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A B S T R A C T

We determine the material parameters in the relaxed micromorphic generalized continuum
model for a given periodic microstructure in this work. This is achieved through a least
squares fitting of the total energy of the relaxed micromorphic homogeneous continuum to
the total energy of the fully-resolved heterogeneous microstructure, governed by classical
linear elasticity. We avoid establishing exact micro–macro transition relations, as in classical
homogenization theory, because defining a representative volume element is not feasible in the
absence of scale separation, as such an element does not exist. The relaxed micromorphic model
is a generalized continuum that utilizes the Curl of a micro-distortion field instead of its full
gradient as in the classical micromorphic theory, leading to several advantages and differences.
The most crucial advantage is that it operates between two well-defined scales. These scales
are determined by linear elasticity with microscopic and macroscopic elasticity tensors, which
respectively bound the stiffness of the relaxed micromorphic continuum from above and below.
While the macroscopic elasticity tensor is established a priori through standard periodic first-
order homogenization, the microscopic elasticity tensor remains to be determined. Additionally,
the characteristic length parameter, associated with curvature measurement, controls the
transition between the micro- and macro-scales. Both the microscopic elasticity tensor and
the characteristic length parameter are here determined using a computational approach
based on the least squares fitting of energies. This process involves the consideration of an
adequate number of quadratic deformation modes and different specimen sizes. We conduct a
comparative analysis between the least square fitting results of the relaxed micromorphic model,
the fitting of a skew-symmetric micro-distortion field (Cosserat-micropolar model), and the
fitting of the classical micromorphic model with two different formulations for the curvature;
one simplified formulation involving only one single characteristic length and a simplified
isotropic curvature with three parameters. The relaxed micromorphic model demonstrates good
agreement with the fully-resolved heterogeneous solution after optimizing only four parameters.
The ‘‘simplified’’ full micromorphic model, which includes isotropic curvature and involves the
optimization of seven parameters, does not achieve superior results, while the Cosserat model
exhibits the poorest fitting.
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1. Introduction

Architected materials or metamaterials are unconventional materials with exceptional mechanical properties that depend on the
ntricate geometry of the underlying complex microstructure, rather than the bulk properties of their constituent materials. They can
e engineered to fulfill specific functionalities. Nonetheless, they often exhibit size-effects, meaning that their effective properties
hange with the variations in material size when scale separation does not hold. Generally, size-effects can involve both increasing
nd decreasing stiffness with reducing the size [1,2]. In this work, we consider only the case that smaller is comparatively stiffer.
n the other hand, materials with intricate microstructures often require homogenization techniques since a complete resolution of

he underlying microstructure is typically infeasible for usual engineering problems due to the associated substantial computational
osts. First-order homogenization methods [3,4] and standard elasticity theories, by their nature, are incapable of capturing size-
ffects phenomena. Generalized continua are enhanced models which are capable of incorporating the size-effects without the need
o account for the fully-resolved microstructures. Two families of generalized continua are commonly found in the literature. The first
amily extends the kinematics to include additional degrees of freedom such as an independent ‘‘micro-’’ rotation, stretch, strain or
ull deformation field, such as those found in the classical Eringen–Mindlin micromorphic theory [5–7] and the Cosserat theory [8,9].
he second family of generalized continua incorporates higher-order differential operators in the energy or motion functional, such
s strain- or stress-gradient [10], as seen in gradient elasticity models [11,12]. A classification of generalized continua constructed
y a micromechanical approach is available in [13].

The relaxed micromorphic model (RMM) is a generalized continuum description which simplifies the form of the assumed strain
nergy compared to the classical micromorphic theory by using a relaxed curvature in terms of the Curl of a micro-distortion

field rather than its full gradient [14–16]. Utilizing only the Curl of the micro-distortion field offers several advantages, notably
reducing the number of material parameters. The well-posedness for the important case of symmetric force stress is proven using
new generalized Korn’s inequality [17–20]. An important characteristic of the relaxed micromorphic continuum is its bounded
stiffness from below and above, allowing the material parameters to be related to two well-defined scales [21] which is impossible
for the classical micromorphic or gradient elasticity theories. This feature establishes the relaxed micromorphic model as a linear
elasticity model operating between these two scales: the microscopic scale, described by linear elasticity with a micro elasticity
tensor representing the maximum stiffness exhibited by the assumed metamaterial, and the macroscopic scale, characterized by
linear elasticity with a macro elasticity tensor obtained using standard periodic first-order homogenization methods where scale
separation holds. In the RMM, the characteristic length parameter plays a critical role in scaling correctly with the specimen size
and controlling the transition between the micro- and macro-scales. Therein, large values of the characteristic length correspond
to zooming into the ‘‘stiff’’ microstructure, for example, a unit-cell (UC), while small values result in an effective ‘‘soft’’ classical
homogeneous response for large structures. Fig. 1 illustrates how this unique behavior distinguishes the relaxed micromorphic
model from other generalized continua which exhibit unbounded stiffness for arbitrarily small specimens (i.e., large values of the
characteristic length). In previous attempts, the micro elasticity tensor was defined as the stiffest response at the unit-cell level.
In [22], focusing on band gaps, the micro elasticity tensor was determined by the Löwner matrix supremum of elasticity tensors
under affine Dirichlet conditions. However, it was found to be too soft for size-effects in the bending regime [23]. This prompted an
expansion of our understanding of the micro elasticity tensor, particularly by incorporating non-affine Dirichlet conditions [24,25],
resulting in a micro elasticity tensor calibrated specifically for bending. However, a homogenization procedure for the identification
of all the unknown parameters, including the characteristic length, has not yet been established.

The identification of material parameters for enriched continua is a highly non-trivial task which remains largely unresolved
despite many attempts in the literature. Various methods have been proposed for the homogenization of fully-resolved heterogeneous
microstructures into the Cosserat continuum in [26–28], different variants of the gradient elasticity continuum in [29–40], and the
classical Eringen–Mindlin micromorphic continuum in [41–49]. However, these methods have yet to yield a universally accepted
solution. Many fundamental questions arise in the context of homogenization towards generalized continua, most of which have
been addressed within the framework of the standard first-order homogenization theory [50,51]. The definition of a representative
volume element and the choice of the boundary condition are the first obvious issues which one faces in the homogenization towards
higher-order continua. While in first order homogenization the condition of continuity of the local fields at the interface of unit-cell
results in a periodicity requirement of the micro-displacement fluctuation field, see for example [52], this periodicity requirement
becomes more or less irrelevant in the absence of scale separation and an overall strain gradient loading in the framework of
higher-order homogenization, [53]. Consequently, the higher order moduli are dependent on the choice of the representative
volume element. Alternatively, the analysis can be done on a cluster of unit-cells to get rid of edge effects and considering the
converged behavior in the central unit-cell but some zero-energy modes are obtained [54]. Another crucial point is that the average
second gradient cannot be strictly controlled by the boundary condition, and usually, multiple modes are triggered simultaneously.
Consequently, the selection of the relevant higher-order polynomial coefficients becomes very complex. This can be fixed by
volumetric constraints [55]. In this study, we aim to circumvent the numerous previously unanswered questions by employing
a non-classical homogenization strategy to determine the remaining unknown parameters of the relaxed micromorphic model. This
strategy is based on the least squares fitting of the energy of the homogeneous relaxed micromorphic continuum with that of fully
discretized specimens and does not require the use of classical (or non-classical) micro–macro transition relations. By considering
various deformation modes, whether random or not, and different specimen sizes, we identify the unknown parameters of the
relaxed micromorphic model. The presented approach circumvents the issues associated with conventional homogenization theory,
which are strictly valid only when scale separation holds. Consequently, in situations where scale separation is not well-defined
2

and size-effect phenomena appear, establishing a representative volume element becomes inherently problematic and illogical. A
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Fig. 1. The stiffness of the relaxed micromorphic model (RMM) is bounded from above and below. Other generalized continua exhibit unbounded stiffness for
small sizes. For large values of the characteristic length, linear elasticity with a micro elasticity tensor is recovered (one UC) while linear elasticity with a macro
elasticity tensor is obtained for small values of the characteristic length (many UCs).

pertinent methodology is outlined in [31], which selects 𝑛 deformation modes to determine 𝑛 unknowns and solves the resulting 𝑛
equations precisely.

The paper follows the outline: In Section 2, we revisit the relaxed micromorphic model, exploring its strong and weak form,
alongside the related boundary conditions and the modified curvature which is scaled with the number of considered unit-cells. In
Section 3, we detail the metamaterial geometry and the material parameters of the unit cell. Section 4 is dedicated to presenting
an algorithm that serves as a motivational example and a conceptual validation. This algorithm defines the stiffness matrix of
an equivalent homogeneous continuum for a single unit-cell under both affine Dirichlet and periodic boundary conditions. The
algorithm is then further extended in Section 5 to encompass the case of an equivalent relaxed micromorphic homogeneous
continuum, accompanied by numerical examples. Additionally, we compare the fitting results of the relaxed micromorphic model,
the Cosserat model and the classical micromorphic model with a simplified curvature and an isotropic curvature. We draw our
conclusions in Section 6. For this work, we limit our consideration to the planar case, in which the isotropic curvature energy in
terms of Curl𝑷 has only one free parameter [56]. We confine the optimization to align with the assumed cubic unit cell, which is
not a limitation, as we precisely know the anisotropy properties of the relaxed micromorphic model.

2. The relaxed micromorphic model

The relaxed micromorphic model (RMM) is a generalized continuum. Each material point’s kinematics are described, similar
to the general micromorphic theory [6,57,58], by a standard displacement vector 𝒖∶ ⊆ R3 → R3 and a non-symmetric micro-
distortion field 𝑷 ∶ ⊆ R3 → R3×3. The displacement and the micro-distortion fields are defined by minimizing the energy functional

𝛱(𝒖,𝑷 ) = ∫
𝑊 (∇𝒖,𝑷 ,Curl𝑷 ) − 𝒇 ⋅ 𝒖 d𝑉 − ∫𝜕𝑡

𝒕 ⋅ 𝒖d𝐴 ⟶ min , (1)

with (𝒖,𝑷 ) ∈ 𝐻1() × 𝐻(Curl,). The vector 𝒇 describes the applied body force. The vector 𝒕 is the traction vector acting on the
boundary 𝜕𝑡 ⊂ 𝜕. The elastic energy density 𝑊 reads

𝑊 (∇𝒖,𝑷 ,Curl𝑷 ) = 1
2

(

sym[∇𝒖 − 𝑷 ] ∶ Ce ∶ sym[∇𝒖 − 𝑷 ] + sym𝑷 ∶ Cmicro ∶ sym𝑷

+ skew[∇𝒖 − 𝑷 ] ∶ Cc ∶ skew[∇𝒖 − 𝑷 ] + 𝜇 𝐿2
c Curl𝑷 ∶ L ∶ Curl𝑷

)

.
(2)

Here, Cmicro,Ce > 𝟎 are fourth-order positive definite standard elasticity tensors, Cc ≥ 𝟎 is a fourth-order positive semi-definite
rotational coupling tensor, L is a positive definite fourth-order tensor acting on non-symmetric arguments. The characteristic length
parameter (𝐿c > 0) is related to the size of the microstructure. It allows to scale the number of considered unit-cells keeping all
remaining parameters of the model scale-independent. The macro-scale with Cmacro and the micro-scale with Cmicro are retrieved
for the limiting cases 𝐿c → 0 and 𝐿c → ∞, respectively, if suitable boundary conditions are applied, see [22,59]. The macro-scale
elasticity tensor Cmacro associated with 𝐿c → 0 is a priori uniquely defined by standard first-order periodic homogenization (the
scale separation holds) while the micro-scale elasticity tensor Cmicro associated with 𝐿c → ∞ represents the stiffest extrapolated
response (zooming in the microstructure). The shear modulus 𝜇 in the curvature term has been added for dimensional consistency
3
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Fig. 2. A depiction of the scaling 𝐿c∕𝑛. This scaling delivers the intended ‘‘smaller is stiffer’’ effect for computations on a domain of fixed size and constant 𝐿c.

and is not necessarily related to Cmicro or Cmacro. The constitutive coefficients are assumed constant with the following symmetries

(Cmicro)𝑖𝑗𝑘𝑙 = (Cmicro)𝑘𝑙𝑖𝑗 = (Cmicro)𝑗𝑖𝑘𝑙 , (Cc)𝑖𝑗𝑘𝑙 = (Cc)𝑘𝑙𝑖𝑗 ,

(Ce)𝑖𝑗𝑘𝑙 = (Ce)𝑘𝑙𝑖𝑗 = (Ce)𝑗𝑖𝑘𝑙 , (L)𝑖𝑗𝑘𝑙 = (L)𝑘𝑙𝑖𝑗 ,
(3)

where Cmicro and Ce are connected to Cmacro through a Reuss-like homogenization relation [60] (tilde stands for Voigt notation)
with

C̃−1
macro = C̃−1

micro + C̃−1
e ⇔ C̃e = C̃micro ⋅ (C̃micro − C̃macro)−1 ⋅ C̃macro . (4)

In order to build a link between the heterogeneous fully-detailed metamaterial and the homogeneous relaxed micromorphic model,
we address the size-effect by incorporating the number of considered unit-cells within the computational domain of the reference
heterogeneous material. Thus, the modified energy functional reads

𝑊 (∇𝒖,𝑷 ,Curl𝑷 ) = 1
2
( sym[∇𝒖 − 𝑷 ] ∶ Ce ∶ sym[∇𝒖 − 𝑷 ] + sym𝑷 ∶ Cmicro ∶ sym𝑷

+ skew[∇𝒖 − 𝑷 ] ∶ Cc ∶ skew[∇𝒖 − 𝑷 ] + 𝜇 (
𝐿c
𝑛
)2 Curl𝑷 ∶ L ∶ Curl𝑷 ) .

(5)

The scalar 𝑛 has been introduced resembling the number of the unit-cells considered for the heterogeneous metamaterial in the
computational domain  = [−𝐿

2
, 𝐿
2
] × [−𝐿

2
, 𝐿
2
] = [− 𝑛 𝑙

2
, 𝑛 𝑙
2
] × [− 𝑛 𝑙

2
, 𝑛 𝑙
2
] as depicted in Fig. 2. The characteristic length parameter

𝐿c is set then constant for any considered size. This scaling of curvature by 𝐿c∕𝑛 is not ad hoc, but follows from a rigorous scaling
argument, cf. [22] which leads to the intended stiffening (smaller is stiffer). These considerations are not exclusive to the relaxed
micromorphic model but apply to the classical micromorphic, Cosserat and gradient elasticity models as well.

The variation of the potential with respect to the displacement yields the weak form

𝛿𝒖𝛱 =∫
{Ce ∶ sym[∇𝒖 − 𝑷 ] + Cc ∶ skew[∇𝒖 − 𝑷 ]
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=∶ 𝝈

} ∶ ∇𝛿𝒖 − 𝒇 ⋅ 𝛿𝒖d𝑉 − ∫𝜕𝑡

𝒕 ⋅ 𝛿𝒖d𝐴 = 0 , (6)

which leads, using integration by parts and employing the divergence theorem, to

𝛿𝒖𝛱 = ∫
{div𝝈 + 𝒇} ⋅ 𝛿𝒖d𝑉 = 0 , (7)

where 𝝈 is the non-symmetric force stress tensor. However, a symmetric force stress, i.e. Cc = 𝟎, is always permitted, e.g when the
consistent boundary condition is enforced on the boundary [23,25]. In a similar way, the variation of the potential with respect to
the micro-distortion field 𝑷 leads to the weak form

𝛿𝑷𝛱 = ∫
{𝝈 − Cmicro ∶ sym𝑷

⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟
=∶ 𝝈micro

} ∶ 𝛿𝑷 − {𝜇
(

𝐿c
𝑛

)2
L ∶ Curl𝑷

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
=∶ 𝒎

} ∶ Curl 𝛿𝑷 d𝑉 = 0 , (8)

which can be rewritten, using integration by parts and applying Stokes’ theorem, as

𝛿𝑷𝛱 = ∫ {𝝈 − 𝝈micro − Curl𝒎} ∶ 𝛿𝑷 d𝑉 + ∫ {
3
∑

(

𝒎𝑖 × 𝛿𝑷 𝑖) ⋅ 𝒏} d𝐴 = 0 , (9)
4

 𝜕 𝑖=1
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where the stress measures 𝝈micro and 𝒎 are the micro- and moment stresses, respectively, 𝒏 is the outward unit normal vector on the
boundary, and 𝒎𝑖 and 𝛿𝑷 𝑖 are the row vectors of the related second-order tensors. The strong forms of the relaxed micromorphic
model, obtained from Eqs. (7) and (9), represent the generalized balance of linear and angular momentum which read with the
associated boundary conditions

div𝝈 + 𝒇 = 𝟎 on , 𝝈 − 𝝈micro − Curl𝒎 = 0 on  ,

𝒖 = 𝒖 on 𝜕𝑢 ,
3
∑

𝑖=1
𝑷 𝑖 × 𝒏 = 𝒕𝑃 on 𝜕𝑃 ,

𝒕 = 𝝈 ⋅ 𝒏 on 𝜕𝑡 ,
3
∑

𝑖=1
𝒎𝑖 × 𝒏 = 𝟎 on 𝜕𝑚 ,

(10)

where 𝜕𝑃 ∩ 𝜕𝑚 = 𝜕𝑢 ∩ 𝜕𝑡 = ∅ and 𝜕𝑃 ∪ 𝜕𝑚 = 𝜕𝑢 ∪ 𝜕𝑡 = 𝜕 (more details in [59]). By substituting the generalized balance
of angular momentum into the generalized balance of linear momentum, a resulting, but not independent, balance equation reads

div𝝈micro + 𝒇 = 𝟎 on  , (11)

which does not appear in the Eringen–Mindlin micromorphic theory or the Cosserat (micropolar) model. In the RMM, unlike the
classical theory, only the tangential projection of the micro-distortion field can be described on the boundary, rather than the entire
field. One obvious option is to link the tangential components of the micro-distortion 𝑷 and the deformation gradient ∇𝒖. This
boundary condition, called consistent coupling condition, was proposed in [22] and subsequently considered in [61–64]. It reads

𝑷 ⋅ 𝝉 = ∇𝒖 ⋅ 𝝉 ⇔ 𝑷 𝑖 × 𝒏 = ∇𝒖𝑖 × 𝒏 for 𝑖 = 1, 2, 3 on 𝜕𝑃 = 𝜕𝑢 , (12)

where 𝝉 is the tangential vector on the boundary and 𝑷 𝑖 and ∇𝒖𝑖 are the row-vectors of the associated tensors. We may extend
this boundary condition to parts of 𝜕𝑚 by enforcing the consistent coupling condition on 𝜕𝑚̂ ⊆ 𝜕𝑚 using a penalty approach, as
ollows:

𝛱 ⇐ 𝛱 + ∫𝜕𝑚̂

𝜅
2

3
∑

𝑖=1
‖(𝑷 𝑖 − ∇𝒖𝑖) × 𝒏‖2 d𝐴 , (13)

where 𝜅 is the penalty parameter. The micro-distortion field for the three-dimensional case has the following general form

𝑷 =
⎡

⎢

⎢

⎣

(𝑷 1)𝑇

(𝑷 2)𝑇

(𝑷 3)𝑇

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

𝑃11 𝑃12 𝑃13
𝑃21 𝑃22 𝑃23
𝑃31 𝑃32 𝑃33

⎤

⎥

⎥

⎦

with 𝑷 𝑖 =
⎡

⎢

⎢

⎣

𝑃𝑖1
𝑃𝑖2
𝑃𝑖3

⎤

⎥

⎥

⎦

for 𝑖 = 1, 2, 3 . (14)

We let the Curl operator act on the row vectors of the micro-distortion field 𝑷 as

Curl𝑷 =
⎡

⎢

⎢

⎣

(curl𝑷 1)𝑇

(curl𝑷 2)𝑇

(curl𝑷 3)𝑇

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

𝑃13,2 − 𝑃12,3 𝑃11,3 − 𝑃13,1 𝑃12,1 − 𝑃11,2
𝑃23,2 − 𝑃22,3 𝑃21,3 − 𝑃23,1 𝑃22,1 − 𝑃21,2
𝑃33,2 − 𝑃32,3 𝑃31,3 − 𝑃33,1 𝑃32,1 − 𝑃31,2

⎤

⎥

⎥

⎦

. (15)

arious finite element formulations of the relaxed micromorphic model were presented for different cases: plane strain in [59,65],
ntiplane shear in [61], and the three-dimensional case in [66,67]. A conforming finite element formulation for an even further
elaxed curvature can be found in [68]. For the two-dimensional scenario, the micro-distortion field only has four non-vanishing
omponents within the plane, and its Curl operator reduces to just two components out of the plane, namely (Curl𝑷 )13 and (Curl𝑷 )23,
uch that

𝑷 =
⎡

⎢

⎢

⎣

(𝑷 1)𝑇

(𝑷 2)𝑇

𝟎𝑇

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

𝑃11 𝑃12 0
𝑃21 𝑃22 0
0 0 0

⎤

⎥

⎥

⎦

and Curl𝑷 =
⎡

⎢

⎢

⎣

0 0 𝑃12,1 − 𝑃11,2
0 0 𝑃22,1 − 𝑃21,2
0 0 0

⎤

⎥

⎥

⎦

. (16)

or this work, we utilize an 𝐻(Curl)-conforming finite element, denoted as Q2NQ2, which employs Lagrange-type shape functions
f the second-order for the displacement field, denoted as Q2, and a Nédélec formulation of first-kind and second-order [69,70] for
he micro-distortion field. For more details regarding the derivation of shape functions and the FEM-implementation, the reader is
eferred to [59]. The simulations presented in this paper are performed within AceGen and AceFEM programs. The interested reader
s referred to [71,72] for more details on the latter two.

. The unit-cell and the material parameters

In the following, we consider a unit-cell consisting of a stiff matrix (aluminum) and a swiss-cross shape ultra-soft inclusion where
he Lamé parameters differ by a factor 10000. Both materials are isotropic linear elastic. The parameters and the geometry of the
nit-cell are shown in Fig. 3. We consider 𝑛 unit-cells in each direction in the computation domain  = [−𝐿

2
, 𝐿
2
] × [−𝐿

2
, 𝐿
2
] =

[− 𝑛 𝑙 , 𝑛 𝑙 ] × [− 𝑛 𝑙 , 𝑛 𝑙 ].
5
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Fig. 3. Unit-cell with the material and geometrical parameters.

Fig. 4. Illustration of the homogenization procedure to identify the parameters of an equivalent linear elastic medium under affine kinematic boundary condition.

4. Motivation and consistency check for linear elasticity

In this section, we introduce the fundamentals of a homogenization procedure based on the concept of a least squares fitting of
energies for identifying the unknown parameters of the effective homogenized continuum.

4.1. Affine Dirichlet boundary condition

We employ this approach to first identify the elasticity tensor of an equivalent linear elastic homogeneous medium under
affine boundary conditions, as shown in Fig. 4. While affine Dirichlet boundary conditions are usually not considered in standard
homogenization approaches, it is nevertheless true that there exists a unique effective elasticity tensor Caffine which defines energy
equivalence under all affine boundary conditions which is typically stiffer than the effective elasticity tensor Cperiodic obtained under
periodic boundary condition, see [22]. We use the generalized notation Chom to encompass both cases since the same algorithm is
involved.

Here, 𝛱het
𝑖 (𝒖,C) is the total energy of the heterogeneous domain under loading case 𝑖 while 𝛱hom

𝑖 (𝒖,Chom) is the total energy of
an equivalent linear elastic homogeneous continuum under loading case 𝑖. They read

𝛱het
𝑖 (𝒖,C) = ∫

𝜺 ∶ C(𝒙) ∶ 𝜺d𝑉 , 𝛱hom
𝑖 (𝒖,Chom) = ∫

𝜺 ∶ Chom ∶ 𝜺d𝑉 . (17)

The Hill–Mandel lemma postulates that the mechanical energies of the heterogeneous and equivalent homogeneous continua are
equivalent. We have the following minimization problem

𝑟2 = min
Chom

𝑖max
∑

𝑖=1
||𝛱het

𝑖 (𝒖,C) −𝛱hom
𝑖 (𝒖,Chom)||2 , (18)

where 𝑖 indicates different loading cases induced by affine Dirichlet boundary conditions enforced on the whole boundary
(𝒖̄𝑖 = 𝜺̄𝑖 ⋅ 𝒙 on 𝜕 with 𝜺̄𝑖 ∈ Sym(3) ). In our approach the stiffness’s anisotropy class needs to be defined in advance. This
may require additional considerations and careful selection of the appropriate stiffness’s anisotropy class to ensure the accuracy and
reliability of the results. We consider an equivalent continuum with a stiffness tensor which exhibits cubic anisotropy. This is inline
6
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O
i
e

T

T

with our preference for a cubic unit-cell in Fig. 3. The stiffness matrix Chom in Voigt notation reads

C̃hom =
⎡

⎢

⎢

⎣

2𝜇hom + 𝜆hom 𝜆hom 0
𝜆hom 2𝜇hom + 𝜆hom 0
0 0 𝜇∗hom

⎤

⎥

⎥

⎦

(19)

and is characterized by three parameters. The total energy can be rewritten as

𝛱hom
𝑖 (𝒖,Chom) = ∫

𝜺 ∶ Chom ∶ 𝜺d𝑉 = ∫
𝜇hom (𝜀211 + 𝜀222) + 𝜇∗hom(2𝜀212) +

𝜆hom

2
(𝜀11 + 𝜀22)2 d𝑉

= 𝜇hom
(

∫
(𝜀211 + 𝜀222)d𝑉

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝛱hom

𝑖,𝜇

+𝜇∗hom
(

∫
2𝜀212 d𝑉

)

⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟
𝛱hom

𝑖,𝜇∗

+𝜆hom
(

∫
1
2
(𝜀11 + 𝜀22)2d𝑉

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝛱hom

𝑖,𝜆

= 𝜇hom 𝛱hom
𝑖,𝜇 + 𝜇∗hom 𝛱hom

𝑖,𝜇∗ + 𝜆hom 𝛱hom
𝑖,𝜆 .

(20)

ur objective is to identify the parameters 𝜆hom, 𝜇hom, and 𝜇∗hom by solving the minimization problem in Eq. (18). However,
nitial values must be set in order to solve the 𝑛 boundary value problems. Consequently, an iterative approach is necessary after
stablishing initial values for the unknown parameters. We then seek the increments 𝛥𝜆hom, 𝛥𝜇hom, and 𝛥𝜇∗hom such that:

𝛱hom
𝑖 (𝒖,Chom + 𝛥Chom) = (𝜇hom + 𝛥𝜇hom)𝛱hom

𝑖,𝜇 + (𝜇∗hom + 𝛥𝜇∗hom)𝛱hom
𝑖,𝜇∗

+ (𝜆hom + 𝛥𝜆hom)𝛱hom
𝑖,𝜆

=𝛱hom
𝑖 (𝒖,Chom) + 𝛥𝜇hom 𝛱hom

𝑖,𝜇 + 𝛥𝜇∗hom 𝛱hom
𝑖,𝜇∗ + 𝛥𝜆hom 𝛱hom

𝑖,𝜆 .

(21)

he total energy of the homogeneous domain can be written for 𝑖max loading cases as

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝛱hom
1 (𝒖,Chom + 𝛥Chom)

𝛱hom
2 (𝒖,Chom + 𝛥Chom)

.

.

𝛱hom
𝑖max

(𝒖,Chom + 𝛥Chom)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝛱homo
1,𝜇 𝛱hom

1,𝜇∗ 𝛱hom
1,𝜆

𝛱hom
2,𝜇 𝛱hom

2,𝜇∗ 𝛱hom
2,𝜆

. . .

. . .

𝛱hom
𝑖max ,𝜇

𝛱hom
𝑖max ,𝜇∗

𝛱hom
𝑖max ,𝜆

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑫

⎡

⎢

⎢

⎢

⎣

𝛥𝜇hom

𝛥𝜇∗hom

𝛥𝜆hom

⎤

⎥

⎥

⎥

⎦

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
𝛥Chom

+

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝛱hom
1 (𝒖,Chom)

𝛱hom
2 (𝒖,Chom)

.

.

𝛱hom
𝑖max

(𝒖,Chom)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝒃

. (22)

he minimization problem becomes

𝑟2 = min
𝛥Chom

𝑖max
∑

𝑖=1
||𝛱het

𝑖 (𝒖,C) −
(

𝛱hom
𝑖 (𝒖,Chom) + 𝛥𝜇hom𝛱hom

𝑖,𝜇 + 𝛥𝜇∗hom𝛱hom
𝑖,𝜇∗ + 𝛥𝜆hom𝛱hom

𝑖,𝜆

)

||

2 , (23)

and the solution of the least square problem reads

𝛥Chom = (𝑫𝑇 ⋅𝑫)−1 ⋅𝑫𝑇 ⋅ (𝒂 − 𝒃) with 𝑎𝑖 = 𝛱het
𝑖 (𝒖,C) , (24)

where the parameters 𝜇hom, 𝜇∗hom and 𝜆hom are updated in an iterative procedure until the error 𝑟2 converges to a constant value,
optimally zero. The algorithm is explained in Algorithm 1. For this algorithm a standard T2 finite element with quadratic shape
functions is implemented.

The implemented algorithm leads for any 𝑖max ≥ 3 and one single unit-cell (𝑛 = 1) to the solution 𝜇hom = 6.251 kN/mm2,
𝜇∗hom = 8.337 kN/mm2 and 𝜆hom = 4.379 kN/mm2 which meet the one in [22] within one iteration (see Fig. 5). This is expected
because the system is linear. The error vanishes which means the fitting delivers actually the unique solution. Note that choosing
three deformation modes (𝑖max = 3) is sufficient when these modes yield three independent relations, such as shearing, stretching
along one of the axes (stretching in the 𝑥 or 𝑦 direction delivers the same equation), and a third mode resulting in a third linearly
independent equation (such as stretching in 𝑥 and 𝑦 directions simultaneously).

4.2. Periodic boundary condition

In classical homogenization theory, periodicity is the choice to define the effective properties because of the significant difference
in length scales between the macroscopic and microscopic problems. In essence, the micro-problem is significantly smaller than the
macro-problem, thereby maintaining a clear scale separation. The microscopic strain is decomposed into a constant macroscopic
part 𝜺̄ and a fluctuation part 𝜺̂

𝜺 = 𝜺̄ + 𝜺̂ and 𝒖 = 𝒖̄ + 𝒖̂ = 𝜺̄ ⋅ 𝒙 + 𝒖̂ . (25)
7
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e

begin
production of the reference data (heterogeneous material)

- inputs: unit-cell geometry with the material parameters of the matrix and inclusion
- define 𝑖max affine deformation modes 𝜺̄𝑖 for 𝑖 = 1, ...., 𝑖max
- if affine BCs then 𝒖 = 𝒖̄ = 𝜺̄𝑖 ⋅ 𝒙 on 𝜕
- if periodic BCs then 𝒖̄ = 𝜺̄𝑖 ⋅ 𝒙 on 
- solve 𝑖max boundary value problems of the heterogeneous material
- calculate the vector 𝒂𝑇 = [𝛱het

1 ,𝛱het
2 , ..,𝛱het

𝑖max
]

defining the unknown (homogeneous material)
- set initial values for the parameters 𝜆hom, 𝜇hom, 𝜇∗hom

repeat
- apply the deformation modes (𝜺̄𝑖 for 𝑖 = 1, ...., 𝑖max)
- if affine BCs then 𝒖 = 𝒖̄ = 𝜺̄𝑖 ⋅ 𝒙 on 𝜕
- if periodic BCs then 𝒖̄ = 𝜺̄𝑖 ⋅ 𝒙 on 
- solve 𝑖max boundary value problems of the equivalent homogeneous medium
- calculate the vector 𝒃𝑇 = [𝛱hom

1 ,𝛱hom
2 , ..,𝛱hom

𝑖max
]

- calculate the derivative matrix 𝑫; 𝑫𝑇
𝑖 = [𝛱homo

𝑖,𝜇 ,𝛱hom
𝑖,𝜇∗ ,𝛱hom

𝑖,𝜆 ] for 𝑖 = 1, .., 𝑖max

- solve [𝛥𝜇hom, 𝛥𝜇∗hom, 𝛥𝜆hom]𝑇 = (𝑫𝑇 ⋅𝑫)−1 ⋅𝑫𝑇 ⋅ (𝒂 − 𝒃)
- 𝜇hom ← 𝜇hom + 𝛥𝜇hom, 𝜇∗hom ← 𝜇∗hom + 𝛥𝜇∗hom, 𝜆hom ← 𝜆hom + 𝛥𝜆hom

- calculate the current error 𝑟2
until 𝑟2 < tol

- The parameters 𝜇hom, 𝜇∗hom, 𝜆hom are known
nd

Algorithm 1: Algorithm for the minimization problem for equivalent homogeneous linear elastic continuum.

Fig. 5. Results for the parameter identification algorithm for linear elasticity under affine boundary conditions.
8
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Fig. 6. Illustration of periodicity condition of fluctuation on heterogeneous medium and elastic equivalent medium.

The partial derivatives of the energy with respect to the unknown parameters are computed, taking into consideration that the
integral of fluctuation part of strain over the domain equals to zero, i.e. ∫𝐵 𝜺̂d𝑉 = 𝟎,

𝛱hom
𝑖,𝜇 = ∫𝐵

(𝜀 2
11 + 𝜀 2

22)d𝑉 = 𝑉(𝜀̄211 + 𝜀̄222) + ∫𝐵
2(𝜀̄11𝜀11 + 𝜀̄22𝜀22)d𝑉

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
=0

+∫𝐵
(𝜀 2

11 + 𝜀 2
22)d𝑉 ,

𝛱hom
𝑖,𝜇∗ = ∫

2𝜀212 d𝑉 = 2𝑉𝜀̄12 + ∫𝐵
4𝜀̄12𝜀12 d𝑉

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
=0

+∫𝐵
2𝜀12 d𝑉 .

𝛱hom
𝑖,𝜆 = ∫𝐵

1
2
(𝜀11 + 𝜀22)2 d𝑉

=
𝑉
2
(𝜀̄11 + 𝜀̄22)2 + ∫𝐵

(𝜀̄11 + 𝜀̄22)(𝜀11 + 𝜀22)d𝑉
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=0

+∫𝐵
1
2
(𝜀11 + 𝜀22)2 d𝑉 ,

(26)

The boundary 𝜕 is divided into two associated parts (‘‘+’’,‘‘-’’) which satisfies 𝜕 = 𝜕+ ∪ 𝜕− with outward unit normals 𝒏− and
𝒏+ satisfying 𝒏− = −𝒏+ and the periodicity is postulated as

𝒖̂(𝒙+) = 𝒖̂(𝒙−) , (27)

which is illustrated in Fig. 6. The algorithm is similar to the one with affine Dirichlet boundary conditions in Algorithm 1, however,
the 𝑖max deformation modes are enforced on the body, i.e. 𝒖̄ = 𝜺̄ ⋅ 𝒙 on . For this, we utilize a standard T2 finite element which
discretizes the fluctuation field.

The results of the implemented algorithm are shown in Fig. 7. For any selection of three deformation modes or more 𝑖max ≥ 3, we
obtain the exact solution in one iteration which reads 𝜇hom = 5.9 kN/mm2, 𝜇∗hom = 0.627 kN/mm2 and 𝜆hom = 1.748 kN/mm2 and
meets the solution in [22,24]. Similar to the case of affine boundary conditions, the classical three deformation modes (stretching
in 𝑥, stretching in 𝑦 and shearing) are not a valid option because stretching in 𝑥 or 𝑦 leads to the same equation (energetically
equivalent). The result of this analysis serves as the limit case for the relaxed micromorphic model for very large specimens 𝑛 → ∞,
i.e. linear elasticity with elasticity tensor Cmacro. Enforcing vanishing fluctuations on the boundary restores the same results of the
affine Dirichlet boundary condition, of course.

5. Computational approach to identify the material parameters for RMM

The macro elasticity tensor Cmacro corresponds to the case when 𝑛 → ∞, where the macro homogeneous response is expected. A
unit-cell with periodic boundary conditions should be used to identify Cmacro, as described in [4]. Our analysis in Section 4.2 ended
with the following macroscopic stiffness exhibiting cubic symmetry

C̃macro =
⎡

⎢

⎢

⎣

2𝜇macro + 𝜆macro 𝜆macro 0
𝜆macro 2𝜇macro + 𝜆macro 0

0 0 𝜇∗
macro

⎤

⎥

⎥

⎦

,
𝜆macro = 1.748 kN/mm2

𝜇macro = 5.9 kN/mm2

𝜇∗
macro = 0.627 kN/mm2

, (28)

where the cubic stiffness tensor is defined by three independent parameters. Based on the extended Neumann’s principle in [22],
the stiffness tensors Ce and Cmicro must contain the maximal invariance group of the periodic microstructure (i.e. Cmacro). Thus, we
assume

C̃micro =
⎡

⎢

⎢

2𝜇micro + 𝜆micro 𝜆micro 0
𝜆micro 2𝜇micro + 𝜆micro 0

∗

⎤

⎥

⎥

, C̃e =
⎡

⎢

⎢

2𝜇e + 𝜆e 𝜆e 0
𝜆e 2𝜇e + 𝜆e 0

∗

⎤

⎥

⎥

, (29)
9
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Fig. 7. Results for the parameter identification algorithm for linear elasticity under periodic boundary conditions. It is observed, as expected, that Caffine is stiffer
than Cperiodic.

Fig. 8. Illustration of the minimization problem to obtain the material parameters in the RMM. The consistent coupling condition is enforced on the whole
boundary.

and the elastic energy density after considering Cc = 𝟎 (a choice) and L = II (plane strain) becomes

𝑊 (∇𝒖,𝑷 ,Curl𝑷 ) =𝜇e
(

(𝑢1,1 − 𝑃11)2 + (𝑢2,2 − 𝑃22)2
)

+
𝜇∗

e
2
(𝑢1,2 + 𝑢2,1 − 𝑃12 − 𝑃21)2

+
𝜆e
2

(𝑢1,1 + 𝑢2,2 − 𝑃11 − 𝑃22)2 + 𝜇micro(𝑃 2
11 + 𝑃 2

22)

+
𝜇∗

micro
2

(𝑃12 + 𝑃21)2 +
𝜆micro

2
(𝑃11 + 𝑃22)2

+
𝜇𝐿c

2

2𝑛2
(

(Curl𝑷 )213 + (Curl𝑷 )223
)

.

(30)

Note that assuming Cc = 𝟎 is a valid option, when the consistent boundary condition is applied on the boundary, [25]. Moreover,
the curvature for the 2D case is isotropic because Curl𝑷 is reduced to a vector out of the plane [73], see Eq. (16). Therefore, the
curvature will be controlled by only one parameter with assuming that L = II is the fourth order identity tensor. The Reuss-like
homogenization relation in Eq. (4) taking into consideration the relations in Eq. (29) leads to

𝜇e =
𝜇micro 𝜇macro
𝜇micro − 𝜇macro

, 𝜇∗
e =

𝜇∗
micro 𝜇

∗
macro

𝜇∗
micro − 𝜇∗

macro
, 𝜆e + 𝜇e =

(𝜆micro + 𝜇micro) (𝜆macro + 𝜇macro)
(𝜆micro + 𝜇micro) − (𝜆macro + 𝜇macro)

. (31)

The presented minimization problem, illustrated in Fig. 8, can be described as

𝑟2 = min
𝜇micro , 𝜇∗micro , 𝜆micro , 𝜇𝐿2

c

𝑛max
∑

𝑛=1

𝑖max
∑

𝑖=1
||𝛱het

𝑖×𝑛 (𝒖) −𝛱𝑖×𝑛(𝒖,𝑷 )||2 , (32)

where 𝑖 = 1,… ., 𝑖max represents loading cases on 𝑛 × 𝑛 unit-cells for 𝑛 = 1,… , 𝑛max. Consequently, 𝑗max = 𝑖max 𝑛max reference data
points need to be obtained for the heterogeneous material.
10



Computer Methods in Applied Mechanics and Engineering 425 (2024) 116944M. Sarhil et al.
In order to solve the minimization problem in Eq. (32), we define the following derivatives

𝛱𝑖×𝑛,𝜇micro =
𝜕𝛱𝑖×𝑛
𝜕𝜇micro

= ∫
𝜕𝑊

𝜕𝜇micro
d𝑉 ,

𝛱𝑖×𝑛,𝜇∗micro
=

𝜕𝛱𝑖×𝑛
𝜕𝜇∗

micro
= ∫

𝜕𝑊
𝜕𝜇∗

micro
d𝑉 ,

𝛱𝑖×𝑛,𝜆micro =
𝜕𝛱𝑖×𝑛
𝜕𝜆micro

= ∫
𝜕𝑊

𝜕𝜆micro
d𝑉 ,

𝛱𝑖×𝑛,𝜇𝐿2
c
=

𝜕𝛱𝑖×𝑛

𝜕𝜇𝐿2
c
= ∫

𝜕𝑊
𝜕𝜇𝐿2

c
d𝑉 ,

(33)

which cannot be evaluated analytically. Therefore, they will be defined numerically as
𝜕𝛱
𝜕∙

=
𝛱(∙ + 𝜖) −𝛱(∙)

𝜖
(34)

where the scalar 𝜖 has to be small. We reformulate the minimization problem in Eq. (32) in terms of the increments of the unknowns
instead, leading to

𝑟2 = min
𝛥𝜇micro ,𝛥𝜇∗micro ,𝛥𝜆micro ,𝛥𝜇𝐿2

c

𝑛max
∑

𝑛=1

𝑖max
∑

𝑖=1
||𝛱het

𝑖×𝑛−

(

𝛱𝑖×𝑛 +
𝜕𝛱𝑖×𝑛
𝜕𝜇micro

𝛥𝜇micro +
𝜕𝛱𝑖×𝑛
𝜕𝜇∗

micro
𝛥𝜇∗

micro +
𝜕𝛱𝑖×𝑛
𝜕𝜆micro

𝛥𝜆micro +
𝜕𝛱𝑖×𝑛

𝜕𝜇𝐿2
c
𝛥𝜇𝐿2

c

)

||

2 .

(35)

Hence, we obtain an optimization problem where the unknowns have to be updated in an iterative procedure. The solution of the
minimization problem at the current unknowns (𝜇micro, 𝜇∗

micro, 𝜆micro, 𝜇𝐿2
c ) leads to the following vector

𝜦 = (𝑫𝑇 ⋅𝑫)−1 ⋅𝑫𝑇 ⋅ (𝒂 − 𝒃) , (36)

with

𝒂 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝛱het
1×1

𝛱het
1×2

.

.

𝛱het
𝑖max×𝑛max

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, 𝒃 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝛱1×1

𝛱1×2

.

.

𝛱𝑖max×𝑛max

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, 𝜦 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝛥𝜇micro

𝛥𝜇∗
micro

𝛥𝜆micro

𝛥𝜇𝐿2
c

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, (37)

and

𝑫 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑫𝑇
1×1

𝑫𝑇
1×2

.

.

𝑫𝑇
𝑖max×𝑛max

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝜕𝛱1×1
𝜕𝜇micro

𝜕𝛱1×1
𝜕𝜇∗micro

𝜕𝛱1×1
𝜕𝜆micro

𝜕𝛱1×1
𝜕𝜇𝐿2

c

𝜕𝛱1×2
𝜕𝜇micro

𝜕𝛱1×2
𝜕𝜇∗micro

𝜕𝛱1×2
𝜕𝜆micro

𝜕𝛱1×2
𝜕𝜇𝐿2

c
. . . .
. . . .

𝜕𝛱𝑖max×𝑛max
𝜕𝜇micro

𝜕𝛱𝑖max×𝑛max
𝜕𝜇∗micro

𝜕𝛱𝑖max×𝑛max
𝜕𝜆micro

𝜕𝛱𝑖max×𝑛max
𝜕𝜇𝐿2

c

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (38)

where the vector 𝜦 represents a preferred direction at the current position. The new position has to be updated as

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝜇micro

𝜇∗
micro

𝜆micro

𝜇𝐿2
c

⎤

⎥

⎥

⎥

⎥

⎥

⎦new

=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝜇micro

𝜇∗
micro

𝜆micro

𝜇𝐿2
c

⎤

⎥

⎥

⎥

⎥

⎥

⎦

+ 𝛽𝜦 (39)

where 𝛽 is the distance along the direction 𝜦. It can be identified by a line search procedure. An exact procedure can be implemented
to optimize the choice of 𝛽 with the criterion

𝑟2 = min
𝛽

𝑛max
∑

𝑛=1

𝑖max
∑

𝑖=1
||𝛱het

𝑖×𝑛 −𝛱𝑖×𝑛(𝜇micro + 𝛽𝛬1, 𝜇
∗
micro + 𝛽𝛬2, 𝜆micro + 𝛽𝛬3, 𝜇𝐿

2
c + 𝛽𝛬4)||2 . (40)

However, we need to keep Cmicro stiffer than Cmacro, i.e. Cmicro − Cmacro must be positive definite, see [22], and 𝐿c must be strictly
positive which yields then a maximum distance 𝛽max along the preferred direction which satisfies

𝜇micro + 𝛽max𝛬1 > 𝜇macro ,

𝜇∗
micro + 𝛽max𝛬2 > 𝜇∗

macro ,

𝜆micro + 𝛽max𝛬3 + 𝜇micro + 𝛽max𝛬1 > 𝜆macro + 𝜇macro ,
2

(41)
11

𝜇𝐿c + 𝛽max𝛬4 > 0 .
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d
c

For our implementation, inexact identification of 𝛽 is implemented by evaluating the function at multiple points in the domain
𝛽 ∈

[

0,min(1, 𝛽max)
]

along the preferred direction 𝛬 and we choose the one with the least error 𝑟2.
The choice of the boundary conditions plays a crucial role in the homogenization theory. We select Dirichlet boundary conditions

that encompass both affine and non-affine parts on the entire boundary

𝒖̄𝑖 = 𝑩𝑖 ⋅ 𝒙 + 𝑪 𝑖 ⋅ 𝒙⊗ 𝒙 on 𝜕 (42)

with

𝑩𝑖 =
[

𝐵11 𝐵12
𝐵21 𝐵22

]

with 𝐵𝑗𝑘 = random[−0.05, 0.05] (43)

and

𝑪 𝑖 ⋅ 𝒙⊗ 𝒙 =
[

𝐶111 𝐶112 𝐶122
𝐶211 𝐶212 𝐶222

]

⋅
⎡

⎢

⎢

⎣

𝑥2

𝑥𝑦
𝑦2

⎤

⎥

⎥

⎦

with 𝐶𝑗𝑘𝑙 = random[−0.05, 0.05] . (44)

Certainly, the incorporation of non-affine boundary conditions can be expected, in analogy to the classical theories of higher-
order homogenization. Nevertheless, size-effects have been demonstrated for both affine and non-affine loading. The implemented
algorithm can be found in Algorithm 2 which is searching for an optimized quantity 𝜇𝐿2

c . To illustrate the order of the characteristic
length 𝐿c with respect to the size of the unit-cell, we give a definition for the shear modulus 𝜇 by using the isotropic elastic moduli
closest to the cubic macroscopic moduli Cmacro for the log-Euclidean norm [74]. This definition is unique and independent of whether
the difference in stiffness or compliance is considered. The isotropic equivalent shear modulus reads

𝜇 = 5
√

(𝜇macro)2(𝜇∗
macro)3 = 1.537 kN/mm2 . (45)

begin
production of the reference data (heterogeneous material)

- define 𝑛max deformation modes (𝑖 = 1, ...., 𝑖max) applied on the boundary

𝒖̄𝑖 = 𝑩𝑖 ⋅ 𝒙 + 𝑪 𝑖 ⋅ 𝒙⊗ 𝒙 on 𝜕

- define number of cluster sizes considered in analysis with 𝑛 × 𝑛 unit-cells; 𝑛 = 1, .., 𝑛max
- solve 𝑗max = 𝑖max𝑛max boundary value problems of the heterogeneous material
- calculate the vector 𝒂𝑇 = [𝛱het

1×1,𝛱
het
1×2, ....,𝛱

het
𝑖max×𝑛max

]

defining the unknown (homogeneous relaxed micromorphic continuum)
- give initial values for the parameters 𝜇micro, 𝜇∗

micro, 𝜆micro, 𝜇𝐿2
c

repeat
- apply the deformation modes on the boundary (𝒖̄𝑖 = 𝑩𝑖 ⋅ 𝒙 + 𝑪 𝑖 ⋅ 𝒙⊗ 𝒙 on 𝜕)
- calculate the vector 𝒃𝑇 = [𝛱1×1,𝛱1×2, ....,𝛱𝑖max×𝑛max ]
- calculate the matrix 𝑫; row vectors read 𝑫𝑇

𝑖×𝑛 = [ 𝜕𝛱𝑖×𝑛
𝜕𝜇micro

, 𝜕𝛱𝑖×𝑛
𝜕𝜇∗micro

, 𝜕𝛱𝑖×𝑛
𝜕𝜆micro

, 𝜕𝛱𝑖×𝑛
𝜕𝜇𝐿2

c
]

- solve 𝜦 = (𝑫𝑇 ⋅𝑫)−1 ⋅𝑫𝑇 ⋅ (𝒂 − 𝒃)
- define 𝛽max ≤ 1 which keeps Cmicro positive definite and 𝐿c positive
- try multiple values of 𝛽 = { 1

512
, 1
256

, 1
128

, 1
64

, 1
32

, 1
8
, 1
4
, 1
2
, 1}𝛽max

- choose 𝛽 which delivers the least error 𝑟2 along the direction 𝜦
-

𝜇micro ← 𝜇micro + 𝛽𝛬1, 𝜇∗
micro ← 𝜇∗

micro + 𝛽𝛬2

𝜆micro ← 𝜆micro + 𝛽𝛬3, 𝜇𝐿2
c ← 𝜇𝐿2

c + 𝛽𝛬4

- calculate the current error 𝑟2new to compare with the one form last iteration 𝑟2old

until
𝑟2old − 𝑟2new

𝑟2old
< tol

- the parameters 𝜇micro, 𝜇∗
micro, 𝜆micro, 𝜇𝐿2

c are known
end

Algorithm 2: Algorithm for the optimization procedure of parameter identification of the relaxed micromorphic model.
The results of the implemented algorithm for the parameter identification of the RMM are shown in Fig. 9. We utilize 40

eformation modes across three distinct sizes. Consequently, we need to solve 120 boundary value problems for the heterogeneous
ase before initiating the least square fitting procedure.
12
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Fig. 9. Results for the parameter identification algorithm for the relaxed micromorphic model. We refer to the obtained final parameters here as parameter
set 1.

The algorithm achieves the intended purpose, resulting in a final error that is much less than the error of the initial values.
However, we observe that 𝜇∗

micro tends towards very large values. Thus, we need to invoke the concept of the stiffest possible
response, where we assume that the micro elasticity tensor cannot possibly yield a stiffer response than the homogeneous stiff
matrix for any loading scenario. The concept of the stiffest possible response arises from the fact that the relaxed micromorphic
model operates between two scales, ensuring the preservation of the physical interpretation of the upper bound, which cannot
be logically stiffer than the stiff matrix. While the microscopic elasticity tensor Cmicro exists also in the classical micromorphic
models, it lacks an associated bound. Consequently, the microscopic elasticity tensor in the classical micromorphic continuum is not
reflected in a microscopic scale (linear elasticity with elasticity tensor Cmicro). Setting Cmicro to infinity aligns with the assumption
of an infinitely rigid microstructure that rotates (Cosserat model) which serves as an extremely unrealistic simplification. The goal
of the stiffest response constraint, which will likely result in a poorer fit, is to preserve a physical interpretation of the microscopic
scale appearing solely in the relaxed micromorphic model. Here, the coefficients of the fourth-order microscopic elasticity tensor are
expected to have a reasonable range, avoiding arbitrary magnitudes of the material parameters found in other generalized continua.
Furthermore, since the microscopic scale corresponds to a standard linear elastic model, we know that any metamaterial cannot
exhibit a stiffer response than the homogeneous linear elastic stiff matrix under any loading scenario. However, the reasonability
of this assumption remains an open question for future research. This bound on the stiffness will be expressed in terms of energy
norms (Löwner order) as

𝜺 ∶ C ∶ 𝜺 ≤ 𝜺 ∶ C ∶ 𝜺 , ∀𝜺 ∈ Sym(3) . (46)
13
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This condition can be rewritten as

⎡

⎢

⎢

⎣

𝜀12
𝜀22
2𝜀12

⎤

⎥

⎥

⎦

𝑇

⋅
⎡

⎢

⎢

⎣

2𝜇micro + 𝜆micro 𝜆micro 0
𝜆micro 2𝜇micro + 𝜆micro 0

0 0 𝜇∗
micro

⎤

⎥

⎥

⎦

⋅
⎡

⎢

⎢

⎣

𝜀12
𝜀22
2𝜀12

⎤

⎥

⎥

⎦

≤

⎡

⎢

⎢

⎣

𝜀12
𝜀22
2𝜀12

⎤

⎥

⎥

⎦

𝑇

⋅
⎡

⎢

⎢

⎣

2𝜇matrix + 𝜆matrix 𝜆matrix 0
𝜆matrix 2𝜇matrix + 𝜆matrix 0

0 0 𝜇∗
matrix

⎤

⎥

⎥

⎦

⋅
⎡

⎢

⎢

⎣

𝜀12
𝜀22
2𝜀12

⎤

⎥

⎥

⎦

, ∀
⎡

⎢

⎢

⎣

𝜀12
𝜀22
𝜀12

⎤

⎥

⎥

⎦

∈ R3 ,

(47)

nd the solution reads, see [22],

𝜇∗
micro ≤ 𝜇matrix ,

𝜇micro ≤ 𝜇matrix ,

𝜇micro + 𝜆micro ≤ 𝜇matrix + 𝜆matrix .

(48)

he first optimization delivers a shear modulus 𝜇∗
micro = 354.87 kN/mm2 which does not meet the criterion for the stiffest response

n Eq. (48) since 𝜇∗
matrix = 26.32 kN/mm2. Consequently, we refine the optimization algorithm. In each iteration, if the new values

iolate the constraints in Eq. (48), we project the parameter that breaks the constraints back into the admissible domain. We then
epeat the current iteration, excluding this parameter. However, in the next iteration, we include all parameters again. In our
lgorithm, only the parameter 𝜇∗

micro is attempting in each iteration to break the upper limit, leading to its projection back into
he admissible domain in each iteration. The results of the modified algorithm are depicted in Fig. 10. Obviously, the obtained
arameters from the optimization procedure with upper constraints leads to a relatively larger error compared to when no constraints
re considered. There is a concern, particularly with gradient-based algorithms, regarding whether it converges to a global minimum
nd the potential for a much better solution. To explore this, we computed the error for 114 parameter sets, employing 10 divisions
ithin the admissible domain for each parameter between the macro and matrix parameters. The set demonstrating the least error
as chosen as the algorithm’s starting point. The algorithm consistently converges to the same solution as shown in Fig. 10 for
ny starting point (we have tried many other starting points). The advantageous behavior of the relaxed micromorphic model
s recognized as a two-scale model. It is bounded by two limits, each with distinct physical interpretations, and all the unknown
arameters have well-defined ranges. Therefore, utilizing a gradient-based optimization procedure proves to be effective. Vice versa,
mploying a gradient-based optimization for the classical Eringen–Mindlin micromorphic theory, lacking an upper bound, does pose
hallenges due to the higher number of parameters and the uncertainty about the magnitude of these unknowns. We attempted to
mprove the fitting by introducing an additional skew-symmetric term in the energy, i.e. 𝜇𝑐 ||skew(∇𝒖 − 𝑷 )||2, representing the
icro-rotation coupling, where 𝜇𝑐 is the Cosserat modulus. However, the Cosserat couple modulus trended towards negative values

nd needed to be projected back to zero delivering symmetric force stress 𝝈 as before. This highlights the importance of using the
onsistent coupling boundary condition and meets the results of our principle investigations in [25].

.1. Comparison with a skew symmetric micro-distortion field - the Cosserat case

The relaxed micromorphic model recovers the Cosserat model for the singular limit case Cmicro → ∞, the micro-distortion field 𝑷
ust then be skew-symmetric, c.f. [75–82]. The energy functional of the relaxed micromorphic model is reduced then with setting
∶= skew𝑷 ∈ so(3) to

𝑊Cosserat (∇𝒖,𝑨,Curl𝑨) = 1
2
( sym∇𝒖 ∶ Cmacro ∶ sym∇𝒖 + (skew∇𝒖 −𝑨) ∶ Cc ∶ (skew∇𝒖 −𝑨)

+ 𝜇 𝐿2
c Curl𝑨 ∶ L ∶ Curl𝑨) .

(49)

hich turns out for the cubic anisotropic case into as

𝑊Cosserat (∇𝒖,𝑨,Curl𝑨) =𝜇macro (𝑢21,1 + 𝑢22,2) +
𝜇∗

macro
2

(𝑢1,2 + 𝑢2,1)2

+
𝜆macro

2
(𝑢1,1 + 𝑢2,2)2 +

𝜇𝑐
2
(𝑢1,2 − 𝑢2,1 − 2𝐴12)2

+
𝜇𝐿c

2

2𝑛2
(

(Curl𝑨)213 + (Curl𝑨)223
)

.

(50)

ote that 𝜇𝑐 must be strictly positive for the Cosserat model to be operative otherwise the coupling of the fields (𝒖,𝑨) vanishes. We
pplied the optimization procedure for the Cosserat model where only two unknown parameters (𝐿c and 𝜇𝑐) need to be identified.
14

The results are shown in Fig. 11. We explored two boundary condition scenarios for the micro-distortion field: consistent boundary
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Fig. 10. Results for the parameter identification algorithm for the relaxed micromorphic model. Here, we impose a constraint on the micro elasticity tensor
Cmicro to ensure it is not stiffer than the stiff matrix. We refer to the obtained final parameters here as parameter set 2.
15
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c
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c

Fig. 11. Results for the parameter identification algorithm for the Cosserat model.

onditions applied to the entire boundary, and free boundary conditions. The results obtained with consistent boundary conditions
howed significantly better fitting. Consequently, we focus on the results obtained under consistent boundary conditions in the
ollowing analysis.

.2. Comparison with the full gradient

Another interesting comparison can be made between the results obtained from the relaxed curvature (Curl𝑷 ) and the full
urvature (∇𝑷 ) within the classical micromorphic model. The energy functional of the Eringen–Mindlin micromorphic model reads

𝑊Eringen (∇𝒖,𝑷 ,∇𝑷 ) = 1
2

(

sym[∇𝒖 − 𝑷 ] ∶ Ce ∶ sym[∇𝒖 − 𝑷 ] + sym𝑷 ∶ Cmicro ∶ sym𝑷

+ skew[∇𝒖 − 𝑷 ] ∶ Cc ∶ skew[∇𝒖 − 𝑷 ] + (∇𝒖 − 𝑷 ) ∶ Cmixed ∶ sym𝑷

+
𝜇 𝐿2

c ∇𝑷 ∶ L̃ ∶ ∇𝑷
)

.

(51)
16

𝑛2



Computer Methods in Applied Mechanics and Engineering 425 (2024) 116944M. Sarhil et al.

w
e
𝜇

T

Here, L̃ is a sixth-order tensor and Cmixed is a fourth order tensor. For the planer cubic case, the tensor L̃ associated with the
curvature requires already the definition of 10 independent parameters [56]. Thus, we have

∇𝑷 ∶ L̃ ∶ ∇𝑷 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝑃11,1
𝑃12,2
𝑃22,1
𝑃21,2
𝑃22,2
𝑃21,1
𝑃11,2
𝑃12,1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

𝑇

⋅

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝐿111111 𝐿111122 𝐿111221 𝐿111212 0 0 0 0
𝐿111122 𝐿122122 𝐿122221 𝐿122212 0 0 0 0
𝐿111221 𝐿122221 𝐿221221 𝐿221212 0 0 0 0
𝐿111212 𝐿122212 𝐿221212 𝐿212212 0 0 0 0

0 0 0 0 𝐿111111 𝐿111122 𝐿111221 𝐿111212
0 0 0 0 𝐿111122 𝐿122122 𝐿122221 𝐿122212
0 0 0 0 𝐿111221 𝐿122221 𝐿221221 𝐿221212
0 0 0 0 𝐿111212 𝐿122212 𝐿221212 𝐿212212

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⋅

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝑃11,1
𝑃12,2
𝑃22,1
𝑃21,2
𝑃22,2
𝑃21,1
𝑃11,2
𝑃12,1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,
(52)

where 𝐿111111, 𝐿111122, 𝐿111221, 𝐿111212, 𝐿122122, 𝐿122221, 𝐿122212, 𝐿221221, 𝐿221212 and 𝐿212212 are to be determined. The total number of
unknown parameters for the Eringen–Mindlin full micromorphic model equals to 14 for the 2D case (3 for Cmicro, 1 for Cc and 10 for
L) if we already exclude the mixed term (∇𝒖 − 𝑷 ) ∶ Cmixed ∶ sym𝑷 . Dealing with such large number of unknowns is not feasible for a
gradient-based optimization at present. Therefore, for the sake of simplicity, we limit our analysis to the most simplified curvature
formulation to reduce the number of unknown parameters, and thus the curvature will only be associated with the scalar 𝜇 𝐿2

c ,
i.e. L̃ ∶ ∇𝑷 = ∇𝑷 . Yet, it is clear that optimizing the coefficients of the tensor L̃ (with cubic symmetries) will deliver a better fit.
The energy functional of the simplified micromorphic model for a cubic material turns into

𝑊Eringen (∇𝒖,𝑷 ,∇𝑷 ) = 𝜇e
(

(𝑢1,1 − 𝑃11)2 + (𝑢2,2 − 𝑃22)2
)

+
𝜇∗

e
2
(𝑢1,2 + 𝑢2,1 − 𝑃12 − 𝑃21)2

+
𝜆e
2
(𝑢1,1 + 𝑢2,2 − 𝑃11 − 𝑃22)2

+ 𝜇micro(𝑃 2
11 + 𝑃 2

22) +
𝜇∗

micro
2

(𝑃12 + 𝑃21)2

+
𝜆micro

2
(𝑃11 + 𝑃22)2 +

𝜇𝑐
2
(𝑢1,2 − 𝑢2,1 − 𝑃12 + 𝑃21)

+
𝜇𝐿c

2

2𝑛2
||∇𝑷 ||

2 ,

(53)

here the parameters 𝜇micro, 𝜇∗
micro, 𝜆micro, 𝜇c and 𝐿c need to be determined. The optimization follows the same procedure with

nforcing the consistent boundary conditions on the whole boundary. The results are illustrated in Fig. 12. The optimization delivers
micro = 5.959 kN/mm2, 𝜇∗

micro = 80.82 kN/mm2, 𝜆micro = 12.06 kN/mm2, 𝜇c = 1138.34 kN/mm2 and 𝐿c = 0.695 mm with an
error 𝑟2 = 0.000612487 [(kN⋅ mm)2]. Notably, the simplified full micromorphic model favors an asymmetric force stress 𝝈, differing
from the relaxed micromorphic model. Moreover, Cmicro for the full micromorphic model is not associated with an upper limit
stiffness property, which makes the obtained tensor Cmicro not being physically reflected and therefore incomparable with any
measurable quantity. Therefore, a question arises as to whether the assumption of cubic symmetry for Cmicro is necessary for the
full micromorphic model, given that it was originally assumed in the context of the relaxed micromorphic model and its two-scales
realization. However, the Reuss-like homogenization relation in Eq. (4) is not valid when considering different anisotropic properties
for Cmicro and Cmacro.

We can improve the fitting by introducing a simplified isotropic curvature, which is characterized by three independent
parameters (𝛼1, 𝛼2, 𝛼3). This isotropic curvature in the full micromorphic model has the form [63]

∇𝑷 ∶ L̃ ∶ ∇𝑷 =
2
∑

𝑖=1

(

𝛼1||dev sym𝑷 ,𝑖||
2 + 𝛼2||skew𝑷 ,𝑖||

2 + 2
9
𝛼3 tr2(𝑷 ,𝑖)

)

. (54)

he optimization results are shown in Fig. 13 with assuming 𝐿c = 1 mm. The obtained parameters read 𝜇micro = 5.967 kN/mm2,
𝜇∗

micro = 392.15 kN/mm2, 𝜆micro = 10.77 kN/mm2, 𝜇𝑐 = 808.94 kN/mm2, 𝛼1 = 0.187 , 𝛼2 = 0.318 and 𝛼3 = 5.65 . However, the error 𝑟2

for the isotropic curvature (0.000528 [(kN⋅ mm)2]) does not show a significant improvement compared to the simplified curvature
(0.000612 [(kN⋅ mm)2]). Note that the identified parameters (Cmicro, 𝜇𝑐) for the two curvature formulations of the micromorphic
model exhibit a significant difference, raising doubts about the physical interpretations. The full micromorphic model needs to
incorporate the mixed term ((∇𝒖 − 𝑷 ) ∶ Cmixed ∶ sym𝑷 ) which will enhance the fitting definitely.

5.3. Discussion of results

The average error of the relaxed micromorphic model concerning 120 reference heterogeneous solutions is 5.3% for parameter set
1 in Fig. 9, and 7.5% for parameter set 2 in Fig. 10. The Cosserat case leads to an average error 13.7%. The full micromorphic model
gives an average error of 7.2% for the simplified curvature and 6.3% for the isotropic curvature. Fig. 14 displays the results of fitting
7 deformation modes from the 40 random modes. We extend the results to encompass not just the first 3 sizes (𝑛 = 1, 2, 3) utilized
in the optimization algorithm but also the first 6 sizes (𝑛 = 1,… , 6). Beyond these sizes, size-effects are not observed, and standard
homogenization theory becomes applicable. Both relaxed micromorphic model and the full micromorphic model demonstrate overall
good agreement with the heterogeneous solutions. While the Cosserat model shows the poorest fitting among the examined models,
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Fig. 12. Results for the parameter identification algorithm for the simplified full micromorphic model.

no clear superior model stands out but the unconstrained relaxed micromorphic model (parameter set 1) demonstrates the least
error.

We showcase the characteristics of the relaxed micromorphic model for one deformation mode 𝑖 = 20 in Fig. 15. The distinct
behavior of the model, functioning as a two-scale linear elasticity model between the macro- and micro-scales, is clearly observed.
All the examined models retrieve the results of classical homogenization Cmacro for large values of 𝑛 by construction. Parameter
set 1 of the relaxed micromorphic model results in a very stiff micro elasticity tensor Cmicro, which is five times stiffer than the
homogeneous matrix for the examined deformation mode. In contrast, parameter set 2 yields a softer micro elasticity tensor, nearly
half the stiffness of the homogeneous matrix for the same deformation mode.

We test the obtained parameters of the relaxed micromorphic model in Fig. 16 for four different selected deformation modes
which were not considered in the identification algorithm. Two modes are first-order modes, and the other two modes are second-
order modes. The results are satisfactory. Due to the relaxed curvature expression in the RMM, we do not expect to achieve a
perfect fit, considering only four unknown parameters to describe the relaxed micromorphic model. The general micromorphic
theory already considers 18 parameters in the 3D-isotropic linear elastic case and 14 for the plane strain isotropic case without mixed
terms. The Cosserat model predicts no size-effects for axial loading as expected, and displays good result for shear loading. However,
the relaxed micromorphic model still demonstrates better overall agreement. Using the full gradient of the micro-distortion with a
18
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Fig. 13. Results for the parameter identification algorithm for the full micromorphic model with isotropic curvature.

ingle characteristic length parameter does not enhance the overall fitting (the simplified Eringen–Mindlin micromorphic model).
e tested whether a better fit can be achieved by using an isotropic curvature with 3 independent parameters. However, this did

ot lead to a significant improvement.
Our understanding of the relaxed micromorphic model is reformulated as an extension of classical first-order homogenization to a

wo-scale elasticity model, not necessarily associated with higher-order deformation modes. It is essential to note that the term Cmicro
ppearing in both the relaxed micromorphic model and the classical micromorphic theory does not hold the same interpretation.
n the context of the relaxed micromorphic model, it is clearly associated to the bounded stiffness property for small sizes.
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Fig. 14. The total energy of the heterogeneous material, the relaxed micromorphic model, the Cosserat case, and the Eringen–Mindlin full micromorphic model
with both the simplified and isotropic curvature. We show 7 random deformation modes with the deformed shape for 𝑛 = 1 enhanced by a factor of three.
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Fig. 15. The total energies for the deformation mode 𝑖 = 20 varying the size 𝑛. The relaxed micromorphic model is bounded from above and below by linear
elasticity with micro- and macro elasticity tensor, respectively, while the Cosserat case and the simplified full Eringen–Mindlin micromorphic model are not
bounded from above. For the heterogeneous case, 𝑛 must be a natural number, while for the enriched continua 𝑛 can vary as a real positive number.

Fig. 16. The total energy of the heterogeneous material and the homogeneous relaxed micromorphic model is examined for the two parameter sets, varying
the size for four modes that were not included in the algorithm. We also show the outcomes of the Cosserat and the simplified Eringen–Mindlin micromorphic
model. Dirichlet boundary conditions are set on the whole boundary 𝒖 = 𝒖̄ on . The deformed shape is shown for 𝑛 = 1 enhanced by a factor of three.

6. Conclusions

We have successfully established a computational procedure to determine the unknown material parameters of the relaxed
micromorphic model. Following a brief consistency check of the presented method for linear elasticity under both affine and periodic
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boundary condition, which yield correct results in a single iteration, we transferred our methodology to the relaxed micromorphic
model. Considering the structural simplicity of the model, only the microscopic elasticity tensor Cmicro and a scalar associated
with curvature remain as unknowns, given that the macroscopic elasticity tensor Cmacro is known a priori from classical first-order
homogenization and Ce is uniquely determined once Cmicro is known.

For our specific cubic unit-cell, only four parameters were included in the algorithm. The algorithm is built on the Hill–Mandel
energy equivalence postulate for various deformation modes and sizes, employing a least square fitting approach for implementation.
Thus, we have avoided the classical micro–macro transition schemes that rely on the concept of a representative volume element
and we eliminated the need to deal with various stress quantities and their microscopic equivalents, which are not known to
us yet. Initially, the algorithm produced a good fit, but we found it necessary to introduce an additional criterion ensuring that
the microscopic elasticity tensor cannot exceed the stiffness of the homogeneous stiff matrix for any deformation mode. Upon
comparing the obtained unknowns with and without this criterion, the results showed overall good agreement. Additionally, we
conducted a comparison between the outcomes of the relaxed micromorphic model and those derived from the Cosserat model,
which uses a skew-symmetric micro-distortion field, as well as the simplest case of the full Eringen–Mindlin micromorphic model
where we utilized the full gradient of the micro-distortion field as a measurement for the curvature but associated with only a single
characteristic length parameter. We attempted to improve the fitting of the full Eringen–Mindlin micromorphic model by employing
an isotropic curvature, resulting in a slight enhancement. The relaxed and full micromorphic continuum exhibit a comparable level
of fitting to the fully resolved heterogeneous solution, while the Cosserat continuum performs relatively worse.

We acknowledge that the full Eringen–Mindlin micromorphic model is, of course, capable of exhibiting better fitting than the
relaxed micromorphic model. However, for simplified forms of the full micromorphic model with a significantly reduced number
of parameters but comparable to the number of parameters of the relaxed micromorphic model or even more, no improvement is
achieved. Extending the number of parameters of the full micromorphic model to include the full cubic curvature with ten parameters
and considering mixed terms is not feasible for topical engineering applications or optimization procedures. Thus, we can claim that
the relaxation of the curvature to considering only the Curl, as in the relaxed micromorphic model, is a reasonable simplification
leveraging the strength of the very simple Cosserat model and the more complex full micromorphic model. Comparing the results
of the introduced optimization with the outcomes of available micro–macro homogenization schemes will be interesting. However,
these micro–macro transition relations for the relaxed micromorphic model are not yet available but are intended to be investigated
in future works.
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