KIT | KIT-Bibliothek | Impressum | Datenschutz

A computational approach to identify the material parameters of the relaxed micromorphic model

Sarhil, Mohammad; Scheunemann, Lisa; Lewintan, Peter 1; Schröder, Jörg; Neff, Patrizio
1 Institut für Analysis (IANA), Karlsruher Institut für Technologie (KIT)

Abstract:

We determine the material parameters in the relaxed micromorphic generalized continuum model for a given periodic microstructure in this work. This is achieved through a least squares fitting of the total energy of the relaxed micromorphic homogeneous continuum to the total energy of the fully-resolved heterogeneous microstructure, governed by classical linear elasticity. The relaxed micromorphic model is a generalized continuum that utilizes the $Curl$ of a micro-distortion field instead of its full gradient as in the classical micromorphic theory, leading to several advantages and differences. The most crucial advantage is that it operates between two well-defined scales. These scales are determined by linear elasticity with microscopic and macroscopic elasticity tensors, which respectively bound the stiffness of the relaxed micromorphic continuum from above and below. While the macroscopic elasticity tensor is established a priori through standard periodic first-order homogenization, the microscopic elasticity tensor remains to be determined. Additionally, the characteristic length parameter, associated with curvature measurement, controls the transition between the micro- and macro-scales. ... mehr


Volltext §
DOI: 10.5445/IR/1000171450
Veröffentlicht am 07.06.2024
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Analysis (IANA)
Publikationstyp Forschungsbericht/Preprint
Publikationsjahr 2024
Sprache Englisch
Identifikator KITopen-ID: 1000171450
Umfang 29 S.
Vorab online veröffentlicht am 28.01.2024
Schlagwörter size-effects, consistent coupling condition, metamaterials, relaxed micromorphic model, generalized continua, homogenization, Hill-Mandel energy equivalence condition
Nachgewiesen in arXiv
Dimensions
Relationen in KITopen
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page