systems with zero genus topologically in Section 2.9).
Specifically, we will solve the scattering problem of calculating the scattered field outside
of S+, i.e., in VS+out , once the incident field inside S+, i.e., in VS+in , is known. We will
consider that the incident field does not have any singularities inside S+ and may only have
such singularities in VS+out . On the other hand, the scattered field shall have singularities
in its analytic continuation inside S. To solve this scattering problem we need to quantize
the representations of the incident and scattered fields that are valid everywhere inside
their respective physical domains.

116



4.4. Construction of the distributed T-matrix assisted by topological-skeleton-based
representations of the fields

Regarding the incident field, we can expand it into a series of regular VSHs with respect
to the N multipolar centers of expansion at r+i . However, such expansions shall generally
only be valid, though, inside a sphere of radius R+

i that is only a part of VS+in . This is
because, generally, there may be singularities (e.g. from radiating emitters, or neighboring
scatterers) anywhere outside of S+. Hence we have:

Einc(r, ω) =
∑
νµz ,α

Ainc
α,µzν,i(ω)F

(1)
α,µzν(r− r+i ; k), for |r− r+i | < R+

i , (4.21)

with Ainc
α,µzν,i

(ω) being some complex coefficients. However, we can get an expression for
the incident field that is valid everywhere in VS+in by making use of the Stratton-Chu ex-
pression of Eq. (4.3) for the case of integration across the surface S+. Additionally, making
use of Eq. (4.21) to substitute the incident fields for the surface currents in the right-hand
side of the equation across each part S+

i of S+, and the first branch of Eq. (2.161) together

with the translation:
↔
G(r, r0; k) =

↔
G(r− r+i , r0− r+i ; k), for r0 ∈ S

+
i , for the expansion of

the DGF into a series of regular VSHs centered at r+i across each part S+
i of S+, we read-

illy get the following quantized representation of the incident field that is valid everywhere
inside S+

i :

Einc(r, ω) =
N∑
i=1

∑
νµz ,α

Ainc
α,µzν,i(ω)E

inc
α,µzν,i(r, ω), for r ∈ VS+in , (4.22)

where:

Einc
α,µzν,i(r, ω) =

ˆ
S+
i

ikZ
↔
G(r, r0; k) · Jinc,e

α,µzν,i
(r0, ω)−∇×

↔
G(r, r0; k) · Jinc,m

α,µzν,i
(r0, ω)d

2r0,

(4.23)

is the electric field radiated inside S+ by the following electric and magnetic surface current
sources distributed over S+

i :

Jinc,e
α,µzν,i

(r0, ω) =
i

Z

[
n̂(r0)× F

(1)
β,µzν

(r0 − r+i ; k)
]

=
iδαN

Z
z
(1)
β,ν(kR

+
i )fα,µzν(r̂

+
0i), (4.24)

Jinc,m
α,µzν,i

(r0, ω) = n̂(r0)× F(1)
α,µzν(r0 − r+i ; k)

= (−i)δαNz(1)α,ν(kR
+
i )fβ,µzν(r̂

+
0i), (4.25)

where β ̸= α. Here we introduce also the variables θ+0i, ϕ
+
0i which are the polar and

azimuthal angles that correspond to a coordinate system that is parallel to the global one
and centered at r = r+i . The spherical unit vectors attached to this translated coordinate

system will be denoted as (r̂+0i, θ̂
+
0i, ϕ̂

+
0i). Note that those two angles, θ

+
0i, ϕ

+
0i, can be used to

parametrize each spherical surface patch of S+
i . z

(ι)
α,ν(x) are the generalized spherical Bessel

functions and the functions fα,µzν(r̂
+
0i) are given by Eqs. (2.142, 2.143) with respect to the

aforementioned coordinate system. To get the final expressions of the above currents, we
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made use of the definition of VSHs and the fact that the normal vector n̂(r0) on S
+
i is the

radial one, with respect to that translated coordinate system.
On the other hand, regarding the scattered field, we can employ Eqs. (4.18, 4.19)

from the previous section and expand it into a series of radiating VSHs with respect to
the N multipolar centers of expansion at r = r+i . We obtain the following quantized
representation of the scattered field that is valid everywhere outside of S+

i :

Esca(r, ω) ≡
N∑
i=1

∑
α,µzν,i

Asca
α,µzν,i(ω)F

(3)
α,µzν(r− r+i ; k), for r ∈ VS+out , (4.26)

with the complex amplitudes being given by:

Asca
α,µzν,i(ω) = ik2(−1)µz

ˆ
S+
i

d2r0

[
iZF

(1)
α,−µzν(r0 − r+i ; k) · [n̂×Hsca(r0, ω)]

+F
(1)
β,−µzν

(r0 − r+i ; k) · [n̂×Esca(r0, ω)]
]
. (4.27)

where Hsca(r0, ω) is the scattered magnetic field.
Finally, we can construct a distributed T-matrix, T̂(ω), to represent the scatterer by

employing the attained quantized representations of the incident and scattered field and
truncating the infinite multipolar sums in Eqs. (4.22, 4.26). Note that, also according to
the relevant discussion in the previous section, the smaller the optical distance between the
singularities of the incident field and the surface S+

i and the larger the optical distance
between the center of multipolar expansion r+i and the surface S+

i (i.e., the larger the
radius R+

i is), the larger the number of multipoles that needs to be taken into account for
the i−th expansion center typically is. We can calculate the elements of the distributed
T-matrix using a full-wave solver, where we excite the scatterer with the surface current

distributions,
[
Jinc,e
α′,µ′

zν
′,i′(r0, ω),J

inc,m
α′,µ′

zν
′,i′(r0, ω)

]
, and then we record the corresponding

scattered fields on S+
i (parametrized with respect to the angles θ+0i, ϕ

+
0i, instead of r0),[

Esca
α′,µ′

zν
′,i′(θ

+
0i, ϕ

+
0i, ω),H

sca
α′,µ′

zν
′,i′(θ

+
0i, ϕ

+
0i, ω)

]
, and we decompose them on the basis set that

we constructed for the scattered fields using Eq. (4.27). Introducing the angular domains
Θ+

0i and Φ+
0i(θ

+
0i) in the 2D space defined by the angles θ+0i, ϕ

+
0i, which characterize the

spherical patches of S+
i once they are parametrized by those angles and substituting the

definition of VSHs in Eq. (4.27), we get the following formula for the elements of the
distributed T-matrix of the scatterer:

⟨αµz ν i ω| T̂(ω) |α′ µ′z ν
′ i′ ω⟩ =

i2µz+2+δαNγ−µzν(x
+
i )

2

ˆ
Θ+

0i

sin θ+0i dθ
+
0i

ˆ
Φ+

0i(θ
+
0i)

dϕ+0i e
−iµzϕ

+
0i×{(

x̂ cos θ+0i cosϕ
+
0i + ŷ cos θ+0i sinϕ

+
0i − ẑ sin θ+0i

)
·[

z
(1)
β,ν(x

+
i )τ

(1+δαN)
−µzν (θ+0i)E

sca
α′,µ′

zν
′,i′ − (−1)δαNz(1)α,ν(x

+
i )τ

(2−δαN)
−µzν (θ+0i)ZH

sca
α′,µ′

zν
′,i′

]
+(

−ix̂ sinϕ+0i + iŷ cosϕ+0i
)
·[

z
(1)
β,ν(x

+
i )τ

(2−δαN)
−µzν (θ+0i)E

sca
α′,µ′

zν
′,i′ − (−1)δαNz(1)α,ν(x

+
i )τ

(1+δαN)
−µzν (θ+0i)ZH

sca
α′,µ′

zν
′,i′

]}
, (4.28)

where x+i = k(ω)R+
i and we omitted the arguments (θ+0i, ϕ

+
0i, ω) of the fields for brevity.

118



4.4. Construction of the distributed T-matrix assisted by topological-skeleton-based
representations of the fields

Like this, we can fill each column of the distributed T-matrix by performing a single
simulation with a full-wave solver, where we illuminate the scatterer with the radiating
surface currents that correspond to some particular multipole centered at one of the N
centers of expansion and which are distributed over the corresponding spherical patches.
After we record the corresponding scattered fields, we can calculate numerically the above
integrals. Note that, inverting the system matrix of the full-wave solver (e.g. of the
FEM solver in frequency domain), allows for the efficient calculation of the response of
the scatterer upon multiple excitations, since then solving for different excitations simply
becomes a matrix-vector multiplication.

Finally, by introducing the column vectors A⃗inc(ω), A⃗sca(ω) containing the coefficients
of the incident and the scattered fields, Ainc

α,µzν,i
(ω),Asca

α,µzν,i
(ω), we arrive at the following

equation with the distributed T-matrix of the scatterer relating the coefficients of the
incident field with the coefficients of the scattered field:

A⃗sca(ω) = T̂(ω) · A⃗inc(ω). (4.29)

Let us now discuss another practical issue related with the above full-wave simulations
for the calculation of the distributed T-matrix of the scatterer. The radiating currents[
Jinc,e
α′,µ′

zν
′,i′(r0, ω),J

inc,m
α′,µ′

zν
′,i′(r0, ω)

]
typically radiate fields with rather large gradients in

their vicinity. Therefore, a very fine spatial discretization is needed in the vicinity of
those surface current distributions in the full-wave solver. Moreover, the subtraction of
the incident field from the total field to get the scattered field response over S+ may not
be numerically accurate for the same reason. Hence, it is typically more convenient to
solve directly for the scattered field, instead of the total field, with the full-wave solver.
This can be done by considering as a source the radiation of some effective extrinsic,
volumetric, electric and magnetic polarization density inside the domain of the scatterer.
Expressions for the latter can be derived by working as follows. First, let us write the
Maxwell’s equations that govern the incident and the total fields in our distributed T-
matrix simulations described above:

([
0 ∇×
∇× 0

]
− iω

[
−ε(ω)I 0

0 µ(ω)I

])
·

[
Einc

α′,µ′
zν

′,i′

Hinc
α′,µ′

zν
′,i′

]
=

[
Jinc,e
α′,µ′

zν
′,i′

−Jinc,m
α′,µ′

zν
′,i′

]
, (4.30)

([
0 ∇×
∇× 0

]
− iω

[
ε0 [I+ χee(r, ω)]

√
ε0µ0χem(r, ω)√

ε0µ0χme(r, ω) µ0 [I+ χmm(r, ω)]

])
·

[
Etot

α′,µ′
zν

′,i′

Htot
α′,µ′

zν
′,i′

]
=[

Jinc,e
α′,µ′

zν
′,i′

−Jinc,m
α′,µ′

zν
′,i′

]
, (4.31)

where ε(ω) and µ(ω) are the dielectric permittivity and magnetic permeability of the
background medium and χee(r, ω), χem(r, ω), χme(r, ω), χmm(r, ω), are the susceptibil-
ity tensors that characterize the scatterer, which we consider to be local for simplicity.
Subtracting the two equations above, results in the following Maxwell equations that the
scattered fields obey:

([
0 ∇×
∇× 0

]
− iω

[
−ε0 [I+ χee(r, ω)] −

√
ε0µ0χem(r, ω)√

ε0µ0χme(r, ω) µ0 [I+ χmm(r, ω)]

])
·

[
Esca

α′,µ′
zν

′,i′

Hsca
α′,µ′

zν
′,i′

]
=[

−iωPextr,e
α′,µ′

zν
′,i′

iωPextr,m
α′,µ′

zν
′,i′

]
, (4.32)
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with the effective extrinsic polarization densities induced inside the scatterer being given
by the following equation:

[
Pextr,e

α′,µ′
zν

′,i′

Pextr,m
α′,µ′

zν
′,i′

]
=

[
ε0 [I+ χee(r, ω)]− ε(ω)I

√
ε0µ0χem(r, ω)√

ε0µ0χme(r, ω) µ0 [I+ χmm(r, ω)]− µ(ω)I

]
·

[
Einc

α′,µ′
zν

′,i′

Hinc
α′,µ′

zν
′,i′

]
.

(4.33)

Note that the effective extrinsic polarization densities vanish outside the scatterer. They
can be injected inside the simulation once the fields Einc

α′,µ′
zν

′,i′ , H
inc
α′,µ′

zν
′,i′ are known. The

latter can be either calculated numerically with a full-wave solver that lets the currents
Jinc,e
α′,µ′

zν
′,i′ , J

inc,m
α′,µ′

zν
′,i′ propagate inside the background medium in the absence of the scat-

terer, or, alternatively, they can be retrieved semi-analytically by evaluating the integrals
of Eq. (4.23). Specifically, substituting there the expressions of Eqs. (4.24, 4.25), as well
as the expressions of the DGF and its curl (see Eqs. (8.55, 8.57) in [275]), we get the
following equations that are suitable for semi-analytical evaluations:

Einc
α,µzν,i(r, ω) = −(R+

i )
2γµzνe

iµzϕ

ˆ
Θ+

0i

sin θ+0i dθ
+
0i ×{

k z
(1)
β,ν(x

+
i )(−i)

δαM

[∑
p

iδppϕ τ (1+∆)
µzν (θ+0i)I

e
p,µz ,i(r, ω; θ

+
0i)

]
+

z(1)α,ν(x
+
i )(−i)

δαN

[∑
p

iδppϕ τ (2−∆)
µzν (θ+0i)I

m
p,µz ,i(r, ω; θ

+
0i)

]}
, (4.34)

Hinc
α,µzν,i(r, ω) = −

(R+
i )

2

iZ
γµzνe

iµzϕ

ˆ
Θ+

0i

sin θ+0i dθ
+
0i ×{

z
(1)
β,ν(x

+
i )(−i)

δαM

[∑
p

iδppϕ τ (1+∆)
µzν (θ+0i)I

m
p,µz ,i(r, ω; θ

+
0i)

]
+

k z(1)α,ν(x
+
i )(−i)

δαN

[∑
p

iδppϕ τ (2−∆)
µzν (θ+0i)I

e
p,µz ,i(r, ω; θ

+
0i)

]}
,(4.35)

where p is an index taking the values {pθ, pϕ} and ∆ = δαMδppϕ + δαNδppθ . Moreover, we
have defined the following integrals (in the cylindrical coordinate system (ρ, ϕ, z)):

Iepθ,µz ,i(r, ω; θ
+
0i) = e−iµzϕ

ˆ
Φ+

0i(θ
+
0i)

dϕ+0i e
iµzϕ

+
0i

↔
G(r− r+i , R

+
i r̂

+
i (θ

+
0i, ϕ

+
0i); k) · θ̂

+
0i =

ρ̂ϕ̂
ẑ

T

·
ˆ
Φ+

0i(θ
+
0i)

dϕ+0i e
−iµzΦ0

eikR

4πR

k2R2 + ikR− 1

k2R2

 cos θ+0i cosΦ0

− cos θ+0i sinΦ0

− sin θ+0i

+

3− 3ikR− k2R2

k2R4

[
cos θ+0i[ρ cosΦ0 − ρ+i cos(Φ0 − Φ)]− (z − z+i ) sin θ0i

]
×ρ− ρ+i cosΦ−R+

i sin θ+0i cosΦ0

ρ+i sinΦ +R+
i sin θ+0i sinΦ0

z − z+i −R
+
i cos θ+0i

 , (4.36)
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Iepϕ,µz ,i(r, ω; θ
+
0i) = e−iµzϕ

ˆ
Φ+

0i(θ
+
0i)

dϕ+0i e
iµzϕ

+
0i

↔
G(r− r+i , R

+
i r̂

+
i (θ

+
0i, ϕ

+
0i); k) · ϕ̂

+
0i =

ρ̂ϕ̂
ẑ

T

·
ˆ
Φ+

0i(θ
+
0i)

dϕ+0i e
−iµzΦ0

eikR

4πR

k2R2 + ikR− 1

k2R2

sinΦ0

cosΦ0

0

+

3− 3ikR− k2R2

k2R4

[
ρ cosΦ0 − ρ+i cos(Φ0 − Φ)

] ρ− ρ+i cosΦ−R+
i sin θ+0i cosΦ0

ρ+i sinΦ +R+
i sin θ+0i sinΦ0

z − z+i −R
+
i cos θ+0i

 , (4.37)

Impθ,µz ,i(r, ω; θ
+
0i) = e−iµzϕ

ˆ
Φ+

0i(θ
+
0i)

dϕ+0i e
iµzϕ

+
0i∇×

↔
G(r− r+i , R

+
i r̂

+
i (θ

+
0i, ϕ

+
0i); k) · θ̂

+
0i =

ρ̂ϕ̂
ẑ

T

·
ˆ
Φ+

0i(θ
+
0i)

dθ+0idϕ
+
0i e

−iµzΦ0
eikR

4πR
×

ikR− 1

R2

 (z − z+i ) cos θ
+
0i sinΦ0 − ρ+i sin θ+0i sinΦ−R

+
i sinΦ0

ρ sin θ+0i − ρ
+
i sin θ+0i cosΦ + (z − z+i ) cos θ

+
0i cosΦ0 −R+

i cosΦ0

ρ+i cos θ+0i sin(Φ0 − Φ)− ρ cos θ+0i sinΦ0

 , (4.38)

Impϕ,µz ,i(r, ω; θ
+
0i) = e−iµzϕ

ˆ
Φ+

0i(θ
+
0i)

dϕ+0i e
iµzϕ

+
0i∇×

↔
G(r− r+i , R

+
i r̂

+
i (θ

+
0i, ϕ

+
0i); k) · ϕ̂

+
0i =

ρ̂ϕ̂
ẑ

T

·
ˆ
Φ+

0i(θ
+
0i)

dθ+0idϕ
+
0i e

−iµzΦ0
eikR

4πR
×

ikR− 1

R2

 − cosΦ0

[
z − z+i −R

+
i cos θ+0i

]
sinΦ0

[
z − z+i −R

+
i cos θ+0i

]
ρ cosΦ0 − ρ+i cos(Φ0 − Φ)−R+

i sin θ+0i

 , (4.39)
where with (ρ+i , ϕ

+
i , z

+
i ) we denoted the cylindrical coordinates of the i−th center of

expansion located at r = r+i . Moreover, we defined the following quantities: Φ0 =
ϕ − ϕ+0i, Φ = ϕ − ϕ+i , Q = sin θ+0i[ρ cosΦ0 − ρ+i cos(Φ0 − Φ)] + (z − z+i ) cos θ

+
0i, and

R = |r− r+i −R
+
i r̂

+
i (θ

+
0i, ϕ

+
0i)| =

√
ρ2 + (ρ+i )

2 + (z − z+i )2 + (R+
i )

2 − 2R+
i Q− 2ρρ+i cosΦ.

We would like to note that for small values of R, i.e., for small optical distances between
the scatterer and the auxiliary surface S+, the convergence of the above integrals may
become slow. This is the reason why we introduced a minimum distance dmin between
S and S+ in the first place (see Fig. 4.8). In our exemplary study of a prolate spheroid
(which we will discuss in what follows) we implemented both methods of evaluating the
fields Einc

α′,µ′
zν

′,i′ , H
inc
α′,µ′

zν
′,i′ (semi-analytically and fully numerically) and we got equally

good results with roughly equal speed. However, that only involved the simulation of a
scatterer in two dimensions because of its rotational symmetry. Moreover, in this case,
the evaluation of the integrals in Eqs. (4.36-4.39) can be easily performed analytically for
the same reason.

Let us present now an example of the above described calculations of the distributed
T-matrix of a scatterer. The numerical simulations below have been performed with the
finite element method in frequency domain provided by COMSOL Multiphysics [261]. We
consider a prolate spheroid with an aspect ratio of six, made of a non-magnetic material
with a refractive index of 3.477. The scatterer is embedded in free space and its minor
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axis is ten times smaller than the free space wavelength λ. First of all we calculate the
discretized topological skeleton of such a scatterer by asking dmin to be at least 1% and
dmax to be at most 2% of the free space wavelength. We end up with sixteen centers of
multipolar expansions that are distributed along the rotational symmetry axis (z-axis)
and in a symmetric way with respect to z = 0. Note that the placement of those centers
of multipolar expansions is such that it abides to the spatial symmetries of the scatterer.
Placing the multipoles along the symmetry axis facilitates the construction of eigenstates
of the fields with well-defined angular momentum along the symmetry axis, whereas the
symmetric placement of the centers with respect to the z = 0 axis could facilitate the
construction of eigenstates of the fields with even and odd mirror symmetry with respect
to the z = 0 plane (e.g., if the multipoles are taken into symmetric couples of zero and π
phase difference, respectively).

Figure 4.9: First step of the calculation of the distributed T-matrix of a
prolate spheroid: Calculation of fields radiated in free space by the surface
currents of Eqs. (4.24, 4.25) that are distributed across the spherical zone
S+
i (white solid line). Specifically, we are interested in the fields inside the

scatterer, i.e., inside the surface S (denoted with a white dotted line), so
that, in the second step of our calculations, we plug them in Eq. (4.33)
to compute the extrinsic polarization densities, which will constitute the
effective sources for the scattered field calculations in the third step.

Once we have calculated the discretized topological skeleton of the scatterer, we start
constructing its distributed T-matrix, column by column. The procedure for the calcu-
lation of each column is split in four steps. First of all, each column of the T-matrix
corresponds to the excitation of the scatterer by some particular surface current distribu-
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tion Jinc,e
α′,µ′

zν
′,i′ , J

inc,m
α′,µ′

zν
′,i′ given by Eqs. (4.24, 4.25), distributed across a spherical zone S+

i .

In Fig. 4.9, we plot in logarithmic scale a cross-section (at the ϕ = 0 meridian plane) of
the (rotationally symmetric) fields radiated by those currents in free space for the case of
µ′z = 1, ν ′ = 2 and for the i′ = 5-th multipolar site (denoted with a magenta star in the
figure and located at z+i ≃ −0.307λ). The spherical zone S+

i (of radius R+
i ≃ 0.103λ and

of polar-angular span between θ+0i ≃ 72.25o and θ+0i ≃ 120.32o) that hosts the radiating
currents is plotted with a white solid curve, whereas the surface of the scatterer S is plot-
ted with a white dotted curve. Note the large field gradients in the vicinity of the current
distribution. Here, we are interested to record those radiating fields, Einc

α′,µ′
zν

′,i′ , H
inc
α′,µ′

zν
′,i′ ,

inside the volume of the scatterer, i.e., inside the white dotted surface S. The non-zero
separation distance dmin helps to avoid recording nearly-singular fields inside S, which con-
stitutes, numerically, a handicap. The computation of those radiating fields in free space,
inside S, constitutes the first step of our calculations. It can be performed with either
full-wave simulations (e.g., with a FEM, frequency domain solver). or semi-analytically
by computing the integrals of Eqs. (4.34, 4.35).

Figure 4.10: Third step of the calculation of the distributed T-matrix of
a prolate spheroid: Solving the Maxwell equations of Eq. (4.32) (with a
full-wave solver) for the excitation that corresponds to the surface-currents
radiation of Fig. 4.9. The discretized topological skeleton of the scatterer is
denoted with magenta stars, the surface of the scatterer S is plotted with
a white dotted curve and the auxiliary input/output surface S+ is plotted
with a white solid curve. In the last (fourth) step of the calculations, we
will record the scattered fields on S+ and evaluate the elements of a column
of the distributed T-matrix of the scatterer by making use of Eq. (4.28).
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In the second step of our distributed T-matrix calculations, we plug the computed
radiated fields, Einc

α′,µ′
zν

′,i′ , Hinc
α′,µ′

zν
′,i′ , from the first step inside Eq. (4.33) to compute

the extrinsic polarization densities Pextr,e
α′,µ′

zν
′,i′ , P

extr,m
α′,µ′

zν
′,i′ , which will act as sources for the

scattered field calculations in the third step that will follow (see Eq. (4.32)).
Next, in the third step of our distributed T-matrix calculations, we perform a simula-

tion with a full-wave solver to solve the Maxwell equations of Eq. (4.32). In Fig. 4.10, we
plot the solution that we got for the excitation that corresponds to the surface-currents
radiation of Fig. 4.9. The discretized topological skeleton of the scatterer with the sixteen
multipolar sites are illustrated with magenta stars.

Finally, in the last step, we want to decompose the scattered-field response upon the
quantized multipolar basis set that we constructed for the representation of an arbitrary
scattered field (see Eq. (4.26)). Performing this projection of the recorded scattered fields
on that Hilbert space of, essentially constitutes the calculation of the elements of the
correspoding column of the distributed T-matrix of the scatterer. This is done by recording
the scattered fields on each segment S+

i of the auxiliary input/output surface S+ (denoted
with a white solid curve in Fig. 4.10), and then by making use of Eq. (4.28), which involves
the evaluation of projection integrals for each segment S+

i .

Figure 4.11: Plot of the elements (in logarithmic scale) of the distributed
T-matrix of the prolate spheroid for µz = 1 and for νmax = 4. The separa-
tion of the matrix into 16× 16 blocks, corresponding to interactions among
the different multipolar sites of the topological skeleton can be observed.
The diagonal blocks correspond to ”local” interactions and the off-diagonal
blocks correspond to ”non-local” interactions. Moreover, each such block
contains the specific interaction among the 8 considered multipoles (4 TE
+ 4 TM) in ascending multipolar order.

Consequently, repeating those four steps that we just described for all considered
excitations, we can calculate entirely the distributed T-matrix of the scatterer column by
column. Note that, in our exemplary case of the prolate spheroid, the distributed T-matrix,
due to the rotational symmetry of the scatterer (with which the representations of the fields
that we constructed abide, as we discussed already), is block-diagonal with respect to the
angular momentum along the z-axis (µz), i.e., the axis of symmetry. In Fig. 4.11, we
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plot the calculated norm (in logarithmic scale) of the elements of the µz = 1 block of the
distributed T-matrix of our exemplary scatterer, for a truncation of the multipolar series at
νmax = 4. Note that, the particular block is further separated into 16×16 sub-blocks, which
correspond to the interactions among the 16 multipolar sites of our discretized topological
skeleton of the prolate spheroid. The diagonal blocks correspond to ”local” interactions,
whereas the off-diagonal blocks correspond to ”non-local” interactions. Furthermore, each
of those sub-blocks contains multipolar interactions among the 8 considered multipoles
(4 TE + 4 TM, for νmax = 4). The sub-blocks are ordered with ascending z−coordinate
of the center of expansion z+i and the multipoles within each sub-block are ordered in
ascending multipolar order (with alternating TE, TM multipoles).

In Fig. 4.11, we can observe that the strength of the multipolar transitions diminishes
rapidly with increasing multipolar order. This is because the radii R+

i of the surface
patches S+

i are optically quite small and, therefore, only the lowest multipolar orders
are enough to represent the propagating part of the respective radiation, with the higher
multi-polar orders contributing only to the representation of the evanescent near-fields.
Moreover, we can observe that the multipolar transitions between multipoles that are
located closer to the z = 0 plane are generally stronger, whereas the multipolar transitions
between multipoles that are located near the tips of the prolate spheroid are generally
weaker by orders of magnitude.

Next, having calculated the T-matrix of the exemplary scatterer, let us also demon-
strate a practical example of how it can be used to model the response of the scatterer
upon some arbitrary illuminating field. Specifically, let us consider the simple case of
the excitation of the scatterer by a monochromatic (of frequency ω0), circularly polarized
plane wave propagating along the positive z−direction:

Einc(r, ω0) =
(
ρ̂+ iϕ̂

)
ei(ω0z/c0+ϕ). (4.40)

Note that the above illumination constitutes a field of well-defined helicity and angular
momentum λ = µz = 1. Therefore, only the µz = 1 block of the distributed T-matrix
of the rotationally symmetric scatterer is receiving an input in this case. Specifically, the
expansion of the incident field of Eq. (4.40) into the representation of Eq. (4.21) is done
by using Eq. (2.152), resulting in the following amplitudes:

Ainc
α,µzν,i(ω0) = δµz1 4πγ−1ν i

ν+1eiω0z
+
i /c0 . (4.41)

Note that it is possible to calculate those complex coefficients for arbitrarilly complex
excitations, and, once we have the distributed T-matrix of the scatterer, getting its scat-
tering response (represented by the scattered field coefficients) becomes a simple matter
of vector-matrix multiplication (see Eq. (4.29)).

In Fig. 4.12a, we plot the scattered field upon such excitation, as it was recorded by a
full-wave solver, and in Fig. 4.12b, we plot the logarithmic relative error E(r, ω0), defined
in Eq. (4.20), to compare the numerical results with the semi-analytical results obtained
with the distributed T-matrix method, i.e., after making use of Eqs. (4.41, 4.29) (together
with the spatial representations of the radiating VSHs from Section 2.6) into Eq. (4.26)
to reconstruct the scattered fields. We observe an excellent agreement between the two
results. Even for a low-dimensional representation of νmax = 4 and N = 16 points in the
discretized topological skeleton, we were able to transcend the problem of the Rayleigh
Hypothesis and push the boundaries of validity of the reconstructed fields rather close to
the surface of the scatterer S. Note that, at the limit of νmax → ∞ a fully convergent
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Figure 4.12: Exemplary comparison of the T-matrix method with a full-
wave solver for the case of an illumination of the prolate spheroid by a
circularly polarized plane wave propagating along the positive z-axis: a)
The scattered fields as they were calculated by the full-wave solver. b) Map
of the logarithmic relative error, E , between the scattered fields obtained
by the full-wave solver and the ones obtained by the distributed T-matrix
method.

representation of the fields is expected to be obtained everywhere outside the auxiliary
input/output surface S+ (denoted by a white solid curve in the figure).

Thus, in Fig. 4.13, we demonstrate the rate of convergence of the series expansion
of the near-fields in our exemplary case. Specifically, we plot maps of the logarithmic
relative errors E(r, ω0) for five cases of νmax = {2, 4, 8, 16, 24}. We observe that, whereas
the convergence of the multipolar series is quite fast for intermediate (even relatively
small) distances between the observation point and the scatterer, this is not the case as
we approach rather close to the auxiliary surface S+. There, the evanescent fields are
stronger and the convergence of the multipolar series becomes quite slow, i.e., a large
number of multipoles are needed for an accurate representation of the fields.

Finally, let us note that, even though the auxiliary input/output surface S+ in our
analysis above was considered to be the union of segments of spherical surfaces S+

i , this
shall not strictly be the case. This choice was made because it somehow simplifies the
theoretical analysis that we presented above. However, proceeding in a similar way, the
formulas in this section can be generalized for the general case of the auxiliary surface
S+ being an arbitrary surface fully enclosing the scatterer (and its bounding surface S).
This approach may be more convenient depending on the actual implementation of the
algorithm. Nevertheless, such generalized auxiliary surfaces S+ again need to be somehow
properly divided into N parts S+

i , with each part being associated with a particular center
of expansion in the discretized topological skeleton of the scatterer. Specifically, each S+

i

shall contain those parts of S+ that are closer to the i−th center of expansion (whose
positions also need to be optimized). Note, though, that, even though the auxiliary surface
is not selected to be a union of spherical segments, the region of validity of a representation
of the scattered fields in terms of such a discretized distribution of multipolar sources inside
the scatterer shall, still, always be bounded by such a union of spherical segments enclosing
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Figure 4.13: Illustration of the rate of convergence of the series expansion of
the near-fields at the close vicinity of the prolate spheroid. At the limit of
νmax →∞ we expect a full convergence of the series everywhere outside the
auxiliary input/output surface S+ (denoted by a white solid curve). Note
that a conventional representation of the fields in terms of a localized series
of VSHs located at the center of the spheroid is not valid inside the sphere
passing from the two foci of the spheroid.

the scatterer. Finally, note that the process of discretized skeletonization of scatterers of
arbitrary geometry can be performed with such methods as the ones presented, e.g., in
Ref. [289, 290] (see for example the first figure of Ref. [289], which can be adjusted from
the physics point of view to generate discretized topological skeletons of scatterers of
arbitrary geometry with varying dmax). For the simple case of prolate spheroids that
we demonstrated in this section, this we could simply do this discretized skeletonization
semi-analytically.

4.5 Generalizing multiple light scattering calculations for
the case of distributed T-matrices

In this section, we will briefly discuss the generalization of the conventional multiple light
scattering method (see Section 5.9 in Ref. [257]) for the case of distributed T-matrices,
which transcend the problem of the Rayleigh Hypothesis and are, therefore, suitable for
an arbitrary multiple light scattering scenario, even if it involves strong near-field coupling
phenomena. There, the modeling of the multi-scattering problem with the conventional
T-matrix would typically fail due to the complications that arise from the Rayleigh Hy-
pothesis.

Here we consider the case of light interaction with Ns stationary scatterers of arbitrary
shape that do not touch each other. The scatterers are embedded inside a stationary,
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homogeneous, and isotropic medium characterized by some wavenumber k(ω) and wave-
impedance Z(ω). As long as the scatterers do not touch each other, there exists some
distributed T-matrix of large enough dimensionality that overcomes the problem of the
Rayleigh Hypothesis in that it allows to model the near-field coupling between neighboring
scatterers.

In what follows, we will denote with T̂j the distributed T-matrix of the j−th scat-
terer, and, as a convention, we will consider that the multipoles of the representations of
each distributed T-matrix are always with well-defined angular momentum with respect
to the +ẑ−axis of the global coordinate system, i.e., they are all commonly oriented. As
we will see, the requirement of such common orientation facilitates the translation of the
scattered fields by using the translation addition theorem of VSHs, without applying an
extra rotation of the fields. Moreover, for each scatterer, we consider a local coordinate
system attached specifically to it. The local coordinate system is parallel to the global co-
ordinate system. The origin of the local coordinate system of the j−th scatterer is located
at r = rOj . rOj can be an arbitrarily selected point, but, as we will see in the following,
choosing it to be the center of the minimal sphere circumscribing the scatterer will pro-
vide minimal auxiliary local representations of the fields, which will assist their efficient
translation. Furthermore, we consider that the i−th center of multipolar expansions of the
topological skeleton of the j−th scatterer is located at r = rj,i and the number of those
centers are Nj . Generally, we consider that the multipolar series for the i−th center of
expansion of the j−th scatterer are truncated at νmax,j,i and, therefore, the dimensionality

of each distributed T-matrix, T̂j , is Dj = 2
∑Nj

i=1 νmax,j,i(νmax,j,i + 2).
Before moving to the multi-scattering calculations, let us note that, quite frequently in

multi-scattering phenomena, we have the case that the scatterers are randomly oriented.
A strength of the T-matrix method is that we can analytically obtain the T-matrix of
a rotated version of a given scatterer based on the known T-matrix of the non-rotated
scatterer. For example, let us consider a first scatterer with a distributed T-matrix T̂j .
The T-matrix of a scatterer that is a rotated version of the first scatterer, and is specifically
obtained by rotating the first scatterer with a z− y− z rotation through the Euler angles
(αr, βr, γr) with respect to the scatterer’s initial local coordinate system, is given by:

T̂rot
j = D̂(αr, βr, γr) · T̂j · D̂(−γr,−βr,−αr), (4.42)

where the square rotation matrix D̂(αr, βr, γr) is associated with the Wigner-D matrix (see
Appendices B,C of Ref. [257]). Its elements are given by:

⟨αµz ν i| D̂(αr, βr, γr) |α′ µ′z ν
′ i′⟩ = δαα′δνν′δii′

× e−i(µ′
zγr+µzαr) (−1)

(µ′
z+µz)·δµ′

z<µz

2
f+g
2

[
h!(f + g + h)!

(f + h)!(g + h)!

] 1
2

× (1− cosβr)
f
2 (1 + cosβr)

g
2P

(f,g)
h (cosβr), (4.43)

where f = |µz − µ′z| , g = |µz + µ′z| , h = ν − 1
2(f + g) , and P

(f,g)
h (x) is the Jacobi poly-

nomial of degree h. Importantly, note that the distributed T-matrices T̂rot
j and T̂j , have

their multipoles quantized with respect to the same orientation, i.e., that of the +ẑ−axis of
the global coordinate system. They also have the same local coordinate system centered at
r = rOj . However, note that the locations of the centers of multipolar expansions of their
discretized topological skeletons differ. Specifically, the centers of expansion corresponding
to T̂rot

j are given by:
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rrotj,i = rOj +R(αr, βr, γr) · (rj,i − rO,j) , (4.44)

where R(αr, βr, γr) is a 3×3 matrix that rotates vectors through the Euler angles αr, βr, γr
following a z − y − z rotation.

Next, we can move on establishing the multi-scattering problem in the framework of the
distributed T-matrix of the scatterers. First, let us consider some arbitrary background
field illuminating the aggregate of scatterers. The external illumination is expanded into
a series of regular VSHs with respect to each center of expansion. Following the vector
notation introduced in Eq. (4.29), we consider the vector A⃗inc,0

j containing the complex
coefficients representing the incident field with respect to the Hilbert space of the j−th
scatterer (see Eq. (4.22)).

The cardinal point of the multi-scattering calculations is the fact that the effective
incident field perceived by each scatterer is equal to the background incident field plus
the scattered fields of all the rest of the scatterers, both represented with respect to the
Hilbert space of the incident fields of that particular scatterer, i.e., as a series of regular
VSHs attached to the centers of expansion of the discretized topological skeleton of that
particular scatterer. Expressing the above sentence into a mathematical formula, gives us
the following equation:

A⃗sca
j = T̂j ·

A⃗inc,0
j +

∑
j′ ̸=j

A⃗inc,j′

j

 , (4.45)

with A⃗sca
j being the vector containing the complex coefficients representing the scattered

field of the j−th scatterer with respect to its own Hilbert space and A⃗inc,j′

j is a vector
containing the complex coefficients representing the scattered field of the j′−th scatterer
with respect to the Hilbert space of the incident fields of the j−th scatterer. The above
equation is the master equation of the multi-scattering problem. What is left so that
we can solve the multi-scattering problem, is to relate the vectors A⃗sca

j′ with the vectors

A⃗inc,j′

j . This is done by introducing a generalized translation matrix T̂ j′→j that transforms
between the two:

A⃗inc,j′

j = T̂ j′→j · A⃗sca
j′ . (4.46)

We define those generalized translation matrices as:

T̂ j′→j =


T̂ nl→nl

j′→j , for
∣∣∣rOj − rOj′

∣∣∣ ≤ Rcirc
j +Rcirc

j′ ,

T̂ l→nl
j · T̂ l→l

j′→j · T̂
nl→l
j′ , for

∣∣∣rOj − rOj′

∣∣∣ > Rcirc
j +Rcirc

j′ ,

(4.47)

where with Rcirc
j we denote the minimal radius of the sphere that is centered at r = rOj

and that circumscribes the spherical scatterer. That is to say that the two branches of the
above equation correspond to the cases where those circumscribing spheres intersect or do
not intersect each other. The first branch is applicable to the second case as well, but, as we
will discuss in what follows, the evaluation of the matrix with the second branch is typically
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quite more efficient. Let us first define the new translation matrices that we introduced
in the two branches of the above equation. Note that the superscripts ”nl” and ”l” in
those matrices refer to ”non-local” and ”local” representations of the respective scattered
fields. ”Non-local” corresponds to representations with multiple centers of multipolar
expansions, as is the case with the distributed T-matrices, whereas ”local” corresponds
to representations with a single center of multipolar expansions, as is the case with the
conventional T-matrices.

The matrix T̂ nl→nl
j′→j in the first branch, which corresponds to the case of overlapping

circumscribing spheres, translates directly the non-locally represented scattered fields from
the j′−th scatterer to the non-locally represented incident fields of the j−th scattering by
simply making use of the translation addition theorem for VSHs. Specifically, we have:

⟨αµz ν i| T̂
nl→nl
j′→j |α′ µ′z ν

′ i′⟩ = T
α,µzν;(3)
α′,µ′

zν
′ (rj,i − rj′,i′ ; k). (4.48)

On the other hand, in the second branch, when the circumscribing spheres do not over-

lap, we perform the translation in three steps. With the first matrix T̂ nl→l
j′ we translate the

non-locally represented radiating fields of the j′−th scatterer to a local representation of

the radiating fields of the same scatterer. Next, with the second matrix T̂ l→l
j′→j we translate

the locally represented radiating fields of the j′−th scatterer to a local representation of

the incident fields of the j−th scatterer. Finally, with the last matrix T̂ l→nl
j we translate

the locally represented incident fields of the j−th scatterer to a non-local representation
of the incident fields of the same scatterer. Note that this three-step approach in the
second branch shall typically be quite more efficient than that of the first branch, because

the matrix T̂ l→l
j′→j typically has significantly smaller dimensions than the matrix T̂ nl→nl

j′→j .
The dimensionality of non-local representations of the fields is typically quite larger than

the local one. Hence, we only need to calculate the matrices T̂ nl→l
j′ , T̂ l→nl

j once for each

scatterer, and then only calculate the small matrices T̂ l→l
j′→j for each pair of interacting

scatterers. Due to the problem of the Rayleigh Hypothesis, we are not allowed to do this
for the case of the first branch where the circumscribing spheres of the two interacting
scatterers overlap. The rest three matrices of the second branch are defined as follows:

⟨αµz ν| T̂
nl→l
j′ |α′ µ′z ν

′ i′⟩ = T
α,µzν;(1)
α′,µ′

zν
′ (rOj′ − rj′,i′ ; k), (4.49)

⟨αµz ν| T̂
l→l
j′→j |α′ µ′z ν

′⟩ = T
α,µzν;(3)
α′,µ′

zν
′ (rOj − rOj′ ; k), (4.50)

⟨αµz ν i| T̂
l→nl
j |α′ µ′z ν

′⟩ = T
α,µzν;(1)
α′,µ′

zν
′ (rj,i − rOj′ ; k), (4.51)

with the translation coefficients of the translation addition theorem for VSHs being defined
as (see Appendix C of Ref. [257] or Eq. (71) in Ref. [291]):

T
α,µzν;(ι)
α′,µ′

zν
′ (r; k) = iν−ν′+2µz+2

√
(2ν + 1)(2ν ′ + 1) ei(µ

′
z−µz)ϕ

ν+ν′−1+δαα′∑
w=[|ν−ν′|+1−δαα′ ,2]

iw ×

√
(w − µ′z + µz)!

(w + µ′z − µz)!
Cν,ν′,w
−µz ,µ′

z ,µ
′
z−µz

Cν,ν′,w
−1,1,0 z

(ι)
M,w(kr)P

µ′
z−µz

w (cosθ) (4.52)

where (r, θ, ϕ) are the spherical coordinates of the vector r and Cj1,j2,J
m1,m2,m1+m2

are the
Clebsch-Gordan coefficients. The last two functions are the generalized spherical Bessel
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functions and the associated legendre functions that we have already defined before. Note
that the summation over w is conducted with a step interval of 2.

Finally, by substituting Eq. (4.46) to the master equation 4.45 and repeating this for
all scatterers, we readily get a linear system of equations with unknowns A⃗sca

j and knowns

A⃗inc,0
j whose solution reads as follows:


A⃗sca

1

A⃗sca
2
...

A⃗sca
Ns

 =


Î −T̂1 · T̂ 2→1 · · · −T̂1 · T̂ Ns→1

−T̂2 · T̂ 1→2 Î · · · −T̂2 · T̂ Ns→2
...

...
. . .

...

−T̂Ns · T̂ 1→Ns −T̂Ns · T̂ 2→Ns · · · Î


−1

·


T̂1 · A⃗inc,0

1

T̂2 · A⃗inc,0
2

...

T̂Ns · A⃗
inc,0
Ns


(4.53)

Let us present now a simple, yet illustrative, numerical example of the above discussed
multiple scattering calculations within the introduced framework of the distributed T-
matrix formalism. Our aim here is to illustrate the fundamental advantages of the latter
formalism in comparison with the traditional T-matrix representations based on series of
localized VSHs. To that end, we consider the simple case of multiple scattering between
a dimer of prolate ellipsoids at close proximity to each other, excited by a dipolar emitter
placed at the center of the small gap between them. Specifically, the two ellipsoids are
considered to be identical to that of the numerical example of the previous section, where
their distributed T-matrix has been already calculated. They are embedded in free space,
their major axis is parallel to the z-axis of the global coordinate system and their centers
are located at the positions with coordinates (x, y, z) = (±λ/20, 0, 0), i.e., the gap between
them is considered to be 10% of the free space wavelength. At the center of the gap
of the dimer, i.e., at the origin of the global coordinate system, we place a magnetic
dipole moment of unitary strength that is directed towards the +ŷ direction and excites
electromagnetically the dimer.

The representation of the field radiated by dipolar emitters in terms of localized series
of radiating VSHs is given by Eq. (5.13) and by making use of the translation matrix of
Eq. (4.50) we can calculate the vectors with the amplitudes of the incident field, A⃗inc,0

j .
Then we can use those to solve the linear system of equations of Eq. (4.53) that governs
the multiple scattering phenomena taking place.

It is instructive to note that it is numerically beneficial to exploit the symmetries of the
system before solving it. Specifically, our system belongs to the D2h point group, which
has 8 irreducible representations characterized by the 8 different combinations of even and
odd mirror symmetries with respect to the yOz, xOz and xOy mirror symmetry planes.
That is to say, we can use a proper unitary matrix to perform a symmetry transformation
to the system of equations of Eq. (4.53) and bring it to a block diagonal form, with 8
blocks, each one corresponding to one of the irreducible representations of the D2h point
group. This is simply done by considering the mirror symmetries of the VSHs, for which
the reader can refer to Eqs. (5.26-5.28). Furthermore, our excitation with the ŷ-polarized
magnetic dipole, having an odd mirror symmetry with respect to the yOz and xOy planes
and an even mirror symmetry with respect to the xOz plane, purely belongs to the B2g

irreducible representation of the point group. Therefore, the dimensionality of the system
of equations to be solved for our considered scenario can be effectively 8-fold reduced,
which also provides us faster with numerically more stable and accurate results.

In Fig. 4.14, we perform a comparison between the scattered near fields, as they are
obtained by full wave simulations with a finite element solver and by our semi-analytical
multiple scattering method. The three rows of the figure correspond to cross sections of
the xOz, yOz and xOy planes respectively. Due to the symmetries of the solutions, we
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Figure 4.14: Exemplary comparison of the distributed T-matrix method
with a full-wave solver for the case of an illumination of a dimer of prolate
spheroids by a ŷ-polarized magnetic dipole emitter placed at the center of
the gap of the dimer, at the origin of the global coordinate system: a) The
scattered fields, as they were calculated by the full-wave solver. b) Maps
of the logarithmic relative error, E , between the scattered fields obtained
by the full-wave solver and the ones obtained by the distributed T-matrix
method for three different values of νmax. Due to the existing symmetries,
the plots focus only on the first quadrant of the xOz, yOz and xOy planes.

only plot them for simplicity over the first quadrant of the planes. The first column of the
figure, i.e., Fig. 4.14a, corresponds to the reference scattered field as it was calculated by
the full wave solver. The magenta vectors symbolize the magnetic dipole emitter exciting
the dimer of ellipsoids.

In Fig. 4.14b, we plot the logarithmic relative error, E (see Eq. (4.20)), between the
semi-analytical and the numerical solutions for three different multipolar orders of trun-
cation: νmax = {2, 4, 14}. For the case of νmax=2 we clearly observe that more multipolar
terms are needed to accurately solve the considered multiple scattering problem, as the
relative error of the near fields remains mainly above 10%. On the other hand, we see
that a truncation multipolar order of νmax=4 is already enough to mostly give decently
accurate results with around 1%-3% of relative error in the near fields. However, there
are still regions, especially inside the gap of the dimer that hosts strong near fields, where
quite significant errors appear. Finally, for νmax=14, we can see that the solution has fully
converged almost everywhere and the near fields are represented with accuracy well below
the 1% of relative error even inside the problematic region of the narrow gap.
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It is important to note that the narrower the gap and the closer the emitter approaches
the scatterers, the higher is the number of multipoles that are needed in the representations
to get a convergent solution of the near fields. However, as long as the singularity of the
incident field of the emitter as well as the singularities of the analytic continuation of the
scattered fields of the neighboring scatterer do not intrude inside the S+ closed surface
that encloses each scatterer (which in the figure is denoted by a white line), we always
expect to eventually have a convergent solution as the multipolar order of truncation, and
therefore also the dimensionality of the system, gets increased.

Hence, evidently, the distributed T-matrix method is proven to be rather useful in the
efficient semi-analytical treatment of problems related to, e.g., Purcell effect calculations
for nanoantennas comprised by oligomers of non-spherical particles [292–295], or, gener-
ally, calculations of the optical response of complex multi-scattering systems comprised of
aggregates of non-spherical particles [56, 57, 296].

Figure 4.15: Same as Fig. 4.14b, but for the case where the semi-analytical
T-matrix calculations are performed with the traditional formalism that is
based on localized multipoles at the center of the scatterers (denoted with
magenta stars). In contrast to Fig. 4.14, this figure demonstrates the failure
of the traditional method to provide convergent results in such a multiple
scattering scenario, due to the topology of the singularities of the involved
fields (and their analytic continuation).

Next, we want to discuss the fundamental advantages of formulating the T-matrix
method in its distributed sources variation that we introduced in this chapter, when it
comes to the modeling of such complex multiple scattering phenomena like the ones that
we consider as an example in this section. To that end, considering the same multiple
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scattering example as before, in Fig. 4.15 we perform the same comparison as we did in
Fig. 4.14b, plotting maps of the logarithmic relative errors of the near fields, but now for
the case of ordinary T-matrix calculations where the fields are represented by localized
series of VSHs at the center of each scatterer (denoted by magenta stars in the figure). We
provide such maps for four different multipolar orders of truncation: νmax = {4, 8, 14, 20}.
Note that, by making use of the translation matrix given by Eq. (4.49), it is straightforward
to obtain the ordinary T-matrix of the ellipsoids from their already previously calculated
distributed T-matrix.

It can be observed that for increasing νmax the series representation of the scattered
fields fails to converge and we do not get stable results. In fact, quite the contrary happens:
we get errors that are orders of magnitude larger than the actual scattered fields, and
after νmax=20 the series even diverge everywhere. Note that the problem appears to be
an incorrect evaluation of the multipolar scattering amplitudes and is not related with the
particular representation of the scattered fields, since the latter, as long as the multipolar
scattering amplitudes are accurately calculated, should still provide correct fields at the
exterior of the spheres circumscribing the singularities of the analytic continuation of the
scattered fields, even if it fails to do so at their interior. We clearly do not observe such a
behavior for increasing νmax in Fig. 4.15.

The problem here seems to be that the effective incident field for each scatterer, i.e.,
the background field of the emitter together with the scattered field from the neighboring
scatterer, is characterized by the presence of singularities within the sphere that circum-
scribes the scatterer. The field radiated by the emitter induces a singularity at the origin
of the global coordinate system, whereas there are also further singularities in the ana-
lytic continuation of the scattered field of the neighboring scatterer in its interior. Apart
of the well-known singularities at the foci of the ellipsoids, there exist also other image-
singularities induced by the presence of the emitter and the neighboring scatterer at the
vicinity of the ellipsoids [138]. Therefore, as a result, the effective incident field for each
scatterer cannot be expanded into a convergent series of localized regular VSHs that is
valid everywhere inside the circumscribing sphere of each scatterer, which renders the
ordinary T-matrix formulation unable to solve the multiple scattering problem.

As we already discussed and demonstrated before, the distributed T-matrix formula-
tion provides an efficient solution to such problems. Note that, quite bizarrely, it has been
suggested in Ref. [131] that a recipe to overcome such problems with ordinary T-matrix
multiple scattering calculations is to employ numerically expensive quarduple precision
and use a rather large multipolar order of truncation. Other such alternative attempts for
solutions involve those presented in Refs. [276–279].

Before closing this section, let us also discuss the case of multiple scattering phenomena
within an infinite lattice (either 1D or 2D or 3D) [59]. Specifically, let us consider the
previous aggregate of Ns scatterers comprising a unit cell of such an arbitrary infinite
lattice of some discrete translational symmetry in space. The master equation of the
multi-scattering system in this case reads as follows:

A⃗sca
j,u = T̂j ·

A⃗inc,0
j,u +

∑
j′,u′

(j′,u′ )̸=(j,u)

A⃗inc,j′,u′

j,u

 , (4.54)

where we introduced a further index u to refer to the u−th unit cell of the lattice. Next,
in analogy to Eq. (4.46), we write

A⃗inc,j′,u′

j,u = T̂ j′,u′→j,u · A⃗sca
j′,u′ . (4.55)
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Furthermore, since our system possesses some discrete translation symmetry in space
it is instructive to introduce a spatial Floquet frequency vector K spanning the first
Brillouin zone of the reciprocal lattice. Thus, if we further consider that we excite the
lattice with some field of well-defined K, A⃗inc,0

j,u (K) (for which we have the symmetry

A⃗inc,0
j,u′ (K) = eiK·Ru,u′ A⃗inc,0

j,u (K)), we additionally have that:

A⃗sca
j′,u′(K) = eiK·Ru,u′ A⃗sca

j′,u(K) , (4.56)

where the vectors Ru,u′ span the Bravais lattice for some fixed, arbitrary u and varying
u′. Combining the above equations, and defining the following generalized lattice-sum
translation matrices:

T̂ lattice
j′→j (K) =


∑
u′ ̸=u

eiK·Ru,u′ T̂ j′,u′→j,u, for j′ = j,∑
u′
eiK·Ru,u′ T̂ j′,u′→j,u, for j′ ̸= j,

, (4.57)

we finally get the following solution for the linear system of equations:


A⃗sca

1,u(K)

A⃗sca
2,u(K)
...

A⃗sca
Ns,u

(K)

 =


Î− T̂1 · T̂

lattice
1→1 (K) −T̂1 · T̂

lattice
2→1 (K) · · · −T̂1 · T̂

lattice
Ns→1(K)

−T̂2 · T̂
lattice
1→2 (K) Î− T̂2 · T̂

lattice
2→2 (K) · · · −T̂2 · T̂

lattice
Ns→2(K)

...
...

. . .
...

−T̂Ns · T̂
lattice
1→Ns

(K) −T̂Ns · T̂
lattice
2→Ns

(K) · · · Î− T̂Ns · T̂
lattice
Ns→Ns

(K)


−1

·


T̂1 · A⃗inc,0

1,u (K)

T̂2 · A⃗inc,0
2,u (K)
...

T̂Ns · A⃗
inc,0
Ns,u

(K)

 . (4.58)

Similarly as before, we have the following definition of the new translation matrices:

T̂ j′,u′→j,u =


T̂ nl→nl

j′,u′→j,u, for
∣∣∣rOj,u − rOj′,u −Ru,u′

∣∣∣ ≤ Rcirc
j +Rcirc

j′ ,

T̂ l→nl
j · T̂ l→l

j′,u′→j,u · T̂
nl→l
j′ , for

∣∣∣rOj,u − rOj′,u −Ru,u′

∣∣∣ > Rcirc
j +Rcirc

j′ ,

(4.59)

with rOj,u denoting the origin of the local coordinate system of the j−th scatterer at the
u−th unit cell of the lattice. Moreover, we define the following matrices:

⟨αµz ν i| T̂
nl→nl
j′,u′→j,u |α′ µ′z ν

′ i′⟩ = T
α,µzν;(3)
α′,µ′

zν
′ (rj,i − rj′,i′ −Ru,u′ ; k), (4.60)

⟨αµz ν| T̂
l→l
j′,u′→j,u |α′ µ′z ν

′⟩ = T
α,µzν;(3)
α′,µ′

zν
′ (rOj,u − rOj′,u′ −Ru,u′ ; k), (4.61)

Finally, what is left, is to sketch a strategy for the efficient calculation of the infinite
lattice sums in Eq. (4.57). This can be done by working in the following way: Let us split
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the infinite sums in two parts. Specifically, let us consider that u′ = u′nl + u′l, where, on
the one hand, u′nl spans all the u

′ for which a non-local interaction scheme is required, i.e.,
for which the first branch of Eq. (4.59) is picked, and, on the other hand, u′l spans all the
u′ for which a local interaction scheme is preferred, i.e., for which the second branch of
Eq. (4.59) is picked. Then Eq. (4.57) can take the following form:

T̂ lattice
j′→j (K) =



[ ∑
u′
nl ̸=u

e
iK·Ru,u′

nl T̂ j′,u′
nl→j,u

]
+

[ ∑
u′
l ̸=u

e
iK·Ru,u′

l T̂ j′,u′
l→j,u

]
, for j′ = j,

[∑
u′
nl

e
iK·Ru,u′

nl T̂ j′,u′
nl→j,u

]
+

[∑
u′
l

e
iK·Ru,u′

l T̂ j′,u′
l→j,u

]
, for j′ ̸= j,

(4.62)

where the first of the two sums, i.e., the non-local ones, shall only contain a few terms
and can be evaluated directly using the first branch of Eq. (4.59) together with Eq. (4.60).
The second local sums are the ones that are infinite, but with some missing lattice terms,
though. We can compensate for them, by adding and subtracting the missing non-local
lattice terms to result in trully infinite sums. We proceed as follows by susbstituting with
the second branch of Eq. (4.59):


∑
u′
l ̸=u

e
iK·Ru,u′

l T̂ j′,u′
l→j,u∑

u′
l

e
iK·Ru,u′

l T̂ j′,u′
l→j,u

 =


T̂ l→nl

j ·

( ∑
u′ ̸=u

eiK·Ru,u′ T̂ l→l
j′,u′→j,u

)
· T̂ nl→l

j′

T̂ l→nl
j ·

(∑
u′
eiK·Ru,u′ T̂ l→l

j′,u′→j,u

)
· T̂ nl→l

j′



−


T̂ l→nl

j ·

( ∑
u′
nl ̸=u

e
iK·Ru,u′

nl T̂ l→l
j′,u′

nl→j,u

)
· T̂ nl→l

j′

T̂ l→nl
j ·

(∑
u′
nl

e
iK·Ru,u′

nl T̂ l→l
j′,u′

nl→j,u

)
· T̂ nl→l

j′

 . (4.63)

Note that now the lattice sums are taking place inside the parenthesis and involve the
local-to-local translation matrices. The second term that sums over u′nl again typically
contains a small number of terms and can be straightforwardly calculated by making use of
Eq. (4.61). The first term with the infinite lattice sums over u′ can be efficiently calculated
by employing the Ewald summation method. In Ref. [297], the Ewald summations for such
infinite lattice sums of spherical harmonics has been evaluated for arbitrary multipolar
lattices. Moreover, in this work, generalized Ewald summation formulas are provided also
for the case of lattice sums for arbitrarily displaced sites of summation, which corresponds
to the case of j′ ̸= j in our analysis.

Finally, before closing this section, let us emphasize that special care needs to be
taken so that the auxiliary local representations of the fields, which we have introduced to
facilitate the translations of the fields in this section, shall have large enough dimensionality
(always with respect to the optical size of the circumscribing sphere of their respective
scatterer), so that the calculated translation matrices are accurately represented.
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5 — On the directional coupling of emit-
ters into waveguides: the symme-
tries of the system’s T-matrix and
the role of the transverse angular
momentum

5.1 Introduction

In this chapter, we study the directional coupling of chiral emitters into nearby waveguides,
and we probe whether such a setup can be used for chiral sensing. First, in the second
section, we introduce a representation of chiral emissions in terms of helical radiating
VSHs. We specifically discuss the common case of dipolar emitters and do their mapping
on our considered basis for the emissions. In the third section, we construct the T-matrix
of the considered nanophotonic system and introduce as an observable the directionality of
the coupling of the emitted light to the waveguide. Furthermore, we present our numerical
results on directionality from an exemplary system. Our results on directionality are
characterized by some symmetries with respect to the eigenvalues of the emissions, and, in
the fourth section, we conduct a symmetry analysis of the T-matrix of the system to unveil
its implications on the symmetries that we observe in the observed directionalities of our
numerical experiments. The role of the transverse angular momentum of the emissions is
studied in the last section. There, we identify a strong connection between the transverse
angular momentum and the directionality of the evanescent part of the transverse angular
spectrum responsible for the coupling of the emissions to the waveguide. Finally, we also
discuss under this prism the coupling efficiency of the emissions, and we conduct a couple
of extra numerical experiments with more challenging systems to check (quite successfully)
the robustness of the observed phenomena of directional coupling.

5.2 A Hilbert space for chiral emissions

In this section, we introduce a Hilbert space to expand the electromagnetic radiation from
general localized emitters. Specifically, since we are also interested to study the chirality
of the emissions, we will introduce an appropriate basis of well-defined helicity. Finally,
we will focus our discussion on dipolar emissions, which are prevalent for emitters of small
optical size.

Let us consider localized emitters embedded inside an infinite, stationary, local, ho-
mogeneous, and isotropic medium characterized by a wavenumber k(ω), wave-impedance
Z(ω), dielectric permittivity ε(ω), and magnetic permeability µ(ω). The radiated electro-
magnetic field from such localized emitters needs obeys the Silver-Müller radiation condi-
tion at the infinite spherical surface originating at the location of the emitter. Therefore,
a basis set of transverse, outgoing spherical waves is appropriate to expand their emitted
electromagnetic field. As discussed in Section 2.7, the chirality of light is imprinted on its
helicity, in a sense that two enantiomers of chiral emissions have opposite helicities. Hence,
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a basis of radiating VSHs with well-defined helicity is appropriate to study phenomena
based on the chirality of the emitted light. Those helical VSHs, are eigenstates of the
helicity operator Λ̂ (defined in Eq. (2.162)) with eigenvalues λ = ±1 and are defined with
respect to the TE, TM VSHs of well-defined parity (see Eqs. (2.140, 2.141, 2.184)):

|λ µz ν k⟩(3) =
|M µz ν k⟩(3) + λ |N µz ν k⟩(3)√

2
. (5.1)

The real-space representation of the helical VSHs is given by substituting the expressions
of Eqs. (2.140, 2.141) in the above equation and reads as:

|λ µz ν k⟩(3) ≡ F
(3)
λ,µzν

(r; k)

=
λ√
2
ν(ν + 1)

ψ
(3)
µzν(r; k)

kr
r̂+

i

2

∑
λ′=±1

z
(3)
λλ′,ν(kr)fλ′,µzν(r̂), (5.2)

where we have defined the following quantities:

fλ,µzν(r̂) =
fM,µzν(r̂) + λfN,µzν(r̂)√

2
= iν−1Sλ,µzν(θ, ϕ) êλ(r̂), (5.3)

Sλ,µzν(θ, ϕ) = i1−νγµzντ
(λ)
µzν(θ)e

iµϕ, (5.4)

τ (λ)µzν(θ) = −τ (2)µzν(θ)− λτ
(1)
µzν(θ), (5.5)

z
(3)
λλ′,ν(x) = z

(3)
M,ν(x) + iλλ′z

(3)
N,ν(x), (5.6)

where êλ(r̂) is given by Eq. (2.186). The remaining quantities are defined in Section 2.6.
Based on the result of Eq. (3.66) and the above definition, we also have the following
far-field approximation of the radiating helical VSHs:

[
F
(3)
λ,µzν

(r; k)
]
kr→∞

= (−i)ν fλ,µzν(r̂)
eikr

kr
. (5.7)

Moreover, based on Eq. (2.155) and the above definition, the angular spectrum representa-
tions of the helical VSHs in terms of circularly polarized plane waves, |λ θk̂ ϕk̂ k⟩ (defined
in Eq. (2.185)), reads as follows:

|λ µz ν k⟩(3) =
1

2π

ˆ 2π

0
dϕk̂

ˆ
C±

sinθk̂dθk̂ Sλ,µzν(θk̂, ϕk̂) |λ θk̂ ϕk̂ k⟩ , for z ≷ 0, (5.8)

where we need to take into account also evanescent waves by integrating over a contour on
the complex polar-angle-of-propagation plane with C+ = [0, π2−i∞] and C− = [π2 +i∞, π].

Finally, a general expression for the electric field radiated by such localized emitters
takes the following form in abstract Dirac notation:

Eemit =

ˆ +∞

−∞
dω

∑
νµz ,λ

Aemit
λ,µzν(ω) |λ µz ν k⟩

(3) , (5.9)
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where Aemit
λ,µzν

(ω) are some complex amplitudes. We can think of an emitter (in the zero-th
order Born approximation of its interaction with its environment) as a localized external
current distribution in space. The decomposition of its emitted field in a series of radiating
VSHs can be done by expanding the DGF that acts on the current distribution in a series
of such VSHs (see Eqs. (2.161, 2.158). From there, we can observe that the amplitudes
of this expansion of the emitted fields will be given as the inner product between the
localized current distribution and the regular VSHs. The spherical Bessel functions inside
the regular VSHs vanish at the limit of small argument kr → 0 with a rate of (kr)ν , with ν
being the multipolar order. Therefore, optically small emitters whose current distribution
is confined inside an optically small region shall predominantly exhibit dipolar emissions.
Higher order multipolar emissions generally become more pronounced in amplitude as the
optical size of the emitter grows and is able to ”see” the local gradients of the field that
excites the emitter. Therefore, although the engineering of mesoscopic quantum dots with
higher order multipolar transitions of considerable strength is, e.g., possible [175, 298–
300], let us specifically study further the case of the most common dipolar emissions.

The electric field emitted by an electric dipole emitter, pe, placed at the origin of the
coordinate system is given by (see Eqs. (2.158, 2.169, 2.170):

Eemit
pe

(r, ω) =
k2

ε

ˆ
R3

↔
G(r, r′; k) · peδ(r

′)d3r′, (5.10)

while the electric field emitted by a magnetic dipole emitter, pm, placed at the origin of
the coordinate system is given by:

Eemit
pm

(r, ω) =
ikZ

µ
∇×

ˆ
R3

↔
G(r, r′; k) · pmδ(r

′)d3r′. (5.11)

Moreover, making use of Eqs. (2.161, 2.129, 5.1) and, also, of the following property of
the regular VSHs:

F(1)
α,µzν (r = 0; k) = δαNδν1

ûµz√
6π
, with :

û+1

û0

û−1

 =


−1√
2

−i√
2

0

0 0 1
+1√
2

−i√
2

0


x̂ŷ
ẑ

 , (5.12)

we finally get the following relation between the fields radiated by dipoles and the helical
VSHs:
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

√
6πε
ik3
|Eemit

pe=x̂⟩√
6πε
ik3
|Eemit

pe=ŷ⟩√
6πε
ik3
|Eemit

pe=ẑ⟩
−

√
6πµ
k3Z
|Eemit

pm=x̂⟩
−

√
6πµ
k3Z
|Eemit

pm=ŷ⟩
−

√
6πµ
k3Z
|Eemit

pm=ẑ⟩


≡



−1/
√
2 0 1/

√
2 0 0 0

i/
√
2 0 i/

√
2 0 0 0

0 1 0 0 0 0

0 0 0 −1/
√
2 0 1/

√
2

0 0 0 i/
√
2 0 i/

√
2

0 0 0 0 1 0

 ·


|N + 1 1 k⟩(3)

|N 0 1 k⟩(3)

|N − 1 1 k⟩(3)

|M + 1 1 k⟩(3)

|M 0 1 k⟩(3)

|M − 1 1 k⟩(3)


(5.13)

=



−1/2 0 1/2 1/2 0 −1/2
i/2 0 i/2 −i/2 0 −i/2
0 1/

√
2 0 0 −1/

√
2 0

−1/2 0 1/2 −1/2 0 1/2
i/2 0 i/2 i/2 0 i/2

0 1/
√
2 0 0 1/

√
2 0

 ·


|+1 + 1 1 k⟩(3)

|+1 0 1 k⟩(3)

|+1 − 1 1 k⟩(3)

|−1 + 1 1 k⟩(3)

|−1 0 1 k⟩(3)

|−1 − 1 1 k⟩(3)


.

(5.14)

Conversely, inverting the last formula gives the following relation:



|+1 + 1 1 k⟩(3)

|+1 0 1 k⟩(3)

|+1 − 1 1 k⟩(3)

|−1 + 1 1 k⟩(3)

|−1 0 1 k⟩(3)

|−1 − 1 1 k⟩(3)


=



−1/2 −i/2 0 −1/2 −i/2 0

0 0 1/
√
2 0 0 1/

√
2

1/2 −i/2 0 1/2 −i/2 0
1/2 i/2 0 −1/2 −i/2 0

0 0 −1/
√
2 0 0 1/

√
2

−1/2 i/2 0 1/2 −i/2 0

 ·



√
6πε
ik3
|Eemit

pe=x̂⟩√
6πε
ik3
|Eemit

pe=ŷ⟩√
6πε
ik3
|Eemit

pe=ẑ⟩
−

√
6πµ
k3Z
|Eemit

pm=x̂⟩
−

√
6πµ
k3Z
|Eemit

pm=ŷ⟩
−

√
6πµ
k3Z
|Eemit

pm=ẑ⟩


,

(5.15)

which can be rewritten in the following compact form:

|λ µz 1 k⟩(3) = λ

√
6π

ik3
|Eemit

pλ=ûµz
⟩ , (5.16)

where |Eemit
pλ=ûµz

⟩ represents the radiation from the helical dipole sources pλ = ûµz , as-

suming vanishing radiation from emitters of opposite helicity: p−λ = 0 (see Eq. (2.168)
for their definition with respect to electric and magnetic dipole sources). Finally, we can
observe that the dipolar helical VSHs represent the radiation from spinning (with respect
to the quantization z-axis, i.e., in the xOy plane) helical dipole moments (located at the
origin of the coordinate system) of helicity λ and angular momentum µz. We would like
to highlight the fact that the chiral and rotational properties of the dipoles are distinct:
the former are characterized by the helicity λ, whereas the latter are characterized by the
angular momentum µz.

5.3 The T-matrix of the nanophotonic system of an emitter
coupled to a waveguide and its directionality

In this section, we will introduce a T-matrix characterizing the nanophotonic system of
an emitter placed in close vicinity to a waveguide. The introduced T-matrix allows us
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to study the directionality of the coupling of the light radiated by the emitter to the
counterpropagating guided modes of the waveguide. We will also present results from full-
wave simulations where we study the directionality in such an exemplary nanophotonic
system.

Let us consider a single localized emitter embedded inside a medium like the one con-
sidered for the analysis of the previous section. Furthermore, let us consider the presence
of some arbitrary (stationary) waveguide that is translationally invariant with respect to
the x-axis of the coordinate system, i.e., whose optical axis coincides with the x-axis of
the coordinate system. The waveguide is considered to have no material losses. Further-
more, to simplify the considered system, we assume a zero-th order Born approximation
for the interaction between the emitter and waveguide. That is to say that we consider
that the emitter does not interact at all with the field back-scattered from the waveguide.
Thus, we consider the emitter as a black box out of which the light emissions emanate
and couple to the waveguide, while the waveguide does not experience at all the emitter
in the embedding medium.

To construct the T-matrix of our system, we specify the incident and the scattered
fields that we will consider as the input and output of the T-matrix. Then, by constructing
a finite Hilbert space for the representation of those fields, we end up with a particular
representation of the T-matrix. In our case, the incident field is considered to be the light
radiated by the emitter in an infinite embedding medium in the absence of the waveguide.
Its representation is given by Eq. (5.9). This representation is valid everywhere outside
the sphere that circumscribes the localized emitter. On the other hand, the scattered
field is considered to be monitored at the planes x = ±X, with kX >> 1. That is to
say that we essentially monitor solely the field coupled to the bounded guided modes of
the non-absorbing waveguide, since the incident field of the emitter vanishes there (at
x = ±X). Therefore, the scattered fields in the waveguide output can be represented with
the following series (see Eq. (2.201) and the discussion in that section):

Eguided =

ˆ +∞

−∞
dω

Nb(ω)∑
j=1

Aguided
j (ω) |j ω⟩ , (5.17)

where Nb(ω) is the number of guided modes that the waveguide supports at some particu-

lar frequency, which we represent with the kets |j ω⟩ in abstract Dirac notation. Aguided
j (ω)

are complex coefficients.

As a result, by introducing vectors containing the complex coefficients representing the
input and output fields inside their own Hilbert space, we construct a T-matrix represen-
tation of the system which reads as:

A⃗guided(ω) = T̂(d, ω) · A⃗emit(d, ω), (5.18)

where the vector d = dxx̂ + dyŷ + dzẑ denotes the position of the emitter with re-
spect to the global coordinate system. The elements of the T-matrix are denoted as

⟨j ω| T̂(d, ω) |λ µz ν k⟩(3)d , where with the ket |λ µz ν k⟩(3)d we denote an emitter located
at r = d, and whose quantization axis is parallel to the z-axis of the global coordinate
system.

Assuming that the modes of the waveguide are normalized to unit power flux (see
Section 2.8), the total power coupled to all bounded modes propagating in the±x̂-direction
(where we use the index j± to refer to all those modes), is then given by (see Eq. (2.206)):
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C±x̂(d, ω) =
∑
j=j±

∣∣∣∣∣∣
∑
νµz ,λ

Aemit
λ,µzν(d, ω) ⟨j ω| T̂(d, ω) |λ µz ν k⟩(3)d

∣∣∣∣∣∣
2

. (5.19)

The (logarithmic) directionality of the emitted light that was coupled to the waveguide is
then defined as:

D(d, ω) = log10 [C+x̂(d, ω)/C−x̂(d, ω)] , (5.20)

where a positive(negative) value means a preferential coupling direction towards the pos-
itive(negative) x̂-direction. The norm of the value specifies the degree of directionality in
orders of magnitude. Finally, defining the quantity C±x̂;λ,µzν(d, ω) as the coupling power
C±x̂(d, ω) for the particular emission case Aemit

λ′,µ′
zν

′(d, ω) = δλλ′δµzµ′
z
δνν′ allows us to define

directionality with respect to a single column of the T-matrix of the system:

Dλ,µzν(d, ω) = log10
[
C+x̂;λ,µzν(d, ω)/C−x̂;λ,µzν(d, ω)

]
(5.21)

= log10


∑

j=j+

∣∣∣⟨j ω| T̂(d, ω) |λ µz ν k⟩(3)d

∣∣∣2∑
j=j−

∣∣∣⟨j ω| T̂(d, ω) |λ µz ν k⟩(3)d

∣∣∣2
 . (5.22)

Investigating the latter quantity for an exemplary waveguide system will be the main task
of the rest of this chapter.

Figure 5.1: Illustration of the geometry of the problem. A multipolar emitter
of well-defined hellicity and transverse angular momentum coupling light to
the waveguide. The illustration was drawn by Maria Labrianidou. Adapted
with permission from Ref. [A4] © John Wiley and Sons.

For this purpose, we perform numerical experiments with a full-wave solver. Specif-
ically, we consider the case of a rectangular silicon waveguide embedded in free space,
whose optical axis coincides with the x-axis of the global coordinate system. Its refractive
index is considered to be fixed at the value of 3.477 across the whole spectrum of our
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study. Its height is 200 nm and its width is 500 nm. The waveguide is invariant under
reflections across the xOy and yOz planes. The geometry of the system is illustrated in
Fig. 5.1. There, a multipolar emitter of well-defined helicity λ and transverse angular
momentum µz is placed at a position (dx, dy, dz)=(0 nm, 590 nm, 0 nm). We call this
angular momentum transverse, since its quantization axis is perpendicular to the median
plane of the waveguide xOy.

Furthermore, we use the surface equivalence principle to inject the radiated fields of
the emitter inside the simulation domain (see Eq. (4.5)). Specifically, we use an auxiliary
square box of dimension 190 nm centered at the position of the emitter (see Fig. 5.1), and
we print on it an auxiliary surface current distribution with the emitted tangential electric
and magnetic emitted fields. According to Eq. (4.5), the radiation of the auxiliary current
distribution on the box reproduces the emitted field everywhere outside the auxiliary box.
We use CST MWS to perform the full-wave simulations in time domain and such a type of
excitation is supported there as a ”nearfield source”. We perform time-domain numerical
simulations over a frequency window of 40 THz centered at around f0 = 193.4 THz.
The central frequency corresponds to a vacuum wavelength of λ0 = 1550 nm, and the
frequency span to a wavelength range between 1404 and 1729 nm. Specifically, we excite
the system with a Gaussian pulse that has a standard deviation of 58.56 THz. The
auxiliary surface current distributions are calculated for 41 frequencies (i.e., every 1 THz
within the spectral window of interest) and imported in CST MWS using the NFS nearfield
scan data exchange format. For practical purposes, the waveguide can be considered
single-mode across the entire frequency band since the second mode is rather weakly
guided there. The propagation constant of the guided mode at the central frequency is
β = 2.26 k. Considering a single-mode waveguide simplifies our studies. Note, also, that
the waveguide ports recording the power coupled to each mode are placed at a relatively
large distance from the emitter, specifically at the planes x = ±6000 nm.

Finally, let us highlight that free space radiation cannot couple to the guided mode.
In fact, the coupling of the emissions to the guided modes is mediated solely through
the evanescent part of the radiating fields characterized by |kx| = β > k. Therefore, to
have a considerable coupling efficiency, the waveguide needs to be placed at the near-field
region of the emitter, where the respective evanescent fields are still strong. Furthermore,
for the same reason, picking a fine mesh of the auxiliary box is crucial. A mesh step
of 0.02λ0 was chosen, which allows us to correctly model fast varying evanescent fields
with a spatial periodicity of even below 0.2λ0. Note also, that CST MWS adopts an
opposite time convention compared to ours and therefore the auxiliary currents need to
be conjugated prior to the injection in the full-wave solver. The injected tangential electric
fields are calculated through Eq. (5.1) and their respective magnetic fields, being fields of
pure helicity λ, are simply proportional to the electric fields: Hemit

λ = λEemit
λ /iZ, which

is a relation that simply comes from the vanishing Riemann-Silberstein vector of opposite
helicity (see Eq. (2.167)).

Next, we perform 30 such numerical simulations by exciting the considered system each
time with one of the 30 different radiating helical VSHs, |ν µz λ⟩, up to the octupolar order
(ν = 3). We use the full-wave simulations to measure the directionality of the T-matrix of
the system, i.e., the quantity defined in Eq. (5.22). In Fig. 5.2, we plot the results of our
simulations in a way that suppresses their spectral dimension. Such a compact represen-
tation of our results facilitates the appreciation of their main qualitative characteristics.
Specifically, we generate a statistical distribution of the recorded directionality across the
entire considered frequency spectrum in the measurements, and we plot the probability
distribution to measure some directionality within the considered spectrum, for each mul-
tipolar emitter (see insets of Fig. 5.2). Those probability distributions are encoded with a
color and illustrated. We use the red color to refer to results from multipolar emitters of
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Figure 5.2: For each illuminating |ν µz λ⟩, the graph shows the histogram
of the logarithmic directionality of the coupling of the considered emitter
into the waveguide. Each histogram is the distribution of the directionality
obtained from a wideband numerical simulation (see inset). A more(less)
intense color corresponds to a more(less) frequent occurrence of a particular
directionality value in the frequency-dependent simulation results. Adapted
with permission from Ref. [A4] © John Wiley and Sons.

negative helicity, and we use the blue color to refer to the results from multipolar emitters
of positive helicity. The intensity of the color encodes the probability of occurence of
some particular directionality in our measurements. Qualitatively, three main features are
observed in Fig. 5.2.

• First of all, we observe a strong dependence of directionality D on the transverse
angular momentum µz, which seems to approximately follow the green dashed line
in Fig. 5.2 corresponding to 2µz. The sign of µz appears to fix the preferential
coupling direction and, in a linear scale, the degree of directionality appears to grow
approximately as 102|µz |. This exponential growth of directionality with respect to
the transverse angular momentum is rather remarkable.

• Emissions of the same multipolar order ν and opposite transverse angular momentum
µz appear to produce opposite values of directionality D. Moreover, the emissions
of zero angular momentum µz demonstrate zero directionality.

• Emissions with the same multipolar content (µz, ν) but opposite helicity λ appear
to produce the same values of directionality D. Note that there are only minor
discrepancies occuring for large |µz| just because of the low signal-to-noise ratio in
the non-preferred direction of the coupling of light. Importantly, this result strongly
suggests that the considered nanophotonic device is inappropriate for the sensing of
the chirality of the emitted light.

In what follows, we will study in further detail those three points. Specifically, we will
shed light on the first point by studying the transverse angular spectrum of the radiated
light from the multipolar emitters. For the other two points, we will study the reflections
that the spatial symmetries of the system have on its T-matrix and the directionality of
the coupled light.
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5.4 A symmetry analysis of the T-matrix of the system

In this section, we will study the effect that the spatial symmetries of the system have on
the measured directionalities of the near-field coupling of light radiated by the emitters into
the waveguide. Specifically, we want to study what are the implications of the waveguide
possessing some vertical mirror symmetry plane characterized by the eigenvalue σv = ±1
(see Section 2.8).

To do this, we focus on the impact that such mirror symmetries of the waveguide have
on the considered T-matrix of the system. This essentially requires to study the mirror
transformation symmetries of the input and output eigenstates of the T-matrix of the sys-
tem. Specifically, if we use the simplified kets |±x̂⟩ to refer to the two counterpropagating
modes of the single-mode waveguide (i.e., where the indices j+ and j− refer to a single
mode), we get the following mirror transformations for the modes of a waveguide with
mirror symmetries with respect to the yOz, xOz and xOy planes (like the one illustrated
in Fig. 5.2):

Mx |±x̂⟩ = |∓x̂⟩ , (5.23)

My |±x̂⟩ = σy |±x̂⟩ , (5.24)

Mz |±x̂⟩ = σz |±x̂⟩ , (5.25)

where Mx, My, and Mz denote the mirror symmetry transformation operators along the
respective axes, and the eigenvalues σy, σz take the values ±1 depending on the symmetries
of the guided modes. For example, the fundamental mode of the waveguide in Fig. 5.2
is y−polarized and is characterized by σy = −1 and σz = +1. Regarding the mirror
symmetry transformations of the emitted field, the following properties can be derived
from the definition of the helical VSHs in Eq. (5.2):

Mx |λ µz ν k⟩(3)d = − |−λ − µz ν k⟩(3)d̄x
, (5.26)

My |λ µz ν k⟩(3)d = (−1)µz+1 |−λ − µz ν k⟩(3)d̄y
, (5.27)

Mz |λ µz ν k⟩(3)d = (−1)µz+ν+1 |−λ µz ν k⟩(3)d̄z
, (5.28)

where, e.g., with d̄x we denote the mirror symmetric point of d with respect to the xOz
plane, located at (−dx, dy, dz). In view of the above symmetries, we would like to highlight
two more general remarks: 1) a mirror symmetry transformation of a helical VSH with
respect to an arbitrary plane flips its helicity, and 2) a mirror symmetry transformation
of a helical VSH with respect to an arbitrary plane containing the quantization axis flips
the sign of the angular momentum, whereas, if the reflection is done with respect to a
plane that is perpendicular to the quantization axis, the sign of the angular momentum
is maintained. Based on those remarks, we can extrapolate the above discussed sym-
metries for emitters with a quantization axis parallel to the z-axis to the general case
of an arbitrarily selected quantization axis. For example, we will also discuss later the
symmetry implications if a vertical angular momentum quantization axis is selected. The
vertical quantization axis is defined as an axis that is on the median plane of the waveguide
and parallel both to the optical axis of the waveguide and the quantization axis of the
transverse angular momentum.

Furthermore, let us note that for a waveguide that is geometrically invariant with
respect to the Mx mirror symmetry operator, we have the following symmetry for its
T-matrix:
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M†
x · T̂(d, ω) ·Mx = T̂(d̄x, ω), (5.29)

and similarly for the other two mirror symmetry transformations.
Finally, the symmetries of Eqs. (5.23-5.29) together with the definitions of Eqs. (5.19-

5.22) give the following regularities:

• For a single-mode waveguide that is invariant with respect toMx we get the following
symmetries:

C±x̂;λ,µzν(d, ω) = C∓x̂;−λ,−µzν(d̄x, ω), (5.30)

Dλ,µzν(d, ω) = −D−λ,−µzν(d̄x, ω). (5.31)

• For a single-mode waveguide that is invariant with respect toMy we get the following
symmetries:

C±x̂;λ,µzν(d, ω) = C±x̂;−λ,−µzν(d̄y, ω), (5.32)

Dλ,µzν(d, ω) = D−λ,−µzν(d̄y, ω). (5.33)

• For a single-mode waveguide that is invariant with respect toMz we get the following
symmetries:

C±x̂;λ,µzν(d, ω) = C±x̂;−λ,µzν(d̄z, ω), (5.34)

Dλ,µzν(d, ω) = D−λ,µzν(d̄z, ω). (5.35)

Moreover, let us note that, for a single-mode waveguide that is translationally invariant
with respect to the x-axis, we also have the following symmetry for arbitrary displacement
x0:

C±x̂;λ,µzν(d, ω) = C±x̂;λ,µzν(d+ x0x̂, ω), (5.36)

Dλ,µzν(d, ω) = Dλ,µzν(d+ x0x̂, ω). (5.37)

Note that general selection rules for symmetry-prohibited and symmetry-allowed cou-
plings of multipolar emissions to waveguides can also be derived from the above symmetry
relations (see Ref. [A4]). The reflection symmetries of the emissions shall be identical to
the reflection symmetries of the guided mode so that we can have symmetry-allowed cou-
pling between the two. In other words, that is to say that the emissions need to transform
in the same way as the guided mode with respect to the symmetry transformations that
characterize the irreducible representation of the point symmetry group that the guided
mode belongs to.

First of all, based on the above symmetries discussion, let us illustrate in Fig. 5.3 the
transformations of a) the transverse angular momentum, b) the vertical angular momen-
tum, and c) the helicity of a (displaced with respect to the median plane) emitter with
respect to the Mx, Mz, and MxMz reflection symmetries that the waveguide supposedly
supports. In the leftmost panel of each subfigure, we consider an arbitrarily positioned
multipolar emitter and we assume some particular preferential directionality towards the
positive x-axis for some assumed eigenvalues of the initial emitter. In the next panels
of the figure, we illustrate how the assumed directionality, position, helicity, and angular
momentum of the initial emitter get transformed under the Mx, Mz, and MxMz reflec-
tion symmetries. Note that the initial emitter can either have a well-defined transverse or
well-defined vertical angular momentum.
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(a) (b)

(c)

Figure 5.3: Illustration of the transformations of: a) the transverse angular
momentum, b) the vertical angular momentum, and c) the helicity of a
(displaced with respect to the median plane) emitter with respect to various
reflection symmetries. The illustration was drawn by Dr. Ivan Fernandez-
Corbaton. Adapted with permission from Ref. [A4] © John Wiley and Sons.

From this figure, we observe that the sign of directionality is not able to lock with either
the sign of the vertical angular momentum or the sign of the helicity of the emitter for
arbitrary displacement of the emitter with respect to the z−direction. On the other hand,
it is important to note that the transverse angular momentum allows for that possibility
based on our symmetry analysis.

Next, let us discuss in view of the above remarks the symmetries that we observed in
the results of Fig. 5.2 that were referring to the coupling of multipolar emissions emanating
from emitters with well-defined helicity and transverse angular momentum µz, located in
the median plane xOy, with a waveguide that supported both the Mx and Mz reflection
symmetries.

First, from Eq. (5.35), we get that: for emitters placed on the median plane and the
waveguide supporting the Mz reflection symmetry, two emitters of the same eigenvalues
(µz, ν, k) and opposite helicity λ have the same directionality.

Second, from Eqs. (5.31 and 5.37), we get that: for emitters placed on the median
plane and the waveguide supporting the Mx reflection symmetry, two emitters of the
same eigenvalues (ν, k) and opposite helicity and transverse angular momentum (λ, µz)
have the opposite directionality.

Finally, combining the last two remarks together, we also get that: for emitters placed
on the median plane and the waveguide supporting both the Mx and Mz reflection sym-
metries, two emitters of the same eigenvalues (λ, ν, k) and transverse angular momentum
(λ, µz) have the opposite directionality. This regularity, for the case of µz = 0 implies,
also, that the directionality becomes zero.

The above regularities are to be clearly observed in Fig. 5.4, where we plot the spectra
of the directionalities that we recorded in the simulations of Fig. 5.2 for the specific cases
of µz = 0 and µz = 1. Note that for emissions of µz = 0, we indeed observe practically
zero directionality (we only record some background numerical noise). Furthermore, in
Fig. 5.4, we, also, clearly see the rest of the discussed symmetries obeyed all across the
recorded spectrum. Multipoles of opposite µz do produce exactly opposite directionalities
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Figure 5.4: Directionality D with respect to frequency for the coupling of
multipolar emissions with well-defined transverse angular momentum µz = 0
in (a) and µz = 1 in (b) from emitters located in the median plane xOy.
Please note the different vertical scales in (a) and (b). Adapted with per-
mission from Ref. [A4] © John Wiley and Sons.

and multipoles of opposite λ do produce identical directionalities.

5.5 The directionality of the evanescent part of the trans-
verse angular spectrum of multipolar emissions: the
special role of the transverse angular momentum

In the previous section, we identified that the sign of the transverse angular momentum µz
is allowed from a symmetry perspective to follow the sign of directionality. But what, e.g.,
determines the preferential coupling direction in the leftmost panels of Fig. 5.3 in the first
place? How can we justify the roughly 2µz dependence of directionality that we recorded
in our measurements in Fig. 5.2? Those are the questions that we will attempt to answer
in this section. We will do this by searching for the origins of the recorded directionality
in the intrinsic properties of the emissions themselves.

Specifically, since the waveguide is considered translationally invariant concerning the
x-axis, we must decompose the multipolar emissions into another set of modes of well-
defined linear momentum along the x-axis, kx. We can then search for the origins of
directionality in the emitted spectrum for such modes with opposite such linear momenta
whose absolute value is equal to the propagation constant of the guided mode, i.e., with
kx = ±β. We could do this, by expanding the helical radiating VSHs either into an angular
spectrum of plane waves propagating inside the half-space that is transverse to its quanti-
zation axis and contains the waveguide (i.e., the y < 590 nm half-space, e.g., in Fig. 5.1),
or into a series of cylindrical waves, i.e., regular VCHs, quantized along the optical axis
of the waveguide. Here, we will opt for the first of the two approaches as it is simpler.
The second representation of the emitted fields in terms of such regular VCHs, could, e.g.,
be obtained by appropriately propagating each plane wave of the representation of the
first approach till the optical axis of the waveguide. Then we apply the transformation
between plane and cylindrical waves given in Eq. (2.148).

We start our technical analysis from Eq. (5.8). There, we have an angular spectrum
representation of radiating helical VSHs of well-defined transverse angular momentum µz
located at the origin of the coordinate system. That angular spectrum, though, is only
valid for the z ≷ 0 half-spaces, whereas we are interested in an expression valid for the
y < 0 half-space. After some algebraic manipulations, in the supplementary material of
Ref. [A4], we derive the following transverse angular spectrum representation of the helical
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multipoles:

|λ µz ν k⟩(3) ≡
1

2π

¨ +∞

−∞]

dkxdkz
−kky

Sλ,µzν(θk̂, ϕk̂)êλ(k̂)e
ikk̂·r, for y < 0, (5.38)

where ky = −
√
k2 − k2x − k2z and the dependence of θk̂, ϕk̂, and k̂ on kx, kz, k is given

by Eqs. ( 2.135-2.137). Note that complex angles of propagation are used to refer to
the evanescent part of the spectrum when ky becomes imaginary. The unit vector of

the circular polarization of the helical plane waves, êλ(k̂), is given by Eq. (2.187). It is
important to highlight that, apart from the norm of the unit vector of the propagation
direction k̂, also the norm of êλ(k̂) is not unitary for evanescent waves. Specifically, we
have:

∣∣∣êλ(k̂)∣∣∣ = cosh
(
Im
{
θk̂
})

cosh
(
Im
{
ϕk̂
})

+ λcos
(
Re
{
θk̂
})

sinh
(
Im
{
ϕk̂
})
. (5.39)

Furthermore, for complex angles, the polarization vectors of opposite helicity stop being
orthogonal in the usual sense: êλ(k̂) · ê∗λ′(k̂) ̸= δλλ′ . Instead, we have the following

orthogonality property, which is valid for complex angles of propagation as well: êλ(k̂) ·
ê−λ′(k̂) = −δλλ′ . Let us also note two symmetry properties of the polarization vector that
are specifically relevant to the case of the transverse angular spectrum that we study:

|êλ(kx, kz)| = |ê−λ(−kx, kz)|, (5.40)

|êλ(kx, kz)| = |ê−λ(kx,−kz)|. (5.41)

Equation (5.40) follows because θk̂ does not depend on kx, and, also, Im
{
ϕk̂(kx, kz)

}
=

−Im
{
ϕk̂(−kx, kz)

}
= ln

∣∣∣√k2x + k2y

∣∣∣− ln |kx + i ky|. Moreover, Eq. (5.41) follows because

θk̂(kx, kz) = π − θk̂(kx,−kz) and ϕk̂(kx, kz) = ϕk̂(kx,−kz).
With Eq. (5.38) at hand, let us now study the directionality of the transverse angular

spectrum of the emissions. We have already discussed that only evanescent waves of the
transverse angular spectrum of the emissions with kx = ±β couple to the two counter-
propagating modes of the waveguide. Note that although evanescent plane waves do not
carry power along the direction of their decay (towards the negative y-axis in our case),
they can carry power along some direction perpendicular to their decay axis. By making
use of Eq. (5.38) and after some straightforward algebra, we can show that the power flux
density (norm of the real part of the Poynting vector) that the evanescent plane waves

of the transverse angular spectrum carry is equal to
∣∣∣Sλ,µzν(k̂)êλ(k̂)

∣∣∣2 /2Z. Therefore, let
us define the logarithm of the ratio of power flux densities below as the directionality of
the emitted angular spectrum that is coupled to the two counterpropagating modes of the
waveguide:

Rλ,µzν(kz) = log10

[
|Sλ,µzν(kx = +β, kz)êλ(kx = +β, kz)|2

|Sλ,µzν(kx = −β, kz)êλ(kx = −β, kz)|2

]
. (5.42)

We now use Eqs. (5.4, 2.137, 2.136, 5.39, 5.40) to decompose Eq. (5.42) into two terms:
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Rλ,µzν(kz) = 2log10

[∣∣∣∣∣eiµzϕk̂(kx=+β,kz)

eiµzϕk̂(kx=−β,kz)

∣∣∣∣∣ |êλ(kx = +β, kz)|
|êλ(kx = −β, kz)|

]

= 2µzlog10

[∣∣∣∣∣eiϕk̂(kx=+β,kz)

eiϕk̂(kx=−β,kz)

∣∣∣∣∣
]
+ 2λlog10

[
|ê+(kx = +β, kz)|
|ê+(kx = −β, kz)|

]
= 2µz f(kz) + 2λg(kz), (5.43)

where we have defined the following quantities:

f(kz) = log10

[∣∣∣∣∣eiϕk̂(kx=+β,kz)

eiϕk̂(kx=−β,kz)

∣∣∣∣∣
]
= log10


∣∣∣∣∣∣∣∣
β
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√
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(
β
k

)2
−
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k

)2
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√
1−

(
β
k

)2
−
(
kz
k

)2
∣∣∣∣∣∣∣∣
 , (5.44)

g(kz) = log10

[
|ê+1(kx = +β, kz)|
|ê+1(kx = −β, kz)|

]
. (5.45)

Figure 5.5: Plot of the functions f(kz), g(kz) for β/k = 2.26. Adapted with
permission from Ref. [A4] © John Wiley and Sons.

We observe that the quantity Rλ,µzν is the sum of two terms: one that is proportional to
the transverse angular momentum µz and another one that is proportional to the helicity
λ. Apart from the fact that both are functions of kz, there is something to say about
the weighting functions of those two terms. On the one hand, we have that f(kz), the
weighting function of the 2µz-dependent term, is always positive since β > k. Moreover,
it has an even symmetry f(kz) = f(−kz). On the other hand, in view of Eqs. (5.40, 5.41),
g(kz), the weighting function of the 2λ-dependent term, is a function with odd symmetry:
g(kz) = −g(−kz). Note that both functions have singularities at |kz| = k and approach
zero in the limit of |kz| → ∞. In Fig. 5.5, we plot the two functions for the case of
β/k = 2.26, which is the propagation constant of the guided mode of the waveguide that
we considered in our full-wave simulations of Fig. 5.2, at the central excitation frequency
f0.

Furthermore, it can be shown that the inequality f(kz) ≥ |g(kz)| ≥ 0 always holds.
This has as a consequence the following: For non-zero µz, the sign of Rλ,µzν(kz) solely
depends on the sign of the transverse angular momentum µz, for all kz. Additionally,
Rλ,µzν(kz) does not depend on the multipolar order ν, and it has the symmetry property
of Rλ,µzν(kz) = R−λ,µzj(−kz).
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Let us now argue that the 2µz-dependent term in Eq (5.43) constitutes the origin of the
dominant exponential dependence of the directionality D on µz that we observed in our
measurements in Fig. 5.2. For this, we employ the following representation of the power
coupled in the two modes in terms of the transverse angular spectrum of the multipolar
emissions:

C±x̂;λ,µzν(d = 0, ω) =

∣∣∣∣∣∣
+∞ˆ

−∞

dkz
2πkky

Sλ,µzν(k̂±)|êλ(k̂±)| ⟨±x̂| T̂(d = 0, ω) |λ k±⟩

∣∣∣∣∣∣
2

, (5.46)

where we represent the normalized plane waves êλ(k̂)/|êλ(k̂)|eik·r with the kets |λ k±⟩,
and we also define k±(kz) = ±βx̂ −

√
k2 − β2 − k2z ŷ + kzẑ. One can see from the above

equation that the directionality D defined by Eq. (5.21) will be a function of coherent sums
over kz of the contributions of all the evanescent components of the multipolar spectrum
with kx = ±β. Note that the cross-section of the waveguide, the multipolar order, and
the distance between the emitter and the waveguide will how the different kz-components
will be combined. However, even though the directionality D is not directly related to the
directionality of the emitted transverse angular spectrum, Rλ,µzν , using the last line of
Eq. (5.43), we can see whet the expected trends for it look like. As long as there is a large
asymmetry between the amplitudes of the plane waves that couple to the two modes, a
similar asymmetry is expected to the final amplitudes of the guided modes after the T-
matrix-mediated transitions occur. This indirect relation between the two quantities can
be seen by comparing Eqs. (5.42, 5.46).

Nevertheless, we should note that there is a family of waveguide geometries where the
directionality D is directly related to Rλ,µzν . This is the case where we have an arbitrary
infinite planar waveguide that is parallel to the quantization axis of the emissions. Then,
due to the additional translation invariance of such a waveguide along z, the directionality
of the coupling of an emitter along its x-axis is given by: Dλ,µzν(d, ω) = Rλ,µzν(kz =
0) = 2µz f(kz = 0). Thus, in such a case, the directionality of the coupling of the emitted
light depends exactly in a proportional way on the transverse angular momentum µz of
the emitter. Moreover, it is independent of helicity λ, the multipolar order ν, and the
distance between the emitter and the planar waveguide. Apart from its exponential µz-
dependence, it only depends on the wavenumber k and the propagation constant β of the
planar waveguide.

Next, let us plot the normalized amplitudes of the transverse angular spectrum of the
emitters for better insights. In view of Eq. (5.38), let us define those amplitudes as:

Sê
λ,µzν(kx, kz) =

−k
2πky

Sλ,µzν(θk̂, ϕk̂)
∣∣∣êλ(k̂)∣∣∣ . (5.47)

We plot those quantities in logarithmic scale in the first columns of Figs. 5.6-5.8. The three
figures are for the dipolar (ν = 1), quadrupolar (ν = 2), and octupolar (ν = 3) emissions

respectively. Note that the radial coordinate of the plot stands for log10

[√
k2x + k2z/k

]
,

taking values from -1 to 1. The positive values correspond to the evanescent part of the
angular spectrum and the negative values to the propagating part of the angular spectrum.
The angular coordinate of the plot stands for the angle atan2(kz, kx), i.e., an angle of zero
degrees corresponds to plane waves with positive kx and zero kz values. We only plot
the emissions of positive helicity and non-negative transverse angular momentum. The
transverse angular spectra of all the rest of the omitted cases of emissions up to the
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Figure 5.6: Polar plots of the dipolar transverse angular spectrum for the
various cases of µz (first column). The radial coordinate of the plot stands

for log10

[√
k2x + k2z/k

]
, whereas the angular coordinate of the plot stands

for the angle atan2(kz, kx). In the middle column, we plot the directionality
of the transverse angular spectrum of the first column. The green line high-
lights the values of the quantity 0.5Rλ,µzν(kz) for the case of kx = β = 2.26k.
The third column is equivalent to the second one, but for the case that is
relevant for a waveguide whose optical axis coincides with the quantization
axis of the emitters, i.e., for the case of a longitudinal angular momentum.

octupolar order can be deduced from the presented ones by properly applying the mirror
symmetry transformations of Eqs. (5.26-5.28).

In the middle column of Figs. 5.6-5.8, we plot the logarithmic directionality of the
transverse angular spectrum of the emissions with respect to the x-axis. The plots indicate
the relative asymmetry of the transverse angular spectra of the first column for opposite
values of kx. With a green line, we highlight the positions in the angular spectrum where
kx = β = 2.26 k, which is the propagation constant of the considered waveguide in Fig. 5.2.
Along this line, the plotted quantity in the middle columns coincides with 0.5Rλ,µzν(kz).
As we discussed already, the directionalities recorded along the green line indirectly reflect
on the measured directionalities D measured in Fig. 5.2. Indeed, we observe that all along
the green lines, for all cases of positive λ, µz, the measured directionality of the transverse
angular spectrum is positive, indicating a preferential coupling direction along +x̂. For
the cases of µz = 0 we observe an antisymmetric directionality with respect to kz. With
our symmetry analysis previously, we explained that D vanishes for multipolar emitters
placed at the median plane of a waveguide that supports the Mz reflection symmetry.
Furthermore, let us emphasize the quasi-linear increasing magnitude of the directionality
of the transverse angular spectrum with increasing |µz|. This provides extra justification
for the measured results in Fig. 5.2.

Furthermore, let us note that for particular values of kz along the green highlighted
lines, we have large peaks of the directionality of the transverse angular spectrum. This is
due to occurring deeps in the respective amplitudes of the spectrum that is relevant for the
coupling with the mode propagating along the non-preferential direction. However, those
large directionality values there shall not normally dominate the final value of measured
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Figure 5.7: Same as Fig. 5.6 but for quadrupolar emissions.

D. First of all, the evanescent waves with large values of kz experience a greater decay
until they reach the waveguide, and, therefore, depending also on the optical distance
between the emitter and the waveguide, they may finally have a rather minor contribution
to the coupled light to the waveguide. But, apart from this, the directionality D, being
a result of a coherent superposition of the contributions of all relevant kz components of
the transverse angular spectrum, shall merely be determined, not by the minima in the
transverse angular spectra that correspond to the power coupled to the non-preferential
direction, but, rather, by the maxima there.

Finally, in the last column of Figs. 5.6-5.8, similarly to the middle column, we plot
the logarithmic directionality of the same transverse angular momentum spectra. Still,
now we present the asymmetry of the spectra for opposite values of kz. Those plots
shall be indicative for the directionality D of the coupled emissions to a waveguide whose
optical axis coincides with the quantization axis of the emitters, i.e., for the case of a
longitudinal angular momentum. Here, we highlight again with a green curve the positions
in the angular spectrum where kz = β = 2.26 k, which is the propagation constant of the
considered waveguide in Fig. 5.2. In this case, the situation with the directionality is
not as clear as previously. We generally have the green line passing through both red
and blue regions, which makes it hard to predict the final impact of the directionality
of the angular spectrum on D. However, as µz increases and approaches the value of
ν, we can observe that the green line overlaps better and better with the red region of
the directionality of the angular spectrum. For µz = ν, the green line crosses solely a
red region. However, the degrees of directionalities that we observe in the spectra in this
case of the longitudinal angular momentum are weaker than the ones that we observed
before for the case of the transverse angular momenta in the middle columns of the figure.
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Figure 5.8: Same as Fig. 5.6 but for octupolar emissions.

Furthermore, there is another difference between the two cases. On the one hand, the
directionality of the spectra for the case of the transverse angular momenta increases the
larger the propagation constant of the guided mode is, i.e., the stronger the guidance of
the mode is, and the deeper the evanescence of the coupled emitted fields is, the larger the
directionality of the angular spectra is. On the other hand, the situation is opposite for
the case of longitudinal angular momenta: the directionality of the angular spectra that
couples to weakly guided modes in stronger.

Importantly, we would like to highlight that the longitudinal angular momentum could
be used to sense chiral emissions. Once we select the longitudinal angular momentum,
e.g., with an external bias of a static magnetic field, and, also, select, e.g., by exploiting
the Zeeman splitting effect, a longitudinal angular momentum of a particular sign and
of a magnitude that is equal to the multipolar order of the chiral multipolar emissions
that we want to sense, then the last column of Figs. 5.6-5.8, together with the reflection
symmetries of the emissions, propose that the directionality of the coupling of the emitted
light shall be locked with the helicity of the emissions. The chiral sensing setup also
requires a waveguide that supports a weakly guided mode of propagation constant almost
equal to the wavenumber of free space.
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Let us note that an emitter with well-known directional radiation properties of its
propagating angular spectrum belongs to this family of emitters with well-defined longi-
tudinal angular momentum. A z−oriented Huygens’ dipole emitter is known to exhibit
zero-backscattering in the −ẑ direction. It can be shown that it constitutes a superposition
of the helical emissions of |λ µz ν k⟩(3) = |+1 + 1 1 k⟩(3) and |λ µz ν k⟩(3) = |−1 − 1 1 k⟩(3).
The Huygens’ dipole has been identified recently also for its near-field directional coupling
with waveguide modes [301]. Its transverse angular spectrum is shown in Fig. 5.6. Note

that its constitutive elements, |+1 + 1 1 k⟩(3) and |−1 − 1 1 k⟩(3), are mirror symmetric
with respect to Mx.

Figure 5.9: Plot of the coupling efficiencies of the multipolar transitions
into the waveguide for the cases that are studied in Fig. 5.2.Adapted with
permission from Ref. [A4] © John Wiley and Sons.

Finally, we would like to highlight another feature we observe in the first columns of
Figs. 5.6-5.8. Generally, an increase in the strength of the evanescent part of the transverse
angular spectrum is observed for increasing transverse angular momentum µz. Indeed, we
can also verify this trend by plotting in Fig. 5.9 the coupling efficiencies of the multipolar
transitions into the waveguide for the cases that we studied in Fig. 5.2. The coupling
efficiency is defined as the logarithm of the ratio of the total power coupled to the two
counterpropagating modes of the waveguide versus the total power radiated by the emitter
in free space, i.e., in the absence of the waveguide. This observation is rather important
since it can potentially make such higher-order multipolar transitions relevant when it
comes to their detection by the waveguiding system, while, otherwise, they usually are
relatively weakly excited by emitters in comparison to the more efficient usual dipolar
transitions characterizing emitters of small optical size. Another thing to be observed
in Fig. 5.9 is the diminishing trend of the coupling efficiency with increasing frequency.
This can be explained by the fact that for large distances, the optical distance between
the emitter and the waveguide becomes larger. Therefore, the deeply evanescent fields
decay significantly when they arrive at the waveguide. As a result, only a part of the
evanescent spectrum with small kz values couples efficiently to the waveguide. Moreover,
at higher frequencies, the propagation constant of the guided mode busually gets larger
(with respect to the free space wavenumber). This also argues for a stronger decay of the
part of the emitted fields involved into the coupling with the guided modes. A smaller
distance between the emitter and the waveguide should generally shift all those curves up in
higher values of coupling efficiencies. Finally, let us also note the interesting feature where
we observe a spontaneous emission rate enhancement effect for the octupolar transitions
with |µz| = 3 at the lowest recorded frequencies.

Let us close this section by exploring the cases of a few other systems to examine how
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robust this phenomenon of the linear dependence of the directionality on the transverse
angular momentum of the emissions is. The intuition that we gain from the previous the-
oretical analysis tells us that the phenomenon of this directionality, being predominantly
a result of the directional properties of the evanescent part of the emissions themselves,
shall not be drastically affected by the particular configuration of the waveguide system
(if we assume a fixed propagation constant β).

Figure 5.10: Directionality D with respect to frequency for the coupling of
dipolar emissions from emitters that are displaced with a dz=+100 nm from
the xOy median plane. Adapted with permission from Ref. [A4] © John
Wiley and Sons.

So, first, let us examine what happens with a simple perturbation of the initially con-
sidered system once we introduce a displacement of the emitter from the median plane
at a distance of dz = 100 nm. In Fig. 5.10, we plot the spectra of the measured direc-
tionality D for such a case. Comparing Fig. 5.10 with Fig. 5.4, we can observe that the
directionalities of opposite helicities are no longer identical. Specifically, now we only have
the symmetry that the directionalities of opposite helicity and opposite transverse angular
momentum are opposite. This is a direct consequence of the Mx reflection symmetry
of the system (see Eqs. (5.31, 5.37)). The Mz reflection symmetry now only relates the
emissions between emitters with opposite displacement from the median plane along the
z-axis. As a result, symmetries also do not give vanishing directionalities ideally for the
cases of µz = 0 anymore, which was the case in Fig. 5.4. However, apart from the breaking
of those symmetries due to the displacement, the general trends of the recorded signals do
remain the same. The signals of directionality that we record for µz = 0 are nearly zero,
whereas the signals that we record for µz = ±1 vary around the values of ±2, similarly to
those of Fig. 5.4 where the emitters were not displaced. Hence, we deduce that the dis-
placement of the emitters only has a minor effect on the observed phenomenon. A random
placement of multiple such emitters on top of the waveguide shall, therefore, facilitate the
up-scaling of the signal strengths of the coupled light without compromising the coupling
directionality. Moreover, a superradiant scaling cannot be ruled out [302, 303]

Next, we consider the case of the emitters being placed inside a host medium, which is
frequently the case in common experimental setups. Specifically, we consider the geometry
presented in the inset of Fig. 5.11. We consider a rectangular layer of glass with a non-
dispersive refractive index of 1.444 and a thickness of w=200 nm and a height of h=500 nm,
as the embedding medium of the emitter. The emitter is placed at a quarter of the extent
of the waveguide, i.e., at a distance of h/4 from its edge. The glass layer is placed on top
of a rectangular silicon layer of the same dimensions. The refractive index of silicon is
also considered non-dispersive and takes the value of 3.477. Like in our initial case, we
excite the system with the same multipolar emitters (up to the octupolar order) and record
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Figure 5.11: The case of emitters embedded in a glass layer on top of the
waveguide: (a) Plot of the directionality for helical and electric/magnetic
emissions with well-defined transverse angular momentum along the z-axis
for the geometry in the inset, where w=200 nm and h=500 nm. The position
of the emitter is marked by the yellow star, placed at the middle of the extent
of the glass slab and at a qarter of its extent. (b) Plots of the corresponding
coupling efficiencieds. Adapted with permission from Ref. [A4] © John
Wiley and Sons.

the signals of directionality D across the same broadband spectrum of 40 THz bandwidth
centered at 193.4 THz. This time apart of the helical emitters, we also excite with emitters
of electric (TM) and magnetic (TE) types, to check whether they demonstrate a different
behavior. So, in total, we excite with 30+30=60 emitters this time. This waveguide
supports two modes with quite strong dispersion. The fundamental mode is characterized
by a propagation constant that spans between a value of β = 2.047k at the low frequencies
and a value of β = 2.468k at the high frequencies. The second mode is weakly guided at the
interface of the two layers and is mostly localized inside the glass. Its propagation constant
varies from β = 1.12k at low frequencies till β = 1.524k at high frequencies. Similarly as
in Fig. 5.2, we plot our results of the recorded directionalities D in Fig. 5.11a and of the
recorded coupling efficiencies (concerning the fundamental mode only) in Fig. 5.11b.

We, indeed, observe a quite similar behavior for both helical and electric/magnetic
emitters (which are a perfect mix of helical emitters - see Eq. (5.1)). Furthermore, for
|µz| ≤ 2, the directionality D exhibits, roughly, a linear dependence on µz with a slope
similar to the slope observed in Fig. 5.2. However, the directionality of the |µz| = 3 emis-
sions breaks such linear dependence. We attribute this deviation to the initial multipolar
emission reflecting off the air–glass interfaces, which shall be a secondary scattering process
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that gives rise to other multipolar components. In Fig. 5.11b, we show the corresponding
coupling efficiencies, which, for most cases, grow significantly as |µz| increases. The same
thing we observed previously in Fig. 5.9. Moreover, we record again positive coupling ef-
ficiencies for several multipolar emissions. This implies that the waveguide mode collects
more power than the emitter would radiate in the absence of the waveguide to an infinite
homogeneous medium of the same material as the one where the emitter is embedded.
That such coupling efficiency can be larger than one due to evanescent couplings was an-
alytically shown for dipole emitters near a planar interface [304]. Furthermore, a related
recent experimental observation was reported in Ref. [305].

Finally, it is important to mention that our observations here correspond to the case of
the first fundamental guided mode of the waveguide. The effective refractive index of this
mode is greater than the refractive index of the medium where we placed the emitter. For
most parts of the spectrum, this is not the case for the second weakly guided mode that
the waveguide supports. For that second mode, we observed much reduced directionalities
and coupling efficiencies. We attribute this effect to the fact that the coupling of emitters
inside the waveguide, for the case of a refractive index of the embedding medium that
is larger than the effective refractive index of the guided mode, is not directly mediated
by evanescent fields. As we discussed before, the evanescent fields of the emitters are
mainly responsible for such prominent directionality features dependent on the transverse
angular momentum of the emission. Therefore, we conclude that it is paramount to place
the emitters inside a low-index medium to observe such phenomena.
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6 — Conclusions

The presented thesis discussed ways to generalize the T-matrix method to address some
contemporary needs for the modeling and analysis of nanophotonic systems. Specifically,
we present three cases of generalized T-matrices that can enrich the toolkit of semi-
analytical methods to model and study linear nanophotonic systems. In what follows, let
us briefly highlight the key conclusion points from each chapter of this thesis and provide
an outlook.

In the second chapter, we developed and discussed casual and stable models for linear
time-varying bulk media. Our material models accounted also for temporal dispersion.
However, on the one hand, those models were phenomenological, and, on the other hand,
we adopted some assumptions (e.g., regarding the meromorphicity of the response func-
tion of the medium in frequency domain) that led to simplified models. Having in mind
the complex physical processes that take place in practice in such (e.g., all-optically) time-
modulated media at the microscopic level, one wonders about the actual complexity of
the response function of such media. Unfortunately, so far there are not many experimen-
tal results against which such phenomenological models can be systematically tested and
tuned properly. Moreover, testing the phenomenological models against quantum mod-
els that grasp in greater detail, from first principles, the underlying dynamics that take
place at the microscopic level is also something essential that is missing. In fact, it even
seems not clearly justified yet from the experiments whether the observed phenomenolog-
ical modulation of the material properties of the media is really a linear phenomenon and
is, therefore, able to be described by such response functions like the ones that we consid-
ered. If such is the case, then, assuming the all-optical modulations experimental setup, a
variation of the intensity of the probe, for a given pump, i.e., for a given modulation of the
medium, should not alter the measured material properties. Moreover, most experiments,
so far, theoretically interpret their measured results with simple non-dispersive models,
even though dispersion in the Epsilon-Near-Zero spectral regime of the measured media
shall be rather prominent. To conclude, significant scientific efforts, both from a theory
and experiment point of view, are still required to better understand and finely tune our
material models for time-modulated media in optical frequencies.

Furthermore, the discussion on energy and photon number conservation in time-varying
systems highlighted that, generally, time-varying media break the conservation of both.
Actually, such systems generally behave as active, i.e., they can generate energy. Quite
peculiarly, our discussion also showcased the emerging role of pseudo-photons, which are
considered to have negative energies for negative frequencies. The deeper understand-
ing of the physics surrounding the notion of pseudo-photons in time-varying media is of
fundamental importance.

Besides this, we have discussed how time-varying systems generally break reciprocity.
However, our generalization of the definition of reciprocity for time-varying systems was
done from above, i.e., the definition was done from the macroscopic level, from which
we later deduced the respective material properties of a reciprocal medium. However,
for stationary media, the Onsager-Casimir reciprocal relations from statistical physics at
the microscopic level are those that finally give the macroscopic definition of electromag-
netic reciprocity. Therefore, the generalization of the Onsager-Casimir reciprocal relations
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for time-varying systems from a microscopic level is missing to support our macroscopic
definitions of reciprocity.

In the third chapter, we developed a T-matrix-based Floquet-Mie theory to semi-
analytically solve the problem of light scattering from arbitrary time-modulated spherical
scatterers. We observed that a prominent characteristic of such a time-varying scattering
system is that of inelastic scattering of light at different frequencies from the incident
one. Identifying methods with full-wave simulations to generalize the calculation of such
T-matrices for non-spherical scatterers is important. While spherical scatterers are rather
useful to efficiently probe fundamental physical phenomena, for practical applications usu-
ally the consideration of non-spherical scatterers is required. Here, the most significant
impediment probably is the rather inefficient way that the existing full-wave solvers sim-
ulate time-varying systems.

Moreover, we have demonstrated phenomena of parametric oscillations in time-varying
spheres, mediated by parametric Mie resonances. A deeper understanding of the multi-
polar eigenmode analysis of such systems is required. Besides this, the stability of such
time-varying systems, i.e., the regime where the poles of the system move to the upper-half
complex Floquet frequency space, is not yet systematically studied.

Furthermore, we have also discussed the breaking of reciprocity in time-modulated
scatterers under the prism of their T-matrix. Designing nanophotonic systems that break
reciprocity in the synthetic spectral dimension and implement conventional non-reciprocal
operations, such as those of the isolators or circulators, is an interesting research direction
that can reveal the unexplored potential of time-varying nanophotonic systems, providing,
even, useful applications.

In the fourth chapter, we presented the topological skeleton method, which we
employed to revise the conventional T-matrix of scatterers so that we transcend the prob-
lem of the Rayleigh Hypothesis. The newly introduced distributed T-matrix formalism
allows for the accurate near-field coupling between scatterers at close proximity. We
demonstrated and implemented with an FEM solver the calculation of the distributed
T-matrix of an ellipsoid. A generalization of the calculations for scatterers of arbitrary
geometry, without rotational symmetry, is quite straightforward once the topological ske-
leton and the necessary construction and division of the auxiliary surface of the scatterer
are available. However, an efficient algorithm, tailored to the needs of our physical problem
needs to be developed to address the topological skeleton calculations of 3D scatterers of
arbitrary geometry. Such an algorithm needs to accept as inputs by the user the minimum
and maximum distance between the auxiliary surface and the surface of the scatterer, as
well as some measure of desired accuracy that can be used for the multipolar truncation
of the infinite representations. Under these requirements, the algorithm should provide an
optimized finite topological-skeleton-based representation of minimized dimensionality.

Additionally, we derived the extension of the conventional theoretical formulation of
multi-scattering interactions to account for the newly introduced distributed T-matrices.
The implementation of the respective necessary algorithmic extensions in existing T-
matrix-based computational packages that perform multi-scattering calculations is further
required. Note that the transformation between a distributed-T-matrix-based representa-
tion of a system of aggregated scatterers and its S-matrix representation that is suitable
for the coupling of the aggregate with planar layer interfaces is rather straightforward.
However, what is really interesting, is to probe for opportunities for the even further gen-
eralization of the distributed T-matrix formalism, to account for scatterers placed on top
of substrates. This case requires special treatment since the abstracted individual scat-
terers cannot be considered any more to be embedded inside a homogeneous background
medium for the calculation of their individual T-matrices.

Finally, in the fifth chapter, we presented a generalized T-matrix approach to analyze
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phenomena of directional coupling of emitted light into waveguides. To probe
the role of the chirality of the emissions regarding the directionality of the couplings, we
employed a basis set of helical spherical waves to expand the emissions at the input of the
T-matrix. However, we found out that the directionality of the emissions has only a minor
dependence on the handedness of the emissions. We discussed the prominent role of
the transverse angular momentum of the emissions that predominantly dictates the
directionality of the couplings: its sign specifies the preferred direction of coupling and its
absolute value dictates the degree of directionality in orders of magnitude. We identified
the origins of that directionality by studying the evanescent part of the angular spectrum of
the emissions, which also demonstrates a strong transverse-angular-momentum-dependent
directionality. Additionally, we checked the robustness of the observed directional effects
by considering a couple of other cases of more complicated waveguiding systems compared
to the original.

Furthermore, we studied the role of two other quantization axes: the vertical and the
longitudinal one. Performing a symmetry analysis of the T-matrix of the system, we found
that the vertical angular momentum does not exhibit the same directionality characteris-
tics and that it is position dependent. On the other hand, we were able to identify a chiral
directional coupling mechanism for the case where there is a synergy between the helicity
and the longitudinal angular momentum of the emissions. For emissions whose multipolar
order is equal to the absolute value of the longitudinal angular momentum and locking
the sign of the helicity of the emissions to that of the longitudinal angular momentum,
e.g., by exploiting the Zeeman splitting effect, we can achieve a directional resolution of
the handedness of the emissions. Note that, in this case, the directional effect is more
pronounced for weakly guided modes.

Regarding potential future extensions of our study on directional coupling of emissions
to waveguides, we identify two main research directions. First, in our studies we assumed a
zero-th order Born approximation, i.e., we neglected higher order interactions between the
emitter and the waveguide. Moreover, the interaction of the emitter with other emitters
that potentially can also be present, was neglected as well. However, in several cases
such interactions may have rather strong impact on the observed directionality and fully
distort the regularities that we observed in our studies. Note, for example, that interesting
synergetic effects among emitters, leading to superradiant collective coupled emissions have
been reported in the literature. On the other hand, in our studies, to simplify our analysis,
we have been generally exciting the waveguiding systems with single helical multipoles
of our constructed Hilbert space. However, in many cases, we cannot generally predict
from our studies the resulting directionality from an arbitrary coherent superposition of
such multipolar emissions. Investigating the potential of designing such superimposed
multipolar configurations of emissions for achieving optimal directionalities, tailored to
the particular waveguide system, is another interesting research direction.
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[112] A. Mekawy, H. Li, Y. Radi, and A. Alù, “Parametric enhancement of radiation from
electrically small antennas,” Physical Review Applied, vol. 15, no. 5, p. 054 063, May
2021. doi: 10.1103/PhysRevApplied.15.054063.

[113] M. S. Mirmoosa, T. T. Koutserimpas, G. A. Ptitcyn, S. A. Tretyakov, and R. Fleury,
“Dipole polarizability of time-varying particles,” New Journal of Physics, vol. 24,
no. 6, p. 063 004, Jun. 2022, issn: 1367-2630. doi: 10.1088/1367-2630/ac6b4c.

[114] I. Stefanou, P. A. Pantazopoulos, and N. Stefanou, “Light scattering by a spherical
particle with a time-periodicrefractive index,” Journal of the Optical Society of
America B, vol. 38, no. 2, pp. 407–414, Feb. 2021. doi: 10.1364/JOSAB.408559.
[Online]. Available: http://josab.osa.org/abstract.cfm?URI=josab-38-2-
407.

171

https://doi.org/10.1103/PhysRevE.75.046607
https://link.aps.org/doi/10.1103/PhysRevE.75.046607
https://doi.org/10.1103/PhysRevA.79.053821
https://doi.org/10.1103/PhysRevA.79.053821
https://link.aps.org/doi/10.1103/PhysRevA.79.053821
https://link.aps.org/doi/10.1103/PhysRevA.79.053821
https://doi.org/10.1364/OPTICA.5.001390
https://doi.org/10.1364/OPTICA.5.001390
https://www.osapublishing.org/optica/abstract.cfm?uri=optica-5-11-1390
https://www.osapublishing.org/optica/abstract.cfm?uri=optica-5-11-1390
https://doi.org/10.1364/OL.411622
https://www.osapublishing.org/ol/abstract.cfm?uri=ol-46-3-484
https://www.osapublishing.org/ol/abstract.cfm?uri=ol-46-3-484
https://doi.org/10.1126/science.abo3324
https://www.science.org/doi/pdf/10.1126/science.abo3324
https://www.science.org/doi/pdf/10.1126/science.abo3324
https://www.science.org/doi/abs/10.1126/science.abo3324
https://www.science.org/doi/abs/10.1126/science.abo3324
https://doi.org/10.1364/OPTICA.455672
https://doi.org/10.1364/OPTICA.455672
https://opg.optica.org/optica/abstract.cfm?URI=optica-9-6-585
https://opg.optica.org/optica/abstract.cfm?URI=optica-9-6-585
https://doi.org/10.1109/Metamaterials52332.2021.9577104
https://doi.org/10.1103/PhysRevB.103.144303
https://doi.org/10.1103/PhysRevB.103.144303
https://doi.org/10.1103/PhysRevApplied.15.054063
https://doi.org/10.1088/1367-2630/ac6b4c
https://doi.org/10.1364/JOSAB.408559
http://josab.osa.org/abstract.cfm?URI=josab-38-2-407
http://josab.osa.org/abstract.cfm?URI=josab-38-2-407


Bibliography

[115] L. Rayleigh, “On the dynamical theory of gratings,” Proceedings of the Royal Soci-
ety of London. Series A, Containing Papers of a Mathematical and Physical Char-
acter, vol. 79, no. 532, pp. 399–416, 1907, issn: 09501207. [Online]. Available: http:
//www.jstor.org/stable/92655 (visited on 05/09/2022).

[116] R. F. Millar, “On the rayleigh assumption in scattering by a periodic surface,”
Mathematical Proceedings of the Cambridge Philosophical Society, vol. 65, no. 3,
pp. 773–791, 1969. doi: 10.1017/S0305004100003613.

[117] A. G. Voronovich, “Rayleigh hypothesis,” in Light Scattering and Nanoscale Surface
Roughness, A. A. Maradudin, Ed. Boston, MA: Springer US, 2007, pp. 93–105, isbn:
978-0-387-35659-4. doi: 10.1007/978-0-387-35659-4_4. [Online]. Available:
https://doi.org/10.1007/978-0-387-35659-4_4.

[118] H. Kalhor, “Numerical evaluation of rayleigh hypothesis for analyzing scattering
from corrugated gratings–te polarization,” IEEE Transactions on Antennas and
Propagation, vol. 24, no. 6, pp. 884–889, 1976. doi: 10.1109/TAP.1976.1141432.

[119] J. M. Soto-Crespo, M. Nieto-Vesperinas, and A. T. Friberg, “Scattering from slightly
rough random surfaces: A detailed study on the validity of the small perturbation
method,” Journal of the Optical Society of America A, vol. 7, no. 7, pp. 1185–1201,
Jul. 1990. doi: 10.1364/JOSAA.7.001185. [Online]. Available: http://opg.
optica.org/josaa/abstract.cfm?URI=josaa-7-7-1185.

[120] S. Christiansen and R. Kleinman, “On a misconception involving point collocation
and the rayleigh hypothesis,” IEEE Transactions on Antennas and Propagation,
vol. 44, no. 10, pp. 1309–1316, 1996. doi: 10.1109/8.537324.

[121] R. Zaridze, G. Bit-Babik, K. Tavzarashvili, D. Economou, and N. Uzunoglu, “Wave
field singularity aspects in large-size scatterers and inverse problems,” IEEE Trans-
actions on Antennas and Propagation, vol. 50, no. 1, pp. 50–58, 2002. doi: 10.1109/
8.992561.

[122] T. Watanabe, Y. Choyal, K. Minami, and V. L. Granatstein, “Range of validity of
the rayleigh hypothesis,” Physical Review E, vol. 69, p. 056 606, 5 May 2004. doi:
10.1103/PhysRevE.69.056606. [Online]. Available: https://link.aps.org/doi/
10.1103/PhysRevE.69.056606.

[123] A. V. Tishchenko, “Numerical demonstration of the validity of the rayleigh hypoth-
esis,” Optics Express, vol. 17, no. 19, pp. 17 102–17 117, Sep. 2009. doi: 10.1364/
OE.17.017102. [Online]. Available: http://opg.optica.org/oe/abstract.cfm?
URI=oe-17-19-17102.

[124] I. Petoev, V. Tabatadze, D. Kakulia, and R. Zaridze, “About scattered field’s singu-
larities and rayleigh hypothesis,” in 2012 XVIIth International Seminar/Workshop
on Direct and Inverse Problems of Electromagnetic and Acoustic Wave Theory -
(DIPED), 2012, pp. 17–22.

[125] P. A. Martin, “Two-dimensional acoustic scattering, conformal mapping, and the
rayleigh hypothesis,” The Journal of the Acoustical Society of America, vol. 132,
no. 4, pp. 2184–2188, 2012. doi: 10.1121/1.4747004. eprint: https://doi.org/
10.1121/1.4747004. [Online]. Available: https://doi.org/10.1121/1.4747004.

[126] T. Rother and M. Kahnert, “The rayleigh hypothesis,” in Electromagnetic Wave
Scattering on Nonspherical Particles: Basic Methodology and Simulations. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2014, pp. 171–201, isbn: 978-3-642-36745-
8. doi: 10.1007/978-3-642-36745-8_6. [Online]. Available: https://doi.org/
10.1007/978-3-642-36745-8_6.

172

http://www.jstor.org/stable/92655
http://www.jstor.org/stable/92655
https://doi.org/10.1017/S0305004100003613
https://doi.org/10.1007/978-0-387-35659-4_4
https://doi.org/10.1007/978-0-387-35659-4_4
https://doi.org/10.1109/TAP.1976.1141432
https://doi.org/10.1364/JOSAA.7.001185
http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-7-1185
http://opg.optica.org/josaa/abstract.cfm?URI=josaa-7-7-1185
https://doi.org/10.1109/8.537324
https://doi.org/10.1109/8.992561
https://doi.org/10.1109/8.992561
https://doi.org/10.1103/PhysRevE.69.056606
https://link.aps.org/doi/10.1103/PhysRevE.69.056606
https://link.aps.org/doi/10.1103/PhysRevE.69.056606
https://doi.org/10.1364/OE.17.017102
https://doi.org/10.1364/OE.17.017102
http://opg.optica.org/oe/abstract.cfm?URI=oe-17-19-17102
http://opg.optica.org/oe/abstract.cfm?URI=oe-17-19-17102
https://doi.org/10.1121/1.4747004
https://doi.org/10.1121/1.4747004
https://doi.org/10.1121/1.4747004
https://doi.org/10.1121/1.4747004
https://doi.org/10.1007/978-3-642-36745-8_6
https://doi.org/10.1007/978-3-642-36745-8_6
https://doi.org/10.1007/978-3-642-36745-8_6


Bibliography

[127] R. F. Millar, “The rayleigh hypothesis and a related least-squares solution to scat-
tering problems for periodic surfaces and other scatterers,” Radio Science, vol. 8,
no. 8-9, pp. 785–796, 1973. doi: https://doi.org/10.1029/RS008i008p00785.
eprint: https : / / agupubs . onlinelibrary . wiley . com / doi / pdf / 10 . 1029 /
RS008i008p00785. [Online]. Available: https://agupubs.onlinelibrary.wiley.
com/doi/abs/10.1029/RS008i008p00785.

[128] A. A. Antonov and M. V. Gorkunov, “Corrugated silicon metasurface optimized
within the rayleigh hypothesis for anomalous refraction at large angles,” Journal
of the Optical Society of America B, vol. 36, no. 8, pp. 2118–2125, Aug. 2019. doi:
10.1364/JOSAB.36.002118. [Online]. Available: http://opg.optica.org/josab/
abstract.cfm?URI=josab-36-8-2118.

[129] T. Rother and S. C. Hawkins, “Notes on rayleigh’s hypothesis and the extended
boundary condition method,” The Journal of the Acoustical Society of America,
vol. 149, no. 4, pp. 2179–2188, 2021. doi: 10.1121/10.0003958. eprint: https:
//doi.org/10.1121/10.0003958. [Online]. Available: https://doi.org/10.
1121/10.0003958.
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lumière polarisée (memoir on the law of the modifications that reflection impresses
on polarized light), 1823.

[245] J. W. Goodman, Introduction to Fourier optics. Roberts and Company publishers,
2005.

[246] M. M. Bay, S. Vignolini, and K. Vynck, “Pyllama: A stable and versatile python
toolkit for the electromagnetic modelling of multilayered anisotropic media,” Com-
puter Physics Communications, vol. 273, p. 108 256, 2022, issn: 0010-4655. doi:
https://doi.org/10.1016/j.cpc.2021.108256. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S0010465521003684.

182

https://doi.org/https://doi.org/10.1016/j.jqsrt.2010.01.030
https://doi.org/https://doi.org/10.1016/j.jqsrt.2010.01.030
https://www.sciencedirect.com/science/article/pii/S0022407310000531
https://www.sciencedirect.com/science/article/pii/S0022407310000531
https://doi.org/10.1364/JOSAA.13.002266
https://doi.org/https://doi.org/10.1029/2004JD005649
https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2004JD005649
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2004JD005649
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2004JD005649
https://doi.org/https://doi.org/10.1016/j.jaerosci.2007.07.001
https://www.sciencedirect.com/science/article/pii/S0021850207001061
https://www.sciencedirect.com/science/article/pii/S0021850207001061
https://doi.org/10.1364/OE.20.023985
https://opg.optica.org/oe/abstract.cfm?URI=oe-20-21-23985
https://doi.org/10.1364/JOSAA.20.001050
https://opg.optica.org/josaa/abstract.cfm?URI=josaa-20-6-1050
https://doi.org/https://doi.org/10.1016/j.cpc.2021.108256
https://www.sciencedirect.com/science/article/pii/S0010465521003684
https://www.sciencedirect.com/science/article/pii/S0010465521003684


Bibliography

[247] M. Onishi, K. Crabtree, and R. A. Chipman, “Formulation of rigorous coupled-
wave theory for gratings in bianisotropic media,” Journal of the Optical Society of
America A, vol. 28, no. 8, pp. 1747–1758, Aug. 2011. doi: 10.1364/JOSAA.28.
001747. [Online]. Available: https://opg.optica.org/josaa/abstract.cfm?
URI=josaa-28-8-1747.

[248] S. Burger, L. Zschiedrich, J. Pomplun, and F. Schmidt, “Jcmsuite: An adaptive
fem solver for precise simulations in nano-optics,” in Integrated Photonics and
Nanophotonics Research and Applications, Optica Publishing Group, 2008, ITuE4.
doi: 10.1364/IPNRA.2008.ITuE4. [Online]. Available: https://opg.optica.
org/abstract.cfm?URI=IPNRA-2008-ITuE4.
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