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Abstract

Throughout history, forecasting has been crucial across various civiliza-
tions, influencing imagination and critical decisions. In contemporary
times, it has become indispensable across diverse domains, where accu-
rate predictions drive decision-making — e.g., in the operation of the
electrical grid or traffic planning. However, forecasting is still associ-
ated with various challenges. Thus, the present thesis delves into neural
network-based time series forecasting challenges, focusing on four as-
pects: missing data, missing scenarios, concept drifts, and periodicities.
This thesis aims to solve these challenges using conditional generative
models or profile-based methods. Conditional generative models are the
main component of the proposed approaches to face the missing scenario
challenge and the challenge of a small training data size. Moreover, a
conditional generative model is also the main component of the proposed
forecaster used for energy peak load forecasting in the BigDEAL challenge.
The proposed profile-based methods are promising in handling concept
drift and support neural networks in time series forecasting. In particular,
they can be supportive since they cover specific aspects of the time series
that need not be captured by the machine learning model anymore if the
profiles are integrated with the machine learning models. Consequently,
the proposed Profile Neural Network (PNN) and Probabilistic Profile
Neural Network (ProbPNN) can beat state-of-the-art forecasting models
on two datasets regarding the forecast quality and the computational
time.
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Part I

Motivation





Introduction 1

Across all civilisation epochs, forecasting was important for the people and fascinated
them. The old Egyptians forecasted the yearly flood in the lower reaches of the
Nile to increase their agricultural yields [121]. These forecasts of the floods were
so important that the priests seem to have been responsible for them [121]. While
these forecasts were strongly related to religion, forecasts became more secular over
time. For example, Halley proposed a method to predict the orbit of Halley’s Comet
using Newton’s law of gravitation, thereby proving this law experimentally [42].

In contemporary times, for various applications in many domains, time series fore-
casting is essential since they need forecasts as input. For example, supply and
demand must always be met in the energy domain. However, this is not easy due to
the fluctuating behaviour of the increasing share of renewable energy sources. Thus,
downstream applications such as dispatchable feeders [142] exist to stabilise the
grid using forecasts of rooftop photovoltaic power generation and the residential
load of the corresponding building. Another domain where time series forecasts are
important is the traffic domain since they can support and improve traffic control or
mitigate congestion [84].

As already indicated, sufficient accuracy of the forecast is essential. However, due
to the different properties of time series, it may be challenging to achieve good
forecasting accuracy. The literature describes various of these challenges. From
these challenges, this thesis focuses on a subset of four challenges that are relevant
for neural network-based time series forecasting and provides solutions. These
four challenges are missing scenarios, small training data size, concept drifts, and
periodicities. The missing scenario challenge describes that different recorded
scenarios are often missing for the robustness evaluation [67]. Such scenarios might
be scenarios with specific, rarely observed changes in the time series. The challenge
of a small training data size is strongly related to the missing scenarios challenge.
However, in contrast to the missing scenarios, which state that certain scenarios
are unavailable in the data, this challenge describes that the amount of available
training data is too small for the needs of data-driven methods [64], [81]. The
concept drift challenge is associated with the problem that changes in the time series
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– so-called concept drifts– may harm the forecaster’s performance [17], [21], [43],
[85]. Last, the periodicities challenge is related to machine learning models, which
often struggle to learn periodic behaviour [91], [124], [155].

To contextualise and fully comprehend the research questions and contributions, the
remainder of the first part provides the foundation for time series forecasting and
generation in Chapter 2. Additionally, the first part introduces the four challenges in
more detail and provides related work concerning these challenges in Chapter 3.
Afterwards, the second part describes how generative models can solve the chal-
lenge of missing scenarios in Chapter 4 and small training data size in Chapter 6.
Furthermore, this thesis shows that mid-term and long-term forecasts, which are
related to generating scenarios, can be solved with generative models in Chapter 5.
Part three focuses on how profiles can solve time series forecasting challenges. In
particular, Chapter 8 shows how profiles can support machine learning models
in handling concept drifts, and Chapter 9 shows how profiles can support neural
networks with periodicities.
Finally, the last part discusses the overall results of this thesis in Chapter 10, wraps
up this thesis and provides an outlook on further related research questions in
Chapter 11.

4 Chapter 1 Introduction



Forecasting and Generation

of Time Series with

Calendar-driven Periodicities

2

This chapter provides the necessary foundations to follow this thesis. First, it intro-
duces the considered time series class with calendar-driven periodicities. Second, the
foundations of forecasting and, third, generating time series are provided. Finally,
the last section of this chapter describes the general experimental setup used in this
thesis.

2.1 Time Series with Calendar-Driven Periodicities

As mentioned, the considered time series class is the class of regular time series
with calendar-driven periodicities. This section first presents the used notation of
time series to introduce the class of time series with calendar-driven periodicities
afterwards.

2.1.1 Time Series Notation

A time series describes measurement values ordered in time. E.g., the number of
passengers in an aeroplane for each year is a time series, where the number of
passengers is the measured value (for more examples, see [63]).
To formally describe time series, this thesis uses the following time series notation

Xt = (xt1 , xt1 , ..., xtn), (2.1)

where xti are the time series values, ti is a time index from the ordered set of
time indexes T = (t1, t1, ..., tn) with ti ≠ tj = (i ≠ j) · � with i > j, � the sample
time of the time series as time difference1, and n is the length of the time series.

1This means that the distance between two measured consecutive values is equidistant, i.e., the
considered time series are regular with a fixed sample time �.
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This thesis requires that each time index is associated with a time stamp. This
requirement enables a simple definition of calendar extraction functions based on
these time stamps. Calendar extraction functions are, for example, hhour(t) or hcal(t)
that provide the hour of the day of the time index t or an arbitrary but fixed set of
calendar information of the time stamp t.

The introduced time series definition (Equation (2.1)) allows all time series to have
an arbitrary length. However, many machine learning models can not cope with
arbitrary lengths. E.g., non-recurrent neural networks have a fixed input and output
size. Thus, to use such methods, this thesis transforms the time series into samples,
which is a fixed-length cutout of a time series containing consecutive values. Note
the used samples overlap. The sample starting at time index ti is defined as

xti,h = (xti , xti+1 , ..., xti+h≠1), (2.2)

where xt is a time series measurement at time index ti with i œ [1, n ≠ h], n is the
length of the time series, and h is the sample size. To specify the j-th entry of the
sample xti,h, this thesis uses a superscript xti,h

{j}.
The sampling can be reversed by using a merger. Consider the time series samples
xti , i œ [1, n], which can be aggregated together

xtk = Median({xti,h
{j} | i + j = k}), (2.3)

where i + j = k ensures that only entries with the same time are aggregated2.

2.1.2 Probablistic Interpretation of Time Series

In general, time series Xt can not only be considered as a sequence of measurement
data, but they can also be considered as a realisation of a stochastic process {Xt},
with Xt being a random variable for time index t. Thus, a time series measurement
xt can also be considered as a realisation of the random variable Xt.

2.1.3 Time Series with Calendar-Driven Periodicities

Time series are ubiquitous, and thus, a wide variety of time series exists. For
example, there exists time series describing stock prices, gross domestic products
of countries, the pandemic development, the residential electricity demand, or the

2Instead of the median, the mean or some quantiles are applicable too.
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traffic occupancy. These different time series may have differing characteristics,
e.g., different trends, periodicities, or drifting behaviours. Based on these different
characteristics, time series can be categorised into different time series classes. This
thesis focuses on time series with calendar-driven periodicities. I.e., the periodicities
of the time series depend, for example, on the hour of the day, the day of the week,
and the month of the year. Furthermore, these periodicities also interact and overlay.
From the exemplary mentioned time series, only the residential electrical load and
the traffic occupancy time series contain calendar-driven periodicities and are part
of this time series class. Considering this specific class of time series with calendar-
driven periodicities enables specialised algorithms that use calendar information as
prior. For example, in the electricity domain, a widely used approach for estimating
the required amount of energy is the usage of so-called type days, which describe the
load curves of exemplary users. Thus, in the following, this thesis formally describes
calendar-driven periodicities.

To formally define periodicities in time series, trend-free3 time series with random
components are considered. The random component causes the time series to have
constant unpredictable fluctuations. Thus, xt = xt+fl, ’t œ [1, L], as definition for
periodicities with fl = i1 ·÷1 ·i2 ·÷2 ·...·ik ·÷k, i1, i2, ..., ik œ N being a multiplicative
of all period lengths ÷i is to strict. Thus, in the case of trend-free time series, it is
only required that measurements separated by the multiplicative of the k periods
(fl) are similar to each other, i.e.,

xt ¥ xt+fl ¥ xt+2·fl ¥ ... ¥ xt+P·fl, P œ N. (2.4)

To check if a time series contains periodicities, the autocovariance of the time series
can be evaluated since the autocovariance is higher at the multiples of the periods’
multiplicative (fl) [63].
Suppose such periodicities occur in time series, and their periods correspond to
calendar information, such as the day of the week. In that case, this thesis refers to
them as time series with calendar-driven periodicities. Exemplary time series that do
not belong to this class are stock time series, gross domestic product time series, or
pandemic time series, such as the number of infections of COVID, since all of these
time series do not show clear daily, weekly, or yearly periodicities.

3With detrending algorithms, trend-free time series can be obtained [63].
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2.2 Foundations of Time Series Forecasting

Time series forecasting is essential for a variety of applications in different domains.
For example, it is important to balance energy system’s load and supply. Therefore,
downstream applications such as dispatchable feeders [142] require demand and
supply forecasts as input. Another domain in which time series forecasts are impor-
tant is the traffic domain [84]. In this domain, accurate traffic forecasts can enable
traffic control mechanisms that mitigate congestion or increase air quality.
Thus, this section first formally introduces the task of time series forecasting and the
corresponding notation used in this thesis. Afterwards, it provides an overview of
different forecasting approaches that are important for the present thesis.

2.2.1 Definition

In time series forecasting, the aim is to estimate yet unobserved future time series
measurements of a time series Xt. More formally, given a time series Xt with
observed values until time ti, a time series’ forecast with a horizon h is x̂ti,h =
(x̂{1}

ti
, x̂{2}

ti
, ..., x̂{h}

ti
), where x̂{j}

ti
is the estimated value at time ti+j based on the

information available at ti. To distinguish forecasts from actual time series values,
this thesis indicates them using a hat, e.g., x̂. A forecasting algorithm can use the
observed time series values up to time index ti and other exogenous time series
(X exog

tÕ )4 on which the time series Xt depends5. Formally, a forecasting method is a
parametrised function f�

x̂ti,h = (x̂{1}
ti

, x̂{2}
ti

, ..., x̂{h}
ti

) = f�(Xt, X exog
tÕ ), (2.5)

with parameters � that are determined using historical data. Note, for simplicity,
this definition uses all past data of Xt and all available data of X exog

tÕ . This can
also include forecasts of exogenous time series such as forecasted weather time
series. However, in general, the forecasting algorithm only receives and considers
small parts of Xt and X exog

tÕ . Furthermore, also note that Equation (2.5) introduces
a point forecasting method. However, often, it is also important to consider the
uncertainty. Thus, instead of forecasting points, we can consider the future values as
random variables Xti+1 , Xti+2 , ..., Xti+h for which the forecasting method estimates
probability distributions F̂ {1}

ti
, F̂ {2}

ti
, ..., F̂ {h}

ti
. For more information on probabilistic

forecasting, see Gneiting and Katzfuss [39].

4i has not to be equal to iÕ to allow the algorithm to use future values of X exog
tÕ .

5Static features might be transformed to a static time series and thus be part of X exog
tÕ .
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2.2.2 Methods

Concerning the forecasting methods, there exist different methods in the literature.
Thus, this subsection shortly explains the time-series model-based, machine learning,
and hybrid approaches. Note that further forecasting approaches exist, for example,
physical model-based forecasting, which is often applied in weather forecasting [8],
photovoltaic power forecasting [119], or wind power forecasting [76]. However,
since this thesis focuses on models that are applicable to time series with calendar-
driven periodicities in general, regardless of the underlying system, this thesis does
not cover physical model-based forecasting in the following. In addition, note
forecasting models are often embedded in pipelines with additional preprocessing
and postprocessing steps, resulting in many hyperparameters that need to be tuned
[99]. However, this thesis focuses on the forecasting models. Thus, automated tuning
approaches for forecasting pipelines are also not covered in the following. Instead,
the focus is on providing as much background information on time series models,
machine learning, and hybrid forecasting approaches as required to understand this
thesis instead of providing an extensive overview of the different approaches. For a
comprehensive overview, see, for example, [63], [112].

Time Series Model-based Forecasting In time series forecasting, a popular ap-
proach is time series modelling. A resulting model for a specific time series can be
used to perform forecasts. Time series models try to incorporate specific knowledge
of the time series. For example, Autoregression (AR) methods weight past time
series values to predict the next values [63]. Other exemplary methods are the
Moving Average (MA) and Exponential Smoothing (ES) methods. MA methods
model the time series using its mean plus a linear regression of the past error terms
[63], and ES by an exponentially weighted moving average [63].
These basic methods are often combined to provide more advanced time series
model-based forecasting methods. For example, the Autoregressive Moving Aver-
age (ARMA) model consists of an autoregressive and a moving average part [63].
Besides that, another important concept of time series model-based forecasts is that
the time series can be composed of different components. An important decomposi-
tion is

Xt = X Season
ti

+ X Trend
ti

+ X Remainder
ti

, (2.6)

with X Season
ti

being the seasonality part of the time series, X Trend
ti

the trend part, and
X Remainder

ti
the remainder of the time series [63]6. With this decomposition, different

6This thesis uses the additive decomposition. However, there exists also the multiplicative decomposi-
tion.
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algorithms are applicable for the different components, and afterwards, by adding
them together, the final forecast can be made.

Machine Learning Forecasting Methods In contrast to the time series modelling
approach, there are also purely data-driven approaches. I.e., instead of providing a
model structure that consists of different integration and moving average compo-
nents, the data-driven approach tries to learn to forecast by just using data. From
this approach, important methods for this thesis are linear regression, XGBoost [16],
and different neural network architectures as fully connected [126], convolution
[73], and recurrent neural networks [56]. Furthermore, there also exists more
advanced neural network architecture, e.g. GRUs [18] and LSTMs [57], or the
more recently proposed transformers such as Temporal Fusion Transformer (TFT)
[80], Informers [154], and Autoformers [145]. These purely data-driven methods
are often enhanced with prior knowledge to model and consider specific aspects of
the context to which the models are applied. E.g. for Short-Term Electricity Load
forecasting, calendar, temperature information and their interaction are important
additional features that improve the forecasts [59], [60]. Even more specific knowl-
edge, such as if Demand Side Management is active, can be useful for forecasting
electricity time series [59]. Another example is the electricity spot price forecasting.
In this context, additional information based on that context can be considered to
improve the forecasts [68]

Hybrid Forecasting Methods Besides the purely data-driven and the time series
model-based approach, hybrid forecasting methods also exist.

These forecast methods aim to integrate methods and ideas from the time series
model-based approaches into machine learning models. For example, Exponential
Smoothing Recurrent Neural Network (ES-RNN) incorporates ES into a Recurrent
Neural Network (RNN). A combination of using AR terms in RNN is used by the
DeepAR network (DeepAR) network [123]. Furthermore, another kind of hybrid
neural network architecture for time series forecasting integrates the idea of time
series decomposition into neural networks, e.g., N-BEATS [105], N-BEATSx [102],
or N-HiTS [15].
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2.3 Foundations of Time Series Generation

Time series generation is related to time series forecasting. Both tasks are about
creating new data points. However, they differ in the sense that in time series
forecasting, the new points are forecasts of an existing time series, while in time
series generation, the new data form a new time series. This similarity of the tasks
makes generation methods interesting for time series forecasting. Additionally, time
series generation has the potential to support time series forecasting by providing
additional data.
Based on these considerations, this thesis uses and investigates the potential ben-
efit of time series generation for forecasting. Thus, in the following, this section
first introduces time series generation formally and the three different time series
generation methods used in this thesis afterwards.

2.3.1 Definition

The time series generation task aims to create time series that are realistic and
indistinguishable from real ones. As mentioned previously, time series can be
considered as realisations of stochastic processes with a random variable for each
time step Knowing the probability distributions for all random variables Xt allows the
creation of time series. However, this requires knowing infinitely many probability
distributions. This issue can be solved by recurrent generative methods that handle
such families of random variables directly by updating the RNNs state. However,
this thesis uses non-recurrent generative methods with a fixed input and output
size. Thus, this thesis mitigates the problem by not trying to generate a time series
as a realisation of a stochastic process {Xt}. Instead, it creates samples from the
time series and assumes that these samples are realisations of a random variable X

that follows the unknown distribution PX . To be able to create time series samples
from this unknown distribution, this thesis uses deep generative methods. Therefore,
different approaches to deep generative methods exist. However, in the end, each of
the considered deep generative methods maps the latent space random variable Z

that follows a known distribution PZ to the random variable X with an unknown
distribution PX

X = g◊(Z). (2.7)

Note, to be able to create a time series out of the generated time series samples, this
thesis also provides calendar information to the mapping g◊, the resulting function
is g◊(Z, xcal

ti,h
), with xcal

ti,h
being a sample of the calendar information. A resulting
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assumption is that this information guides g◊ to create time series samples with the
correct temporal structure that enables the usage of Equation (2.3).

2.3.2 Methods

This section presents the three general types of deep generative methods used in
this thesis.

Generative Adversarial Network (GAN) The GAN introduced in 2014 by [41] con-
sists of two neural networks, namely the generator and the discriminator. The
underlying idea of the GAN is adversarial learning, i.e., the generator and discrimi-
nator compete against each other and thus improve their respective performances.
Thereby, the generator generates data that looks as realistic as possible, while the
discriminator aims to classify correctly if the data is generated by the generator or is
real data.
During joint training, the discriminator aims to maximise its accuracy in classification
while the generator aims to minimise the accuracy of the discriminator by generating
time series that are hard to distinguish from real time series.
During the inference or the time series generation, only the generator is needed.
The generator takes noise as input to generate a time series similar to the time series
in the training data.

Variational Autoencoder (VAE) Similar to the GAN, a VAE also consists of two
neural networks, namely the encoder and the decoder [72]. However, their tasks
differ from the generator’s and discriminator’s tasks. The underlying idea of the
VAE is that the time series information is encoded in a normally distributed latent
space. Thereby, the task of the encoder is to capture the underlying information of
the time series data by encoding it in the latent space, while the decoder’s task is to
reconstruct the time series based on the data in the latent space.
During joint training, the VAE aims to minimise the reconstruction error and the
Kullback-Leibler divergence between the latent space and a normal distribution.
Minimising the reconstruction error ensures that the data look realistic, while
minimising the Kullback-Leibler divergence ensures that the latent space is normally
distributed.
For generating the data, only the decoder is required. As the latent space is normally
distributed, normal distributed random noise can be fed as input to the decoder,
which uses this noise to generate synthetic time series.
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Invertible Neural Network (INN) In contrast to the GAN and VAE, the INN consists
only of one network. The underlying idea of an INN is to learn a bijective mapping
between a normal distributed latent space and the real data space to realise a
normalising flow. The bijectivity is ensured by affine coupling layers such as GLOW
[71] or RealNVP [27].
During the training, the INN aims to minimise the Kullback-Leibler divergence
between the data mapped to the latent space and the normal distribution by applying
the Change-Of-Variable formula [4].
For generating synthetic time series, the bijectivity of the INN is leveraged by using
the reverse mapping from the latent space to the real data space. More specifically,
as the latent space is normally distributed, the normally distributed random noise
can be used as input and mapped to the real data space, resulting in time series
samples.

2.4 Experimental Setup for Time Series

This section provides the basic experimental setup configurations that are used in
this thesis for evaluating the proposed methods. The first subsection introduces the
used metrics. The second presents the datasets. Finally, the last subsection presents
the hardware and software setup.

2.4.1 Used Evaluation Criteria

This subsection describes how the method that this thesis proposes is assessed.
Thereby, this subsection is structured as follows. First, this thesis describes how
forecasts are evaluated. Afterwards, the evaluation strategies used for synthetic
time series are described. Finally, this thesis briefly describes how the computational
effort is measured.

Evaluating Forecasts

For evaluating time series forecasts, this thesis uses the train test split backtesting
strategy. I.e., the time series is split temporally in a training and testing time series
at time index ti, resulting in (xt1 , xt2 , ..., xti) as training and (xti+1 , xti+2 , ..., xtn)
as testing time series. After training a model on the training time series, the
model performs for the time steps ti, ti+1, ...tn≠h forecasts for the next h time steps
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Training time series

xt1 xt2 ... ... xti

Testing time series

xti+1 xti+2 ... ... ... xtn≠1 xtn

x̂ti,hk = 1 k = 2 ... k = hxti≠c ... xti

x̂ti+1,hk = 1 k = 2 ... k = h... ... xti+1

............ ... ... ... ...

x̂tn≠h+1,hk = 1 k = 2 ... k = h... ... ...

Time Series Measurements Historical Data Forecasts

Figure 2.1.: To evaluate the time series forecasts x̂ti,h, this thesis uses the backtesting
approach on the testing dataset.

x̂ = (x̂ti,hx̂ti+1,h, ....x̂tn≠h,h). Thereby, for providing the forecast for the next h

values at time index ti, the forecaster uses the c + 1 most recent values at time index
ti, i.e., xti≠c , ..., xti . For the notation of x̂ti,h compare Equation (2.5). Using these
forecasts and the testing time series, metrics are calculated to assess the forecast
quality. Note, for the probabilistic forecasts, not a point is forecasted but a probability
distribution. Thus, we use F̂ti instead of x̂ti F̂ {k}

ti
instead of x̂{k}

ti
, and F̂ instead of

x̂

In the following, this thesis presents metrics for point and probabilistic forecasts.
Furthermore, also insight-related metrics are described.

Metrics for point forecasts This thesis uses four different metrics for point forecasts.
Note, to simplify the definitions, the definitions consider only one forecast. For
considering all forecasts of the test time series the resulting scores of the metrics
could be averaged.
The first metric is the Mean Absolute Error (MAE), which is defined as

MAE(x̂, Xt) =
qn≠h

j=i

qh
k=1(|x̂{k}

tj ,h ≠ xtj+k |)
(n ≠ i ≠ h + 1) · h

, (2.8)

where n is the length of the time series, x̂{k}
tj ,h is the specific entry k of the forecast

x̂tj,h at tj from the set of forecasts x̂, xtj+k is the time series value of the time series
Xt at time index tj+k, and h the forecasting horizon. In some scenarios, different
levels of deviations from the ground truth cause different costs. Thus, the Weighted
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and capped Mean Absolute Error (wMAE) exists to reflect this. The wMAE is
defined as

wMAE(x̂, Xt) =
qn≠h

j=i

qh
k=1 weighted(|x̂{k}

tj ,h ≠ xtj+k |)
(n ≠ i ≠ h + 1) · h

, (2.9)

where weighted is a weighting function and the remaining symbols are defined as
for the MAE.
Besides MAE based metric, this thesis also uses the Root Mean Squared Error

(RMSE), which punishes huge deviations stronger than the MAE. It is defined as

RMSE(x̂, Xt) =
ı̂ıÙ

qn≠h
j=i

qh
k=1(x̂{k}

tj ,h ≠ xtj+k)2

(n ≠ i ≠ h + 1) · h
, (2.10)

where the symbols are defined as for the MAE.
A disadvantage of the MAE and RMSE is that they are not data scale-invariant
and, thus, not comparable across different time series. To overcome this issue, this
thesis uses the nMAE and normalised Root Mean Squared Error (nRMSE), whose
generalized definition is

nMetric(x̂, Xt) = Metric(x̂, Xt)
‡Xt

, (2.11)

where Metric(x̂, Xt) is either the RMSE or MAE, ‡Xt is the standard deviation of the
time series Xt, and the remaining symbols are defined as for the MAE.
Similar to the normalised scores, the Mean Absolute Percentage Error (MAPE) can
also be used to compare the prediction performance across different time series. The
MAPE is calculated as

MAPE(x̂, Xt) = 100
(n ≠ i ≠ h + 1) · h

n≠hÿ

j=i

hÿ

k=1

------

x̂{k}
tj ,h ≠ xtj+k

xtj+k

------
, (2.12)

where the symbols are defined as for the MAE. Note the MAPE is only suited for
time series without values near zero. Note that the values of the time series on
which this metric is applied are always greater zero.

Probabilistic Prediction Metrics As metrics for probabilistic forecasts, this the-
sis uses the normalised Continuous Ranked Probability Score (nCRPS) and the
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normalised Pinball Loss (nPL). The first probabilistic metric used is the nCRPS [95].
It is defined as

nCRPS(F̂, Xt) =
qn≠h

j=i

qh
k=1

s
R(F̂ {k}

tj
(y) ≠ (y Ø xtj+k))2dy

‡Xt · (n ≠ i ≠ h + 1) · h
, (2.13)

where n is the length of the time series, F̂ {k}
tj

is the cumulative distribution function
of the k-th entry of the probabilistic forecast F̂tj ,h at tj from the set of forecasts F̂,
xtj+k is the time series value of the time series Xt at time index tj+k, h the forecasting
horizon, and ‡Xt is the standard deviation of the time series Xt. Note, according
to Trinh et al. [130] normalising the Continuous Ranked Probability Score (CRPS)
by using the standard deviation preserves its properties. The second probabilistic
metric used is the normalised Pinball Loss (nPL). This metric assesses the quality
of a quantile forecast by normalising and averaging the quality of all considered
quantiles, i.e.,

nPL(F̂, Xt) = 1
‡Xt · (n ≠ i ≠ h + 1) · h· | Q |

ÿ

–œQ

n≠hÿ

j=i

hÿ

k=1

Y
]

[
(xtj+k ≠ F̂ {k}

tj
(–)) · – for xtj+k Ø F̂tj {k}(–)

(F̂ {k}
tj

(–) ≠ xtj+k) · (1 ≠ –) for F̂tj {k}(–) > xtj+k

,

(2.14)

where F̂ {k}
ti

(–) is the quantile forecast for the quantile –, Q is the set of all consid-
ered quantiles, | Q | is the cardinality of Q, and the remaining symbols are defined
as for the nCRPS.

Insight Related Metrics Regarding gaining insights, this thesis uses four metrics.
The first is the Mean Percentage Error (MPE), which measures the forecast bias
and is defined as

MPE(x̂, Xt) = 100
(n ≠ i ≠ h + 1) · h

·
n≠hÿ

j=i

hÿ

k=1

xtj+k ≠ x̂{k}
tj ,h

xtj+k

, (2.15)

where the symbols are defined as for the MAE. Note that xtj+k has always to be
greater than zero. The MPE can be interpreted as follows. A negative MPE means
that the forecast overestimates the time series, while a positive means that the
forecast underestimates the time series. Furthermore, the distance of the MPE to
zero provides information about the severity of the bias. The larger the distance to
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zero, the bigger the bias.

For gaining insights into the probabilistic forecast, this thesis uses the Coverage
Rate (CR). It measures the share of ground truth that lies in the interval between
two quantiles, i.e.,

CRq1,q2(F̂, Xt) =
qn≠h

j=i

qh
k=1 (F̂ {k}

tj
(q1) < xtj+k < F̂ {k}

tj
(q2))

(n ≠ i ≠ h + 1) · h
, (2.16)

where q1 and q2 are the lower and upper considered quantiles, (F̂ {k}
ti

(q1) < xtj+k <

F̂ {k}
ti

(q2)) is the indicator function that counts how many values are between the
quantiles q1 and q2, and the remaining symbols are defined as for the CRPS. An
ideal forecast would result in a CR of q2 ≠ q1. Using this observation, this thesis
introduces the DICR, which sums up all distances of forecaster’s CRs and the ideal
CRs, resulting in

DICR(F̂, Xt) =
ÿ

qi,qjœQ

| (CRqi,qj (F̂, Xt) ≠ (qj ≠ qi)) |, (2.17)

where Q is the set of all considered quantile tuples and qj > qi.

Finally, to assess the improvement concerning a specific metric, this thesis applies
skill scores. A skill score is defined as

Skillmetric(x̂method, x̂base, Xt) = 1 ≠ metric(x̂method, Xt)
metric(x̂base, Xt)

, (2.18)

where metric is the selected base metric, x̂method the prediction of the method that
is evaluated, x̂base the prediction of the baseline, and the remaining symbols are
defined as for the MAE7. The skill score can then be interpreted as follows. If the
score is greater than one, the method’s prediction is worse than that of the base and
vice versa if the skill score is smaller than one.

Evaluating Synthetic Time Series

In contrast to time series forecasting, metrics cannot be applied directly, since no
ground truth exists. Thus, this thesis uses the same evaluation approach as Yoon et

7In general, this definition can be extended to probabilistic forecasts. However, this thesis applies this
metric only on point forecasts.
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al. [151] and examines the usefulness, fidelity, and diversity.

Usefulness The usefulness examines if a downstream application benefits from the
generated time series. This thesis selects a forecaster as a downstream application
and applies the Train-Synthetic Test-Real (TSTR) [31] evaluation approach. I.e., a
forecaster is trained on the synthetic data and tested on the real data. The better
the forecaster performs on the real data, the better the corresponding generation
method. To assess the performance of the forecaster, the previously introduced
forecasting metrics can be used.

Fidelity The fidelity examines the indistinguishability of the generated and the real
time series samples. Therefore, this thesis merges the same number of generated
and the real time series samples and splits them afterwards into a training and a
test set. Note that in both datasets, there should be the same number of generated
and real time series samples. Correspondingly, the labels of each generated time
series sample are ’generated’ and of each real time series sample ’real’, resulting in
a binary classification problem. Using these training data, a classifier is trained to
distinguish the generated and the real time series samples. Afterwards, the trained
classifier is applied on the test set. Based on the classifier’s prediction, the accuracy
is calculated as follows:

accuracy(ŷ, y) = n(ŷi = yi)
n

, (2.19)

with n being the size of the test set, ŷ being the classifier’s prediction on the test
set, y being the labels of the test set, and n(ŷi = yi) being the number of samples
where ŷi = yi. Finally, this accuracy is used to determine the discriminative score
as | accuracy ≠ 0.5 | for the two-class problem of distinguishing synthetic from real
time series8.

Diversity The diversity assesses if the generated time series is similarly distributed
as the original time series. Therefore, t-distributed Stochastic Neighbourhood
Embedding (t-SNE) is applied to map the generated time series samples and the
actual time series samples into a two-dimensional plane and visualise it. The more
similar the points of the generated and the actual time series samples are, the better
the corresponding generation method according to the diversity.

8This thesis subtracts 0.5 since the test data set contains the same number of generated and real time
series samples.
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Table 2.1.: Meta data of the used for time series data. Note, the row Number exoge-
nous Time Series (Num. exogenous TS) compromises only the exogenous times that
are part of the dataset and do not correspond to the time stamp.

Electricity Traffic BigDEAL

Num. TS 370 963 3
Num. used TS 130 963 3
Num. exogenous TS 0 0 6
Time Span 01/2011 – 12/2014 01/2008 – 03/2009 01/2015 – 12/2018.
Resolution Hourly Hourly Hourly
Domain Energy Traffic Energy

Evaluating Computational E�ort

Finally, this thesis also evaluates the computational effort by measuring the training

time in seconds.

2.4.2 Used Time Series Datasets

During the evaluation, this thesis uses three different time series datasets. Besides
the time series data itself, calendar information is also considered. Thus, this
subsection first describes the datasets and, afterwards, the calendar information
encodings.

Used Datasets

As mentioned, this thesis uses three datasets– the electricity, BigDEAL and traffic
datasets. Their meta-data are provided in Table 2.1.

Electricity Dataset The first dataset is the "ElectricityLoadDiagrams20112014 Data
Set"9 from the UCI Machine Learning Repository [28].

This dataset contains real-world time series of 370 clients that have a quarter-hourly
resolution and mostly cover the period from January 2011 to December 2014. This
data set contains clients with different consumption behaviours, such as factories
and hotels [120]. From the electricity dataset, all time series with less than eight
hours of consecutive zeros or not almost constant values over several days are used
since such values might relate to measurement errors or non-available data.

9
https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014
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BigDEAL Dataset The data set used in the BigDEAL challenge is an electrical load
time series dataset that spans a period from 1. January 2015 to the 31. December
2018 (this corresponds to 35064 time series values). It contains the electrical load
time series of three substations located in the USA with an hourly resolution. Besides
these three substations, the dataset also comprises exogenous temperature data
from six weather stations located nearby the substations.

Tra�c Dataset The fourth data set is the Traffic data set10. This data set contains
time series representing the occupancy rate of car lanes in the San Francisco Bay
Area. This thesis uses all time series from this data set for the evaluation. Regarding
the value range of the time series, their range is between zero and one since they
measure the occupancy rate.

Calendar Features

This thesis considers time series with calendar-driven periodicities. Thus, calendar
information is an important feature. Thus, this thesis extracts them from the
timestamp. Thereby, two different kinds of features are extracted. The first are
cyclic features such as hour of the day, day of the week, or month of the year. This
thesis encodes these features trigonometrically to map semantically similar values to
numerically similar values. I.e., the hour of the day is encoded as a sine function
sin(2 · fi · hour/24) and cosine function cos(2 · fi · hour/24) or the month of the year
as sine function sin(2 · fi · month/12) and cosine function cos(2 · fi · month/12). The
second type of feature is binary calendar information as is-weekend or not. For
encoding this kind of feature, this thesis uses Boolean variables.

2.4.3 Used Hardware and Software

For all experiments, the present thesis uses the same hardware and software setup
described in the following.

Used Hardware Due to the variety of experiments and the allocation of the servers,
this thesis uses different hardware setups. The used hardware setups are described
in Table 2.2.
10

https://archive.ics.uci.edu/ml/datasets/PEMS-SF
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Table 2.2.: The hardware setup used for the evaluations in this thesis.

Setup 1 Setup 2

CPU cores 96 32
RAM 126GB 64GB
GPU no GPU Nvidia Titan RTX 24GB

Used Software As a programming language, this thesis uses Python11 and different
Python libraries for data handling, modelling, experiment automation, and metric
calculation.

In machine learning, data-handling libraries are essential. The present thesis uses
Numpy [44] for working with multi-dimensional datasets without index information,
Pandas [96], [127] for two-dimensional data with time information, and xarray [62]
for working with the automation framework pyWATTS [45].

As machine learning libraries, this thesis uses the following libraries. For generative
deep learning models, this thesis uses PyTorch [109] and for generative models that
are based on invertible neural networks or normalising flows, FreIA12, which builds
up on PyTorch. For non-generative neural networks, this thesis uses Keras [19] and
Tensorflow [1]. For non-deep learning methods, this thesis uses SKLearn [110],
which provides various machine learning methods that share the same interface,
XGBoost [16], and pyoselm13. As a further non-deep learning library, we use River
[100] for the Concept Drift (CD) detection algorithms.

For automated conduction of the experiments and an easier evaluation of the results,
this thesis uses pyWATTS [45]. pyWATTS consists of two parts. The first is a library
of different time series algorithms. The second is the graph pipeline, which enables
the implementation of complex non-sequential machine learning pipelines.

While most of the used metrics are implemented by the author of this thesis,
properscoring is used as existing implementation for the ensemble-based nCRPS14.

11
https://www.python.org/

12
https://github.com/VLL-HD/FrEIA

13
https://github.com/leferrad/pyoselm

14
https://github.com/properscoring/properscoring

2.4 Experimental Setup for Time Series 21

https://www.python.org/
https://github.com/VLL-HD/FrEIA
https://github.com/leferrad/pyoselm
https://github.com/properscoring/properscoring




Challenges on Time Series

Forecasting

3

In time series forecasting, multiple challenges exist. In the following, this thesis
provides an overview of challenges in general before presenting the four considered
in more detail.

3.1 Time Series Forecasting Challenges in Literature

This section provides an overview of challenges for time series forecasting identified
in the literature. Furthermore, this section identifies the research gap that this thesis
addresses.

3.1.1 Related Work

Several publications describe challenges in time series forecasting (e.g., [21], [43],
[81], [85], [90]). Some of the described challenges are domain-agnostic, and others
domain-specific. Regarding the domain agnostic challenges, this subsection provides
an overview of three different groups of challenges: non-linearity, data availability
and quality, and diversity of possible downstream applications-related challenges.

Regarding challenges related to the complexity and the non-linearity of the time
series, different publications state that the complexity and non-linearity itself are
challenging [17], [84], [90], [126] but also the interplay between the considered
time series and exogenous time series [35], [43], [64] and the collinearity and
the cofounding of time series [43], [81]. Another aspect of the non-linearity is
non-stationarity and concept drift in time series, which can harm the forecasters’
performance [17], [21], [43], [85]. Also related to the complexity of time series
are seasonalities. If modelled correctly, they can support time series forecasters
[93]. However, they can also be challenging. For example, difficulties can arise if
multiple interacting seasonalities [35], [58] exist. Furthermore, these seasonalities
and periodicities can also challenge pure machine learning models [91], [155]. The
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problems of pure machine learning models can correspond to their missing periodic
bias [155] or an overfitting problem that arises if the complexity of such models
is increased to capture periodicities [91]. The bad generalisation of such machine
learning forecasting models is also observed in [81], [85].

Regarding challenges associated with data availability and quality, the quality may
be harmed by anomalies, missing values or data (gaps in time series) [85], [129],
[132], [139], which need to be handled, e.g., by applying imputation methods as
the copy-paste imputation [139]. Regarding the data availability, few data might
be challenging [64], [81], since machine learning approaches require a sufficient
amount of data resulting in the challenge of a small training data size. However,
too much data can also be challenging, especially in real-time environments. Thus,
there is also the challenge of being computationally efficient [17], [53], [58], [65],
[85], [90], [91]. Strongly related to the group of data-related challenges is also the
missing scenarios challenge, which describes that not enough scenarios may exist to
assess the robustness of forecasters or decision-making systems [67].

Due to the diversity of downstream applications, there exist different challenges
related to that. Reported challenges are potentially varying forecast horizons [64],
uncertainties if accurate prediction intervals or point forecasts are more important
[35], and uncertainties about what characteristics of point forecasts are important for
the downstream application [141]. Finally, also a challenge is the forecast feedback
loop that may arise from the interplay of the downstream applications and forecast
[43].

Regarding domain-specific challenges, this subsection mentions three exemplary
domains in the following. In the traffic domain, it can be challenging that various
spatial information needs to be combined [65]. Regarding the electricity domain,
e.g. Gasparin et al. [37], Haben et al. [43], and Henze et al. [53] mention that
forecasts are also required for low aggregated entities. However, such time series
are often spiky and noisy. Finally, the last domain is the data centres. In this domain,
[64] mentions that the non-linear interaction between the data centres metrics that
needs to be forecasted is challenging.

3.1.2 Research Gap

As shown in the related work, various publications focus on challenges. While some
of these publications are reviews or comments providing an overview of different
challenges in time series forecasting, e.g., [43], [58], [81], [91] others aim to solve
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one particular challenge, such as the cold-start problem [97] or concept drift [5].
However, even though new methods address specific challenges, the recentness of
the publications in the related work indicates that the challenges are still relevant.
Thus, the present thesis focuses on four challenges – namely the missing scenario,
small training data size, concept drift, and periodicity challenge – in forecasting
time series with calendar-driven periodicities and proposes novel approaches to cope
with these challenges.

3.2 Considered Challenges

This section describes the four challenges considered in this thesis. These challenges
are the missing scenario, small training data size, concept drift, and periodicity
challenge. Thereby, each challenge is described as follows: First, the challenge is
introduced. Afterwards, an overview of how existing solutions handle the respective
challenge and their shortcomings are provided.

3.2.1 Missing Scenarios

The first considered challenge is the missing scenario challenge. The missing scenario
challenge describes the problem that recorded time series only cover the scenario
associated with the context of the measurements. E.g., in a business use case, if
sales figures are only recorded during a stable market situation, only the scenario of
a stable market is covered by the recorded time series. However, there might exist
further scenarios, yet unobserved scenarios, that might arise in the future. E.g., in
business use cases, this challenge comprises the question of how a certain market
assumption (e.g. growing or shrinking market) of the future affects the sales of a
product [67]. Furthermore, this challenge also comprises unobserved scenarios that
might occur due to concept drifts, longer periods with unusual exogenous variables,
or periods with unusually low or high values. Such scenarios are important to assess
the forecasting models’ quality, reliability, and robustness [67]. Thus, this thesis
provides an approach to create synthetic time series that follows specific scenarios.
Whereby the scenario can be determined or controlled by the user. I.e., the user
can specify if a time series with an increasing or decreasing trend should be created.
As a special form of scenario generation, mid-term and long-term forecasting with
exogenous variables can be considered since such forecasts are scenarios that should
fit well with the provided exogenous data. Thus, this thesis considers such forecasts
together with the missing scenario challenge.
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Related Work

To solve the missing scenario challenge, synthetic time series can be generated. Pop-
ular methods for time series generation are deep generative models. The following
describes the three most common deep generative model categories.
The first considered category comprises the different kinds of Generative Adversarial
Networks (GANs). For time series generation, there exist several specialised architec-
tures. E.g., Xu et al. [147] introduce COT-GAN, a generative model that uses causal
optimal transport theory for implementing a temporal constraint in the loss function
of the GAN. TimeGAN, presented by Yoon et al. [151], adapts the traditional GAN
architecture by including a stepwise supervised loss function using the original data
to capture stepwise conditional distributions in the data and recreates the transition
dynamics from real sequences [151]. Moreover, Yoon et al. [151] use an embedding
network to create reversible mappings between features and latent representations
for reducing the dimensionality of the adversarial learning space. The Recurrent
Conditional GAN (RCGAN) introduced by [31] focus on synthetic medical data.
This model uses LSTM networks for the discriminator and the generator. Moreover,
RCGAN can consider conditional information about the time series that should be
generated. A further GAN that uses conditional information is proposed by [75].
This GAN uses a Wasserstein distance for creating time series conditioned on date-
related information like the month of the year and further information about the
time series that should be created.

The second category are Variational Autoencoder (VAE)s [72], [117] and conditional
Variational Autoencoder (cVAE) [125]. An exemplary work on electrical load data is
done by [108], which uses a convolutional network for the encoder and the decoder
of the VAE. A recurrent VAE is proposed by Das et al. [23]. This architecture is based
on LSTMs for the encoder network, a dilated convolutional layer, and additional
LSTM layers for the decoder. A fully connected network-based VAE is presented by
Esling et al. [30] to generate novel audio.

The third category this related work considers is Invertible Neural Network (INN).
Kim et al. [69], for example, propose FloWaveNet for generating raw audio by
combining a conditioned flow-based network and a non-causal WaveNet. More
precisely, FlowWaveNet uses as coupling layers those from RealNVP [27] and in-
cludes a non-causal WaveNet [135]. WaveGlow proposed by [116] is another INN
applied to sequential data. It combines elements from WaveNet [135] and Glow
[71]. The third considered INN in this thesis is proposed by [38], which uses it for
generating daily synthetic load time series. It uses coupling layers from NICE [26].
Furthermore, the proposed INN is based on the processing of images and thus needs
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to convert input time series into images and generate images back into time series.
A further INN used for scenario generation is proposed by [20]. The authors uses
RealNVP [27] for generating daily wind power scenarios to optimise the profit of
wind farm operators.

Shortcomings of Generation Methods

The models presented in the previous related work focus on generating time series
that are as realistic as possible and useful for downstream applications such as
forecasting models. However, to the best of the author’s knowledge, they do not
focus on the problem of providing controllability for the non-stationarity and period-
icities, which is essential in generating controlled scenarios. Both shortcomings are
explained in the following1. For both shortcomings, this thesis considers the gen-
eration process g◊(Z, xcal) introduced before in Section 2.3. Regarding the missing
non-stationarity, consider that the generation process uses samples z, i œ [1, N ] from
the latent space as realisations of the random variable Z with the known distribution
PZ and calendar information xcal. In this case, the generated time series samples x̂
are realisations of the random variable transformation g◊(Z, xcal), which expected
value according to the Law Of The Unconscious Statistician (LOTUS) [122] is

E[g◊(Z, xcal)] =
⁄

g◊(z, xcal)PZ dz. (3.1)

Thus, if the mapping g◊(Z, xcal) only depends on the random variable Z, fixed
parameters ◊, and xcal, all generated samples with the same calendar information
(e.g. hour of the day) have the same expected value, i.e. E[x̂] = E[g◊(z, xcal)]. The
same argument applies to the variance since the variance of a random variable X is
defined as ‡2

X = E[X2] ≠ (E[X])2. Thus, LOTUS [122] can be used again to show
that the variance is also the same for all generated time series segments (for details,
see [52]).

Concluding, existing generation methods cannot vary the statistical properties of
generated time series segments with the same calendar information. Therefore,
these methods cannot control non-stationarity in generated time series2. The second

1Note, for better readability, this subsection omits the subscript (ti, h) when writing the samples, i.e.
this subsection writes z and xcal instead of zti,h and xti,h

cal.
2Existing methods, such as a recurrent neural network with teacher forcing, can generate non-

stationary time series segments of arbitrary length if trained on non-stationary data sets. However,
such methods adapt their weights to reproduce the non-stationarity in the training data (i.e.,
subsume the non-stationarity in the parameters ◊). Thus, all the time series segments generated by
such a method contain only the non-stationarities identical to those in the training data. Therefore,
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shortcoming is the not controllable periodicities in generated time series. All gener-
ated time series samples are realisations of the same random variable transformation
g◊(Z, xcal). Thus, the corresponding autocovariance simplifies to the variance, i.e.

cov(g◊(Z, xcal), g◊(Z, xcal)) = ‡2
g◊(Z,xcal). (3.2)

Together with the equality of the variance, the resulting autocovariance is also the
same for all generated time series segments with the same calendar information. As
a result, existing generation methods cannot create additional recurring and differ-
ent autocovariance structures not defined by calendar information. Furthermore,
these periodicities cannot be varied in their magnitude since the calendar informa-
tion fully determines them. Thus, with the observation that periodic time series
have a reoccurring autocovariance structure, it is possible to conclude that these
methods cannot control periodicities in generated time series. To overcome both
shortcomings, this thesis proposes a mechanism by using conditioning mechanisms
in generative models not only to improve the results as Esteban et al. [31] and Lan
et al. [75], but also to control the non-stationarity and periodicity in generated time
series. The resulting research questions are:
RQ1: Is it possible to use the conditioning mechanism to control the non-stationarity
and periodicity in generated time series?
RQ2: Is it possible to apply generative models conditioned on appropriate statis-
tical and weather information to generate mid and long-term peak energy load
forecasts?

3.2.2 Small Training Data Size

The second considered challenge is the small training data size challenge. This
challenge refers to the problem that machine learning models require training data,
e.g., one year [146], two years [150], or three years [89] of data to perform time
series forecasts. However, for specific time series and one scenario, more than the
available data is often needed to train a machine learning forecasting model. Such
limitations of the training data occur, for example, in building-level electricity load
forecasts, for a new building for which no measurements or only a few exist yet.
Furthermore, changes in the data, such as concept drift, can make old data unusable
for the training and thus also limit the amount of available data.

it is impossible to control the non-stationarity across multiple time series segments to generate
time series with desired non-stationarities.
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Related Work

Different approaches exist to solve the small training data size challenge. Commonly
used and successful approaches are Transfer Learning (TL) [61] and Data Augmen-
tation (DA) [7]. TL aims to transfer knowledge from source data to target data.
For example, encoding features for the source and the target data might be similar,
and thus, the knowledge of encoding features for the source data could be reused
(or transferred) for the target data. Thereby, two tasks need to be solved. The first
is about how knowledge is transferred, and the second is about identifying what
knowledge (source data) should be transferred. Since this thesis does not propose a
new transfer scheme; instead, it proposes a new way of creating knowledge that can
be transferred, this related work focus on the second task. For the second task, dif-
ferent methods aim to find similar time series by analysing the correlation between
source and target data [40], [83], [107], [128], by identifying information-rich time
series [78], by aligning the time series with dynamic time warping and calculating
the Jensen-Shannon divergence to determine the similarities [149], or by comparing
the performance on the target data of encoders trained on different source data
[148]. Besides identifying the most appropriate source data, other methods aim to
make the source and the target data more similar, e.g., by normalising the data and
removing trend and seasonal information [118] or by decomposing the data [140].
Data augmentation is the second approach often used to solve the small training
data size challenge. In the following, this thesis focuses on three different data
augmentation approaches. The first is the deep generative model-based approach.
Thereby, for example, GANs [24], [111] or VAEs [25] can be used to generate
additional time series data. The second considered DA approach is the time series
combination. This approach uses different existing time series and recombines them
to create new ones, e.g., by averaging [22], [34], recombining frequency compo-
nents using empirical mode decomposition [2], [153], or by tuning the parameters
of a mixture autoregressive model [66]. The last data augmentation approach is the
application of transformation on a single time series, e.g., by adding noise [88] or
using manipulations such as rotation, permutation, jittering, and scaling [32].

Shortcomings

As mentioned, the considered time series class depends on exogenous data (at least
calendar information). Thus, the transformation and combination-based approaches
are not well applicable since it is difficult to model the unknown dependency
structures. Note if enough diverse data is available, these data augmentation
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techniques can be combined with seasonal bins to overcome this shortcoming. In
contrast, the deep generative model approaches seem more promising since they can
learn hidden dependencies. However, they are mainly for two reasons difficult to
apply. First, often, they are trained on existing time series. Thus, newly created time
series are similar to other time series in the source data, but there is no guarantee
that they are similar to the specific target time series as required in this challenge.
Second, deep generative models can also be trained on the target time series directly;
however, if the amount of data of the target time series is limited, as in this challenge,
deep generative models do not generalise well. This limitation of available data for
the target also often hinders the application of the transformation-based approaches
since they require a sufficiently diverse data set to work well.

This thesis aims to overcome the issue of deep generative models and enable their
generation capabilities to augment limited data of a specific time series. Therefore,
this thesis proposes a new sampling strategy in the deep generative models’ latent
space. The resulting research question this thesis aims to answer is:

RQ3: Is it possible to locate a specific time series in a deep generative model’s latent
space and use this information to guide the data augmentation process?

3.2.3 Concept Drift (CD)

The third challenge is the CD challenge. Normally, forecasting methods are trained
on historical data and applied to future data afterwards. This approach implicitly
assumes that the future data looks similar to the past data. However, this is not
always the case since data can change over time. Such changes are called Concept
Drift (CD). They can severely harm forecasting models’ accuracy and negatively
affect downstream applications’ performance. The following four kinds of CD are
normally distinguished. A sudden concept drift describes an abrupt change in a time
series. Such concept drifts may occur in the street lane occupancy time series if
a lane is closed due to construction. The gradual CD refers to a transition phase,
where an old and a new concept are alternately active with increased activity of the
new concept over time. An example might be that a new server system replaces an
old one. In such cases, both systems are used for a certain amount of time, whereby
the load on the newer one is increased with time. The third concept drift is the
incremental CD. It occurs when slightly different concepts consecutively replace the
former concepts. E.g., hiring staff could lead to an incremental drift in the electricity
load time series of an office building3. In time series forecasting, incremental and

3Assuming that not all staff is hired at once.
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gradual concept drifts result in similar changes. Thus, this thesis does not distinguish
between them in the following and uses the term gradual CD. Last, the recurring
CD describes the situation if an old concept reappears. Such CDs may arise in the
electricity consumption of factories that can produce different products that require
different amounts of energy.
This challenge is relevant since all these concept drifts can occur in time series and
harm the forecasters’ performance.

Related Work

There exist different approaches to cope with concept drift. Thus, this thesis provides
an overview of the three most widely used approaches to cope with concept drift.
For an extensive overview of concept drift handling, see [36], [87], [156].
The first approach comprises online and incremental learning algorithms. This
approach updates the forecasting model after each n incoming data (n œ N). While,
in general, this approach is applicable to all forecasting models, there also exist
specialised online forecasting models. E.g. the Online Adaptive Recurrent Neural
Network (OARNN) consists of RNN in an online learning framework, which updates
the RNN and the normalisation parameters after each time step [33], the Online
Sequential Extreme Learning Machine (OS-ELM) extends the Extreme Learning
Machine (ELM) to be online capable and robust against concept drifts [79], or for
fuzzy forecasting models, the borders of the fuzzy set can be dynamically adapted
[10], [82]. A disadvantage of this approach is that updates are performed even if
there is no concept drift, leading to higher computational effort and often worse
forecasts since the models are trained on small datasets. The second approach aims
to fix that issue by detecting concept drift. E.g., Cavalcante and Oliveira [13] equips
the OS-ELM and Cabello-López et al. [11] a linear regression with a drift detection
algorithm to avoid these unnecessary updates. In general, detection-based retraining
is applicable to all forecasting models. Thereby, different detection methods exist
such as the Page-Hinkley (PH) detector [29], Adaptive Windowing (ADWIN) detector
[9], or Feature Extraction for Explicit Concept Drift Detection (FEDD) [12].
The last approach to cope with concept drifts considered in this thesis is ensembling.
Thereby, the ensemble must be diverse [14], i.e. the different concepts and scenarios
should be covered by different ensemble members. Exemplary ensemble models for
handling concept is a Particle Swarm Optimisation (PSO)-based approach [103],
switching-based ensembles that contain models that are specialised for drifting and
non-drifting periods [5], [6], [86].
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Shortcomings

Regarding these three approaches, all have their shortcomings. E.g., online and
incremental learning approaches are often expensive since unnecessary updates of
the models are regularly performed. On the other hand, detecting concept drifts is
often difficult since the adaption methods need to be tuned for the specific datasets.
Finally, the ensemble’s performance depends on containing an expert for the drifting
scenario. Furthermore, ensembles can be expensive depending on the used models
in the ensemble.

Thus, this thesis presents a method that aims to be more robust against concept drift.
This method assumes that in many time series, only the level is affected by concept
drifts [138]. Furthermore, this method is based on profiles, which are statistics (e.g.,
mean or standard deviation) that consider the calendar information of different time
series values when calculating the statistics. For example, if the hour of the week is
the considered calendar information, profiles for Monday at 10 AM are calculated
by considering only values from previous Mondays at 10 AM (for a more formal
introduction, see Chapter 7). By proposing a profile-based method for handling
concept drift, this thesis aims to answer the following research question:
RQ4: Can profiles improve the ability of machine learning models to cope with
concept drifts?

3.2.4 Periodicities

The fourth challenge is the periodicities challenge. Thereby, periodicities describe
that pattern reoccurs regularly. Examples of such periodic behaviour are traffic
time series since the traffic is normally higher during the day than at night. As
already mentioned, for pure machine learning methods, periodicities are challenging.
However, if correctly modelled, periodicities can support machine learning models
[93]. Furthermore, the interaction of multiple periodicities in one time series
is difficult to handle [35], [58]. These observations show the relevance of this
challenge.

Related Work

As mentioned before, in time series forecasting, there exist time series model-based,
machine learning-based forecasts, and hybrid approaches. While time series model-
based methods can handle periodicity often if periodic terms are part of the model
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(e.g., seasonal ARIMA [63]), pure machine learning-based approaches struggle with
periodicities. Nevertheless, they are powerful data mining tools. Thus, this related
work provides an overview of which approaches exist to improve neural networks’
ability to cope with periodicities4.

As mentioned, neural networks can struggle with periodicities. Nevertheless, most
deep learning-based time series forecasting methods do not handle periodicities
explicitly, e.g. [3], [77], [94]. However, they often implicitly do it using cyclic
calendar information as additional input. E.g., [152] evaluates the impact on
how different preprocessings can improve the ability of neural networks to handle
seasonalities. Another approach are hybrid models, e.g., [131] proposes to combine
SARIMA and neural networks and let the neural networks predict the residuals of the
time series forecasted by the SARIMA model. Due to the consideration of classical
time series modelling methods, they struggle less with such periodicities. In recent
years, hybrid deep learning-based time series forecasting algorithms have been
developed. E.g., [106] proposes Neural Basis Expansion Analysis for interpretable
Time Series forecasting network (N-BEATS), which learns periodicities using a
neural network-based decomposition, where an alternative loss function supports
the seasonal component. This work is further extended by [102] proposing Neural
Basis Expansion Analysis for interpretable Time Series forecasting with exogenous
variables network (N-BEATSx) and [15] proposing Neural Hierarchical Interpolation
for Time Series Forecasting network (N-HiTS). Another approach is the ES-RNN
proposed by Smyl [124]. The ES-RNN scales the time series locally for handling
periodicities. A further hybrid deep learning-based architecture that is supposed
to handle periodicities is DeepAR [123]. DeepAR integrates AR terms with RNN to
better forecast time series.

The last work regarding the periodicity challenge mentioned in this thesis proposes
to use a new sine-based activation function for introducing an inductive bias that is
suitable for periodicities [155].

Shortcomings

Concerning handling periodicities, this thesis identifies the following shortcomings.
The focus on general time series, as the related work does, limits the application of
specialised algorithms that uses prior knowledge of specific time series classes to
improve the forecast. In this thesis, the focus is on time series with calendar-driven

4Since this thesis focuses on neural network-based forecasters, this related work only focuses on how
neural networks handle seasonalities and not on classical methods for seasonalities.
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periodicities. Thus, prior information gained by the usage of profiles (Chapter 7) is
not used by those methods.
Second, to the best of the author’s knowledge, the existing hybrid methods mainly
focus on improving the median or mean of a forecast. In contrast, this thesis addi-
tionally uses the variance profile besides the average profile to use the information
about the probability that is available in statistics. Thus, this thesis aims to answer
the following research question:
RQ5: Can the usage of profiles in neural networks improve the deterministic and
probabilistic forecasting performance?
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Content of this chapter based on

B. Heidrich et al., “Controlling non-stationarity and periodicities in time series
generation using conditional invertible neural networks,” Applied Intelligence,
vol. 53, no. 8, pp. 8826–8843, 2023.

As described in Section 3.2.1, the missing scenarios challenge exists. This chapter
proposes a solution for this challenge and aims to answer the corresponding research
question:

RQ1 Is it possible to use the conditioning mechanism to control the non-stationarity
and periodicity in generated time series?

This chapter first formally shows that the conditioning mechanism and appropriate
conditioning information enable the control of non-stationarity and periodicity. Fur-
thermore, it presents three exemplary implementations of this solution. Afterwards,
these exemplary implementations are evaluated. Finally, the last section of this chap-
ter discusses the performance, the limitations, and potential further developments
of the proposed solution.

4.1 Controlling Non-Stationarity and Periodicities in

Generated Time Series

This section describes the proposed approach to control non-stationarity and pe-
riodicity in time series generation and shows its practical viability by introducing
three exemplary implementations that belong to different types of deep generative
methods.
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4.1.1 Controllable Generation

As mentioned in Section 3.2.1 without any conditioning, the generative functions
always generate time series samples with identical statistics. Thus, it is impossible
to control the generative function to create time series with specific properties. To
control properties, conditioning information is required, which the user can vary in
production. I.e., only calendar information is insufficient since the time range for
which the functions generate time series determines the calendar information. Con-
sequently, this calendar information is not variable. Thus, this thesis uses statistical
information as conditioning information since, during production, this information
is variable.
Note, for better readability, this subsection omits the subscript (ti, h) when writing
the samples, i.e. this subsection writes z, xcal, and xstats instead of zti,h, xti,h

cal, and
xti,h

stats.
To use the statistical information as conditioning information, the mapping from the
tractable distribution to the intractable distribution incorporates the statistical infor-
mation g◊(xti ; xcal, xstats). This function depends not only on the learned parameter
◊ but also on the calendar information and controllable statistical information1.
Consequently, it is possible to control the time series generation by varying the
statistical information. More formally, as it is possible to interpret the generated
time series samples as realisations of a random variable X, LOTUS [122] can be
applied to get the expected value of the generated time series samples, i.e.

E[X] = E[g(Z; xcal, xstats, ◊)] =
⁄

g(z; xcal, xstats, ◊)PZ dz. (4.1)

This application of LOTUS [122] shows that the expected value now depends on
the statistical information. Thus, varying the statistical information changes the
expected value of the time series and enables a mechanism to control the properties
of the synthetic time series. Similarly, the variance and the autocovariance also
depend on the calendar and statistical information and can be controlled too.

4.1.2 Implementation of Generative Models to Control the

Time-Series Generation

This subsection describes the implementation of the proposed approach. Figure 4.1
provides an overview of the solution. This overview shows that the solution consists

1This subsection is assuming that the mapping g◊ has learned to consider the information provided
by xstats and do not weight this information with zero.
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Latent space
representation (Z)Samples (X)
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Real
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Figure 4.1.: The proposed method for generating time series with controllable non-
stationarity and periodicity consists of four components: the sampler, conditioning
network, generative model, and merger. Note the relationship between the latent space
and the generative model, as well as the relationship between the samples and the
generative model, can be bijective but has not to be. E.g., for the cTimeGAN, there is
only a mapping from the latent space to the samples and not in the other direction.
Furthermore, note also that conditioning network and the generative model are always
jointly trained. Thus, ◊ comprises the parameters of both. This figure is adapted and
based on [52].

of four components: the sampler, conditioning network, generative model, and
merger. During training, the statistical and calendar information is extracted from
the real time series and forms the conditioning information. Furthermore, during
training, the sampler creates time series samples from the real time series. The
conditioning information and samples are passed to the conditioning network and
the generative models to train both.
During production, the time range for which the time series would be generated
determines the calendar information, and the user can specify the statistical infor-
mation to control the generated time series. The conditioning network encodes this
conditioning information. The generative model uses this encoded conditioning
information and the noise sampled in the latent space to create synthetic time series
samples. The merger merges these samples to form the synthetic time series.
In the following, each of the four components is explained in more detail. Further-
more, when presenting the generative model, the three used ones are explained.

Sampler

The sampler is a preprocessing step required only in the training. The task of the
sampler is to transform the time series into samples with equal lengths by applying
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Table 4.1.: Implementation details of conditioning networks used by the cINN, cVAE,
and cTimeGAN.

Layers Conditioning network for cINN and cVAE Conditioning network for cTimeGAN

1 Dense neurons: 8; activation: tanh Dense neurons: 8; activation: tanh
2 Dense neurons: 24; activation: linear Dense neurons: 1; activation: linear

Equation (2.2). Note that this chapter uses h = 24 for the sampling. Transforming
the time series into samples with equal lengths enables the usage of non-recurrent
generative models.

Conditioning Network

The conditioning network is an encoder of the conditioning information. It is used
to reduce the dimensionality of the conditioning information. The conditioning
network is always trained jointly with the generative model. As input, for each of
the time steps that belong to the time series sample that should be generated, it
takes the calendar and statistical information. In particular, as calendar information,
this thesis uses the trigonometric encoded hour of the day and month of the year,
as well as the weekend as a Boolean. As statistical information, this thesis uses the
rolling mean of the time series during the training and the desired rolling mean of
the generated time series in the generation.
Since recurrent and non-recurrent generative models are used, this thesis uses two
different conditioning networks (compare Table 4.1). These conditioning networks
are distinguished in their output size since the feed-forward generative models
process the conditioning information of all time steps together. In contrast, the
conditioning information of the recurrent generative model is processed separately
per time step.

Generative Models

The proposed approach can be applied with different generative models. Thus, this
thesis uses a conditional Invertible Neural Network (cINN), a conditional Variational
Autoencoder (cVAE), and a conditional TimeGAN (cTimeGAN). Figure 4.2 provides
an overview of the three architectures. Note, during preliminary studies, also a
conditioned Conditional Optimal Transport GAN (COTGAN) is tested. However,
during the evaluation, this model does not converge.
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(a) cINN-based exemplary implementation. This figure is adapted and based on [52].
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(b) cVAE-based exemplary implementation.
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(c) cTimeGAN-based exemplary implementation.

Figure 4.2.: The three exemplary implementations of the proposed solution to control
the time series generation using statistical information. In each subfigure, the dashed
lines indicate the data flow of the conditioning information and the solid lines the data
flow from the latent space to the real space or vice versa.

Table 4.2.: The parameters of the distributions used to provide the noise to the gen-
erative models that they require to generate data. The used parameters are either
determined by the design of the algorithm or by preliminary studies.

Model Distribution Parameters

cINN normal distribution µ: 0, ‡: 0.1
cVAE normal distribution µ: 0, ‡: 0.1
cTimeGAN uniform distribution min: 0, max: 1
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Table 4.3.: Implementation details of the cINN regarding the used subnetwork.

Layers Subnetwork

1 Dense neurons: 32; activation: tanh
2 Dense neurons: Segment length; activation: linear

cINN The cINN provides a bijective mapping between the normally distributed
latent space and the realisation space that considers calendar and statistical infor-
mation (Figure 4.2a). To implement the exemplary cINN, this thesis uses FrEIA2

and PyTorch [109]. The used cINN comprises 15 subsequent invertible coupling
layers3 and one conditioning network. Thereby, the subsequent coupling layers
realise the bijective mapping between the latent and realisation space, and the con-
ditioning network extracts features from the conditioning information and reduces
their dimensionality. The coupling layers of the used cINN are the conditional affine
coupling layer proposed by Ardizzone et al. [4], which extends RealNVP by Dinh
et al. [27]. Each coupling layer contains two subnetworks. Table 4.3 shows their
architecture. As inputs, each coupling layer takes the output of the previous coupling
layer and the conditioning information xcal and xstats that the conditioning network
(Table 4.1) encodes. To generate data, the cINN takes samples from a normal dis-
tribution and maps them to the realisation space. The distribution parameters are
determined in preliminary examinations and provided in Table 4.2.

cVAE The cVAE provides a mapping from the realisation space to the normally
distributed latent space (encoder) and a reverse mapping (decoder) (Figure 4.2b).
Both mappings consider the encoded conditioning information. This cVAE is im-
plemented with PyTorch [109]. Regarding the architecture, the cVAE consists of
an encoder, decoder, and conditioning network. For the encoder and decoder, this
thesis uses fully connected networks (Table 4.4). As input, the encoder gets the
encoded conditioning information and the real-time series samples. The encoder’s
output is a 16-dimensional latent space vector. This vector forms, together with
the encoded conditioning information, the input of the decoder, which aims to
reconstruct the time series sample. The conditioning information is encoded using
the same conditioning network as the cINN (Table 4.1). To generate data, the cVAE
takes samples from a normal distribution. These samples are mapped by the decoder
to the realisation space. The distribution parameters are determined in preliminary
examinations and provided in Table 4.2.

2
https://github.com/VLL-HD/FrEIA

3The number of subsequent coupling layers is determined in preliminary studies.
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Table 4.4.: Implementation details of the cVAE regarding the used encoder and
decoder.

Layers Encoder Decoder

1 Dense neurons: 64; activation: tanh Dense neurons: 32; activation: tanh
2 Dense neurons: 32; activation: tanh Dense neurons: 64; activation: tanh
µ Dense neurons: 16; activation: linear Dense neurons: Segment length; activation: linear
‡ Dense neurons: 32; activation: linear

cTimeGAN The third exemplary implementation is TimeGAN [151], a state-of-the-
art time series generation model. This thesis uses an own PyTorch [109] based
implementation to extend the original TimeGAN. The original TimeGAN consists of
five components: the embedder, recovery, generator, discriminator, and supervisor.
The embedder’s task is to map the samples to a so-called latent code4. The recovery,
in contrast, reconstructs the latent code into the samples. The generator takes
samples from the uniform distributed latent space to generate the latent code. The
discriminator distinguishes between the generated and the embedded latent code.
Finally, the last supervisor provides an additional loss by performing forecasts on
the latent space and thus also forcing the generator to generate latent code with a
temporal structure.
This thesis extends the TimeGAN with conditions and a conditioning network to
make the time series generation controllable. In particular, the present thesis uses
a conditioning network to encode the conditioning information and provides this
information as additional input to each of the five TimeGAN components. In contrast
to the conditioning network of cINN and cVAE, this conditioning network has only
one output neuron since the encoding is performed for each time step separately.
Figure 4.2c shows the structure of the proposed cTimeGAN, and Table 4.5 provides
the network structure of the different components. To generate data, the cTimeGAN
takes samples from a uniform distribution. These samples are mapped by the
generator to the realisation space. The distribution parameters are determined by
the design of cTimeGAN provided in Table 4.2.

Merger

The generative models generate overlapping time series samples. However, most
applications are interested in using a time series instead of overlapping time series
samples. Thus, these time series samples must be merged to create a single time
series with an arbitrary length. Therefore, the merger applies Equation (2.3) and

4Note this is not the same as the latent space with a known and tractable distribution. Nevertheless,
this thesis sticks to the notation the authors introduce.
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Table 4.5.: Implementation details of the used cTimeGAN regarding the embedder,
recovery, generator, discriminator, and supervisor. Note that this is a recurrent architec-
ture using the GRU (gru) and bidirectional Gated Recurrent Unit (biGRU). This also
means that the last dense layers of each component are executed for each time step
separately.

Embedder Recovery Generator Discriminator Supervisor

1 GRU units 16 GRU units 16 GRU units 16 BiGRU units 16 GRU units 16
2 GRU units 16 GRU units 16 GRU units 16 BiGRU units 16 GRU units 16
3 GRU units 16 GRU units 16 GRU units 16 BiGRU units 16 GRU units 16
4 Dense neurons

16; activation
sigmoid

Dense neurons
1; activation lin-
ear

Dense neurons
1; activation sig-
moid

Dense neurons
1; activation sig-
moid

Dense neurons
1; activation sig-
moid

calculates the median on all values that correspond to the same time index. As a
result, a single time series without overlaps is generated.

4.2 Evaluation

This section empirically evaluates the exemplary implementations of the proposed
approach for generating time series with controlled non-stationarity and periodicities.
The following subsection introduces the experimental setup before the next one
shows the results.

4.2.1 Experimental Setup

To evaluate the three exemplary implementations, this thesis applies each imple-
mentation three times5 to each time series and reports the median, minimum, and
maximum scores for each quantitative metric. In the following, this subsection
presents the considered time series from the electricity and the traffic dataset, as
well as the evaluation criteria.

Data Sets

To comprehensively evaluate the proposed approach and the three exemplary imple-
mentations, this thesis selects the time series corresponding to the median of the
average from the Electricity and Traffic dataset (Section 2.4.2) – namely MT_206
from the Electricity and traj_401507 from the Traffic dataset. The first three years of

5This thesis applies it only three times since the training of some of the generative models is very
expensive (see Table 4.13)
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Table 4.6.: Architecture of the forecasting network for the Train-Synthetic Test-Real
(TSTR) evaluation and of the classification network for the discriminative score

(a) Forecasting network for the predictive score.

Layer Forecasting network

1 Dense neurons 10; activation ReLU
2 Dense neurons 1; activation linear

(b) Classification network for the discriminative
score.

Layer Classification network

1 Dense Neurons 5; activation tanh
2 Dense Neurons 1; activation sigmoid

the electricity dataset and the first year of the traffic dataset are used for training,
and the remaining time series are used for evaluation.

Evaluation Criteria

The evaluation of the exemplary implementations assesses the controllability of the
time series generation, the quality of the generated time series, and the computa-
tional costs.

Controllability of the time series generation To assess the controllability, this thesis
generates time series with predetermined statistics that are visually inspect to
evaluate if the generated time series follows the predetermined statistic.

Quality of the time series generation To assess the quality of the generated time
series, this thesis examines the usefulness, fidelity, and diversity as presented in
Section 2.4. For the usefulness, this thesis selects a simple neural network (Ta-
ble 4.6a) as a forecaster that should predict the next value. The hyperparameters
are selected so that the network is still simple but provides reasonable results. To
assess the resulting forecasts and obtain the predictive score, the MAE and RMSE
are used. For fidelity, this thesis uses a classification network as a discriminator.
The hyperparameters of this classification network are provided by Table 4.6b. To
get the discriminative score, based on the classifier’s prediction, this thesis applies
Equation (2.19). Finally, to assess the diversity, this thesis uses the t-SNE with the
default hyperparameters of the sklearn [110] implementation.

Computational Cost To evaluate the computational cost, the training time of the
evaluated generation methods in minutes are measured three times and the resulting
average is reported. For comparable results, this evaluation is performed on the
same hardware (setup 1 from Table 2.2).
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Benchmarks

As benchmarks, this thesis selects three state-of-the-art generation methods. The first
benchmark generation method is COTGAN [147]. As implementation of COTGAN,
the publicly available source code6 is used. Only the data loading functionality is
adapted to apply COTGAN to the electricity and traffic datasets.
The second and third benchmark generation models are the RGAN and RCGAN [31].
As implementation, the publicly available source code of RGAN and RCGAN7 is used.
However, the setting file test.txt and the data_utils.py are adapted to load the
electricity and traffic datasets. Since RCGAN can consider conditioning information,
this thesis provides as input the same calendar and statistical information as for the
exemplary implementations of the proposed solution.

4.2.2 Results

This thesis performs four evaluations to assess the proposed solution for generating
missing scenarios. First, the next subsection examines the controllability of the
exemplary implementations. Afterwards, two ablation studies to gain insights are
performed. The third evaluation compares the exemplary implementations with the
benchmarks. Last, the computational effort of the exemplary implementations and
the benchmarks is assessed.

Controllability of the Time Series Generation

To demonstrate the controllability of the proposed solution to generate time series,
this thesis generates for each exemplary implementation four time series with
different predetermined statistics. More specifically, this thesis generates time series
for the electricity dataset from January 2011 to December 2014 and use different
functions over time as statistical information visible as orange lines in Figure 4.3a.
For the traffic dataset, this thesis generates time series for January 2011 to March
2012 and use as statistical information different functions over the time that are
visible as orange lines in Figure 4.3b.

Figure 4.3a and Figure 4.3b visualise the time series created with the predetermined
statistics. This thesis makes three observations: First, each exemplary implementa-
tion generates time series reflecting the predetermined mean. Thereby, the mean of

6
https://github.com/tianlinxu312/cot-gan

7
https://github.com/ratschlab/RGAN
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the synthetic time series follows accurately the predetermined mean for the traffic
data. Regarding the electricity data, the mean of the synthetic time series deviates
for low and high predetermined means, but follows accurately for intermediate pre-
determined means. Second, for the traffic dataset, the cVAE seems to have extreme
values that can not be explained by the specified mean for the periodic time series.
Third, in the traffic dataset, the daily minima of the occupancy have to be positive.
However, the time series generated by cVAE and cTimeGAN do not always reflect
this characteristic, see values below the red line that indicate zero.

Insights

To gain insights, this thesis performs two ablation studies: The first ablation study
examines the influence of the different conditioning information. The second one
examines the merger’s impact on the result of the exemplary implementation. For
each ablation study, this thesis reports the predictive and discriminative scores as
well as the diversity.

Conditioning Information’s Impact In the following, this thesis compares the three
exemplary implementations with different combinations of conditioning information
and examine the resulting predictive scores, discriminative scores, and diversity. The
combinations are calendar and statistical information (both), only calendar informa-
tion (cal), only statistical information (stats), and no conditioning information (no).
Table 4.7 shows the resulting predictive scores for the three exemplary implemen-
tations with varying conditioning information for the two data sets. Thereby, this
thesis makes three observations: First, the variants with calendar information (cal
and both) achieve the best results for all exemplary implementations, datasets, and
metrics. Second, the cVAE achieves better results than the cINN and the cTimeGAN.
Third, for the cINN, there exist strong fluctuations in the score for the electricity data
set resulting in high maximum values in Table 4.7. Additional examinations show
that a non-converging forecaster causes these high values during TSTR evaluation.
Table 4.8 shows the discriminative scores of the exemplary implementations with

varying conditioning information and the two data sets. These scores show that
the variants that use all information (both) achieve the lowest discriminative score,
followed by the variants that use only calendar information. Using only statistical
information is not beneficial.
To examine the diversity, Figure 4.4 shows the t-SNE plots for the exemplary im-

4.2 Evaluation 47



100

200

300
st

at
ic

El
ec

tr
ic

al
Lo

ad
[k

W
] cINN cVAE cTimeGAN

100

200

300

no
n-

st
at

io
na

ry

El
ec

tr
ic

al
Lo

ad
[k

W
]

100

200

300

pe
rio

di
c

El
ec

tr
ic

al
Lo

ad
[k

W
]

2011 2012 2013 2014 2015

100

200

300

co
m

bi
ne

d

El
ec

tr
ic

al
Lo

ad
[k

W
]

2011 2012 2013 2014 2015 2011 2012 2013 2014 2015

(a) Electricity

0.00

0.05

0.10

st
at

ic

O
cc

up
an

cy

cINN cVAE cTimeGAN

0.0

0.1

0.2

no
n-

st
at

io
na

ry

O
cc

up
an

cy

0.00

0.05

0.10

0.15

pe
rio

di
c

O
cc

up
an

cy

01.2008 06.2008 01.2009
0.0

0.1

0.2

co
m

bi
ne

d

O
cc

up
an

cy

01.2008 06.2008 01.2009 01.2008 06.2008 01.2009

(b) Traffic. Note, the horizontal red line is the zero line.

Figure 4.3.: To demonstrate controlled non-stationarity, a time series is generated
using predetermined calendar and statistical information. For both datasets, the
generated time series is shown in blue, the predetermined mean is in orange, and the
mean of the synthetic time series is green.
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Table 4.7.: Ablation study comparing different conditioned generative models with
respect to the median, minimum, and maximum predictive score. The lower, the better.

(a) Electricity

cINN cVAE cTimeGAN

MAE

both 17.1 (14.1 - 189.9) 16.0 (14.2 - 19.9) 19.2 (15.5 - 22.5)
stats 17.4 (14.7 - 21.6) 36.4 (20.7 - 50.8) 49.3 (33.1 - 111.1)
cal 17.2 (14.2 - 189.9) 15.8 (14.0 - 18.0) 17.6 (15.6 - 21.7)
no 20.5 (16.0 - 27.0) 73.8 (47.9 - 117.8) 107.7 (21.5 - 130.8)

RMSE

both 22.6 (18.9 - 200.1) 21.0 (19.2 - 25.0) 24.8 (20.2 - 28.8)
stats 23.0 (20.2 - 27.5) 44.0 (26.9 - 61.3) 59.2 (42.7 - 128.8)
cal 22.4 (18.8 - 200.1) 20.9 (18.6 - 23.8) 22.8 (20.3 - 27.7)
no 26.9 (20.9 - 33.0) 86.8 (55.3 - 135.0) 123.3 (29.9 - 150.1)

(b) Traffic

cINN cVAE cTimeGAN

MAE

both 0.013 (0.009 - 0.015) 0.011 (0.009 - 0.015) 0.014 (0.010 - 0.018)
stats 0.034 (0.023 - 0.056) 0.028 (0.015 - 0.044) 0.050 (0.030 - 0.092)
cal 0.012 (0.010 - 0.016) 0.017 (0.013 - 0.029) 0.016 (0.012 - 0.020)
no 0.032 (0.023 - 0.056) 0.032 (0.018 - 0.046) 0.029 (0.019 - 0.049)

RMSE

both 0.018 (0.016 - 0.021) 0.017 (0.015 - 0.020) 0.019 (0.016 - 0.023)
stats 0.044 (0.031 - 0.068) 0.036 (0.022 - 0.055) 0.060 (0.035 - 0.108)
cal 0.018 (0.016 - 0.024) 0.024 (0.019 - 0.037) 0.022 (0.018 - 0.027)
no 0.040 (0.028 - 0.066) 0.041 (0.024 - 0.058) 0.036 (0.025 - 0.057)

Table 4.8.: Ablation study comparing different conditioned generative models with
respect to the median, minimum, and maximum discriminative score. The lower, the
better.

(a) Electricity

cINN cVAE cTimeGAN

both 0.18 (0.15 - 0.22) 0.16 (0.11 - 0.2) 0.23 (0.14 - 0.27)
stats 0.46 (0.45 - 0.47) 0.50 (0.50 - 0.50) 0.50 (0.49 - 0.50)
cal 0.25 (0.21 - 0.27) 0.21 (0.16 - 0.24) 0.25 (0.22 - 0.35)
no 0.47 (0.46 - 0.48) 0.50 (0.50 - 0.50) 0.50 (0.50 - 0.50)

(b) Traffic

cINN cVAE cTimeGAN

both 0.32 (0.27 - 0.34) 0.17 (0.10 - 0.28) 0.34 (0.15 - 0.39)
stats 0.50 (0.49 - 0.50) 0.49 (0.48 - 0.50) 0.49 (0.48 - 0.50)
cal 0.35 (0.30 - 0.39) 0.33 (0.29 - 0.35) 0.43 (0.31 - 0.46)
no 0.50 (0.49 - 0.50) 0.50 (0.49 - 0.50) 0.44 (0.35 - 0.48)
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Figure 4.4.: Study comparing the influence of the conditioning information on the
different exemplary implementations regarding the diversity of the generated data
on the electricity and the traffic dataset. For both datasets, 300 randomly selected
real time series samples (blue) and corresponding synthetic time series (yellow) are
mapped on a two-dimensional plane using t-SNE.

plementations with varying conditioning information and the two datasets8. Based
on these plots, this thesis makes two observations: First, if calendar information is
available (cal and both), the generated time series (yellow) have a similar diversity
to the real time series (blue). Moreover, the diversity on the electricity dataset seems
to be better than on the traffic data. Second, if no calendar information is available,
only the cINN can generate time series with a diversity similar to the real data, at
least for the electricity dataset.

8Note that the latent spaces and the corresponding projections in the two-dimensional plane are
individual. Thus, the shown representation of different methods is not comparable. Only the
coverage can be compared.
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Table 4.9.: Study comparing the influence of the merger on the different exemplary
implementations regarding the predictive score on the electricity and the traffic
dataset.

(a) Electricity

cINN cVAE cTimeGAN

MAE without merger 17.1 (14.1 - 189.9) 16.0 (14.2 - 19.9) 19.2 (15.5 - 22.5)
merger 15.8 (14.0 - 18.7) 15.6 (14.2 - 16.8) 16.4 (14.1 - 189.7)

RMSE without merger 22.6 (18.9 - 200.1) 21.0 (19.2 - 25.0) 24.8 (20.2 - 28.8)
merger 21.1 (18.5 - 24.1) 20.4 (18.3 - 22.1) 22.0 (19.4 - 199.9)

(b) Traffic

cINN cVAE cTimeGAN

MAE without merger 0.013 (0.009 - 0.015) 0.011 (0.009 - 0.015) 0.014 (0.010 - 0.018)
merger 0.012 (0.010 - 0.020) 0.010 (0.009 - 0.013) 0.013 (0.011 - 0.015)

RMSE without merger 0.018 (0.016 - 0.021) 0.017 (0.015 - 0.020) 0.019 (0.016 - 0.023)
merger 0.018 (0.016 - 0.025) 0.016 (0.014 - 0.019) 0.019 (0.017 - 0.022)

Table 4.10.: Study comparing the influence of the merger on the different exemplary
implementations regarding the discriminative score on the electricity and the traffic
dataset.

(a) Electricity

cINN cVAE cTimeGAN

without merger 0.32 (0.27 - 0.34) 0.17 (0.10 - 0.28) 0.34 (0.15 - 0.39)
merger 0.31 (0.22 - 0.34) 0.15 (0.00 - 0.21) 0.32 (0.28 - 0.38)

(b) Traffic

cINN cVAE cTimeGAN

without merger 0.18 (0.15 - 0.22) 0.16 (0.11 - 0.20) 0.23 (0.14 - 0.27)
merger 0.12 (0.08 - 0.14) 0.09 (0.05 - 0.11) 0.20 (0.12 - 0.26)

Merger’s Impact Similar to the analysis of the conditioning information’s impact,
this thesis also examines the predictive score, discriminative score, and diversity
of the synthetic data generated by the generative models using all conditioning
information (both) with and without a merger.
Regarding the predictive score, the merger seems to slightly improve the median.
However, the fluctuations are high. Thus, there is probably no significant difference
between the results with and without a merger
Regarding the discriminative score, the merger seems to improve the result of

the cVAE and the cINN for the traffic dataset. For the cINN and the cVAE on the
electricity dataset, as well as the cTimeGAN on both datasets, the results with and
without a merger show no clear difference.
Regarding the diversity in Figure 4.5, the usage of the merger seems to have neither

a positive nor negative impact.
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Figure 4.5.: Study comparing the influence of the merger on the different exemplary
implementations regarding the diversity of the generated data on the electricity
and the traffic dataset. For both datasets, 300 randomly selected real time series
samples (blue) and corresponding synthetic time series (yellow) are mapped on a
two-dimensional plane using t-SNE.

Table 4.11.: The median, minimum, and maximum predictive scores of the condi-
tioned generative models and the three benchmarks on the electricity and traffic data
sets. The lower, the better.

MAE RMSE
Electricity Traffic Electricity Traffic

cINN 17.1 (14.1 - 189.9) 0.013 (0.009 - 0.015) 22.6 (18.9 - 200.1) 0.018 (0.016 - 0.021)
cVAE 16.0 (14.2 - 19.9) 0.011 (0.009 - 0.015) 21.0 (19.2 - 25.0) 0.017 (0.015 - 0.020)
cTimeGAN 19.2 (15.5 - 22.5) 0.014 (0.010 - 0.018) 24.8 (20.2 - 28.8) 0.019 (0.016 - 0.023)
COTGAN 17.1 (15.0 - 22.8) 0.013 (0.011 - 0.016) 23.0 (20.5 - 29.0) 0.019 (0.017 - 0.023)
RCGAN 18.5 (15.7 - 29.8) 0.017 (0.015 - 0.024) 27.1 (20.9 - 38.6) 0.025 (0.022 - 0.031)
RGAN 31.1 (20.6 - 65.5) 0.034 (0.025 - 0.049) 41.0 (25.9 - 87.3) 0.043 (0.033 - 0.061)

Benchmarking

To assess the general quality of the generated time series, this thesis compares the
generated time series of the exemplary implementations and benchmarks on the
two data sets. More specifically, the predictive and discriminative scores as well as
the diversity are compared.
Regarding the predictive score, Table 4.11 reports the results. For both datasets, the
best model is the cVAE, followed by the cINN and COTGAN. Note, the RMSE for the
cINN seems to be slightly better than of the COTGAN. However, their MAE perform
similarly. Regarding the discriminative score, Table 4.12 reports the results. In this
table, for the electricity dataset, the best model is the cVAE, followed by the cINN
and cTimeGAN. For the traffic dataset, the best model is again the cVAE. However,
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Table 4.12.: The median, minimum, and maximum discriminative scores of the
conditioned generative models and the three benchmarks on the electricity and traffic
data sets. The lower, the better.

Electricity Traffic

cINN 0.18 (0.15 - 0.22) 0.32 (0.27 - 0.34)
cVAE 0.16 (0.11 - 0.20) 0.17 (0.10 - 0.28)
cTimeGAN 0.23 (0.14 - 0.27) 0.34 (0.15 - 0.39)
COTGAN 0.36 (0.34 - 0.40) 0.26 (0.22 - 0.32)
RCGAN 0.46 (0.46 - 0.48) 0.41 (0.36 - 0.44)
RGAN 0.49 (0.48 - 0.50) 0.46 (0.46 - 0.47)
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(a) Electricity
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Figure 4.6.: Benchmarking study comparing the exemplary implementations with the
benchmarks regarding the diversity of the generated data on the electricity and the
traffic dataset. For both datasets, 300 randomly selected real time series samples (blue)
and corresponding synthetic time series (yellow) are mapped on a two-dimensional
plane using t-SNE.

the second best is the COTGAN.
The last evaluation of the benchmarking compares the diversity of the different

generated time series. Figure 4.6 shows the t-SNE plots to compare the diversity. For
both datasets, the three exemplary implementations using calendar and statistical
conditioning information perform better than the benchmarks.

Computational E�ort

Table 4.13 provides the computational cost of the exemplary implementations and
the benchmarks in terms of the average training time in minutes. The results show
that the cVAE needs the shortest training time, followed by the cINN. The other
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Table 4.13.: The average training time in minutes of the three exemplary implementa-
tions and the three benchmarks on the electricity and traffic dataset.

Electricity Traffic

cINN 18.0 6.2
cVAE 2.2 0.8
cTimeGAN 463.2 157.5
COTGAN 332.5 333.8
RCGAN 205.7 96.9
RGAN 184.3 88.9

methods need more training time. Note that the COTGAN always executes the same
number of iterations during training, independent of the training data size. Thus, in
contrast to the training times of the other methods, no difference in training time is
available for both datasets.

4.3 Discussion

This section discusses the proposed solution to create time series with controlled
non-stationarity and periodicity by focusing on the performance, limitations, and
potential further development.

4.3.1 Performance

Regarding the performance, this thesis discusses the impact of the different condi-
tioning information and the merger. In addition, it also discusses the performance of
the different exemplary implementations and the benchmarking results.
Regarding the conditioning information, using the calendar and statistical informa-
tion provides four advantages. First, the most important advantage is that using
the calendar and statistical information enables the control of the non-stationarity
and periodicity of the time series as seen in Section 4.2.2. This enables generative
models to generate scenarios and use these scenarios to evaluate the robustness of
downstream applications on hardly observed scenarios under the assumption that
the generative models generalise well and can generate time series with the new and
not observed conditioning information. The experiments show that this assumption
holds for the considered variations of the mean. The second advantage focuses
on the calendar information. This information enables the usage of the merger,
which is useful to create time series of an arbitrary length, even if the original
generative model would not support it. In addition, the enabled usage of the merger
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also improves the generative models’ predictive and discriminative scores. This
improvement is likely caused by a smoothing effect of the merger that reduces noise
in the generated time series. The third advantage of using conditioning information
is that it improves the results of the generative models regarding the predictive
score, discriminative score, and diversity. This improvement is likely caused by
the increased information provided to the generative models. Thus, the generative
models can generate better synthetic time series. Last, the results also show that the
proposed solution is applicable to different generative model architectures and, thus,
is very flexible.

Regarding the comparisons of the different exemplary implementations, the results
show that different models are better depending on the evaluation criteria. E.g.,
the visual inspection of the generated time series with the predetermined mean
shows that this mean is reflected the best by the time series generated by the cINN.
However, the cVAE performs best regarding the predictive and discriminative scores.
Thus, this thesis cannot recommend which model should be used. Instead, the user
must carefully evaluate and compare different models for each dataset regarding
the most important criteria for the considered use case.
Regarding the diversity, all models perform similarly. However, it seems that the
diversity of the electricity data is better covered than of the traffic data, where some
of the real data are not covered by the synthetic ones. An explanation might be that
these deviating values distinguish to much from the training data. However, this hy-
pothesis needs to be validated in future work. Regarding benchmarking, as formally
proofed in the introduction, methods not conditioned on controllable conditions
cannot control the generation process. Thus, only the quality of the generated time
series can be discussed. During the experiments, this thesis observes that the usage
of the conditioning information improves the performance of the generative models
and makes their performance comparable to the performance of the benchmarks. In
combination with the measured training time, using exogenous information enables
the usage of simpler generative methods that require less computational effort while
maintaining the generative power of the complex generative methods. Based on the
result’s discussion and regarding the research question

RQ1 Is it possible to use the conditioning mechanism to control the non-stationarity
and periodicity in generated time series?

this thesis concludes that statistical information is useful for implementing time
series generation methods that can control the non-stationarity and periodicity of
synthetic time series.
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4.3.2 Limitations

While the proposed solution works well to control time series generation, this thesis
identifies three limitations. The first limitation is that the solution requires a merger
since this thesis uses samples to enable non-recurrent methods. To overcome this
limitation, future work might operate the recurrent cTimeGAN to generate time
series samples with an arbitrary length or enhance COTGAN to consider conditioning
information. Second, the proposed solution considers only a limited causality. More
specifically, the generative method includes causality only within one sample (in
this thesis the sample’ length is 24). By conditioning the generative networks, this
thesis uses a synthetic causality to merge the time series. However, this synthetic
causality is limited since it only relies on the provided exogenous features. Thus,
long-term causalities that are not covered by the provided exogenous features would
not be part of the generated time series. To overcome this issue, either recurrent
methods could be used to generate time series or the sampling strategy in the
latent space for creating the input noise of the generative model could be adapted.
Finally, the last limitation is the need for better scalability. The proposed solution
needs to be trained on each time series separately. Thus, future work must handle
this limitation. Possible approaches to handle this limitation could be a global
model with additional information on the time series that should be created or a
more sophisticated sampling in the latent space and, thus, a better exploitation of
information in the latent space.

4.3.3 Further Development

Based on the previously discussed results and limitations, further open research
directions exist in controllable time series generation. In the following, this thesis
highlights two possible directions.
The first direction aims to integrate more causal structures in the generative process.
This would provide two advantages. First, future work could use a simpler approach,
i.e., the merger would become unnecessary. Second, the quality of the generated time
series might increase since causality can be captured that is not reflected by the used
conditioning information. A possible specific research task would be using recurrent
conditioned generative models, e.g., the COTGAN. Another specific research could
focus on the latent space. More specifically, future work could examine the latent
space to find paths or trajectories that induce a reasonable causality in the realisation
space.
The second research direction this thesis highlights is scalability. Scalability is crucial
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for applying different generative models since their computation time is high, but
the available computing resources are often limited. A possible specific research task
would be to train a global generative model and exploit the latent space for better
time series generation. The first steps towards implementing this research task are
examined and discussed in Chapter 6.
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Mid-term Forecasting Tasks in

the BigDEAL Challenge

5

Content of this chapter based on

B. Heidrich, M. Hertel, O. Neumann, V. Hagenmeyer, and R. Mikut, “Us-
ing conditional Invertible Neural Networks to Perform Mid-Term Peak Load
Forecasting,” IET Smart Grid, 2023.

The BigDEAL challenge is a mid-term electricity peak load forecasting challenge
organised by Tao Hong in 2022. In contrast to most forecasting challenges, the
organiser asked not to achieve the best overall accuracy. Instead, they organised
the challenge into three tasks and asked to predict three peak characteristics corre-
sponding to each task. The characteristics that the BigDEAL challenge focuses on
are the daily peaks’ shape, magnitude, and timing. For these characteristics, the
competitors had to provide point forecasts for six different rounds. At the beginning
of each round, the ground truth and the actual weather information of the previ-
ous round, as well as the weather forecasts for the new round, are provided (i.e.,
rolling-based release of the data). For the leaderboard, for each characteristic and
round, a ranking – based on characteristic-specific metrics – is calculated. The final
leaderboard is created by averaging the five highest-ranked rounds for each team. In
each round, the competitors could use historical data, time stamps, and exogenous
temperature information from nearby weather stations as input. During the six
rounds, the forecast horizon varies between one and three months. Under this
challenge setup, the competitors could select arbitrary models without limitations,
such as the model’s training or inference time.
Thus, for the model selection, this thesis considers the following points.

1. The long forecast horizon of one up to three months makes it difficult to use
forecasting methods that rely on lag features.

2. The competitors provided different exogenous variables suitable to form a
conditioned distribution of the time series.

59



3. The design of the challenge, especially the shape task, seems well suited for
generative models since they are designed to provide time series that are
indistinguishable from real time series.

Based upon these three points, one observes that the task is related to the task of
controllable time series generation (Chapter 4). Thus, this thesis uses the conditional
generative model to predict the peak characteristics and answers the research
question

RQ2 Is it possible to apply generative models conditioned on appropriate statistical
and weather information to generate mid and long-term peak energy load
forecasts?

In the following, this thesis describes how to apply generative models for time series
forecasting. Thereby, the thesis focuses on the contributions made by the author
of this thesis. These contributions mainly comprise the generative model-based
forecasters, the best-performing members in the ensemble used for the submissions.
The other team members of the BigDEAL challenge provided the benchmarks that
were also part of the ensemble. Afterwards, this thesis evaluates the generative
model-based forecasters. The last section of this chapter discusses the proposed
solution and provides an outlook on possible further improvements.

5.1 Time Series Forecasting with Conditional

Generative Models

The proposed approach for the BigDEAL challenge is based on generative models.
Figure 5.1 provides an overview of the proposed approach, which consists of three
steps. These steps are the preprocessing step, the generative model, and the postpro-
cessing step.
During training, the preprocessing extracts the conditioning information from the
real time series to form the conditioning information. Furthermore, the prepro-
cessing creates time series samples from the real time series. The conditioning
information and samples are passed to the conditioning network and the generative
models to train both. Note that postprocessing is not needed for the training.
During production, based on the exogenous weather time series and the time
range for which the time series should be forecasted, the preprocessing extracts
the conditioning information. The conditioning network encodes this conditioning
information, and the generative model uses this encoded conditioning information
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Figure 5.1.: The generative model-based forecaster for the daily peak characteristics.
Note the edge annotated with an asterisk; for the cTimeGAN, the data flow is always
from the latent space to the model; for the cINN and cVAE, the data flow is from the
model to the latent space during training and vice versa during inference. The reason
is that GAN-based approaches do not provide a reversible mapping between realisation
and latent space. This figure is adapted and based on [52].

and the noise sampled in the latent space to create synthetic time series samples. In
the postprocessing step, the samples are merged, and the submissions are derived.
In the following, this section explains each of these steps in more detail.

5.1.1 Preprocessing

The preprocessing comprises the feature extraction and the sampler.

Feature Extraction

The extracted features are the conditions for the generative model. The considered
extracted features are calendar information, statistical information, and weather-
based features.

To extract the calendar information, the feature extraction takes the time index
as input. Based on the time index, this thesis extracts the trigonometric encoded
month of the year, day of the week, hour of the day, and the three one-hot encoded
features, if the timestep corresponds to a workday, weekend, or federal US holiday
(resulting in nine features). This calendar information supports the generative model
in creating time series with calendar-driven periodicities. In addition, the calendar
information also enables the usage of the merger.
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The challenge organisers provided temperature information from six weather stations
as exogenous weather features. This thesis uses this temperature information to
extract three kinds of additional weather features. First, this thesis calculates the
average, median, standard deviation, minimum and maximum as extra features
based on six temperature values of the weather stations for each hour. Second,
the average temperature time series is linearised by squaring the difference of the
temperature time series and the saddle point between temperature and the target for
each hour. Third, a rolling mean of the average and average linearised temperatures
are calculated to capture the buildings’ heat inertia that contributes to the time
series.
As statistical information, this thesis uses forecasts of the rolling mean of the time
series to control mid-term trends and periodicities. To forecast this rolling mean,
two different sine-based functions are used. Both functions are first fitted and then
forecast the rolling mean. During the training, these functions are fit on the rolling
mean using the index as input. Based on the index, these functions forecast the
rolling mean during the inference. The first function is a sine function with three
parameters

s1 = sin( x · 4 · fi

365 · 24 + p1) · a1 + d1. (5.1)

x is the index input, and p1, a1, and d1 are the trainable parameters of the function.
More specifically, p1 is the phase of the periodicity, a1 is the amplitude of the rolling
mean, and d1 is the offset. This thesis refers to this function as Sine-1. This function
captures the half-yearly periodicity of the time series that is probably caused by elec-
tric heating in winter and electric cooling in summer and lower electrical demand in
spring and autumn. However, in the time series there exists two additional yearly pe-
riodicities with opposite trends of their magnitude. These periodicities superimpose
the basic half-yearly periodicity. To capture these additional periodicities, this thesis
extends Sine-1 with two additional sine terms, resulting in the Sine-3 function:

s2 = s1

+ (sin( x · fi · 2
365 · 24 + 365 · 24 · fi + p2) + 1) · a2 · x

+ (sin( x · fi · 2
365 · 24 + p2) ≠ 1) · a3 · x,

(5.2)

where s1 is described in Equation (5.1), and p2, a2, and a3 are additional parameters.
Note both sines are shifted to each other by half a year. To ensure a shift by half
a year regardless of the optimal parameters, p2 is used in both sines in Equation (5.2).

62 Chapter 5 Mid-term Forecasting Tasks in the BigDEAL Challenge



Table 5.1.: The parameters of the distributions used to provide the noise to the gen-
erative models that they require to generate data. The used parameters are either
determined by the design of the algorithm or by preliminary studies.

Model Distribution Parameters

cINN normal distribution µ: 0, ‡: 0.6
cVAE normal distribution µ: 0, ‡: 0.6
cTimeGAN uniform distribution min: 0, max: 1

Thus, the final conditioning information consists of the nine calendar features
per time step, six provided exogenous weather time series, eight derived weather
time series (average, median, minimum, maximum, standard deviation, linearised
average time series, rolling mean of the average and the linear averaged time series),
and the forecast of the rolling mean. In total, this are 24 features for each time step
of the sample (in this thesis, h = 24) that should be generated. This results in a
conditioning information vector of size 24 · 24 = 576.

Sampler

In analogy to Chapter 4, this thesis uses a sampler to enable non-recurrent generative
models. The sampler transforms the time series into samples with equal lengths by
applying Equation (2.2) with h = 24.

5.1.2 Conditional generative models

To forecast the peak characteristics, the models with the same architectures intro-
duced in Chapter 4 are used – namely, the cINN, cVAE, and cTimeGAN. This also
means that the internal data flows, i.e., how the conditioning information is passed
to the generative models, is the same as in Chapter 4. Since we use the same
models, the distribution parameters must be determined again to generate noise
used by the generative model to create data. For the cTimeGAN, the parameters are
determined by the design of cTimeGAN, and for the cINN and cVAE are determined
by preliminary evaluations (Table 5.1).

5.1.3 Postprocessing

The generative model provides overlapping time series samples with a fixed length.
However, the challenge requires, as a submission, the daily peaks’ magnitude, the
daily peaks’ timing, and the time series for the forecasting horizon. Thus, for
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providing such a submission, the postprocessing first applies the merger and derives
the submissions afterwards.

Merger

The generative model provides time series samples. These time series samples
overlap and have a fixed length (in this chapter, the length is 24). However, the
challenge requires forecast lengths from one to three months. Thus, in analogy to
Chapter 4, the merger combines the time series samples to create a time series with
an arbitrary length by applying Equation (2.3).

Derive Submission formats

The output of the merger is the forecasted time series for the forecasting horizon.
However, the submission also requires submission of the daily peaks’ magnitude and
the daily peaks’ timing beside the forecasted time series. Thus, this step derives both
characteristics. To derive the magnitude, the maximal value of each day is extracted.
For the shape, the complete forecast is submitted. For the timing task, the argmax
for each day is calculated.

5.2 Evaluation

In the following, this section describes the specific experimental setup to evaluate
the generative model-based forecasters and present the corresponding results.

5.2.1 Specific Experimental Setup

The experimental setup for this chapter is mainly built upon the design of the
BigDEAL challenge. Thus, this subsection first describes the design of the challenge.
Afterwards, it presents the evaluation criteria. Finally, this subsection presents the
variants of the generative models.
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BigDEAL Challenge Design

The BigDEAL challenge uses the previously introduced BigDEAL dataset (Sec-
tion 9.2.1) during the qualification and the final. More specifically, the competitors
could use the past values of the time series, the past actual weather data, weather
forecasts for the forecasting horizon, and information derived from the timestamps
to provide the peak forecasts. Since, this chapter is presenting a forecasting method
used in the BigDEAL challenge, it uses also the BigDEAL dataset. In the following,
the challenge’s course is described before the three tasks are presented.

The course of the BigDEAL Challenge The BigDEAL challenge consists of two parts:
the qualification and the final.1 In the qualification, the competitors have to provide
one submission. All competitors that beat a benchmark in at least one task are quali-
fied for the final. Of the 121 teams in the qualification, only 14 qualified for the final.

The final of the BigDEAL challenge consists of six submissions. All six submissions
together span the period of one year (January - December 2018), whereby a single
submission spans one, two, or three months. At the beginning of each round, the
ground truth and the actual weather data of the previous round was provided. In
addition, the organisers also provided weather forecasts for the forecasting horizon.
For each round, the competitors have three or four days to prepare their submissions.
E.g. the KIT-IAI team used this time mainly for evaluating the performance of the
previous round and to train the models on the training dataset that includes the
training data of the previous round.
The final leaderboard consists of the best five ranks for each submission. I.e., the
worst result of each team is cancelled. The average ranks for each subtask determine
the overall rank. Of the 14 teams that qualified for the final, 13 are eligible for the
final leaderboard.

BigDEAL Challenge Tracks The submission of the final comprises three tasks,
which correspond to the following three peak characteristics:

1. The daily peaks’ magnitude is the maximal load of the considered day.

2. The daily peak’s timing is the position of the daily peak in the hours of the day.
1Since the tasks differ slightly for the qualification and the final, and no ground truth data for the

qualification is provided, this thesis focuses on the final only.
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3. The daily peaks’ shapes are the five values around the daily peaks divided by
the daily peaks’ magnitude.

Evaluation Criteria

This thesis uses the same metrics as the BigDEAL challenge to evaluate the forecasted
peak’s characteristics. Besides that, this thesis also uses two additional metrics to
examine the generative model-based forecaster’s bias and assess the computational
effort.

Challenge Metrics To evaluate the predictions of the daily peaks’ magnitude, the
organisers of the BigDEAL challenge use the MAPE (Equation (2.12)) and apply it
to the predicted and the actual daily peaks’ magnitudes. Note that the MAPE of the
forecast performances on different time series are comparable since the MAPE is a
normalised metric.
To evaluate the forecasts of the daily peak’s timing, a wMAE (Equation (2.9)) is
used. This wMAE is applied to the daily peaks’ actual and predicted timing. To
weigh the error (difference in hours between the actual and the predicted timing),
the organisers use

weighted(x) =

Y
___]

___[

x for x œ {0, 1}

2x for x œ {2, 3, 4}

10 for x Ø 5.

(5.3)

Note that the value range of the daily peaks’ timing of different time series with the
same resolution is the same (1 to 24 for a time series with an hourly resolution).
Thus, the wMAE of the daily peaks’ timing of different time series are comparable.
To evaluate the forecast of the daily peaks’ shape, the organisers of the challenge use
a MAE (Equation (2.8)), which is applied to the actual and the forecasted shape of
the daily peak. Note that the shape’s definition contains a normalisation step. Thus,
the MAE of the shape across different time series are comparable.

Further Metrics Besides the metrics used in the BigDEAL challenge, this thesis also
applies the MPE (Equation (2.15)) to assess the bias and measures the training time
to assess the computational effort of the generative model-based forecasters.
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Considered Conditional Generative Models’ Implementations

This thesis uses four different variants of each generative model-based forecaster in
the evaluation and refers to them as generative model variants. In particular, this
thesis uses each generative model with the Sine-1 and Sine-3 statistics. Furthermore,
both variants of each generative model are trained with Transfer Learning (TL) and
without Transfer Learning. For Transfer Learning, this thesis pre-trains the generative
model variants on all three time series that are provided by the challenge’s organiser.
Afterwards, the pretrained model is fine-tuned for each time-series separately.

5.2.2 Results

The results consist of four different evaluations to assess the proposed genera-
tive model-based forecasters. The first evaluation aims to get insights. Second,
the proposed generative model-based forecasters are benchmarked. Third, their
computational effort is assessed. Finally, the last evaluation investigates the final
leaderboard of the BigDEAL challenge.

Insights

The insights evaluation comprises four analyses to gain insights: a comparison of
the different generative model-based forecasters variants, an analysis of their per
round performance through the six final rounds, a bias analysis, and a visualisation
of the forecasts.

Variants of the Generative Models Table 5.2 provides the performance of the gen-
erative model variants on each task and time series. In the following, this thesis
describes the observations separately for each task.

Regarding the shape task, this thesis makes three observations: First, the cINN
performs better than the cVAE and cTimeGAN. Moreover, even each cINN variant
performs better than all variants of the cVAE and cTimeGAN. Second, regarding the
impact of the different variants, the impact is always smaller than 10 %. However,
transfer learning seems to positively impact the cINN and cVAE. Such an impact
is not observable for the cTimeGAN. Third, comparing the performance on the
different time series, all models perform best on LDC3 and worst on LDC2.
Regarding the magnitude task, this thesis makes three observations again: First,
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Table 5.2.: The average scores of each generative model and variant for the three time
series (LDC1, LDC2, and LDC3) and the three tasks of the BigDEAL challenge. The best
values are highlighted in bold.

(a) Average scores for the forecasts of the daily peak shape.

LDC1 LDC2 LDC3
cINN cVAE cTimeGAN cINN cVAE cTimeGAN cINN cVAE cTimeGAN

Sine-1 0.062 0.102 0.111 0.088 0.126 0.126 0.055 0.094 0.103
Sine-1 TL 0.061 0.101 0.102 0.084 0.124 0.132 0.051 0.091 0.096
Sine-3 0.062 0.100 0.107 0.089 0.125 0.133 0.055 0.095 0.094

Sine-3 TL 0.061 0.100 0.107 0.084 0.122 0.137 0.051 0.092 0.102

(b) Average scores for the forecasts of the daily peak magnitude.

LDC1 LDC2 LDC3
cINN cVAE cTimeGAN cINN cVAE cTimeGAN cINN cVAE cTimeGAN

Sine-1 3.5 4.2 5.0 4.3 5.4 5.7 3.9 5.8 6.3
Sine-1 TL 3.5 3.8 4.7 3.9 5.1 5.2 4.1 5.3 5.9

Sine-3 3.5 4.2 4.9 3.7 4.8 5.9 4.1 5.3 6.1
Sine-3 TL 3.7 4.5 5.2 3.5 4.8 4.9 3.9 5.3 6.1

(c) Average scores for the forecasts of the daily peak timing.

LDC1 LDC2 LDC3
cINN cVAE cTimeGAN cINN cVAE cTimeGAN cINN cVAE cTimeGAN

Sine-1 1.099 1.446 1.955 0.943 1.354 1.659 0.879 1.202 1.213

Sine-1 TL 1.180 1.486 1.553 0.934 1.231 1.460 0.790 1.238 1.338
Sine-3 1.159 1.461 1.900 0.899 1.358 1.556 0.762 1.245 1.296
Sine-3 TL 1.170 1.461 1.531 0.866 1.393 1.474 0.871 1.230 1.413

similar to the shape task, all variants of the cINN are better than each variant of the
cVAE and cTimeGAN. Second, for the cINN and cVAE, the best variant seems to be
the Sine-3 variant with transfer learning. The best variant for cTimeGAN is Sine-1
with transfer learning. Regarding the differences between the different variants of
each model, they are clearer than for the shape. Third, comparing the performance
on the different time series, each model achieves the best result on LDC1.
Regarding the timing task, this thesis also makes three observations: First, similar to
both previous tasks, each variant of the cINN is better than each variant of the other
generative models. Second, the performance of the generative model fluctuates
strongly for each generative model. However, there is no clear trend indicating that
one variant is superior. Third, comparing the performance on the different time
series, the best timing forecasts are achieved for LDC3.

Wrapping up, the different variants have no big impact on the forecast performance.
However, for the cINN and cVAE, there are some indications that the variant with the
Sine-3 and Transfer Learning performs best and for the cTimeGAN that the variant
with the Sine-1 and Transfer Learning performs best. Thus, this thesis selects these
variants for further evaluation.
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Performance through the rounds To gain insights into the seasonal behaviour of
the generative model-based forecasters, this thesis compares their performance on
the six rounds of the BigDEAL final in Figure 5.2.

Regarding the shape, this thesis makes three observations: First, the quality of the
prediction differs during the six rounds. For each substation and model, the best
round achieves a score of almost half of the score of the worst round. Second, there
are seasonal fluctuations, with lower scores in summer (rounds 3 and 4) and higher
in winter (rounds 1 and 2). Third, the cINN performs better than the cVAE and
cTimeGAN in each round.
Regarding the magnitude, this thesis makes two observations: First, similar to the
shape task, forecast performance fluctuates strongly across the six rounds. These
fluctuations seem to be seasonal for the cVAE and cTimeGAN. However, for the
cINN, no seasonal behaviour is observable. Second, the performance on the time
series LDC1 and LDC3 in the fifth round is worse than in the other rounds. For LDC2,
such a behaviour is not observable.
Regarding the timing task, there are seasonal fluctuations again in all six rounds –
with lower scores in summer and higher in winter. Furthermore, the scores in round
6 are worse than in the other rounds.

Examining the Bias To examine the bias, this thesis analyses the MPE for each
generative model-based forecaster, each time series and task. Table 5.3 provides
the MPEs. The remainder of this paragraph presents the observations for each task
separately.

Regarding the shape task, the overall biases for each model and time series are
similar and small. However, examining the different rounds in more detail, there
are variations between the different rounds. For LDC1 and LDC3, the bias in round
5 is high, and for LDC2 in round 6 compared to the other rounds.
Regarding the magnitude task, this thesis makes two observations: First, the overall
biases are small. Examining the different rounds, the fluctuations do not follow a
clear pattern. Second, for LDC2, each model always underestimates the magnitude
except for cTimeGAN in round 5 (MPE is greater than 0).
Regarding the timing task, this thesis makes three observations: First, compared
to the other tasks, the overall bias is higher. Furthermore, in total, each model
overestimates each time series. Second, examining the different rounds, seasonal
fluctuations are observable, with an underestimation more likely in summer and an
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Figure 5.2.: For each task and substation, lineplots over the six different rounds shows
the performance of the conditional generative models.
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Table 5.3.: The MPE of each conditional generative model and variant for the three
time series and the three tasks of the BigDEAL challenge.

(a) MPE for the forecasts of the daily peak shape.

LDC1 LDC2 LDC3
cINN cVAE cTimeGAN cINN cVAE cTimeGAN cINN cVAE cTimeGAN

1 -0.35 -0.22 -2.90 -0.46 2.83 0.19 1.23 1.44 1.63
2 0.97 1.49 -0.71 1.64 0.62 1.25 3.30 2.97 3.03
3 -1.26 -2.87 -1.75 2.84 0.02 1.72 2.36 1.11 2.24
4 -0.08 -0.44 0.74 2.04 -0.12 2.55 1.91 1.78 3.60
5 -7.13 -5.18 -1.74 1.54 -0.51 1.19 -7.65 -5.17 -3.12
6 0.61 0.87 1.47 3.95 3.41 5.90 2.20 0.91 3.92

Total -1.21 -1.06 -0.82 1.92 1.04 2.14 0.56 0.51 1.88

(b) MPE for the forecasts of the daily peak magnitude.

LDC1 LDC2 LDC3
cINN cVAE cTimeGAN cINN cVAE cTimeGAN cINN cVAE cTimeGAN

1 -0.61 2.41 -0.68 0.09 5.68 2.48 0.58 4.22 3.95
2 1.42 4.17 1.92 2.06 2.90 3.74 3.24 4.96 5.12
3 -0.68 -0.93 -0.16 3.09 2.38 1.38 2.79 2.53 1.51
4 0.68 1.50 1.48 3.00 3.58 3.18 1.82 2.96 1.69
5 -6.12 -3.00 -1.36 1.85 0.42 -0.31 -4.10 -1.10 -1.60
6 0.51 1.27 1.51 3.02 4.28 6.31 1.76 1.46 4.58

Total -0.80 0.90 0.45 2.19 3.21 2.80 1.02 2.51 2.54

(c) MPE for the forecasts of the daily peak timing.

LDC1 LDC2 LDC3
cINN cVAE cTimeGAN cINN cVAE cTimeGAN cINN cVAE cTimeGAN

1 -0.99 -5.91 -1.93 2.12 3.01 2.59 -9.91 -10.18 3.16
2 -3.13 -4.74 -2.14 -6.68 -9.04 -15.51 -3.14 0.29 -5.63
3 -0.30 0.63 0.40 -0.42 -0.24 -0.44 -1.09 0.04 0.31
4 -2.66 -1.82 -2.96 0.02 -0.54 -1.03 -2.34 -0.23 -3.85
5 -4.65 -4.96 -2.35 -5.43 -5.31 -5.07 -32.27 -31.11 -31.56
6 -4.94 -35.40 -12.94 -7.35 -10.53 -3.05 -21.01 -31.69 -9.97

Total -2.78 -8.70 -3.65 -2.96 -3.78 -3.75 -11.63 -12.14 -7.92

overestimation more likely in winter. Third, in rounds 5 and 6, the bias is comparable
strong.

Visualisation of the predicted properties Figure 5.3 provides a visualisation of the
forecasts of the whole time series2, the magnitude, and the timing.

In this visualisation, two observations are made. First, the predictions are almost
narrow to the ground truth (black line) regardless of the task, except for a dip in
September for LDC3.
Second, for LDC2 and LDC3, the overall prediction and the magnitude seem almost

2Note, a visualisation of the whole time series is used instead of the shape visualisation since the
shape is scaled for each day.
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always underestimated. However, such an underestimation is not observable for
LDC1.

Benchmarking

To benchmark the generative model-based forecasters, this thesis compares them to
Support Vector Regression (SVR) and a fully connected NN3.

Table 5.4 shows the results of the benchmarking. This thesis presents three obser-
vations: First, the cINN-based forecaster is the best model for each task and time
series. For the shape task, it is even the best model for each of the six rounds.
Second, except for the cINN-based forecaster, there are no clear differences in the
performance of the other models. Third, examining the distance between the cINN
and the other models, the distances are smaller in summer than in winter.

Computational E�ort

Table 5.5 contains the training time in seconds of each model and all three sub-
stations. In this table, this thesis makes three observations. First, the proposed
generative models-based forecaster requires more training time than both bench-
marks except for the cVAE, which requires a similar amount as the neural network.
In contrast, the cTimeGAN requires the most training time and clearly more than
the benchmarks. Second, analysing the training times of the different generative
model variants, the transfer learning lead to an increased training time since they
use a bigger dataset and the training time includes the sum of training on all data
as well as the fine-tuning. Concerning the Sine-1 and Sine-3 statistics, there are no
differences. Finally, the training time increases with each round since more training
data is available.

Results of the Challenge

The last part of the evaluation briefly summarises the BigDEAL challenge’s results.
Note that during the challenge, an ensemble, with a NN, SVR, and cINN as ensemble
members was used4. However, the cINN-based forecaster was always the most
important member of this ensemble and performed even better than the ensemble

3In the benchmarking, simple benchmarks are used since the comparison with more sophisticated
methods is performed during the BigDEAL challenge and presented in Section 5.2.2.

4The other generative models are added for the completeness of this thesis.
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Figure 5.3.: The predicted values of the conditional generative models for each task
and time series for the year 2018. To visualise each round separately, they are coloured
differently. The ground truth is in black.
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Table 5.5.: The training time in seconds of the best conditional generative model vari-
ant and the benchmarks for the three time series and the three tasks of the BigDEAL
challenge. For comparing the training times, all models are executed on the hardware
setup 1 Table 2.2.

(a) LDC1

SVR NN cINN cVAE cTimeGAN
Sine-1 Sine-3 Sine-1 Sine-3 Sine-1 Sine-3

TL TL TL TL TL TL

1 19 194 953 3616 891 3506 64 190 62 188 12548 35838 13031 37897
2 19 78 963 3487 937 3714 66 195 67 197 13203 37027 13044 38794
3 19 237 1052 3814 1066 3916 75 228 81 224 15183 69657 15688 42371
4 25 99 1369 4134 1305 4078 86 235 88 230 16323 43459 16658 41762
5 25 63 1376 4178 1422 4055 81 212 80 211 15910 39441 15141 40715
6 25 68 1549 3970 1298 3618 84 225 81 212 16641 41823 16769 42634

(b) LDC2

SVR NN cINN cVAE cTimeGAN
Sine-1 Sine-3 Sine-1 Sine-3 Sine-1 Sine-3

TL TL TL TL TL TL

1 18 280 989 3626 955 3685 64 196 64 192 12401 36510 12955 37589
2 22 127 1069 3793 1027 3629 67 195 65 194 13227 36751 13255 39905
3 21 77 1039 3356 1090 4016 80 223 82 230 15729 70343 15732 42479
4 23 55 1322 4171 1398 4070 86 232 87 229 16589 44117 16080 42206
5 23 99 1409 4135 1423 3803 82 224 84 221 16148 39382 14918 41550
6 24 74 1290 4093 1504 3974 97 217 85 213 16701 42629 16351 41980

(c) LDC3

SVR NN cINN cVAE cTimeGAN
Sine-1 Sine-3 Sine-1 Sine-3 Sine-1 Sine-3

TL TL TL TL TL TL

1 15 161 746 2685 752 2580 10 27 9 29 12668 36214 12723 37238
2 16 93 744 2715 774 2513 66 193 66 195 12942 36378 13130 39228
3 18 75 853 2789 834 2850 74 220 81 220 15159 70129 15581 42042
4 20 54 995 2943 936 2840 86 221 81 230 16318 43634 16491 41332
5 19 46 1006 2918 983 2976 81 219 84 212 16429 39069 15107 40482
6 21 145 1061 2936 1067 2794 92 234 91 207 16639 42191 16714 42205
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Table 5.6.: First five teams on each task of the BigDEAL challenge.

Overall Daily peaks’ magnitude task Daily peaks’ timing task Daily peaks’ shape task

Amperon Amperon KIT-IAI KIT-IAI

KIT-IAI Overfitter Amperon Amperon
Overfitters peaky-finders BelindaTrotta Overfitters

peaky-fitters Team SGEM-KIT Overfitters X-Mines
X-Mines KIT-IAI X-Mines SheenJavan

in some rounds [46].
The first five places of the final leaderboard are shown in Table 5.65. In this table,
this thesis makes three observations. First, the proposed solution achieves the overall
second place in the challenge. Second, it won two out of three tasks –namely, the
daily peaks’ shape and positioning tasks. Third, in the daily peaks’ magnitude task,
the proposed solution achieved fifth place out of thirteen competitors.

5.3 Discussion

This section discusses the performance, limitations, and the further potential of the
generative model for mid-term peak load forecasting.

5.3.1 Performance

Regarding the performance, four aspects are discussed: the insight results, the
computational costs, the benchmarks, and the results of the challenge.
Regarding the insights, this thesis highlights four observations. First, the scores
of the generative model-based forecasters fluctuates through the different seasons
with lower scores in summer than in winter. This indicates that the summer months
are easier to predict. The observation that the time series consumption pattern
is more stable in summer than in winter confirms this conclusion. Second, the
difficulty in forecasting the three time series differs. Potential reasons might be
varying numbers of residential, commercial, or industrial buildings connected to
the time series. Unfortunately, no corresponding meta-information is available to
prove this hypothesis. Last, the dip in the forecast for LDC3 is probably caused by
Hurricane Florence6, which hit the east coast of the United States. Fourth, the bias
is high, especially for the timing task, and the forecast accuracy is reduced for round

5
http://blog.drhongtao.com/2022/12/bigdeal-challenge-2022-final-leaderboard.html

6
https://www.washingtonpost.com/weather/2018/09/20/land-transformed-by-water-north

-carolina-before-after-hurricane-florence/ (last accessed 07.06.2023)
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6. These observations might be due to the interplay of harder predictable winter
months and not well-learned holiday information at Christmas time.
Regarding the computational costs, the cINN and cTimeGAN are expensive to train.
However, these costs might be reduced by using GPUs for training instead of CPUs.
Furthermore, improved pretraining strategies might reduce the required training
time too.
Regarding the benchmarking and the results of the BigDEAL challenge, the cINNs
seems to be good at forecasting the timing and shape of the daily peaks. However,
this model struggles with the magnitude.
To wrap up the result-related discussion and to answer

RQ2 Is it possible to apply generative models conditioned on appropriate statistical
and weather information to generate mid and long-term peak energy load
forecasts?

This thesis concludes that generative models –in particular the cINN– if conditioned
on appropriate statistics, calendar, and weather information, can generate accurate
mid-term forecasts regarding the daily peak’s shape and timing. However, the
challenge’s results also indicate that other methods might be more suitable for the
daily peak magnitude forecasts.

5.3.2 Limitation

Despite the good performance on the timing and the shape task, this thesis identifies
two limitations of the proposed generative model-based forecaster. First, to perform
the forecast, the user has to determine a sampling parameter to sample noise from
the latent space. This parameter needs to be carefully selected. For example, if the
latent space is normally distributed, a too-high variance parameter would induce too
much noise into the forecast. However, a too-small variance parameter reduces the
variability of the samples. It thus increases the risk of forecasting an extreme value
that is not fixed by the smoothing effect of the merger. Thus, future work might
also examine the robustness of the generative model-based forecasters regarding
the selection of the sampling parameters. Second, the presented generative-model
based forecaster is a local forecaster with limited scalability. Thus, future work
should overcome this issue by extending this approach to global model forecasting.
A possible extension would be exploiting latent space information by introducing a
smarter sampling strategy. Towards such an implementation, this thesis performs
the first steps in Chapter 6.
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5.3.3 Further Potential of Generative Models for Forecasting

This thesis highlights three aspects regarding the further potential of generative
models for forecasting. First, future work should identify why the cINN has problems
forecasting the magnitude correctly. Second, future work can also revise the merger,
for example, by applying a more sophisticated merging strategy which uses a specific
quantile instead of the median. E.g., it might be possible to use the training data or
the most recent data in online learning to determine the quantile. Finally, future
work may exploit more the latent space. E.g., the latent space provides probability
information, which can be used to generate probabilistic forecasts. Moreover, mean-
ingful areas or directions might exist in the latent space. E.g., if different areas in
the latent space correspond to different time series, a global forecasting model could
exploit this.
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Synthetic Data to Enhance

Forecasting

6

Content of this chapter based on

B. Heidrich et al., “Boost short-term load forecasts with synthetic data from
transferred latent space information,” Energy Informatics, vol. 5, 2022.

This chapter proposes a method to handle the small training data size challenge
(mentioned in Section 3.2.2). In particular, the proposed method uses a globally
trained generative model that provides a mapping from the data space to the latent
space and vice-versa (in this thesis, we use a cINN and a cVAE). Thereby, this chapter
aims to answer the corresponding research question:

RQ3 Is it possible to locate a specific time series in a deep generative model’s latent
space and use this information to guide the data augmentation process?

This chapter aims to answer this research question by proposing the LSFE, which
locates time series in the latent space to generate time series samples that fit the
located time series. The next section presents the LSFE in detail. Afterwards, the
LSFE is evaluated by gaining insights into the method and benchmarking it with
other approaches to cope with the small training data size challenge. Finally, the
last section of this chapter discusses the performance of the LSFE, the limitations of
the LSFE, and potential further developments.

6.1 Latent Space-based Forecast Enhancer (LSFE)

The LSFE uses generative models, which generate time series to augment the few
available data and handle the small training data size challenge. However, for
training, generative models usually need the target time series, which is limited in
the considered challenge. Thus, instead of training the generative model only on the
target time series, it is trained on other related ones. The trained generative model
can create different time series. However, it must be guided to generate samples of
specific time series since it would create a median time series of the time series used
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for training. For guidance and creating specific time series, the LSFE examines the
latent space of a globally trained generative model. More specifically, the aim is to
identify the area of the latent space in which the samples of the target time series
are located. Based on this information, it is possible to create purposefully noise
that the generative model uses to create the synthetic data.
Figure 6.1 provides an overview of the proposed approach. During training, the
conditional generative model is trained in analogy to Chapter 4 and Chapter 5. I.e.,
a sampler creates time series samples from the source time series. The conditioning
information1 is encoded using a conditioning network. Finally, the encoded condi-
tioning information and the time series samples are passed to the generative model.
Again, as in Chapter 4 and Chapter 5, the conditioning network and the generative
models are trained jointly.
During production, first, the available target time series samples are mapped to
the latent space using f of the generative model and the encoded conditioning
information that belongs to the target time series samples. The samples’ latent space
representation is used to generate additional samples in the latent space (seed noise
sampling strategy). These additional samples are mapped back to the time series
sample space using g of the generative model and the conditioning information
for the time series samples that should be generated. I.e., calendar information
can be used to control for which seasons synthetic time series should be generated.
The output of the mapping are synthetic time series samples. The available target
time series samples and the synthetic time series samples are merged (data com-
bination strategy). This leads to an augmented dataset that can be used to train a
forecaster.

The remainder of this section presents the conditional generative model, the seed
noise sampling strategy, and the data combination strategy.
Note, analogue as in Section 3.2.1, for better readability, this subsection omits the
subscript (ti, h) when writing the samples, i.e. this subsection writes z, xcal, and x
instead of zti,h, xti,h

cal, and xti,h.

6.1.1 Conditional Generative Model

As mentioned in the introduction, the conditional generative model has two tasks.
The first task is to map the available target time series samples to the latent space.
The seed noise sampling strategy uses the resulting latent space representation of
the samples to locate the time series in the latent space and thus create seed noise

1As conditional information, the LSFE considers only calendar information.
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(a) Training the generative model of the LSFE.
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g
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Forecasting
method

Target time series
samples

Conditioning
information

(xcal)

Latent space

Seed rseed Synthetic data

Training

data

(b) Application of the LSFE to generate additional training data for a forecaster. The LSFE (dashed)
consists of three components: the conditional generative model with the mappings f and g, the seed
noise sampling strategy, and the data combination strategy.

Figure 6.1.: The training of the generative model used in the LSFE and the application
of the LSFE to generate time series samples to train a forecaster.

that fits the target time series. Therefore, the conditional generative model has to
provide a mapping from the data space to the latent space, i.e.

z = g≠1
◊ (x, xcal), (6.1)

where x is a time series sample, xcal is the sample of the calendar information
time series, z is the latent space representation of this time series sample, g≠1 the
mapping from the data space to the latent space, and ◊ are the trainable parameters
of g.
The second task is to generate synthetic time series samples based on the seed noise
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zseed2. Therefore, the conditional generative model maps the seed noise zseed from
the latent space to the data space, i.e.

x = g◊(zr, xcal). (6.2)

To implement g, one can select cINN or cVAE3. Note that GANs cannot be used since
they only map the latent space to the data space. Thus, as specific models in the
evaluations, only the cINN and cVAE architecture from Chapter 4 are used4.

6.1.2 Seed Noise Sampling Strategy

The task of the seed noise sampling strategy is to generate seed noise, which the
conditional generative model uses to generate time series samples. The seed noise
sampling strategy has to ensure that the generated seed noise leads to time series
samples that fit the target time series. This thesis presents the three used seed noise
sampling strategies in the following three paragraphs.

Random The random seed noise sampling strategy assumes that the latent space
representation of the target time series samples is normally distributed as the
samples of the source time series. Therefore, this strategy samples the seed noise
zseed ≥ N (0, 1) normal distributed.

Around The around seed noise sampling strategy assumes that few samples of the
target time series are sufficient to identify the location of the samples of the target
time series in the latent space. Therefore, this strategy aims to sample the seed
noise around the latent space representation of the available target time series, i.e.,
zseed = g≠1

◊ (x, xcal) + ‘ = z + ‘ where ‘ ≥ N (0, ‡) is normal distributed.

Shift The shift seed noise sampling strategy assumes that the latent space repre-
sentation of all time series has a similar shape but are located in different areas.
Thus, this strategy searches for a linear transformation between the latent space

2This thesis differentiates between the latent space representation samples z and the seed noise
zseed to make it understandable which data is currently being considered. However, both should
originate from the same space and ideally have the same distribution.

3In case of a cVAE, g≠1 is approximated by the encoder, while g denotes the decoder.
4Note that the input dimension of the conditioning network differs since this chapter only considers

calendar information. Furthermore, the length of generated time series samples is 48 to train
forecasters to forecast the next 24 values using the past 24 values as input data.
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representations of a source and target time series. This thesis uses linear regression
to find such a mapping. In particular, the linear regression is trained with the latent
space representations of the source time series samples as input and the latent space
representations of the available target time series samples as dependent variables.
To consider calendar effects, the used source time series samples must belong to the
same time as the available target time series samples. For generating seed noise,
this strategy applies the linear regression on the latent space representation of the
source time series samples, i.e., zseed = hlr(g≠1

◊ (x, xcal)) = hlr(z), where hlr is the
linear regression.

6.1.3 Data Combination Strategy

The data combination strategy combines the synthetic time series samples and the
available target time series samples to form a training data set for the forecaster.
This thesis considers three different strategies.

Synthetic The synthetic data combination strategy assumes that the available
target time series samples contain only a little information compared to the synthetic
time series samples. Thus, it only uses synthetic time series to train the forecasting
model.

Combined The combined data combination strategy assumes that the real target
time series and the synthetic time series contain equally relevant information. Thus,
the combined data combination strategy uses the available target data and the
generated synthetic target data.

Fine-tune The fine-tune data assumes that the available target time series samples
contain more relevant information than the synthetic ones. Thus, it first trains
the forecasting method on the synthetic time series samples before fine-tuning the
forecasting model on the available target time series samples.

6.2 Evaluation

To properly evaluate the LSFE, the next section describes the specific experimental
setup. Afterwards, the results are presented.
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Target

Source 2

Source 1

2011 2012 2013 2014 2015

Figure 6.2.: As training data for the conditional generative method, the first year of
source time series (yellow) is used, and as test data for the forecasting method the last
year of the target time series (green). As available real target time series, the two years
in 2012 and 2013 of the target time series (red) are considered. This figure is adapted
and based on [48].

6.2.1 Specific Experimental Setup

This subsection on the specific experimental setup describes the used data, the
implementation of the LSFE, the considered forecasting models and the metrics.

Data

The evaluation of the LSFE requires a specific data setup to evaluate the LSFE,
described first before the used time series, preprocessing, and calendar information
are presented.

Data Setup Evaluating the LSFE requires simulating the small training data size
challenge. Thereby, it is essential to avoid temporal and spatial data leakages. Thus,
this thesis splits the data into three subsets described in Figure 6.2. The first year of
the source time series serves as a training dataset for the generative model, and the
last year of the target time series is the test time series for the forecasting method.
The thesis retrieves the available target time series from the remaining two years
between the training data for the conditional generative model. In the evaluation,
this thesis considers different amounts of available data. The considered amounts of
available data are 2, 4, 8, 16, 21, 52, and 104 weeks. The available amounts of data
are always the last weeks of the two years between the training dataset and the test
time series. This split ensures that neither a spatial nor a temporal data leakage can
occur. Unfortunately, this split is data-intense (at least four years of data). Thus, this
thesis can only evaluate the LSFE on the electricity dataset.
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Table 6.1.: The architecture of the three exemplary NN-based forecasters.

Layer FCN CNN LSTM

1 Dense 32 ReLU Conv1D filter=5, kernel=3, ReLU LSTM 32
2 Dense 24 Linear Conv1D filter=2, kernel=3, ReLU Dense 24 Linear
3 Dense 24 Linear

Used Time Series and Preprocessing As mentioned, this thesis can evaluate the
LSFE only on time series from the electricity dataset. In particular, the three time
series corresponding to the time series with the minimal, median, and maximal
average – namely MT_169, MT_206, and MT_196– are used for evaluation. Each
time series is used once as target data and the time series of the other two selected
clients as source data, resulting in three combinations of source and target time
series.
These time series are normalised. Note the target time series is normalised on the
available time series. These normalised time series are transformed into samples
of size 48 using Equation (2.2). For the forecasters, the samples created by the
generative model are split into an input and a target part. Both parts have a length of
24. As additional features to condition the conditional generative model and support
the forecasters, this thesis uses the following calendar information: trigonometric
encoded month of the year and hour of the day, as well as the Boolean encoded
weekend and public holidays.

LSFE

The evaluation applies the LSFE with each possible combination of seed noise
sampling strategy, conditional generative model, and data combination strategy.

Used Forecasting Models

This thesis aims to show that localising the target time series in the latent space and
exploiting this by using the LSFE can enhance the performance of forecasters. As ex-
emplary forecasters, this thesis considers a Fully-Connected Neural network (FCN),
Convolutional Neural Network (CNN), and Long-Short Term Memory (LSTM). Ta-
ble 6.1 provides an overview of the architecture. As input, the forecasters get the
past 24 hours and the calendar information. The hyperparameters for training the
forecasters are provided in Table 6.2.
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Table 6.2.: Hyperparameters used to train the NN-based forecasters.

Hyperparameter Selected value

Optimiser RMSProp
Learning rate 0.001
Epochs 1000
Early stopping Yes
Validation size 20% of training data
Shuffle train samples Yes
Batch size 64
Loss function MAE (Equation (2.8))

Metrics

The forecasts generated by the three forecasters are evaluated with the MAE (Equa-
tion (2.8)) and RMSE (Equation (2.10)). Furthermore, this thesis uses skill scores
(Equation (2.18)) with the persistence forecast as a simple baseline for benchmark-
ing. The persistence forecast uses the value one week before as a forecast.

6.2.2 Results

The results are twofold. The first subsubsection presents results related to insights.
Afterwards, the second subsubsection presents the benchmarking results.

Insights

The insights comprise the analysis of the influence of the seed noise sampling and
data combination strategies on the result, as well as a visual inspection of the
forecasted time series. Note the insights use only MT_206 as a target time series and
the other as source time series (MT_169 and MT_196) since the results using the
other time series as targets are similar.

Seed Noise Sampling Strategy To examine the influence of the seed noise sampling
strategies and to compare them, this thesis visualises and compares the seed noise
diversity against the latent space representation of the source and target time series
samples. Furthermore, this thesis also examines the forecast accuracy with different
amounts of available data.
The analysis of the seed noise sampling strategies’ diversity is performed by using
the t-SNE [136] from sklearn [110] with default parameters. The t-SNE maps the
high-dimensional seed noise and latent space representation of the source and target
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time series samples on a two-dimensional plane. This two-dimensional plan is
visualised. Note to enable better comprehensibility, this evaluation uses only time
series samples starting at midnight. Figure 6.3 provides the results. In this figure,
this thesis makes four observations: First, for both generative models, the latent
space representation of the target and source data does not overlap. Second, the
random seed noise sampling strategy does not fit the sources and the target time
series for both conditional generative models. Third, for the cINN, the around seed
noise sampling strategy’s diversity is the most similar to the target diversity. Fourth,
for the cVAE, the latent space representations of the source and target time series
samples overlap more than for the cINN. Furthermore, for the cVAE, no seed noise
sampling strategy fits well to the latent space representation of the target time series
samples. However, the around and shift seed noise sampling strategy generates
slightly better seed noise than the random seed noise sampling strategy regarding
diversity. Besides examining the latent space, this thesis also examines the forecast
accuracy of the downstream forecaster using the LSFE with different seed noise
sampling strategies. Therefore, three different forecasters are trained to evaluate the
LSFE with different amounts of available target data for each seed noise sampling
strategy and conditional generative model. As a data combination strategy, this
thesis uses the combined strategy in this evaluation.
Figure 6.4 shows the corresponding accuracies in terms of the MAE and RMSE
for the different amounts of available data. In this figure, this thesis makes two
observations: First, for the cINN, the around seed noise sampling strategy provides
the best results. In contrast, for the cVAE, all seed noise sampling strategies perform
similarly. Second, the shift seed noise sampling strategy leads to a peak at eight
weeks of available target data for the cINN. For the cVAE, there is no peak.

Data Combination Strategy For assessing the influence of the different data com-
bination strategies, this thesis examines the forecast accuracy of the downstream
forecaster using the LSFE with data combination strategies. Therefore, three differ-
ent forecasters are trained to evaluate the LSFE with different amounts of available
target data for each data combination strategy and conditional generative model. As
a seed noise sampling strategy, this thesis selects the around seed noise sampling
strategy.
Figure 6.5 shows the accuracy of the different data combination strategies for the
different amounts of available target data and the accuracy of a forecaster trained
only on the available data (real). Based on this figure, this thesis makes two obser-
vations. First, for the cINN, the data combination strategies have no impact on the
results. The error of the LSFE using the cINN decreases during the first 21 weeks
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Figure 6.3.: The t-SNE visualisations of the latent space representation of 365 ran-
domly selected samples from the target data (MT_206), the seed noise zseed, and the
source data (MT_169 and MT_196) for the three seed noise sampling strategies (random,
around, and shift) and the two generative models (cINN and cVAE). Note that the
different subfigures can only be compared qualitatively due to randomly selected start
values and different input data.
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and stays stable afterwards. Second, in contrast to the LSFE using the cINN, the
results for the LSFE using the cVAE are more diverse. In particular, the different data
combination strategies lead to differing errors without showing a clear trend, except
for the observation that using only synthetic data leads to the highest error.

Visualisation This thesis also visualises the forecasts the forecasters using the LSFE
created. In particular, this thesis shows the 24-hour ahead values. This thesis
uses the LSFE with both conditional generative models. Still, it fixes the seed
noise sampling strategy to the around seed noise sampling strategy and the data
combination strategy to the combined data combination strategy. Furthermore, this
thesis also visualises the forecast of a forecaster trained only on the available target
time series. Figure 6.6, shows the resulting forecasts. Thereby, it is observable that
the LSFE improves the forecasts of the forecaster. The improvement is stronger for
periods that differ from the data available in training (e.g. July and August).

Benchmarking

The benchmarking compares the performance of the LSFE with other methods
for coping with small amounts of available data. In particular, the considered
methods are noise-based data augmentation and transfer learning, which are already
mentioned in Chapter 3. As LSFE configuration, the configuration with a cINN
(LSFE-cINN) and a with a cVAE (LSFE-cVAE) as generative models are used. Both
LSFE variants use the around seed noise sampling strategy and the combined data
combination strategy.
Figure 6.7 shows the results for the three forecasters and both LSFE configurations
regarding the RMSE and MAE based skill score. This thesis makes two observations:
First, the LSFE-cINN performs best if 16 to 52 weeks of data are available. If less
data is available, the TL approach is better; if more data is available, all approaches
perform similarly. Second, each approach outperforms the persistence forecasts after
a few weeks (positive skill score).

6.3 Discussion

This section discusses the evaluation performance, the limitations, and the further
potential of the LSFE.
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6.3.1 Performance

The discussion of the performance focuses on the different seed noise sampling
strategies, data combination strategies, exemplary forecasts, and benchmarks.
Regarding the results from the diversity analysis of the seed noise sampling strategies,
the around seed noise sampling strategy matches the diversity of the target time
series samples’ latent space representation better than the other seed noise sampling
strategies. In line with that, this seed noise sampling strategy also leads to better
convergence. In contrast, when using the cVAE, no seed noise sampling strategies do
not match the diversity of the target time series samples’ latent space representation.
Consequently, forecasters using the LSFE-cVAE perform worse than forecasters using
the LSFE-cINN. Concluding, this result shows that it can be beneficial to examine
the latent space since this enables the localisation of the target time series when
using the LSFE-cINN, which leads to better results.
Regarding the data combination strategy, the different data combination strategies
barely impact the forecasts when using the LSFE-cINN in contrast to using the
LSFE-cVAE. This observation aligns with the previous observation that the cINN
leads to seed noise that better matches the diversity of the target time series samples’
latent space compared to the cVAE. Consequently, the LSFE-cINN with the around
seed noise sampling strategy generates time series that closely resemble the target
data. Thus, the data combination strategy when using the LSFE-cINN combines
more similar data than when using the LSFE-cVAE and thus has less impact for the
LSFE-cINN. The lower similarity between generated and target time series when
using the cVAE also explains why the synthetic data combination approach does
not work for LSFE-cVAE. Further analytical investigations need to be performed to
figure out if these differences can be traced to a principle difference between the
INN and VAE, such as the bijectivity that the INN provides.
Regarding the visualisation, LSFE-cINN and LSFE-cVAE improve the forecasters
compared to forecasters trained only on limited available data. The improvement
is more substantial for periods that differ from the period of the limited available
data. This observation might be explained by the interplay of two aspects: First,
the usage of conditional information enables the LSFE to generate data for periods
not covered by the available target time series. Second, the seed noise sampling
strategy ensures that the generated synthetic data matches the target. Thus, the
resulting generated time series samples contain information about these periods
while matching the target time series. Thus, the forecaster can learn the target time
series’ behaviour in periods not covered by the available data.
Regarding the benchmarking, the LSFE is beneficial if the available target time
series is limited. However, the benchmarking also shows that other approaches (e.g.
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TL) lead to similar results. Thus, the LSFE is an additional tool in the time series
forecaster’s toolbox, extending the existing tools for handling the small training data
size challenge. However, it must always be investigated if the LSFE provides benefits
in the considered use case.
Finally, to answer the research question

RQ3 Is it possible to locate a specific time series in a deep generative model’s latent
space and use this information to guide the data augmentation process?

this thesis concludes that locating specific time series in a conditional generative
model’s latent space is possible. This localisation supports creating synthetic time
series samples that fit the target time series as the LSFE shows.

6.3.2 Limitations

The most important limitations are related to the seed noise sampling strategies,
which either introduce new, not obvious-to-choose hyperparameters or new as-
sumptions. The around seed noise sampling strategy adds noise to the latent space
representations of the available time series samples. Thus, it requires the sampling
parameter ‡. While this evaluation uses ‡ = 0.1, optimising this hyperparameter
for different datasets might improve the results. Regarding additional assumptions,
the shift seed noise sampling strategy assumes linear relationships between the
sample’s latent space representations of different time series. However, in general,
this relationship is not linear.

6.3.3 Further Potential of LSFE

This thesis highlights three aspects regarding potential improvements of the LSFE.
First, additional information about the time series for the conditioning could lead
to better synthetic time series samples. Such information in building-level energy
forecasting could be the building size. Second, future work should focus on hyperpa-
rameter optimisation of the LSFE, e.g. the hyperparameters of the generative models
or seed noise sampling strategy. Furthermore, the conditional generative models
should be trained on more data. Training on more data might lead to better latent
space representations. Finally, the idea of a global trained conditional generative
model together with the localisation of time series in the latent space could be
applied to the controllable time series generation (Chapter 4) or the peak load
forecasting (Chapter 5) to improve their scalability.
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Part III

Profiles for Time Series Forecasting





Profiles as Statistics

Representatives

7

As mentioned in Chapter 2, type days are popular in the energy domain to estimate
the demand. An advantage of them is that they are easy to obtain and do not require
new measurement data by using standardised daily consumption patterns. However,
using type days requires meta-information about the time series to assign the correct
type days to each time series (e.g. in the energy domain if the building is an office
building). Furthermore, they are inflexible, not adaptive to specific time series, and
cannot adapt to the time series behaviour changes. Thus, this chapter extends them
to be more flexible. More precisely, the first section introduces profiles, and the
second section briefly evaluates them. The last section of this chapter discusses the
performance, limitations and the further potential of profiles.

7.1 Profiles

As mentioned earlier, the class of time series with calendar-driven periodicities
enables specialised algorithms such as type days. Unfortunately, these type days are
inflexible. Thus, this thesis uses profiles. Profiles are grouped statistics considering
that different time series values have different calendar information. This thesis
proposes four different calculation methods for the average profile (pµ

t ) and the
variance profile (p‡2

t )1. These calculation methods differ in the amount of past data
used and the weights (see Figure 7.1).

1Note, to obtain the standard deviation profile, it is possible to calculate p‡
t =


p‡2

t
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Figure 7.1.: The four considered profile calculation methods use and weight past data
differently. Source: [47].

7.1.1 Static profile

The static profile is determined on the training set and remains unchanged through-
out the test period. It is defined as

pµ
t =

ÿ

iœTtrain

1
nt,Ttrain

Y
]

[
xi, hcal(t) = hcal(i)
0, else,

(7.1)

where t is the current time, Ttrain is the set of all indexes that belong to the training
data, xt is the value of the time series at t, and nt,‰ is the number of elements in
‰ with hcal(t) = hcal(i). hcal(t) = hcal(i) describes that timestamps t and i have the
same considered calendar information. I.e., if the hour of the day is the considered
calendar information, it means that t and i must have the same hour of the day
(e.g. 10 AM). Analogue to the static average profile, the static variance profile is
calculated as

p‡2
t =

ÿ

iœTtrain

1
nt,Ttrain

Y
]

[
(xi ≠ pi)2, hcal(t) = hcal(i)
0, else.

(7.2)

7.1.2 Incremental Profiles

In contrast to the static profiles, the incremental profiles use at each time step t all
available data for the calculation (the corresponding index set is denoted with T<t).
More formally, the incremental average profile is defined as

pµ
t =

ÿ

iœT<t

1
nt,T<t

Y
]

[
xi, hcal(t) = hcal(i)
0, else,

(7.3)
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where t, lt, hcal and nt,‰ are defined as in the static case. The incremental variance
profile is defined analogously as

p‡2
t =

ÿ

iœT<t

1
nt,T<t

Y
]

[
(xi ≠ pi)2, hcal(t) = hcal(i)
0, else.

(7.4)

7.1.3 Moving Profiles

The moving profiles apply a moving window to forget outdated data and focus on
the most current data. I.e., for each time index t, this profile considers only the
data in the most recent window of indexes (denoted as Tt≠w,t≠1), with w being the
window length. This results in the moving average profile defined as

pµ
t =

ÿ

iœTt≠w,t≠1

1
nt,Tt≠w,t≠1

Y
]

[
xi, hcal(t) = hcal(i)
0, else,

(7.5)

where t, lt, hcal and nt,‰ are defined as for the Static Profile. The corresponding
moving variance profile is defined as

p‡2
t =

ÿ

iœTt≠w,t≠1

1
nt,Tt≠w,t≠1

Y
]

[
(xi ≠ pi)2, hcal(t) = hcal(i)
0, else.

(7.6)

7.1.4 Exponential Weighted Moving (EWM) Profile

Lastly, this thesis introduces the EWM profiles, which consist of rolling subprofiles
for each possible outcome of hcal

2. For the Exponential Weighted Moving Average
(EWMA) profile, these results in

pµ
t = pµ

t,hcal(xt), (7.7)

where t and hcal are defined as before and the average subprofiles (pµ
t,hcal(xt)) as

pµ
t,„ =

Y
]

[
(1 ≠ –) · pµ

t≠1,„ + – · xt≠1, hcal(t) = „

pµ
t≠1,„, else,

(7.8)

2These subprofiles are required for the definition of the EWM average and variance profile which
needs to be recursive since there is no closed formula.

7.1 Profiles 103



where t, xt, and hcal are defined as before, and – œ (0, 1) is the smoothing factor of
the EWMA profile3. The calculation of the Exponential Weighted Moving Variance
(EWMV) profile is similar to that of the EWMA profile. It is calculated as

p‡2
t = p‡2

t,hcal(xt), (7.9)

where t, hcal are defined as before and the variance subprofiles (p‡2
t,hcal(xt)) as

p‡2
t,„ =

Y
]

[
(1 ≠ –) · p‡2

t≠1,„ + – · (xt≠1 ≠ pµ
t≠1)2, hcal(t) = „

p‡2
t≠1,„, else.

(7.10)

Note if no subprofiles are available for t ≠ 1, they are initialised with the first time
series value that corresponds to „.

7.2 Evaluation

The profiles are an extension of the so-called type days. This thesis evaluates them
by considering the average profiles as simple forecasters and thus assesses their
forecasting performance. This thesis does not benchmark with forecasters in this
section since the profiles are a methodological basis for other methods, not an
independent method. In the following, the experimental setup is introduced, and
the results are presented.

7.2.1 Experimental Setup

The experimental setup presents the data and used metrics. Furthermore, bench-
marking with type days is impossible since no meta-information of the time series is
available that allows assigning the correct type days to each time series. As hyperpa-
rameters for the moving and EWM profile calculation methods, the window length
is set to 28 and the smoothing parameter – = 0.3. As calendar information hcal,
this thesis considers the hour of the day for each dataset. Furthermore, note that
for each time series, separate profiles are calculated and that the profile calculation
methods are not applied globally.

3The smoothing factor has to be set by the user.
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Table 7.1.: The average nMAE and nRMSE scores and ranks for the electricity and
traffic dataset for the four presented profiles calculation methods.

(a) nMAE

Static Incremental Moving EWM

Electricity nMAE-Score 0.43 0.3 0.22 0.19
nMAE-Rank 3.95 3 1.97 1.08

Traffic nMAE-Score 0.41 0.34 0.31 0.31
nMAE-Rank 3.53 2.58 1.59 2.3

(b) nRMSE

Static Incremental Moving EWM

Electricity nRMSE-Score 0.53 0.42 0.32 0.30
nRMSE-Rank 3.89 3.06 1.97 1.08

Traffic nRMSE-Score 0.66 0.62 0.59 0.60
nRMSE-Rank 3.16 2.70 1.52 2.63

Data As data, this thesis uses the electricity and the traffic dataset. The static profile
is created using the data from January 2011 to December 2013 for the electricity
dataset and from January 2008 to December 2008 for the traffic dataset. As test data,
this thesis uses the period from January 2014 to December 2014 for the electricity
data and from January 2009 to March 2009 for the traffic dataset.

Metrics This thesis uses the average scores and ranks of the nMAE and nRMSE to
evaluate the profiles.

7.2.2 Results

The results are twofold. The first part examines the average score and ranks. The
second takes a more detailed look at the per-time series results.

Average ranks and scores Table 7.1 provides the average scores and ranks for all
four profile calculation methods and both datasets. This thesis makes two observa-
tions: First, the exponential weighted moving average and moving average profiles
perform better than the static and incremental average profiles on both datasets.
Moreover, the static average profile always leads to the worst results. Second, com-
paring the ranks of the moving and EWM average profile on the electricity data set,
the EWMA profile is better. Still, on the traffic, the moving average profile is better.
However, regarding their scores, they perform similarly.
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Figure 7.2.: The nMAE and nRMSE for each time series in both datasets for each of
the four presented profile calculation methods.

Per Time Series Performance The accuracy of the per time series results in Fig-
ure 7.2 for the electricity dataset seems more stable across the different time series
than for the traffic time series. In this figure, for the electricity dataset, we ob-
serve more error peaks for the static profile than for the other profile calculation
methods.

7.3 Discussion

This section discusses the presented profile calculation methods’ performance, limi-
tations, and potential.
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7.3.1 Performance

Regarding the performance, this thesis discusses three aspects. First, the adaptive
profile calculation methods provide better forecasts than the static and incremental
calculation methods. Second, regarding the different datasets and time series, there
is not always a clear order between the EWMA and moving average profile. Thus, it
is not possible to provide a recommendation on which is the best profile calculation
method. Third, regarding the per-time series evaluation, there are error peaks.
Investigating exemplary error peaks in more detail, probably concept drifts leads to
them in the static profile.
For wrapping up the discussion on the results, this thesis concludes that profiles
are an easily calculable representative of the average statistic. Furthermore, it is a
flexible extension of the type days that do not require meta-information on the time
series.

7.3.2 Limitations

Regarding the limitations of the profile calculation methods, this thesis highlights
three aspects.
First, the profile calculation methods require that there are time series measurements.
In contrast, such measurements are not required for the type days; instead, they need
meta-information on the time series. Second, despite being computationally cheap,
profiles must be calculated per time series. In contrast, type days are precalculated
and need not be calculated separately for each time series. However, since the profile
calculation is efficiently implementable, this should not arise in scaling issues. Third,
the introduction of profiles may also introduce additional hyperparameters. E.g., the
EWM and moving profiles require a smoothing parameter – or a window length.

7.3.3 Further Potential of Profiles

Regarding the further potential of profiles, this thesis highlights two aspects. First,
the profile’s adaptive behaviour seems promising if integrated as a preprocessing
to cope with concept drifts. Chapter 8 examines this in more detail. Second,
the average and variance profiles can be integrated as additional input for neural
networks. Integration would also enable to learn the best weights for combining
profiles and other components that correct the profiles. Chapter 9 investigates this
potential.
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Enhancing Handling of

Concept Drifts with Profiles

8

Content of this chapter based on

B. Heidrich, N. Ludwig, M. Turowski, R. Mikut, and V. Hagenmeyer, “Adap-
tively coping with concept drifts in energy time series forecasting using
profiles,” in Proceedings of the Thirteenth ACM International Conference on
Future Energy Systems, 2022, pp. 459–470.

As mentioned in Chapter 3, concept drifts are challenging in time series forecasting.
E.g., in electricity time series, exchanging appliances and new buildings can lead to
concept drifts. Thus, this chapter proposes the Profile-based Framework for Concept
Drift Handling (PDH) framework for coping with concept drifts in time series to be
able to answer

RQ4 Can profiles improve the ability of machine learning models to cope with
concept drifts?

This chapter answers this research question by introducing the PDH that uses profiles
to handle concept drifts. The PDH assumes that concept drifts only influence the
time series level. In energy time series forecasting, Vrablecová et al. [138] makes
a similar assumption. The underlying idea of the proposed framework is to use
the average profile to represent the time series level. By selecting an adaptive
profile calculation method, the remainder contains fewer concept drifts since the
adaptability of the profile handles most of the concept drifts.
The remainder of this chapter is structured as follows. First, the next section presents
the proposed framework. Afterwards, this thesis evaluates the PDH. Finally, the last
section of this chapter discusses the proposed PDH.

8.1 Coping with Concept Drifts using Profiles

This section introduces how profiles can support machine learning models coping
with concept drift under the assumption that the concept drifts mainly affect the
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Input
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+

Forecast
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Figure 8.1.: The PDH sums a profile and the output of a regression method to obtain a
prediction. This figure is adapted and based on [47].

Input time series ProfileExogenous
Features

Remainder

Regressor

Forecast of
Remainder Time Series

Figure 8.2.: The regressor inputs exogenous features and the historical remainder
time series. The historical remainder time series is the difference between the profile
and the historical time series. Different information, such as calendar and weather
information, could be used as an exogenous time series. The regressor’s output is the
forecast of the remainder time series for the next time steps. This figure is adapted and
based on [47].

time series level as Vrablecová et al. [138] assume for load time series. Based on
this assumption, the PDH models the level and the remainder of the time series
separately and adds them later (see Figure 8.1). For the time series level, the
PDH uses an adaptive average profile introduced in Chapter 7 since they consider
periodicities and the typical daily behaviour of the time series. For the remainder
(the difference between the profile and the time series), PDH uses a regressor. Finally,
the prediction of the regressor and the average profile are added to form the forecast.
The PDH is not bound to a specific machine learning model as a regressor. Instead, it
is applicable to various ones. Generally, the selected machine learning model takes
the historical remainder time series and the exogenous features time series as input
to predict the future values of the remainder time series (compare Figure 8.2).
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8.2 Evaluation

This section first introduces the experimental setup and presents the results after-
wards.

8.2.1 Experimental Setup

The evaluation of the PDH requires an online learning-based evaluation approach.
Thus, this thesis simulates such an evaluation by running the PDH and the bench-
marks mini-batch by mini-batch. Each mini-batch comprises one day of the test set
(24 samples). For each time step of a mini-batch, the proposed framework and the
benchmarks produce a forecast for the next 24 hours. After each mini-batch and
if the PDH or benchmarks support retraining, checks are performed to detect if re-
training should be triggered. After processing all mini-batches, this thesis calculates
the metrics on the forecasts of the proposed frameworks and the benchmarks. The
used metrics, regressors, data, hardware, retraining strategies, and benchmarks are
presented in the following.

Metrics The PDH is assessed by examining the accuracy and the computational
time. This thesis uses the MAE and RMSE to assess the accuracy. Moreover, to
examine the accuracy over time, this thesis also calculates the nMAE and nRMSE on
a rolling window with a window size of 28 days.
To assess the computational effort, the training time, retraining time, and sum of
both times of the PDH and the benchmarks are measured.

Used Regressors The PDH can be used with different regressors. This thesis uses
three regressors: linear regression, XGBoost regressor, and Multi-Layer Perceptron
(MLP) regressor. This thesis uses the default implementation available in sklearn
[110] respectively XGBoost [16] for each of these three regressors. As input, each
regressor gets the past 24 hours of the remainder time series and the trigonometric
encoded hour of the day, day of the week and month of the year as exogenous
features for the values that should be predicted. As output, the regressors provide
their forecasts of the next 24 values of the remainder time series.

8.2 Evaluation 111



Table 8.1.: The statistical conditional information to create the synthetic time series
with concept drift using the approach presented in Chapter 4.

Name Drift length Position Statistical Information

ndrift Before During After

Grad-Inc 2920 01.05.2014 16:00 µXt µXt + 0.5úi
ndrift

ú µXt ’i œ {1, 2, ..., ndrift} 1.5 ú µXt

Grad-Dec 2920 01.05.2014 16:00 µXt µXt ≠ 0.5úi
ndrift

ú µXt ’i œ {1, 2, ..., ndrift} 0.5 ú µXt

Sud-Inc 2 01.05.2014 16:00 µXt µXt + 0.5úi
ndrift

ú µXt ’i œ {1, 2, ..., ndrift} 1.5 ú µXt

Sud-Dec 2 01.05.2014 16:00 µXt µXt ≠ 0.5úi
ndrift

ú µXt ’i œ {1, 2, ..., ndrift} 0.5 ú µXt

Data This thesis uses synthetic and real time series with concept drifts to evaluate
the LSFE.
The approach presented in Chapter 4 is used to generate synthetic data. More
specifically, the cINN is used. It is trained on the time series corresponding to
the median of the time series’ averages from both datasets – namely MT_206
and traj_401507. The trained cINN generates time series for the time span from
January 2011 to December 2014 by using the corresponding calendar information
as conditioning information. As additional conditioning information to integrate
concept drifts and control the time series generation, this thesis uses statistical
information. In particular, this thesis uses linear and step functions that either
increase or decrease. Table 8.1 provides the exact specification of the functions.
As real time series with recorded concept drift, this thesis uses MT_188 and MT_316
from the electricity and traj_400367 and traj_402051 from the traffic dataset. Note,
that we cannot provide an exact start position of the concept drifts in these time
series.

Hardware and Software This thesis uses the setup 1 (Table 2.2) for all experiments
to compare the computational efforts better.

Retraining Strategies As mentioned in Chapter 3, a popular approach to cope
with concept drifts is retraining. Thus, during the evaluation, this thesis uses
different retraining strategies for benchmarking and to assess if they provide further
improvements to the PDH. As mentioned previously, the online evaluation approach
operates on mini-batches. Thus, after each mini-batch, the considered retraining
strategies decide if the model should be refitted. This thesis uses the following three
strategies: None never triggers a retraining, Periodic triggers a retraining after
every 30 days, and Detection triggers a retraining if ADWIN [9] detects a concept
drift.
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Benchmark Models For the comparison, this thesis uses twelve benchmark models.
Nine of the twelve models are combinations of the three retraining strategies, and
the three used regressors. The remaining three models are online models designed
for drifting scenarios already mentioned in Chapter 3 – namely the Online Se-
quential Extreme Learning Machine (OS-ELM) [79], the Online Adaptive Recurrent
Neural Network (OARNN) [33], and the Error Intersection Approach (EIA) [5].
The OS-ELM [79] is a NN with one hidden layer using random weights and output
weights determined using the Least Square Method. The OARNN [33] consists of a
simple RNN and normalization step that are updated after each time step. Addition-
ally, the OARNN performs a Bayesian optimization for the RNN’s hyperparameters
if the forecast error is too high. EIA [5] is an ensemble approach consisting of
persistence forecast and a complex model (neural network), which are exchanged if
their error curves intersect1. For the EIA and the OARNN, this thesis uses its own
implementations, while for the OS-ELM, an existing implementation is used2.

8.2.2 Results

The results examine which and how profiles support machine learning models in
handling concept drift, compare the proposed framework with benchmarks, and
assess the computational costs of the PDH and the benchmarks.

Insights

The insights evaluate whether profiles support machine learning models in handling
concept drifts. Therefore, three experiments are conducted on the synthetic time
series for which the location and type of the containing concept drift are known.
The first experiment evaluates the PDH using different profile calculation methods.
The second experiment examines the retraining strategies’ influence on the forecast
accuracy of the PDH. The last experiment examines the error curves through time of
the PDH using different profiles and regressors.

Evaluating Di�erent Profiles This paragraph evaluates how the PDH performs with
different profiles. Thus, the PDH with each average profile and regressor is evalu-
ated.

1Note that the authors state that this model is only suitable for sudden concept drifts.
2https://github.com/leferrad/pyoselm
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Table 8.2 shows the resulting MAE and RMSE. In this table, this thesis makes
three observations. First, the PDH using the EWMA profile achieves the best result
regarding both considered metrics with almost all regressors on almost all considered
time series. The exceptions are the synthetic electrical time series with the gradual
decrementing concept drift with the MLP and XGBoost regressor. The PDH with a
moving average profile performs better in both cases. Second, the PDH using the
static average profile followed by the incremental average profile achieves the worst
results. Third, the different regressors are all similarly affected by using different
profiles in the PDH.

Evaluating Retraining Strategies The second insights-related evaluation examines
if a periodic or detection-based retraining strategy further improves the PDH. There-
fore, this thesis uses the MAE skill score for the PDH with the periodic and detection-
based retraining strategy. The used baseline is the PDH equipped without a retraining
strategy.

Table 8.3 reports the skill scores. In this table, this thesis makes three observa-
tions: First, for the traffic time series and the EWMA profile, neither periodic nor
detection-based retraining strategies provide an improvement. More generally, when
examining both datasets, in most cases, the retraining strategies provide no notice-
able benefit except for some cases with XGBoost as a regressor on the electricity
dataset. Second, in contrast to the moving average and EWMA profile, the retraining
strategies improve the results of the PDH using the static and incremental average
profiles. Last, the usefulness of the retraining strategies depends on the regressors.
For XGBoost, the retraining impacts the errors more positively than for the Linear
Regression (LR).

Evaluating Profiles over Time This thesis also examines the rolling nMAE and
nRMSE for all synthetic time series, all profiles, and all regressors to get more
insights into how the profiles impact the adaption to concept drifts.

Based on the results in Figure 8.3 and Figure 8.4, this thesis makes three observations:
First, the four concept drifts permanently affect the PDH with static or incremental
average profiles. I.e., when the concept drift occurs, the error rises and stays high.
In most cases, the error of the PDH with the static profile is higher than that of the
PDH with the incremental average profile. Furthermore, in contrast to the PDH
with the static profile, the incremental profile’s error slightly decreases. Second, in
contrast to the PDH with the static and incremental profile, with the moving and
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Table 8.3.: The MAE skill score of the retraining strategies Periodic and Detection (Sec-
tion 8.2.1) applied to the PDH with different profiles and regressors for both datasets.
The corresponding PDH without retraining is used as a baseline of the skill score. I.e,
the PDHs with the Periodic and Detection retraining strategy are compared with the
PDH without retraining. Thus, a value higher than one means that the retraining
strategy worsens the PDH, while a value lower than one indicates an improvement.

(a) Electricity

Grad-Inc Grad-Dec Sud-Inc Sud-Dec
Periodic Detection Periodic Detection Periodic Detection Periodic Detection

LR

Static 0.20 0.31 0.22 0.33 0.22 0.25 0.25 0.30
Incremental 0.21 0.32 0.23 0.35 0.24 0.27 0.27 0.32
Moving 0.88 1.00 0.94 1.01 1.03 1.00 1.02 1.00
EWMA 0.99 1.00 1.00 1.00 0.98 1.00 0.98 1.00

MLP

Static 0.11 0.21 0.28 0.43 0.16 0.13 0.24 0.27
Incremental 0.15 0.26 0.30 0.49 0.21 0.17 0.23 0.26
Moving 0.74 1.00 0.96 1.00 0.98 0.91 0.90 0.99
EWMA 0.92 1.00 0.76 1.00 0.96 1.00 0.90 1.00

XGBoost

Static 0.13 0.38 0.11 0.22 0.13 0.11 0.19 0.16
Incremental 0.14 0.36 0.14 0.23 0.15 0.16 0.20 0.20
Moving 0.64 1.00 0.81 1.00 0.97 1.06 0.93 0.97
EWMA 0.78 1.00 0.56 1.00 0.91 1.00 0.82 1.00

(b) Traffic

Grad-Inc Grad-Dec Sud-Inc Sud-Dec
Periodic Detection Periodic Detection Periodic Detection Periodic Detection

LR

Static 0.16 0.23 0.19 0.30 0.28 0.28 0.23 0.24
Incremental 0.17 0.24 0.19 0.29 0.25 0.25 0.22 0.24
Moving 0.92 1.08 0.92 1.00 1.08 1.00 1.09 1.00
EWMA 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

MLP

Static 0.17 0.26 0.18 0.31 0.22 0.20 0.20 0.24
Incremental 0.19 0.28 0.22 0.36 0.22 0.20 0.26 0.30
Moving 0.86 1.07 1.00 1.00 1.00 1.00 1.00 1.00
EWMA 1.11 1.00 1.00 1.00 1.00 1.00 1.00 1.00

XGBoost

Static 0.16 0.29 0.11 0.19 0.19 0.15 0.17 0.13
Incremental 0.17 0.28 0.12 0.18 0.20 0.20 0.19 0.17
Moving 0.79 1.00 0.87 1.00 1.00 1.07 1.08 1.00
EWMA 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
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EWM average profile, the rolling errors only peak when the concept drift occurs and
recover afterwards. I.e., the PDH with the moving or EWM average profile achieves
an error after the concept drift similar to the error before the concept drift. Third,
regarding the peaks caused by the concept drifts, the peaks of the sudden concept
drifts are smaller than those of the gradual concept drift.

Benchmarking

The benchmarking compares the PDH using the adaptive profiles (the moving and
EWM average profile) with the benchmark models. Therefore, this thesis uses two
real-world time series with recorded concept drifts from each dataset: the time
series MT_188 and MT_316 from the electricity and traj_402051 and traj_400367
from the traffic dataset. Table 8.4 shows the results. Based on these results, this
thesis makes three observations: First, either the PDH with the moving or EWM
average profiles achieves the lowest error. An exception is MAE on the time series
traj_402051 from the traffic dataset. There, XGBoost, with a periodic retraining
strategy, achieves the lowest error. However, the PDH with XGBoost achieves similar
results. Second, while on the two time series from the electricity, all base learners
perform similarly, on the two time series from the traffic dataset, XGBoost clearly
outperforms the other base learners. Third, when examining the differences between
the benchmarks and the PDH, the improvement of the MAE differs between the
different time series (11.8% for MT_188, 12.1% for MT_316, -4.7% for traj_402051
and 15.1% for traj_400367).

Computational Costs

The last evaluation examines the three introduced types of computational costs –
namely, the training time, the retraining time, and the sum of both (total time).
These times are measured for the PDH with the moving and EWM average profile
and the benchmarks.

Table 8.5 provides the computational costs. In this table, this thesis makes the
following three observations: First, the models with a periodic or detection-based
retraining strategy and the online learning benchmarks require more time for retrain-
ing than for the original training. An exception is the EIA that requires less retraining
than training time. Second, in line with the first observation, the benchmarks with
retraining have the most total time. An exception here is again the EIA and the
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Table 8.4.: Comparison of the PDH with the benchmarks on time series with recorded
concept drifts. The considered retraining strategies are presented in Section 8.2.1. As a
metric, the MAE and the RMSE are considered.

(a) MAE

MT_188 MT_316 traj_402051 traj_400367

Online
EIA 3.49 19.55 0.0164 0.0179
OS-ELM 3.69 33.35 0.0264 0.0261
OARNN 2.09 18.50 0.0234 0.0301

Benchmark-None
LR 3.21 20.43 0.0188 0.0222
MLP 3.46 19.99 0.0162 0.0181
XGBoost 5.53 37.32 0.0042 0.0038

Benchmark-Periodic
LR 1.99 16.94 0.0187 0.0223
MLP 1.93 16.10 0.0162 0.0183
XGBoost 1.90 16.59 0.0041 0.0040

Benchmark-Detection
LR 2.35 17.62 0.0188 0.0222
MLP 2.26 20.55 0.0162 0.0181
XGBoost 2.30 20.16 0.0042 0.0038

Method-Moving
LR 1.70 14.89 0.0177 0.0222
MLP 1.70 14.36 0.0166 0.0190
XGBoost 1.75 14.70 0.0043 0.0040

Method-EWMA
LR 1.73 14.86 0.0158 0.0227
MLP 1.71 14.40 0.0156 0.0192
XGBoost 1.81 14.93 0.0043 0.0033

(b) RMSE

MT_188 MT_316 traj_402051 traj_400367

Online
EIA 4.67 26.90 0.0308 0.0314
OS-ELM 5.11 43.49 0.0443 0.0420
OARNN 3.63 26.12 0.0466 0.0455

Benchmark-None
LR 4.48 28.58 0.0387 0.0400
MLP 4.63 27.36 0.0307 0.0314
XGBoost 7.00 57.98 0.0075 0.0065

Benchmark-Periodic
LR 3.52 24.44 0.0387 0.0399
MLP 3.54 22.48 0.0305 0.0315
XGBoost 3.26 23.51 0.0073 0.0068

Benchmark-Detection
LR 3.90 25.08 0.0387 0.0400
MLP 3.49 27.51 0.0307 0.0314
XGBoost 3.68 28.05 0.0075 0.0065

Method-Moving
LR 3.07 21.54 0.0385 0.0384
MLP 3.03 20.37 0.0315 0.0325
XGBoost 3.07 20.79 0.0069 0.0057

Method-EWMA
LR 3.08 21.35 0.0363 0.0395
MLP 2.96 20.24 0.0303 0.0328
XGBoost 3.15 21.02 0.0069 0.0047
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computationally very cheap LR since their refitting respectively training time is very
small. Third, the training time of the time series from the electricity and the traffic
datasets differ since the time series lengths differ.

8.3 Discussion

This section discusses the proposed PDH’ performance, limitations, and further
potential.

8.3.1 Performance

Regarding the performance, this thesis discusses three aspects: First, the results
indicate that the PDH with adaptive average profiles (moving and EWM average
profile) support regressors in handling concept drifts. In most cases, the PDH with
these profiles needs no retraining. Consequently, the unnecessity of the retraining
makes the PDH a computationally cheap framework, which is confirmed by the
evaluation of the computation times. Second, despite the observation that the PDH
with the moving and EWM average profile can recover from concept drift, the sliding
error curves still show peaks when the concept drift occurs. These peaks are caused
by the profile calculation algorithm that relies on historical data, which does not yet
follow the new concept. In addition, when using EWM average profile, the peak is
smaller than when using the moving average profile. The reason is that the EWM
weights the more recent data higher and thus adapts faster to the profile. Last,
regarding the research question

RQ4: Can profiles improve the ability of machine learning models to cope with
concept drifts?

this thesis concludes that profiles can support machine learning models in handling
concept drifts regardless if the MAE or RMSE is considered. However, the results
also indicate that this effect depends on the time series, used regressors, and concept
drift. Thus, it is a helpful framework but still needs, in some cases, retraining
strategies.
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8.3.2 Limitations

This thesis highlights three aspects of the limitations of the PDH. First, as mentioned
in the introduction of this chapter, the PDH relies on the assumption that the concept
drifts mainly influence the time series’ level as also [138] assumes for electricity
load time series. However, this is a strong assumption since other concept drifts
may appear that influence the time series’ variance or the time series’ periodicity.
Thus, the PDH is a further tool in the toolbox but is not the general solution
for coping with concept drifts in time series. Second, the PDH introduces new
hyperparameters, namely the window size for the moving profile and the smoothing
factor – for the EWM profile. Furthermore, the selection of hcal – i.e., which
calendar information should be extracted (e.g., day of the week and hour of the
day) – is also an hyperparameter that can impact the quality of the profiles. These
hyperparameters must be selected to apply the PDH.
Hereby, a wrong selection may negatively impact the performance. Suppose the
window size is too small. In that case, it leads to a fast adaption capability. This
might be disadvantageous for time series with a high anomaly rate since this would
lead to an adaption to anomalies which is undesired and might reduce the accuracy
for such time series. However, for time series with various concept drifts, a fast
adaption to new concepts might be beneficial. In contrast, a larger window size
leads to a slower adaption rate. While this might be beneficial for forecasting time
series with a high variance, it is disadvantageous in case of concept drifts since a
large window size leads to a slow adaption to the new concept. Therefore, future
work may investigate automation for selecting these hyperparameters or mixing
different profiles with different hyperparameters. Last, the PDH is only tested on
four particular time series since the evaluation under an online learning setup is
expensive. Thus, there might be concept drifts with which PDH struggles.

8.3.3 Further Potential of Profiles to Cope with Concept Drift (CD)

Regarding the further potential of the proposed profile, this thesis highlights two as-
pects in the following: First, as mentioned in the limitations, the performance of the
PDH relies on the adaption speed to new concepts. Thus, future work might improve
this proposed framework by constructing an ensemble of profiles with different
adaption speeds. Such an ensemble could easily switch between profiles depending
on the current data. E.g., during periods of a high anomaly rate, slower-reacting
profiles might be weighted more than faster-reacting ones. However, this would
increase the computational effort of the PDH. Second, this chapter only considered
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point forecasts. However, for many downstream applications, probabilistic forecasts
are better suited. Thus, future work might extend this approach to probabilistic
forecasting. A possible extension towards probabilistic forecasting could be to use
the standard deviation or variance profiles, too.
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(Probabilistic) Profile Neural

Networks

9

Content of this chapter based on

B. Heidrich et al., “ProbPNN: Enhancing Deep Probabilistic Forecasting with
Statistical Information,” arXiv preprint arXiv:2302.02597, 2023

B. Heidrich, M. Turowski, N. Ludwig, R. Mikut, and V. Hagenmeyer, “Forecast-
ing Energy Time Series with Profile Neural Networks,” in Proceedings of the
Eleventh ACM International Conference on Future Energy Systems, Association
for Computing Machinery, 2020, pp. 220–230.

As mentioned in Chapter 3, periodicities are challenging for neural networks. In
contrast, many statistical approaches can cope with periodicities but cannot extract
hidden structures in the data well. Thus, this chapter provides the PNN and ProbPNN
for forecasting time series with calendar-driven periodicities. These models combine
the advantages of the statistical and deep learning methods by using the previously
introduced profiles to enhance the forecast quality. By proposing the PNN and
ProbPNN, this chapter aims to answer

RQ5 Can the usage of profiles in neural networks improve the deterministic and
probabilistic forecasting performance?

The structure of this chapter is as follows. The next section introduces the archi-
tecture of the PNN and its variants. Afterwards, the second section presents the
experimental setup for evaluating the PNN and ProbPNN and the corresponding
results. Finally, the last section discusses the introduced PNN and ProbPNN.

9.1 (Probabilistic) Profile Neural Networks

The general architecture of the Profile Neural Network (PNN) and its probabilistic
variant (ProbPNN) is inspired by the decomposition of time series. I.e., the PNN
and ProbPNN consist of three different components that model the statistics, the
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Figure 9.1.: The three components of PNN and ProbPNN are the statistics component,
the trend component, and the remainder component. The statistics are extracted from
the historical data, the trend data gets the trend input data as input, and the remainder
component gets the exogenous variables and the difference between the profile and the
historical data as input. The output of each component is provided to the aggregation
layer as input, which combines the component’s output to get the forecast.

trend, and the remainder. The PNN and ProbPNN are related to the PDH proposed
in Chapter 8. The differences are the usage of the trend and that instead of a simple
adding the components’ output, a weighted addition is performed, whereby the
weights are learned during the training. The remainder of this section first describes
the PNN and afterwards the extensions to create ProbPNN, since the PNN and the
ProbPNN distinguish only in the three components’ output and the loss function.

9.1.1 PNN

The PNN is a hybrid neural network that combines profiles with neural networks.
In the following, first, the architecture of the PNN is described, and afterwards, the
training is presented.
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Architecture

The PNN consists of three components. An overview of the PNN architecture and
the interplay of the three components is provided in Figure 9.1a. These three
components are the statistics, the trend, and the remainder component. It also
has an aggregation layer to combine the outputs of the three components. In the
following, these four parts are described.

Statistics The statistics component is the first component of the PNN. This statistics
component uses the average profile (Chapter 7). The average profile captures the
periodicities of the time series and thus supports the neural network in coping with
the periodic behaviour of the time series. The outputs of this component are the
profile values for the next horizon (h) time steps. Note that for the profile calculation,
only observed values are considered. I.e. for calculating pt+i, only values xj with a
time stamp j Æ t can be used.

Trend The second component of PNN is the trend component. For each value to
be predicted, the trend component takes the last m values that match the same
periodicity. For example, for hourly electrical load data with weekly periodicities,
the trend component considers the values lt̂≠s·m, lt̂≠s·(m≠1), . . . , lt̂≠s, where s is the
length of one periodicity, and t̂ œ [t + 1, t + horizon] are the timesteps of the values
to be predicted. This corresponds to the input of an sAR(m,s) model in classic time
series modelling. The output of the trend component is the expected value of this
component. The trend component consists of a convolutional network and a dense
layer. The Figure 9.2a shows the architecture of the trend component, which is
determined in preliminary studies.

Remainder The remainder component first encodes the historical data and exoge-
nous features separately. To encode the historical data, it uses the last k values of
the time series as input. To encode the exogenous features, it obtains the available
exogenous features as input. The encoded historical data and exogenous features
are concatenated and fed into another subnetwork. This subnetwork forms the
output of the remainder component, which are the expected values of the remainder
for the values to be predicted. Figure 9.3a shows the architecture of the remainder
component, including the historical data and the exogenous variables encoder. The
used convolutional subnetwork’s architecture is shown in Figure 9.4.
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Figure 9.2.: The trend component consists of one convolutional subnetwork (ConvNet)
that encodes the trend input data. The flattened output of this convolutional network
is afterwards used by two concurrent dense layers to forecast the mean and the vari-
ance or standard deviation. This architecture is determined in preliminary studies. The
used ConvNet is described in Figure 9.4.
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Figure 9.3.: The remainder component encodes the historical data and the exogenous
variables using convolutional nets (ConvNet). Afterwards, the encoded historical
data and the encoded exogenous variables are concatenated on a new axis. A further
convolutional network (ConvNet) encodes the concatenated data. Two concurrent
dense layers finally use the flattened output of this convolutional network to forecast
the mean and the variance or standard deviation. This architecture is determined in
preliminary studies. The used ConvNet is described in Figure 9.4.
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Figure 9.4.: The convolutional subnetwork (ConvNet) used in the remainder com-
ponent (Figure 9.3) and the trend component (Figure 9.2) consists of five one-
dimensional convolution layers with varying number of filters and either the ex-
ponential linear unit (Elu) or the linear activation function. The kernel size of each
convolution is three. This figure is adapted and based on [50].

Aggregation layer The aggregation layer aggregates the three components’ output
introduced above (statistic, trend, and remainder component) to form the forecast
ŷ. Note that the output of each component has the same shape. The aggregation
layer multiplies the output of each component by a scalar weight and sums these
weighted outputs together. The weights are determined in the training process of
ProbPNN. Note, if the weights for each component are one the aggregation would
be the same as the addition of the three components.

Training Process

The aim of the PNN is to learn as accurate as possible forecasts. Thus, the Mean
Absolute Error (MAE) is used as a loss function to minimise the deviation of the
forecast to the ground truth

L1 = MAE(ŷ, y), (9.1)

where MAE is defined by Equation (2.8).
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9.1.2 Probabilistic Extension (ProbPNN)

ProbPNN is based on the PNN and extends it to probabilistic forecasting (see Fig-
ure 9.1b by extending the architecture and the loss function.

Architectural Extensions

Two architectural changes extend the PNN to the ProbPNN.

First, each component needs to provide two outputs. The first output refers to
the expected value, and the second output refers to the expected error of the first
value. Thus, the trend and the remainder component have two concurrent last layers
(see Figure 9.2b and Figure 9.3b). Correspondingly, the statistics component also
comprises a variance or standard deviation profile in addition to the average profile
(see Figure 9.1b). This variance or standard deviation profile refers to the expected
error.
The second extension is the usage of two aggregation layers instead of one. Thereby,
the first aggregation layer combines all components’ outputs that refer to the ex-
pected value, while the second combines all that refer to the expected error of
the forecast. The resulting expected value and errors are interpreted as normal
distribution parameters, resulting in probabilistic forecasts.

Training ProbPNN

In contrast to the PNN, ProbPNN cannot be learned via standard loss functions such
as the MAE. The reason is that a point forecast is provided and a forecast of the
expected error. Thus, ProbPNN uses an adapted loss function consisting of two parts
corresponding to the expected value and error forecast.

As for the PNN, the L1 of the PNN is used to learn the expected value of the time
series.
For learning the expected error forecast, this thesis distinguishes two cases. In the
first case, the expected error is measured by an absolute error, whilst in the second
case, this expected error is measured by a squared error. The first case should
be applied when the estimated error corresponds to the standard deviation of the
forecast, resulting in the ProbPNN-‡ model. The second case must be applied when
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the learned error corresponds to the variance. The corresponding model is called
ProbPNN-‡2. The following loss function reflects both cases

L2 =

Y
]

[

1
n

qn
i=1 | MAE(ŷi, yi) ≠ ê | for ProbPNN-‡

1
n

qn
i=1 | MSE(ŷi, yi) ≠ ê | for ProbPNN-‡2,

(9.2)

where n is the number of samples in the batch, ŷ is the forecast value of the time
series, y is the actual value of the time series, and ê is the estimated error of the
forecast value ŷ. Note that the selection of the L2 loss influences which statistical
component is required: If the ProbPNN-‡ should be learned, the standard deviation
profile has to be used in the statistics component. If the ProbPNN-‡2 should be
learned, the variance profile must be used in the statistics component. Finally, the
combination of L1 and L2 forms the final loss L. To equally weight both losses, they
are multiplied with adaptive weights. These weights are calculated as

w1 = L2
L1 + L2

, w2 = L1
L1 + L2

. (9.3)

In the final loss, the weight w1 is multiplied by the loss L1 and w2 is multiplied by
the loss L2, resulting in the final loss function

L = w1 · L1 + w2 · L2. (9.4)

9.2 Evaluation

This section presents the experimental setup used to evaluate the PNN and ProbPNN
and the corresponding results.

9.2.1 Experimental Setup

The experimental setup comprises the implementation of the PNN and ProbPNN,
benchmarks, datasets, metrics, and hardware.

PNN Models

The PNN and ProbPNN models are implemented using Keras [19] and Tensorflow
[1] and trained to forecast the next 24 hours. While the ProbPNN directly provides
probabilistic forecasts, this thesis equips the PNN with prediction intervals to also be
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Table 9.1.: Hyperparameters used for the training of the PNN and ProbPNN.

Hyperparameter Selected value

Optimiser Adam [70]
Learning rate 0.001
Epochs 1000
Early stopping Yes
Validation size 20% of training data
Shuffle train samples Yes
Batch size 32

able to provide probabilistic forecasts. All models receive as inputs the last 36 hours
of the target time series, the trend information calculated with s = 168 and m = 51,
and exogenous variables. For the electricity dataset, the exogenous variables are
the trigonometric encoded hour of the day, the month of the year, and a flag for
weekends or public holidays. For the traffic dataset, the exogenous variables are the
trigonometric hour of the day and a flag for the weekend. The used hyperparameters
are described in Table 9.1. Note that the best working hyperparameters regarding
the profiles are determined while evaluating the insights in Section 9.2.2.

Benchmarks

To assess the quality of PNN and ProbPNN’s forecasts, they are compared with five
benchmarks. These benchmarks comprise three state-of-the-art neural network-
based forecasters, a nearest-neighbour-based forecaster, and a simple profile-based
forecaster. All models except for the simple profile-based one get the same input
as the PNN and ProbPNN. The three neural network architectures for time series
forecasting are already presented in Chapter 3. These are the Temporal Fusion
Transformer (TFT) [80], Neural Hierarchical Interpolation for Time Series Forecast-
ing network (N-HiTS) [15], and DeepAR network (DeepAR) [123]. The TFT and
N-HiTS are equipped with a quantile loss function to provide probabilistic forecasts.
For the point forecast, this thesis considers the median of the probabilistic forecasts.
The DeepAR directly predicts a distribution as a probabilistic forecast. Again, the
median of the probabilistic forecast is considered a point forecast. For all three
models, this thesis uses the implementation provided by PyTorch Forecasting2 with
the default hyperparameters.
The nearest-neighbour-based forecaster is the Nearest Neighbour Quantile Fil-
ter (NNQF) [104] also presented in the Chapter 3. As a simple regressor in the

1Note, the dataset has an hourly resolution. Thus, the parameters mean that for each value to be
predicted, the corresponding values from the last five weeks are used.

2https://pytorch-forecasting.readthedocs.io/en/stable/
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NNQF, this thesis used the MLP from sklearn [110] that directly predicts the quan-
tiles previously extracted by a nearest neighbour quantile filter. The corresponding
point forecasts are created by taking the median from the probabilistic forecast.
The simple profile-based forecaster is the Profile Standard-Deviation Forecast (PSF).
This baseline calculates the average profile (Equation (7.5)) with a window size
of 28 days. This profile forms the point forecast. In the probabilistic forecasting
case, this method also calculates the standard deviation profile (Equation (7.6))
with a window size of 28 days. Together with the average profile, the standard
deviation profile is interpreted as a parameter of a Gaussian distribution, leading to
a probabilistic forecast.

Datasets

The evaluation of the PNN and ProbPNN uses the electricity and the traffic dataset.
The models are trained and evaluated on each time series separately. The corre-
sponding results are aggregated by calculating the average normalised scores and
ranks.

Metric

This thesis uses the nMAE and nRMSE for the point forecasts and the nCRPS and nPL
for the probabilistic forecasts. Furthermore, this thesis also considers the coverage
rate of the quantiles to determine the quality of the probabilistic forecasts using
the DICR as well as a visualisation of the quantile ranges. As a metric for the
computational effort, the training time of the forecasters is measured.

9.2.2 Results

The results are separated into four parts. The first part gains insights into the PNN
and ProbPNN. The second part performs an ablation study to influence the different
components’ impact on the forecast quality. The third part compares the proposed
methods with the benchmarks. Finally, the last part assesses the computational
effort.
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Insights

This evaluation performs two insights-related analyses. First, the influence of
different profiles on the PNN’s and ProbPNN’s results are compared. Second, the
influence of the hyperparameters of the profile calculation method is examined. 3

Analysing Di�erent Profile Calculation Methods For assessing the profile calcula-
tion method’s impact on the forecast quality, this thesis equips the PNN and ProbPNN
with each method calculation method for the average and variance profiles. When
evaluating the calculation average profile method, the ProbPNN’s average variance
profile calculation method is fixed to the moving variance profile. When assessing
the variance profiles calculation methods, the ProbPNNs’ average profile calculation
method is fixed to the moving average profile. Note, the PNN do not use the variance
profiles.

Table 9.2 shows the corresponding point and probabilistic forecast results. This
thesis makes three observations regarding the average profile calculation method
and two observations regarding the variance profile calculation method. The first
observation regarding the average profile calculation method is that the moving
average profile always leads to the best results, followed by the EWMA profile,
which is the second-best calculation method in most cases. Second, the static and
incremental average profile performs worse than the moving average or EWMA
profile. Third, the order of the profile computation methods is not influenced by
the considered metrics. The increasing order regarding the error is moving, EWM,
incremental and static profile calculation method. Regarding the variance profile
calculation method, the differences between the calculation methods are smaller
than for the average profile calculation methods. However, the moving calculation
method is also the best for the variance calculation. Second. the order of the profile
calculation methods seems again not to be influenced by the metrics and is the same
as for the average profiles.

Analysing Profile’s Calculation Methods’ Hyperparameters Based on the previous
evaluation, this thesis examines the hyperparameters of the best working average
and variance profile calculation method (moving average and moving variance
profile). Both methods rely on the window size as a hyperparameter. As window

3To reduce the computational effort, these two evaluations are performed only on the electricity
dataset.
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Table 9.2.: Impact of four profile calculation methods the forecast quality of the PNN,
ProbPNN-‡, and ProbPNN-‡2 on the electricity dataset.

(a) Impact of the average profile calculation method on the PNN and ProbPNN. For the ProbPNN, the
variance profile is fixed using the moving variance profile.
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nMAE 0.180 0.190 0.172 0.176 0.191 0.186 0.173 0.177 0.192 0.191 0.174 0.181
nRMSE 0.264 0.280 0.256 0.266 0.271 0.272 0.254 0.265 0.270 0.277 0.253 0.267
nCRPS 0.174 0.182 0.170 0.177 0.146 0.140 0.131 0.135 0.149 0.146 0.132 0.139
nPL 0.088 0.092 0.086 0.090 0.073 0.071 0.066 0.068 0.075 0.074 0.067 0.070

(b) Impact of the variance profile calculation method on the ProbPNN. The average profile is fixed
using the moving average profile.
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nMAE 0.176 0.176 0.173 0.176 0.179 0.178 0.174 0.179
nRMSE 0.263 0.262 0.254 0.263 0.264 0.264 0.253 0.264
nCRPS 0.134 0.136 0.131 0.133 0.137 0.139 0.132 0.136
nPL 0.067 0.068 0.066 0.067 0.069 0.070 0.067 0.069

lengths, 7, 28, and 90 days are tested. Note to save runtime, the same window
length for both profiles is selected.

Table 9.3 shows the results. The best window length for the considered dataset
is 28 days for all metrics, followed by a 90-day window size. The worst tested
hyperparameter is seven days. However, the differences between the best and worst
window sizes are small (mostly around 5%).

Ablation Study

The ablation study assesses the influence of the different components on the forecast.
I.e., the forecasting performance of the PNN, ProbPNN-‡ and, ProbPNN-‡2 are
compared with variants of these networks, where specific components or subnets
of the networks shown in Figure 9.1 are truncated and the corresponding inputs
are omitted. These variants are the three networks without profiles (wo profile),
without the trend component and input (wo trend), without the historical data
encoder and corresponding input (wo hist), without exogenous features encoder
and corresponding input (wo exog), and for the ProbPNN also variants without
the variance (wo variance). In addition, this thesis examines if PNN, ProbPNN-‡
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Table 9.3.: Impact of the windows size of the moving and the smoothing parameter
of the EWM profile calculation method on the forecast quality of the PNN, ProbPNN-‡,
and ProbPNN-‡2 on the electricity dataset.

PNN ProbPNN-‡ ProbPNN
90 28 7 90 28 7 90 28 7

MAE 0.175 0.172 0.181 0.179 0.173 0.183 0.181 0.174 0.186
RMSE 0.264 0.256 0.272 0.265 0.254 0.272 0.266 0.253 0.274
nCRPS 0.174 0.170 0.180 0.136 0.131 0.138 0.140 0.132 0.142
nPinball 0.088 0.086 0.091 0.068 0.066 0.070 0.070 0.067 0.072

or, ProbPNN-‡2 is significantly better than each variant using the one-sided paired
Wilcoxon test [144] and reporting the corresponding p-value.
Table 9.4 shows the result of this ablation study, revealing the following three
observations: First, this thesis identifies the most important component by examining
which truncation led to the highest error. For the electricity dataset, the average
profile is always the most important component and the historical data for the traffic
dataset. Second, in general, all components influence the results positively regarding
the scores for both datasets with exceptions for the ProbPNN-‡2 in some cases on
the traffic dataset. Regarding the ranks on the electricity dataset, all components
contribute positively except for the trend component of both ProbPNNs. However,
on the traffic dataset, the trend component improves the results for all models.
Instead, the variance deteriorates the rank of the ProbPNN-‡2. Consistently, the
Wilcoxon test’s p-values indicate that only the trend component for both ProbPNNs
in the electricity dataset and the variance component for the ProbPNN-‡2 in the
traffic dataset did not lead to significant improvement. Last, the ablation study
shows no qualitative differences in the results across the four metrics.

Benchmarking

The benchmarking compares the point and probabilistic forecasts of the proposed
methods to the forecasts from the benchmarks. Furthermore, the last part of the
benchmarking also examines the computational effort of the proposed method and
the benchmarks.

Point Forecasting This thesis examines the average score and rank of point fore-
casts using the nMAE and nRMSE. Table 9.5 shows the results. In the following,
this thesis makes two observations: First, for the electricity dataset, the best models
are the PNN and both ProbPNNs, followed by the TFT as the best benchmark model
regarding the average score. For the traffic data, the PNN is the best model regarding
the score, followed by both ProbPNNs and the TFT. PNN’s nMAE is 9.9% better
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Table 9.5.: The average scores and ranks regarding nMAE and the average nRMSE
of the PNN, ProbPNN-‡, ProbPNN-‡2, PSF, TFT, N-HiTS, NNQF with an MLP as a
regressor, and DeepAR for both data sets.

(a) nMAE

PNN ProbPNN-‡ ProbPNN-‡2 PSF TFT N-HiTS NNQF DeepAR

Electricity Score 0.172 0.173 0.174 0.219 0.189 0.253 0.235 0.211
Rank 1.62 1.91 2.54 6.07 3.99 7.58 6.88 5.42

Traffic Score 0.128 0.154 0.169 0.288 0.164 0.226 0.241 0.257
Rank 1.37 2.57 3.53 7.58 2.93 5.51 6.07 6.45

(b) nRMSE

PNN ProbPNN-‡ ProbPNN-‡2 PSF TFT N-HiTS NNQF DeepAR

Electricity Score 0.256 0.254 0.253 0.318 0.276 0.348 0.323 0.300
Rank 2.48 1.77 1.83 6.47 4.03 7.52 6.57 5.33

Traffic Score 0.314 0.333 0.329 0.536 0.352 0.404 0.485 0.471
Rank 2.20 2.66 2.75 7.65 3.15 4.87 6.54 6.18

than of the TFT on the electricity and 28.1 % on the traffic dataset. Regarding the
nRMSE, PNN’s nMAE is 7.8% better than the TFT on the electricity and 12., % on
the traffic dataset. Regarding the ranks, the results are similar. PNN achieves the
best rank for the MAE on the electricity dataset (1.62) and for the MAE (1.37) and
nRMSE (2.2) on the traffic dataset. An exception is the nRMSE on the electricity
dataset where ProbPNN-‡ achieves the best average rank with 1.77.

Probabilistic Forecasting This thesis calculates the average ranks and scores re-
garding the nCRPS and nPL of all considered time series from the Electricity and
Traffic data sets to compare the probabilistic forecasts. In addition to nCRPS and
nPL, this thesis also examines the quantile coverage of the forecasts using the DICR
and a visualisation. Finally, an exemplary probabilistic forecast is visualised.

Regarding the nCRPS and nPL, Table 9.6 reports the scores and ranks for all evalu-
ated methods and data sets. In the results, this thesis makes three observations. First,
the ProbPNN-‡ outperforms the benchmarks concerning both scores. ProbPNN-‡’s
nCRPS is 6.1% better than of the TFT on the electricity and 6.8 % on the traffic
dataset. Regarding the nPL, ProbPNN-‡ is 6.1% better on the electricity and 6.8%
better on the traffic dataset than the TFT. Second, regarding the average rank, the
ProbPNN-‡ outperforms the benchmarks again. Regarding the nCRPS, ProbPNN-‡
achieves 1.44 as the average rank on the electricity and 1.74 on the traffic data.
Regarding the nPL, ProbPNN-‡’s average rank on the electricity data is 1.39 and
1.73 on the traffic data. Third, when comparing ProbPNN-‡ and ProbPNN-‡2, it is
observable that using the standard deviation profile seems beneficial compared to
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Table 9.6.: The average scores and ranks regarding nCRPS and nPL of the PNN with
prediction intervals, ProbPNN-‡, ProbPNN-‡2, PSF, TFT, N-HiTS, NNQF with an MLP
as a regressor, and DeepAR for both data sets.

(a) Average nCRPS scores and ranks of all considered time series from the Electricity respectively
Traffic data set.

PNN-PI PPNN-‡ PPNN-‡2 PSF TFT N-HiTS NNQF DeepAR

Electricity Score 0.170 0.131 0.132 0.160 0.139 0.184 0.172 0.155
Rank 6.33 1.44 1.90 5.28 2.76 7.37 6.44 4.48

Traffic Score 0.243 0.117 0.132 0.245 0.125 0.167 0.181 0.191
Rank 6.85 1.74 2.73 7.47 2.07 4.38 5.28 5.48

(b) Average nPLs scores and ranks of all considered time series from the Electricity respectively
Traffic data set.

PNN-PI PPNN-‡ PPNN-‡2 PSF TFT N-HiTS NNQF DeepAR

Electricity Score 0.086 0.066 0.067 0.081 0.070 0.093 0.087 0.078
Rank 6.34 1.39 1.86 5.27 2.84 7.41 6.42 4.48

Traffic Score 0.123 0.059 0.066 0.124 0.063 0.085 0.092 0.096
Rank 6.85 1.73 2.71 7.48 2.07 4.43 5.29 5.45

Table 9.7.: The average DICR of the PNN, ProbPNN-‡ and ProbPNN-‡2 as well as the
simple PSF, the TFT, the N-HiTS, the NNQF with an MLP as a regressor, and DeepAR
for both data sets.

PNN-PI PPNN-‡ PPNN-‡2 PSF TFT N-HiTS NNQF DeepAR

Electricity 3.98 1.77 1.81 2.63 2.61 2.52 2.91 2.93
Traffic 4.26 1.83 1.71 4.19 2.47 2.55 3.35 2.80

the variance profile regarding all metric’s scores and ranks on both data sets.

Regarding the Distance to Ideal Coverage Rate (DICR), Table 9.7 provides the results
for both datasets and all benchmarks. In this table, the ProbPNN has the lowest
DICR and the TFT the second lowest, whereas the PNN with Prediction Intervals has
the highest DICR. However, in general, the DICR is high for all methods and also for
the ProbPNN and TFT.

Examining the quantile ranges in more detail, the results in Figure 9.5 align with
these results. Figure 9.5 provides the coverage of different quantile ranges that each
corresponds to 20%. In particular, the quantile ranges are 40%-60%, 30%-40% and
60%-70%, 20%-30% and 70%-80%, 10%-20% and 80%-90%, and smaller 10% and
greater 90%. Thus, each quantile range of an ideal forecasted distribution would
cover 20% of the actual values. Regarding the coverage of the quantile ranges, this
thesis makes two observations: First, all PNN, ProbPNNs, and benchmarks have a
too wide quantile range, which also leads to high DICR scores. More specifically,
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(a) Electricity data set.
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(b) Traffic data set.

Figure 9.5.: The coverage of different quantile ranges of the PNN with prediction
intervals, ProbPNN-‡ and ProbPNN-‡2 as well as the simple PSF, the TFT, the N-HiTS,
the NNQF with an MLP as a regressor, and DeepAR for both data sets. The black
dashed lines indicate the optimal coverage.

the predicted quantile range around the median (between 40 and 60 percentile)
covers more than 50% of the actual values. In contrast, the ranges between 10th
and 40th percentile and between the 60th and 90th percentile are too small (they
cover less than 20% of the actual values). The tails of the distributions cover more
actual values again. Second, the ProbPNN and the benchmarks behave similarly.
However, the ProbPNNs estimate the median slightly better but overestimate the
distribution’s tails.

These observations regarding the quantiles are confirmed by the exemplary forecasts
in Figure 9.6, where the band between 40% and 60% seems to cover more than 20%
of the values and are thus too wide, especially for the PNN with prediction intervals.

Computational E�ort

This thesis measures the training time required by ProbPNN and the benchmarks to
assess the computational effort.
Due to the various experiments and the allocation of the server, the computation

140 Chapter 9 (Probabilistic) Profile Neural Networks



0 5 10 15 20

50

100

150

PNN-PI

0 5 10 15 20

100

150

PNN-‡

0 5 10 15 20

100

150

PNN-‡2

0 5 10 15 20
50

100

150

PSF

0 5 10 15 20

100

150

TFT

0 5 10 15 20
50

100

150

N-HiTS

0 5 10 15 20
50

100

150

NNQF

0 5 10 15 20

100

150

DeepAR

Figure 9.6.: Ground truth (orange), forecast (dark blue), the 90% (light blue) and
20% (green) confidence intervals of the PNN with prediction intervals, ProbPNN-‡ and
ProbPNN-‡2 as well as the simple PSF, the TFT, the N-HiTS, the NNQF with an MLP as
a regressor, and DeepAR for an exemplary day of the electricity data set.
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Table 9.8.: Average training time in seconds of the PNN, ProbPNN-‡ and ProbPNN-‡2

as well as the TFT, the N-HiTS, the NNQF with an MLP as a regressor, and DeepAR for
both data sets. The simple PSF is omitted as it does not need to be trained.

PNN-PI PPNN-‡ PPNN-‡2 TFT NHiTS NNQF DeepAR

Electricity 150 197 164 2995 549 79 2221
Traffic 677 717 451 4762 914 50 2510

time for the electricity dataset is measured on setup 1 and for the traffic dataset on
setup 2 (Table 2.2).

Table 9.8 presents the forecasters’ training time in seconds on both data sets. In the
following, this thesis makes two observations. First, PNN and ProbPNN need less
training time than the state-of-the-art deep learning benchmarks. However, they
require more training time than the NNQF, which training time strongly depends on
the used base learner. Second, when comparing the ProbPNN-‡ and ProbPNN-‡2,
ProbPNN-‡ has a higher training time than ProbPNN-‡2.

9.3 Discussion

This section discusses the performance of the PNN and ProbPNN, their limitations,
and further potential.

9.3.1 Performance

Regarding the performance, this thesis highlights and discusses four aspects.

First, the results indicate that the PNN and ProbPNN provide better forecasts than
the other models regarding the considered metrics. This leads to the conclusion that
using profiles and decomposition-inspired architectures provides benefits. However,
the profiles also introduce new hyperparameters that might influence the results.
Furthermore, the best hyperparameters might differ from dataset to dataset and time
series to time series. The impact of the hyperparameters on different datasets needs
to be addressed by further experiments since this thesis examines the hyperparameter
selection only on one dataset. Second, the ablation study’s results show that the most
important component is the historical information for the traffic data set and the
profile component for the electricity data set. Furthermore, the ablation study also
shows that each component except for the trend component on the electricity dataset
and the variance on the traffic dataset significantly improves the results. This thesis
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concludes from these results that each component is potentially beneficial. However,
considering different combinations as a step of a hyperparameter search might lead
to further improvements. Third, when analysing the quantiles, the DICR and the
quantile coverage visualisation show that the quantiles are not well calibrated. Thus,
adapted loss functions or additional post-processing strategies might improve the
forecasted quantiles. Such an improvement could be addressed by future work
since post-processing strategies are widely applied, e.g. in wind power forecasting
[114]. Finally, the last aspect covers the training time. The shorter training time
of the PNN and ProbPNN compared to the benchmarks might be caused by the
smaller number of parameters of the PNN and ProbPNN. However, when training
the models globally, the required training time becomes less important. Thus, the
PNN and ProbPNN should be extended to global forecasting models. Furthermore,
the usage of GPUs could improve the training times.

Finally, to answer the research question

RQ5: Can the usage of profiles in neural networks improve the deterministic and
probabilistic forecasting performance?

This thesis concludes that profiles improve the deterministic and probabilistic fore-
casting performance for the considered class of time series, as shown in the ablation
study.

9.3.2 Limitations

Regarding the limitations of the proposed method, this thesis highlights four aspects.

First, the PNN and ProbPNN exploit regular periodicities in time series to improve
point and probabilistic forecasts. Thus, this method is only suitable for time series
containing calendar-driven periodicities. Furthermore, the metadata of the periodic-
ities, such as the frequency, must be known in advance for being able to calculate
the profiles. Wrong assumptions about the periodicity and the calendar information
(e.g., weekends and public holidays) used to build the profiles might harm the
accuracy severely. E.g., if a 24-hour periodicity is assumed but the time series has a
23-hour periodicity.
Second, the proposed method assumes that the components (periodicities, trend, re-
mainder) are independent. Future work might relax this assumption by introducing
copulas.
Third, the proposed method is a local model. I.e., it is trained on each time series
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separately, resulting in bad scalability. Thus, future work has to extend this model to
a global forecaster.
Last, the ProbPNN assumes that the time series is normally distributed. This assump-
tion does not seem to influence the results negatively on the tested datasets since
the ProbPNN outperforms the benchmarks. However, this must be considered when
applying the ProbPNN to a forecasting task.

9.3.3 Further Potential of (Prob)PNN

Finally, the discussion’s last part focuses on the potential of the (Prob)PNN. This
thesis highlights two aspects. First, future work could try to relax the assumption
that the periodicity, trend, and remainder components are independent. A possibility
to relax this assumption might be the introduction of copulas.
The second aspect focuses on the scalability. As mentioned before, the PNN and
ProbPNN are local models. Local models need to be fitted on each time series
separately. A possibility to extend the PNN and ProbPNN to a global model might be
the usage of ensembles of average and variance profiles together with an attention
module determining which profiles should be used depending on the current data.
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Discussion 10

The present thesis focuses on challenges in forecasting time series with calendar-
driven periodicities. In particular, it proposes methods that face four selected
challenges - the missing scenario, small training data size, concept drift, and peri-
odicity challenge. The proposed methods can be separated into two approaches.
The generative models used for facing the missing scenario and small training data
size challenge and the profile-based methods for the concept drift and periodicity
challenge. Both approaches are not purely data-driven since they use additional
knowledge, contexts, or analyses. To solve the missing scenario and perform mid-
term peak forecasts, the generative models use statistical information to control
the time series. To handle the small training data size challenge, the proposed
Latent Space-based Forecast Enhancer (LSFE) analyses the latent space of a globally
trained generative model to localise the target time series and use this additional
information. To handle concept drifts affecting time-series levels and support neural
networks with periodicities, the Profile-based Framework for Concept Drift Han-
dling (PDH), the Profile Neural Network (PNN), and Probabilistic Profile Neural
Network (ProbPNN) combine profiles as additional knowledge with machine learn-
ing models. Besides considering additional knowledge by all proposed methods,
all chapters that correspond to the proposed methods discuss scalability as a key
challenge. Scalability is essential when applying complex models to domains with
millions of time series, such as the electrical grid, traffic planning, or retail. Thus,
this chapter discusses the consideration of additional knowledge and scalability
by focusing on global forecasting. Furthermore, the last section of this discussion
focuses on the challenges that might arise when integrating additional knowledge
with global forecasting.

10.1 Consideration of Context or Additional Knowledge

As mentioned, all proposed methods consider context or additional knowledge when
being applied. Thereby, the consideration ranges from taking this information as
additional input as in Chapter 4, gaining it via additional analysis as in Chapter 6
to propose hybrid methods as in Chapter 5, Chapter 8, and Chapter 9. However,
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context could also foster the explainability of machine learning methods or increase
the value of forecasts for a specific downstream application. Thus, this section
discusses these three forms as examples of the importance of considering additional
knowledge in the following.

10.1.1 Hybrid Models

Hybrid models integrate ideas of classical time series model-based and deep learning-
based forecasting. This thesis also proposes hybrid models in Chapter 5, Chapter 8,
and Chapter 9. Thereby, this thesis observes two benefits and one drawback that
are discussed in the following. The first advantage is that using hybrid models
leads to improved forecasts, as observed in the results from the BigDEAL challenge,
but also when analysing if profiles provide benefits to the PDH, PNN, or ProbPNN.
This observation of improvements in the forecasts is in line with results from the
M4 competition [92], which was won by a hybrid method (ES-RNN [124]). The
second benefit this thesis discusses is that hybrid neural networks may allow smaller
neural networks. In a hybrid neural network, a part of the time series forecasting or
modelling is done by classical time series models, which also introduces some prior
knowledge (context). These parts that are already modelled need not be learned by
the neural network. Thus, it can focus on other parts or it can be smaller and require
less training time (compare the training time for the PNN and ProbPNN). Finally, as
a drawback, this thesis states that hybrid models may require more knowledge than
just the time series. E.g., using the PNN requires knowledge about the periodicity of
the time series or using the generative model-based forecaster used in the BigDEAL
challenge (Chapter 5) requires the definition of a function that can model the rolling
mean of the time series. Thus, not having such knowledge or information might
restrict the applicability of hybrid models. Therefore, their application might be
challenging under certain circumstances.

10.1.2 Explainability

Context and additional information can also foster the explainability of machine
learning models, which is important, for example, to improve users’ trust in the
forecast. Although this thesis does not cover explainability directly, the proposed
methods provide access points for it. E.g., the decomposition of the PNN or ProbPNN
can provide insights into the forecast; such a decomposition is provided in Heidrich
et al. [51]. Additionally, when extending the PNN and ProbPNN to a global model by
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using ensembles of average and variance profiles together with an attention module
determining which profiles should be used depending on the current data, also the
attention scores could be used to foster explainability as done for transformers [55].
Furthermore, examining the latent space (Chapter 6) might also foster explainability.
This thesis only localises time series in the latent space. However, further meaningful
features and directions might also be identifiable as undertaken in computer vision
[137]. The decomposition and the analysis of the latent space could lead to better
explainable forecasters in future work.

10.1.3 Forecast Value

Context and additional knowledge is also essential for the forecast value. Despite
this thesis measuring only the forecast quality using metrics such as MAE or CRPS,
the forecast value is more important in many domains. The reason is that forecasts
are used in downstream applications, whose performance determines the forecast
value. It is important to consider that the forecast value does not directly correspond
to the forecast quality measured by metrics such as the MAE [141]. Thus, this
thesis states that the proposed methods and the benchmarks should be examined
regarding different forecast values in future work. Furthermore, applying the
AutoML approach proposed in [115] to the generative model-based forecaster
presented in Chapter 5 might be interesting. In particular, the AutoML approach of
tuning sampling parameters could optimise the forecast quality by identifying the
best for the downstream application.

10.2 Scalability and Global Forecasting

As mentioned, each chapter in Part II and Part III discusses the scalability of the
proposed methods and states the importance of scalability in time series forecasting.
However, no proposed method scales well if multiple time series are considered,
except for the LSFE presented in Chapter 6. Nevertheless, each of the mentioned
chapters sketches possibilities for improving the scalability of the proposed methods
and training them as global forecasters. E.g. the generative models in Chapter 4
and Chapter 5 could use the idea proposed in Chapter 6 of combining a globally
trained generative model with an analysis of the latent space. Furthermore, the PNN
and ProbPNN could be trained globally while considering different profiles, whose
importance might be weighted using an attention mechanism. Future work might
address these ideas.
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Besides improving the scalability, global forecasters might also solve the mentioned
challenges in time series forecasting. E.g., global forecasters could solve the small
training data size challenge if trained on a sufficiently diverse dataset as the results
in Hertel et al. [54] indicate. In this case, it is possible to assume that the forecaster
can forecast unknown time series that are not too different from the time series in
the training dataset. Moreover, a diverse and large enough training dataset could
also solve or weaken the concept drift challenge. In this case, it is possible to assume
that the model has seen different concepts during training and, thus, should be
more stable during inference. Finally, a larger training dataset enables larger neural
networks that can learn complex patterns. Thus, guiding the network with additional
knowledge, such as profiles, to better predict periodicities becomes less important.

Another scalability aspect is the technical realisation of forecasters and its embedding
in software infrastructure. This also includes the following aspects of MLOps:
continuous integration and deployment of such methods, workflow orchestration,
reproducibility, versioning, collaboration, continuous ML training and evaluation,
ML metadata tracking and logging, continuous monitoring, and feedback loops [74].
This aspect of technical realisation and MLOps is highly relevant for various domains.
E.g. for the smart grid, the EnergyLab at the KIT implements a fully automated
energy system [143]. In such an environment, automated forecasts and MLOps play
a crucial role.

Concluding, global forecasters might be a game changer in time series forecast-
ing. Their good performance and scalability enable forecasting-as-a-service as the
TimeGPT presented by Nixtla1.

10.3 Combine Context Information and Global

Forecasting

Finally, the last section of this chapter investigates the possibility of considering con-
text and global forecasting to exploit both’s advantages. However, the combination
raises new challenges that might be addressed in future work.

Considering context might be beneficial in many problems, e.g. by using hybrid
models. For a global forecaster, integration of the context is difficult. For example,
the PNN and ProbPNN require information on the periodicity used by the profile

1
https://www.nixtla.io/#tgpt (last access 21.08.2023)
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calculation methods. Thus, the requirement of periodicity information might limit its
potential to apply the model to time series for which this information is unavailable.
Note that this is not always a limitation since hybrid methods such as N-HiTS
[15] or DeepAR [123] can be trained globally. Second, different time series are
influenced by different exogenous features. E.g. for energy demand time series
forecasting, the relevant exogenous features differ from those for retail time series
forecasting. Forecasting might even be impossible for some time series without
certain exogenous features, e.g., marketing-driven product time series. However,
globally trained models cannot consider all information. Thus, this might limit their
applicability, too. Third, the forecast values determined by downstream applications
might also restrict global forecasters’ applicability. Consider a scenario of multiple
downstream applications; each of these downstream applications might focus on
other aspects of a forecast (e.g., accuracy of peak level or underestimation), leading
to different forecast values. However, tuning a forecast to be optimal for a specific
downstream application is impossible when using a global forecaster.

In order to wrap up, considering context information in global forecasting could
be difficult. Thus, this might be a topic of future research. A possibility could be
to train global forecasters for specific downstream applications or groups of time
series. Furthermore, in neural networks, fine-tuning only the last layers of global
forecast models might also be a possibility of combining the consideration of context
information and global forecasters.
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Conclusion 11

This thesis focuses on challenges in forecasting time series with calendar-driven peri-
odicities. Therefore, it provides an overview of existing challenges. Four challenges
are examined in more detail: the missing scenario, small training data size, concept
drift, and periodicity challenge. Based on these challenges, the thesis states five
research questions:

RQ1: Is it possible to use the conditioning mechanism to control the non-stationarity
and periodicity in generated time series?

RQ2: Is it possible to apply generative models conditioned on appropriate statistical
and weather information to generate mid and long-term peak energy load
forecasts?

RQ3: Is it possible to locate a specific time series in a deep generative model’s latent
space and use this information to guide the data augmentation process?

RQ4: Can profiles improve the ability of machine learning models to cope with
concept drifts?

RQ5: Can the usage of profiles in neural networks improve the deterministic and
probabilistic forecasting performance?

The answers to the research questions correspond with the proposed methods to face
the four considered challenges. The method to face the missing scenario challenge
corresponds to the answers for RQ1 and RQ2. In particular, this thesis applies condi-
tional generative models that do not only generate time series (Chapter 4). Instead,
they have a conditioning mechanism that controls their generation process with
determined conditioning information to them. This control allows the generation of
time series for specific scenarios and the creation of mid-term forecasts conditioned
on exogenous features and forecasts of easier-to-forecast time series as the rolling
mean time series (Chapter 5).
The method to face the small training data size challenge is related to RQ3. This
thesis proposes the Latent Space-based Forecast Enhancer (LSFE) that applies a
globally trained generative model (Chapter 6). Using such a model directly to create
time series would result in creating a time series corresponding to the median of all
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time series. Thus, this thesis proposes to examine the latent space to identify the
localisation of the target time series in this latent space. This information is then
used to generate seed noise that enables the generative model to create time series
samples that fit the target model.
The Profile-based Framework for Concept Drift Handling (PDH) proposed to face the
concept drift challenge also helps to answer RQ4 (Chapter 8). The PDH uses profiles
to support machine learning models in handling concept drift. In particular, the PDH
separates the time series into the level and a remainder. The level is modelled using
an adaptive average profile, leading to an automatic adaption to concept drifts that
affect mainly the level. Arbitrary regressors model the remainder.
Finally, this thesis proposes the PNN and ProbPNN to support neural networks han-
dling periodicities and answer RQ5 (Chapter 9). Both networks are hybrid neural
networks that integrate profiles into deep learning. Due to the usage of profiles that
model the periodicities, networks have not to learn them. Thus, the network can
focus on other parts, resulting in a comparable small, fast-to-train neural network
that still provides good forecasts.

The answers and the proposed methods raise further challenges and questions that
might be dealt with by future work. Thereby, this thesis highlights two possible and
promising research directions.

First, it might be promising to focus on global forecasting models as discussed in
Chapter 10. Thus, future work might investigate if the idea proposed in Chapter 6 is
applicable to the generative model-based forecasters used for the BigDEAL challenge.
Furthermore, it might also be promising to try to provide multiple profiles to the
PNN and ProbPNN while using an attention mechanism to select the best profiles
for the considered time series.

Second, considering time series distributions explicitly and deriving forecasts from
them, as in the BigDEAL challenge, might be of interest in future work. Such an
approach could be applied to other forecasting tasks as well. However, such a model
would not be restricted to forecasting. It can also be applied to make point forecasts
probabilistic [113] or to detect anomalies [134]. Modelling distributions enables
not only global forecasting models but also global time series models from which
predictions for different tasks are derivable.
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