KIT | KIT-Bibliothek | Impressum | Datenschutz

Towards Causal Representations of Climate Model Data

Boussard, Julien; Nagda, Chandni; Kaltenborn, Julia; Lange, Charlotte Emilie Elektra; Brouillard, Philippe; Gurwicz, Yaniv; Nowack, Peer ORCID iD icon 1; Rolnick, David
1 Institut für Theoretische Informatik (ITI), Karlsruher Institut für Technologie (KIT)

Abstract:

Climate models, such as Earth system models (ESMs), are crucial for simulating future climate change based on projected Shared Socioeconomic Pathways (SSP) greenhouse gas emissions scenarios. While ESMs are sophisticated and invaluable, machine learning-based emulators trained on existing simulation data can project additional climate scenarios much faster and are computationally efficient. However, they often lack generalizability and interpretability. This work delves into the potential of causal representation learning, specifically the \emph{Causal Discovery with Single-parent Decoding} (CDSD) method, which could render climate model emulation efficient \textit{and} interpretable. We evaluate CDSD on multiple climate datasets, focusing on emissions, temperature, and precipitation. Our findings shed light on the challenges, limitations, and promise of using CDSD as a stepping stone towards more interpretable and robust climate model emulation.


Volltext §
DOI: 10.5445/IR/1000171461
Veröffentlicht am 10.06.2024
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Meteorologie und Klimaforschung – Atmosphärische Spurenstoffe und Fernerkundung (IMK-ASF)
Institut für Theoretische Informatik (ITI)
Publikationstyp Forschungsbericht/Preprint
Publikationsjahr 2023
Sprache Englisch
Identifikator KITopen-ID: 1000171461
Verlag arxiv
Schlagwörter Machine Learning (cs.LG), Artificial Intelligence (cs.AI), Atmospheric and Oceanic Physics (physics.ao-ph), Methodology (stat.ME)
Nachgewiesen in Dimensions
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page