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Kurzfassung  

Der schwere Straßengüterverkehr ist in Deutschland und Europa jeweils für rund 7% der ener-

gierelevanten Treibhausgasemissionen verantwortlich. Batterieelektrische Lkw sind eine viel-

versprechende Option, um die europäischen Klimaziele im schweren Straßengüterverkehr 

einzuhalten. Eine öffentliche Schnellladeinfrastruktur mit hoher Leistung gilt dabei als Voraus-

setzung für den Einsatz im Langstreckenverkehr. Diese Arbeit untersucht den Bedarf an öffent-

licher Megawatt-Ladeinfrastruktur für schwere Nutzfahrzeuge in Deutschland im europäischen 

Kontext sowie dessen Auswirkungen auf den Markthochlauf batterieelektrischer Lkw. 

Zuerst wird der Bedarf an öffentlicher Megawatt-Ladeinfrastruktur anhand des regional aufge-

lösten Verkehrsaufkommens analysiert. Unter Berücksichtigung von Verkehren zwischen 1.630 

Regionen in Europa und der lokalen Parkplatzverfügbarkeit wird mittels gemischt-ganzzahliger 

Optimierung ein minimales Ladestationsnetzwerk für Deutschland errechnet. Zusätzlich wird 

mit einem weiteren Ansatz, der Ladeinfrastruktur in regelmäßigen Abständen vorsieht, ein 

nutzerfreundlicheres Ladenetzwerk in verschiedenen Ausbaustufen entworfen. Im zweiten 

Schritt wird ein agentenbasiertes Modell entwickelt, das den gemeinsamen Markthochlauf 

öffentlicher Ladeinfrastruktur und batterieelektrischer Lkw in Deutschland bis 2050 simuliert. 

Unter Berücksichtigung von 2.410 Tagesfahrprofilen wird mittels zeitlich aufgelöster Fahrsimu-

lation die technische Machbarkeit batterieelektrischer Lkw geprüft. Die ökonomische Bewer-

tung der Einzelfahrzeuge erfolgt auf Basis der Gesamtkosten unter Berücksichtigung der Infra-

strukturkosten. Die Simulation zeigt den marktgetriebenen Bedarf an öffentlicher Megawatt-

Ladeinfrastruktur bis 2050 und dient als Input für die integrierte Infrastrukturplanung. 

Die Ergebnisse zeigen, dass für eine vollständige Flottenumstellung circa 5.000 Megawatt-

Ladepunkte an wenigen Hundert Standorten in Deutschland nötig sind. Große Standorte mit 

geringem Abstand sind insbesondere an den Korridoren zwischen den Häfen in Belgien und 

den Niederlanden sowie Polen und Österreich notwendig. Aufgrund der hohen Energiemenge 

von circa 5 TWh jährlich an öffentlicher Megawatt-Ladeinfrastruktur in Deutschland bei nahezu 

vollständiger Flottenumstellung, kostet die Infrastruktur weniger als 0,1 €2020/kWh. Sie hat 

damit nur geringen Einfluss auf den mittelfristig in dieser Arbeit identifizierten hohen Kosten-

vorteil batterieelektrischer Lkw gegenüber Diesel-Lkw. Die Analysen zeigen, dass nur etwa 15% 

der Fahrzeuge, die für 30% der Fahrleistung verantwortlich sind, auf öffentliches Megawatt-

Laden angewiesen sind. Mehr als die Hälfte der nach 2035 benötigten knapp 35 TWh elektri-

scher Energie kann an privater Infrastruktur mit weniger als 44 kW Leistung geladen werden. 

Zukünftig sollte die private Langsamladeinfrastruktur daher stärker berücksichtigt werden.  

Diese Thesis wurde im Rahmen meiner Forschungsarbeit am Fraunhofer-Institut für System- 

und Innovationsforschung (ISI) erstellt und von Prof. Dr. Martin Wietschel am Institut für 

Industriebetriebslehre und Industrielle Produktion (IIP) am Karlsruher Institut für Technologie 

betreut (KIT). 
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Abstract  

Today, heavy road freight transport is responsible for about 7% of energy-related greenhouse 

gas emissions in Germany and Europe. Battery-electric trucks are a promising option to meet 

the European climate targets for heavy road freight. Yet, a public fast-charging infrastructure 

with high power is considered to be mandatory for their use in long-haul transport. In this 

thesis, the need for megawatt charging infrastructure for heavy-duty vehicles in Germany in a 

European context and its impact on the market diffusion of battery-electric trucks is investi-

gated. 

As a first step, the need for public megawatt charging infrastructure is analyzed based on the 

regionally resolved road traffic volume. Considering traffic between 1,630 regions in Europe 

and local parking availability, a minimum charging location network for Germany is calculated, 

using mixed-integer optimization. In addition, a more user-friendly charging location network 

in different expansion stages is designed, using another approach that provides charging 

infrastructure at regular intervals. As a second step, an agent-based model is developed that 

simulates the joint diffusion of public charging infrastructure and battery electric trucks in 

Germany up to 2050. Taking into account 2,410 daily driving profiles, the technical feasibility of 

battery-electric trucks is tested, using time-resolved driving simulation. The economic evalua-

tion of single vehicles is based on the total cost of ownership, taking infrastructure costs into 

account. The simulation shows the market-driven demand for public megawatt charging infra-

structure up to 2050 and serves as input for the integrated infrastructure planning. 

The results show that approximately 5,000 megawatt charging points are needed at a few 

hundred locations in Germany for a complete fleet conversion. Locations with many charging 

points and a short distance between the single locations are particularly necessary along the 

long-distance corridors between the port regions of Belgium and the Netherlands and Poland 

or Austria. Due to the high amount of electricity of about 5 TWh per year recharged at public 

megawatt charging infrastructure in Germany with almost complete fleet conversion, the 

infrastructure costs significantly less than 0.1 €2020/kWh and thus has no relevant influence on 

the identified high cost advantage of battery electric trucks over diesel vehicles in the medium 

term. The analyses also show that only about 15% of the vehicles that are responsible for 30% 

of the mileage rely on public megawatt charging infrastructure. More than half of the nearly 35 

TWh of total electricity demand after 2035 can be charged at private infrastructure with less 

than 44 kW of power. In the future, therefore, more consideration should be given to private 

slow charging infrastructure. 

This thesis is based on my research conducted at the Fraunhofer Institute for Systems and 

Innovation Research (ISI) under the supervision of Professor Dr. Martin Wietschel at the Insti-

tute for Industrial Production (IIP) at the Karlsruhe Institute of Technology (KIT). 
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1 Introduction  

1.1 Motivation  

Both, policymakers and scientists have recognized anthropogenic climate change as a key 

challenge of today’s world. Scientists have shown that climate change is already having ad-

verse effects, for example on human health, economic welfare and humanitarian crises (IPCC, 

2022). In the official statement of 112 political world leaders at the United Nations Climate 

Change Conference 2022 (COP27), the climate crisis is described as “[...] a predominant threat 

to our planet with cross-cutting implications on the stability, safety and sustainability of com-

munities globally.” (COP27, 2022, p. 1). The statement further emphasizes the responsibility to 

act in accordance with the Paris Agreement that aims to limit the global temperature increase 

to below 2 °C,  and undertake efforts to limit it to 1.5 °C, compared to pre-industrial levels (UN, 

2015).  

In the European Union (EU), road transport accounted for one quarter of total energy-related 

greenhouse gas (GHG) emissions in 2020 and 2021. In Germany, the relative share of road 

transport amounted to 22% of total GHG emissions. Heavy-duty trucks and buses exceeding a 

gross vehicle weight (GVW) of 3.5 t are responsible for 7% of energy-related GHG emissions at 

both EU and German level. Even though absolute GHG emissions from heavy-duty trucks and 

busses decreased from 209 Mt to 192 Mt CO2eq at EU level and from 46 to 43 Mt CO2eq at 

German level from 2019 to 2020 due to the COVID pandemic, the value has increased by more 

than a quarter since 1990 (Eurostat, 2022b). Efficiency improvements have not fully compen-

sated the increasing traffic volume (Kubáňová et al., 2021; Meza et al., 2020).  

In the “Fit for 55” policy package, the EU aims to reduce GHG emissions by 55% by 2030 com-

pared to 1990 level (EU, 2021). The package consists of various legislative measures on EU 

climate and energy policy (EPRS, 2022). In particular, the transport sector is addressed as a 

“[...] challenging sector for climate action” (EPRS, 2022, p. 2). Four central scopes of action can 

be identified for heavy-duty vehicles (HDV):  

 firm-level emission performance standards of new vehicles 

 infrastructure mandates 

 CO2 limitation for fuels (mandatory blends, cap-and-trade scheme) 

 subsidies for investments and research  

A broader overview can be found at Ovaere and Proost (2022). Especially relevant are the firm-

level emission performance standards that demand an average reduction of 30% of CO2 emis-

sions from newly sold trucks with a laden mass of more than 16 t or at least three axles by 

2030 compared to 2019/2020 (EU, 2019). Plötz, Wachsmuth, et al. (2023) state “[...] that parts 

of the ‘Fit for 55’ for transport are still not ambitious enough to align with a 1.5 °C scenario.” 
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(Plötz, Wachsmuth, et al., 2023, p. 343). Consequently, a further tightening of the firm-level 

emission performance standards is currently in the political process (EC, 2023). As shown in 

Figure 1-1, zero emission vehicles (ZEV) are necessary to reach the target valid at the time of 

writing. Even with the implementation of many technically feasible measures to increase the 

efficiency of diesel vehicles, the 30% target cannot be reached without ZEV (Breed et al., 

2021). The proposed tightening to a reduction of 45% by 2030, further increases the need for 

ZEV.  

 

Figure 1-1: Percentage of zero emission vehicles (ZEV) sales share in the EU to meet 30% tail-pipe emission reduc-

tion by 2030 compared to 2020 in newly sold trucks. ICEV-Focused: Efficiency improvements for internal 

combustion engine vehicles fully implemented, Low-Hanging Fruits: Efficiency improvements for inter-

nal combustion engine vehicles partly implemented, ZEV-Focused: Efficiency improvements for internal 

combustion engine vehicles only implemented, if applicable for zero emission vehicles too (Breed et al., 

2021). 

While the EU is aiming for climate neutrality by 2050 (EU, 2021), Germany wants to become 

climate neutral by 2045 (Deutscher Bundestag, 2019). By 2030, a reduction of GHG emissions 

of 65% compared to 1990 is planned for Germany. For the transport sector, a reduction of 48% 

is legally binding (Deutscher Bundestag, 2019). In addition, one third of the mileage of HDV in 

Germany shall be fulfilled electrically or with electricity-based fuels (Deutsche Bundesregier-

ung, 2019).  

In summary, regulations at European level and national German level necessitate the introduc-

tion of ZEV for HDV with noteworthy market shares by 2030.  

Furthermore, the future of heavy road freight transport plays an important role for the Ger-

man economy. On the one hand, German road freight vehicles provide the second highest 

transport volume in the EU (307 bn tkm of a total of 1,920 bn tkm, equivalent to 16%). Only 

Polish vehicles achieve a higher market share with 380 bn tkm (Eurostat, 2022a). On the other 

hand, German truck manufacturers achieved a market share of 51% for medium and heavy-
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duty trucks above 3.5 t in Europe1 in 2020 (ACEA, 2022a; Basma & Rodríguez, 2021). For heavy 

trucks with a gross vehicle weight (GVW) of above 16 t - 66% of all HDV above 3.5 t sales -, the 

share is almost identical (Basma & Rodríguez, 2021). 

In 2021, the registration share of ZEV in the medium and heavy-duty vehicle segment over 

3.5 t GVW was well below one percent (ACEA, 2022b; KBA, 2022). However, there are research 

studies that show a high potential especially for battery electric trucks (BET) from an economic 

point of view2. From a technical point of view, infrastructure availability represents a crucial 

parameter for the spread of BET. Several surveys show that logistic companies regard a lack of 

charging infrastructure as a key obstacle3. The European Commission (EC) also highlights the 

importance of charging infrastructure for BET and proposes a public fast charging infrastruc-

ture at regular intervals along the TEN-T road network4 in the proposal for the Alternative 

Fuels Infrastructure Regulation (AFIR) (EC, 2021). The EC foresees charging infrastructure 

dedicated to trucks with a distance of 60 km along the TEN-T core network by 2025 and with a 

distance of 100 km along the TEN-T comprehensive network by 2030. In addition, every urban 

node should have charging infrastructure by 2025. However, uncertainties exist regarding the 

design and extent of the required charging infrastructure5. To reduce HDV charging times, the 

industry has announced the Megawatt Charging System (MCS). The MCS standard will build on 

the Combined Charging System (CCS), currently used for passenger cars. The MCS standard 

shall extend the maximal power output of 350 kW for CCS into the megawatt range (CharIN, 

2023). The MCS standard will be tested in demonstration projects and is expected to be intro-

duced in 2024 (HoLa, 2021). However, it is not yet explicitly included in the EC proposal, as the 

international standard for MCS is only expected for 2024 or 2025 latest. There are initial pro-

posals regarding the extent of charging infrastructure for BET6. A regional distribution of a 

possible public fast charging infrastructure for HDV for a large area, as proposed as a first draft 

in Lahmann (2022) for Germany, is unique at this point. At most, studies of current truck 

parking (Plötz & Speth, 2021) or regionally limited considerations (Whitehead et al., 2021) can 

                                                             
1 Europe: EU27, United Kingdom, Norway, Switzerland  
2 See e.g. Noll et al.  (2022), Speth, Kappler, et al.  (2022), Phadke et al.  (2021), Burke and Kumar Sinha (2020) or 
Basma et al. (2021) for economic analysis of BET and other truck drives.  
3 See Kluschke, Uebel, and Wietschel (2019) for a survey among 70 logistics companies in Germany, Bae et al.  
(2022) for a survey among 20 logistics companies in California (USA), Pierre-Luis Ragon and Rodríguez (2022) for a 
survey among 23 logistics companies in Europe and Anderhofstadt and Spinler  (2019) for a Delphi study in Germa-
ny.  
4 TEN-T according to EU (2013): Trans-European Transport Network. The “Core Network” consists of the most 
important European connections and is scheduled for completion in 2030. The “Comprehensive Network” covers all 
European regions and is scheduled for completion in 2050.   
5 The agreement of the European Parliament, the Council, and the Commission foresees charging points at 120 km 
intervals on the TEN-T core network and on the TEN-T comprehensive network in both directions by 2025. By 2030, 
the network should be densified to 60 km on the TEN-T core network and to 100 km on the TEN-T comprehensive 
network. In addition, coverage is limited to 15% of the considered network in 2025 and to 50% in 2027. Exceptions 
exist for road sections with less than 2,000 truck movements per day on average (Bernard (2023)). However, the 
final regulation is still pending at the time of writing of this thesis and will be in force at 12/10/2023.  
6 See e.g. ACEA (2021) for the position of the vehicle manufacturers, Mathieu (2020) for estimates regarding urban 
and regional charging demands by Transport&Environment or Lahmann (2022) for an initial distribution of approxi-
mately 200 possible charging locations in Germany.  
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be found. Technically detailed analysis for vehicle fleets with different infrastructure assump-

tions are also available7. However, these studies do not include modeling of BET market diffu-

sion, but build on exogenous estimates. Conversely, there are multiple market diffusion sce-

narios for BET8. They all claim to consider the impact of infrastructure on the market diffusion 

of BET. However, they do not consider a detailed geographical design of a charging infrastruc-

ture, but usually model an increasing vehicle range via general infrastructure parameters. A 

scientific estimation of the charging demand taking into account the locations, the load profile 

and the amount of energy (Taljegård, 2019) has not yet been publically carried out. The effect 

of the infrastructure on the market ramp-up of BET and vice versa has also not yet been inves-

tigated. 

In summary, it is concluded that (1) heavy-duty ZEV are required to meet legally binding cli-

mate targets, (2) Germany has a central role for heavy-duty road transport, (3) BET are a likely 

solution for heavy-duty road transport, and (4) public fast charging infrastructure for BET is 

needed. However, the design of the public infrastructure as well as its impact on the market 

diffusion of BET - and vice versa - is worth further investigation.  

1.2 Research questions and outline 

Based on 1.1, three research gaps can be identified: (1) design of a future public charging 

network for BET, (2) impact of public truck charging infrastructure on the market diffusion, and 

(3) effects of the electrification of road freight transport on the energy demand. Accordingly, 

this thesis handles three overarching research questions.  

Q1: Taking into account the locally resolved demand for freight transport, how can a station-

based public fast charging infrastructure for battery electric heavy-duty vehicles in Germany 

look like and which costs arise due to the infrastructure installation? 

The development of a regionally resolved data basis of truck traffic volumes is the first step to 

answer this question. The focus is on Germany as a relevant lead market (see 1.1), yet the 

international orientation of freight transport necessitates the integration of a European di-

mension. In addition to station-based charging, other charging options, such as overhead 

catenary lines and battery swapping stations, exist and have specific advantages and disad-

vantages (Speth & Funke, 2021). However, since the focus of vehicle manufacturers is current-

                                                             
7 See e.g. Liimatainen et al. (2019) for a technical analysis of road freight transport in Switzerland and Finland or 
Çabukoglu et al. (2018) for a technical analysis in Switzerland. Link and Plötz (2022) show a technical investigation 
for a food retailer truck fleet in Germany.  
8 See e.g. Craglia (2022), MPP et al. (2022), Tol et al. (2022), Neuhausen et al. (2022), or Plötz, Link, et al. (2023) for 
scenarios for Europe. See e.g. Gnann, Speth, Krail, et al. (2022), or Gnann et al. (2023) for scenarios for Germany.  
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ly mainly on stationary charging, these alternatives are not considered here9. The first research 

question is further operationalized into two sub-questions: 

Q1a: Where could a public fast charging infrastructure for battery electric heavy-duty vehicles 

be spatially located? 

Q1b: How should the public charging infrastructure be technically dimensioned in terms of 

charging points and charging power? 

The second research question deals with the interaction between charging infrastructure and 

the market diffusion of BET.  

Q2: What impact does the development of public fast charging infrastructure have on the 

market diffusion of heavy-duty electric vehicles and which truck technology appears to be 

economically viable from the user's perspective in Germany up to 2050? 

At this point, established total-cost-of-ownership (TCO) modeling10 is used to calculate the 

market diffusion of battery electric trucks (BET). However, the findings from Q1 are taken into 

account and the infrastructure ramp-up is integrated into the modeling. The modeling includes 

the German vehicle population above 12 t GVW, since vehicles with a GVW larger than 12 t are 

responsible for approximately 70% of the CO2 emissions of the German road freight transport 

(Wietschel et al., 2017). Following Noll et al. (2022) the thesis focuses on diesel trucks (DT) and 

natural gas trucks (GT) as existing technologies and on battery electric trucks (BET) and fuel cell 

electric trucks (FCET) as future technologies. To reach climate neutrality, PHET would have to 

be fueled with synthetic fuels. However, synthetic fuels will be scarce and expensive beyond 

2030, and their use in avoidable applications may lead to lock-in effects (Ueckerdt et al., 2021). 

Therefore, a market diffusion of PHET is neglected in this thesis. 

The integration of a charging location into the power grid takes between six months and up to 

ten years, depending on the required power (Kippelt et al., 2022). In order to enable a timely 

infrastructure ramp-up, it is necessary to consider the additional demand as well as the addi-

tional load in advance. Therefore, the requirements of road freight transport electrification on 

the energy system shall be estimated. According to Taljegård (2019), in addition to the geo-

graphical distribution, the total amount of energy and the load profile are relevant.  

Q3: What is the impact of battery electric road freight transport in terms of (1) the total 

amount of electric energy and (2) the load profile in Germany up to 2050?  

This thesis is, besides the scientific community, also relevant for representatives from policy 

and industry. The findings can be used to define policy frameworks for public fast charging 

                                                             
9 See e.g. Speth and Funke (2021) or Plötz, Speth, et al. (2021) for an exemplary presentation of advantages and 
disadvantages and a first attempt to model a joint station-based and overhead-catenary charging infrastructure.  
10 See e.g. Noll et al. (2022) or Speth, Kappler, et al. (2022) for recent TCO calculations for trucks, Plötz et al. (2019). 
or Gnann, Speth, Krail, et al. (2022) for market diffusion modeling for trucks. An overview of market diffusion 
scenarios for heavy-duty vehicles is given in Kluschke, Gnann, et al. (2019). 
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infrastructure ramp-up. They can also support investment decisions of potential infrastructure 

operators. Energy suppliers and grid operators may include the potential future energy de-

mand from battery electric trucks in their planning. 

As mentioned earlier, this thesis focusses on HDV > 12 t GVW in Germany. HDV can be further 

distinguished in tractor-trailer trucks and rigid trucks. While tractor-trailers are designed to 

carry a trailer and do not have own cargo capacity, a rigid truck can directly carry goods and 

can be combined with a trailer. As part of the market diffusion modelling for trucks, both 

bodies are modeled separately and differentiated in their technical framework parameters. 

The demand for both bodies is assumed to be exogenous and is not part of this dissertation.  

The thesis contains five central chapters. First, some background information on alternative 

fueled vehicles are given and the existing literature is summarized. The chapter addresses both 

content literature and methodological literature. Subsequently, chapter 3 presents data and 

assumptions that are relevant for the modeling process. Chapter 4 contains the modeling for 

the infrastructure models, as well as for the joint market diffusion model for vehicles and 

charging infrastructure. Chapter 5 presents and discusses the results of the modeling and 

contains summaries that answer the given research questions. Finally, chapter 6 summarizes 

the thesis and derives key conclusions, as well as future research needs. For the ease of read-

ing, it should be noted that this thesis consists of two central components: First, the pure 

infrastructure modeling based on exogenously given parameters, and second, the joint model-

ing of the market diffusion of infrastructure and vehicles. Therefore, the chapters 4 and 5 are 

divided into two parts, presenting pure infrastructure modeling and market diffusion modeling 

separately.  

Parts of this thesis build on excerpts from international peer-review publications by the au-

thor. Calculations in Breed et al. (2021) show the need for ZET to meet EU targets and thus 

provide a motivation for this thesis. Speth, Sauter, Plötz, and Signer (2022) describe a dataset 

on European traffic flows that serves as basis for infrastructure modeling. Speth, Plötz, et al. 

(2022), Speth, Sauter, and Plötz (2022), and Speth et al. (2024)11 contain the geographically 

resolved public fast charging infrastructure modeling, used in this thesis. The agent-based 

simulation of the technical feasibility of BET in Speth and Plötz (2024) is part of the market 

diffusion model in this thesis. An early version of the economic assessment for BET is published 

as a conference paper (Speth, Kappler, et al., 2022). In the course of this thesis, references will 

be made to these and other, less central, publications by the author. Chapters that refer to 

those publications are marked accordingly.  

 

                                                             
11 This publication is still under review at the time of submission of this thesis. 
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2 Background and existing literature  

The following chapter summarizes the current state of research relevant to this thesis. The 

subchapter 2.1 introduces the current knowledge with respect to alternative fueled heavy-

duty vehicles and their infrastructure. The subchapters 2.2 and 2.3 introduce the current 

knowledge regarding infrastructure modeling and market diffusion modeling.  

2.1 Alternative fueled heavy-duty vehicles and their 

infrastructure 

All European truck manufacturers commited to 100% zero-emission truck sales in 2040 (ACEA, 

2020). However, the requirements for HDV are heterogenous. For example, requirements 

differ in terms of the vehicle body, the power, and the vehicle range. They depend on the 

intended use, for example regional transport, long-distance transport, or special operations 

like garbage service. Therefore, it is uncertain whether one technology will be suitable for all 

purposes in the future (ACEA, 2016). Accordingly, there is a broad selection of alternatives 

discusssed: (1) direct use of (renewable) electricity, (2) (synthetic) hydrogen, or (3) (synthetic) 

carbon fuels. In the following, a brief overview on each alternative is given. Afterwards, the 

current state of literature on a possible diffusion of BET, as the main technology in this thesis, 

is shown in more detail in subchapter 2.1.2. Finally, there is a section on public infrastructure 

needs for BET in subchapter 2.1.3.  

2.1.1 Alternative fuel heavy-duty vehicles 

In 2021, 95% of HDV with more than 3.5 t GVW sold in the EU were diesel trucks (DT). Alterna-

tive drive systems without BET, typically gas trucks (GT), accounted for 3.6% (ACEA, 2022b). At 

first glance, synthetic carbon fuels - for example synthetic diesel for DT or synthetic methane 

for GT - appear to be the simplest solution, as they can be used directly in existing vehicles 

(Plötz, Wachsmuth, et al., 2021). The necessary refueling infrastructure is also already in place. 

However, due to the initially highly limited availability of synthetic fuels (Odenweller et al., 

2022; Ueckerdt et al., 2021), they should be used for applications with less options - such as 

aviation and shipping - and only in exceptional cases for HDV (Dahal et al., 2021; Plötz, 

Wachsmuth, et al., 2023). In addition, prices for synthetic fuels will be higher than for conven-

tional fuels (Odenweller et al., 2022; Ueckerdt et al., 2021). However, both DT and GT are 

available today. GT are offered as compressed natural gas (CNG) vehicles and liquefied natural 

gas (LNG) vehicles, with LNG more widespread for HDV. In addition, depending on the manu-

facturer, the vehicles are offered with spark ignition or high-pressure direct injection. Spark 

ignition engines are cheaper than high-pressure direct injection, but have an approximately 
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22% higher fuel consumption compared to DT. High-pressure direct injection engines for DT 

reach almost the efficiency of a DT (Mottschall et al., 2020). The well-to-wheel efficiency of a 

DT is approximately 20% to 25%, when using renewable electricity. Relevant at this point is 

also the comparatively low tank-to-wheel efficiency of the vehicle of approximately 35% to 

40% (Plötz et al., 2018). 

In terms of sales share, hydrogen powered trucks do not play a relevant role in the EU up to 

now. However, first test fleets with several dozen vehicles are already in operation (IEA, 2022). 

In principle, hydrogen can be used in combustion engine trucks or in fuel cell electric trucks 

(FCET). In this thesis, the focus is on FCET, since the fuel cell, due to its higher efficiency, ena-

bles cheaper operating costs than the hydrogen combustion engine truck (Link et al., 2021). 

Here, the fuel cell supplements an electric powertrain. Today, the storage technology for 

hydrogen on trucks is uncertain. Some manufacturers, such as Hyundai, rely on compressed 

hydrogen at 350 bar. Other manufacturers, such as Toyota or Nikola, use compressed hydro-

gen at 700 bar. Daimler announced series production for an FCET powered by liquefied hydro-

gen at approximately -245°C at 16 bar in 2027. The main advantage would be the high range of 

up to 1,000 km, compared to several hundred km for compressed hydrogen. Even higher 

ranges could be achieved with cryo-compressed hydrogen at around -200 °C and 300 bar (H2 

Mobility, 2021; IEA, 2022). A corresponding infrastructure setup would be necessary for all 

systems (H2 Mobility, 2021). The well-to-wheel efficiency of FCET is approximately 25% to 

35%, when using renewable electricity (Plötz et al., 2018). 

Battery-electric trucks (BET) also accounted for less than 1% of sales in the EU in 2021. Howev-

er, all major manufacturers offer BET or will offer BET soon1. Some of them will even focus 

purely on BET (NOW, 2023). The most relevant factor is the vehicle range. Today’s models 

offer up to 300 km range with a single battery charge (Mercedes Benz, 2023; Volvo, 2023b). 

Both, literature (Nykvist & Olsson, 2021) and manufacturers’ estimates (NOW, 2023) assume 

that in the near future higher mileage will be possible. Furthermore, studies indicate that 

todays’ payload loss due to the heavy batteries of 5% to 20% will almost disappear within this 

decade (Basma & Rodríguez, 2022; Basma et al., 2021). However, BET are dependent on a fast 

charging infrastructure. While trucks today use the CCS standard with typically up to 350 kW 

developed for passenger cars, MCS charging with at least 1,000 kW should be possible by the 

mid of the decade. MCS charging allows for recharging within 45 minutes mandatory break 

after 4.5 h of driving (CharIN, 2023; NOW, 2023; Nykvist & Olsson, 2021). Finally, BET profit 

from high well-to-wheel efficiency of approximately 80% (Plötz et al., 2018). 

2.1.2 Overview of battery electric vehicles diffusion literature 

Today, there are almost no alternative fuel vehicles in the German heavy-duty vehicles fleet. In 

2021, the registration share of ZEV in the medium and heavy-duty vehicle segment was well 

                                                             
1 According to NOW (2023), no manufacturer prioritizes overhead catenary trucks as BET. Therefore, they are 
excluded in this analysis.  
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below one percent (ACEA, 2022b; KBA, 2022). Simultaneously, peer-reviewed and gray litera-

ture shows a high potential for alternative fuel heavy-duty vehicles. A first literature review on 

the “market diffusion of alternative fuels and powertrains in heavy-duty vehicles” (Kluschke, 

Gnann, et al., 2019, p. 1010) was published in 2019. To reflect the current state of the scientific 

literature, an additional literature research was conducted. For this purpose, the original 

search string from Kluschke, Gnann, et al. (2019) was used:  

("𝑡𝑟𝑢𝑐𝑘𝑠" ∨  "ℎ𝑒𝑎𝑣𝑦 − 𝑑𝑢𝑡𝑦" ∨  "𝑙𝑜𝑛𝑔 − ℎ𝑎𝑢𝑙") ∩  

("𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒 𝑓𝑢𝑒𝑙𝑠" ∨  "𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒 𝑝𝑜𝑤𝑒𝑟𝑡𝑟𝑎𝑖𝑛𝑠" ∨  "𝑑𝑒𝑐𝑎𝑟𝑏𝑜𝑛𝑖𝑧𝑎𝑡𝑖𝑜𝑛" 

∨  "𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛" ∨  "𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐 𝑟𝑜𝑎𝑑")  ∩ 
(2-1) 

("𝑚𝑎𝑟𝑘𝑒𝑡 𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛" ∨  "𝑚𝑎𝑟𝑘𝑒𝑡 𝑝𝑒𝑛𝑒𝑡𝑟𝑎𝑡𝑖𝑜𝑛")  

The research conducted in Scopus for the period from 2019 until March 2023 resulted in 234 

entries without further filtering. Including the results from Kluschke, Gnann, et al. (2019), the 

period from 2011 to 2023 is covered. In addition, relevant publications known to the author 

were added.  

Since this thesis focusses on BET, only publications that consider BET or - more general - zero 

emission trucks (ZET) as an option have been taken into account. Publications that explicitly do 

not include Germany were excluded, due to the German perspective of this thesis. For exam-

ple, publications such as Alonso-Villar et al. (2022), Lajevardi et al. (2022), or Xue et al. (2023) 

were disregarded, since they refer explicitly to Iceland, Canada, and China. Publications such as 

IEA (2017) or Mulholland et al. (2022) were considered, since they present a global or Europe-

an perspective that includes Germany. However, corresponding publications are cited below 

for partial aspects, when appropriate. In addition, only publications containing HDV with a 

GVW of more than 12 t were considered. Due to different definitions of vehicle segments, it 

was not always possible to exclude vehicles with a lower GVW from the analysis.  

Table 2-1 gives an overview on studies dealing with the market diffusion of BET. The table is 

divided into three groups, presenting (1) publications taken from Kluschke, Gnann, et al. 

(2019), (2) publications from the additional literature review, and (3) publications added man-

ually. The region and the weight column refer to the closest possible definition related to the 

object of investigation in this thesis. This means that the cited publications may include other 

regions or weight classes as well. Since multiple studies do not explicitly differentiate between 

the European Union and the European continent, EU can refer to both in this case. The period 

comprises the earliest and the latest reporting date. This does not mean that data is available 

for every year in between. The columns on registrations and stock indicate whether the publi-

cation reports vehicle registrations, vehicles stocks, or both. There are some publications that 

neither report registrations nor stocks for BET. Typically, these are publications that examine 

the economic or technical feasibility at a particular point in time without deriving a market 

diffusion. Finally, the format column evaluates the type of publication. A distinction is made 

between peer-reviewed journal articles, conference papers, and other studies.  
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Table 2-1: Overview of studies on the market diffusion of BET. 

Author Region Weight Period Registra-

tions 

Stock Format 

Publications, adopted from Kluschke, Gnann, et al. (2019): 

Bründlinger et al. (2018) GER > 12 t 2015-2050 √ √ Study 

IEA (2017) Global > 15.5 t 2015-2060  √ Study 

Seitz (2015) GER > 6 t 2015-2035  √ Thesis 

T&E (2017) EU > 16 t 2015-2050 √  Study 

Publications, found during literature review:  

Breed et al. (2021) EU > 16 t* 2022-2030 √ √ Journal 

Gnann, Speth, Krail, et al. 

(2022) 

GER > 12 t 2011-2050 (√) √ Journal 

Gray et al. (2022) EU 40 t 2025-2040   Journal 

Noll et al. (2022) EU > 12 t 2021   Journal 

Manually added publications: 

Basma et al. (2021) EU 40 t 2020-2030   Study 

Basma et al. (2022) EU 40 t 2020-2030   Study 

Craglia (2022) EU > 7.5 t 2020-2050 √  Study 

Gnann et al. (2023) GER > 12 t 2011-2050 √ √ Study 

Hacker et al. (2020) GER > 12 t 2025   Study 

Jöhrens et al. (2021) GER > 12 t 2025-2030   Study 

Jöhrens et al. (2022) GER > 12 t 2030   Study 

Kühnel et al. (2018) GER > 12 t 2015-2030   Study 

MPP et al. (2022) EU > 16 t** 2020-2050  √ Study 

Mulholland et al. (2022) EU > 16 t* 2020-2050 √  Study 

Neuhausen et al. (2022) EU > 12 t 2020-2035 √  Study 

NOW (2023) GER > 12 t 2023-2030 √  Study 

Plötz, Link, et al. (2023) EU > 12 t 2020-2050  √ Study 

Pierre-Luis Ragon et al. 

(2022) 

EU > 16 t** 2021-2035  √ Study 

Speth, Kappler, et al. (2022) GER > 16 t** 2020-2050   Conference 

Tol et al. (2022) EU > 16 t 2020-2040 √  Study 

Unterlohner (2021) GER 40 t 2020-2030   Study 

Wietschel et al. (2017)*** GER > 12 t 2030  √ Study 

*The publication considers vehicles with a 4x2 axle configuration and a GVW of over 16 t, and vehicles with a 6x2 axle configura-

tion. 

**The report does not specify a definition of HDV. Since the report refers to the European regulation, it is plausible to refer to 

vehicles with a GVW of over 16 t.  

*** The study contains values from 2015 to 2030. However, a value for the considered vehicle weight can only be derived for 

2030.  
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All publications contain at least one scenario for the future market diffusion of BET. Depending 

on the goal of the publication, scenarios can be designed differently. According to Börjeson et 

al. (2006), there are three major types of scenarios. From a user’s perspective, they differenti-

ate predictive, explorative, and normative scenarios. Additionally, they define three questions 

to differentiate between the three scenario types. The first question, “What will happen?” 

(Börjeson et al., 2006, p. 725), is typical for predictive scenarios. The concept of predictive 

scenarios is strongly connected to forecasts and probabilities. Explorative scenarios focus on 

“What can happen?” (Börjeson et al., 2006, p. 725). Typically a set of scenarios, regarded as 

possible, is investigated. In comparison to predictive scenarios, explorative scenarios often 

focus on a longer timespan with more fundamental changes. Normative scenarios deal with 

“How can a specific target be reached?” (Börjeson et al., 2006, p. 725). They investigate how to 

reach a specified target, for example a political demand, from a current situation.  

Among the publications mentioned, there are two types of predictive scenarios. On the one 

hand, there are older scenarios from the beginning of the debate on electrified HDV trucking. 

For example, early scenarios can be found in Wietschel et al. (2017) or T&E (2017). The publi-

cations outline one possible future perspective and indicate that BET HDV can be relevant in 

the future. On the other hand, industry-oriented publications, for example Neuhausen et al. 

(2022), try to design a plausible perspective for the future truck market. A special role is dedi-

cated to NOW (2023), as the publication provides results from cleanroom talks with all major 

truck manufacturers. The described market diffusion therefore represents an industry perspec-

tive. In total, the manufacturers have announced a 57% BET registration share for HDV (> 12 t 

GVW) in 2030. Additionally, 17% FCET registration share is forecasted. It should be noted that 

these numbers may also be influenced by interests of the manufacturers, for example a rapid, 

funded infrastructure development.  

Normative scenarios in the publications presented are aimed in particular at meeting GHG 

emission targets. Both Breed et al. (2021) and Mulholland et al. (2022) calculate the necessary 

sales share of ZEV to meet the EU emission performance standard for HDV (EU, 2019). While 

Mulholland et al. (2022) do not yet consider ZEV for heavy-duty vehicles in long-haul operation 

to meet the EU performance standard in 2030, Breed et al. (2021) announce at least 4% sales 

share for all regulated vehicles. However, for other regulated heavy-duty segments, Mulhol-

land et al. (2022) calculate up to 12% sales share in 2030. Therefore, both publications agree 

that by 2030, first ZEV HDV have to be in use2. Mulholland et al. (2022) also show that even 

higher ZEV shares are necessary to fulfill the European climate law (EU, 2021). Pierre-Luis 

Ragon et al. (2022) assume a 60% reduction of GHG emission by 2030 and calculate a stock 

share of 7% ZEV relevant to the regulation. Similar results can be found for non-European 

analysis. For example, Talebian et al. (2018) converts a 64% GHG emission reduction target in 

British Columbia in 2040 to a necessary ZEV stock between 60% and 100%. 

                                                             
2 Both publications do not yet consider the European Commisson’s proposal EC (2023) to enhance the performance 
standards in 2030 to a reduction of 45% of GHG emission instead of 30% compared to 2019/2020.  
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A large part of the identified publications can be classified as explorative scenarios. They can 

be divided into two groups. First, there are scenarios that focus purely on the economic, tech-

nical, or techno-economic feasibility of BET HDV. Second, there are scenarios that include 

market diffusion analysis. Both groups are presented in the following.  

Purely technical analyses, as presented in Liimatainen et al. (2019) or Çabukoglu et al. (2018) 

for Finland and Switzerland are not included in the literature review with a German perspec-

tive. Basma et al. (2021) show that BET HDV (40 t GVW) are already economically competitive 

in Germany, France, and the Netherlands compared to DT, taking the current policy framework 

into account. They examine different policy measures and show that even without any addi-

tional measures, BET will become economically feasible in all countries considered - France, 

Germany, Great Britain, Italy, the Netherlands, Poland, and Spain - by 2030. Basma et al. 

(2022) extend the analysis to FCET and find that FCET will become competitive to DT in Europe 

in 2030, if the hydrogen price at the pump will be around 4 €/kg. Regarding the economic 

potential of BET, similar results can be found at Unterlohner (2021), Speth, Kappler, et al. 

(2022), or Noll et al. (2022). The publication by Noll et al. (2022) is characterized by a broad 

parameter variation and identifies BET as a particularly attractive solution, not only for small 

and medium trucks, but also for HDV with a GWV of more than 12 t. However, those analyses 

include technical restrictions only to a very limited extent. In contrast, techno-economic anal-

yses add a technical component to the approach. Similar to Noll et al. (2022), Gray et al. (2022) 

investigate a wide range of input parameters in a TCO analysis. However, they add assump-

tions regarding load reduction due to the battery weight. They find that for vehicles with a 

range of less than 450 km, BET is the most promising solution compared to synthetic fuels 

(power-to-liquid, power-to-methane, hydrogen). For higher ranges, they assume advantages 

for hydrogen. However, fast charging for BET with more than 350 kW is not considered. 

Jöhrens et al. (2021) and Jöhrens et al. (2022) use driving range distributions from a transport 

model, to identify a techno-economic potential of BET, overhead catenary BET, and FCET. In 

2030, the authors assume that BET will achieve an economic advantage over FCET and diesel 

vehicles in the segment above 12 t GVW, even without subsidies. However, the economic 

advantage for BET and overhead catenary BET for long-distance transport depends on a fast-

charging infrastructure or catenary lines. Analyses focusing on the required range and weight-

constraints also exist for HDV in the USA. Mauler et al. (2022) and Hunter et al. (2021) assume 

that BET HDV with a GVW of more than 15t will be competitive to DT and FCET in long-haul 

operation with more than 750 km vehicle range, despite technical limitations. 

However, the explorative scenarios presented so far do not derive possible market diffusion 

scenarios. Using a system dynamics modeling approach, Seitz investigated initial diffusion 

scenarios for alternative drives for HDV with more than 6 t GVW already in 2015. For 2035, he 

calculated a BET stock share of 11%, mainly limited by technical conditions, for example the 

vehicle range. More recent publications, for example Tol et al. (2022) or MPP et al. (2022), 

consider a nearly complete fleet conversion to BET to be possible and even probable com-

pared to FCET. While Tol et al. (2022) show a full electrification potential as early as 2030, MPP 

et al. (2022) point out that vehicle supply as well as infrastructure development could inhibit 
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the market diffusion of BET. However, they do not perform a detailed analysis of the described 

effects. Finally, Craglia (2022) considers vehicles with more than 7.5 t GVW in the EU and 

performs a Monte Carlo simulation with 1,000 scenarios on technical and economic parame-

ters for 2020 to 2050. In the long-term, 90% of the fleet could be converted to BET. Depending 

on the scenario, BET sales shares increases significantly from 2025 at the earliest. In almost all 

scenarios, FCET are neither competitive with DT nor with BET.  

Finally, there are publications that show both explorative and normative characteristics. These 

are publications that are intended to show different paths to reach a politically defined goal, 

like climate neutrality by 2050. These include IEA (2017), Bründlinger et al. (2018), Gnann, 

Speth, Krail, et al. (2022), Gnann et al. (2023), and Plötz, Link, et al. (2023). More recent studies 

show an increasing share of BET. The assumed development of charging infrastructure is 

identified as a key factor, especially when more recent results from the same model are com-

pared with earlier calculations, for example in Gnann, Speth, Krail, et al. (2022) and Gnann et 

al. (2023). However, a fixed infrastructure expansion is still assumed; there is no dependency 

of the infrastructure expansion on the market diffusion of alternative fuel vehicles. 

Figure 2-1 shows the bandwidth of the BET share in different scenarios. The figure includes all 

publications from Table 2-1 that report either registrations or stocks. For publications with 

multiple scenarios, the most extreme scenarios were selected. Publications with only one 

scenario were weighted double to avoid a bias. The figure shows the minima and maxima as 

well as the upper and lower quartiles of all scenarios in 5-year-steps. Gray indicates registra-

tion numbers, green stock numbers. In addition, the mean values are shown. The mean value 

is more stable than the median, which is vulnerable due to the choice of the extreme scenari-

os. This is also shown in Figure 2-2 and Figure 2-3 that show the values of the individual publi-

cations in 2030 and 2050. 
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Figure 2-1: Future market diffusion of BET with a GVW higher than 12 t according to publications in Table 2-1 in 5-

year-resolution. All considered publications refer to Germany or the EU. The two extreme scenarios of 

the publications are considered. For publications with one scenario, this scenario is weighted twice. Dark 

grey indicates the upper and the lower quartile of registrations of all scenarios reporting values for the 

considered year. Light gray indicates the minimum and maximum values. Dark green indicates the upper 

and the lower quartile of stock of all scenarios reporting values for the considered year. Light green indi-

cates the minimum and maximum values.  
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Figure 2-2: Registrations share of BET according to different studies in 2030 and 2050. For better readability, only 

the first author, the year of publication, and the scenario name are mentioned. The two extreme scenar-

ios of the publications are considered. For publications with one scenario, this scenario is weighted 

twice. The green dot shows the mean value of all studies. All publications refer to Germany or the EU. 

 

Figure 2-3: Stock share of BET according to different studies in 2030 and 2050. For better readability, only the first 

author, the year of publication, and the scenario name are mentioned. The two extreme scenarios of 

the publications are considered. For publications with one scenario, this scenario is weighted twice. The 

green dot shows the mean value of all studies. All publications refer to Germany or the EU. 
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In summary, the perspective up to 2030 - but also up to 2050 - shows a high bandwith with 

regard to the possible spread of BET. Recent studies show that BET will be economically 

competitive with DT at least for parts of the fleet in almost all scenarios. Scenarios without BET 

are older scenarios or extreme hydrogen worlds. However, uncertainty exists with regard to 

technical feasibility and influence of the infrastructure. Therefore, in current scenarios, the 

complete conversion of the fleet apperas to be just as possible as a limited use at low driving 

ranges. 

2.1.3 Infrastructure needs of battery electric trucks   

Both, vehicle manufacturers (see NOW (2023)) and vehicle customers (see subchapter 2.3.2) 

identified the development of a (public) charging infrastructure as a crucial parameter for the 

diffusion of BET.  

However, Borlaug et al. (2021) showed for class 7 and class 8 HDV (~ >12 t GVW) in the USA 

that 70% of the vehicles drive less than 100 mi (161 km) per day and therefore will probably 

not use a public fast charging infrastructure. Similar results have been shown by Link and Plötz 

(2022) for a food retailer truck fleet in Germany. They found that at least half of the investigat-

ed 224 trucks with a GVW > 18 t can be electrified immediately without any public charging 

infrastructure with vehicles available today. However, while almost all of the solo trucks in the 

fleet can be electrified, the electrification of tractor-trailer combinations is more complicated 

without public recharging. Liimatainen et al. (2019) analyzed 18,500 driving profiles with data 

from three days or more from vehicles with more than 3.5 t GVW in Switzerland and Finland 

and found that under current infrastructure conditions (50 kW depot charging and 50 kW 

public charging) about half of the fleet can be electrified. However, they argued that even with 

technical improvement (larger batteries with up to 800 kWh and up to 400 kW public charging 

power) a full electrification in Finland will be complicated due to long and heavy truck-trailer 

combinations. They calculated a share of 80% of the trips in Finland and of 93% in Switzerland. 

Overall, it can be seen that there is a relevant electrification potential without a public charg-

ing infrastructure. However, it is also shown that a full fleet conversion to BET requires a public 

charging infrastructure.  

Lajevardi et al. (2022) used a partial equilibrium simulation model for British Columbia and 

found that a rapid roll-out of charging infrastructure would enable BET to dominate for short-

haul traffic shorter than 322 km and enables a share of approximately 40% for long-haul traffic 

in 2050. While trucks today use the CCS standard with typically up to 350 kW developed for 

passenger cars, Nykvist and Olsson (2021) showed that the introduction of megawatt charging 

may significantly increase the technical and economic efficiency of BET. Accordingly, CharIN 

(2023) supports the introduction of a megawatt charging system (MCS) standard. However, it 

is uncertain today to what extent public fast charging will be needed. Mathieu (2020) assumed 

a 10% public charging split with up to 600 kW in 2030 in the EU and calculated a demand for 
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14,400 public fast charging points (600 kW) in the EU in 2030. Pierre-Luis Ragon et al. (2022) 

found that almost 50% of all long-haul tractor trailers - segment 5-LH in EU (2019)3 - have a 

daily electricity need of less than 680 kWh per day and can be operated purely by overnight-

charging. 70% of the trucks can be operated with one CCS charging event. According to their 

analysis, 30% of the vehicles under investigation need more than 800 kWh electricity per day 

and therefore rely on MCS charging. Based on these assumptions, Pierre-Luis Ragon et al. 

(2022) estimated a need for 7,500 public MCS chargers, 9,000 CCS public CCS chargers, and 

23,500 public overnight chargers (100 kW) in the EU in 2030. In contrast to the previous stud-

ies, the European Automobile Manufacturers’ Association (ACEA) called for at least 40,000 

public fast charging points and another 40,000 100 kW public charging points in the EU by 

2030 (ACEA, 2021). However, ACEA (2021), Pierre-Luis Ragon et al. (2022), and Mathieu (2020) 

represent calculations of different nongovernmental organizations. There is a lack of scientific 

publications on the demand for public fast charging infrastructure.  

Another open question is the spatial distribution of necessary infrastructure. As mentioned in 

subchapter 1.1, the AFIR proposal foresees public charging infrastructure at 60 km intervals 

along the EU TEN-T core network in 2025. Along the TEN-T comprehensive network, the pro-

posal suggests a distance of 100 km by 2030. In Germany, the National Centre for Charging 

Infrastructure (NLL) is currently working on implementing the AFIR proposal in a public charg-

ing infrastructure network (see Lahmann (2022)). However, there is still no regionally resolved 

analysis for Germany or Europe. Using GPS data from current trucks, Plötz and Speth (2021) 

identified possible future charging locations in Europe. A similar approach is described by 

Dimatulac et al. (2023) for Ontario (Canada). Whitehead et al. (2021) used GPS data and an 

optimization approach to identify 10 charging locations in South East Queensland (Australia) 

for short-haul trucks. However, an extensive modeling to identify charging locations - as al-

ready existing for battery electric passenger cars (Metais et al., 2022) - is still missing.  

Infrastructure needs also depend on BET’s load profile throughout the day as well as its charg-

ing strategy. Tong et al. (2021) estimated that a majority of trucks in the USA start driving 

before 5:00 and derived load curves with a midday peak as well as high load in the afternoon 

hours. Dimatulac et al. (2023) determined a similar load curve for long-haul trucks in Ontario 

(Canada). Borlaug et al. (2021) focused on depot charging and implemented three different 

charging strategies. For the strategy “immediate (100 kW)”, their load curve is similar to the 

other studies with a high demand between 12:00 and 23:00. As a second option, they imple-

mented “delayed (100 kW)”, where the vehicles charge as late as possible. This resulted in an 

increased charging demand from 20:00 to approximately 9:00. Finally, the “constant minimum 

power” charging strategy - charging as slow as possible to be recharged when the new tour 

starts - resulted in the flattest load curve with an increasing energy demand between approx-

                                                             
3 According to Breed et al. (2021) and Pierre-Luis Ragon et al. (2022), the vehicle segment 5-LH accounts for 60% of 
all vehicles under the EU’s firm-level emission performance standards regulation EU (2019). However, this is the 
most relevant vehicle segment for MCS charging, so the share of vehicles with MCS charging need in the entire 
regulated fleet is lower.  
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imately 15:00 and 8:00. Analyses for 36 substations in Texas as an example with up to 100 

vehicles per substation showed that in less than 25% of the cases extensions of the substation, 

the transformer, or the feeder breaker would have to be made. In summary, the publications 

show that fast charging for trucks may lead to an increased energy demand during the day, 

while depot charging may lead to energy demand overnight. Accordingly, initial load curves for 

exemplary charging locations in Germany in Burges and Kippelt (2021) showed both a daytime 

peak and a high demand at night. However, the size of the effect should be further investigat-

ed, especially when additionally considering a market diffusion scenario.  

2.2 Infrastructure modeling4  

This chapter describes different approaches to model public charging infrastructure and their 

advantages and disadvantages. 

2.2.1 Modeling options 

The modeling of refueling or charging infrastructure - or, more generally, of locations in net-

works - has been subject of scientific publications since the 1960s. Therefore, the following 

overview presents basic works as well as works with an influence on the specific question of 

charging infrastructure for BET. Metais et al. (2022) and Deb et al. (2018) identified three 

major groups of infrastructure modeling approaches: (1) node-based models, (2) path-based 

models, and (3) tour-based models. The following description follows this structure and the 

main findings from Metais et al. (2022) and Deb et al. (2018). Figure 2-4 shows a schematic 

illustration, the required input data, and qualitatively the strength and weaknesses of the 

three approaches. 

                                                             
4 Parts of this subchapter are based on Speth, Plötz, et al. (2022) and Speth et al. (2024). Speth et al. (2024) is still 
under review at the time of submission of this thesis. 
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Figure 2-4: Schematic comparison of node-based, path-based and tour-based infrastructure location models. 

Performance evaluation is qualitative (+: positive, o: neutral, -: negative). Own illustration, based on Me-

tais et al. (2022). 

In all approaches, nodes and edges represent the infrastructure, in our case the road network. 

Nodes represent intersections or access points, but also relevant points in the road network. 

Edges model the connecting network.  

Node-based models assign demand to specific locations - like traffic hubs or buildings -, repre-

sented as nodes. Facilities at nodes can fulfill the demand in a particular distance. The Set 

Covering Location Model (SCLM), places facilities such that a minimum number of facilities can 

serve all demands. In an early work, an SCLM placed emergency service facilities (Toregas et 

al., 1971). As a variation, the Maximum Covering Location Model (MCLM) places a given num-

ber of facilities to cover as much demand as possible (Church & ReVelle, 1974). More recently, 

SCLM and MCLM have been used for the positioning of charging stations for battery electric 

cars5. Neither SCLM nor MCLM consider the effects of the distance between the demand 

nodes and the positioned facilities, as long as it is smaller than the specified distance (Metais 

et al., 2022). Therefore, the ρ-median model, introduced by Hakimi (1964) to identify optimal 

locations for police stations and switching stations in communication networks, positions ρ 

facilities so that the weighted distance between demand and facilities is minimized. This ap-

proach is also regularly used in the literature to distribute charging stations6. Node-based 

models benefit from comparatively low data requirements. For example, traffic count data (S. 

Á. Funke, 2018)) or GPS parking data (Yang et al., 2017) and traffic statistics for calibration are 

                                                             
5 See e.g. Csiszár et al. (2019) for a case study in Budapest (Hungary) (SCLM), Vazifeh et al. (2019) for a case study in 
Boston (USA), Dong et al. (2019) for a case study in London (Great Britain) (MCLM), Yang et al. (2017) for a case 
study on electric taxi charging stations in Changsha (China) (MCLM). For a more detailed overview, see Metais et al. 
(2022). 
6 See e.g. Gavranović et al. (2014) for a case study in Turkey or Zhu et al. (2017) for a network with 25 nodes. See S. 
Y. He et al. (2016) for a comparison of SCLM, MCLM, and ρ-median model. Again, for a more detailed overview, see 
Metais et al. (2022). 
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sufficient. With regard to BET, Dimatulac et al. (2023) used GPS data from diesel trucks in 

Ontario (Canada) to identify truck parking locations and estimate BET’s future local public 

energy demand. The approach works particularly well, if vehicles have to be assigned to a 

specific regular charging location. This is exemplarily the case for taxi fleets in urban transport 

systems. A consideration on vehicle level or individual driving behavior, such as tour-data and 

breaks, does not take place. Both, GPS and traffic count data count one vehicle multiple times 

at different locations. This leads to a limitation of the node-based approach in highway traffic 

charging infrastructure modeling, since the actual charging demand of the counted vehicles 

cannot be determined exactly. However, even node-based models with low data requirements 

are NP-hard problems with high computational effort in large-scale applications (Metais et al., 

2022; Yang et al., 2017). Therefore, heuristics are occasionally used and in some cases, optimi-

zation is completely omitted7. Motoaki (2019) showed that the real-world distribution of Tesla 

superchargers in the USA is similar to node-based modeling. The stations cover the area and 

have similar distances to each other.  

Path-based models do not consider the traffic volume at nodes, but the traffic flow on origin-

destination-paths (OD). Hodgson (1990) introduced the Flow Capturing Location Model 

(FCLM), basically a path-based version of the MCLM. A path is recharged or refueled, if at least 

one node with a refueling or charging infrastructure is passed. In contrast to the MCLM with 

road count data, vehicles are not considered multiple times for infrastructure positioning. This 

approach has also been successfully applied to charging stations for passenger cars8. To take 

the necessity of multiple stops into account, Kuby and Lim (2005) invented the Flow Refueling 

Location Model (FRLM). The FRLM, as originally formulated, is based on considering every 

possible combination of refueling locations. Since the FRLM is also an NP-hard problem (Vries 

& Duijzer, 2017), Lim and Kuby (2010) proposed several heuristics to keep the computation 

time manageable. Capar and Kuby (2012) and Capar et al. (2013) reformulated the problem. 

Instead of computing every possible combination of refueling locations, they determined for 

each arc in a path at which nodes a refueling location could be constructed to pass the arc. 

This allows the solution of larger, real-world problems. Jochem et al. (2019) used this approach 

to calculate a European charging network for battery electric cars with several hundred charg-

ing stations, 128 of them in Germany. However, problem size remained an issue. To reduce the 

problem size, they considered only paths that are driven by at least 5,000 vehicles per year. Y. 

He et al. (2019) calculated a fast charging network for cars in the USA, using flows between 

4,486 regions. To keep the model solvable, they combined regions into 196 clusters, using the 

K-means algorithm. In summary, path-based models require a more complex data basis in the 

form of traffic flow data. Transport statistics are needed for calibration. Path-based models are 

thus well suited for modeling charging infrastructure for long-distance traffic on highways. As 

described earlier, data availability as well as computational power can be demanding.  

                                                             
7 See e.g. Hosseini and MirHassani (2015) for a case study in Phengu County (China), S. Á. Funke (2018) for a case 
study in Germany without optimization, H. Wang et al. (2019) for a case study in Singapore without optimization.  
8 See e.g. J. He et al. (2018) for an FCLM including solving heuristic. 
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Tour-based models typically rely on large datasets, e.g. driver’s logs or GPS data. In addition to 

OD-paths of the path-based models, the dataset provides the linking of individual paths to 

vehicle tours. Methodologically, they are not fully categorized. However, streams can be 

identified (Metais et al., 2022). For example, GPS data can be used as node data or path data. 

Using GPS data from eight million vehicle trips for an MCLM and 116 possible charging loca-

tions, Whitehead et al. (2021) identified up to 10 optimal charging locations for short-haul 

trucks in South East Queensland (Australia). Simulation of vehicle trips, sometimes in combina-

tion with optimization approaches, is also typical for tour-based models. For example, Xi et al. 

(2013) used trip data to simulate charging behavior of potential battery electric cars and iden-

tified optimal slow-charging locations in the city of Columbus (USA). Since tour-based data is 

hard to access for privacy reasons and can be biased (Metais et al., 2022), it is complicated to 

use for country-wide infrastructure modeling. By chaining individual OD paths, the required 

computational power further increases. However, modeling for both urban and highway traffic 

is possible. Individual aspects, such as breaks between tours, can be taken into account.  

2.2.2 Capacity constraints  

Capacity constraints can supplement the infrastructure modeling for battery electric vehicles. 

Typical capacity constraints include area constraints or limitations in locally available electricity 

power (Metais et al., 2022). This is highly relevant for planning actual charging locations, as 

unconstrained models can easily reach up to several hundred chargers per location, which 

almost always exceeds the local number of available parking lots and local electricity grid 

capacities.  

In node-based models, the capacity constraint can be included as an additional constraint. For 

example, Zhu et al. (2017) integrated a maximum number of vehicles per timeframe, a maxi-

mum voltage, and a maximum current as additional constraints of a ρ-median model. Vazifeh 

et al. (2019) added a capacity constraint to an SCLM. They proposed to allow multiple facilities 

in a single node and to interpret them as multiple plugs in one station or multiple stations in 

the area of the node.  

With regard to path-based models, Upchurch et al. (2009) criticized that in the FRLM the 

presence of one charging station is sufficient to supply all passing paths. They introduced a 

Capacitated Flow Refueling Location Model (CFRLM) that restricts the number of vehicles 

refueled at one station. To avoid too much refueling at one station, the CFRLM - in contrast to 

the FRLM - must determine exactly at which location each vehicle is actually refueled. This 

makes optimization much more difficult, especially since Upchurch et al. (2009) still used a by 

now deprecated form of the FRLM as a basis. They aimed to maximize the traffic covered by 

the stations and placed four refueling stations in a simplified road network of Arizona (USA) 

with 50 nodes. Cross-border traffic was excluded, and the system was designed to handle peak 

hour traffic. However, they stated that “the amount of refueling capacity that could be built at 

each node is potentially infinite “ (Upchurch et al., 2009, p. 103). In the basic version of the 

model, they limited the amount of vehicles per station, but not the number of stations per 
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node. Y.-W. Wang and Lin (2013) used a CFRLM to design a charging network for scooters in 

Phengu County (China) and took 12 paths into account. H. Zhang et al. (2018) included a power 

supply network as restriction to the CFRLM and applied it to a network with 25 nodes. While 

previous models typically limited the maximum amount of vehicles per station, Hosseini and 

MirHassani (2017) limited the amount of energy delivered from one station and improved 

performance. P. K. Rose et al. (2020) transferred the FRLM to FCET and designed a hydrogen 

refueling network for Germany with a capacity constraint for every node in the network. To 

run the whole German truck fleet above 26 t gross vehicle weight on hydrogen, they consid-

ered 2,655 origin-destination paths and identified 142 potential refueling stations with up to 

30 t of hydrogen per day. Since the dataset focused on German traffic, it contained only few 

paths that have to be refilled multiple times during one trip. To further reduce model complex-

ity, P. K. Rose et al. (2020) have refrained from calculating the exact fuel level at each node and 

estimated an average value before the actual calculation. As shown by Böhle (2021) this may 

lead to exceeding the maximum tank level. However, Böhle (2021) avoided an adjustment in 

favor of computing time and combined the model of P. K. Rose et al. (2020) with a multi-period 

approach. So far, the problem of unrealistically large stations has thus been solved for small 

datasets or by significant simplifications. 

2.2.3 Queuing theory in infrastructure modeling 

The models described in 2.2.1 allow for regional distribution of charging infrastructure. To 

dimension individual locations in terms of charging points per location, arrival and service 

patterns must be considered. Queuing models address the arrival process, the service process, 

and the waiting period (Salazar, 2020). For an introduction into queuing theory, see for exam-

ple Adan and Resing (2017). Queuing theory has been used in modeling charging infrastructure 

for passenger cars. For instance, Hosseini and MirHassani (2015) included a queuing system 

into an FRLM. Yang et al. (2017) used queuing theory to calculate a maximum daily rejection 

rate in their MCLM. Zhu et al. (2017) calculated the maximum number of vehicles charged per 

timeframe per charging station. For a given arrival rate, S. Á. Funke (2018) used queuing theory 

to calculate the required number of charging points per charging location. 

 

2.2.4 Summary 

Based on the available input data, three directions for infrastructure modeling can be distin-

guished: node-based, path-based, and tour-based modeling. Node-based approaches use 

comparatively easy-to-obtain data, such as traffic count data. In return, the accuracy for long-

distance traffic is reduced. A comparison with existing charging infrastructure networks shows 

that they are consistent with the basic idea of area coverage provided by node-based ap-

proaches. Path-based approaches require OD-paths as input, but allow for detailed modeling 

of long-haul traffic and thus more detailed solutions. In particular, the need for multiple refuel-
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ing stops can be determined by the model endogenously by taking into account the entire path 

of a vehicle. Tour-based approaches consider the combination of individual paths to tours and 

can thus include the actual driving behavior and the required infrastructure on vehicle level. 

However, datasets are hard to obtain and potentially biased. All approaches can be combined 

with capacity constraints and queuing theory. All of the optimization approaches described 

require extensive computational power when applied to large datasets, so simplifications and 

heuristics are common. 

The path-based FRLM is the most detailed type of modeling, given the available data (see 

subchapter 3.1). As a capacity-constrained FRLM, the model can map local conditions - for 

example, lack of parking capacities - and develop a minimum charging network for the early 

market diffusion. Due to the computational effort, a scenario analysis with multiple scenarios 

or a detailed sensitivity analysis is hardly possible. Therefore, a node-based approach is addi-

tionally used in this thesis, to model a public fast charging infrastructure for trucks with regular 

intervals between charging locations, as proposed by the AFIR (see chapter 1.1). As shown by 

Motoaki (2019), the node-based approach fits quite well to real-world charging infrastructure. 

The application of both approaches allows, on the one hand, the analysis of a minimal net-

work, but also the modeling of a realistically developed network with multiple sensitivity 

analyses. Both approaches are combined with a queuing model. For a discussion of the ad-

vantages and disadvantages of both approaches in the context of this thesis, please also refer 

to subsections 4.1.4, 5.1.1.3, and 5.1.2.3.  

2.3 Market diffusion modeling  

After purely modeling charging infrastructure, this thesis combines public charging infrastruc-

ture modeling with market diffusion modeling for BET. In the following, options for vehicle 

market diffusion modeling are briefly discussed. Afterwards, requirements for market diffusion 

modeling for trucks are identified. Finally, the existing publications are evaluated and a conclu-

sion for the market diffusion model in this thesis is drawn.  

2.3.1 Modeling options  

As shown by Gnann (2015)9, there is no unique method to classify models for market and 

infrastructure diffusion. Therefore, Gnann (2015) applies a classification originally developed 

for energy system models, which is suitable for dynamic effect like the interaction between 

                                                             
9 Gnann  (2015) focusses on the joint diffusion of charging infrastructure and battery electric passenger cars. 
Therefore, this thesis builds on his analysis of modeling options for vehicle diffusion models.  
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recharging infrastructure and the market diffusion of electric vehicles. Figure 2-5 shows the 

adapted classification scheme10.  

 

Figure 2-5: Classification of market diffusion models. (Gnann (2015), based on Dreher (2001), Sensfuß (2007), and 

Fleiter et al. (2011)).  

The classification distinguishes two basic approaches: (1) Top-down models that are based on 

at least one main assumption, whose effects are analyzed. (2) Bottom-up models combine 

various detailed assumptions and compose them to an overall picture (Gnann, 2015).  

Top-down models are typically used to consider macroeconomic effects and their impact on 

the investigated system (Dreher, 2001; Sensfuß, 2007). Based on Dreher (2001), Sensfuß 

(2007), Fleiter et al. (2011), and Gnann (2015) distinguished three model classes for top-down 

modeling: (1) Input-output models assess the changes in an economy due to exogenously 

given changes, for example in the demand or the investments. (2) General equilibrium models 

are based on the long-term balance between supply and demand and are typically used to 

evaluate effects of policy measures. (3) Macro-econometric models formulate equations 

calibrated on long run time series. Due to calibration, they can also represent imperfect mar-

ket behavior.  

For bottom-up models, Gnann (2015) considered three model classes: (1) Optimization models 

match demand and supply, while typically maximizing the overall economic surplus. Boundary 

conditions can be added as constraints on a detailed level. (2) Simulation models are based on 

rules that define processes in the model. Simulation models can be further divided into agent-

based models and system dynamics models (Sensfuß, 2007). Agent-based models simulate the 

behavior of individual market participants. System dynamics models simulate the stepwise 

market development, taking feedback loops into account. (3) Accounting frameworks are a 

simplified version of simulation models. Instead of explicitly modeling decisions of market 

participants, they account for the outcomes of the assumed developments (Sensfuß, 2007).  

The classification of existing publications is shown in subchapter 2.3.3. 

                                                             
10 In this thesis, the focus is on mathematical methods to model market diffusion processes. For a more general 
approach on the diffusion of innovations, see Rogers (1962) or Geels (2002).  
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2.3.2 Modeling requirements from a logistics perspective 

To ensure that the used market diffusion model covers the most relevant variables, a litera-

ture-based summary of the key requirements of logisticians for HDV is presented here. Differ-

ent studies analyzed relevant factors for a truck purchase decision and therefore for the diffu-

sion of alternative drivetrains in different markets. Table 2-2 lists different publications that 

rely on surveys or interviews to identify aspects that influence the purchase decision for or 

against an HDV, or especially an alternative fuel HDV. The factors mentioned include those 

classified as particularly important by the authors, either in the abstract or in the explanations 

of their results. However, each of the studies also contains other factors that are also relevant 

for the participants. Due to slightly different research questions and methods, the publications 

can give an impression of relevant factors, but cannot be directly compared. Based on their 

focus on Germany, the publications by Anderhofstadt and Spinler (2019), Göckeler et al. 

(2022), and Kluschke, Uebel, and Wietschel (2019) are of special interest for this thesis. Using a 

Delphi study among 23 experts from truck manufacturers, logistics service providers, infra-

structure providers, consultants, and researchers, Anderhofstadt and Spinler (2019) identified 

factors affecting the purchasing decision of alternative fueled HDV in Germany. Kluschke, 

Uebel, and Wietschel (2019) retrieved their results from an online survey with 70 participants 

from logistics service providers. They retrieved reliability of the vehicles, infrastructure availa-

bility, different cost aspects, and the possibility to enter low emission zones as crucial parame-

ters for the buying decision of an HDV. The results are confirmed by 139 responses to an 

online questionnaire in Göckeler et al. (2022). The participants identified reliability in relation 

to respective logistics tasks, including payload losses, and infrastructure availability as the most 

relevant factors. The factors identified in those three studies should be considered in the 

market diffusion modeling.  
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Table 2-2: Factors influencing the purchase decision for HDV according to different survey publications. 

Authors Year Country Participants Most important factors 

Anderhofstadt and 

Spinler 

2019 Germany 23  reliability  

 infrastructure 

 low emission zones 

 fuel costs 

Bae et al. 2022 USA 20  functional suitability 

 fuel price 

 fuel infrastructure 

 environmental consciousness  

 fleet regulations 

 financial incentives 

Cantillo et al. 2022 Colombia 119  competitive price 

 fuel consumption 

Göckeler et al. 2022 Germany 139  reliability (including payload) 

 infrastructure  

Kluschke, Uebel, 

and Wietschel 

2019 Germany 70  total cost of ownership 

 reliability 

Konstantinou and 

Gkritza 

2023 USA 74  business model 

 product availability 

 charging time 

Pierre-Luis Ragon 

and Rodríguez 

2022 Europe 22  infrastructure  

 vehicle availability 

Y. Zhang et al. 2019 China 192  vehicle safety  

 driving range 

 

Alle three publications from Germany mentioned reliability as a key factor. Reliability can be 

reflected by a technical analysis in the modeling. Two out of three publications refered to an 

economic analysis, by mentioning fuel costs (Anderhofstadt & Spinler, 2019) or the totcal costs 

of ownership (Kluschke, Uebel, & Wietschel, 2019) as an highly important aspect. Finally, 

Anderhofstadt and Spinler (2019) and Göckeler et al. (2022) named infrastructure as a third 

aspect. From the publications’ context, it can be assumed that the infrastructure criterion aims 

especially on public infrastructure, that cannot be influenced by the logistics providers. Overall, 

these three aspects also coincide with other publications mentioned in Table 2-2.  
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2.3.3 Classification of existing work 

In the following, the publications identified in subchapter 2.1.2 are classified with regard to 

their model type and the integration of a technical analysis, an economic analysis, and an 

infrastructure analysis.  

As shown in Table 2-3, 14 out of 16 publications that include a market diffusion used bottom-

up modeling11. Eight publications relied on simulation models that estimate purchasing behav-

ior based on technical and / or economic aspects. However, the level of detail varied widely, 

ranging from system dynamics approaches (Seitz, 2015) to Monte Carlo simulations (for exam-

ple Gray et al. (2022) or Craglia (2022)) and agent-based models with several thousand driving 

profiles (for example Gnann et al. (2023)). Optimization was used in one publication, with the 

aim of achieving a specific target in terms of GHG emissions. Another five publications used 

some kind of accounting frameworks, often with simplified assumptions regarding different 

measures and their effects. NOW (2023) represents a special case. The publication summed up 

a market diffusion based on individual manufacturers’ estimates. Only two publications used 

top-down modeling. In both cases, the effect of a policy measure - a firm-level emission per-

formance standard of new vehicles - on the vehicle fleet was examined. The given emission 

performance standard can be interpreted as an exogenous input that increases the ZEV regis-

trations output. 

Regarding the aspects identified in subsection 2.3.2, Table 2-3 shows that the majority of the 

publications included technical and / or economic analyses. Many publications also examined 

the impact of a charging infrastructure on the market diffusion of BET, for example by allocat-

ing infrastructure costs to the vehicles or by considering higher ranges due to the infrastruc-

ture. Conversely, Pierre-Luis Ragon et al. (2022) estimated the infrastructure needs based on 

the market diffusion of BET. However, there is no publication that has examined both, the 

impact of limited infrastructure on the vehicle market diffusion and the regionally distributed 

infrastructure needs from the market diffusion of BET.  

  

                                                             
11 The assignment was made to the best of the author’s knowledge, but is not fully unambiguous due to incomplete 
documentation, especially in the case of not peer-reviewed studies. The boundaries between bottom-up simulation 
and accounting frameworks and top-down evaluation of policy measures are also fluid.  
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Table 2-3: Classification of existing publications with regard to the modeling approach. 

Author Model type Technical 

analysis 

Economic 

analysis 

Infrastructure 

analysis 

Bründlinger et al. (2018) accounting 

framework 

 √  

IEA (2017) optimization √ √ ↓ 

Seitz (2015) simulation √ √ ↓ 

T&E (2017) accounting 

framework 

   

Breed et al. (2021) input-output (√)   

Gnann, Speth, Krail, et al. (2022) simulation √ √ ↓ 

Gray et al. (2022) - √ √ ↓ 

Noll et al. (2022) -  √  

Basma et al. (2021) -  √ ↓ 

Basma et al. (2022) -  √ ↓ 

Craglia (2022) simulation √ √ ↓ 

Gnann et al. (2023) simulation √ √ ↓ 

Hacker et al. (2020) - √ √ ↓ 

Jöhrens et al. (2021) - √ √ ↓ 

Jöhrens et al. (2022) - √ √ ↓ 

Kühnel et al. (2018) - √ √ ↓ 

MPP et al. (2022) simulation √ √ ↓ 

Mulholland et al. (2022) input-output (√)   

Neuhausen et al. (2022) accounting 

framework 

(√) (√) (↓) 

NOW (2023) accounting 

framework 

   

Plötz, Link, et al. (2023) simulation √ √ ↓ 

Pierre-Luis Ragon et al. (2022) accounting 

framework 

(√)  ↑ 

Speth, Kappler, et al. (2022) -  √  

Tol et al. (2022) simulation  √ √ ↓ 

Unterlohner (2021) -  √ ↓ 

Wietschel et al. (2017) simulation √ √ ↓ 

-: No market diffusion modeling, only analysis for a certain point in time. 

√: Criterion fulfilled.  

(): Criterion included, but not in the focus.  

↓: Impact of infrastructure on market diffusion included.  

↑: Impact of market diffusion on infrastructure included. 
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2.3.4 Summary and implications 

In summary, bottom-up modeling, and especially simulation, is typically used to investigate the 

market diffusion of BET. In particular, bottom-up modeling allows for the integration of logisti-

cians’ requirements to the vehicles. Technical as well as economic analyses are integrated in 

many studies. As shown in different surveys, logistics experts consider infrastructure as a third 

criterion for purchasing alternative fuel trucks. Previous literature examines the influence of 

infrastructure as an additional cost parameter or as a technical restriction that affects the 

vehicle range. However, there is no publication that investigates both, the impact of the infra-

structure on the market diffusion of BET and the infrastructure demand based on the BET 

market diffusion.  

As formulated in research question Q2 - "What impact does the development of public fast 

charging infrastructure have on the market diffusion of heavy-duty electric vehicles and which 

truck technology appears to be economically viable from the user’s perspective in Germany up 

to 2050?" -, the market ramp-up in this thesis will be considered from the user’s perspective. 

Furthermore, research question Q3 - "What is the impact of battery electric road freight 

transport in terms of (1) the total amount of electric energy and (2) the load profile in Germany 

up to 2050?" - requires a detailed understanding of user behavior in order to generate load 

profiles. As shown in subchapter 2.3.1, agent-based simulation is particularly well suited for 

studying the behavior of individual actors and their interaction, and is used by the majority of 

the reviewed publications. In addition, it allows the detailed integration of agent-specific 

criteria - such as individual technical requirements, economic considerations, and individual 

infrastructure needs - on a highly detailed level. Therefore, this thesis develops an agent-based 

simulation model that iteratively models the interaction between BET market diffusion and 

public fast charging infrastructure. Private charging infrastructure is controlled by the agent, 

the logistics provider. Public infrastructure is controlled by another agent, the infrastructure 

provider, and can influence the diffusion of BET. Therefore, the need for private infrastructure 

is identified but not included as a restriction for the diffusion of BET. The focus in thesis is on 

the interaction between the diffusion of BET and public fast charging infrastructure. 

The ALADIN - Alternative Automobile Diffusion and INfrastructure - model family provides a 

framework for agent-based simulation for market diffusion of alternative drivetrains. The 

model has been used in the past for the simulation of passenger cars12 as well as for the simu-

lation of trucks13. However, the detailed integration of charging infrastructure requires a 

completely new modeling, so that only the very basic logic of the model family can be used. 

More details can be found in chapter 4.2.  

 

                                                             
12 See e.g. Gnann (2015); Gnann et al. (2015); Gnann et al. (2019); Gnann, Speth, Krail, et al. (2022). 
13 See e.g. Gnann et al. (2023); Gnann, Speth, Krail, et al. (2022); Plötz, Link, et al. (2023); Wietschel et al. (2017)  
from the literature review. 
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3 Data, scenarios, and assumptions 

In the following, the input data required for modeling are presented. First of all, truck traffic 

datasets are presented and their advantages and disadvantages are elaborated. The subse-

quent subsection contains data on the parking capacity in Germany along the highway net-

work. Subsection 3.3 focusses on the techno-economic data for charging infrastructure. All 

relevant parameters for the pure infrastructure modeling are shown in subsection 3.4. Finally, 

subsection 3.5 contains the parameters for the joint simulation of infrastructure and vehicle 

market diffusion.  

3.1 Truck traffic data 

This subchapter aims to introduce different truck traffic datasets and evaluate them with 

regard to their suitability for modeling in this thesis. Here, the role of traffic data is twofold: On 

the one hand, traffic data is needed to model the charging infrastructure (see e.g. Metais et al. 

(2022) for an overview). On the other hand, traffic data is used to model the technical feasibil-

ity as well as economic efficiency within the market diffusion process (see e.g. Gnann (2015) or 

Wietschel et al. (2017) for a description of the general approach). Both roles impose different 

requirements on traffic datasets. For charging infrastructure modeling, regionally resolved 

data is needed. The dataset should be as complete as possible, highly resolved, and repre-

sentative for the modeled region (Metais et al., 2022; P. Rose, 2020). Depending on the meth-

odological approach, point data - for example traffic count data - or origin-destination data - 

for example recorded tour profiles - can be used. The latter one is more data intensive, but can 

significantly improve the results when searching for a minimum infrastructure (Metais et al., 

2022). A high temporal resolution enables the determination of the hourly traffic volume and 

thus the dimensioning of the individual charging locations. To model the market diffusion of 

alternative drivetrains as a bottom-up process, data on the individual requirements of individ-

ual users are needed (Gnann, 2015; Wietschel et al., 2017). These individual requirements 

include information on the annual mileage, but also on single trips and vehicle idle times. 

Table 3-1 provides an overview of the most relevant datasets for Germany. The table contains 

datasets that are either publicly available or can be used for scientific purpose. As shown, no 

dataset meets all defined requirements. Plötz and Speth (2021) identified truck stop locations 

(TSL) based on GPS data from approximately 400,000 vehicles. Based on the published data, it 

is not possible to draw conclusions about individual vehicles. It is also not fully clear how well 

the vehicles represent the entire European fleet. Therefore, the dataset is not suitable for the 

purposes described in this thesis. The Federal Highway Research Institute in Germany (BAST - 

“Bundesanstalt für Straßenwesen”) provides manual (M-TCD) and automated (A-TCD) traffic 

count data for German highways (BAST, 2017, 2022). While the M-TCD presents daily averages 
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on more than 2,500 counting stations, the A-TCD contains hourly values from approximately 

1,200 counting stations. The BAST datasets are suitable for distributing and dimensioning 

charging infrastructure due to their high regional resolution, but do not contain individual 

vehicle data for market diffusion modeling. More than 2,800 HDV were recorded as part of the 

“Kraftfahrzeugverkehr in Deutschland (KID)” survey (WVI et al., 2012b). For these vehicles, 

temporally resolved datasets are available. They are thus suitable for market diffusion model-

ing. In principle, the dataset can also be used for charging infrastructure modeling due to the 

available OD-data. However, the sample is comparatively small and European transports are 

not included (P. Rose, 2020). The “Verkehrsverflechtungsprognose (VVP)” (BVU et al., 2014) 

serves as a forecast to plan German road infrastructure until 2030. This dataset also contains 

OD matrices that would allow for charging infrastructure modeling. Again, the focus is limited 

to Germany. Eurostat (2023a) provides anonymized data from continuous road freight 

transport surveys (ERFT) conducted by the respective national authorities. A survey queries the 

full operating schedule of one truck, including trip-specific distances and payload information, 

and has a regular period of one week. This data is available from 2011 to 2020, covering 

around 330,000 to 390,000 heavy-duty trucks (GVW > 12 t) annually. However, the dataset is 

useable for scientific purpose only, does not include temporal resolution of tours, and is geo-

graphically resolved only at NUTS-22 level. Thus, despite its size, the dataset is not suitable for 

this thesis. In 2010, the European Transport policy Information System (ETIS) project modeled 

European traffic flows (Szimba et al., 2012). The dataset includes OD-flows between NUTS-31 

regions. This makes the dataset suitable for modeling an international charging infrastructure 

ramp-up. However, there is no individual vehicle data.  

Table 3-1: Overview of truck traffic data for Germany and Europe. 
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Coverage        

Region Europe GER GER GER* GER** Europe Europe 

Resolution        

Regional pinpoints pinpoints pinpoints NUTS-31 NUTS-31 NUTS-22 NUTS-31 

Temporal - Daily 

average 

Hourly Time-

stamps 

Time-

stamps 

- - 

Individual 

vehicles  

- - - √ - √ - 

OD-data - - - √ √ √ √ 

*The dataset considers German vehicles. Some of the vehicles also drive in other European countries. **Border regions are 

mapped with a lower level of detail.  

In summary, no singular dataset meets all the requirements. Therefore, different datasets are 

used in this thesis. To model the public charging infrastructure, mainly the ETIS dataset is used. 

The KiD serves as basis for the market diffusions simulation of the vehicles. Both datasets and 

their processing are described in more detail below. 

3.1.1 Regional distribution: European truck traffic data3  

As described previously, the ETIS dataset serves as the basis for spatial infrastructure modeling 

in this thesis. Based on ETIS, an updated dataset was created. Speth, Sauter, Plötz, and Signer 

(2022) document the data preparation. Speth et al. (2021) contains the actual dataset. The 

following provides a shortened summary. For all the details, please refer to Speth, Sauter, 

Plötz, and Signer (2022). 

The ETIS dataset from 2010 (Szimba et al., 2012) represents an extension of its predecessor 

project, which ended in 2005, and to date provides one of the most comprehensive surveys of 

European transport. Numerous transport data tables from Eurostat, as well as national data-

bases, were used within the ETIS project to generate a Europe-wide OD-matrix for transported 

goods between NUTS-3 regions4. As shown in transport statistics (Eurostat, 2023b), freight and 

traffic volumes have changed since 2010. In addition, the OD-matrix provides values for trans-

ported goods between the regions in tons. The number of vehicles as well as travel routes are 

not included in the dataset. Therefore, a three-step processing is necessary: (1) update of road 

                                                             
1 NUTS-3: Nomenclature des unités territoriales statistiques. In Germany, level 3 corresponds to districts and 
independent cities.  
2 NUTS-2: Nomenclature des unités territoriales statistiques. In Germany, level 2 corresponds to administrative 
districts.  
3 Parts of this subchapter are based on Speth, Sauter, Plötz, and Signer (2022). 
4 For project details see Szimba et al. (2012). See ETIS (2012) for the original dataset. 
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freight volumes, (2) conversion from road freight transport volumes to number of trucks, and 

(3) routing. Figure 3-1 illustrates the data preparation and the input data used.  

 

Figure 3-1: Illustration of the preparation of the ETIS traffic data. Own illustration, based on Speth, Sauter, Plötz, 

and Signer (2022). *Eurostat (2023b), **ETIS (2012), ***EC (2011) and  Eurostat (2018), ****UN (2016) 

To update the road freight volumes between NUTS-3 regions, the dataset was scaled up to 

2019 numbers and a forecast for 2030 was added. The O-D matrix of the ETIS dataset is based 

on transport volume data collected by Eurostat (Eurostat, 2023b). To achieve the highest 

possible consistency, the scaling also refers to these data tables. However, the data availability 

on NUTS-3 level is quite incomplete. Several years and even countries are not available mainly 

due to data confidentiality. Therefore, country-specific national and international percentage 

growth rates are calculated. To calculate the national growth rate, the value from 2019 is 

taken from the road_go_na_tgtt table in Eurostat (2023b). The table contains the annual 

national transport volume of each country. These transport volumes are additionally supple-

mented by the annual road cabotage road_go_ca_hac. Road cabotage is the transport of 

goods by a vehicle registered in one country, carried out in the national territory of another 

country. To calculate the growth rates for the international transport flows, the growth rates 

of the exports of all EU28 countries, England, Norway, and Switzerland are considered sepa-

rately. Since the average growth rates of exports (3.7%) and imports (3.64%) hardly differ from 

each other, the country-specific export growth factor is used to scale all international transport 

flows. Due to the large number of missing values, the growth rate can only be calculated for 

half of the countries from the export flows provided at NUTS-3 level (road_go_ta_rl). For those 

countries where the data set contains too many values that are not available in Eurostat 

(2023b), the aggregated exports from the table road_go_ia_lgtt are used. To be able to ana-

lyze the charging infrastructure required in the future, the current traffic flows must be pro-

jected to the year 2030. Since no single growth value can be found in the literature - the Euro-



3.1  Truck traffic data 

35 

pean Commission quotes values between 26% and 40%5 -, it is assumed that the countries will 

continue to grow between 2019 and 2030 with the same growth rates as between 2010 and 

2019. In addition to the EU, Norway, Switzerland and Great Britain, the ETIS dataset also con-

siders other countries on the European continent. Since they only count for 0.12% of the total 

ETIS transport volume, the average growth rate of 25% is assumed for them.  

The ETIS project data (ETIS, 2012) provides freight flows ins tons. To convert these values to 

vehicles traveling, a loading factor is needed. According to EC (2011), the average loading 

factor in the EU in 2010 was 13.6 t per truck. This value remained almost constant within the 

last years. To account for empty runs, an additional factor of 25% is added (Eurostat, 2018). 

This is a simplification, as the proportion of empty runs usually varies between different goods 

and routes. 

Finally, routing must be performed to allocate OD traffic flows to highways. The relevant 

highway network for trucks was extracted from the ETIS road network which is part of the land 

networks (ETIS, 2012). To focus on long-haul routes and to lower complexity, the network is 

reduced to road sections that are part of a highway or the international E-road network. Thus, 

only road sections that have the attribute M (highway), ME (highway and part of European 

road network), D (four-lane road), DE (four-lane road and part of European road network) or 

OE (side road and part of European road network) in the ETIS dataset are used for modeling. 

To ensure that all E-roads (UN, 2016) are part of the final graph, all European roads are 

checked, and the missing edges are manually added. In total, the road network is represented 

by 17,435 nodes and 18,447 edges. In this thesis, this network is referred to as main road 

network. By calculating the shortest distance between the middle point of a region and all 

network nodes, each NUTS-3 region is assigned to exactly one node in the road network. These 

nodes define the start and ending points of each transport route. For the determination of 

routes with minimum distances, Dijkstra’s algorithm, as a standard algorithm to define a 

shortest path in a graph, is used. For each OD pair within the traffic flow matrix, an optimal 

route is computed in terms of edge and node paths using Dijkstra’s algorithm, implemented in 

the Python library NetworkX (NetworkX, 2020). This approach comes with some simplifica-

tions: (1) The algorithm always chooses the shortest route. (2) Each region is assigned to 

exactly one network node at which transport routes start and end. (3) If a transport process 

takes place exclusively within a NUTS-3 region, it cannot be mapped in the highway network. 

In addition, all routes defined as regional traffic are excluded from the analysis, since the 

regional grid of NUTS-3 regions is not dense enough to map these transports in a meaningful 

way. Regional traffic includes all routes that do not have a network node within either the 

origin or destination region and are less than 50 km apart or directly adjacent. 

In total, the newly created dataset includes 1,514,573 directed traffic flows between 1,630 

different origins (NUTS-3) and 1,667 destinations (NUTS-3). As an example, Table 3-2 shows an 

                                                             
5 See Schade et al. (2018), EC (2019), EC (2020). 
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extract for two relations. For a deeper overview, please refer to Speth, Sauter, Plötz, and 

Signer (2022).  

Table 3-2: Exemplary extract of the newly created truck traffic flow dataset. Based on  Speth, Sauter, Plötz, and 

Signer (2022). 

 Name  

Origin 

Name  

destination 

Path  

E-road 

[...]* 

1 Mittelburgenland Mostviertel-Eisenwurzen [1034974, 1008535, ..., 1008578] [...]* 

2 Mittelburgenland Sankt Polten [1034974, 1008535, ..., 1008682] [...]* 

n [...]* [...]* [...]* [...]* 

 Distance [km] 

origin to E-road 

Distance [km] 

within E-Road 

Distance [km] 

E-road to destination 

Total distance [km] 

1 30 160 9 199 

2 30 110 5 145 

n [...]* [...]* [...]* [...]* 

 Flow 2019 

[trucks/a] 

Flow 2030 

[trucks/a] 

Flow 2019 

[t/a] 

Flow 2030 

[t/a] 

1 511 534 6,953 7,259 

2 576 601 7,837 8,177 

n [...]* [...]* [...]* [...]* 

*Table shows a shortened illustration of the dataset 01_Trucktrafficflow from Speth et al. (2021). 

Figure 3-2 shows the modeled road network in the EU, Great Britain, Norway and Switzerland 

with a total length of 142,000 km. The line width illustrates the truck traffic volume. The high-

est traffic volume of up to 36,500 vehicles per day occurs in the port hinterland, for example 

near Calais and Dover. Germany accounts for 14,000 km6, as shown in Figure 3-3.  

                                                             
6 The modeled network is slightly longer than the German highway network, which comprises 13,155 km according 
to BMDV (2023). While smaller highway sections are partially not included, relevant federal highways, for example 
along the Lake Constance, are additionally modeled. 
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Figure 3-2: Modeled European truck traffic flow in 2019. Own illustration, based on Speth, Sauter, Plötz, and Signer 

(2022) and Speth et al. (2021). 
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Figure 3-3: Modeled German truck traffic flow in 2019 including deviation from traffic count data. Own illustration, 

based on Speth, Sauter, Plötz, and Signer (2022) and Speth et al. (2021). *Deviation from BAST (2022) 

data for 2019.  
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In order to assess the quality of the dataset, Figure 3-3 additionally shows the relative devia-

tion of the modeled traffic flows compared to the A-TCD data (BAST, 2022). Each counting 

point was assigned to the nearest node of the modeled network7 and the daily traffic was 

compared. As shown in Figure 3-3, the modeling achieves a high consistency on long-range 

corridors, for example highway BAB 2 from the Rhine-Ruhr area via Hanover towards Berlin 

and Poland. Significant deviations can be explained by the modeled assumptions: High devia-

tions near cities are due to non-modeled traffic within a NUTS-3 region. This traffic also uses 

the highway network there. Examples are Berlin, Frankfurt, or Munich. Deviations also occur at 

parallel routes, for example between Cologne and Mannheim. These deviations are due to the 

fact, that the algorithm strictly chooses the minimal shorter distance. Figure 3-4 additionally 

shows the scatter of the deviation. In summary, the dataset is well suited for modeling long-

range public charging infrastructure.  

  

Figure 3-4: Comparison of modeled traffic volume with traffic count data in Germany.  

In the following, the updated ETIS dataset is referred to as ETIS-U.  

3.1.2 Temporal resolution: A-TCD and KiD 

In addition to the regional distribution of truck traffic, the temporal distribution over the day is 

also relevant. In particular, the distribution of traffic volumes throughout the day is relevant to 

size the charging infrastructure accordingly. Moreover, a temporal resolution of driving pro-

files allows identifying potential charging slots. 

As shown in chapter 3.1 in Table 3-1, the A-TCD dataset contains hourly resolved traffic vol-

umes at counting stations along German highways. The KiD dataset contains time-resolved 

                                                             
7 The modeled network contains 2,787 nodes in Germany. This corresponds to an average distance of 5 km between 
two nodes. Therefore, nodes with a maximum distance of 3 km - covering 6 km road - were considered.  
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driving profiles. Both datasets serve as input in this thesis. Therefore, datasets and the neces-

sary data preparation are briefly presented.  

For each hour of a year, the A-TCD dataset provides the number of vehicles passing through a 

counting station on the German highway network. The following analysis is based on the 2018 

dataset and is thus not affected by the COVID-19 pandemic or the war in Ukraine. In total, A-

TCD 2018 provides data from 846 counting stations. Of these, 370 counting stations are locat-

ed on the particularly relevant single-digit highways. The counting stations are able to distin-

guish different types of vehicles (BAST, 2020). At this point, the analysis focusses on data for 

combinations of a vehicle and a trailer (> 3.5 t GVW). The analysis considers rigid trucks with 

trailers and tractor-trailer combinations. Both directions of travel are considered together. 

Figure 3-5 shows the median number of trucks across all counting stations and all days of the 

year. In addition, the quartiles are shown. However, single counting stations reach up to 2,000 

vehicles during the peak hour. The HDV traffic volume during the week is clearly higher than 

on weekends. Over the course of a day, traffic increases significantly from 6 a.m. onwards, 

peaks at midday, and decreases considerably after 3 p.m.  

 

Figure 3-5: Hourly counted HDV at automated traffic count stations on the German highway network. Own illustra-

tion, based on 2018 A-TCD (BAST, 2022). Black dots indicate median, whiskers indicate lower and upper 

quartile. 

Figure 3-6 shows the distribution HDV traffic volumes at the traffic counting stations through-

out the day. To do this, for each hour of a week, the mean traffic over all weeks is calculated. 

Subsequently, the data are normalized to the traffic volume of Tuesdays, as a typical weekday. 

The most trafficked hour of the day thus accounts for almost 6% of the daily traffic volume on 

working days. As shown in Figure 3-7, there are small differences between different highways. 
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Figure 3-6: Share of HDV per hour on German highways over the course of the day. Own illustration, based on 2018 

A-TCD (BAST, 2022). 

 

Figure 3-7: Share of HDV per hour on single-digit German highways over the course of the day. Own illustration, 

based on 2018 A-TCD (BAST, 2022). 

The KiD dataset describes the driving behavior of the vehicles selected for the sample over a 

single day. The dataset contains, among other things, the following information for each vehi-

cle: 

 day of observation (Mo, Tu, We, Th, Fr, Sa, Su), 

 vehicle size (rigid or tractor-trailer), 
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 gross vehicle weight,  

 daily mileage,  

 area of operation (company site, town, within 50 km, Germany, Europe), and 

 information about the individual trips, including 

o start of the individual trip,  

o end of the individual trip,  

o passed distance during the trip, and  

o type of parking location (for example public streetscape, private area). 

For a full overview, compare WVI et al. (2012a). 

The KiD dataset contains 2,810 vehicle datasets for vehicles with a GVW over 12 t. 1,635 pro-

files stem from rigid trucks, 1,175 from tractor-trailers. However, incomplete datasets with 

regard to the individual trip information must be sorted out, leaving 2,410 datasets for further 

analysis with 1,350 rigids and 1,060 tractor-trailers. Figure 3-8a shows the share of driving and 

parking HDV, according to the KiD dataset. Publicly parking vehicles are shown separately8. 

Data from all days of observation are included9. Additionally, Appendix A.1 shows the distribu-

tion of daily mileage in the KiD dataset. 

 
(a) 

 
(b) 

Figure 3-8: (a) Share of HDV per hour driving and parking, and (b) proportion of hourly HDV traffic to daily HDV 

traffic. Own illustration, based on WVI et al. (2012b).  

Figure 3-8b shows the proportion of the hourly HDV traffic to the daily HDV traffic in the KiD 

dataset. These numbers are compared with the data of the A-TCD in Figure 3-6. Obviously, the 

                                                             
8 Approximately one quarter of the vehicles declared as publicly parked are vehicles with missing information about 
their location. 
9 Analyses only for weekdays were performed, but show no relevant differences.  



3.2  Parking capacity 

43 

KiD dataset differs from the A-TCD traffic volume on highways in 2018. To investigate the 

deviation, two additional evaluations of the A-TCD dataset are added to Figure 3-8b. Analysis 

of the A-TCD dataset for highways from 2010 - the year of the KiD dataset - shows that there is 

almost no change over time. However, there is a similarity to A-TCD data from federal roads. 

The comparisons show that the KiD dataset represents both highway and federal road traffic 

sufficiently well, even though there are some deviations. 

3.2 Parking capacity10  

In this thesis, the available parking spaces along German highways serve as capacity constraint 

in the CFRLM, as actual charging locations cannot contain more charging points than parking 

lots. As shown in Irzik (2019), truck parking lots along highways in Germany are highly used or 

even overloaded and therefore need to be used efficiently. An overview with public parking 

areas - typically public rest areas - along German highways provided by the Autobahn GmbH 

serves as input (Autobahn GmbH, 2021)11. The dataset contains 2,090 locations with a total of 

63,971 truck parking lots (mean per location = 31, median = 18, σ = 33). The parking locations 

are assigned to the nearest node on the German road network in the ETIS-U dataset, if the 

distance is less than 2 km12. One node can aggregate multiple parking areas. After the aggrega-

tion, the dataset contains 688 parking locations with 38,563 parking spaces (mean = 56, medi-

an = 36, σ = 57). However, there are also locations with more than 300 parking lots, as shown 

in Figure 3-9.  

 

Figure 3-9: Aggregated parking spaces at nodes of the German highway network. Nodes in the ETIS-U network serve 

as highway network representation. Illustration based on data from Autobahn GmbH (2021). Color in-

tensity indicates the distribution within the bins. Originally published in Speth et al. (2024). 

                                                             
10 Parts of this subchapter are based on Speth et al. (2024) (under review at the time of submission of this thesis). 
11 This dataset is not publicly available. In principle, parking capacities could also be derived from public Open Street 
Map (OSM) data. However, this would involve a higher level of uncertainty.  
12 The maximum distance was chosen in an iterative process to avoid detours for recharging. 
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3.3 Techno-economic infrastructure parameters 

Estimating the costs of public fast charging infrastructure for HDV is still subject to high uncer-

tainties today, in particular due to local circumstances. Especially the distance to the power 

grid and the required grid connection influence the infrastructure costs (Burges & Kippelt, 

2021; Kippelt et al., 2022). Kippelt et al. (2022) distinguished a low and a high costs scenario in 

four expansion stages. Table 3-3 sums up the most important information regarding the grid 

connection. For cost distribution to individual components, compare Kippelt et al. (2022). 

Table 3-3: Electricity grid connection configurations and costs according to Burges and Kippelt (2021) and Kippelt et 
al. (2022). 

Connection Rated Power Realization Low costs High costs 

   distance costs Distance costs 

 [MVA] [a] [km] [k€2020] [km] [k€2020] 

Existing medium voltage 

ring 

< 8 < 2 0.5 65 2.0  320 

New medium voltage 

connection 

< 20   2 350 10 1,690 

Extension medium volt-

age station 

< 30  2 1,650 10 4,290 

New medium voltage 

station 

> 30 < 10 2 5,400 10 15,500 

 

In addition, a power factor for reactive current compensation of 0.95 and an efficiency of 0.95 

are assumed (Kippelt et al., 2022). Due to their charging curve, not all vehicles need full power 

at the same time. Therefore, a simultaneity factor of 0.6 is assumed, according to expert 

opinion (HoLa, 2021). This means the charging locations are designed for 60% of their nominal 

power. Taking all aspects into account, a location with 8 MVA could supply 12 MCS charging 

points with a nominal peak power of 1 MW (8 𝑀𝑉𝐴 ∗ 0.95 
𝑀𝑊

𝑀𝑉𝐴
∗ 0.95 ∶  1 

𝑀𝑊

𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔 𝑝𝑜𝑖𝑛𝑡
∶

0.6 = 12). The same logic applies to CCS charging. However, a nominal output of 350 kW per 

charging point must be assumed.  

In addition to the grid connection costs, there are costs per charging point for the pole, includ-

ing transformer unit (AC/AC) and converter (AC/DC). In accordance with Bernard et al. (2022), 

616 k€2020 are assumed per MCS charging point today, including hardware and software, plan-

ning, and installation. Similar values can be found in Plötz et al. (2020) and Burges and Kippelt 

(2021). For CCS charging, 232 k€2020 are assumed per charging point. Additionally, a cost reduc-

tion of 2% p.a. is assumed for charging points, since they represent a new technology (Bernard 
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et al., 2022). Figure 3-10 shows the costs of charging locations in dependence of the number of 

MCS charging points today and in 2045. It can be seen that the grid connection - recognizable 

as jumps - plays a subordinate role for small- and medium-sized charging locations. As a com-

pany, one also only pays a cost subsidy that is determined individually (BNetzA, 2009). Figure 

A-2 in Appendix A.2 shows the same information for CCS charging infrastructure.  

 

Figure 3-10: Costs of charging locations in dependence of the number of MCS charging points. Shaded area for 2022 

shows the difference between low and high grid connection costs. Own illustration. 

The annual costs of a charging station can be determined, using annual capital expenditures 

𝑎𝑐𝑎𝑝𝑒𝑥 and annual operating expenditures 𝑎𝑜𝑝𝑒𝑥13. Equation (3-1) shows the calculation. 

𝑇𝐶𝑂𝑎
𝑖𝑛𝑓𝑟𝑎

=  𝑎𝑐𝑎𝑝𝑒𝑥 + 𝑎𝑜𝑝𝑒𝑥 =  𝐼0
𝑖𝑛𝑓𝑟𝑎

∗  
(1+𝑖)𝑇∗𝑖

(1+𝑖)𝑇−1
+  𝑎𝑜𝑝𝑒𝑥   (3-1) 

The cost per charging location, as calculated in Figure 3-10 serve as invest 𝐼0
𝑖𝑛𝑓𝑟𝑎

. To calculate 

the annual capital expenditures, an interest rate 𝑖 of 9.5% is assumed (Basma et al., 2021). 

With regard to the depreciation period 𝑇, 40 years are assumed for cables, 30 years for out-

going feeders, 25 years for transformers, and 15 years for charging poles (Bernard et al., 2022; 

Deutsche Bundesregierung, 2005; Kippelt et al., 2022). As annual operating expenditures, 1.2% 

of the investment for charging poles without the costs for installation and planning are consid-

ered (Bernard et al., 2022). This corresponds to 440,000 €2020  ∗  0.012 
1

𝑎
 =  5,280 

€2020

𝑎
 for 

MCS and 170,000 €2020  ∗  0.012 
1

𝑎
 =  2,040 

€2020

𝑎
 for CCS.  

                                                             
13 For an introduction into accounting, see Wöhe et al. (2020). 



3  Data, scenarios, and assumptions 

46 

Figure 3-11 shows the annual costs per MCS charging location in dependence of the number of 

charging points. Figure A-3 in Appendix A.2 shows the same information for CCS charging 

infrastructure.  

 

Figure 3-11: Annual costs of charging locations in dependence of the number of MCS charging points. Shaded area 

for 2022 shows the difference between low and high grid connection costs. Own illustration. 

3.4 Scenario parameters for pure infrastructure modeling  

Without the integrated calculation of a market diffusion for BET, the infrastructure modeling in 

the first part of this thesis relies on additional parameters, for example regarding the electri-

fied share of traffic. These parameters are explained below for different scenarios.  

This thesis presents two approaches to model public charging infrastructure (see subchapter 

2.2 or 4.1). The first approach models charging infrastructure at regular intervals. The second 

approach minimizes the necessary number of charging locations. While the first approach 

maps a kind of a typical network, insights into a minimum necessary network can be obtained 

from the second approach. The following sections present the key assumptions, framework 

parameters, and scenarios.  

3.4.1 Parameters for charging infrastructure at regular intervals  

To compare different infrastructure characteristics and to identify the influence of individual 

variables, this thesis investigates a wide range of scenarios. They differ in the modeled region, 

the year under consideration, the expected share of battery electric trucking 𝐵𝐸𝑇𝑠ℎ𝑎𝑟𝑒 , the 

average distance between two charging locations 𝑑𝑎𝑣𝑔, and the annual mileage of the truck 

fleet 𝐴𝑀𝑡𝑜𝑡𝑎𝑙 according to the respective data source.  



3.4  Scenario parameters for pure infrastructure modeling 

47 

From a temporal perspective, the analysis examines two situations: the early market ramp-up 

and the full extension. As shown by Breed et al. (2021), the introduction of BET must begin no 

later than 2025. A relevant market share must be achieved by 2030. In 2045, Germany shall 

reach climate neutrality (Deutscher Bundestag, 2019). Following Breed et al. (2021) and expert 

opinions (HoLa, 2021), the scenarios assume 5% battery electric trucking in 2025, 15% battery 

electric trucking in 2030, and 100% battery electric trucking in 2045.  

The distance between two charging locations is assumed 50 km, or 100 km. This is slightly 

below or above the EC’s recommendation of 60 km for the TEN-T core network (EC, 2021). The 

defined scenarios assume increasing densification of the network over time. One charging 

location can serve both directions of travel.  

As shown in section 3.1.1, freight flows and thus truck traffic is moving all over Europe. There-

fore, the analysis covers the EU27-countries, United Kingdom, Norway, and Switzerland. How-

ever, since the focus of this thesis is Germany, an additional analysis is performed for Germany 

using both the ETIS-U and the M-TCD datasets. The dataset has implications for the selection 

of roads to be considered. M-TCD covers 12,563 km and thus almost the entire German high-

way network with a total length of 13,155 km (BMDV, 2023). As shown in 3.1.1, ETIS-U focuses 

on main European highways and especially on the E-road network (UN, 2016). The E-road 

network considered for electrification in the scenarios covers 9,428 km in Germany. Table 3-4 

sums up the considered network length for the two datasets. All distances rely to the single 

network length, which can be traveled in two directions.  

Table 3-4: Road network length considered for electrification at regular intervals in the datasets ETIS-U and M-TCD.  

All distances rely to the single network length, which can be traveled in two directions.  

 Total length Length considered for electrification  

ETIS-U (Europe*) 142,057 km 95,476 km 

ETIS-U (Germany) 15,799 km 9,428 km 

M-TCD (Germany) 13,155 km 12,563 km 

*Europe: EU27, United Kingdom, Norway, Switzerland 

The selection of the dataset also influences the annual mileage of the HDV fleet. ETIS-U models 

176 bn. km for Europe14 in 2019 and 231 bn. km in 2030. 2025 is simplified and calculated as a 

mean value. For Germany, there is a mileage of 39 bn. km in 2019 and 55 bn. km in 2030. 

Unlike the ETIS-U dataset, the point data from M-TCD does not provide mileage data. The 

annual mileage of the HDV fleet in Germany varies significantly between different sources. KBA 

(2023) calculates conservatively 27 bn km for HDV with a GVW over 12 t in 2020. Eurostat 

(2022c) reports 30 bn. km for all vehicles, almost constant over time. However, vehicles with a 

GVW lower than 12 t account for less than 5% (KBA, 2023). Other sources assume higher 

                                                             
14 Europe: EU27, United Kingdom, Norway, Switzerland 
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values of 36 bn. km in 2020 (Gnann et al., 2023) or 31 bn. km in 2015 (Wietschel et al., 2017). 

For calculations based on M-TCD data from 2015, Wietschel et al. (2017) serve as starting point 

and, according to BMVI (2016), 30% growth is assumed until 2030. The analysis thus repre-

sents a compromise between the conservative estimates of KBA (2023) and the progressive 

growth of ETIS-U. Due to the high degree of uncertainty, there is no projection up to 2045 at 

this stage. Instead, the 2030 values are used for 2045. 

Table 3-5 summarizes six scenarios under consideration.  

Table 3-5: Scenario definition for charging infrastructure modeling at regular intervals. Share of battery electric 
trucking as 𝐵𝐸𝑇𝑠ℎ𝑎𝑟𝑒, distance between charging locations as 𝑑𝑎𝑣𝑔, and total annual fleet mileage as 

𝐴𝑀𝑡𝑜𝑡𝑎𝑙. 

Scenario Year 𝑩𝑬𝑻𝒔𝒉𝒂𝒓𝒆 𝒅𝒂𝒗𝒈 Region Dataset 𝑨𝑴𝒕𝒐𝒕𝒂𝒍 

Startup2025 2025 5%  100 km Europe15 ETIS-U  204 bn. km 

Wide2030 2030 15% 100 km  Europe15 ETIS-U 231 bn. km 

Dense2030 2030 15% 50 km  Europe15 ETIS-U 231 bn. km 

Dense2045 2045 100% 50 km Europe15 ETIS-U 231 bn. km 

Wide2030_Ger_ETIS-U* 2030 15% 100 km Germany ETIS-U 55 bn. km 

Wide2030_Ger_M-TCD 2030 15% 100 km Germany M-TCD 40 bn. km 

*Wide2030_Ger_ETIS-U is part of Wide2030 

Table 3-6 lists further parameters with relevance to the modeling of charging infrastructure at 

regular intervals.  

The battery size and thus the range of the vehicles needs to ensure that vehicles can drive 4.5 

hours, before they are required to make a mandatory break (EU, 2006). A speed limit of 80 

km/h exists for trucks on German highways, but the actual speed driven varies between differ-

ent highway sections (Löhe, 2016). Therefore, the average speed is lower than 80 km/h. In 

agreement with experts (HoLa, 2021), 300 km in 4.5 h seems plausible. 

As an assumption, 25% of all truck charging events occur publicly. KiD-data shows that almost 

half of HDV drives less than 500 km per day (Speth & Funke, 2021)16. Simplified, it is assumed 

that these vehicles charge almost exclusively at the depot (Pierre-Luis Ragon et al., 2022). For 

                                                             
15 Europe: EU27, United Kingdom, Norway, Switzerland 
16 The mean value of the daily mileage for tractor-trailer trucks with more than 12 t GVW in the KiD-dataset is 423 
km, the average is 445 km (n=1175). For rigid trucks, the mean value is 187 km, the average is 249 km. BET with a 
range of 300 km to 400 km are already available today (Mercedes Benz (2023); Volvo (2023b)). Therefore, it seems 
plausible, that within the next years, half of the vehicles will not depend on a public fast charging infrastructure. 
Pierre-Luis Ragon et al. (2022) assume that up to 680 kWh, which is approximately equal to 500 km, can be re-
charged with a single slow charging event per day.  
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the other half of the vehicles, 50% of the charging events could also take place in the depot. 

However, this is a plausible initial estimate that should be further evaluated. 

The analysis mainly focusses on highway traffic. According to the A-TCD data in section 3.1.2, 

6% of the daily traffic on highways takes place in the most trafficked hour. Therefore, the 

charging demand in the peak hour accounts for 6% of the daily charging demand. As men-

tioned earlier, the KiD dataset shows a higher peak, probably due to the inclusion of regional 

traffic off the highway network. Therefore, the peak traffic parameter is included into the 

sensitivity analysis.  

The charging process should take place in the mandatory break of 45 min (EU, 2006). Taking 

the MCS standard into account, experts consider an average charging time of 30 min and an 

average waiting time of 5 minutes to be realistic (CharIN, 2023; HoLa, 2021). Given an exem-

plary energy demand of 1.2 kWh/km (Kühnel et al., 2018; Speth, Kappler, et al., 2022; 

Wietschel et al., 2017), this would result in an average charging power of 720 kW. A simplified 

assumption of approximately 1 MW peak power can be made. 

As mentioned, the described parameters are subject to uncertainties. Subchapter 5.1.1.1 

contains corresponding sensitivity analyses.  

Table 3-6: General input parameters for infrastructure modeling at regular intervals. 

Parameter Abbreviation Value Reference 

Range in 4.5 h 𝑟𝑎𝑛𝑔𝑒𝐵𝐸𝑇 300 km Own calculation 

Share of public charging events 𝐶𝐸𝑝𝑢𝑏𝑙𝑖𝑐 25% Own calculation 

Share of charging events in peak hour 𝑝𝑒𝑎𝑘_ℎ𝑜𝑢𝑟 6% BAST (2022) 

Average charging time 𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔𝑞 30 min  HoLa (2021) 

Average waiting time 𝑤𝑞 5 min HoLa (2021) 

 

3.4.2 Parameters for optimized charging infrastructure17  

In contrast to the infrastructure modeling at regular intervals, the number of charging loca-

tions, or respectively their distance, is not specified for the optimized charging infrastructure 

network. Rather, the network is optimal in the sense that the number of public charging loca-

tions is minimized, considering constraints.  

                                                             
17 Parts of this subchapter are based on Speth et al. (2024). This publication is still under review at the time of 
submission of this thesis. 
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European OD traffic flows serve as main input. For this purpose, the ETIS-U dataset is used. For 

this calculation, the model uses the 2030 forecast. As mentioned in section 3.1.1, the dataset 

contains 1.5 million directed truck traffic flows between 1,675 NUTS3 regions in Europe. Traffic 

flows within a NUTS3 region are not considered. In accordance with section 3.4.1, the model 

assumes that trucks drive a maximum of 300 km (𝑟𝑎𝑛𝑔𝑒𝐵𝐸𝑇) during one driving period of 4.5 

hours. Traffic flows shorter than 300 km therefore do not need to be publicly recharged and 

are therefore not relevant. Across Europe, 1.4 million flows with a total of 172 bn. kilometers 

traveled remain. Of these, around 1 million flows with 72 bn. vehicle kilometers traveled pass 

Germany. Following the idea of Jochem et al. (2019), the model focuses on flows that are 

served at least weekly (> 50 trucks/a). For Europe, this measure reduces the problem to 

374,000 flows and 156 billion kilometers traveled. For flows passing Germany, 236,000 flows 

and 61 billion kilometers traveled are received. To keep the problem solvable, the described 

procedure has significantly reduced the number of paths - and therefore the problem size -, 

while still considering more than 85% of the vehicle kilometer traveled. The level of detail is 

also well above P. K. Rose et al. (2020), who considered 2,655 flows in Germany. In contrast to 

the infrastructure modeling at regular intervals, the relevant traffic for public fast charging is 

not estimated as a share of public charging events 𝐶𝐸𝑝𝑢𝑏𝑙𝑖𝑐, but derived directly from the ETIS-

U dataset based on the vehicle range 𝑟𝑎𝑛𝑔𝑒𝐵𝐸𝑇.  

As described for the infrastructure modeling at regular intervals, the geographical focus is 

Germany. However, since truck traffic is international, a European network without a capacity 

restriction is first calculated. Again, Europe refers to the 27 countries of the EU, as well as the 

United Kingdom, Switzerland, and Norway. Second, an optimal German public charging infra-

structure with capacity constraint is calculated. The parking space availability in section 3.2 

serves as capacity constraint. For international OD-paths, the results from the first step serve 

as the minimum available infrastructure outside Germany and can be used by the vehicles. The 

capacity-constrained network can be compared with the unconstrained German network, 

derived from the European unconstrained network.  

To focus on the most challenging scenario, a 100% electrified scenario is assumed, similar to 

the Dense2045 scenario for charging infrastructure at regular intervals. Again, due to the high 

degree of uncertainty, there is no projection of the mileage up to 2045 at this stage. Instead, 

the 2030 values are used for 2045. 

Table 3-7 sums up the modeled scenarios for optimized charging infrastructure.  
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Table 3-7: Scenario definition for optimized charging infrastructure modeling. Share of battery electric trucking as 
𝐵𝐸𝑇𝑠ℎ𝑎𝑟𝑒. 

Scenario Year 𝑩𝑬𝑻𝒔𝒉𝒂𝒓𝒆 Region Dataset Capacity 

constraints 

Optimization2045 2045 100% Europe18 ETIS-U False 

Optimization2045_Ger* 2045 100% Germany  ETIS-U False 

Optimization2045_Ger_C 2045 100% Germany  ETIS-U True 

*Optimization2045_Ger is part of Optimization2045 

Further parameters are described for infrastructure modeling at regular intervals and are also 

valid for the modeling of optimized infrastructure. This is especially true for queuing model 

parameters. Again, the infrastructure is designed for peak hour traffic. The assumptions re-

garding energy consumption as well as charging capacity, which serve as plausibility checks for 

the charging infrastructure at regular intervals, also continue to apply and are used as the basis 

for investigations of the utilization of the optimized charging infrastructure. 

Table 3-8 sums up the most important parameters.  

Table 3-8: General input parameters for optimized infrastructure modeling. 

Parameter Abbreviation Value Reference 

Range in 4.5 h 𝑟𝑎𝑛𝑔𝑒𝐵𝐸𝑇 300 km  Own calculation  

Share of charging events in 

peak hour 

𝑝𝑒𝑎𝑘_ℎ𝑜𝑢𝑟 6% Own calculation  

Average charging time 𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔𝑞 30 min  HoLa (2021) 

Average waiting time 𝑤𝑞 5 min HoLa (2021) 

Electric energy demand 𝑐𝑜𝑛𝑠𝑒 1.2 kWh/km Own estimation, based on Kühnel 

et al. (2018), Speth, Kappler, et al. 

(2022), and Wietschel et al. (2017) 

Average charging power  𝑝𝑎𝑣𝑒𝑟𝑎𝑔𝑒 720 kW Own estimation 

Peak charging power 𝑝𝑝𝑒𝑎𝑘 1,000 kW Own estimation 

 

                                                             
18 Europe: EU27, United Kingdom, Norway, Switzerland 
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3.5 Techno-economic parameters for market diffusion 

modeling  

Different technical and economic assumptions are needed to model the market diffusion of 

alternative drivetrains. As shown in chapter 2.3, agent-based simulation is particularly well 

suited for studying the behavior of individual actors and their interaction. As outlined in sub-

section 2.3.4, the ALADIN - ALternative Automobiles Diffusion and INfrastructure - model 

represents a well-established, agent-based simulation framework that is suited for this thesis. 

However, due to extensive adjustments as described in chapter 4.2, the model is fundamental-

ly rebuilt. Nevertheless, the technical and economic assumptions also generally follow the 

assumptions of the ALADIN model in the most current version. A current documentation can 

be found in Plötz, Link, et al. (2023) and Gnann et al. (2023). A complete overview of parame-

ters used in this thesis with brief explanations can be found in the Appendix A.3. In addition, 

particularly relevant parameters are briefly described below.  

All prices and costs are given as €2020. All numbers therefore relate to the 2020 price level; in 

particular no future inflation is taken into account. This means that data from different years 

are directly comparable.  

3.5.1 Framework parameters 

Framework parameters are parameters that are not directly related to the vehicles, but influ-

ence the market development. This also includes the framework assumptions on the infra-

structure development.  

3.5.1.1 Energy prices  

Due to the high mileage of HDV, the operating costs, and thus also the energy prices, highly 

influence the economic efficiency of the vehicles (see e.g. Noll et al. (2022) or Speth, Kappler, 

et al. (2022)). The energy prices in this thesis are basically taken from the long-term scenarios 

(Gnann et al., 2023). The long-term scenarios are a central study for the Federal Ministry for 

Economic Affairs and Climate Action (BMWK) in Germany. Gnann et al. (2023) considered 

three main scenarios that favor different technologies. In this thesis, the most favorable price 

path is used for each energy carrier, in order not to favor any technology. For BET, this is 

actually a rather conservative estimate, since they benefit less from low energy carrier prices 

than other alternatives due to their high energy efficiency. When the long-term scenarios were 

drawn up, the impact of the war in the Ukraine on the energy prices could only be partially 

foreseen. While the development for methane and diesel was well estimated, the increase in 

the electricity price was underestimated. In this thesis, the electricity price is corrected using 

BDEW (2022). The additional increase is assumed to regress until 2025, similar to increases of 
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other energy carriers. Figure 3-12 shows the assumed energy prices from 2020 to 2050. Addi-

tionally, some basic assumptions are summarized in the following19. 

For CO2 emissions from sectors not covered by the EU emissions trading system (ETS), there is 

a national CO2 price added to the fuel costs at pump. According to Gnann et al. (2023) and 

Sensfuß et al. (2022), the price increases from 25 €2020/t in 2021 to 115 €2020/t in 2030 and 300 

€2020/t from 2040 onwards. Additionally, synthetic fuel is blended to the conventional fuels to 

ensure climate neutrality by 2045. Blending increases to 4% by 2030, to 50% by 2040, and to 

100% by 2045. Both effects lead to increasing diesel and methane prices. The given prices are 

prices at the pump and include taxes, profit, and infrastructure. 

Hydrogen is currently used in small quantities in the transport sector. The price was previously 

capped at 9.5 €/kg including VAT, but was increased to 12.85 €/kg in 2022 (H2 Mobility, 2023). 

Since the price increase is assumed to be due to the price increase for natural methane gas, 

the long-term scenarios continue to assume a price cap at 9.50 €/kg. The price cap equals a 

hydrogen price of 0.24 €2020/kWh excluding VAT. In general, a price for synthetic hydrogen is 

assumed, as soon as the price is lower than the price cap. In the optimistic price path used in 

this thesis, an additional tax relief is taken into account that corresponds to the tax relief for 

natural methane gas in road applications in recent years. The given prices are prices at the 

pump and include taxes, profit, and the construction of a corresponding refueling infrastruc-

ture. 

In the context of this thesis, an industrial electricity price is assumed for truck charging. BDEW 

(2022) provides an industrial energy price for sales volumes of 160,000 kWh per year or more. 

With an average consumption of more than one kWh per km (compare annex A.3) and an 

annual mileage of approximately 100,000 km per year (compare for example Wietschel et al. 

(2017) or subchapter 5.2.1.1), the minimum quantity would already be reached with two 

vehicles. Therefore, it is likely that both trucking companies and charging infrastructure pro-

viders will receive industry electricity prices at their locations. It should be noted that the price 

of electricity for industrial customers in Germany varies depending on power demand and 

energy demand. In general, high energy demand with low power demand leads to low electric-

ity prices per kWh (BNetzA, 2023c). The rough calculation above shows that a charging station 

or a depot will be well above the minimum value of the energy demand given in BDEW (2022) 

for industry customers. Therefore, an average industry price, as provided by Gnann et al. 

(2023), seems to be a good proxy. Since the charging infrastructure is in the focus of this the-

sis, the corresponding surcharges are calculated separately (compare subchapter 3.3) and are 

not part of the electricity price. 

                                                             
19 The explanations are intended to increase the understanding of the price paths used. They do not represent the 
entire price modeling. For more details, please refer to Gnann et al. (2023) and the material provided at 
https://www.langfristszenarien.de. 
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Figure 3-12: Assumed energy prices from 2020 to 2050, based on Gnann et al. (2023). 

3.5.1.2 Vehicle availability  

As shown in the literature review in subchapter 2.1.2, BET are at least partially competitive 

from an economic perspective by 2030. This makes the vehicle availability even more im-

portant, which reduces the sales share of alternative drivetrains in early years. As outlined in 

Wietschel et al. (2017), the limited choice of brands and models is a barrier to the diffusion of 

a new technology. Due to the small number of manufacturers and model variants, an estimate 

based on model announcements, as shown by Gnann (2015) for passenger cars, is hardly 

possible for trucks. In the past, logistic curves were estimated for trucks, based on expert 

guesses for market uptake (Wietschel et al., 2017). However, this is associated with high un-

certainties. Instead, manufacturer announcements are used at this point. As part of NOW’s 

cleanroom talks, all major manufacturers were asked about their sales targets for alternative 

drivetrains in Germany up to 2030 (NOW, 2023). As shown in the literature review in subchap-

ter 2.1.2 in Figure 2-2, their estimate is the highest of all studies20. Thus, the manufacturers’ 

estimate represent an upper bound and serve as input to fit logistic curves for the availability 

of BET and FCET. Equation (3-2) and equation (3-3) represent the curves for BET and FCET, 

using ordinary least squares (r2 = 0.99 in both cases).  

𝑣𝑒ℎ𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒𝐵𝐸𝑇
𝑡 =

1

1 + 𝑒−
𝑡−2029.1

2.03

 (3-2) 

𝑣𝑒ℎ𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒𝐹𝐶𝐸𝑇
𝑡 =

1

1 + 𝑒−
𝑡−2032.8

1.72

 (3-3) 

                                                             
20 It should be mentioned that Tol et al. (2022) is significantly higher, but should be understood as a purely econom-
ic estimate of the potential.  
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NOW (2023) does not show any relevant market shares for GT, but corresponding vehicles are 

already available today. Therefore, it is assumed that no further development will take place 

and that the current level from Gnann et al. (2023) remains constant. DT serve as fallback 

option and are always fully available (Gnann et al., 2023). Figure 3-13 shows the development 

of the vehicle availabilities. The relative vehicle availability can be interpreted as the realizable 

proportion of all desired (cost-optimal) vehicles. For example, 60% of all vehicles declared as 

cost-optimal when being a BEV will be realized as a BEV in 2030. 40% of them will choose a 

second-best drivetrain, due to limited availability of the vehicles. 

 

Figure 3-13: Assumed vehicle availability from 2020 to 2050 in the truck diffusion model. 

3.5.1.3 Infrastructure  

The infrastructure modeling in the pure infrastructure part of this thesis aims to show the 

possible range of public fast charging infrastructure from different perspectives. The modeling 

shows how an optimized minimum network with highly used charging locations could look like 

and how a more comfortable network with regular intervals between stations could be de-

signed. As part of the market diffusion model, infrastructure should continue to be built at 

locations that are attractive in terms of freight flows and expected utilization. Simultaneously, 

the network should consider (politically) defined framework conditions. As a guideline, the 

specifications of the AFIR proposal (EC, 2021) are used. In 2025, the proposal foresees one 

charging location for 60 km of TEN-T core network and a charging location for every urban 

node. For Germany, 6,360 km TEN-T core network (CEDR, 2020) and 13 urban nodes (EU, 

2013) correspond to 120 charging locations. By 2030, the TEN-T comprehensive network shall 

be equipped with charging infrastructure at 100 km intervals. Another 40 locations are there-

fore needed to equip the TEN-T core network (CEDR, 2020). By 2035, it is assumed that the 

maximum distance of 60 km between service areas in the German highway network (FGSV, 

2011) is also achieved on average for charging locations. As an example, Milence - a joint 
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venture of Volvo, Daimler, and Traton, and only one potential charging point operator - has 

planned at least 1,700 charging points in Europe by 2027 at the latest. Although the number of 

charging points per location and the share of charging points in Germany are uncertain, the 

announcement shows the ambitions of at least a part of the industry. German policy also 

supports a rapid expansion via the National Centre for Charging Infrastructure (NLL) and pre-

pares corresponding tenders for the near future (Lahmann, 2022). Therefore, the targets of 

the AFIR proposal appear to be ambitious, but achievable for Germany21. Since the targets of 

the AFIR proposal are considered ambitious and will probably even be lowered as part of a 

final agreement (Bernard, 2023; T&E, 2023), the values for 2025 and 2030 are also interpreted 

as maximum values. 

For the market diffusion model, there is a limit regarding the number of charging points per 

location. As shown by Kippelt et al. (2022), the maximum usable grid connection within two 

years at one location is approximately 8 MVA. As shown in subchapter 3.3, this corresponds to 

12 charging points. By 2030, it is assumed that the next expansion stage - a maximum of 20 

MVA or 30 charging points - can be achieved. According to Kippelt et al. (2022), this corre-

sponds to a new medium voltage connection22. To avoid completely new connections to the 

high voltage grid with realization periods of up to 10 years (Kippelt et al., 2022), 30 MVA or 45 

plugs are considered as the maximum from 2035 onwards. Table 3-9 sums up the most im-

portant parameters.  

Table 3-9: Minimum and maximum number of public fast charging locations in the market diffusion model. 

 2025 2030 2035 2050 

Minimum charging locations 120 160 220 220 

Maximum charging locations 120 160 - - 

Maximum plugs per location 12 30 45 45 

 

For private charging, it is assumed that the vehicle operator is able to install a corresponding 

infrastructure, if he is able to buy a BET. Accordingly, the infrastructure constraint is implicitly 

included in the vehicle availability. For public fast charging infrastructure, the development is 

explicitly modeled in the market diffusion model, as shown in subchapter 4.2.2. Therefore, the 

availability for slow and fast charging infrastructure at private and at public locations is initially 

set to 100%. 

                                                             
21 For comparison: From March 2022 to March 2023, 4,537 new fast charging points (> 50 kW) for passenger cars 
were built in Germany. By March 01, 2023, 13,714 fast charging points had been established. The stock of fast 
chargers with at least 300 kW power increased by 1,565 charging points to 3,540 charging points from 2022 to 2023 
(BNetzA (2023b)). 
22 See Table 3-3 in subchapter 3.3. 
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Costs assumptions for slow charging infrastructure - in this thesis up to 44 kW - are based on 

Basma et al. (2021). Taking into account one charging event per day (33% temporal utilization) 

per charging point, Basma et al. (2021) calculates 0.038 €2020/kWh in 2020 and 0.027 €2020/kWh 

in 2030 for hardware, installation, and maintenance. The reduction is due to slightly decreas-

ing hardware and installation costs. After 2030, constant costs are assumed. For fast charging, 

including megawatt charging, infrastructure costs are endogenously updated in the model, as 

described in 4.2.3.4 based on values from chapter 3.3. For initialization, the assumptions from 

Basma et al. (2021) on fast charging infrastructure are used, which assume 1.223 €2020/kWh in 

2020 and 0.055 €2020/kWh in 2030 for hardware, installation, and maintenance. Basma et al. 

(2021) assumed a utilization of 1% in 2020 and 16% in 2030. It is evident that a low utilization 

leads to high initial costs. In accordance with Plötz, Link, et al. (2023), it is assumed that from 

2020 to 2025, the infrastructure costs are capped on the level of 2025. Assuming an annual 

percentage decrease in fast charging infrastructure costs, the costs will amount to 

0.26 €2020/kWh in 2025. Therefore this value is assumed from 2020 to 2025.  

An overview is given in Table A-4 in the appendix.  

3.5.2 Technical vehicle assumptions 

The parameters used in the ALADIN market diffusion model for trucks are continuously updat-

ed, taking into account current literature. Additionally, the assumptions are regularly discussed 

with industry experts. The parameters used in this thesis were defined mainly in the context of 

Plötz, Link, et al. (2023) and Gnann et al. (2023). They are documented in Appendix A.3. Refer-

ences to underlying sources are added. However, since this thesis goes beyond the existing 

status of the ALADIN model with regard to BET, the technical assumptions for the battery are 

discussed separately. The assumed charging behavior should also be briefly explained at this 

point. 

3.5.2.1 Battery 

The needed battery is defined by range requirements. In accordance with currently available 

models, a minimum distance of 200 km is assumed (Mercedes Benz, 2023; Volvo, 2023a, 

2023b)23. The minimum distance defines the minimum battery size that is provided, regardless 

of the range actually required. Additionally, a maximum range - the maximum range that can 

be provided with one battery charge - is required. For 2020, a range of 250 km is assumed on 

the basis of current models that provide up to 300 km today (Mercedes Benz, 2023; Volvo, 

2023b). Based on Plötz, Link, et al. (2023), an increase to 450 km by 2030 and to 750 km by 

2050 is assumed. It should be mentioned that these assumptions are rather conservative, 

taking current industry estimates between 350 km and 1,000 km by 2030 into account (NOW, 

2023). However, to avoid weight loss, more conservative estimates are assumed in this thesis 

                                                             
23 The references show vehicles that are typical today. For a comprehensive overview of the vehicles available, see 
ifeu (2023). 
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(Mauler et al., 2022). Usually, the vehicles will not fully utilize the maximum range. It is as-

sumed that - if possible - a charging stop will be scheduled as soon as 75% of the maximum 

range would be exceeded. The value is chosen so that by 2030 the usual driving time of 4.5 h 

can be driven without an interruption. Taking into account a usable battery size of 70% in 

2020, 75% in 2030, and 85% in 2050 (Mauler et al., 2022; Plötz, Link, et al., 2023), the battery 

is finally scaled in 100 kWh modules. The modular design of the battery is already apparent in 

this order of magnitude (see Mercedes Benz (2023) or Volvo (2023b)).  

All numbers can be found in Table A-2 in the appendix. 

3.5.2.2 Charging strategy 

Initial research suggests that larger batteries can support the market-diffusion more than 

additional infrastructure (Gnann, Speth, Link, & Plötz, 2022). Therefore, it is assumed that 

logistics companies will increasingly avoid additional charging stops as the available battery 

size increases. The model anticipates that a charging stop is scheduled, if the distance driven 

with the next trip to be completed exceeds 75% of the maximum range of available batteries. 

To avoid charging during short trip interruptions, 30 min is assumed to be a realistic minimum 

parking time for recharging.  

With regard to the charging power, it is assumed that charging with the MCS standard will be 

possible after 2025. This means that the average charging power will be higher than 350 kW 

typical today for the CCS standard. From 2030 onwards, it is assumed that the average charg-

ing power will be sufficient to recharge the maximum range in 30 min (CharIN, 2023; HoLa, 

2021).  

As shown by Borlaug et al. (2021), the flattest load curve results from constant charging at 

minimum power, so that the vehicle is fully charged at the start of the next trips. In order to 

keep the grid connection as small as possible, this charging strategy is implemented in this 

thesis.  

More details on the assumptions can be found in Table A-2 in the appendix. The implementa-

tion of the charging strategy is described in subchapter 4.2.  

3.5.3 Economic vehicle assumptions 

Similar to the technical vehicle assumptions, the economic vehicle assumptions rely on the 

latest version of the ALADIN market diffusion model and are documented in Appendix A.3. 

Therefore, only some basic ideas are shown in the following.  

3.5.3.1 Vehicle investment  

The vehicle investment is composed of different vehicle parts (see Speth, Kappler, et al. (2022) 

for more information). The individual component costs are documented in Appendix A.3. As an 

example, Figure 3-14 shows the resulting purchase prices and the residual values for a tractor-
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trailer truck with a GVW of more than 12 t for all drivetrains under investigation. It can be 

clearly seen that the DT is the most cost-efficient alternative in terms of investment. The GT 

has a very similar cost structure, but requires an additional compressed gas tank. The FCET also 

requires an additional tank for liquefied hydrogen. Although the hydrogen tank is more expan-

sive than the gas tank per kWh, it can be dimensioned smaller due to the higher efficiency of 

the FCET. The BET requires a battery that can vary in its size, depending on the desired range. 

The technically assumed range is between 300 kWh and 700 kWh in 2030, and between 300 

kWh and 900 kWh in 2050. The effects on the vehicle investment are shown as color gradient. 

The FCET also has a buffer battery. Overall, the BET and the FCET are still more expensive than 

the DT in 2030, but this is offset by the assumed continuation of the purchase price reduction 

of 80% of the additional costs compared to the DT (BaLM, 2023). This support is no longer 

taken into account after 2030. However, the difference to the DT decreases for both the FCET 

and the BET - depending on the battery size - by 2050. 

Following Kleiner and Friedrich (2017) and in consultation with experts from the automotive 

industry (Plötz, Link, et al., 2023), a relative residual value of 25% of the investment is as-

sumed. Due to the batteries, there is a high uncertainty regarding the residual values of BET 

and FCET. For this reason, it is also conservatively assumed that the purchase price premium, 

which is basically to compensate for the high costs and the uncertainty of the new technology, 

is not considered for the residual value.  

 

Figure 3-14: Tractor-trailer (> 12 t GVW) purchase price and residual value for 2030 and 2050. Shaded bars indicate 

different battery ranges.  

3.5.3.2 Operating costs  

In addition to fuel costs (see subchapter 3.5.1.1), the operating costs include operation and 

maintenance, road tolls, vehicle taxes, and insurance.  



3  Data, scenarios, and assumptions 

60 

Based on Speth, Kappler, et al. (2022) and taking into account Basma et al. (2021), LastAu-

toOmnibus (2018), Wietschel et al. (2017), Jöhrens et al. (2018), and Marcinkoski et al. (2019), 

GT are assumed to have a small cost advantage over DT in terms of operation and mainte-

nance. For BET, the cost advantage is higher, due to the simpler vehicle, and especially engine, 

structure. FCET can also achieve cost benefits in the 2050 perspective.  

The considered road toll is based on Toll Collect (2023). The introduction of a CO2-dependent 

toll, as suggested by Deutsche Bundesregierung (2023), is not implemented. Up to now, the 

CO2-dependent toll has been discussed with a corresponding reduction of the CO2-dependent 

part of the fuel costs to avoid double taxation (Umweltbundesamt, 2021). Since a CO2-price is 

part of the fuel costs in this modeling, the toll does not contain a CO2-dependent part. At the 

beginning, GT, BET, FCET are still partially exempt from tolls. In the long term, only BET and 

FCET are exempt from the air pollution factor, which is a small part of the total toll. 

Vehicle insurance and taxes are included according to today's usual values. All number can be 

found in Table A-3 in Appendix A.3.  
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4 Model development 

This thesis contains two main topics: (1) The development of a possible German- and Europe-

wide public fast charging infrastructure, and (2) the influence of a German public fast charging 

infrastructure on the market diffusion of BET in Germany and vice versa. Therefore, two mod-

eling approaches for a public fast charging infrastructure are described below, followed by a 

model for the coupling of the market diffusion of BET with a further adopted infrastructure 

model. While the pure infrastructure modeling picks specific scenarios that can be associated 

with a given point in time (see chapter 3.4), the coupled diffusion of vehicles and infrastructure 

is modeled on yearly basis.  

4.1 Infrastructure models 

As shown in section 2.2, there are at least three major options to model charging infrastruc-

ture for battery electric vehicles. In this thesis, two approaches are applied. First, the infra-

structure is considered at regular intervals, as proposed by the EC (EC, 2021). As proposed in 

node-based models, local demand - in other words the local traffic volume - serves as a proxy 

for sizing the single charging locations. Second, an FRLM determines the optimal - in this case 

the minimum - number of charging locations. Due to the international nature of road freight 

transport, both Europe1 and Germany are considered. As described in subchapter 2.2.4, com-

paring the node-based and the path-based approach can lead to a better understanding of 

infrastructure needs and identify critical parameters. 

4.1.1 Infrastructure at regular intervals2 

The methodological procedure to calculate a charging infrastructure network with regular 

intervals between the charging locations is divided into two major steps: First, the charging 

locations are determined and charging events are distributed to the charging locations. Sec-

ond, the number of charging points per charging location is calculated. Figure 4-1 provides an 

overview of the methodological procedure.  

                                                             
1 Europe: EU27, United Kingdom, Norway, Switzerland. 
2 Parts of this subchapter are based on Speth, Plötz, et al. (2022) and Speth, Sauter, and Plötz (2022). 
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Figure 4-1: Procedure description for infrastructure modeling at regular intervals (Speth, Sauter, & Plötz, 2022). 

4.1.1.1 Determination of charging locations 

In Europe, odd numbers indicate roads from north to south, even numbers indicate roads from 

east to west. This applies to German highway numbers as well as to the European E-road 

numbers. Following S. Á. Funke (2018) every single road is traversed successively one after 

another in ascending order. Each node in the considered road network serves as a possible 

charging location. Locations are positioned at regular intervals. If the distance to the last 

charging location exceeds the defined distance between two charging locations, a new location 

is introduced. Equation (4-1) shows this approach, where 𝐶𝐿𝐿 is a bivariate variable indicating 

whether infrastructure is built in 𝐿 or not. 𝑑𝐶𝐿,𝐿  indicates the distance between the last posi-

tioned charging location and location 𝐿. 𝑑𝑎𝑣𝑔 defines the distance between two charging 

locations in the network. It is assumed that one charging location can serve both directions of 

travel. 

𝐶𝐿𝐿 =  {
1, 𝑖𝑓 𝑑𝐶𝐿,𝐿 ≥ 𝑑𝑎𝑣𝑔

0, 𝑒𝑙𝑠𝑒
 (4-1) 

Step 1: Define charging locations: 

1. For each road: 

i. Position charging location every davg  km along the road (equation (4-1)) 

2. Calculate the total number of charging events in the considered area (equation (4-2)) 

3. For each positioned charging location: 

i. Determine the maximum traffic in one of the subsections within the section 

that is covered by the charging location  

ii. Determine the share of charging events at the location by comparing the max-

imum traffic in the section of the charging location to the sum of maximum 

traffics in all sections (equation (4-3)) 

iii. Multiply the local share of charging events by the total number of charging 

events to calculate the number of local charging events (equation (4-3)) 

Step 2: Define charging points per location: 

1. For typical number of charging points (e.g. 1 ... 100): 

i. Using queuing theory, calculate the number of vehicles that can be served per 

hour 

2. For each positioned charging location: 

i. Multiply the number of local charging events by the share of peak hour traffic 

to determine peak hour traffic at the location 

ii. Choose the number of charging points so that peak hour traffic at the location 

is less than the number of vehicles that can be served by the local charging 

points 
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The procedure for the first and the last charging location of a highway section is slightly differ-

ent. To consider highway changes, the distance to the end or the start of the considered high-

way is half of 𝑑𝑎𝑣𝑔. Highways with a total length of less than 25 km, typically urban highways, 

are not considered for charging locations.  

Equation (4-2) gives the total number of daily public charging events in the considered area, 

for example Europe or Germany. 𝐵𝐸𝑇𝑠ℎ𝑎𝑟𝑒  stands for the share of BET on the total cumulative 

annual mileage 𝐴𝑀𝑡𝑜𝑡𝑎𝑙 of all HDV. The annual mileage is divided by 313 to derive daily mile-

age, excluding Sundays. 𝑟𝑎𝑛𝑔𝑒𝐵𝐸𝑇 refers to the range that a truck can cover in 4.5 hours of 

driving. This corresponds to the maximum driving time, before a mandatory break is required. 

Finally, only the share of public charging events 𝐶𝐸𝑝𝑢𝑏𝑙𝑖𝑐 is considered.  

𝐶𝐸𝑡𝑜𝑡𝑎𝑙,𝑝𝑢𝑏𝑙𝑖𝑐 =  
𝐵𝐸𝑇𝑠ℎ𝑎𝑟𝑒 ∗ (𝐴𝑀𝑡𝑜𝑡𝑎𝑙/313)

𝑟𝑎𝑛𝑔𝑒𝐵𝐸𝑇
∗ 𝐶𝐸𝑝𝑢𝑏𝑙𝑖𝑐 (4-2) 

Finally, the expected daily public charging events have to be allocated to individual charging 

locations. According to S. Funke and Plötz (2017), the local traffic volume serves as proxy for 

the local charging demand. The maximum traffic volume in the area in front of and behind the 

location is calculated and compared with the total maximum traffic volume of all locations. The 

number of trucks in both directions is considered together. This means that one location can 

serve both directions.  

Equation (4-3) describes the calculation of the daily charging events at each realized charging 

location. 𝑀𝐴𝑋𝐶𝐿𝑖−0.5

𝐶𝐿𝑖+0.5(𝑇𝑉𝑗) describes the maximum traffic volume of all subsection j on half the 

distance between the realized charging location 𝑖 and the realized station before this location 

𝐶𝐿𝑖+0.5 and half the distance to the subsequent location 𝐶𝐿𝑖+0.5. The individual maximum 

traffic volume is set in relation to the sum of all maximum traffic volumes of all realized sta-

tions. 

𝐶𝐸𝐶𝐿𝑖
=  𝐶𝐸𝑡𝑜𝑡𝑎𝑙,𝑝𝑢𝑏𝑙𝑖𝑐 ∗

𝑀𝐴𝑋𝐶𝐿𝑖−0.5

𝐶𝐿𝑖+0.5(𝑇𝑉𝑗)

∑ 𝑀𝐴𝑋𝐶𝐿𝑖−0.5

𝐶𝐿𝑖+0.5(𝑇𝑉𝑗)𝐶𝐿𝑖

 (4-3) 

Figure 4-2 shows a simplified draft to visualize the procedure.  

 

Figure 4-2: Simplified draft for infrastructure modeling at regular intervals. Based on Speth, Sauter, and Plötz (2022). 
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4.1.1.2 Dimensioning of charging locations 

Following the explanations in chapter 2.2.3, the calculation of the number of charging points 

per location is based on queuing theory. To define a queueing system, the time between 

arrivals (A), the service time distribution (S), the number of service channels - or charging 

points - (c), the discipline of the queue (d), the capacity of the queue (k), and the number of 

jobs to be served (m) need to be defined. Typically, the Kendall notation (A/S/c/d/k/m) is used.  

In accordance with Gnann et al. (2018), Poisson-distributed arrivals characterize the arrival 

process. The average arrival rate is defined as follows:  

𝜆𝐶𝐿𝑖
=  𝐶𝐸𝐶𝐿𝑖

∗ 𝑝𝑒𝑎𝑘_ℎ𝑜𝑢𝑟 (4-4) 

𝐶𝐸𝐶𝐿𝑖
 represents the daily charging events at the realized location 𝑖. For the charging location 

dimensioning, the share of charging events that happens during the peak hour 𝑝𝑒𝑎𝑘_ℎ𝑜𝑢𝑟 is 

considered. The inter-arrival times A are therefore exponentially distributed (Markovian Distri-

bution M). This means A = M.  

With regard to the service time distribution S, Gnann et al. (2018) showed that a General 

distribution G with normally distributed service times fits quite well. The average number of 

customers served per period is defined by μ. For example an average charging time 𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔𝑞 

of 30 min results in an average service rate μ = 2 trucks/hour.  

The number of service channels c - charging points - shall be calculated. For D, k, and m, the 

default values are assumed. The queue’s discipline d follows the first-in-first-out principle. This 

means that the trucks are served in the order of their arrival. The number of customers waiting 

in the queue k is assumed to be infinite. The same applies to the number of customers - jobs to 

be served - in total. In summary, the queuing system is defined as M/G/c system. Since exact 

solution for the mean waiting time of M/G/c systems are not known, the mean waiting time is 

approximated, according to S. Á. Funke (2018): 

𝑊𝑞
𝑀|𝐺|𝑐

=
𝐶2 + 1

2
𝑊𝑞

𝑀|𝑀|𝑐
 (4-5) 

𝐶 is defined as the variation coefficient of the distribution of the service times, i.e. the stand-

ard deviation 𝑤𝑞 divided by the mean value of the service time distribution 𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔𝑞. This 

formula is used with the waiting time of the original M/M/c system, given in equation (4-6): 

𝑊𝑞
𝑀|𝑀|𝑐

=
1

1 − 𝜌

1

𝑐𝜇

(𝑐 𝜌)𝑐

𝑐!
((1 − 𝜌) ∑

(𝑐𝜌)𝑛

𝑛!

𝑐−1

𝑛=0
+

(𝑐𝜌)𝑐

𝑐!
)

−1

 𝑤𝑖𝑡ℎ  𝑝 =
𝜆

𝑐𝜇
 (4-6) 

Finally, we calculate the maximum average arrival rate λ that allows for an average waiting 

time 𝑤𝑞 of 5 minutes for all possible numbers of charging points c. For each location, we 

compare the local average arrival rate 𝜆𝐶𝐿𝑖
 to the arrival rates with different 𝑐. Afterwards, we 

can choose the number of charging points 𝑐 for each location so that the average waiting time 

is less than 5 minutes. Annex A.4 shows the maximum number of vehicles that can be served 
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by a certain number of charging points. An average waiting time of less than five minutes does 

not mean that all vehicles wait exactly five minutes. There is a distribution of waiting times. For 

an exemplary arrival rate of 𝜆 = 4 trucks/hour and an average service rate of μ = 2 trucks/hour, 

𝑐 = 4 charging points are required to achieve an average waiting time of less than 5 minutes. 

The average waiting time of less than 5 min is achieved by the fact that the vast majority of 

trucks (~ 83%) does not have to wait at all, a few trucks (~ 8%) have to wait up to 5 minutes or 

5 - 15 minutes (~ 7%), and very less (2%) have to wait longer than 15 minutes. 

4.1.2 Optimized charging infrastructure network3 

This thesis contains two types of optimized network modeling approaches. First, a Europe-

wide FRLM is calculated. On the one hand, the resulting network serves as the minimum 

usable infrastructure for international transports outside Germany. This is essential, as other-

wise, the infrastructure in the transit country Germany is overestimated. On the other hand, it 

represents a benchmark for Germany, to be able to assess the impact of a capacity restriction. 

Second, a new formulation of a CFRLM considers parking capacities. The CFRLM is limited to 

Germany, due to the computational effort.  

4.1.2.1 Problem formulation FRLM 

The FRLM without capacity restriction follows the approach presented by Capar et al. (2013) 

and used by Jochem et al. (2019). Whenever necessary, the assumptions by Capar et al. (2013) 

are slightly adjusted and new assumptions are added. In the following, italic font highlights the 

adjustments:  

1. Traffic between an OD pair follows a single path from the center of the origin area to the 

center of the destination area. 

2. The traffic volume for every single origin-destination path is known in advance. 

3. Drivers have full knowledge of locations of charging locations along the path and re-

charge efficiently to complete a single trip. 

4. Only nodes of the network are considered as possible locations of charging locations. 

5. All trucks have similar driving ranges. 

6. The fuel consumption is directly proportional to the distance traveled. 

7. All potential recharging locations are uncapacitated. 

8. Each truck starts the trip fully charged and can be recharged at the destination. 

The first assumption corresponds to the original model. As suggested by Capar et al. (2013), 

the shortest paths, provided by the ETIS-U dataset, serve as input. Since only the ETISplus road 

network is modeled, the proposed travel distances to and from the center of the origin and 

destination region are also considered. The second assumption also corresponds to the original 

model. As indicated by the third assumption, the modeling assumes a vehicle to complete a 

                                                             
3 Parts of this subchapter are based on Speth et al. (2024). This publication is still under review at the time of 
submission of this thesis. 
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single trip instead of a round trip. As explained by P. Rose (2020), a single trip better character-

izes truck driving behavior than the originally assumed round trip. Assumption 4 also follows 

the original problem formulation, even if this is a simplified representation of reality. However, 

identifying real parking locations across Europe would be very complex. The following assump-

tions 5 to 7 are also taken from the original model. As indicated by P. K. Rose et al. (2020), 

waiving the assumption of a roundtrip requires an assumption regarding the charging behavior 

at the origin and destination of the trips. Assumption 8 assumes that charging infrastructure is 

available at every depot and therefore trucks can be fully charged at the origin and the desti-

nation. This also implies that trips with a distance shorter than the vehicle range do not have 

to be taken into account. The formulation of the uncapacitated FRLM reads (Capar et al., 2013; 

Jochem et al., 2019; P. K. Rose et al., 2020): 

min ∑ 𝑧𝑖

 𝑖∈𝑁

  (4-7) 

s.t.   

∑ 𝑧𝑖 ≥ 𝑦𝑞,
𝑖∈𝐾𝑖,𝑗

𝑞
 ∀𝑞 ∈ 𝑄, 𝑎𝑗,𝑘 ∈  𝐴𝑞 (4-8) 

∑ 𝑓𝑞𝑦𝑞  ≥ 𝑠 ∑ 𝑓𝑞
𝑞∈𝑄𝑞∈𝑄

  (4-9) 

𝑦𝑞, 𝑧𝑖 ∈ {0, 1}, ∀𝑞 ∈ 𝑄, 𝑖 ∈ 𝑁 (4-10) 

 

Sets and indexes  

𝐴𝑞 Set of all directional arcs on a shortest path q, sorted from the origin to 

the destination 

𝐾𝑖,𝑗
𝑞

 Set of all potential nodes that can refuel the arc 𝑎𝑗,𝑘  in 𝐴𝑞 

𝑁 Set of all nodes in the modeled network  

𝑄 Set of all origin-destination pairs 

𝑖, 𝑗, 𝑘 Indices, indicating nodes 

𝑞 Index of origin-destination pairs 

𝑎𝑗,𝑘  Index of a directed arc from node 𝑗 to node 𝑘 

Parameters  

𝑓𝑞  Vehicle flow at path 𝑞 

𝑠 Share of recharged vehicle flows, in this modelling always 1 

Decision variables  

𝑦𝑞 =1 if the flow on path 𝑞 is recharged, 0 otherwise 

𝑧𝑖 =1 if a charging station is built at node 𝑖, 0 otherwise 

 

Equation (4-7) formulates the objective to minimize the number of charging stations (𝑧𝑖) at all 

nodes 𝑖 in the network. The constraint in equation (4-8) ensures that a path can only be re-



4.1  Infrastructure models 

67 

charged (𝑦𝑞 = 1), if there is a charging infrastructure for each arc in the path (𝑎𝑗,𝑘) that makes 

it possible to pass the arc. For this, a candidate set (𝐾𝑖,𝑗
𝑞

) is calculated for each arc (𝑎𝑗,𝑘) of a 

trip (𝑞). As an example, this is shown in Figure 4-3. For example, assuming a range of 300 km, 

the arc 𝑎4,5 can only be passed, if a charging station is established at one of the nodes 2, 3, or 

4 (𝐾4,5
𝑒𝑥𝑎𝑚𝑝𝑙𝑒

= {2, 3, 4}). Equation (4-9) ensures that a certain share (𝑠) of all vehicles flows (𝑓𝑞) 

can be realized. In this thesis, it is assumed that all paths must be realized4. As shown in Figure 

4-3a, four possible solutions exist for the example path, each with two stations to be built. 

Which solution is realized, depends on which potential stations are also located favorably for 

other paths.  

 

Figure 4-3: Illustration of an origin-destination path with (b) and without (a) a capacity restriction. Originally pub-

lished in Speth et al. (2024). 

4.1.2.2 Problem formulation CFRLM 

This section presents the CFRLM to calculate the optimized German charging infrastructure 

network. First, new assumptions are introduced. Afterwards, the section contains the actual 

formulation of the mixed-integer optimization problem (MIP). Finally, the model is explained, 

using an example path, and special effects are addressed.  

The assumptions 1, 2, 3, 5, 6, and 8 remain unchanged and are consistent with the assump-

tions of the FRLM in subsection 4.1.2.1. Adjustments to assumptions 4 and 7 introduce the 

capacity constraint. Thereby, each node in the road network receives as capacity limit. The 

new formulation is shown in the following: 

                                                             
4 This means 𝑦𝑞 = 1 ∀𝑞 ∈ 𝑄. Thus, equation (4-9) can be omitted and equation (4-8) becomes ∑ 𝑧𝑖 ≥ 1 ∀𝑞 ∈𝑖∈𝐾

𝑖,𝑗
𝑞

𝑄, 𝑎𝑗,𝑘 ∈  𝐴𝑞. However, the original formulation from the literature is kept for comprehensibility.  
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4. Only nodes with an assigned parking capacity are considered as locations of potential 

charging stations. 

7. All potential recharging stations are capacitated.  

In the following, the new formulation is presented: 

min ∑ 𝑧𝑖

 𝑖∈𝑁

  (4-11) 

s.t.   

∑ 𝑥𝑖𝑞𝑠
≥ 1,

𝑖∈𝐾𝑖,𝑗
𝑞𝑠

 ∀𝑞𝑠 ∈ 𝑄, 𝑎𝑗,𝑘 ∈  𝐴𝑞𝑠
 (4-12) 

∑ 𝑓𝑞𝑠
𝑥𝑖𝑞𝑠

 ≤ 𝑐𝑎𝑝𝑖𝑧𝑖
𝑞𝑠∈𝑄

, ∀𝑖 ∈ 𝑁 (4-13) 

∑ 𝑥𝑖𝑞𝑠
≤ 𝑙𝑞𝑠

,
𝑖∈𝑁

 ∀𝑞𝑠 ∈ 𝑄 (4-14) 

𝑥𝑞𝑠
, 𝑧𝑖 ∈ {0, 1}, ∀𝑞𝑠 ∈ 𝑄, 𝑖 ∈ 𝑁 (4-15) 

 

Sets and indexes  

𝐴𝑞𝑠
 Set of all directional arcs on a shortest path 𝑞𝑠, sorted from the origin to 

the destination 

𝐾𝑖,𝑗
𝑞𝑠 Set of all potential nodes that can refuel the arc 𝑎𝑗,𝑘  in 𝐴𝑞𝑠

 

𝑁 Set of all nodes in the modeled network  

𝑄 Set of all origin-destination pairs 

𝑖, 𝑗, 𝑘 Indices, indicating nodes 

𝑞𝑠 Index of origin-destination pairs. Extended to identical origin-destination 

pairs for each subset. Flows are split, if the vehicle flow exceeds the 

capacity of a single parking space. 

𝑠 Index, indicating a subset of a path 𝑞 

𝑎𝑗,𝑘  Index of a directed arc from node 𝑗 to node 𝑘 

Parameters  

𝑓𝑞𝑠
 Vehicle flow at path 𝑞𝑠 in 𝑝𝑒𝑎𝑘_ℎ𝑜𝑢𝑟 

𝑐𝑎𝑝𝑖  Capacity restriction in node 𝑖 

𝑙𝑞𝑠
 Number of maximum stops to drive path 𝑞𝑠 

Decision variables  

𝑥𝑖𝑞𝑠
 =1 if the flow on path 𝑞𝑠 is recharged at node 𝑖, 0 otherwise 

𝑧𝑖 =1 if a charging station is built at node 𝑖, 0 otherwise 

 

Again, the objective function (equation (4-11)) minimizes the number of charging stations (𝑧𝑖). 

As described by Upchurch et al. (2009) and Böhle (2021), it is not sufficient for the capacity-
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constrained infrastructure to ensure that every arc on a path can be traveled (equation (4-8)). 

Instead, it must be determined which vehicle uses which charging location. Therefore, the 

bivariate parameter 𝑥𝑖𝑞𝑠
 indicates, if the path 𝑞𝑠 is recharged at node 𝑖. Equation (4-12) en-

sures that each arc of a path is drivable by requiring the path’s vehicles to recharge at least at 

one candidate set location. Similar to the FRLM and as shown in Figure 4-3(b), the candidate 

sets 𝐾𝑖,𝑗
𝑞𝑠 contain all nodes that make an arc drivable, as long as the node is a suitable charging 

location. The hourly maximum number of vehicles that can be served in the peak hour at 

node 𝑖 (𝑐𝑖) is calculated using queuing theory based on the methodology presented in section 

4.1.1.2 and with assumptions given in 3.4.2. Equation (4-13) ensures that no more vehicles 

charge at a node 𝑖 in the peak hour than the capacity 𝑐𝑎𝑝𝑖  allows. Therefore, 𝑓𝑞𝑠
 is defined as 

vehicle flow in the peak hour. For this purpose, the annual traffic volume on path 𝑓𝑞𝑠
 from the 

ETIS-U dataset is equally distributed over 250 working days and multiplied by the share of 

traffic in the peak hour 𝑝𝑒𝑎𝑘_𝑠ℎ𝑎𝑟𝑒. In addition, charging is only possible, if a location is 

opened in node 𝑖 (𝑧𝑖 = 1). Equation (4-14) limits the maximum number of charging stops on 

one origin-destination-tour. As shown in Figure 4-3, capacity constraints may necessitate 

additional stops. In the example, all vehicles need to recharge in node 7 to reach the destina-

tion. Node 7 can be reached by recharging either in node 4 or in node 5. Since the capacity in 

node 4 is not sufficient for all vehicles, some vehicles have to recharge in node 5 and therefore 

need to stop in either node 2 or node 3 to reach node 5. This means that some vehicles have 

to stop three times to cover 700 km, although they have a range of 300 km and start with a 

fully charged battery. Therefore, the model allows one additional stop and calculates the 

maximum number of stops 𝑙𝑞𝑠
 according to equation (4-16). 

𝑙𝑞𝑠
=  ⌊

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑞𝑠

𝑟𝑎𝑛𝑔𝑒𝐵𝐸𝑇
⌋ + 1, ∀(𝑞𝑠 ∈ 𝑄) ∩ (𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑞𝑠

> 𝑟𝑎𝑛𝑔𝑒𝐵𝐸𝑇) (4-16) 

𝑙𝑞𝑠
 Number of maximum stops to drive path 𝑞𝑠 

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑞𝑠
 Length of path 𝑞𝑠 

𝑟𝑎𝑛𝑔𝑒𝐵𝐸𝑇 Vehicle range within one driving session of 4.5 h 

 

Due to the increased computational effort and the incomplete Europe-wide data on available 

parking capacities, the CFRLM is restricted to Germany. This means that paths are taken into 

account, if their distance is longer than the assumed minimum range of 300 km and if they are 

driven at least partially in Germany. For cross-border traffic, it is assumed that vehicles can use 

the foreign charging stations calculated by the FRLM. Thus, the origin of the path is considered 

to be the last charging station before the border, and the destination is the next charging 

station after the border.  

To solve the problems, a server with 196 GB RAM and 8 cores is used. The implementation is 

done in Python 3.10, integrating the solver CPLEX 12.6 via Pyomo. Depending on the parame-

ter selection and the accepted tolerance to the theoretically possible optimum, the runtime is 

several days to weeks.  
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4.1.3 Infrastructure costs determination  

As shown in equation (4-17), the total investment for public fast charging infrastructure at a 

time 𝑡 in a scenario 𝑐𝑖𝑛𝑓𝑟𝑎
𝑡  can be calculated as the sum of the investment for the single charg-

ing locations 𝑐𝐶𝐿𝑖

𝑡 . The investments for the individual charging locations can be determined as a 

function of the number of charging points and the time of realization 𝑡, as shown in section 

3.3. 

𝑐𝑖𝑛𝑓𝑟𝑎
𝑡 =  ∑ 𝑐𝐶𝐿𝑖

𝑡

𝐶𝐿
 (4-17) 

The same approach can be used for the annual costs of infrastructure.  

To calculate the infrastructure costs per kWh, the annual costs can be divided by the total 

amount of electricity delivered by the infrastructure. The amount of energy results from the 

days of use of the infrastructure 𝑑𝑎𝑦𝑠, the daily charging events 𝐶𝐸𝐶𝐿𝑖
, the recharged distance 

𝑟𝑎𝑛𝑔𝑒𝐵𝐸𝑇, and the energy consumption per km 𝑐𝑜𝑛𝑠𝑒. Equation (4-18) sums up the calcula-

tion for the infrastructure costs per kWh when modeling infrastructure at regular intervals. For 

the optimization approach, the recharged distance depends on the previous stop and needs to 

be calculated for every charging event from the results of the optimization. However, the 

approach is identical. 

𝑐𝑖𝑛𝑓𝑟𝑎,𝑎𝑛𝑛𝑢𝑎𝑙
𝑡,𝑙𝑒𝑣𝑦

=  
∑ 𝑐𝐶𝐿𝑖,𝑎𝑛𝑛𝑢𝑎𝑙

𝑡
𝐶𝐿

∑ (𝑑𝑎𝑦𝑠 ∗ 𝐶𝐸𝐶𝐿 𝐶𝐿𝑖
∗  𝑟𝑎𝑛𝑔𝑒𝐵𝐸𝑇 ∗  𝑐𝑜𝑛𝑠𝑒)

 (4-18) 

4.1.4 Discussion 

As shown in subsection 2.2, a path-based FRLM is the most detailed type of modeling, given 

the available data. The formulation of the CFRLM used in this thesis determines the exact 

location for each charging event. This allows to calculate the exact amount of energy required 

at each location and to check the compliance with the capacity constraint highly detailed. 

However, this increases the computational effort. To the best of the author’s knowledge, the 

thesis is the first to apply a (C)FRLM to a dataset with up to 375,000 OD paths. Due to the 

computational effort, a scenario analysis with multiple scenarios or a detailed sensitivity analy-

sis is hardly possible. Instead, an additional approach places public fast charging infrastructure 

at regular intervals and estimates the local charging demand based on the local traffic. In 

contrast to the optimizing FRLM, this approach cannot determine the minimum number of 

locations required. Additionally, the approach considers any traffic that passes a location as a 

basis for the charging location dimensioning. This may overestimate public charging needs at 

locations with a high proportion of regional traffic. Compared to the FRLM, placing infrastruc-

ture at regular intervals is computationally simple and therefore well suited for sensitivity 

analysis. The combination of both approaches therefore allows both the analysis of minimum 

scenarios and the modeling of various plausible expansion paths, supplemented by sensitivity 
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analyses. Thus, both approaches allow for the first time to estimate regionally resolved public 

charging infrastructure needs for BET in Europe and Germany.  

4.2 Market diffusion model 

As shown in chapter 2.3, agent-based modeling is particularly well suited for the purpose of 

this thesis. The ALADIN model - ALternative Automobiles Diffusion and INfrastructure - is a 

well-established agent-based simulation model for the transport sector in Germany. The aim 

of this chapter is to introduce a new, extended version of the ALADIN model for the diffusion 

of HDV. The bottom-up simulation model calculates market diffusion scenarios for passenger 

cars and HDV from now until 2050 in yearly steps. Geographically, the model refers to the 

German vehicle fleet. As shown by Plötz et al. (2019), the total mileage of German trucks is 

approximately equal to the total mileage of trucks in Germany. Therefore, the model also 

allows statements regarding the expected energy demand in Germany. Additionally, model 

extensions allow the consideration of the European truck fleet. Originally, the HDV diffusion 

model was developed to estimate the potential of overhead catenary HDV (Wietschel et al., 

2017). However, the model may also consider GT, FCET, and BET as potential alternatives to 

DT. Most recently, the model has been widely used for market diffusion scenarios for policy, 

for example for the long-term scenarios of the German Federal Ministry for economic Affairs 

and Climate Action (Gnann et al., 2023), and industry, for example for the European Automo-

bile Manufacturers’ Association (Plötz, Link, et al., 2023). However, the model represents 

public charging infrastructure for BET highly simplified and requires methodological adjust-

ments for the purpose of this thesis.  

The market diffusion model presentation is divided into four steps. First, the existing model is 

briefly described and shortcomings are shown. Second, a model overview of the new model is 

given. Third, a more detailed description, including mathematical details, is presented. Finally, 

a brief discussion points out the advantages of the new model, but also potential for further 

improvements.  

4.2.1 Overview of the existing model and potentials for adaptions 

The ALADIN model is an agent-based model (ABM). Individual vehicles, or - even more precise-

ly - driving profiles, are considered as agents. The vehicles recorded in the KiD dataset (WVI et 

al., 2012a) serve as the basis. As described in Wietschel et al. (2017) or - more recently - in 

Wietschel et al. (2021), the model for HDV follows a three-step procedure. As shown in Figure 

4-4, the model starts with a technical analysis, followed by a TCO analysis, and a stock model. 

The first and the second step take place separately for each driving profile - in other words for 

each agent - individually. The third step aggregates the results for the whole HDV fleet.  
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Figure 4-4: Substeps of the existing ALADIN model for HDV. 

For each driving profile, the daily mileage from the KiD dataset - approximately profiles from 

2,500 HDV with a GVW higher than 12 t - is given. For the purpose of the technical analysis, it is 

assumed that each BET can recharge privately once a day. Taking into account the exogenously 

specified battery size, the depth of discharge, and the energy consumption per kilometer, the 

vehicle range can be calculated. From a technical perspective, the use of a BET is possible, if 

the vehicle range is higher than the daily mileage. In recent publications, for example Gnann et 

al. (2023) or Plötz, Link, et al. (2023), public charging is also considered. A ramp-up of public 

charging infrastructure is exogenously specified, which defines how much the infrastructure 

increases the vehicle range. An assumption is made that a fully developed infrastructure, 

based on the approach in chapter 4.1.1, can double the range of all vehicles. Implicitly, fast 

charging is allowed once a day. If the infrastructure is only half built, the range increases by 

50%. Similar approaches are used for overhead catenary trucks. However, since overhead 

catenary trucks are not part of this thesis, please refer to Wietschel et al. (2017) for further 

information. The described approach of the technical analysis has some disadvantages: (1) The 

use of the daily mileage. For the usability of a BET, it is less relevant whether the vehicle stays 

below a certain daily mileage; it is more relevant whether the vehicle has the time and the 

opportunity to recharge the battery between single trips. (2) The exogenously given battery 

size. The specification of a battery size - typically an average of the available models in the 

market - means that some vehicles have significantly oversized - and therefore expensive - 

batteries, while in other cases the range is insufficient. (3) The exogenously given public infra-

structure and its influence on the vehicle range. The given infrastructure can only represent an 

average case. For example, a half-built infrastructure may double the range for some vehicles, 

but is not usable for other vehicles. 

As a second step, the TCO for each driving profile and each possible drivetrain is calculated. On 

the one hand, annual capital expenditures 𝑎𝑐𝑎𝑝𝑒𝑥 are considered. On the other hand, annual 

operating expenditures 𝑎𝑜𝑝𝑒𝑥are taken into account as well5. As input parameters, the model 

considers - inter alia - vehicle prices, battery prices, fuel cell prices, but also energy carrier 

prices, costs for operation and maintenance, and vehicle toll. Subsidies and other policy 

measures can also be considered as part of the vehicle costs. Infrastructure costs are also 

relevant and can be taken into account, for example as part of the energy price. Finally, the 

cheapest drivetrain for every driving profile can be determined. Again, there is potential for 

improvements: The costs for infrastructure are determined exogenously and are independent 

of the actual need for infrastructure for the single driving profile.  

                                                             
5 For an introduction into accounting, see Wöhe et al. (2020). 

technical analysis TCO analysis stock model
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Finally, the stock model aggregates the single driving profiles to a market diffusion. Since 

ALADIN is not an integrated assessment model, the development of future registrations is 

based on exogenous sources. For example, the registrations in Gnann et al. (2023) are based 

on calculations from the AsTra model (TRT et al., 2023). The driving profiles analyzed in the 

previous steps serve as a cross-section of the market and are scaled so that the given number 

of registrations in every year can be met. In other words, every driving profile represents a 

certain number of vehicle registrations. Considering the results from the TCO-analysis, the 

cheapest drivetrain is selected. However, especially in an early market phase, demand cannot 

be fully met. Due to a reduced number of offered models, only some of the user decide for an 

alternative drivetrain, even if it is the most economic option (Wietschel et al., 2017). The 

remaining user represented by the driving profile choose the second best option. Taking into 

account the exogenously given service life, the vehicle stock can be calculated based on the 

annual registrations. There is also the possibility to improve the stock model. As shown in 

section 2.3.2, insufficient infrastructure inhibits the market diffusion of alternative drivetrains 

similar to unavailable vehicle models. So far, both have been modeled using a joint estimation. 

However, detailed infrastructure modeling allows both effects to be considered separately. 

4.2.2 Model overview of the adapted model6 

In the following, a short description of the adapted model is given. A more detailed mathemat-

ical description can be found in subchapter 4.2.3.   

The ALADIN model is designed as an agent-based model (ABM). ABM is especially suitable “[...] 

when the population is heterogeneous, when each individual is (potentially) different.” (Bona-

beau, 2002, p. 7287). In the ALADIN model, the individual agents - represented by different 

driving profiles from the KiD (WVI et al., 2012a) - behave differently in terms of their driving 

behavior. The driving behavior includes the daily mileage, but also driving and parking times. 

Moreover, the agents interact with each other regarding the need for public charging infra-

structure (Gnann, 2015). This is a second criterion for the use of agent-based simulation 

(Bonabeau, 2002; Hare & Deadman, 2004). However, the ALADIN model for HDV has been 

used a simplified agent-based approach in the past. On the one hand, each agent was defined 

exclusively by its daily mileage. On the other hand, the interaction between the agents, in 

terms of public infrastructure needs, has been modeled as an exogenous factor. The revised 

version of the ALADIN model for HDV presented in this thesis therefore extends the ABM both 

at the level of the user-centric analysis - the individual technical and economic vehicle simula-

tion -, and on the level of the aggregated analysis - formerly the vehicle stock model. 

In this thesis, the simulation covers the period from 2020 to 2050. The technical analysis, the 

economic analysis, and the stock analysis are performed for each year. The infrastructure 

                                                             
6 Parts of this subchapter are based on Speth and Plötz (2024). 
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analysis is performed in 5-year-steps, starting in 2025. The fast charging infrastructure is mod-

eled as an evolving charging infrastructure according to the CFRLM approach.  

Figure 4-5 shows the structure of the adapted ALADIN model for HDV. The single parts of the 

model are described in the following.  

 

Figure 4-5: Overview of the adapted ALADIN - Alternative Automobiles Diffusion and Infrastructure - model for HDV.  

The model fundamentally continues to follow the three-stage approach described in section 

4.2.1 and shown in Figure 4-4. However, an infrastructure analysis is added and there are 

feedbacks between different model stages.  

The first step of the model, the technical analysis, is especially relevant for BET. For all other 

drivetrains - DT, GT, and FCET-, the model assumes no technical restriction, due to higher 

ranges and faster refueling possibilities. The technical analysis is based on different technical 

vehicle parameters. For example, the average energy consumption per km and various param-

eters for the sizing of the battery - minimum battery size, maximum battery size, module size, 

and depth of discharge - are considered. Infrastructure parameters, such as the maximum 

available power, are also included in the technical analysis. However, the core of the analysis 

are approximately 2,400 driving profiles from KiD (WVI et al., 2012a), each of them describing 

the tours of one vehicle over one day. The continuous process of driving and parking is trans-

formed into a discrete time simulation7. Based on the start and arrival times as well as the 

distance traveled information in the KiD dataset for each vehicle, the status of the vehicle 

(parking private, parking public, driving) as well as the distance traveled is considered in 5-

minute-intervals8. If the vehicle drives more than 4.5 hours - the maximum allowed driving 

                                                             
7 For an introduction into the simulation of (stochastic) systems, see for example Waldmann and Helm (2016). 
8 Buss and Al Rowaei (2010) show exemplarily that discrete-time-simulation with fixed time steps, often used in 
ABM, is less accurate than discrete-event-simulation with flexible time steps. At the same time, the calculation can 
be faster. However, due to the given accuracy of the input data, a consideration of 5-minute-steps seems appropri-
ate.  
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time (EU, 2006) -, an additional break of 45 minutes is added to the driving profile after 4.5 

hours of driving and the average speed is adjusted accordingly for the corresponding tour. If 

the end of the additional break would be later than the end of the trip, the additional break is 

placed in the middle of the trip. The additional breaks are considered as breaks on public area. 

If the vehicle is parking for at least 30 minutes and if the vehicle has reached under 25% bat-

tery state of charge or will reach that with the next trip, the vehicle will be recharged. If the 

current stop is shorter than 30 minutes (assumed minimum duration for charging), the vehicle 

is assumed to charge at the next stop of at least 30 minutes duration. The 25% state of charge 

threshold is equivalent to exceeding a cumulative travel distance of 75% of the BET's maximal 

range. For example, the maximal range assumed for rigid trucks is 450 km in 2030 and 750 km 

in 2050, corresponding to minimum travelled distance to initiate charging of 340 km in 2030 

and 563 km in 2050. The charging process is modeled so that the vehicle is fully recharged 

when starting the next trip, while maintaining the maximum charging power. The vehicle is 

recharged as slowly as possible (see subchapter 2.1.3 for charging strategy). If the maximum 

charging power is not sufficient to fully recharge the vehicle in the given timeframe, the vehi-

cle charges as much as possible. For each time step of the simulation, the kilometers to be 

recharged are calculated from the kilometers traveled reduced by the kilometers already 

recharged. After the given 24 h of a driving profile are simulated, the necessary battery size for 

the profile can be determined. It results from the maximum of kilometers to be recharged, 

taking into account the consumption and various battery framework conditions. If the neces-

sary battery size does not exceed the maximum available battery size and if the vehicle can be 

fully recharged after the last trips until the first trip begins (again), the profile can be electri-

fied. In addition, load profiles in kW are created in 5 minutes time steps for all driving profiles.  

Figure 4-6 shows an exemplary driving profile of an HDV (Rigid) with 568 km daily mileage, 

simulated for 2030. The vehicle starts the first trip at 6:30 and reaches its first destination at 

7:45 after 112 km. For 2030, the intended minimum range that must be exceeded with the 

next trip in order to schedule a charging event is 340 km. 340 km are reached at 13:45. How-

ever, the previous break of 25 minutes is assumed to be too short for recharging. Therefore, 

the charging event takes place during the next break after 403 km at 15:00 to 15:30. The 

charging power needed to fully recharge the vehicle within the stop duration is 798 kW on 

average and is assumed as charging power (following the charging strategy of lowest required 

charging power). At 18:30, the vehicle reaches its last destination and can be recharged over-

night with 14 kW. To enable the maximum distance of 403 km to be driven with one battery 

charge, the vehicle is equipped with a 600 kWh battery, considering consumption, depth of 

discharge, and module size.  
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Figure 4-6: Exemplary driving profile of an HDV (Rigid) with 568 km daily mileage in 2030. 

The second step of the model, the TCO analysis, remains almost unchanged, compared to 

Gnann et al. (2023) or Plötz, Link, et al. (2023). The annual costs for each driving profile and 

each drivetrain - if technically possible - are still calculated and the cheapest alternative is 

chosen.  Economic vehicle parameters and economic general parameters, such as energy 

carrier prices, are still taken into account. However, the cost analysis for battery electric vehi-

cles is more detailed, as the technical analysis allows for differentiation between public and 

private, and slow and fast charging. Different infrastructure costs can be derived. Finally, the 

cost analysis also considers the vehicle and infrastructure availability to determine the annual 

sales share of each drivetrain for each driving profile (Gnann, 2015; Wietschel et al., 2017). 

Unlike previous model versions, the adapted model calculates the availability of public fast 

charging infrastructure endogenously in the infrastructure analysis. 

The stock and energy analysis aggregates the single sales shares of each driving profile and 

scales them to the total German truck registrations in the relevant year. Considering the ser-

vice life of the vehicles, the entire German truck fleet with a GVW higher than 12 t is calculated 

for each year of the simulation9. In addition, based on the results of the technical analysis and 

the TCO analysis, the private and public charging demand for slow and fast charging infrastruc-

ture are determined. A daily load curve and an annual energy demand for the vehicle stock are 

calculated. 

The infrastructure analysis complements the previous ALADIN Truck model. In 5-year-steps, a 

public fast charging infrastructure is simulated based on the CFRLM, described in subchapter 

                                                             
9 To determine the stock in the first years of the simulation, new registrations for the period before 2020 are 
required. Simplified, nearly complete diesel registrations are assumed. Small shares of alternative drivetrains are 
modeled exponentially growing so that they meet the new registrations in 2020. 
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4.1.2.2. From an ABM perspective, the infrastructure or its operator should also be viewed as 

an agent (Gnann, 2015). As an agent, the infrastructure responds to the behavior of the vehicle 

agents by trying to meet their demand, expressed by the load curve and the energy demand 

provided by the stock analysis. Taking into account various infrastructure parameters, such as 

charging behavior and charging power, as well as the ETIS-U dataset, a public fast charging 

infrastructure is developed to provide the required amount of energy. The CFRLM is adjusted, 

so that once a location is opened, it will be used in the next period of the infrastructure analy-

sis as well. If the CFRLM does not find a solution that can meet the demand, the demand will 

be reduced until it can be met. Afterwards, the annual costs of the required public fast charg-

ing infrastructure are calculated from the results of the CFRLM. Therefore, the infrastructure 

analysis interacts with the TCO analysis in two ways: (1) The reduced coverage of the energy 

demand is interpreted as limited infrastructure availability and hinders the market diffusion 

retroactively. This means that new registrations for the period between the last and the cur-

rent infrastructure analysis are reduced accordingly. The reduction is retroactive, since the 

infrastructure must be built gradually during the market diffusion and the user will notice a 

deficient infrastructure immediately. (2) The infrastructure costs are determined from the 

infrastructure analysis and set the price until the next infrastructure analysis. It is assumed that 

the infrastructure operator will set future prices based on current costs and energy demand. 

This assumption seems plausible due to decreasing costs and increasing energy demand over 

time.  

4.2.3 Mathematical description of the adapted model 

In the following, the single steps of the adapted ALADIN truck model are shown in more detail, 

including mathematical equations.  

4.2.3.1 Technical analysis 

Let 𝑖 be a driving profile of a BET, either a rigid truck (R) or a tractor-trailer truck (TT), in year 𝑡. 

Originally, the driving profile 𝑖 consists of 𝑗 ∈ 𝐽 single trips with defined start times 𝑡𝑟𝑖𝑝𝑖𝑗

𝑠𝑡𝑎𝑟𝑡, 

end times 𝑡𝑟𝑖𝑝𝑖𝑗

𝑒𝑛𝑑10, and distances 𝑡𝑟𝑖𝑝𝑖_𝑗
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒. The relevant values are directly taken from 

WVI et al. (2012a)11. The model only uses driving profiles that include information on the start 

and the end of each trip and where the daily mileage is equal to the sum of the individual trips. 

Incomplete driving profiles (R: 17.4%, TT: 9.8%) are sorted out. For further use, the driving 

profile is converted into a time-discrete driving profile. For every 5-minute-step 𝑡𝑠 of one day, 

the time-discrete driving profile contains two items: the vehicle status 𝑠𝑡𝑎𝑡𝑢𝑠𝑖
𝑡𝑠 and the totally 

traveled distance 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒_𝑡𝑜𝑡𝑎𝑙𝑖
𝑡𝑠. Equation (4-19) shows the determination of 𝑠𝑡𝑎𝑡𝑢𝑠𝑖

𝑡𝑠 for 

every 𝑡𝑠. 

                                                             
10 For simplicity, all 𝑡𝑟𝑖𝑝𝑖_𝑗

𝑠𝑡𝑎𝑟𝑡 and 𝑡𝑟𝑖𝑝𝑖_𝑗
𝑒𝑛𝑑 are rounded to five minutes.  

11 As described in 4.2.2, if the first trip lasts longer than 4.5 h, the mandatory break is inserted after 4.5 h. If the 
additional break lasts longer than the original trip, the break is put in the middle of the original trip. For further 
trips, there are no additional breaks, since theoretically another driver may have taken over the vehicle.  
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𝑠𝑡𝑎𝑡𝑢𝑠𝑖
𝑡𝑠 =  {

𝑑𝑟𝑖𝑣𝑖𝑛𝑔12, 𝑖𝑓 ∃ 𝑗 ∈ 𝐽: (𝑡𝑠 > 𝑡𝑟𝑖𝑝𝑖𝑗

𝑠𝑡𝑎𝑟𝑡) ∩ (𝑡𝑠 ≤ 𝑡𝑟𝑖𝑝𝑖𝑗

𝑒𝑛𝑑) 

𝑝𝑎𝑟𝑘𝑖𝑛𝑔, 𝑒𝑙𝑠𝑒 
 (4-19) 

Dividing the 𝑡𝑟𝑖𝑝𝑖_𝑗
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 by the delta of 𝑡𝑟𝑖𝑝𝑖_𝑗

𝑠𝑡𝑎𝑟𝑡 and 𝑡𝑟𝑖𝑝𝑖_𝑗
𝑒𝑛𝑑 in minutes and multiplying the 

result by five returns the traveled distance in 5 minutes (𝑡𝑟𝑖𝑝𝑖_𝑗
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒5𝑚𝑖𝑛,𝑡𝑠

), for the driving 

profile 𝑖 during trip 𝑗 for (𝑡𝑠 > 𝑡𝑟𝑖𝑝𝑖𝑗

𝑠𝑡𝑎𝑟𝑡) ∩ (𝑡𝑠 ≤ 𝑡𝑟𝑖𝑝𝑖𝑗

𝑒𝑛𝑑). Generally, the distance for a 5-

minute-step (𝑡𝑠) is referred to as 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑖
𝑡𝑠. As shown in equation (4-20), the totally traveled 

distance 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒_𝑡𝑜𝑡𝑎𝑙𝑖
𝑡𝑠 for a 5-minute-step 𝑡𝑠 equals the sum of all 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑖

𝑡𝑠 from the 

beginning of the first trip to 𝑡𝑠. 

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒_𝑡𝑜𝑡𝑎𝑙𝑖
𝑡𝑠 =  ∑ 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑖

𝑡𝑠
𝑡𝑠

𝑡𝑟𝑖𝑝𝑖𝑗0
𝑠𝑡𝑎𝑟𝑡

 (4-20) 

Figure 4-7 shows the procedure for the technical analysis of a driving profile 𝑖 as a flow chart. 

The simulation starts with the first departure of the vehicle 𝑡𝑟𝑖𝑝𝑖𝑗0

𝑠𝑡𝑎𝑟𝑡. Driving is then simulated 

in 5-minute-steps, expressed by the variable 𝑐𝑙𝑜𝑐𝑘. If the variable 𝑐𝑙𝑜𝑐𝑘 exceeds the value 

1435, it is reset to 0 and starts a new day13. The distance traveled from the battery - 

𝑑𝑖𝑠𝑡𝑟𝑒𝑐ℎ𝑎𝑟𝑔𝑒
𝑡𝑠=𝑐𝑙𝑜𝑐𝑘  - is the sum of the individual 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑖

𝑡𝑠 up to 𝑐𝑙𝑜𝑐𝑘. As soon as the vehicle stops 

- 𝑠𝑡𝑎𝑡𝑢𝑠𝑖
𝑡𝑠=𝑐𝑙𝑜𝑐𝑘 = 𝑝𝑎𝑟𝑘𝑖𝑛𝑔 -, the time until the next departure - 𝑡𝑖𝑚𝑒𝑟𝑒𝑐ℎ𝑎𝑟𝑔𝑒  - is calculated 

in the sub-module “time for recharging”. Additionally, the traveled distance without recharg-

ing after the following trip - 𝑑𝑖𝑠𝑡𝑛𝑒𝑥𝑡 - is calculated in the sub-module “distance next trip”. 

Subsequently, the sub-module “recharging necessity / possibility” determines whether a 

charging process takes place. A charging process takes place, if at least 30 minutes are availa-

ble for recharging and if the intended charging distance - 𝑐ℎ𝑎𝑟𝑔𝑒𝑟𝑎𝑛𝑔𝑒𝐵𝐸𝑇,𝑎𝑙𝑙

𝑡  - is exceeded. A 

bypass in the “time for recharging” sub-module ensures that recharging takes place in any case 

after the last trip. If a charging event takes place, the recharged distance in 5 minutes - 

𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔 - is determined so that charging is as slow as possible and the maximum charging 

rate 𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔_𝑚𝑎𝑥𝐵𝐸𝑇,𝑅;𝑇𝑇
𝑡  is not exceeded. The charging process is simulated by reducing 

𝑑𝑖𝑠𝑡𝑟𝑒𝑐ℎ𝑎𝑟𝑔𝑒
𝑡𝑠=𝑐𝑙𝑜𝑐𝑘  by 𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔 in 5-minute-steps. If the charging event is over - 𝑠𝑡𝑎𝑡𝑢𝑠𝑖

𝑡𝑠=𝑐𝑙𝑜𝑐𝑘 =

𝑑𝑟𝑖𝑣𝑖𝑛𝑔 - and the last trip is completed - 𝑐𝑙𝑜𝑐𝑘 = 𝑡𝑟𝑖𝑝𝑖𝑗0

𝑠𝑡𝑎𝑟𝑡 -, the technical feasibility has to be 

checked. Otherwise, the next trips is simulated in the “driving” sub-module. As shown in the 

sub-module “feasibility”, the trip can be electrified if there is no more recharging need - 

𝑑𝑖𝑠𝑡𝑟𝑒𝑐ℎ𝑎𝑟𝑔𝑒
𝑡𝑠=𝑐𝑙𝑜𝑐𝑘 = 0 - and if the maximum possible battery range in year 𝑡 - 𝑏𝑎𝑡𝑚𝑎𝑥𝐵𝐸𝑇, 𝑎𝑙𝑙

𝑡 - has 

never been exceeded.  

                                                             
12 The status also allows the distinction between public and private parking, in order to allocate the charging 
demand for public and private infrastructure. For the sake of simplicity, this is not shown in the equation.  
13 The same applies to all clock variables, used in the modeling.  
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Figure 4-7: Flow chart technical analysis. 

Finally, the necessary battery size for a feasible profiles 𝑖 in year 𝑡 is determined: 

𝑏𝑎𝑡𝑖,𝐵𝐸𝑇,𝑎𝑙𝑙
𝑡 =  ⌈

𝑀𝑎𝑥 (𝑀𝑎𝑥(𝑑𝑖𝑠𝑡𝑟𝑒𝑐ℎ𝑎𝑟𝑔𝑒
𝑡𝑠 ∀ 𝑡𝑠), 𝑏𝑎𝑡𝑚𝑖𝑛𝐵𝐸𝑇,𝑎𝑙𝑙

𝑡 ) ∗ 𝑐𝑜𝑛𝑠𝐵𝐸𝑇,𝑅;𝑇𝑇
𝑡

𝑏𝑎𝑡𝑢𝑠𝑎𝑏𝑙𝑒𝐵𝐸𝑇,𝑎𝑙𝑙
𝑡 ⌉

𝑏𝑎𝑡𝑝𝑎𝑐𝑘𝐵𝐸𝑇,𝑎𝑙𝑙
𝑡

 (4-21) 

First, the maximum range driven from the battery without recharging is determined over the 

course of the day. In addition, the model ensures that a minimum range 𝑏𝑎𝑡𝑚𝑖𝑛𝐵𝐸𝑇,𝑎𝑙𝑙
𝑡  is main-

tained. Afterwards, the energy consumption for the given vehicle type - rigid or tractor-trailer - 
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is considered. Taking into account the usable battery share in year 𝑡, the necessary battery size 

can be calculated. Finally, the value is round up to the battery module size. 

4.2.3.2 Economic analysis (TCO analysis) 

The economic analysis follows the technical analysis. Appendix A.3 contains all values and 

abbreviations. For every driving profile 𝑖 and drivetrain 𝑠, an annual TCO calculation is per-

formed. The drivetrains consider DT, GT, and FCET. BET is considered, if the driving profile 𝑖 is 

feasible from a technical perspective. Additionally, the equation distinguishes between rigid 

trucks and tractor-trailers as configurations 𝑐𝑜𝑛𝑓. As shown in (4-22) and following Wöhe et al. 

(2020), the TCO consists of annual capital expenditures and annual operating expenditures: 

𝑇𝐶𝑂𝑖,𝑠,𝑐𝑜𝑛𝑓
𝑡 =  𝑎𝑖,𝑠,𝑐𝑜𝑛𝑓

𝑐𝑎𝑝𝑒𝑥,𝑡
+ 𝑎𝑖,𝑠,𝑐𝑜𝑛𝑓

𝑜𝑝𝑒𝑥,𝑡
 (4-22) 

The capital expenditures are calculated as shown in equation (4-23). Both, the investment 

𝐼𝑖,𝑠,𝑐𝑜𝑛𝑓
𝑡  and the percentage resale value 𝑟𝑒𝑠𝑣𝑎𝑙𝑢𝑒𝑠,𝑐𝑜𝑛𝑓

𝑡  are taken into account.  

𝑎𝑖,𝑠,𝑐𝑜𝑛𝑓
𝑐𝑎𝑝𝑒𝑥,𝑡

= (𝐼𝑖,𝑠,𝑐𝑜𝑛𝑓
𝑡 ∗ (1 + 𝑖(𝑡))𝑙𝑖𝑓𝑒𝑐𝑜𝑛𝑓

𝑡

− 𝐼𝑖,𝑠,𝑐𝑜𝑛𝑓
𝑡 ∗ 𝑟𝑒𝑠𝑣𝑎𝑙𝑢𝑒𝑠,𝑐𝑜𝑛𝑓

𝑡 ) ∗
𝑖(𝑡)

(1 + 𝑖(𝑡))𝑙𝑖𝑓𝑒𝑐𝑜𝑛𝑓
𝑡

− 1
 (4-23) 

As described in Speth, Kappler, et al. (2022), the investment calculation follows a bottom-up 

approach and considers various vehicle components. The single components are shown in 

equation (4-24). Yet, not all drivetrains 𝑠 contain all components. Basically, the investment 

considers a chassis 𝐼𝑏𝑜𝑑𝑦𝑠,𝑐𝑜𝑛𝑓

𝑡  for each vehicle. In addition, an investment for the engine 

𝐼𝑒𝑛𝑔𝑖𝑛𝑒𝑠,𝑐𝑜𝑛𝑓

𝑡  is taken into account for all drivetrains. The costs scale with the performance of 

the vehicle 𝑝𝑠,𝑐𝑜𝑛𝑓
𝑡  and are differentiated between different drivetrains 𝑠. As shown in line 

three of equation (4-24), the FCET is equipped with an additional fuel cell. For DT and GT, the 

exhaust gas aftertreatment is considered in line four. For BET and FCET, the battery system, 

scaled by the necessary size 𝑏𝑎𝑡𝑖,𝑠,𝑐𝑜𝑛𝑓
𝑡 , is listed in line five. For BET, the individual battery size 

for each driving profile 𝑖 from the technical analysis is taken into account. Corresponding tank 

systems for FCET and GT are considered in line six. All component costs are subject to 

drivetrain-specific markups, to reflect the different levels of technological maturity. Finally, 

subsidies for alternative drivetrains are taken into account.  

𝐼𝑖,𝑠,𝑐𝑜𝑛𝑓
𝑡 =  𝐼𝑏𝑜𝑑𝑦𝑠,𝑐𝑜𝑛𝑓

𝑡  

+ 𝐼𝑒𝑛𝑔𝑖𝑛𝑒𝑠,𝑐𝑜𝑛𝑓

𝑡 ∗ 𝑝𝑠,𝑐𝑜𝑛𝑓
𝑡 ∗  𝑚𝑎𝑟𝑘𝑢𝑝𝑠,𝑐𝑜𝑛𝑓

𝑡  

+  𝐼𝐹𝐶 𝑠,𝑐𝑜𝑛𝑓
𝑡 ∗  𝑝𝐹𝐶𝑠,𝑐𝑜𝑛𝑓

𝑡 ∗  𝑚𝑎𝑟𝑘𝑢𝑝𝑠,𝑐𝑜𝑛𝑓
𝑡  

+ 𝐼𝑎𝑓𝑡𝑒𝑟𝑡𝑠,𝑐𝑜𝑛𝑓

𝑡 ∗ 𝑝𝑠,𝑐𝑜𝑛𝑓
𝑡 ∗  𝑚𝑎𝑟𝑘𝑢𝑝𝑠,𝑐𝑜𝑛𝑓

𝑡  

+ 𝐼𝑏𝑎𝑡𝑠,𝑐𝑜𝑛𝑓
𝑡 ∗  𝑏𝑎𝑡𝑖,𝑠,𝑐𝑜𝑛𝑓

𝑡 ∗  𝑚𝑎𝑟𝑘𝑢𝑝𝑠,𝑐𝑜𝑛𝑓
𝑡  

+ 𝐼𝑡𝑎𝑛𝑘𝑠,𝑐𝑜𝑛𝑓
𝑡 ∗  𝑡𝑎𝑛𝑘𝑠,𝑐𝑜𝑛𝑓

𝑡 ∗  𝑚𝑎𝑟𝑘𝑢𝑝𝑠,𝑐𝑜𝑛𝑓
𝑡  

− 𝐼𝑠𝑢𝑏𝑠𝑖𝑑𝑦𝑠,𝑐𝑜𝑛𝑓

𝑡    

(4-24) 
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According to BaLM (2023), a subsidy is considered for BET and FCET as a percentage of the 

additional investment compared to a DT. The calculation is shown in equation (4-25): 

𝐼𝑠𝑢𝑏𝑠𝑖𝑑𝑦𝑖,𝑠,𝑐𝑜𝑛𝑓

𝑡 =  𝐼𝑟𝑒𝑑𝑠,𝑐𝑜𝑛𝑓
𝑡 ∗ (𝐼𝑖,𝑠,𝑐𝑜𝑛𝑓

𝑡 − 𝐼𝐷𝑇,𝑐𝑜𝑛𝑓
𝑡 ) (4-25) 

The annual operating expenditures 𝑎𝑖,𝑠,𝑐𝑜𝑛𝑓
𝑜𝑝𝑒𝑥,𝑡

 contain energy costs, operation & maintenance 

costs, toll, insurance costs, and taxes:  

𝑎𝑖,𝑠,𝑐𝑜𝑛𝑓
𝑜𝑝𝑒𝑥,𝑡

=  𝑐𝑒𝑛𝑒𝑟𝑔𝑦𝑖,𝑠,𝑐𝑜𝑛𝑓
𝑡 +  𝑐𝑂&𝑀𝑖,𝑠,𝑐𝑜𝑛𝑓

𝑡  +  𝑐𝑡𝑜𝑙𝑙𝑖,𝑠,𝑐𝑜𝑛𝑓
𝑡 +  𝑐𝑖𝑛𝑠𝑖,𝑠,𝑐𝑜𝑛𝑓

𝑡 +  𝑐𝑡𝑎𝑥𝑠,𝑐𝑜𝑛𝑓
𝑡  (4-26) 

Equation (4-27) shows the calculation of the energy costs. The fuel price 𝑐𝑓𝑢𝑒𝑙𝑠
𝑡  in year 𝑡 is 

multiplied by the consumption of the corresponding vehicle 𝑐𝑜𝑛𝑠𝑠,𝑐𝑜𝑛𝑓
𝑡  and extrapolated to 

the total annual mileage of the specific driving profile 𝑖. For this purpose, the daily mileage of 

the driving profile 𝑖 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑑𝑎𝑖𝑙𝑦𝑖,𝑠,𝑐𝑜𝑛𝑓

𝑡 , derived from WVI et al. (2012a), is multiplied by the 

working days 𝑤𝑑(𝑡) of a single year.  

𝑐𝑒𝑛𝑒𝑟𝑔𝑦𝑖,𝑠,𝑐𝑜𝑛𝑓
𝑡 =  𝑐𝑓𝑢𝑒𝑙𝑠

𝑡 ∗  𝑐𝑜𝑛𝑠𝑠,𝑐𝑜𝑛𝑓
𝑡 ∗ 𝑤𝑑(𝑡) ∗  𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑑𝑎𝑖𝑙𝑦𝑖,𝑠,𝑐𝑜𝑛𝑓

𝑡  (4-27) 

BET represent a special case at this point. For DT, GT, and FCET, fuel supply infrastructure costs 

are included in the fuel price 𝑐𝑓𝑢𝑒𝑙𝑠
𝑡 . For BET, the supply infrastructure costs are calculated 

separately. A distinction is made between public and private charging as well as slow charging 

with less than 44 kW average power and fast charging with more than 44 kW average power. 

44 kW represents the maximum AC charging power with three phases. For each driving profile 

𝑖, the technical analysis provides the recharged kilometers in every 5-minute-step. By consider-

ing the energy consumption 𝑐𝑜𝑛𝑠𝐵𝐸𝑇,𝑐𝑜𝑛𝑓
𝑡 , the amount of energy and the average charging 

power can be derived. As mentioned earlier, WVI et al. (2012a) also allows the distinction 

between private stops and public stops. Aggregating the 5-minutes-steps, the daily slow and 

fast charging demand at public and private charging infrastructure can be calculated for each 

driving profile 𝑖. In total, four daily energy demands are available for each driving profile 𝑖: the 

private slow charging energy demand 𝑒𝑛𝑒𝑟𝑔𝑦𝑠𝑙𝑜𝑤,𝑝𝑟𝑖𝑣𝑎𝑡𝑒𝑖,𝐵𝐸𝑇
𝑡 , the private fast charging energy 

demand 𝑒𝑛𝑒𝑟𝑔𝑦𝑓𝑎𝑠𝑡,𝑝𝑟𝑖𝑣𝑎𝑡𝑒𝑖,𝐵𝐸𝑇
𝑡 , the public slow charging energy demand 

𝑒𝑛𝑒𝑟𝑔𝑦𝑠𝑙𝑜𝑤,𝑝𝑢𝑏𝑙𝑖𝑐𝑖,𝐵𝐸𝑇
𝑡 , and the public fast charging energy demand 𝑒𝑛𝑒𝑟𝑔𝑦𝑓𝑎𝑠𝑡,𝑝𝑢𝑏𝑙𝑖𝑐𝑖,𝐵𝐸𝑇

𝑡 . As 

shown in equation (4-28), all of them are multiplied with their respective infrastructure cost 

allocation. The initial values for the cost allocations are given in Table A-4 in annex A.3. The 

infrastructure costs for fast charging 𝑐𝑖𝑛𝑓𝑟𝑎𝑓𝑎𝑠𝑡
𝑡  and the grid connection costs for fast charging 

𝑐𝑖𝑛𝑓𝑟𝑎𝑓𝑎𝑠𝑡,𝑔𝑟𝑖𝑑
𝑡  are updated in the infrastructure analysis module of ALADIN every five years. 

For example, the infrastructure costs from the infrastructure analysis for 2025 are used for the 

economic analysis from 2026 to 2030. For simplicity, it is assumed that public and private 

infrastructure costs are identical, only a profit markup 𝑐𝑖𝑛𝑓𝑟𝑎𝑚𝑎𝑟𝑘𝑢𝑝
𝑡  is required for public 

charging.  
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𝑐𝑖𝑛𝑓𝑟𝑎𝑡𝑜𝑡𝑎𝑙 𝑖,𝐵𝐸𝑇

𝑡 =  (𝑐𝑖𝑛𝑓𝑟𝑎𝑠𝑙𝑜𝑤

𝑡 ∗ 𝑒𝑛𝑒𝑟𝑔𝑦𝑠𝑙𝑜𝑤,𝑝𝑟𝑖𝑣𝑎𝑡𝑒𝑖,𝐵𝐸𝑇
𝑡  

+ (𝑐𝑖𝑛𝑓𝑟𝑎𝑓𝑎𝑠𝑡
𝑡 +  𝑐𝑖𝑛𝑓𝑟𝑎𝑓𝑎𝑠𝑡,𝑔𝑟𝑖𝑑

𝑡 ) ∗ 𝑒𝑛𝑒𝑟𝑔𝑦𝑓𝑎𝑠𝑡,𝑝𝑟𝑖𝑣𝑎𝑡𝑒𝑖,𝐵𝐸𝑇
𝑡 )  

+ (𝑐𝑖𝑛𝑓𝑟𝑎𝑠𝑙𝑜𝑤

𝑡 ∗ 𝑒𝑛𝑒𝑟𝑔𝑦𝑠𝑙𝑜𝑤,𝑝𝑢𝑏𝑙𝑖𝑐 𝑖,𝐵𝐸𝑇
𝑡  

+ (𝑐𝑖𝑛𝑓𝑟𝑎𝑓𝑎𝑠𝑡
𝑡 +  𝑐𝑖𝑛𝑓𝑟𝑎𝑓𝑎𝑠𝑡,𝑔𝑟𝑖𝑑

𝑡 ) ∗ 𝑒𝑛𝑒𝑟𝑔𝑦𝑓𝑎𝑠𝑡,𝑝𝑢𝑏𝑙𝑖𝑐𝑖,𝐵𝐸𝑇
𝑡 ) 

∗ (1 +  𝑐𝑖𝑛𝑓𝑟𝑎𝑚𝑎𝑟𝑘𝑢𝑝
𝑡 ) 

(4-28) 

The calculation on energy costs for BET thus changes from equation (4-27) to equation (4-29): 

𝑐𝑒𝑛𝑒𝑟𝑔𝑦𝑖,𝐵𝐸𝑇,𝑐𝑜𝑛𝑓
𝑡 =  𝑐𝑓𝑢𝑒𝑙𝑠

𝑡 ∗  𝑐𝑜𝑛𝑠𝐵𝐸𝑇,𝑐𝑜𝑛𝑓
𝑡 ∗ 𝑤𝑑(𝑡) ∗ 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑑𝑎𝑖𝑙𝑦𝑖,𝐵𝐸𝑇,𝑐𝑜𝑛𝑓

𝑡  

+ 𝑐𝑖𝑛𝑓𝑟𝑎𝑡𝑜𝑡𝑎𝑙 𝑖,𝐵𝐸𝑇

𝑡 ∗ 𝑤𝑑(𝑡)  
(4-29) 

The costs for operation & maintenance - 𝑐𝑂&𝑀𝑖,𝑠,𝑐𝑜𝑛𝑓
𝑡  - and toll 𝑐𝑡𝑜𝑙𝑙𝑖,𝑠,𝑐𝑜𝑛𝑓

𝑡  scale with the 

mileage of the vehicles, as shown in equation (4-30) and equation (4-31). 

𝑐𝑂&𝑀𝑖,𝑠,𝑐𝑜𝑛𝑓
𝑡  =   𝑂&𝑀𝑠,𝑐𝑜𝑛𝑓

𝑡 ∗ 𝑤𝑑(𝑡) ∗  𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑑𝑎𝑖𝑙𝑦𝑖,𝑠,𝑐𝑜𝑛𝑓

𝑡  (4-30) 

𝑐𝑡𝑜𝑙𝑙𝑖,𝑠,𝑐𝑜𝑛𝑓
𝑡  =   𝑡𝑜𝑙𝑙𝑠,𝑐𝑜𝑛𝑓

𝑡 ∗ 𝑤𝑑(𝑡) ∗  𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑑𝑎𝑖𝑙𝑦𝑖,𝑠,𝑐𝑜𝑛𝑓

𝑡  (4-31) 

The annual insurance - 𝑐𝑖𝑛𝑠𝑖,𝑠,𝑐𝑜𝑛𝑓
𝑡  - is calculated as a percentage value of the investment 

(LastAutoOmnibus, 2018):  

𝑐𝑖𝑛𝑠𝑖,𝑠,𝑐𝑜𝑛𝑓
𝑡 =   𝑖𝑛𝑠𝑢𝑟𝑎𝑛𝑐𝑒𝑠,𝑐𝑜𝑛𝑓

𝑡 ∗ 𝐼𝑖,𝑠,𝑐𝑜𝑛𝑓
𝑡  (4-32) 

Finally, the vehicle tax -  𝑐𝑡𝑎𝑥𝑠,𝑐𝑜𝑛𝑓
𝑡  - is given as an annual value:  

𝑐𝑡𝑎𝑥𝑠,𝑐𝑜𝑛𝑓
𝑡 =   𝑣𝑒ℎ𝑡𝑎𝑥𝑠,𝑐𝑜𝑛𝑓

𝑡  (4-33) 

After calculating the annual TCO for each drivetrain 𝑠, the cheapest drivetrain for each profile 

can be selected. Subsequently, the limited availability of alternative drivetrain vehicles and, if 

necessary, infrastructure is considered (Gnann, 2015; Wietschel et al., 2017):  

𝑠𝑎𝑙𝑒𝑠𝑠ℎ𝑎𝑟𝑒𝑖,𝑠=𝑏𝑒𝑠𝑡𝑜𝑝𝑡𝑖𝑜𝑛 ,𝑐𝑜𝑛𝑓
𝑡 =   1 ∗  𝑣𝑒ℎ𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒𝑠

𝑡  * 𝑖𝑛𝑓𝑟𝑎𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒𝑖,𝑠=𝐵𝐸𝑇
𝑡  (4-34) 

As shown in equation (4-34), infrastructure availability - 𝑖𝑛𝑓𝑟𝑎𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒𝑖,𝑠=𝐵𝐸𝑇
𝑡  - is considered 

for BET. Given that the respective charging technology is used by the driving profile 𝑖, the 

infrastructure availability results from the minimum of the availabilities for private slow charg-

ing 𝑎𝑖𝑛𝑓𝑟𝑎𝑝𝑟𝑖𝑣𝑎𝑡𝑒,𝑠𝑙𝑜𝑤
𝑡 , private fast charging 𝑎𝑖𝑛𝑓𝑟𝑎𝑝𝑟𝑖𝑣𝑎𝑡𝑒,𝑓𝑎𝑠𝑡

𝑡 , public slow charging 

𝑎𝑖𝑛𝑓𝑟𝑎𝑝𝑢𝑏𝑙𝑖𝑐,𝑠𝑙𝑜𝑤
𝑡 , and public fast charging, 𝑎𝑖𝑛𝑓𝑟𝑎𝑝𝑢𝑏𝑙𝑖𝑐,𝑓𝑎𝑠𝑡

𝑡 . The initial parameters are given in 

Table A-4 in annex A.3. For public fast charging 𝑎𝑖𝑛𝑓𝑟𝑎𝑝𝑢𝑏𝑙𝑖𝑐,𝑓𝑎𝑠𝑡
𝑡 , the value is calculated in the 

infrastructure analysis module. For example, if the public fast charging infrastructure can only 

serve a certain share of the public charging demand in 2025, 𝑎𝑖𝑛𝑓𝑟𝑎𝑝𝑢𝑏𝑙𝑖𝑐,𝑓𝑎𝑠𝑡
𝑡  is reduced to this 

share for the previous infrastructure period, in the example from 2020 to 2025.  
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If the best TCO option is not fully available (𝑠𝑎𝑙𝑒𝑠𝑠ℎ𝑎𝑟𝑒𝑖,𝑠=𝑏𝑒𝑠𝑡_𝑜𝑝𝑡𝑖𝑜𝑛
𝑡 < 1), the availability for 

the second best option 𝑠𝑎𝑙𝑒𝑠𝑠ℎ𝑎𝑟𝑒𝑖,𝑠=2𝑛𝑑_𝑏𝑒𝑠𝑡_𝑜𝑝𝑡𝑖𝑜𝑛
𝑡  is calculated accordingly. If the second 

best option is fully available, it can cover the remaining sales share. Otherwise, its share is 

multiplied by the remaining share and the third best option is considered. The diesel drivetrain 

always serves as backup-option with full availability.  

4.2.3.3 Stock and energy analysis 

The technical and economic analysis are performed for every driving profile 𝑖. To obtain the 

annual registrations for each drivetrain 𝑠, the analyzed driving profiles are scaled to the total 

number of new registrations in the relevant year 𝑟𝑒𝑔𝑐𝑜𝑛𝑓
𝑡 . There is still a distinction between 

rigid and tractor-trailer configuration. Subsequently, the new registrations by drivetrain are 

calculated by considering the previously calculated driving profile specific sales shares 

𝑠𝑎𝑙𝑒𝑠𝑠ℎ𝑎𝑟𝑒𝑖,𝑠,𝑐𝑜𝑛𝑓
𝑡 . The calculation is given in equation (4-35).  

𝑠𝑎𝑙𝑒𝑠𝑠,𝑐𝑜𝑛𝑓
𝑡 =   ∑ (

𝑟𝑒𝑔𝑐𝑜𝑛𝑓
𝑡

# 𝑑𝑟𝑖𝑣𝑖𝑛𝑔 𝑝𝑟𝑜𝑓𝑖𝑙𝑒𝑠𝑐𝑜𝑛𝑓
𝑡 ∗

𝑖 ∈ 𝐼
 𝑠𝑎𝑙𝑒𝑠𝑠ℎ𝑎𝑟𝑒𝑖,𝑠,𝑐𝑜𝑛𝑓

𝑡 ) (4-35) 

The vehicle stock by drivetrain 𝑠 is calculated as the sum of new registrations over the service 

life 𝑙𝑖𝑓𝑒𝑐𝑜𝑛𝑓
𝑡  of the vehicles14.  

𝑠𝑡𝑜𝑐𝑘𝑠,𝑐𝑜𝑛𝑓
𝑡 =   ∑ 𝑠𝑎𝑙𝑒𝑠𝑠,𝑐𝑜𝑛𝑓

𝑡
𝑡

𝑡−𝑙𝑖𝑓𝑒𝑐𝑜𝑛𝑓
𝑡

 (4-36) 

Similarly, the annual energy demand and the daily load profile can be scaled from the individu-

al driving profiles and aggregated to the demand of the stock.  

4.2.3.4 Infrastructure analysis 

The infrastructure analysis follows methodologically the CFRLM, as described in chapter 4.1.2. 

However, the objective at this point is not to model an optimal network at one specific point in 

time, but to model the stepwise development of the public fast charging infrastructure in 

relation to the market diffusion of BET. Böhle (2021) suggests a multi-period CFRLM, to calcu-

late the market diffusion of infrastructure over time. This approach is not implemented in this 

thesis, for two reasons: (1) The large underlying dataset, as well as the adjustments to the 

capacity constraint compared to P. K. Rose et al. (2020) and Böhle (2021), significantly compli-

cate the solvability. Adding a multi-period element to the optimization would further compli-

cate the solvability (Böhle, 2021). (2) The multi-period FRLM suggests a central planner’s 

perspective with full knowledge of all future developments (Böhle, 2021). Due to the interac-

tion of the infrastructure ramp-up and the BET diffusion, full knowledge is not available. There-

fore, a CFRLM is used that, if available, takes into account the results of a previous simulation 

                                                             
14 To determine the stock in the first years of the simulation, new registrations for the period before 2020 are 
required. Simplified, nearly complete diesel registrations are assumed. Small shares of alternative drivetrains are 
modeled exponentially growing so that they meet the new registrations in 2020. 
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in an earlier year t-1. In this thesis, CFRLM runs are performed in 5-years-steps, starting with 

the year 2025. The new requirements are briefly listed below: 

1. The maximum range may change between t and t-1.  

2. The recharged energy in the CFRLM in year 𝑡 corresponds to the identified public fast 

charging energy demand in the stock analysis in year 𝑡.  

3. A predefined minimum number of locations in year 𝑡 is available.  

4. A predefined maximum number of locations in year 𝑡 is not exceeded. 

5. A location opened in 𝑡 − 1 is also available in 𝑡. 

6. A fraction of the OD-pairs 𝑞𝑠 that charged at a specific location in t-1 also charge at the 

same location in t, if the profile still needs to be recharged.  

The mathematical formulation is shown in the following. A description of the individual aspects 

is given below.  

min ∑ 𝑧𝑖

 𝑖∈𝑁

  (4-37) 

s.t.   

∑ 𝑥𝑖𝑞𝑠
≥ 1,

𝑖∈𝐾𝑖,𝑗,𝑡
𝑞𝑠

 ∀𝑞𝑠 ∈ 𝑄, 𝑎𝑗,𝑘 ∈  𝐴𝑞𝑠
 (4-38) 

∑ 𝑟𝑡𝑓𝑞𝑠
𝑥𝑖𝑞𝑠

 ≤ 𝑐𝑎𝑝𝑖𝑧𝑖
𝑞𝑠∈𝑄

, ∀𝑖 ∈ 𝑁 (4-39) 

∑ 𝑥𝑖𝑞𝑠
≤ 𝑙𝑞𝑠

,
𝑖∈𝑁

 ∀𝑞𝑠 ∈ 𝑄 (4-40) 

∑ 𝑧𝑖

 𝑖∈𝑁

≥  𝑧𝑚𝑖𝑛,𝑡  (4-41) 

∑ 𝑧𝑖

 𝑖∈𝑁

≤  𝑧𝑚𝑎𝑥,𝑡  (4-42) 

𝑧𝑖 = 1  ∀𝑖 ∈ 𝐼𝑡𝑟𝑢𝑒,𝑡−1 (4-43) 

∑ 𝑟𝑡𝑓𝑞𝑠
𝑥𝑖𝑞𝑠

≥  0.7 ∗  ∑ 𝑟𝑡−1𝑓𝑞𝑠
𝑥𝑖𝑞𝑠,𝑡−1

𝑞𝑠∈𝑄𝑞𝑠∈𝑄
 ∀𝑖 ∈ 𝐼𝑡𝑟𝑢𝑒,𝑡−1 (4-44) 

𝑥𝑞𝑠
, 𝑧𝑖 ∈ {0, 1}, ∀𝑞𝑠 ∈ 𝑄, 𝑖 ∈ 𝑁 (4-45) 
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Sets and indexes  

𝐴𝑞𝑠
 Set of all directional arcs on a shortest path 𝑞𝑠, sorted from the origin to 

the destination 

𝐾𝑖,𝑗,𝑡
𝑞𝑠  Set of all potential nodes that can refuel the arc 𝑎𝑗,𝑘  in 𝐴𝑞𝑠

 in year 𝑡 

𝑁 Set of all nodes in the modeled network  

𝑄 Set of all origin-destination pairs 

𝐼𝑡𝑟𝑢𝑒,𝑡−1 Set of all nodes with a realized charging location in year 𝑡 − 1 

𝑖, 𝑗, 𝑘 Indices, indicating nodes 

𝑞𝑠 Index of origin-destination pairs. Extended to identical origin-destination 

pairs for each subset. Flows are split, if the vehicle flow exceeds the 

capacity of a single parking space. 

𝑠 Index, indicating a subset of a path 𝑞 

𝑎𝑗,𝑘  Index of a directed arc from node 𝑗 to node 𝑘 

Parameters  

𝑟𝑡 Rescaling factor in year t 

𝑟𝑡−1 Rescaling factor in year 𝑡 − 1 

𝑓𝑞𝑠
 Vehicle flow at path 𝑞𝑠 in 𝑝𝑒𝑎𝑘_ℎ𝑜𝑢𝑟 

𝑐𝑎𝑝𝑖  Capacity restriction in node 𝑖 

𝑙𝑞𝑠
 Number of maximum stops to drive path 𝑞𝑠 

𝑧𝑚𝑖𝑛,𝑡 The minimum number of charging locations in 𝑡 

𝑧𝑚𝑎𝑥,𝑡  The maximum number of charging locations in 𝑡 

𝑥𝑖𝑞𝑠 ,𝑡−1 =1, if the flow on path 𝑞𝑠 was recharged at node 𝑖 in 𝑡 − 1 and if  

𝑥𝑖𝑞𝑠
exists 

Decision variables  

𝑥𝑖𝑞𝑠
 =1 if the flow on path 𝑞𝑠 is recharged at node 𝑖, 0 otherwise 

𝑧𝑖 =1 if a charging station is built at node 𝑖, 0 otherwise 

 

As described in the technical analysis, the range of the vehicles changes over time. To obtain 

the best possible match between the technical analysis and the simulated infrastructure, the 

range in the CFRLM is also adjusted. When calculating the candidate sets 𝐾𝑖,𝑗,𝑡
𝑞𝑠 , the CFRLM 

ensures that a given maximum distance between two stops is not exceeded. In the technical 

simulation, the charging range 𝑐ℎ𝑎𝑟𝑔𝑒𝑟𝑎𝑛𝑔𝑒𝐵𝐸𝑇,𝑎𝑙𝑙

𝑡  determines the range at which the vehicles 

have usually been recharged15. Therefore, 𝑐ℎ𝑎𝑟𝑔𝑒𝑟𝑎𝑛𝑔𝑒𝐵𝐸𝑇,𝑎𝑙𝑙

𝑡  is used to calculate the candi-

date sets in year 𝑡. The calculation of the candidate sets still follows the description in sub-

chapter 4.1.2. 

                                                             
15 In some cases, if there is no sufficient driving break, higher distances can be covered.  
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As described in the second new requirement, the recharged energy in the CFRLM needs to 

equal the recharged energy at public fast charging infrastructure in the stock analysis. Howev-

er, the amount of energy is not directly given in the CFRLM, but can be determined after the 

calculation by following each path 𝑞𝑠 and calculating the energy demand for each possible 

charging event 𝑥𝑖𝑞𝑠
. The scaling factor 𝑟𝑡 is therefore initially set so that the daily mileage in 

the CFRLM corresponds to the daily mileage of all driving profiles with public fast charging 

share in the stock model. As described in subchapter 4.1.2, the CFRLM calculates the charging 

infrastructure for the peak hour. The peak hour share is derived from the load profile of the 

stock analysis. After solving the CFRLM, the energy demand in the CFRLM is calculated and 

compared to the energy recharged at public fast charging infrastructure in the stock analysis. If 

the deviation is higher than 10%, the scaling factor 𝑟𝑡 is adjusted accordingly and a new run for 

year 𝑡 is started.  

In contrast to the modeling in subchapter 4.1.2.2, the ALADIN truck model aims to calculate a 

realistic market diffusion for the vehicles and the infrastructure, not a theoretical optimum. 

Therefore, framework conditions regarding the minimum number of charging locations 

𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠𝑚𝑖𝑛
𝑡  and the maximum number of charging locations 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠𝑚𝑎𝑥

𝑡  in year 𝑡 are 

defined. The new equations (4-41) and (4-42) ensure these constraints by using 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠𝑚𝑖𝑛
𝑡  

as 𝑧𝑚𝑖𝑛,𝑡  and 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠𝑚𝑎𝑥
𝑡  as 𝑧𝑚𝑎𝑥,𝑡 . Information on specifying these parameters can be 

found in subchapter 3.5.1.3 or in Table A-4 in the appendix. Additionally, the maximum num-

ber of charging points at one location 𝑐𝑎𝑝𝑖  is no longer based solely on the available parking 

lots, but also considers a realistic location size 𝑝𝑙𝑢𝑔𝑚𝑎𝑥
𝑡  from an electricity grid perspective in 

year 𝑡.  

The last two new requirements concern the multi-period application of the model. Since the 

electricity grid connection is typically depreciated over 40 years (Kippelt et al., 2022), a loca-

tion opened in 𝑡 − 1 will be also in operation in 𝑡. Equation (4-43) implements this require-

ment. The CFRLM used here does not directly determine the location size, but considers a 

maximum size for each location. Therefore, the shifting of traffic from one charging location to 

another is limited between two periods. Equation (4-44) ensures that 70% of the traffic using a 

charging location in 𝑡 − 1 will also use the same location in 𝑡, as long as the underlying paths 

𝑞𝑠 are still able to charge at the given location. Some flexibility is provided to allow for changes 

in the charging behavior due to increasing ranges. The exact value represents the result of an 

iterative process in which different values were tested.   

If the model is unable to find a solution for year 𝑡, due to the capacity constraint and the 

limited number of locations, the mileage in the CFRLM is reduced in ten percentage point steps 

until a solution is found. The reduction is passed to the economic analysis as reduced infra-

structure availability 𝑖𝑛𝑓𝑟𝑎𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒𝑖,𝑠=𝐵𝐸𝑇
𝑡 , for example 90% for a one-time reduction. The 

limited availability applies to the years between the infrastructure analysis in year 𝑡 and the 

previously performed infrastructure analysis 𝑡 − 1. For example, a reduction calculated for 

2030 would affect the years 2026 to 2030.  
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Finally, the annual infrastructure costs for fast charging infrastructure are calculated. The costs 

consist of the actual infrastructure costs 𝑐𝑖𝑛𝑓𝑟𝑎𝑓𝑎𝑠𝑡
𝑡  and the costs for the grid connection 

𝑐𝑖𝑛𝑓𝑟𝑎𝑓𝑎𝑠𝑡,𝑔𝑟𝑖𝑑
𝑡 . To determine the costs for the grid connection 𝑐𝑖𝑛𝑓𝑟𝑎𝑓𝑎𝑠𝑡,𝑔𝑟𝑖𝑑

𝑡 , the necessary 

grid connection is calculated for each location 𝑖 opened in the CFRLM in year 𝑡 based on the 

charging events 𝑥𝑖𝑞𝑠
 at the node 𝑖 and their weighted traffic flow 𝑟𝑡𝑓𝑞𝑠

. The assumptions re-

garding the simultaneity factor, the power factor, and the efficiency correspond to chapter 3.3. 

Due to the depreciation period of 40 years (Kippelt et al., 2022), a grid connection required in 

year 𝑡 is taken into account for the entire time horizon considered, even if a smaller grid con-

nection would be adequate at a later point in time. However, an extension of the network 

connection is possible at any time. The annuity is calculated as shown in chapter 3.3. To de-

termine the costs for the charging infrastructure 𝑐𝑖𝑛𝑓𝑟𝑎𝑓𝑎𝑠𝑡
𝑡 , the necessary number of charging 

points for each location 𝑖 in year 𝑡 is also calculated based on the charging events 𝑥𝑖𝑞𝑠
 at the 

node 𝑖 and their weighted traffic flow 𝑟𝑡𝑓𝑞𝑠
. Once established, charging points are depreciated 

and operated over 15 years, even if they would not be needed in one of the following periods. 

This means that any expansion at one location only takes place, if the location does not have 

enough charging points from a former period. As described in section 3.3, newly installed 

charging points are calculated at costs valid in year 𝑡 and depreciated over 15 years (Kippelt et 

al., 2022). Finally, for both the grid connection and the actual infrastructure, the costs per kWh 

- 𝑐𝑖𝑛𝑓𝑟𝑎𝑓𝑎𝑠𝑡,𝑔𝑟𝑖𝑑
𝑡  and 𝑐𝑖𝑛𝑓𝑟𝑎𝑓𝑎𝑠𝑡

𝑡  - are calculated by dividing the sum of the annual costs across 

all installed locations by the total amount of energy delivered by the infrastructure in year 𝑡. 

The costs determined in 𝑡 are passed to the economic analysis and apply to all subsequent 

year until the next infrastructure analysis in period 𝑡 + 1.  

4.2.4 Discussion 

This thesis presents an updated and adapted version of the ALADIN - ALternative Automobiles 

Diffusion and INfrastructure - market diffusion model for HDV with a GVW of more than 12 t16. 

As shown in Table 4-1, the adaption mainly focusses on five aspects. Two of them relate to the 

technical analysis: (1) The new model no longer uses the daily mileage as proxy for the tech-

nical feasibility of BET, but simulates 2,400 driving profiles over one day. (2) The battery size is 

no longer exogenously defined, but can be derived from the technical analysis. Three adap-

tions relate to the integration of public fast-charging infrastructure: (1) Public fast charging 

infrastructure is no longer defined exogenously, but a regionally resolved infrastructure model 

defines the market ramp-up based on framework parameters. (2) The costs for using fast 

charging infrastructure are no longer exogenously determined, but are calculated based on the 

actual charging demand. (3) The charging infrastructure availability is no longer exogenously 

defined; instead, the model verifies whether the actually needed public fast charging infra-

                                                             
16 As part of this thesis, the existing model was newly programmed. However, the basic structure still corresponds 
to the original model.  
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structure can be built, considering ramp-up boundaries. The approach is well suited to account 

for long-distance traffic in the regional distribution of charging locations, providing deeper 

insights than a node-based approach. However, due to the definition of the minimum values of 

the objective function, the solution represents one possible solution and not a unique opti-

mum. 

Table 4-1: Improvements of the ALADIN model for the market diffusion of HDV. 

Previous ALADIN model  Adapted ALADIN model 

Daily mileage as indicator for feasibility of 

BET 

 Simulation of 2,400 driving profiles for one 

day 

Single battery size exogenously defined   Selection of the appropriate battery size based 

on driving profile analysis 

Public charging infrastructure exogenously 

defined 

 Public fast charging infrastructure develop-

ment within framework parameters based on 

the model-endogenous charging demand 

Costs of charging infrastructure exogenous-

ly and independently of actual use defined 

 Costs of fast charging infrastructure based on 

actual use of public fast charging infrastruc-

ture 

Infrastructure availability exogenously 

defined 

 Infrastructure availability endogenously de-

termined, considering a ramp-up scenario 

 

Nevertheless, there is potential for further improvements. Regarding the technical analysis, 

the observation period of one day is comparatively short and may therefore overestimate the 

technical feasibility of BET. However, the question raised by logisticians about reliability in use 

(see subchapter 2.3.2) is significantly increased by the detailed simulation compared to the 

previous model. Regarding the charging strategy, a plausible strategy is implemented. Future 

studies could investigate other charging strategies and their impact on the infrastructure 

needs. Even more detailed findings would be possible, especially if an extensive source of 

spatially and temporally resolved driving profiles were available. The focus of this thesis is on 

public fast charging infrastructure. The model developed allows to simulate a regionally dis-

tributed fast charging infrastructure that interacts with the market diffusion of BET. Since the 

focus is on public fast charging infrastructure, slow charging infrastructure costs are estimated 

on literature values. Additionally, private fast charging costs are estimated to be equal to the 

public fast charging costs reduced by a price premium for the infrastructure provider. Without 

detailed data on individual logistics locations, this appears to be a plausible estimate, which 

should be verified in the future. For computational reasons, the infrastructure was simulated 

in five year steps. A shorter interval could further detail the results. 
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In summary, the model adaption improved the accuracy with regard to the logistics concerns 

in subchapter 2.3.2: reliability (technical analysis), costs (economic analysis), and infrastructure 

(infrastructure analysis). However, there is still a demand for further research. 
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5 Results 

The chapter is divided into two parts. In the first part, the results of pure infrastructure model-

ing are shown. Afterwards, the results of the joint market diffusion of public fast charging 

infrastructure and the BET vehicle fleet are described.  

5.1 Fast charging infrastructure distribution and 

dimension  

The following sections present the results of pure infrastructure modeling. Section 5.1.1 con-

tains the results of infrastructure modeling at regular intervals. Subsequently, section 5.1.2 

shows the optimized charging infrastructure network.  

5.1.1 Charging infrastructure at regular intervals1 

This chapter first presents the charging infrastructure at regular intervals for the EU27, Nor-

way, Switzerland, and Great Britain. Second, the charging infrastructure network for Germany 

is presented in more detail.  

5.1.1.1 Charging infrastructure at regular intervals in Europe 

Public fast charging locations  

Figure 5-1 shows the distribution of charging locations in the scenarios Startup2025, 

Wide2030, Dense2030, and Dense2045. For the scenarios Startup2025 and Wide2030 with a 

distance of 100 km between charging locations, the model calculates 917 charging locations 

spread over Europe. A summary table can be found in Appendix A.5. For the scenarios 

Dense2030 and Dense2045 with a distance of 50 km between charging locations, the number 

of charging locations increases to 1,701. The number of charging locations does not exactly 

double, since short sections as well as peripheral areas already receive charging locations in 

the wide network and do not need densification. At highway junctions, the distance can be 

closer than the distance given by the scenario definition, since the model treats highways 

independently. This can be seen clearly in areas with a dense road network, such as Central 

Europe, or urban areas, like Greater London. Additionally, highways without any charging 

infrastructure exist. These roads are not part of the E-road network or the road section is too 

short for electrification, for example in eastern Spain. 

                                                             
1 Parts of this subchapter are based on Speth, Plötz, et al. (2022) and Speth, Sauter, and Plötz (2022). 
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With regard to the geographical distribution of charging points, there is a concentration in 

Central Europe, for example France, Germany, Belgium, and the Netherlands. The traffic gen-

erated by the ports in the Netherlands, Belgium, and Germany is of great interest for the 

dimensioning of the charging locations. The surrounding countries - for example Norway, 

Sweden, Finland, Greece, Italy, and Spain - are equipped with smaller locations that cover the 

whole area.  
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Figure 5-1: Charging infrastructure at regular intervals in Europe in the scenarios Startup2025, Dense2045, 

Wide2030, and Dense2030. 
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Number of charging points per location 

Figure 5-2 shows an overview of the distribution of charging points in the scenarios 

Startup2025, Wide2030, and Dense2030.  

 

Figure 5-2: Box plot of charging points per location in the scenarios Startup2025, Wide2030, and Dense2030. Gray 

dot indicates mean value. 

The Startup2025 network consists of 2,090 charging points at 917 locations. Therefore, an 

average charging location in 2025 could include two to three charging points (mean = 2.3, 

median = 2, σ = 1.2). While there are 271 charging locations with one charging point to cover 

the area, the largest ten stations include six charging points. The modeled public fast charging 

infrastructure serves 27,100 charging events per day. Assuming a tripling of the share of bat-

tery electric trucking (𝐵𝐸𝑇𝑠ℎ𝑎𝑟𝑒  5% versus 15%) and an increase of the traffic volume by 13% in 

the scenario Wide2030, the average charging location doubles the number of charging points 

per location (mean = 4.6, median = 4, σ = 3.3). However, the variation between individual 

locations also increases. The three largest locations include 16 charging points, while there are 

still 131 locations with one charging point to cover the area. In total, 4,250 charging points are 

needed. Alternatively, the distance 𝑑𝑎𝑣𝑔 between the locations can be reduced. In the scenar-

io Dense2030, the average distance becomes 50 km instead of 100 km. The average location 

comprises three charging points in the Dense2030 scenario (mean = 3.1, median = 3, σ = 2.0). 

However, the total number of charging points increases to 5,290. This is an increase of 24%, 

compared to the scenario Wide2030. Due to queuing theory, large locations are more efficient 

and can serve more vehicles per charging point than small locations (see Figure A-4 in Appen-

dix A.4). In both scenarios for 2030, 92,275 charging events are performed daily at the mod-

eled infrastructure. Figure 5-3 shows the change in the required number of charging points 

from the scenario Startup2025 to the scenario (a) Wide2030 and (b) Dense2030. In case (a), 

19% of the locations built in the Startup2025 scenario can also be operated unchanged in the 

Wide2030 scenario. At all other locations, up to ten charging points must be added. In case (b), 

41% of the locations remain unchanged. Up to five charging points expand 54% of the loca-

tions. At 5% of the locations, a deconstruction of up to three charging points takes place. 
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These are typically locations nearby areas with high traffic, such as ports, where a new charg-

ing location is opened closer to the high traffic location. Since the identified locations are 

merely a representation of a highway section of 50 or 100 km and do not specify an exact 

location, this effect would likely be considered in the detailed infrastructure planning and the 

deconstruction would likely not be implemented in reality.  

 
(a) 

 
(b) 

Figure 5-3: Change in number of charging points from (a) Startup2025 to Wide2030 and (b) Startup2025 to 

Dense2030. 

The Dense2045 scenario shows the infrastructure to convert the entire HDV fleet to BET. 1,701 

locations comprise 21,804 charging points, 4,771 of them are in Germany. An average location 

contains approximately ten charging points (mean = 12.8, median = 9, σ = 11.7). Figure 5-4 

illustrates the distribution of charging points in the Dense2045 scenario. In total, the public 

charging infrastructure serves 615,225 charging events per day, 144,245 of them are in Ger-

many.  

 

Figure 5-4: Box plot of charging points per location in the scenario Dense2045. Gray dot indicates mean value. 

Sensitivity analysis  

As shown in section 3.4.1, the modeling of charging infrastructure at regular intervals depends 

on various parameters. Since BET for long-haul trucking are not yet available, the calculations 

come with some uncertainties and estimates. Originally, the modeling assumes 15% battery 

electric trucking (𝐵𝐸𝑇𝑠ℎ𝑎𝑟𝑒), 25% public charging (𝐶𝐸𝑝𝑢𝑏𝑙𝑖𝑐), 6% of the daily charging events in 

the peak hour (𝑝𝑒𝑎𝑘_ℎ𝑜𝑢𝑟), and a typical range of 300 km (𝑟𝑎𝑛𝑔𝑒𝐵𝐸𝑇) in 2030. To assess the 
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influence of 𝐵𝐸𝑇𝑠ℎ𝑎𝑟𝑒 , 𝐶𝐸𝑝𝑢𝑏𝑙𝑖𝑐, 𝑝𝑒𝑎𝑘_ℎ𝑜𝑢𝑟, and 𝑟𝑎𝑛𝑔𝑒𝐵𝐸𝑇, the parameters are varied by +/- 

50% (original value * 1.5 or original value * 0.5) in the Wide2030 scenario. Figure 5-5 shows 

the results of the sensitivity analysis. Please note that the variations of 𝐵𝐸𝑇𝑠ℎ𝑎𝑟𝑒 , 𝐶𝐸𝑝𝑢𝑏𝑙𝑖𝑐, 

and 𝑝𝑒𝑎𝑘_ℎ𝑜𝑢𝑟 lead to the same result and are therefore identical. 

 

Figure 5-5: Variation of parameters 𝐵𝐸𝑇𝑠ℎ𝑎𝑟𝑒, 𝐶𝐸𝑝𝑢𝑏𝑙𝑖𝑐, 𝑝𝑒𝑎𝑘_ℎ𝑜𝑢𝑟, and 𝑟𝑎𝑛𝑔𝑒𝐵𝐸𝑇 in the scenario Wide2030. 

An increase in 𝐵𝐸𝑇𝑠ℎ𝑎𝑟𝑒 , 𝐶𝐸𝑝𝑢𝑏𝑙𝑖𝑐 or 𝑝𝑒𝑎𝑘_ℎ𝑜𝑢𝑟 by 50% increases the number of charging 

points from 4,250 to 5,739. This means the number of charging points increases by 35%. Simi-

larly, a reduction in 𝐵𝐸𝑇𝑠ℎ𝑎𝑟𝑒  or 𝐶𝐸𝑝𝑢𝑏𝑙𝑖𝑐  results in a 35% reduction in charging points. A 

reduction of the vehicle range 𝑟𝑎𝑛𝑔𝑒𝐵𝐸𝑇 by 50% increases the number of charging points by 

69%, from 4,250 to 7,175. An increase of the vehicle range 𝑟𝑎𝑛𝑔𝑒𝐵𝐸𝑇 results in a decrease of 

the necessary charging points by 23%. 

The charging time 𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔𝑞 also represents a critical parameter, as recharging within 30 

minutes requires the MCS standard, which is still under development. In addition, the regula-

tion on driving time needs to be slightly adjusted so that the vehicles can release the charging 

point after 30 minutes. Doubling the charging time to one hour, leads to 7,678 charging points 

in the Wide2030 scenario. This fits to the charging power of the current CCS standard with up 

to 350 kW. The increase in the number of charging points due to doubling the charging time 

corresponds to 81%.  

5.1.1.2 Charging infrastructure at regular intervals in Germany 

This thesis refers in particular to road freight transport in Germany. Therefore, Figure 5-6 plots 

the distribution of charging points in the Wide2030_GER_ETIS-U scenario and the 

Wide2030_GER_M-TCD scenario for Germany. The Wide2030_GER_ETIS-U scenario shows the 

German part of the Wide2030 scenario for Europe. The Wide2030_GER_M-TCD scenario is 

subject to the same framework assumptions. This includes 15% battery electric trucking 

(𝐵𝐸𝑇𝑠ℎ𝑎𝑟𝑒), 25% public charging (𝐶𝐸𝑝𝑢𝑏𝑙𝑖𝑐), and a distance (𝑑𝑎𝑣𝑔) of 100 km between charging 
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locations. However, the scenario is based on the manual traffic count data in Germany (M-

TCD) instead of the European ETIS-U dataset. As explained in section 3.4.1, this also changes 

the annual mileage considered (𝐴𝑀𝑡𝑜𝑡𝑎𝑙) and the road network considered for electrification.  

Public fast charging locations 

As defined in section 3.4.1, the Wide2030_GER_ETIS-U scenario defines an infrastructure 

installation along the E-road network (UN, 2016). This network does not include all single- and 

double-digit highways in Germany, as the network in the Wide2030_GER_M-TCD scenario 

does. As shown in Table 3-4 in section 3.4.1, the considered E-road network is shorter by about 

3,000 km. For example, the eastern route form Rostock to Berlin is not included. The route 

between Dortmund and Leipzig in the north of Erfurt is also not part of the modeling in the 

Wide2030_GER_ETIS-U scenario. In total, the Wide2030_GER_ETIS-U scenario includes 101 

charging locations. The broader Wide2030_GER_M-TCD scenario includes 142 charging loca-

tions. As the model treats highways independently, the distance between two charging loca-

tions can be shorter than 100 km. In addition, as described in section 4.1.1.1, the beginning 

and the end of a highway are treated differently to ensure connectivity between highways and 

countries. For example, the Wide2030_GER_M-TCD scenario creates a location at the A5 

highway near the city of Freiburg, 50 km before the end of the highway at the Swiss border. At 

the same time, the model has positioned a charging location 10 km further north. This location 

is about 100 km away from the next charging location, near Karlsruhe. Since the highway A5 is 

electrified from North to South, this effect occurs at the southern end of the highway. This 

effect does not occur in the Wide2030_GER_ETIS-U scenario, since E-roads are defined across 

borders. However, a similar effect occurs at highway junctions.  

Overall, the restriction to the E-road network represents a minimum requirement and does 

not necessarily enable all routes to be covered. The network on single- and double-digit high-

ways is more comfortable. However, more locations must also be built. 
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Figure 5-6: Charging infrastructure at regular intervals in Germany in the scenarios Wide2030_ETIS-U and 

Wide2030_M-TCD. 

Number of charging points per location 

As shown in section 3.4.1, the considered annual mileage 𝐴𝑀𝑡𝑜𝑡𝑎𝑙 in the Wide2030_GER_ETIS-

U scenario is higher than in the Wide2030_GER_M-TCD scenario. Therefore, the number of 

daily public fast charging events 𝐶𝐸𝑡𝑜𝑡𝑎𝑙,𝑝𝑢𝑏𝑙𝑖𝑐  in Germany also differs between the scenarios. 

The Wide2030_GER_ETIS-U scenario assumes 20,691 charging events, while the scenario 

Wide2030_GER_M-TCD calculates 16,250 charging events per day. Due to the lower number of 

charging locations, the individual charging locations in the Wide2030_GER_ETIS-U scenario are 

also significantly larger than in the Wide2030_GER_M-TCD scenario. On average, one charging 

location consists of eight charging points (mean = 8.0, median = 8, σ = 2.6). This corresponds to 

twice the size of charging locations in the Europe-wide Wide2030 scenario.  

In contrast, the average charging location in the Wide2030_GER_M-TCD scenario includes only 

five charging points (mean = 5.2, median = 5, σ = 2.0). Figure 5-7 shows the distribution of 

charging points per location in both scenarios. Although the Wide2030_GER_ETIS-U scenario 

records 27% additional charging events, the number of charging points only increases by 9% 

from 741 to 809, compared to the Wide2030_GER_M-TCD scenario. Again, the higher efficien-

cy of larger locations is evident.  
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Figure 5-7: Box plot of charging points per location in the scenarios Wide2030_GER_ETIS-U and Wide2030_GER_M-

TCD. Gray dot indicates mean value.  

5.1.1.3 Discussion 

The discussion of charging infrastructure modeling at regular intervals contains two major 

topics. The first topic refers to the necessary assumptions and input parameters. The second 

topic deals with the method itself and its limitations.  

Assumptions and input parameters 

As shown in chapter 2.2.1 and 3.1.1, counting station data or other types of node-based data 

are easy to understand and easily accessible. However, this approach comes with relevant 

limitations. The actual mileage of the relevant population needs to be estimated from addi-

tional sources. When using synthetic datasets, counting station data and traffic volume are 

congruent. However, the dataset is no longer based on real-world measured data. Further-

more, the comparison of the two scenarios for Germany shows that the selection of the data-

base regarding the underlying network influences the number of charging locations. Against 

this background, the total number of charging points is more relevant than the number of 

charging locations.  

Additionally, the model relies on assumptions regarding the future share of battery-electric 

trucking 𝐵𝐸𝑇𝑠ℎ𝑎𝑟𝑒 , the range of the vehicles 𝑟𝑎𝑛𝑔𝑒𝐵𝐸𝑇, the share of public charging 𝐶𝐸𝑝𝑢𝑏𝑙𝑖𝑐, 

and the charging demand in the peak hour 𝑝𝑒𝑎𝑘_ℎ𝑜𝑢𝑟. As shown in the sensitivity analysis in 

subchapter 5.1.1.1, the mentioned parameters have a relevant impact on the results. Within 

the plausible range of the parameters, at least a deviation of +/- 35% is possible, per parame-

ter. For example, the share of public charging 𝐶𝐸𝑝𝑢𝑏𝑙𝑖𝑐  is estimated by the share of high-

mileage vehicles. However, if vehicles with a daily mileage less than 500 km also regularly 

require public charging infrastructure, for example due to difficulties in the ramp-up of private 

charging infrastructure, a remarkable increase of the public charging demand seems plausible. 

Conversely, even vehicles with a high daily mileage might be able to charge exclusively at 

private depots, if the stopovers allow for it. Peak hour traffic 𝑝𝑒𝑎𝑘_ℎ𝑜𝑢𝑟 estimates also vary 

between different data sources, as shown in chapter 3.1.2.  



5  Results 

100 

The charging time 𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔𝑞 and the waiting time 𝑤𝑞 are also subject to uncertainty, since 

they rely on the MCS standard and on the willingness to stop longer than 45 minutes in very 

rare cases. As shown in the sensitivity analysis in subchapter 5.1.1.1, doubling the charging 

time would almost double the number of charging points.  

Against this background, the results of the infrastructure modeling at regular intervals should 

be interpreted as a plausible order of magnitude, not as exact values.  

Methodology 

In addition to data limitations, the model itself also comes with some limitations. First, the 

selection of locations does not take into account the suitability of the location for a charging 

area. Aspects such as parking area availability or the power grid connection are not part of the 

analysis. The locations are intended as representatives for the particular highway section, not 

as a defined location. However, the model gives a good impression of the general distribution 

of charging locations as well as the total number of charging points required. As part of the 

model development, location details could be integrated up to a certain level in the future. 

However, a planner will evaluate the local conditions in the targeted area in detail.  

Second, as a node-based model, the coverage approach does not consider traffic flows. Vehi-

cles are counted several times for different subsections, they pass. It is plausible that vehicles 

recharge evenly distributed throughout the road network according to the local traffic volume. 

However, special effects may occur. As an example, the ETIS-U dataset contains extensive 

port-hinterland-traffic. This traffic leads to a high traffic volume locally. As shuttle transports, 

these vehicles are probably charged at private depots. The model tends to overestimate the 

required public charging infrastructure in these sections. The assumption that charging pro-

cesses are distributed equally to traffic volumes should be verified in the future, for example 

with driving logbooks or with data from parked vehicles. To overcome the underlying problem, 

the use of path- or tour-based models can also improve the results. 

Third, the differentiation between public fast charging in the mandatory break and public slow 

charging is highly simplified and can only be modeled as part of 𝐶𝐸𝑝𝑢𝑏𝑙𝑖𝑐 At this point, path-

based or tour-based models are better suited. However, these models are associated with 

significantly higher computational effort and a high demand on data availability. 

Unlike an optimization model, the modeling of infrastructure at regular intervals cannot guar-

antee the minimum number of charging stations. Nevertheless, it has other advantages: (1) 

The input data requirements are comparatively low. While an FRLM requires a complete set of 

transport flows, modeling of infrastructure at regular intervals works with counting station 

data. (2) The modeling of infrastructure at regular intervals is not computationally demanding, 

while the optimization approach for the entire vehicle fleet of a country relies on significant 

simplifications to render the problem solvable. (3) The modeling of infrastructure at regular 

intervals meets the user’s demand to reach a charging station quickly at any time. This is even 
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more valid for trucks, where detours or additional recharging stops beyond the usual manda-

tory breaks are unlikely to be accepted.  

5.1.2 Optimized charging infrastructure2  

The following sections present the results of the optimization scenarios Optimziation2045, 

Optimization2045_Ger, and Optimization2045_Ger_C. The results for the EU27, Norway, 

Switzerland, and Great Britain are presented first, followed by the results for Germany. While 

the results for Europe in subchapter 5.1.2.1 are based on an uncapacitated FRLM, the results 

for Germany contain an uncapacitated and a capacitated approach.  

5.1.2.1 Optimized charging infrastructure in Europe 

Figure 5-8 shows the distribution of 339 charging stations in the Optimization2045 scenario, 

according to the FRLM. Especially along roads with few junctions, for example Norway or 

Sweden, charging stations are placed at the maximum possible distance of 300 km. To serve 

traffic of several streets with one station, stations are often built at intersections. For every 

road section in the ETIS-U dataset, the average daily traffic volume of the relevant origin-

destination paths (> 300 km, ≥ 50 trucks/a) is plotted in the background. It can be clearly seen 

that the traffic volume does not affect the charging infrastructure density. Highly trafficked 

routes, for example from North Spain via France to Belgium, also have charging stations with 

about 300 km distance. The number of charging stations required per country is thus essential-

ly defined by the density of the road network. Appendix A.5 shows the number of charging 

stations per country. 

In order to maintain a reasonable computation time, the presented solution of the FRLM 

accepts a maximum tolerance of the MIP of 5%. This means the optimal solution could theo-

retically be 323 charging stations. 

The FRLM does not assign an exact charging location to vehicles, but simply ensures that each 

OD path is drivable. Additional assumptions would therefore have to be made, in order to 

calculate the number of charging points at each location (compare for example Jochem et al. 

(2019)). However, since the results of the infrastructure modeling at regular intervals already 

show that no realistic location size can be expected with such a small number of charging 

locations, this is not done at this point. 

                                                             
2 Parts of this subchapter are based on Speth et al. (2024). This publication is still under review at the time of 
submission of this thesis. 
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Figure 5-8: Optimized charging infrastructure in the scenario Optimization2045, based on FRLM. Originally pub-

lished in Speth et al. (2024). 
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5.1.2.2 Optimized charging infrastructure in Germany 

Public fast charging locations 

In the Optimiziation2045_Ger scenario without any capacity restriction, Germany receives 42 

charging locations. With 14,000 km of roads in Germany in the ETIS-U dataset, this corre-

sponds to one charging location per 333 km. However, the locations are often placed at inter-

sections, so the real distances are smaller. Long distance sections, for example from Denmark 

to the charging location near Hamburg or on the heavily traveled east-west highway A2, are 

usually shorter than 200 km. However, intersections in particular are typically unsuitable as 

locations for infrastructure (P. Rose, 2020). Therefore, the results of the Optimiza-

tion2045_Ger_C scenario, which considers available parking spaces, are of particular interest.  

Figure 5-9 shows the distribution of 124 charging locations in Germany, according to the 

CFRLM. To keep the computation time reasonable, the solver tolerance is set to 15%. Using 

IBM CPLEX on a virtual machine with 8 processors (AMD EPYC 7742) and 256 GB RAM, the 

computation time is still several days. The theoretically possible best solution would therefore 

be 106 charging locations. This shows the importance of the capacity restriction. Even if the 

theoretical lower bound could be reached, 2.5 times as many stations as in the Opti-

miziation2045_Ger scenario without capacity restriction would be needed. In the network 

shown, the demand triples. 

As shown in Figure 5-9, there are still sections with long distances between two charging 

locations. This includes, for example, the section from Denmark to Hamburg. The positioning 

of the first charging location in Germany, located in the north of Hamburg, is quite similar in 

the scenarios Optimiziation2045_Ger and Optimiziation2045_Ger_C. Simultaneously, location 

density increases on highly frequented long-haul sections. A good example is the transit route 

from the Netherlands - via Essen, Hanover, passing Berlin - to Poland. As part of this route, the 

A2 highway connects major European ports (Amsterdam, Rotterdam and Antwerp) to Eastern 

Europe. To sum this up, the CFRLM does not distribute stations evenly, but places large sta-

tions with close distances along highly trafficked long-haul routes. 

 



5  Results 

104 

 

Figure 5-9: Optimized German charging infrastructure in the scenario Optimization2045_C, based on CFRLM. 

Originally published in Speth et al. (2024). 
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Number of charging points per location 

In total, the Optimiziation2045_Ger_C scenario contains 12,323 charging points. The charging 

points serve 388,000 charging events per day, of which 23,000 are in the peak hour. Despite 

the capacity restriction, minimizing the number of charging locations still results in large loca-

tions. As shown in Figure 5-10a, locations with up to 334 charging points are built. However, a 

single location can comprise several parking areas. For example, 334 charging points at the 

largest location cover four separate charging areas within a radius of 2 km from the relevant 

node in the highway network. On average, one location contains 99 charging points (mean = 

99, median = 83, σ = 71.9). Figure 5-10b indicates that the individual locations are typically 

almost fully developed, meaning that almost every available parking space receives a charging 

point. This is also due to minimizing the number of charging locations, which favors large, fully 

developed locations.  

  

Figure 5-10: (a) Number of charging points per charging location and (b) utilization of available parking spaces at 

charging locations in the Optimiziation2045_Ger_C scenario. Originally published in Speth et al. 

(2024). 

Utilization of charging infrastructure  

The assignment of individual charging events to charging locations in the CFRLM allows an 

evaluation of the utilization of the infrastructure. As shown in Figure 5-11a, the average charg-

ing location in the Optimiziation2045_Ger_C scenario is occupied 43% of the day (mean = 0.43, 

median = 0.45, σ = 0.06)3.  
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The utilization rate is lower for smaller stations, since fluctuations in the arrival rate have 

stronger influence and make oversizing necessary. 

Since the trucks usually do not need to charge at the maximum power of 1 MW, the energetic 

utilization is lower than the temporal utilization. As shown in Figure 5-11b, the average charg-

ing station provides 23% of the theoretically maximum possible amount of energy (mean = 23, 

median = 23, σ =3.9)4. 

  

Figure 5-11: (a) Temporal and (b) energetic utilization of charging locations in the Optimiziation2045_Ger_C scenar-

io. Originally published in Speth et al. (2024). 

Energy demand  

Finally, the assignment of individual charging events to charging locations allows calculating 

the distance traveled since the last recharging event. Taking into account the average con-

sumption, the amount of energy recharged can be calculated. At vehicle level, an average of 

263 kWh is recharged per charging stop (mean = 263, median = 282, σ = 76.2). This corre-

sponds to a range of 219 km (mean = 219, median = 235, σ = 63.5). As shown in Figure 5-12a, 

there are charging events that nearly exhaust the demand of 360 kWh resulting from the 

maximum range of 300 km. However, other stops take place after short driving distances and 

result in low charging demands. Nevertheless, they are necessary to make all paths drivable. In 

total, trucks charge 25 TWh annually at the modeled CFRLM infrastructure. Figure 5-12b shows 

that large locations count for more than 0.6 TWh per year.  
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, with 𝑟𝑒𝑐ℎ𝑎𝑟𝑔𝑒𝑥𝑖𝑞𝑠
as the amount 

of km driven at path 𝑞𝑠 since the last charging event on the route. All other parameters are defined in section 3.4.2 
or 4.1.2.2. 
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Figure 5-12: (a) Recharged energy per charging event and (b) annual energy demand of charging locations. Originally 

published in Speth et al. (2024). 

5.1.2.3 Discussion  

To the best of the authors’ knowledge, this thesis is the first attempt to apply a capacity-

constrained FRLM (CFRLM) to a dataset with more than 200,000 traffic flows and real-world 

parking capacities. The results show that the capacity constraint more than doubles the re-

quired number of charging stations compared to a traditional FRLM. Furthermore, the distinct 

assignment of each charging event to one charging location allows additional evaluations with 

regard to the amount of energy required locally. However, the results presented here are also 

dependent on methodological framework conditions and the underlying data. Therefore, both 

aspects will be discussed in more detail. 

The literature review shows that optimization methods are very popular for location planning 

from a methodological point of view. However, the optimality of the solution often comes with 

significant simplifications, to keep the problem solvable. The integration of required charging 

locations by the introduction of a capacity constraint shows that the result of an uncapacitat-

ed, large-scale FRLM are of limited relevance in practical applications. However, this additional 

accuracy comes with a significant additional computational effort - in this case several days.  

Another methodological aspect is the integration of cross-border traffic. Unlike previous stud-

ies, cross-border traffic is integrated into the model in high resolution. Yet, the assumption of 

charging events at charging stations of the unrestricted FRLM in foreign countries is a simplifi-

cation. The simplification results in less stations being built in the border area. More restrictive 

assumptions could further improve the results.  

Finally, minimizing the number of charging stations results in a solution that includes few but 

large stations. In this case, the objective function was chosen to keep CFRLM and FRLM com-
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parable. Future studies could focus even more on real-world relevance. On the one hand, this 

can be done by adapting the objective, for example by integrating a cost function. On the 

other hand, additional restrictions, for example restrictions derived from the power grid, could 

also be taken into account. 

In terms of the data used, the ETIS-U dataset represent a broad database. However, the da-

taset is also a simplification. In particular, it does not represent driving profiles. This means 

that a trip with multiple stops is reflected as multiple independent paths. The charging behav-

ior may differ as a result. Especially, long parking periods cannot be distinguished from short 

parking periods. Therefore, all public charging events are modeled as fast charging events. In 

combination with the fact that long routes are modeled as one long trip, although the vehicles 

may stop several times at depots on the route to fulfill other OD-paths within the same trip, 

this leads to an overestimation of the fast charging infrastructure demand. If available, future 

studies could build on extensive real-world driving profiles including time stamps. The analysis 

presented covers 85% of the traffic volume in the dataset. Some OD-flows with a low traffic 

volume are ignored, to keep the problem solvable. However, in their German section, these 

flows typically correspond to other flows included in the analysis. So, in principle, they are 

drivable. Due to their low traffic volume, they would have only minor impact on the infrastruc-

ture demand. Yet, future analyses may converge parallel flows to include them.  

The assumed range represents a central parameter, which is conservatively estimated as 300 

km. A higher range would reduce the need for charging infrastructure. In contrast to the mod-

eling of infrastructure at regular intervals, the range of the vehicles serves as an upper limit 

rather than an average. This means that there are more charging events in total to fulfill the 

same total mileage.  

Finally, the optimization approach benefits from the low requirements regarding additional 

assumptions. Thus, in contrast to the modeling of charging infrastructure at regular intervals, 

no assumptions on the share of public charging are needed.  

5.1.3 Costs for public fast charging infrastructure 

To assess the potential of a future public fast charging infrastructure for HDV, costs play a 

relevant role. Table 5-2 sums up the investment, the annual costs, and the infrastructure levy 

per kWh in all modeled infrastructure scenarios. The infrastructure levy is defined as the costs 

of the infrastructure per kWh of electricity supplied by the infrastructure. The calculations 

follow the methodology in chapter 4.1.3 and include the input data from chapter 3.3.  

In the scenarios modeled, the conversion of the European HDV fleet to battery electric vehicles 

necessitates an investment in the high single-digit billion €2020 range. The Dense2045 scenario 

reaches an investment required of almost 10 billion €2020. The scenarios Startup2025, 

Wide2030, and Dense2030 represent intermediate steps. For instance, the Startup2025 sce-

nario shows that investments of over 1 billion €2020 are necessary in the short term.  
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The indicated investments do not include replacements, but represent the one-time invest-

ments to build the infrastructure. Since replacement investments are already being made in 

the period under consideration, the annual costs caused by the infrastructure are even more 

relevant than the investment. The Dense2045 scenario, as steady-state system, shows 1.3 

billion €2020 annually.  

In terms of infrastructure levies per kWh, it can be seen that the infrastructure surcharge is 

well below 10 ct2020/kWh in all scenarios. In highly utilized networks with an adequate demand 

even at small locations, the levy can drop to as low as 2 ct2020/kWh. It should be noted that the 

modeling does not estimate any costs for land-use, as it is uncertain whether the infrastruc-

ture providers can use areas that they already own. However, the high energy consumption at 

the infrastructure allows for low infrastructure levies. 

It can be seen that almost 20% of the investment in the Wide2030 scenario applies in Germa-

ny. According to the modeling of infrastructure at regular intervals, investments of almost half 

a billion €2020 is expected for public fast charging infrastructure for HDV in Germany until 2030. 

The results of the of the optimization approach show a contrast to the results presented. For 

the fully developed charging infrastructure in the Optimization2045_Ger_C scenario, invest-

ments amounting to 5.8 billion €2020 are required. Thus, the investment in this scenario is more 

than 50% of the investment in the Dense2045 scenario for Europe. Due to the non-

exogenously determined share of public charging events, significantly more charging events 

take place at the optimized charging infrastructure. However, the infrastructure levies are 

almost similar. For comparison, annual truck toll in Germany in 2019, before the COVID-19 

pandemic, was 7.5 billion €2020 (BAG, 2021). Wietschel et al. (2017) calculated almost 9 billion 

€2015 for 4,000 km of overhead catenary lines in Germany, resulting in 0.7 billion €2015 annually.  

Table 5-1: Investment, annual costs, and infrastructure levy in all charging infrastructure scenarios. Six scenarios are 
based on charging infrastructure at regular intervals, one scenario is based on optimization (CFRLM).  

Scenario Investment Annual costs Infrastructure levy 

 [Mio. €2020] [Mio. €2020/a] [€2020/kWh] 

Startup2025 1,388 182 0.06 

Wide2030 2,429 323 0.03 

Wide2030_Ger_ETIS-U 449 60 0.03 

Wide2030_Ger_M-TCD 416 56 0.03 

Dense2030 3,099 410 0.04 

Dense2045 9,934 1,299 0.02 

Optimization2045_Ger_C 5,808 754 0.03 
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5.1.4 Summary 

Chapter 5.1 shows a possible public fast charging infrastructure for HDV in five European and 

four German scenarios. Table 5-2 contains the most relevant results of all scenarios. For better 

comparability, the German share of the Dense2045 scenario is additionally given as 

Dense2045_Ger. 

Table 5-2: Overview on the number of required charging locations and charging points in all infrastructure scenarios 

Scenario Events Locations Charging points Investment 

 [thou./d]  Total Mean Min Max [Mio. €2020] 

Charging infrastructure at regular intervals:  

Startup2025 27 917 2,090 2.3 1 6 1,388 

Wide2030 92 917 4,250 4.6 1 16 2,429 

Dense2030 92 1,701 5,290 3.1 1 11 3,099 

Dense2045 615 1,701 21,804 12.8 1 61 9,934 

(Dense2045_Ger) 144 190 4,771 25.1 2 57 2,207 

Wide2030_Ger_ETIS-U 21 101 809 8.0 2 15 449 

Wide2030_Ger_M-TCD 16 142 741 5.2 2 9 416 

Optimized charging infrastructure:  

Optimization2045  339      

Optimization2045_Ger  42      

Optimization2045_Ger_C 388 124 12,323 99.0 2 334 5,808 

 

The scenarios Startup2025, Wide2030 / Dense2030, and Dense2045 can be interpreted as 

expansion stages. They show that a demand for several thousand public fast charging points 

could arise across Europe in the short term. Even converting 5% of HDV traffic to BET, as in the 

Startup2025 scenario with 27,000 charging events per day, will require more than 2,000 charg-

ing points. With the parameters considered in this thesis, a full fleet conversion would require 

22,000 charging points across Europe. The comparison between the Wide2030 and the 

Dense2030 scenarios shows that the number of charging points, due to the lower efficiency at 

smaller locations, increases when reducing the distance between the locations. However, the 

increase is smaller than the increase in the number of charging locations. The number of 

charging locations in the network depends on the desired convenience and the considered 



5.1  Fast charging infrastructure distribution and dimension 

111 

road network. Regarding the European network, the 339 charging location in the Optimiza-

tion2045 scenario represent a minimum number to make all paths drivable. However, to keep 

the location size feasible at full fleet conversion, the 50 km distance proposed in the 

Dense2045 scenario seems appropriate. Large locations contain more than 60 charging points. 

Taking into account the parameters assumed in this thesis, the investment for a full-scale 

expansion in Europe amounts to 10 billion €2020.  

From a German perspective, the scenarios show a need for 800 charging points in the medium 

term, for example until 2030. Assuming a full fleet conversion to BET, the coverage approach 

results in slightly less than 5,000 charging points. The charging points are distributed to 190 

locations with a distance of approximately 50 km. By 2030, the calculated investments are less 

than half a billion €2020 in Germany. For the 2045 network, the investments increase to more 

than 2 billion €2020. However, looking at the results of the optimization approach, the need for 

charging points and investments, could be twice as high. The difference reflects the high un-

certainty regarding various input parameters concerning the actual driving behavior. The 

uncertainty includes the lack of tour-based driving information, the distribution of traffic 

volumes throughout the day connected to the daily peak traffic, the maximum accepted re-

charging time, the necessary network density, and technical parameters such as the expected 

future vehicle range. A deeper understanding can be gained by the detailed analysis of individ-

ual vehicle driving profiles as well as the integration of the market diffusion of BET in relation 

to the infrastructure. These two aspects are covered in the second part of this thesis. 

Finally, the first research question is answered at this point:  

Q1: Taking into account the locally resolved demand for freight transport, how can a station-

based public charging infrastructure for battery electric heavy-duty vehicles in Germany look 

like and which costs arise due to the infrastructure installation? 

A public charging infrastructure for battery electric heavy-duty vehicles in Germany can consist 

of charging locations that provide vehicles with a peak charging power of at least one mega-

watt. An infrastructure that is capable to cover the whole German heavy-duty vehicle traffic 

requires investments in the single-digit billion €2020 range. 

Q1a: Where could a public fast charging infrastructure for battery electric heavy-duty vehicles 

be spatially located? 

High demand arises particularly on highly traveled long-distance corridors, for example the 

highway A2 as connection between ports in the Netherlands and Eastern Europe. Along such 

routes, particularly large charging locations with a small distance should be built. The network 

has to fulfill two conditions. First, the locations must enable all tours in the German highway 

network. Even when taking into account existing parking areas, this is possible with a maxi-

mum of 124 locations. Second, the network must provide a minimum level of convenience and 

reliability by covering highways at regular intervals. This requires more locations, for example 

nearly 200 locations for a desired coverage of 50 km per location.  
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Q1b: How should the public charging infrastructure be technically dimensioned in terms of 

charging points and charging power? 

Based on the scenarios examined, a public fast charging network for heavy-duty vehicles could 

comprise between 4,500 and 12,000 charging points. However, the analysis shows that differ-

ent input parameters are subject to high uncertainty, which necessitates further research. 

Each charging point should deliver up to 1 MW power. Due to the slope of the charging curve 

with increasing charging level and the simultaneity of different charging processes, the total 

power of all charging locations is less than the sum of the peak power of the charging points.  

5.2 Market diffusion of battery electric trucks 

The results for the joint market diffusion of public fast charging infrastructure and the market 

diffusion of alternative fueled vehicles is shown in the following. First, the results of the indi-

vidual model steps are presented. The results are then discussed and summarized. 

5.2.1 Technical analysis regarding feasibility, battery dimensions, and 

charging behavior 

The following section presents relevant results of the first model step of the market diffusion 

model, the technical analysis. The results are based on the analysis of 2,410 driving profiles of 

rigid trucks and tractor-trailer trucks of the KiD (WVI et al., 2012a) with a GVW higher than 12 

t. At this point, the results include the technical feasibility of electrification from a technical 

perspective, the required battery sizes, and the energy demand in combination with the load 

profile.  

5.2.1.1 Technical feasibility 

One important component is the technical possibility to electrify the individual driving profiles, 

given framework conditions. Figure 5-13 shows the number of stops required depending on 

the battery size and the daily mileage of the individual driving profiles for 2020, 2025, 2030, 

and 2050. The given battery sizes indicate the total capacity of the battery, not the usable 

battery size. The figure for 2020 shows that, due to the limited battery capacity of 500 kWh 

maximum, mainly driving profiles with a below-average daily mileage can be electrified. Higher 

mileages can be electrified, if the individual driving profiles allow for intermediate stops for 

recharging. Therefore, there are also driving profiles in 2020 with more than 1,000 km daily 

mileage that can be electrified with up to eight stops. Due to increasing efficiency as well as 

improvements in the battery technology, the required battery size for the driving profiles 

decreases over time. Increasing the available battery size, for example up to 700 kWh in 2025, 

enables electrification of more driving profiles. The number of charging events per driving 

profile decreases, due to the modeled driving behavior that foresees longer distances between 

two charging events. Interestingly, smaller batteries are used for short-range vehicles in 2030 
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than in previous years. This is due to battery improvements as well as increasing efficiency that 

allows for the required minimum range with smaller batteries. In 2050, batteries with up to 

900 kWh are available. The minimum range between to charging events further increases, so 

that a maximum of three charging events is required per driving profile. Nonetheless, a small 

number of driving profiles cannot be electrified in 2050. In particular, these are driving profiles 

with a high daily mileage, potentially driven by multiple drivers. Either the batteries are too 

large or the charging breaks are too short to recharge the batteries5.  

  

  

Figure 5-13: Technical feasibility of driving profiles in 2020, 2025, 2030, and 2050, considering daily mileage, battery 

size, and the number of charging events. All profiles refer to vehicles with a GVW of more than 12 t. 

                                                             
5 Please note that there are also some driving profiles with comparatively low daily mileage that are not feasible. 
Typically, these driving profiles cannot be recharged due to short parking periods over night. This is a limitation of 
the methodology, which requires full charging after the last trip and assumes the same driving profile at all days. A 
more comprehensive database over several days could strengthen the analysis. With the current data, these driving 
profiles should be considered primarily as a model phenomenon.  
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As shown in Figure 5-14, 70% of all driving profiles in 2020 can be electrified from a technical 

perspective. However, since these driving profiles are typically profiles with a below-average 

daily mileage, only 44% of the daily mileage can be electrified. In addition, it can be recognized 

that a maximum of four charging events is usually sufficient. In 2020, there are driving profiles 

with up to 8 charging events. However, they are neither relevant for the share of driving pro-

files nor for the share of daily mileage that can be electrified. With an increasing battery capac-

ity, rising charging power and decreasing consumption, the potential for electrification rises 

significantly by 2025. From a technical perspective, almost 90% of the driving profiles and 75% 

of the daily mileage can be electrified. In 2050, the electrification potential increases to 97% of 

the driving profiles. Due to the high mileage of non-electrified driving profiles, the share of 

electrified mileage is again slightly lower at 93%. However, the analyses show two relevant 

aspects: (1) There is a high technical potential for BET in the short term, and (2) in the long 

term, an almost complete conversion of the HDV fleet with a GVW of more than 12 t to BET is 

technically possible.  

 

Figure 5-14: Technical electrification potential from 2020 to 2050, including the number of daily charging events.  

Not feasible profiles with the assumed maximal battery ranges and the modeled charging behavior are 

shown in grey. All data refers to vehicles with a GVW > 12 t. 

5.2.1.2 Battery size 

Figure 5-15 shows the necessary gross battery size for technically feasible driving profiles in 

2020, 2025, 2030, and 2050 as boxplots. In 2020, the majority of the vehicles require 400 kWh 

battery gross capacity. The median, the lower quartile, and the upper quartile are identical. 

11% of the driving profiles, shown as outliers in the boxplot, require 500 kWh. Over time, the 

median remains constant at 400 kWh. The maximum battery size is limited by the maximum 

vehicle range assumed for the different simulation years. A large share of the fleet can meet its 

daily mileage with just 400 kWh and one stop, as shown in Figure 5-13. Large batteries with up 

to 900 kWh are needed for high-mileage driving profiles in the long-term. In a purchase deci-
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sion, larger batteries and ranges could be purchased for convenience or to compensate for 

underdeveloped charging infrastructure. However, the focus in the present analysis is on 

technically required battery sizes and charging power.  

 

Figure 5-15: Necessary gross battery size for technically feasible driving profiles in 2020, 2025, 2030, and 2050 (both 

tractor-trailer and rigid vehicles > 12 t GVW). Orange dots mark the average and horizontal orange line 

the median, horizontal black lines the first and the third quartile. Green dots show individual driving 

profiles and are slightly varied for better visibility. Batteries are assumed in 100 kWh steps.  

Due to the limited battery capacity, it is particularly easy to electrify driving profiles with 

below-average mileage. Higher mileages can be electrified in early years, if the individual 

driving profiles contain intermediate stops that allow recharging.  

5.2.1.3 Charging behavior 

The driving and charging behavior determines the future infrastructure requirements, since 

the infrastructure is designed to serve the daily charging demand. Figure 5-16 shows the 

driving and charging behavior of technically feasible HDV as BET on a daily basis for the years 

2025, 2030, and 2050 (columns in Figure 5-16) differentiated by daily driving distance of the 

HDV (rows in Figure 5-16). In each case, the new vehicle fleet is shown, assuming that all 

technically feasible vehicles are electrified. It is clearly evident that the majority of the charging 

time occurs at private locations. Private charging is shown in green shades in the figure, public 

charging is shown in blue6. Almost constant over the years, a maximum of 11% of all vehicles 

simultaneously use a public charging infrastructure. In comparison, during the peak hour - at 

night - between 75% and 80% of all vehicles charge at private infrastructure, depending on the 

year. The detailed analysis shows that the need for public charging infrastructure is higher for 

driving profiles with more than 500 km daily mileage. However, private charging dominates 

also for vehicles with more than 500 km daily mileage. In 2030, 73% of all technically feasible 

                                                             
6 For approximately 3% of all vehicles, the location cannot be determined in the dataset. Corresponding charging 
events are counted as public charging events.  
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driving profiles only use private infrastructure (2050: 80%), i.e., 27% of BET need public charg-

ing. 

Additionally, the charging behavior is divided into different power levels. A distinction is made 

between three levels: (1) charging with up to 44 kW, as this level can be met with AC charging, 

(2) charging with up to 350 kW, as this level can be covered today with the CCS standard from 

an infrastructure perspective, and (3) charging with more than 350 kW, as this level will be 

probably served by the MCS standard7. Charging with more than 350 kW is assumed to be 

available after 2025. Please note the average power within one group is smaller than the 

upper limit, for example average power in the 45 - 350 kW group is below 350 kW, typically 

around 200 kW in the simulation.  Fast charging, and in particular MCS charging with more 

than 350 kW, primarily takes place in the midday hours and in the afternoon for intermediate 

charging. In the long term, the curve is more evenly distributed throughout the day, due to 

larger batteries. However, never more than 6% of the fleet charge simultaneously at a fast 

charging infrastructure with more than 44 kW. MCS charging with more than 350 kW is never 

required by more than 1.5% of the vehicles at the same time. Public MCS charging is used by 

1% of the vehicles at the same time in 2030. By 2050, the share decreases to 0.5% of the fleet. 

If charging with more than 44 kW is also taken into account, up to 1.6% (2030) and 1.3% (2050) 

of the fleet are charged publicly in parallel. In 2030, 62% of all technically feasible driving 

profiles exclusively rely on slow charging (2050: 80%). Again, it can be seen that the demand 

for fast charging is higher for the vehicle fleet with more than 500 km daily mileage. With 

regard to public fast charging infrastructure, it can be estimated from the technical analysis 

that it should be designed for up to 1.6% of the fleet simultaneously in 2030 and for up to 1.3% 

of the fleet in 2050. However, since the technical analysis assumes a complete fleet conver-

sion, further analyses are carried out in combination with the modeled market diffusion in the 

following subchapters.   

                                                             
7 The analysis relies on the average charging power. However, due to the large battery capacity compared to 
passenger cars, it can be assumed that the charging curve for trucks will be almost constant at charging powers 
below 350 kW. Technically, charging with less than 350 kW could also be done with the MCS standard. 
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Figure 5-16: Driving and charging behavior of technically feasible BET diving profiles in 2025, 2030, and 2050.  Top 

row: HDVs with ≤ 500 km per day, middle row: HDVs > 500 km per day, bottom row: All HDVs. All 

HDVs with >12 t GVW. Moving averages with a one hour span have been applied to all lines to reduce 

finite sample noise. 

Figure 5-17 shows the aggregated load profiles of the technical analysis for 2025, 2030, and 

2050. Since the absolute power demand can only be determined by considering the market 

diffusion of BET, the values are normalized so that the total demand over one day equals 

100%. The magnitude of the curve can be interpreted as the percentage hourly demand. 

Interestingly, the increasing efficiency of the vehicles as well as the increasing share of electri-

fied driving profiles offset each other with less than 2% deviation for the years considered, so 

that the normalization is almost identical for all years and therefore a comparison of the indi-

vidual figures is permissible. As shown in Figure 5-16, the share of fast charging vehicles is in 

the single-digit percentage range. In combination with the comparatively small sample of 
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2,410 driving profiles, this leads to fluctuations in the load curve. However, fundamental 

effects are discernible: (1) There is a high power demand for charging with up to 44 kW over-

night with over 85% of it at private infrastructure. (2) Charging with 44 kW to 350 kW is re-

quired at night for driving profiles with an energy demand that cannot be fulfilled with 44 kW, 

but is also used during the day for intermediate charging. (3) Increasing battery sizes lead to a 

decrease in the need for intermediate charging until 2050, while the need for overnight charg-

ing with higher power increases. Despite the small number of driving profiles that charge 

simultaneously at high charging power, a generally flat charging profile with a dip between 

6:00 and 10:00 and a slight midday peak results for 2025 and 2030. In the analysis for 2050, 

the demand in the midday hours is significantly reduced, while the demand in the early even-

ing hours and at night increases. The effect occurs due to the higher usable battery capacities, 

the lower energy consumption and a higher minimum driving range until the first charging 

stop. In summary, the effect is due to technical assumptions as well as the implemented charg-

ing strategy. (4) Fast charging with more than 350 kW is almost exclusively used for intermedi-

ate charging in the midday hours. Again, the demand decreases over time due to increasing 

battery sizes.  

   

Figure 5-17: Normalized daily load curve of technically feasible BET driving profiles in 2025, 2030, and 2050. The 

indicated charging power refers to the average power of the charging process. All data refers to vehi-

cles with a GVW of more than 12 t. Moving averages with a one hour span have been applied to all 

lines to reduce finite sample noise. 

5.2.2 Economic analysis 

In the following, key results from the economic analysis are presented. To generate a general 

understanding, the TCO calculation of all drivetrains is shown for one exemplary driving pro-

file. Afterwards, the aggregated TCO results for the whole fleet are shown. A special focus is on 

the economic efficiency of BET compared to DT.  

5.2.2.1 Exemplary TCO calculation for one specific driving profile 

Figure 5-18 shows an exemplary TCO calculation of a rigid truck with a daily mileage of 568 km 

for 2030 and 2050. As electric vehicle, the vehicle stops twice a day for charging at a public 

location in both years. The driving profile for 2030 is shown in subchapter 4.2.2 in Figure 4-6. 
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In 2030, the vehicle is equipped with 600 kWh battery. In 2050, 500 kWh are sufficient. It is 

shown that operational costs - especially energy costs, operation & maintenance costs, and toll 

costs - dominate for all drivetrains. Costs for the driver are assumed to be identical for all 

drivetrains and are therefore not part of the investigation. The BET represents the most cost-

effective alternative in 2030 and 2050. It should be noted that a part of this effect, especially in 

2030, is due to political measures, for example purchase price premiums, toll reductions, and 

an increasing national CO2 price for diesel and methane. However, these measures are in line 

with the politically set goal of climate neutrality (see subchapter 1.1). An assessment of policy 

designs is beyond the scope of this thesis, but it is shown that a significant cost advantage for 

BET can be achieved already in 2030. 

 

Figure 5-18: Exemplary annual costs of a rigid truck with a daily mileage of 568 km (140,000 km/a). 

5.2.2.2 Cost-effectiveness of different drivetrain options in the vehicle fleet 

Figure 5-19 shows the TCO delta between DT and BET for all technically feasible driving profiles 

in 2026, 2030, 2031, and 2050. In 2026, the model determines the infrastructure costs per 

kWh for public fast charging endogenously for the first time. These costs are also assumed for 

private fast charging, taking a price reduction due to the price premium of the charging point 

operator into account. Green dots represent driving profiles that purely rely on slow charging 

with less than 44 kW. The model does not calculate endogenous infrastructure costs for these 

driving profiles. The variance for profiles with the same daily mileage is due to different bat-

tery sizes as well as different shares of public slow charging with price premiums for the infra-

structure provider. Yellow dots represent driving profiles that rely, at least partially, on fast 

charging with an average charging power of more than 44 kW. It can be seen that these BET 

driving profiles have a cost advantage compared to DT already in 2026. Taking into account the 

energy demand of the vehicles, the electricity price can - ceteris paribus - increase by 

0.06 €2020/kWh until the first driving profile - the driving profile with the lowest mileage of 202 



5  Results 

120 

km - reaches a cost advantage as a DT. With increasing mileage, the cost advantage per kWh 

also increases. The variance between driving profiles with similar mileage is again due to 

different battery sizes as well as different usage of different charging infrastructures. In 2030, 

the cost advantage per kWh for the driving profile with the lowest cost advantage increases to 

0.16 €2020/kWh. The termination of the purchase price premium in 2031 reduces the cost 

advantage to 0.10 €2020/kWh. In addition, the impact of different vehicle battery sizes on the 

cost advantage is more apparent. Due to smaller batteries, driving profiles with a fast charging 

share can achieve higher cost advantages than driving profiles with a similar mileage and 

purely slow charging, despite higher charging costs. In 2050, the cost advantage compared to 

DT increases to a minimum of 0.48 €2020/kWh for the driving profile with the least per kWh cost 

advantage and a fast charging share. 

  

  

Figure 5-19: TCO delta between DT and BET for all technically feasible driving profiles in 2026, 2030, 2031, and 

2050. Please note the different y-axes.  
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Finally, Figure 5-20 shows the best TCO option for every driving profile from 2020 to 2050. 

Please note that technically not feasible BET driving profiles are treated as infinite costs. DT are 

particularly competitive for driving profiles with low daily mileage. When the mileage increas-

es, other drivetrains become more economical, due to the lower operational costs. In the first 

years of the simulation, in particular GT are more economical than DT at higher mileage. One 

exception is the year 2022, when the methane gas price rises sharply, due to war in the 

Ukraine. Due to technical and economic improvements, BET are increasingly the cheapest 

solution for a large proportion of the driving profiles. For long distances, GT are initially used, 

followed by FCET from 2027 onwards. For 2030 to 2035, DT for low mileage and GT for high 

mileage again gain some relevance. The reason is the decrease in subsidies for BET and FCET, 

especially purchase price premiums and toll reductions. In the perspective up to 2050, DT are 

the best option only for vehicles with very low mileages. FCET, similar to BET, are competitive 

with DT as TCO decreases over time (see Figure 5-18). Additionally, they profit from fast refuel-

ing. For driving profiles with a high daily mileage or with an unfavorable trips distribution 

throughout the day, FCET are used. In the given scenario, FCET are always more expansive 

than BET, as long as BET are technically feasible. However, for more than 95% of the driving 

profiles, BET are the most cost-efficient solution in 2050 and technically feasible. 

 

Figure 5-20: Best TCO option from 2020 to 2050 for HDV with a GVW > 12 t. Dots are slightly varied on the x-axis for 

better visibility. 

In summary, it can be concluded that BET achieve clear economic advantages over the other 

drivetrains for a large proportion of the driving profiles. Accordingly, the market diffusion of 

BET is limited less by the economic efficiency than by the technical feasibility and the vehicle 

and infrastructure availability. FCET, as a further new technology, can be used in particular for 

driving profiles with high mileage or unfavorable trip combinations. However, their share is 

likely to remain limited from an economic perspective. 
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5.2.3 Market diffusion of alternative drivetrains  

The fowling presents the new registrations as well as the HDV stock until 2050.  

5.2.3.1 Vehicle registrations 

Figure 5-21 shows the development of new registration shares for HDV with a GVW higher 

than 12 t by drivetrain from 2020 to 2050. As already evident from the technical and economic 

analysis, BET dominate for large parts of the fleet, displacing DT. The share of new BET regis-

trations in both 2025 and 2030 is less than five percentage points below the maximum share 

set by the vehicle availability curve in subchapter 3.5.1.2. The share of BET on the registrations 

in 2025 is 9%, increasing to 55% in 2030. In the given scenario, more than 95% of new registra-

tions are BET in 2050.  

GT continue to play a small role for driving profiles with a high mileage until the second half of 

the decade. For these profiles, BET are inititally technically not feasbile and DT are more 

expensive. However, the cost advantage is small, as shown the increasing number of DT 

registrations between 2022 and 2025 due to high methane gas prices and the removal of 

subsidies. Given the small market share, it remains uncertain whether manufacturers will 

continue to offer GT. In particular, the assumed costs reductions potentials may not be 

achievable. 

Starting in 2027, FCET are used for driving profiles with high daily mileage and replace GT. In 

2031, new FCET rgistrations decline due to the expiry of subsidies, but stabilize again in the 

following years. FCET reach their maximum registrations share, 7%, in 2035. They thus 

represent a bridging technology that is used in particular for driving profiles that are difficult to 

electrify. Again, it is uncertain whether the assumed costs reductions for vehicles and 

infrastructure - represented as part of the hydrogen costs - can be achieved.  

 

Figure 5-21: Annual share of new registrations of HDV with a GVW > 12 t by drivetrain from 2020 to 2050.  



5.2  Market diffusion of battery electric trucks 

123 

5.2.3.2 Vehicle stock 

In this subchapter, the HDV stock and the total annual mileage by drivetrain are presented. 

Figure 5-22 shows the stock share of the different drivetrains from 2020 to 2050 for the given 

scenario. The stock follows the new registrations. In 2025, 3% of stock are BET. The BET share 

rises to 30% by 2030. By 2045, the year of targeted climate neutrality, the BET share increases 

to 93%. Another 4% of stock are FCET. The remaining 3% are DT that must be fueled with GHG 

neutral fuels. By 2050, the share of BET increases even further, reaching nearly 95% of stock.  

 

 
(a) 

 
(b) 

Figure 5-22: Annual (a) stock share and (b) stock of HDV with a GVW > 12 t by drivetrain from 2020 to 2050. 

Figure 5-23 compares the share of each drivetrain regarding the total stock and the total 

mileage of the fleet. Due to limited technical feasibility of very high daily mileage, BET mileage 

share is always slightly smaller than BET stock share. The German government aims to electrify 

one third of the HDV mileage directly or with electric fuels by 2030 (Deutsche Bundesregier-

ung, 2019). BET contribute 27% to the target, FCET 2%. If the planned blending of 4% synthetic 

fuel can be achieved, the overall target can be approximately reached.  
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Figure 5-23: Stock share and mileage share of HDV with a GVW > 12 t by drivetrain from 2020 to 2050. 

5.2.4 Energy demand  

This subchapter first shows the annual final energy demand of the entire simulated HDV fleet 

from 2020 to 2050. Next, the electricity demand of BET at different infrastructures are shown 

in more detail. Finally, the daily load curve of BET is presented.  

5.2.4.1 Annual total energy demand of the vehicle fleet 

Figure 5-24 shows the final energy demand of all HDV with a GVW higher than 12 t in Germany 

from 2020 to 2050. Conventional, synthetic, and biogenic fuels are reported as a total. Diesel 

demand decreases from 2020 to 2030 from 109 TWh to 66 TWh. After 2040, the annual de-

mand drops to less than 1 TWh per year. Simultaneously, the demand for electricity and hy-

drogen is increasing. Electricity demand increases to 11 TWh by 2030 and is mostly stable 

between 30 and 33 TWh after 2035. Hydrogen demand increases to 2 TWh by 2030 and reach-

es the maximum demand of 11 TWh in 2039. Afterwards, the demand decreases to 6 TWh by 

2050. 
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Figure 5-24: Annual final energy demand of HDV with a GVW > 12 t from 2020 to 2050. 

5.2.4.2 Annual electricity demand of the BET fleet 

To even better understand BET charging behavior and infrastructure needs, Figure 5-25 pre-

sents the electricity demand broken down by charging power and charging location. Electricity 

demand increases to 33 TWh by 2040 and remains almost constant afterwards, due to effi-

ciency improvements and a nearly constant total vehicle fleet8.  

Overall, private charging is almost constantly responsible for about three quarters of the 

energy demand from 2025 onwards. It can be seen that the highest energy demand comes 

from private slow charging with up to 44 kW average power. In 2030, the share amounts to 

almost 50% and rises to 56% by 2050, due to increasing battery ranges. Approximately one 

quarter of the electricity demand is charged publicly from 2025 onwards9. For public charging, 

fast charging with more than 44 kW average charging power is more relevant than for private 

charging. By 2030, the share of fast charging on public charging in terms of electricity volumes 

increases to 70%, remains almost constant until 2040, and drops to 62% by 2050. The majority 

of public fast charging energy is charged at more than 350 kW average charging power. 

                                                             
8 For comparison: According to BNetzA (2023a), Germany’s net electricity demand was slightly less than 500 TWh in 
2022. Sensfuß et al. (2022) assumed an annual electricity production of 1,200 TWh by 2045.  
9 Please note that due to increasing ranges and the inclusion of local traffic in the market diffusion model, the total 
demand for publicly charged electricity in the market diffusion model is smaller than in the CFRLM described in 
5.1.2.2 
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Figure 5-25: Annual electricity demand of BET with a GVW > 12 t by charging power and charging location from 

2020 to 2050. 

5.2.4.3 Daily charging behavior of the BET fleet 

In the following, the daily charging behavior of the BET fleet is presented. Figure 5-26 shows in 

5-year-steps from 2025 to 2050 how many vehicles use a charging infrastructure at each time 

of the day. The figures thus also allow conclusions about the need for charging infrastructure. 

It is obvious that the majority of the charging events takes place overnight at private charging 

locations with less than 44 kW average charging power. Public slow charging overnight is also 

relevant. Fast charging with an average charging power of more than 44 kW initially takes 

place primarily in the midday hours and, in the long term, increasingly shifts to the evening 

and night hours due to increasing vehicle range. This is in line with findings of the technical 

analysis in subchapter 5.2.1.3. However, the stock simulation allows additional conclusions 

regarding the order of magnitude. For better comprehensibility, Table 5-3 summarizes the 

maximum number of simultaneously charging BET. The calculation of the required public fast 

charging infrastructure does not distinguish between BET with a charging power between 44 

kW and 350 kW (in figures: ≤ 350 kW) and BET with an average charging power above 350 kW 

(in figures: > 350 kW). Therefore, it should be noted that the maximum number of charging 

vehicles in both classes does not occur at the same time. A corresponding analysis is shown in 

the Appendix A.6 in Figure A-6. Due to the comparatively low number of driving profiles that 

need fast charging, these values are also subject to higher fluctuations. 
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Figure 5-26: Charging behavior of the simulated BET fleet from 2025 to 2050. The indicated charging power refers to 

the average power of the charging processes. All data refers to vehicles with a GVW > 12 t. Moving av-

erages with a one hour span have been applied to all lines to reduce finite sample noise. Please note 

the different y-axes.  

Table 5-3: Maximum number of simultaneously charging BET in thousands from 2025 to 2050. 

 2025 2030 2035 2040 2045 2050 

≤ 44 kW private 9.4 95.6 228.3 284.9 287.3 284.6 

≤ 350 kW private 0.8 6.5 14.1 12.7 13.0 16.4 

> 350 kW private 0 0.7 2.6 3.0 2.5 1.9 

≤ 44 kW public 1.3 14.0 35.0 44.0 43.6 41.5 

≤ 350 kW public 0.2 1.3 2.5 2.6 3.2 5.0 

> 350 kW public 0 1.5 4.0 4.3 3.7 2.8 

 

Figure 5-28 shows the daily load profile of the simulated HDV BET fleet from 2025 to 2050 in 5-

year-steps. For direct comparability, the y-axis was kept fixed for each year. For better visibil-

ity, Figure 5-27 additionally shows the load profiles for 2025, 2030, and 2035 with a variable y-

axis.  
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Figure 5-27: Daily load curve of the BET fleet in 2025, 2030, and 2035. The indicated charging power refers to the 

average power of the charging process. All data refers to vehicles with a GVW > 12 t. Moving averages 

with a one hour span have been applied to all lines to reduce finite sample noise. 

   

   

Figure 5-28: Daily load curve of the BET fleet from 2025 to 2050.  The indicated charging power refers to the aver-

age power of the charging process. All data refers to vehicles with a GVW > 12 t. Moving averages with 

a one hour span have been applied to all lines to reduce finite sample noise. Unified y-axis for all 

years. 

The peak power for the BET fleet increases to nearly 2.5 GW by 2030. Afterwards, the peak 

power doubles to more than 6 GW by 2035. Until 2050, there are comparatively moderate 

increases to almost 8 GW peak power. According to (BNetzA, 2023c), the maximum peak load 

in Germany in 2021 was 81.4 GW. (Sensfuß et al., 2022)) assumed a daily peak load in the 
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order of up to 250 GW in 2045. Due to the high charging power, the comparatively few fast 

charging processes initially generate a clear midday and afternoon peak. In the long term, 

demand shifts to the evening and night hours due to increasing vehicle ranges. Due to the 

comparatively small share of fast-charging vehicles with more than 44 kW average power in 

the sample - 22% of all 2,410 driving profiles rely on fast charging in 2050 -, the load curve 

contains visible peaks. Individual spikes should therefore not be over-interpreted, the load 

curve rather shows the general trend. Regarding public fast charging, a substantial midday 

peak, approximately 0.8 GW in 2030 and 2 GW from 2035 onwards, is calculated. In the per-

spective up to 2050, there is a drop to approximately 1.6 GW. For better understanding, Figure 

A-7 in the appendix shows a separate analysis of public fast charging. It should also be noted 

that in public charging, the midday peak, which is almost exclusively due to fast charging, is 

higher than the slow charging peak. Therefore, the grid connection at public rest areas is 

probably dominated by the fast charging demand at most locations.  

The load curves shown are also the results of the implemented charging strategy (charging as 

slow as possible). The high share of charging with less than the maximum charging power also 

shows that trucks are potentially suitable for load shifting, especially in afternoon and in 

nighttime hours. This may lead to further potential costs reductions in energy costs. However, 

this is beyond the scope of this thesis.  

In summary, BET generate an electricity demand of more than 30 TWh in the long term. In the 

modeled scenario, the highest increase occurs between 2030 and 2035. More than half of the 

energy can be recharged at private charging infrastructure with an average power of less than 

44 kW. In the load profile, a midday peak caused by intermediate fast charging can be ex-

pected. Due to an increasing vehicle range, the peak load shifts to the evening and night hours 

by 2050. 

5.2.5 Public fast charging infrastructure in the market diffusion model 

for BET 

The following sections present the public fast charging infrastructure modeled as part of the 

BET market diffusion. First, the influence of public infrastructure on the market diffusion of 

BET is presented. Then, the charging locations and the required charging points are shown. The 

following subchapter deals with the utilization and the average charging power of the modeled 

fast charging infrastructure. Finally, the costs of the infrastructure are discussed.  
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5.2.5.1 Influence of public charging infrastructure on the market diffusion of BET 

Figure 5-29 shows the share of the BET fleet that relies at least partly on public charging infra-

structure in the modeled market diffusion scenario10. Additionally, the corresponding share of 

the mileage is shown. Public fast charging with more than 44 kW average power is required by 

15% of the vehicles after 2035, slightly fluctuating. Those vehicles provide 25% to 30% of the 

mileage of the entire fleet.  

 

Figure 5-29: Electrified stock and mileage share for the modeled market diffusion by the public infrastructure 

needed from 2020 to 2050. “Charging public ≤ 44 kW” may also contain “charging private”. “Charging 

public > 44 kW” may also contain “charging public ≤ 44 kW” and “charging private”. 

Additionally, a sensitivity analysis on a delayed public fast charging infrastructure (> 44 kW) 

was deployed. For this purpose, the parameters 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠𝑚𝑎𝑥
𝑡 , 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠𝑚𝑖𝑛

𝑡 , and 𝑝𝑙𝑢𝑔𝑚𝑎𝑥
𝑡  

were shifted by five years. This means that initially only smaller and less locations are possible. 

The infrastructure ramp-up starts between 2025 and 2030 (first simulation of public fast charg-

ing infrastructure for 2030), instead of between 2020 and 2025. Due to lack of infrastructure, 

the model has reduced the market diffusion of BET relying on public fast charging infrastruc-

ture by 25% between 2025 and 2030 compared to the baseline scenario. No further reduction 

took place thereafter. Regarding the entire fleet, this corresponds to a reduction in BET stock 

of two percentage points (30% BET in the baseline scenario versus 28% BET in the delayed 

scenario in 2030). Regarding mileage, the reduction amounts for three percentage points. 

5.2.5.2 Public fast charging locations  

The following section focusses on the realized fast charging locations. The modeling shows that 

the specified minimum number of locations is always sufficient to cover the demand for 

                                                             
10 The results refer to the modeled scenario. A removal of the public charging infrastructure could be partially 
compensated by larger batteries and a modified charging strategy. However, this is beyond the scope of this thesis. 
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charging events. Table 5-4 summarizes the required number of charging locations in three size 

categories from 2025 to 2050. The size categories are based on the critical number of charging 

points in relation to the required grid connection, as shown in subchapter 3.3. According to the 

assumptions, medium locations with up to 30 charging points may not be built before 2030, 

and large locations with up to 45 charging points may not be built before 2035. It can be seen 

that after 2040, due to the declining demand for public fast charging, large locations are 

reduced. However, once established, each charging point is in operation for 15 years. Thus, the 

deconstruction is partially delayed.  

Table 5-4: Number of charging locations for the modeled market diffusion of BET. 

 2025 2030 2035 2040 2045 2050 

small (max. 12 charging points) 120 93 106 88 98 103 

medium (max. 30 charging points) 0 67 56 49 53 72 

large (max. 45 charging points) 0 0 58 83 69 45 

total 120 160 220 220 220 220 

 

Figure 5-30 illustrates the regional distribution of public fast charging infrastructure in 

Germany for the modeled BET diffusion in 2025, 2030, and 2045. Location sizes are presented 

in the three introduced classes. The initial network rollout is distributed all over Germany. The 

increase in network density through additional and larger charging locations takes place 

primarily on long-distance corridors. These corridors include the transit route from the Nether-

lands - via Essen, Hanover, passing Berlin - to Poland. As part of this route, the A2 highway 

connects major European ports (Amsterdam, Rotterdam and Antwerp) to Eastern Europe. As a 

second long-haul route, the highway A3 connects the Netherlands to Austria via Cologne, 

Frankfurt, and Nuremberg. The parallel highways A61 and A45 in the south of Cologne and the 

highway A8 between Karlsruhe and Munich, which runs in the south of the A3, are also among 

the routes that are densified. Other locations with less transit traffic, for example the highway 

A20 from Lübeck via Rostock to Poland, are being less expanded. They primarily serve to 

provide area coverage. The detailed maps in Appendix A.7 show the expansion steps for each 

individual location in 5-year-steps.  

Due to increasing vehicle range and the associated shift in charging demand to long-haul 

routes, some charging locations are oversized from 2040 onwards. Oversizing affects 63 loca-

tions in 2040, 49 locations in 2045, and 48 locations in 2050. In 2045, slightly more than one 

third of the locations are oversized by 5 charging points (mean = 6.5, median = 5, σ = 6.2). The 

effect diminishes in 2050, as charging points built as part of the major expansion in 2035 are 

removed from service. A more detailed analysis of the number of charging points follows in 

subchapter 5.2.5.3.  



5  Results 

132 

 

Figure 5-30: Corresponding public fast charging infrastructure in Germany for the modeled BET diffusion in 2025, 

2030, and 2045. 
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5.2.5.3 Number of public fast charging points 

The initial public fast charging network consists of 302 charging points in 202511. By 2030, the 

stock increases to almost 2,000 charging points and more than doubles to nearly 4,200 charg-

ing points 2035. By 2030, there is still a small increase to nearly 5,100 charging points. Simul-

taneously, overcapacities are emerging, due to increasing vehicle range and shifting charging 

demand. Almost 320 charging points are no longer needed, but still installed. In 2045 and 

2050, the infrastructure is reduced to approximately 4,300 and 3,800 charging points. Figure 

5-31 shows the total number of public fast charging points installed in Germany from 2025 to 

2050. In addition, the number of newly installed charging points is shown. In contrast to the 

stock, newly installed charging points increase in the period between 2045 and 2050, as charg-

ing points built between 2030 and 2030 that are still needed must be replaced. 

 

Figure 5-31: Corresponding total number of public fast charging points in Germany for the modeled BET diffusion 

from 2025 to 2050.  

In addition, Figure 5-32 shows the number of charging points per charging location from 2025 

to 2050 as boxplots. While the maximum of 12 charging points specified by the model is not 

used in 2025, the maximum of 30 charging points in 2030 and 45 charging points from 2035 

onwards is used at some locations. Overall, a wide spread of location size can be seen. Small 

locations cover the area and result from the requirement of a minimum number of locations. 

Large locations serve highly trafficked highways.  

                                                             
11 For comparison: From March 2022 to March 2023, 4,537 new fast charging points (> 50 kW) for passenger cars 
were built in Germany. By March 2023, 13,714 fast charging points had been established. The stock of fast charging 
points with at least 300 kW power increased by 1,565 charging points to 3,540 charging points from 2022 to 2023. 
(BNetzA (2023b)). 
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Figure 5-32: Boxplot for corresponding number of charging points per public fast charging location for the modeled 

BET diffusion from 2025 to 2050. Orange dot indicates mean value. Green dots show individual values. 

Overall, the specified infrastructure parameters are consistently sufficient, both in terms of the 

maximum number of charging locations and the maximum number of charging points per 

location, so that the infrastructure ramp-up does not inhibit the market diffusion of BET.  

5.2.5.4 Utilization and average charging power 

The utilization of a charging location depends on the characteristics of the traffic volume in the 

peak hour. The more prominent the peak hour is, the more the location is oversized during 

other hours of the day. Table 5-5 sums up the peak hour traffic at public fast charging infra-

structure derived from the simulated load curves. It can be seen that the daily peak is higher 

than the assumed daily peak of 6% in the first part of this thesis. As a result, the utilization in 

this section is lower than in the optimization scenario without fleet simulation. Nevertheless, 

the daily peak is declining over time. The location size, which is limited to 45 charging points, 

also leads to a lower utilization, since large locations are more efficient according to queuing 

theory.  

Table 5-5: Peak hour traffic at public fast charging infrastructure for the modeled market diffusion. 

 2025 2030 2035 2040 2045 2050 

peak hour traffic [%] 11.4 10.2 9.5 9.1 9.5 8.5 

 

Figure 5-33 shows the temporal utilization of public fast charging infrastructure from 2025 to 

2050. The average utilization increases from 8 % (mean = 0.08, median = 0.09, σ = 0.05) in 

2025 to 23% (mean = 0.23, median = 0.26, σ = 0.08) in 2035 and is almost stable at this level 
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except for a small decrease in 2045 to 20% (mean = 0.20, median = 0.22, σ =0.08). This means 

that in the medium term, the charging location are occupied for about one quarter of the day. 

Thus, the average utilization is 18 percentage points lower than in the Opti-

miziation2045_Ger_C scenario in subchapter 5.1.2.2. Reasons area higher peak hour traffic, 

smaller locations, and the minimum number of locations that also leads to a higher number of 

locations. The highest utilized location of fast charging infrastructure for the modeled BET 

diffusion reaches 32% utilization in 2050, the year with the lowest peak hour traffic.  

 

Figure 5-33: Boxplot of corresponding utilization per fast charging location for the modeled BET diffusion from 2025 

to 2050.  Orange dot indicates mean value. Green dots show individual values. 

Figure 5-34 shows the average charging power for charging events at each location. Interest-

ingly, despite the increasing vehicle range, the average charging power only increases from 

458 kW (mean = 458, median = 432, σ =81) in 202512 to 575 kW (mean = 575, median = 548, σ 

= 165) in 2050. According to the assumptions, vehicles charge so that they are fully recharged 

within 30 minutes. If the required number of stops on an OD path does not change and if the 

same charging locations are selected in different years, charging power also remains constant 

or slightly decreases due to efficiency improvements. Additionally, the spread of average 

charging power increases over time, since stops can be made more flexible due to longer 

ranges. For example, vehicles can recharge shortly after starting or shortly before arriving at 

their destination. 

                                                             
12 Please note that the charging strategy in the public fast charging infrastructure modeling always assumes recharg-
ing within 30 min, while this is the case in the technical analysis from 2030 onwards. Therefore, the average charg-
ing power of the 2025 infrastructure modeling is higher than the maximum value of the technical analysis. At this 
point, the technical analysis is a conservative estimate.  



5  Results 

136 

 

Figure 5-34: Boxplot of average charging power for charging events at each public fast charging locations for the 

modeled BET diffusion from 2025 to 2050. Orange dot indicates mean value. Green dots show individ-

ual values. 

5.2.5.5 Costs for public fast charging infrastructure 

Table 5-6 sums up the annuities for the modeled public fast charging infrastructure and the 

corresponding infrastructure levies per kWh.  

The annuity of the grid connection increases continuously until 2040, the year of maximum 

expansion of the public fast charging infrastructure. After 2040, it remains constant due to the 

depreciation period of up to 40 years. As a levy, the connection generates costs of less than 

0.01 €2020/kWh and is thus less relevant.  

The annuity of the charging infrastructure increases to a third of a billion €2020/a by 2040 and 

drops to 200 million €2020/a by 2050. The comparatively short depreciation period of 15 years 

allows for quick changes. The levy falls clearly from 0.18 €2020/kWh in 2025 to 0.07 €2020/kWh in 

2030, due to the increasing utilization of the infrastructure. Afterwards, the levy falls 

considerably lower due to the continued slight increase in utilization and the assumed cost 

reduction of 2% per year for new public fast charging infrasctructure. The levies are close to 

the initial assumptions, so that, taking into account the high economic benefits of BET in 

subchapter 5.2.2.2, there are no changes in new registrations due to the internally calculated 

charging infrastructure costs. 

As an initial comparison, annual truck toll in Germany in 2019, before the COVID-19 pandemic, 

was 7.5 billion €2020 (BAG, 2021). Wietschel et al. (2017) calculated almost 9 billion €2015 for 

4,000 km of overhead catenary lines in Germany, resulting in 0.7 billion €2015 annually. Due to 

different framework assumptions, the costs are not directly comparable; for example, different 

requirements of depot infrastructure are not taken into account.  
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At this point, is should be pointed out that the levies include costs of the hardware, its 

construction, its maintenanace, and a profit-based interest rate, but not the costs of the 

landscape. The clandscape costs can vary widely. In this thesis, it is assumed that public fast 

charging infrastructure is built on parking areas and that no additional costs occur. However, 

this can vary depending on the charging point operator. 

Table 5-6: Modeled annuity for public fast charging infrastructure for the modeled BET diffusion from 2025 to 2050. 

 2025 2030 2035 2040 2045 2050 

grid connection [Mio. €2020/a] 2.3 8.4 25.4 32.2 32.2 32.2 

grid connection [€2020/kWh] 0.017 0.004 0.005 0.005 0.006 0.006 

charging infrastructure [Mio. €2020/a] 23.9 143.4 285.7 331.6 260.9 199.1 

charging infrastructure [€2020/kWh] 0.176 0.071 0.055 0.053 0.052 0.038 

 

5.2.6 Discussion 

The market diffusion model for alternative drivetrains for HDV used in this thesis builds on an 

established model logic and extends the modeling with regard to the integration of public fast 

charging infrastructure for BET. On the data part, previously used input data is integrated into 

the model at a substantially higher temporal resolution. Additionally, spatially resolved traffic 

flows are taken into account for the infrastructure modeling. However, methodological and 

data assumptions still influence the results. Therefore, methodological and data-driven influ-

ences are discussed in the following. The discussion follows the structure of the model.  

The technical analysis is strengthened by considering individual trips instead of the daily mile-

age. Unfortunately, only a short observation period of one day is available. Therefore, the 

electrification potential can be overestimated. Yet, even for early years, the technical analysis 

shows a high potential for electrification for a wide range of daily mileage. Nevertheless, large-

scale driving data surveys over several days should be carried out in the future to improve the 

data quality. The technical analysis models a charging strategy that foresees charging with 

lowest possible power. Implicitly, controlled charging is assumed. Thus, despite the small 

sample of 2,410 driving profiles, a load profile can be generated that is not characterized by 

individual outliers. Even though general trends can be seen, additional fluctuations due to the 

small sample size are obvious. Therefore, future analyses could further examine the effects of 

other charging strategies, especially if a larger data sample is available.  

The economic analysis shows clear cost advantages for BET for almost all driving profiles. Since 

this finding is consistent with the results of the literature review in subchapter 2.1.2, a sensitiv-

ity analysis was not performed, but the economic advantage of the BET compared to the DT 
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for all driving profiles was determined. Even in 2026, the analysis shows that the electricity 

price for fast charging needs to increase by 0.06 €2020/kWh to have an impact on the drivetrain 

choice. This corresponds to one third of the infrastructure levy and increases rapidly over time. 

Against this background, the economic analysis can be considered very stable. This makes the 

restriction of the vehicle availability one of the most important parameters. Availability was 

updated as part of this thesis based on manufacturer information. The resulting market diffu-

sion of BET is in line with the goal of the German government in terms of electrified mileage 

(Deutsche Bundesregierung, 2019). Against this background, the market diffusion appears 

ambitious, but feasible. It can be assumed that a corresponding market ramp-up will be sup-

ported politically. The measures assumed in this thesis are exemplary; the goal can also be 

achieved with other measures. All in all, the modeled market diffusion provides a good basis 

for the infrastructure analysis.  

The adapted optimization model for the infrastructure analysis uses the strengths of the 

CFRLM approach, especially the consideration of relevant individual OD paths and the capacity 

restriction for each potential location. In the version used in this thesis, all paths must be 

drivable. This is in line with the assumption that BET must be able to be deployed at each 

route, but prevents high-resolution modeling of the very initial network setup. Future model-

ing approaches could instead maximize the share of electrified traffic, especially for an early 

market phase. Multi-period optimization would also be a topic for future research, to reduce 

the installation of charging points that are no longer needed in future periods. However, the 

implicit assumption that charging point operators do not have perfect foresight and that a 

decline in public fast charging demand leads to reduced infrastructure utilization seems realis-

tic.  

Finally, the coupling between the market diffusion model for BET and the public fast charging 

infrastructure modeling should be addressed. In this thesis, two different datasets are used for 

the modeling parts and linked based on the amount of energy to be recharged. For future 

modeling, a dataset should be provided that is both sufficiently detailed to daily driving pro-

files and extensive enough to simulate a countrywide infrastructure deployment. This could 

prevent differences between the market diffusion model and the infrastructure model, for 

example regarding the modeled charging behavior. 

5.2.7 Summary 

Chapter 5.2 presents the results of the market diffusion modeling of alternative drivetrains for 

vehicles with a GVW of more than 12 t in Germany from 2020 to 2050. BET’s regionally and 

temporally resolved energy demand and the required public fast charging infrastructure are of 

particular interest.  

The technical analysis within the market diffusion modeling demonstrates that almost 90% of 

all driving profiles and 75% of all daily mileage can be directly electrified in 2025. In 2050, the 

electrification potential increases to 97% of all driving profiles and 93% of the total mileage. 
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From an economic perspective, BET also show advantages compared to other drivetrains in the 

modeled scenario. Even substantial increases in costs, for example by 0.05 €2020/kWh of elec-

tricity, would only minimally change the results of the market diffusion scenario. Therefore, 

the market diffusion is characterized by the availability of BET vehicles as well as the corre-

sponding infrastructure. The modeled scenario projects a BET stock share of 30% by 2030. 

Additionally, the scenario is in line with the German government’s target to electrify one third 

of HDV road transport by 2030  (Deutsche Bundesregierung, 2019). By 2050, the BET share 

rises to 95% of the stock. 

FCET can be used in particular for driving profiles with high mileage or unfavorable trip combi-

nations. However, their share is likely to remain limited from an economic perspective. The 

modeling shows shares less than 10% of total vehicle stock. It is uncertain whether assumed 

economies of scale can be achieved and an infrastructure can be operated economically. 

After an initial market ramp-up from 2035 onwards, the modeled BET fleet requires between 

30 TWh and 35 TWh of electricity per year. More than half of the electricity is recharged at 

private charging infrastructure with an average charging power of less than 44 kW. Public fast 

charging with more than 44 kW average power is responsible for 15% to 20% of electricity 

demand after 2035. Considering the lowest possible charging power strategy modeled, public 

fast charging is relevant, but not dominant. The per day analysis shows that during the daily 

peak, less than 6,000 vehicles use a public fast charging infrastructure with more than 44 kW 

average power at the same time across all years considered. During the daily peak at private 

charging infrastructure with less than 44 kW average charging power, up to 290,000 vehicles 

use the infrastructure in parallel. The daily load profile reaches between 6 GW and 8 GW total 

charging power in the peak hour from 2035 onwards. The daily peak is initially reached in the 

midday and afternoon hours and is caused in particular by fast intermediate charging. Howev-

er, nighttime slow charging also requires more than 4 GW in 2035. In the long term, midday 

intermediate charging is eliminated for many driving profiles due to increasing range, so that 

the daytime peak shifts to the nighttime hours. 

Public fast charging infrastructure is initially built up across the country. Afterwards, additional 

charging locations are built and existing charging locations are enlarged, especially along 

transit routes. The maximum demand for public fast charging points with assumed peak power 

of 1 MW is reached in 2040 with almost 5,100 charging points in Germany. After 2040, due to 

increasing range of vehicles, a partial deconstruction of the infrastructure takes place. The 

specified maximum infrastructure expansion is always sufficient so that the public fast charg-

ing infrastructure does not inhibit the BET market diffusion. Table 5-7 sums up the correspond-

ing infrastructure ramp-up for the modeled BET diffusion. Additionally, the results from the 

previous infrastructure scenarios are shown for comparison. The comparison reveals that the 

market diffusion of BET, and thus the public fast charging infrastructure demand, develops 

about twice as fast by 2030 as assumed in the scenarios. However, in the 2045 perspective, the 

Dense2045_Ger scenario is similar to the results from the market diffusion modeling approach. 

Due to the assumed range of 300 km, the Optimization2045_Ger_C scenario clearly overesti-
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mates the demand for charging points, also compared to the results of the market diffusion 

modeling. The market diffusion modeling does not achieve the infrastructure levies calculated 

in the pure infrastructure modeling, which is due to higher peak utilization as well as necessary 

deconstruction.  

Table 5-7: Overview on the number of required charging locations and charging points for the modeled market 
diffusion of BET. 

Scenario Locations Charging points Infrastructure levy 

  Total Mean Min Max [€2020/kWh] 

Results from the market diffusion modeling:  

2025 120 302 2.5 1 8 0.19 

2030 160 1,977 12.4 1 30 0.08 

2035 220 4,182 19.0 1 45 0.06 

2040 220 5,075 23.1 1 45 0.06 

2045 220 4,328 19.7 1 45 0.06 

2050 220 3,811 17.3 1 45 0.04 

Results from the pure infrastructure modeling:  

Wide2030_Ger_ETIS-U 101 809 8.0 2 15 0.03 

Wide2030_Ger_M-TCD 142 741 5.2 2 9 0.03 

Dense2045_Ger 190 4,771 25.1 2 57 0.02 

Optimization2045_Ger 42      

Optimization2045_Ger_C 124 12,323 99.0 2 334 0.03 

 

Finally, insights can be added to the first research question, initially answered in subchapter 

5.1.4. The remaining research questions can be answered:  

Q1: Taking into account the locally resolved demand for freight transport, how can a station-

based public charging infrastructure for battery electric heavy-duty vehicles in Germany look 

like and which costs arise due to the infrastructure installation? 

As already mentioned, a public charging infrastructure for battery electric heavy-duty vehicles 

in Germany can consist of fast charging locations that provide vehicles with a peak charging 

power of at least one megawatt. An infrastructure that is capable to cover the whole German 
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heavy-duty vehicle traffic requires investments in the single-digit billion €2020 range. The infra-

structure simulation of the market diffusion modeling confirms the calculated infrastructure 

levy of less than 0.1 €2020/kWh of electricity for public fast charging infrastructure in the steady 

state. However, the market diffusion modeling also shows that an infrastructure for public 

slow charging with less than 44 kW could be also relevant. 

Q1a: Where could a public fast charging infrastructure for battery electric heavy-duty vehicles 

be spatially located? 

The infrastructure simulation of the market diffusion modeling confirms the installation of 

large public fast charging locations along highly traveled long-distance corridors. However, the 

simulation also shows that the first step is to build a countrywide infrastructure. In line with 

the pure infrastructure modeling, the market diffusion modeling calculates approximately 200 

fast charging locations as a feasible order of magnitude, considering available parking areas 

and necessary electricity grid connections.  

Q1b: How should the public charging infrastructure be technically dimensioned in terms of 

charging points and charging power? 

The infrastructure simulation of the market diffusion modeling confirms the need for approxi-

mately 5,000 public fast charging points with up to 1 MW power, confirming the lower value of 

the initially given interval from 4,500 to 12,000 charging points. In addition, a demand of up to 

44,000 public slow charging points with up to 44 kW average power is identified. The spatial 

distribution or the substitutability of slow charging points by additional fast charging points is 

beyond the scope of this thesis and is left for further research.  

Q2: What impact does the development of public fast charging infrastructure have on the 

market diffusion of heavy-duty electric vehicles and which truck technology appears to be 

economically viable from the user's perspective in Germany up to 2050? 

The market diffusion analysis shows both a high technical and high economic potential for BET 

with a GVW of more than 12 t. Until 2050, a high share of BET in the fleet can be assumed. The 

assumed public fast charging infrastructure ramp-up in reference to the AFIR proposal (EC, 

2021) is sufficient to support the market diffusion of BET. Additionally, the levies required to 

finance the public fast charging infrastructure are not high enough to slow down the market 

diffusion of BET. In the presented scenario with repetitive daily driving profiles, public fast 

charging is required by about 15% of the vehicles in the long-term, accounting for up to 30% of 

the total mileage.  

Q3: What is the impact of battery electric road freight transport in terms of (1) the total 

amount of electric energy and (2) the load profile in Germany up to 2050? 

BET (> 12 t GVW) could generate slightly less than 35 TWh of annual electricity demand after 

2030. For comparison, Sensfuß et al. (2022) assumed a total electricity production of clearly 

more than 600 TWh in Germany after 2030; in highly electrified scenarios, production can rise 
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to as much as 1,200 TWh in 2045. The load profile shows a high load in the evening and night 

hours and, until around 2040, a clear midday peak. As - with increasing range - intermediate 

charging becomes increasingly unnecessary, the midday peak weakens clearly in the long-

term. At full fleet conversion, peak load exceeds 7 GW. For comparison, Sensfuß et al. (2022) 

calculated a peak demand of up to 250 GW in Germany in 2045. 
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6 Summary, conclusions, and further 
research 

This chapter summarizes the most relevant findings of this thesis, presents conclusions, and 

identifies potential topics for future research. For a more detailed assessment of the imple-

mented model development, the results of individual submodels, and potential uncertainties, 

please refer to the interim results and discussion sections in the subchapters 4.1.4, 4.2.4, 

5.1.1.3, 5.1.2.3, 5.1.4, 5.2.6, and 5.2.7.  

6.1 Summary and conclusions 

Battery electric trucks are a promising option to reduce greenhouse gas emissions in heavy 

road freight transport. As shown in the literature review, fast charging for battery electric 

trucks in less than 45 minutes - the mandatory break of truck drivers - has only been discussed 

since the beginning of the current decade. Therefore, little is known regarding the need for 

and the impact of public fast charging infrastructure for battery electric trucks. This thesis aims 

to investigate the development of a potential public fast charging infrastructure for battery 

electric vehicles with a gross vehicle weight of more than 12 t from 2025 to 2050 in Germany. 

In more detail, three research gaps, can be identified: (1) the need for public fast charging 

infrastructure for trucks and a potential design of a charging network, (2) the interactions 

between charging infrastructure and the market diffusion of battery electric trucks, and (3) the 

electricity demand and the load profile of a battery electric truck fleet.  

To enable a detailed focus on a public fast charging infrastructure network, the thesis distin-

guishes two major parts: (1) Modeling a public fast charging infrastructure considering an 

exogenously given demand, and (2) modeling a public fast charging infrastructure considering 

a modeled market diffusion of battery electric trucks with integrated techno-economic vehicle 

assessment and feedback loop for infrastructure needs.  

As a data basis for infrastructure modeling, the thesis extensively updates a dataset of Europe-

an road freight flows. Methodologically, the infrastructure modeling with exogenously given 

demand is performed with two approaches: (1) Infrastructure deployment at regular intervals, 

using a simplified node-based approach that allows extensive scenario analysis. (2) Minimiza-

tion of required infrastructure locations with a path-based, capacity-constrained flow refueling 

location model, which allows detailed location constraints but is limited in terms of scenario 

analysis due to the high computational effort. In total, seven scenarios and a sensitivity analy-

sis of the key parameters allow an assessment of the public fast charging demand assuming 

different market penetration of battery electric trucks. 
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Using 2,410 daily driving profiles, the market diffusion modeling for battery electric vehicles is 

based on a newly developed agent-based simulation. Compared to previous approaches in the 

literature, this thesis extends a detailed technical simulation that allows to evaluate the bat-

tery electric feasibility. Additionally, load profiles can be generated. To simulate the public fast 

charging infrastructure from 2025 to 2050 in 5-year steps, an adapted variant of the capacity-

constrained flow refueling location model is developed. The ramp-up of public fast-charging 

infrastructure meets the demand of the agent-based vehicle simulation and influences the 

vehicle diffusion via an infrastructure levy.  

In the following, the most relevant data-related, methodological, and content-related findings 

are presented: 

Europe-wide origin-destination traffic flows are needed to model local infrastructure needs at 

high resolution. For some research questions, road traffic count data provide a good proxy. 

Traffic flow data allow to draw conclusions on specific potential charging locations for individ-

ual vehicle trips. Especially with increasing vehicle range, the highly relevant long-distance 

corridors can be identified. Local traffic count data cannot distinguish between regional traffic 

and long-distance traffic with charging demand. However, the thesis shows that traffic count 

data is also suitable to identify particularly relevant relations and to provide an overall assess-

ment of infrastructure needs.  

Real driving profiles allow a detailed estimation of the electrification capability, but must be 

available in sufficient quantity. The modeled vehicle market diffusion in this thesis is based on 

2,410 single day driving profiles. The time-resolved analysis allows conclusions on the electrifi-

cation potential. In particular, it can be determined whether sufficient breaks for recharging 

are available. Due to the short observation period, it is possible that vehicles have different 

driving profiles on other days. Given that the overall electrification potential is quite high (94% 

of all driving profiles in 2030, 97% in 2050), the effect appears to be a minor issue. Additional-

ly, a load curve for the entire fleet can be derived. The load curve is well suited to identify 

fundamental effects, for example regarding the expected time of peak load or the charging 

demand with more than 350 kW. However, the load curve shows noticeable spikes, especially 

for fast charging, which can be attributed to the small sample size. Therefore, the dataset is 

only partially suitable to forecast load curves with minute accuracy.  

Compared to algorithms that distribute charging infrastructure at regular intervals, optimiza-

tion approaches allow additional insights regarding the minimum charging infrastructure, but 

are highly computational. In this thesis, a flow refueling location model is applied to 236,000 

flows. The optimization approach presented in this thesis enables the calculation of a mini-

mum infrastructure, but requires several days to solve the optimization problem. The effort 

increases further, if the newly developed capacity restriction is considered, which ensures that 

charging stations cannot become arbitrarily large. Optimality allows statements to be made 

about the minimum infrastructure required and exact locations. If an area-covering infrastruc-

ture shall be modeled, the algorithm presented in this thesis for modeling infrastructure at 
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regular intervals benefits from low computational effort. Results can be obtained within 

minutes.  

When using a flow refueling location model to model a fast charging infrastructure for electric 

trucks, the integration of a capacity constraint enables realistic results. The thesis shows that a 

large-scale conversion of the fleet to battery electric vehicles results in large locations with 

several dozens of fast charging points. Considering the maximum parking capacity as minimum 

requirement more than doubles the number of charging locations compared to the uncapaci-

tated flow refueling location model. Considering a maximum power grid connection also 

increases the number of locations needed. 

While vehicle and infrastructure availability may inhibit the market diffusion of battery electric 

trucks, cost-effectiveness from a user’s perspective is typically given. The analysis shows that 

battery electric trucks achieve high economic advantages compared to diesel trucks for a large 

share of all applications from the user’s perspective, given the framework conditions in this 

thesis. In the scenario modeled here, economic advantages are initially supported by policy 

measures, but are available in the long term even without subsidies. From a technical point of 

view, the electrification of more than 90% of the driving profiles is possible by 2030. The mar-

ket diffusion is therefore mainly limited by the availability of vehicles and potentially of the 

infrastructure. Thus, framework conditions, such as CO2 emission performance standards, 

should ensure that sales announced by manufacturers (NOW, 2023) are reached.  

Fuel cell electric trucks and gas trucks can be relevant, if battery electric trucks are technically 

infeasible. In the mid- to long term perspective, the total cost of ownership for battery electric 

trucks are clearly lower than for fuel cell electric trucks, gas trucks, or diesel trucks for almost 

all driving profiles. Gas trucks and fuel cell electric trucks can be an option for approximately 

less than 10% of the fleet, where the use of battery electric trucks is not possible due to tech-

nical restrictions. It remains uncertain whether a cost-efficient refueling infrastructure can be 

established for those vehicles and whether the assumed cost reductions for the vehicles can 

be achieved. In the transition period, diesel trucks may be used for driving profiles with very 

low daily mileage, where the vehicle investment dominates the cost calculation. 

Several thousand public megawatt charging points are needed for an almost full conversion of 

the truck fleet in Germany to battery electric vehicles. The different approaches in this thesis 

determine a demand for about 5,000 public fast charging points with 1 MW peak power for an 

almost complete electrification of truck traffic in and through Germany. Up to one third of 

them should be installed by 2030. For comparison, approximately 1,500 fast charging points 

with at least 300 kW were built in Germany in 2022 within one year (BNetzA, 2023b). In the 

long term, the simulation indicates a reduction to less than 4,000 charging points due to in-

creasing ranges. The calculations show that approximately 120 locations are needed to enable 

all trips in or through Germany. For a practice-oriented network in terms of feasible electricity 

grid connections and available parking lots, approximately 200 locations are necessary in the 

medium to long term. This network also meets, on average, typical policy requirements of less 

than 60 km for maximum distance between charging locations. A particularly high density of 
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public fast charging infrastructure should be established along long-distance corridors. Given 

the lead time in building public infrastructure, the construction should be started as soon as 

possible and, if necessary, the market ramp-up of public fast charging infrastructure should be 

supported politically.  

Public megawatt charging can be offered at reasonable costs. The modeling shows that the 

required public fast charging infrastructure can be financed by a levy in the single-digit 

€ct2020/kWh range. In particular the high amount of energy charged at the infrastructure allows 

for low prices. However, if utilization is initially low, the costs are considerably higher. Policy 

measures for market introduction - either with regard to the charging point operator or with 

regard to the price to be paid by the customer - may therefore be appropriate. The absolute 

annual costs for public megawatt charging infrastructure depends on the volume of traffic to 

be served and can therefore fluctuate remarkably. In the medium term, up to one third of a 

billion €2020/a can be expected. For an initial comparison, annual truck toll in Germany in 2019, 

before the COVID-19 pandemic, was 7.5 billion €2020 (BAG, 2021). Wietschel et al. (2017) calcu-

lated 0.7 billion €2015/a for 4,000 km of overhead catenary lines in Germany. However, public 

megawatt charging and overhead lines can only be compared to a limited extent, as they differ 

in the recharged energy as well as the necessary private infrastructure.  

Public megawatt charging is particularly relevant for vehicles with a high daily mileage. How-

ever, the majority of charging takes place at private slow-charging infrastructure. In the long 

term, 30 to 35 TWh of electricity are needed for battery electric trucks (> 12 t GVW). The simu-

lation shows that in the long term, approximately 15% of all vehicles rely on public fast charg-

ing, accounting for up to 30% of the total mileage. Changing driving behavior, for example 

through autonomous driving, could increase the share. However, this is beyond the scope of 

this thesis. In the long term, fleet conversion generates an electricity demand of 30 to 35 TWh 

per year. For comparison, a total electricity production of clearly more than 600 TWh in Ger-

many can be expected after 2030. An increase up to 1,200 TWh annually by 2045 seems plau-

sible (Sensfuß et al., 2022). More than half of the energy for trucks is charged at private slow 

charging infrastructure with up to 44 kW average charging power. This means that almost 

every truck needs a private slow charging point. In this thesis, it is assumed that private slow 

charging is always available. Due to the high influence on the electrification of the truck fleet, 

this assumption should be supported by policy measures and further evaluated scientifically. 

The fleet conversion to battery electric trucks causes additional energy demand in the evening 

and nighttime hours, as well as a midday peak. With almost full fleet conversion, additional 

load of up to 8 GW in peak can be expected. High loads can be expected throughout the even-

ing and nighttime hours due to slow charging with less than 44 kW average power on mainly 

private infrastructure. A significant midday peak is also expected until around 2040, due to 

intermediate charging with high charging power. Due to increasing vehicle ranges, a successive 

reduction of the midday peak is expected. For comparison, Sensfuß et al. (2022) assumed daily 

peak power of up to 250 GW in Germany in 2045. The additional load of battery electric trucks 

should be addressed in grid and power plant planning. 
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6.2 Discussion and further research 

Finally, key aspects of this thesis are discussed in the following with regard to the data used, 

the methodology applied, and the results obtained. Further research needs are identified.  

The modeling of public fast charging infrastructure developed in this thesis is based on a newly 

created, extensive origin-destination dataset of European road freight transport (Speth, Sau-

ter, Plötz, & Signer, 2022). The dataset corresponds well with road traffic counts in Germany, 

especially for long-haul routes. However, the dataset does not contain information on individ-

ual driving profiles or the combination of individual origin-destination paths to vehicle trips. 

Therefore, the market diffusion simulation of battery electric trucks as well as the load profiles 

are based on 2,410 daily driving profiles from a second source (WVI et al., 2012a). Although 

the modeling considers the harmonization of the dataset in terms of total distance travelled 

and energy recharged, discrepancies cannot be avoided when using different dataset in differ-

ent parts of the modeling. In addition, the comparatively small sample of driving profiles leads 

to fluctuations, especially in the load profiles for fast charging. The analysis shows a high 

potential for electrification for almost all types of daily driving profiles after 2030. Neverthe-

less, the short observation period may lead to an overestimation of the electrification poten-

tial. Therefore, the collection of comprehensive, spatially and temporally resolved driving 

profile datasets could strengthen future analyses.  

The data selection also implies that driving behavior, represented by driving profiles, remains 

constant. Future developments, for example autonomous driving, could change driving and 

parking behavior and thus the need for recharging. Future analyses should therefore examine 

the influence of potentially changing driving behavior.  

As shown in subchapter 2.2.1, there are different approaches to model a public fast charging 

infrastructure. The suitability of each approach depends on the available data, the objective, 

and the available computational power. Given the available data, the path-based capacity-

constrained flow refueling location model represents the best option for modeling a minimal 

public fast charging infrastructure. The advantage of modeling local conditions, for example 

the available total power or the available parking locations, is highly relevant. To the best of 

the author’s knowledge, this thesis is the first attempt to apply a capacity-constrained flow 

refueling location model to a dataset of approximately 375,000 origin-destination-paths. The 

resulting mixed-integer optimization problem can be solved with the available computational 

power (196 GB RAM and 8 cores) only with considerable time effort and high solver toleranc-

es. The approach is therefore not suitable for extensive scenario modeling. Instead, this thesis 

uses a second approach that places charging locations at regular intervals and scales them 

based on traffic volumes. Both approaches complement each other and allow an estimation of 

future public fast charging infrastructure needs. Future studies could improve the efficiency of 

the capacity-constrained flow refueling location model, for example by aggregating paths. 
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The integration of the public fast charging infrastructure ramp-up into an agent-based market 

diffusion model for battery electric trucks represents another methodological development in 

this thesis. Due to high cost advantages of battery-electric trucks in the medium term, a plau-

sible cost estimate for public fast charging can also result in a similar market ramp-up for 

battery electric trucks. A limitation of the market ramp-up of the vehicles, taking into account 

the infrastructure ramp-up assumed to be realistic, could hardly be identified. However, the 

integration of the vehicle market diffusion allows for time-resolved infrastructure modeling. 

Future studies could further develop the coupling taking into account extreme scenarios, such 

as an even more limited infrastructure build-up. 

The results show economic advantages of battery electric trucks compared to other alterna-

tives, such as fuel cell electric trucks. Alternatives are mainly used due to technical restrictions 

of battery electric trucks. Further scenario analyses could substantiate this effect in the future. 

As a result, this thesis shows that public fast charging is relevant for full electrification of road 

freight transport and derives plausible public infrastructure requirements. Corresponding 

findings of this thesis are already being taken into account today as part of initial projects on 

public megawatt charging (HoLa, 2021). Yet, the results also show the high relevance of pri-

vate, and probably also public, slow charging and private fast charging. The spatially resolved 

modeling of slow charging infrastructure and its interaction with megawatt charging at the 

same location is beyond the scope of this thesis and left for future research. 

Surveys among logistics companies identify a lack of infrastructure as a barrier to purchasing 

alternative fuel trucks. This thesis shows that public fast charging infrastructure benefits from 

high utilization in terms of economic operation. This might be a chicken-and-egg problem, as it 

has been discussed for passenger cars in the past (Gnann, 2015). The results show that in the 

medium term, 15% of all driving profiles rely on public megawatt charging. As shown in a 

sensitivity analysis, a delayed expansion of public megawatt charging has only limited impact 

on the market diffusion of battery electric trucks. Similar to passenger cars, private charging at 

depots has a high impact on the market diffusion. In contrast to passenger cars, the electrifica-

tion of depots can require increased effort, especially for larger fleets. Future studies should 

focus on depot charging to overcome a potential initial chicken-and-egg problem. 

The results of this thesis are not an optimum regarding the battery design in relation to the 

infrastructure. Rather, the modeling is based on plausible estimates regarding technical pa-

rameters and the modeling of the charging behavior. Load management, for example, could 

unlock further potential for cost reductions. Future research could address in more detail the 

optimal technical design of the battery electric trucks depending on the available infrastruc-

ture as well as the impact of different charging strategies on the load curve. 

All in all, this thesis provides an estimate for a future public fast charging infrastructure for 

battery electric trucks. Due to the early market phase, the results are still subject to high 

uncertainties. Future studies should improve the estimation of public fast charging demands of 

heavy-duty battery electric vehicles and include private charging infrastructure in more detail. 
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A Appendices  

A.1 Distribution of daily kilometers traveled in the KiD 

sample 

The KiD dataset contains 2,810 vehicle datasets for vehicles with a GVW > 12 t. 1,635 profiles 

stem from rigid trucks, 1,175 from tractor-trailers. However, incomplete datasets with regard 

to the individual trip information must be sorted out, leaving 2,410 datasets for further analy-

sis with 1,350 rigids and 1,060 tractor-trailers. Figure A-1 shows the distribution of daily mile-

age in the sample.  

 

Figure A-1: Distribution of daily km traveled of N = 2,410 HDV in the KiD sample (WVI et al., 2012a). 
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A.2 Costs for CCS charging infrastructure  

 

Figure A-2: Costs of charging locations in dependence of the number of CCS charging points. Shaded area for 2022 

shows the difference between low and high grid connection costs. Own illustration. 

 

Figure A-3: Annual costs of charging locations in dependence of the number of CCS charging points.  Shaded area for 

2022 shows the difference between low and high grid connection costs. Own illustration.  
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A.3 Techno-economic parameters 

This appendix presents the parameters, used for the ALADIN - Alternative Automobiles Diffu-

sion and INfrastructure - model for HDV with a GVW of more than 12 t. Unless shown differ-

ently in 3.5 or directly in this appendix, this is the most current model state as used in Plötz, 

Link, et al. (2023) or Gnann et al. (2023). The parameters used in Plötz, Link, et al. (2023) were 

developed in consultation with the European Automobile Manufacturers’ Association (ACEA), 

based on scientific publications. A brief explanation of the assumed parameters can be found 

in the footnotes of the tables. Particularly relevant parameters are discussed in chapter 3.5.  

Table A-1: Framework parameters for market diffusion modeling for tractor-trailers (TT) and Rigids (R) with a GVW > 
12 t. 

Parameter Abbreviation Unit 2020 2030 2050 

Diesel pricea 𝑐𝑓𝑢𝑒𝑙𝐷𝑇
𝑡  €2020/kWh 0.078 0.153 0.281 

Gas pricea  𝑐𝑓𝑢𝑒𝑙𝐺𝑇
𝑡  €2020/kWh 0.071 0.116 0.200 

Electricity pricea  𝑐𝑓𝑢𝑒𝑙𝐵𝐸𝑇
𝑡  €2020/kWh 0.130 0.118 0.112 

Hydrogen pricea  𝑐𝑓𝑢𝑒𝑙𝐹𝐶𝐸𝑇
𝑡  €2020/kWh 0.240 0.195 0.153 

Registrations (TT)a 𝑟𝑒𝑔𝑇𝑇
𝑡  thousands 38.8 40.2 37.5 

Registrations (R)a 𝑟𝑒𝑔𝑅
𝑡  thousands 26.2 27.5 27.6 

Service life (TT)a 𝑙𝑖𝑓𝑒𝑇𝑇
𝑡  a 6 6 6 

Service life (R)a 𝑙𝑖𝑓𝑒𝑅
𝑡  a 6 6 6 

Interest rateb  𝑖(𝑡) % 9.5 9.5 9.5 

Working daysa  𝑤𝑑(𝑡) d/a 250 250 250 

Vehicle availability (TT, R)c 𝑣𝑒ℎ𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒𝐷𝑇,𝑎𝑙𝑙
𝑡  % 100 100 100 

Vehicle availability (TT, R)c 𝑣𝑒ℎ𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒𝐺𝑇,𝑎𝑙𝑙
𝑡  % 16 16 16 

Vehicle availability (TT, R)c 𝑣𝑒ℎ𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒𝐵𝐸𝑇,𝑎𝑙𝑙
𝑡  % 1 60 100 

Vehicle availability (TT, R)c 𝑣𝑒ℎ𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒𝐹𝐶𝐸𝑇,𝑎𝑙𝑙
𝑡  % 0 17 100 

a Based on Gnann et al. (2023) and BDEW (2022). 
b EC (2018). 
c Based on Gnann et al. (2023) and NOW (2023). DT serve as fallback option and are always available. BET and FCET are fitted 

according to NOW (2023). GT are uncertain, since various manufacturers are currently already offering GT. However, NOW (2023) 

shows no relevant market share in the future. Therefore, the 2020 availability from Gnann et al. (2023) is assumed to remain 

constant.  

 

Table A-2: Technical parameters for market diffusion modeling for tractor-trailers (TT) and Rigids (R) with a GVW > 
12 t 

Parameter Abbreviation Unit 2020 2030 2050 

DT consumption (TT)a 𝑐𝑜𝑛𝑠𝐷𝑇,𝑇𝑇
𝑡  kWh/km 3.14 2.77 2.43 

DT consumption (R)a 𝑐𝑜𝑛𝑠𝐷𝑇,𝑅
𝑡  kWh/km 2.82 2.49 2.18 
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GT consumption (TT)b 𝑐𝑜𝑛𝑠𝐺𝑇,𝑇𝑇
𝑡  kWh/km 3.54 2.77 2.74 

GT consumption (R)b 𝑐𝑜𝑛𝑠𝐺𝑇,𝑅
𝑡  kWh/km 3.19 2.49 2.47 

BET consumption (TT)a 𝑐𝑜𝑛𝑠𝐵𝐸𝑇,𝑇𝑇
𝑡  kWh/km 1.38 1.10 1.00 

BET consumption (R)a 𝑐𝑜𝑛𝑠𝐵𝐸𝑇,𝑅
𝑡  kWh/km 1.24 0.99 0.90 

FCET consumption (TT)a 𝑐𝑜𝑛𝑠𝐹𝐶𝐸𝑇,𝑇𝑇
𝑡  kWh/km 2.80 2.27 1.95 

FCET consumption (R)a 𝑐𝑜𝑛𝑠𝐹𝐶𝐸𝑇,𝑅
𝑡  kWh/km 2.52 2.04 1.76 

Rated power (TT)c 𝑝𝑎𝑙𝑙,𝑇𝑇
𝑡  kW 350 350 350 

Rated power (R)c 𝑝𝑎𝑙𝑙,𝑅
𝑡  kW 280 280 280 

Rated power fuel cell (TT)d 𝑝𝐹𝐶𝐹𝐶𝐸𝑇,𝑇𝑇
𝑡  kW 250 250 250 

Rated power fuel cell (R)d 𝑝𝐹𝐶𝐹𝐶𝐸𝑇,𝑅
𝑡  kW 200 200 200 

Gas tank capacity (TT)e 𝑡𝑎𝑛𝑘𝐺𝑇,𝑇𝑇
𝑡  kWh 4,500 4,500 4,500 

Gas tank capacity (R)e 𝑡𝑎𝑛𝑘𝐺𝑇,𝑅
𝑡  kWh 3,000 3,000 3,000 

Battery capacity FCET (TT)d   𝑏𝑎𝑡𝐹𝐶𝐸𝑇,𝑇𝑇
𝑡  kWh 70 70 70 

Battery capacity FCET (R)d   𝑏𝑎𝑡𝐹𝐶𝐸𝑇,𝑅
𝑡  kWh 70 70 70 

Hydrogen tank capacity (TT)f 𝑡𝑎𝑛𝑘𝐹𝐶𝐸𝑇,𝑇𝑇
𝑡  kWh 2,666 2,666 2,666 

Hydrogen tank capacity (R)f 𝑡𝑎𝑛𝑘𝐹𝐶𝐸𝑇,𝑅
𝑡  kWh 2,000 2,000 2,000 

BET minimum range (TT, R)g 𝑏𝑎𝑡𝑚𝑖𝑛𝐵𝐸𝑇,𝑎𝑙𝑙
𝑡  km 200 200 200 

BET maximum range (TT, R)h 𝑏𝑎𝑡𝑚𝑎𝑥𝐵𝐸𝑇,𝑎𝑙𝑙
𝑡  km 250 450 750 

BET charging range (TT, R)i 𝑐ℎ𝑎𝑟𝑔𝑒𝑟𝑎𝑛𝑔𝑒 𝐵𝐸𝑇,𝑎𝑙𝑙

𝑡  km 188 340 563 

BET battery pack size (TT, R)g 𝑏𝑎𝑡𝑝𝑎𝑐𝑘𝐵𝐸𝑇,𝑎𝑙𝑙

𝑡  kWh 100 100 100 

BET usable battery (TT, R)j 𝑏𝑎𝑡𝑢𝑠𝑎𝑏𝑙𝑒𝐵𝐸𝑇,𝑎𝑙𝑙
𝑡  % 70 75 85 

Average charging power (TT)k 𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔𝑚𝑎𝑥𝐵𝐸𝑇,𝑇𝑇
𝑡  kW 250 998 1,500 

Average charging power (R)k 𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔𝑚𝑎𝑥𝐵𝐸𝑇,𝑅
𝑡  kW 250 898 1.350 

a Based on Speth, Kappler, et al. (2022), Basma and Rodríguez (2022), Ruf et al. (2020), Link et al. (2021), Hülsmann et al. (2014), 

Dünnebeil et al. (2015), Tschöke and Marohn (2019), and Wietschel et al. (2017). Merged in Plötz, Link, et al. (2023) in consultation 

with the European Automobile Manufacturers’ Association (ACEA). Values for Rigids are 90% of Tractor-Trailers.  
b According to Mottschall et al. (2020), high pressure direct injection engines for GT are on average 4% less efficient than diesel 

engines. Spark-ignition engines for GT are 22% less efficient than diesel engines. Therefore 13% less efficiency in total is assumed.  
c Median Vecto EEA Data for class 4 and class 9 vehicles for Tractor-Trailers and median value for class 5 vehicles for Rigids, 

according to EEA (2021). 
d Based on Mayr et al. (2021). 
e Based on Plötz, Link, et al. (2023). 
f Based on Basma and Rodríguez (2022). 
g Own assumptions, based on Volvo (2023a), Volvo (2023b) and Mercedes Benz (2023). 
h Current values based on Volvo (2023b) and Mercedes Benz (2023); 2030 value allows for 4.5 hours of driving; long-term perspec-

tive based on Plötz, Link, et al. (2023). 
i Own assumption. The ideal relationship between infrastructure and battery size is beyond the research in this thesis. Initial 

research suggests that larger batteries can support the market-diffusion more than additional infrastructure (Gnann, Speth, Link, 

& Plötz, 2022). Therefore, it is assumed that the 𝑐ℎ𝑎𝑟𝑔𝑒_𝑟𝑎𝑛𝑔𝑒𝐵𝐸𝑇,𝑎𝑙𝑙
𝑡  - thus the range that must be exceeded with the next trip of 

a tour in order to trigger a charging event - is 75% of the maximum range.  
j Plötz, Link, et al. (2023), based on Mauler et al. (2022). Conservative scenario, since - in contrast to Plötz, Link, et al. (2023) - no 

additional battery reserve is considered.  
k Current values are own assumptions, based on Volvo (2023b) and Mercedes Benz (2023). MCS charging with more than 350 kW 

is assumed from 2025 onwards. From 2030 onwards, the charging power is defined so that 𝑏𝑎𝑡_𝑚𝑎𝑥𝐵𝐸𝑇,𝑎𝑙𝑙
𝑡  can be recharged in 30 

minutes. 
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Table A-3: Economic parameters for market diffusion modeling for tractor-trailers (TT) and Rigids (R) with a GVW > 
12 t 

Parameter Abbreviation Unit 2020 2030 2050 

Invest diesel engine (TT, R)a 𝐼𝑒𝑛𝑔𝑖𝑛𝑒𝐼𝐶𝐸𝑇,𝑎𝑙𝑙

𝑡  €2020/kW 72 74 77 

Invest aftertreatment (TT, R)b  𝐼𝑎𝑓𝑡𝑒𝑟𝑡𝐼𝐶𝐸𝑇,𝑎𝑙𝑙

𝑡  €2020/kW 19.8 21.8 21.8 

Invest gas engine (TT, R)c 𝐼𝑒𝑛𝑔𝑖𝑛𝑒𝐺𝑇,𝑎𝑙𝑙

𝑡  €2020/kW 67 69 72 

Invest aftertreatment (TT, R)b 𝐼𝑎𝑓𝑡𝑒𝑟𝑡𝐺𝑇,𝑎𝑙𝑙

𝑡  €2020/kW 14.3 15.7 15.7 

Invest electric engine (TT, R)a 𝐼𝑒𝑛𝑔𝑖𝑛𝑒𝐵𝐸𝑇;𝐹𝐶𝐸𝑇,𝑎𝑙𝑙

𝑡  €2020/kW 67 50 37 

Invest fuel cell (TT, R)d 𝐼𝐹𝐶𝐹𝐶𝐸𝑇,𝑎𝑙𝑙
𝑡  €2020/kW 200 147 80 

Vehicle body (TT)e 𝐼𝑏𝑜𝑑𝑦𝑎𝑙𝑙,𝑇𝑇

𝑡  k€2020 90 96 103 

Vehicle body (R)e 𝐼𝑏𝑜𝑑𝑦𝑎𝑙𝑙,𝑅

𝑡  k€2020 60 66 73 

Gas tank (TT, R)f 𝐼𝑡𝑎𝑛𝑘𝐺𝑇,𝑎𝑙𝑙
𝑡  €2020/kWh 5.76 5.76 5.76 

Battery costs (TT, R)g 𝐼𝑏𝑎𝑡𝐵𝐸𝑇;𝐹𝐶𝐸𝑇,𝑎𝑙𝑙
𝑡  €2020/kWh 156 120 80 

Hydrogen tank (TT, R)h 𝐼𝑡𝑎𝑛𝑘𝐹𝐶𝐸𝑇,𝑎𝑙𝑙
𝑡  €2020/kWh 9.75 7.58 4.85 

Markup components (TT, R)i 𝑚𝑎𝑟𝑘𝑢𝑝𝐷𝑇,𝑎𝑙𝑙
𝑡  % 27 27 27 

Markup components (TT, R)i 𝑚𝑎𝑟𝑘𝑢𝑝𝐺𝑇;𝐹𝐶𝐸𝑇;𝐵𝐸𝑇,𝑎𝑙𝑙
𝑡  % 43 32 27 

Invest reduction (TT,R)j 𝐼𝑟𝑒𝑑𝐹𝐶𝐸𝑇;𝐵𝐸𝑇,𝑎𝑙𝑙
𝑡  % 0 80 0 

Insurancek  𝑖𝑛𝑠𝑢𝑟𝑎𝑛𝑐𝑒𝑎𝑙𝑙,𝑎𝑙𝑙
𝑡  % 5.8 5.8 5.8 

Residual valuel  𝑟𝑒𝑠𝑣𝑎𝑙𝑢𝑒𝑎𝑙𝑙,𝑎𝑙𝑙
𝑡  % 25 25 25 

Operation & Maintenancem 𝑂&𝑀𝐷𝑇,𝑎𝑙𝑙
𝑡  €2020/km 0.19 0.19 0.19 

Operation & Maintenancem 𝑂&𝑀𝐺𝑇,𝑎𝑙𝑙
𝑡  €2020/km 0.18 0.18 0.18 

Operation & Maintenancem 𝑂&𝑀𝐵𝐸𝑇,𝑎𝑙𝑙
𝑡  €2020/km 0.13 0.13 0.13 

Operation & Maintenancem 𝑂&𝑀𝐹𝐶𝐸𝑇,𝑎𝑙𝑙
𝑡  €2020/km 0.19 0.19 0.16 

Vehicle taxn 𝑣𝑒ℎ𝑡𝑎𝑥𝑎𝑙𝑙,𝑎𝑙𝑙
𝑡  €2020/a 929 929 929 

Tollo  𝑡𝑜𝑙𝑙𝐷𝑇,𝑎𝑙𝑙
𝑡  €2020/km 0.17 0.17 0.17 

Tollo 𝑡𝑜𝑙𝑙𝐺𝑇,𝑎𝑙𝑙
𝑡  €2020/km 0 0.17 0.17 

Tollo 𝑡𝑜𝑙𝑙𝐵𝐸𝑇,𝑎𝑙𝑙
𝑡  €2020/km 0 0.04 0.16 

Tollo 𝑡𝑜𝑙𝑙𝐹𝐶𝐸𝑇,𝑎𝑙𝑙
𝑡  €2020/km 0 0.04 0.16 

a Based on Speth, Kappler, et al. (2022). Electric engine includes power electronic.  
b Based on Pierre-Louis Ragon and Rodríguez (2021). Scaling for GT based on Link et al. (2021). 
c Average, based on Noll et al. (2022).  
d Based on Speth, Kappler, et al. (2022) and Sharpe and Basma (2022). 
e Based on Speth, Kappler, et al. (2022) and Link et al. (2021), including mark-up. 
f Based on Noll et al. (2022). 
g Based on Speth, Kappler, et al. (2022) and Sharpe and Basma (2022). 
h Based on Ahluwalia et al. (2022). 33% reduction is assumed, since the model assumes liquefied hydrogen instead of compressed 

hydrogen.  
i Own assumptions, based on Basma et al. (2021) and in line with Plötz, Link, et al. (2023). 
j Currently, BET and FCET in Germany receive a purchase price reduction of 80% of the additional investment, compared to DT 

(BaLM, 2023). It is assumed that this funding is applied from 2022 to 2030.  
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k Annual insurance costs are assumed as share of the investment, according to LastAutoOmnibus (2018).  
l Plötz, Link, et al. (2023), based on Kleiner and Friedrich (2017). There is a high uncertainty regarding the residual values of BET 

and FCET, due to the batteries. However, in consultation with representatives from the automotive industry, Plötz, Link, et al. 

(2023) assumed similar relative residual values as for DT.  
m Based on Speth, Kappler, et al. (2022), Basma et al. (2021), LastAutoOmnibus (2018), Wietschel et al. (2017), Jöhrens et al. 

(2018), and Marcinkoski et al. (2019). 
n Basma et al. (2021) and BMF (2021). 
o Own assumptions, based on Toll Collect (2023). GT pays full toll from 2024 onwards. BET and FCET are exempted until 2025 and 

receive a 75% toll reduction until 2030. After 2030, they pay full toll, reduced by the air pollution factor. The introduction of a CO2-

dependent toll, as suggested by Deutsche Bundesregierung (2023), is not implemented. Up to now, the CO2-dependent toll has 

been discussed with a corresponding reduction of the CO2-dependent part of the fuel costs, to avoid double taxation (Umwelt-

bundesamt, 2021). Therefore, the implementation is uncertain.  

 

Table A-4: Infrastructure parameters for market diffusion modeling for Germany. 

Parameter Abbreviation Unit 2020 2030 2050 

Max. public fast charging locationsa 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠𝑚𝑎𝑥
𝑡   0 160  

Min. public fast charging locationsa 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠𝑚𝑖𝑛
𝑡   0 160 220 

Max. plugs per locationb 𝑝𝑙𝑢𝑔𝑚𝑎𝑥
𝑡   12 30 45 

Infrastructure costs slow chargingc 𝑐𝑖𝑛𝑓𝑟𝑎𝑠𝑙𝑜𝑤
𝑡  €2020/kWh 0.04 0.03 0.03 

Infrastructure costs fast chargingc 𝑐𝑖𝑛𝑓𝑟𝑎𝑓𝑎𝑠𝑡
𝑡  €2020/kWh 0.26 0.05 0.05 

Infrastructure costs grid connectionc 𝑐𝑖𝑛𝑓𝑟𝑎𝑓𝑎𝑠𝑡,𝑔𝑟𝑖𝑑
𝑡  €2020/kWh 0.05 0.05 0.05 

Public charging markupd  𝑐𝑖𝑛𝑓𝑟𝑎𝑚𝑎𝑟𝑘𝑢𝑝
𝑡  % 10 10 10 

Availability private slow charginge 𝑎𝑖𝑛𝑓𝑟𝑎𝑝𝑟𝑖𝑣𝑎𝑡𝑒,𝑠𝑙𝑜𝑤
𝑡  % 100 100 100 

Availability public slow charginge 𝑎𝑖𝑛𝑓𝑟𝑎𝑝𝑢𝑏𝑙𝑖𝑐,𝑠𝑙𝑜𝑤
𝑡  % 100 100 100 

Availability private fast charginge 𝑎𝑖𝑛𝑓𝑟𝑎𝑝𝑟𝑖𝑣𝑎𝑡𝑒,𝑓𝑎𝑠𝑡
𝑡  % 100 100 100 

Availability public fast charginge 𝑎𝑖𝑛𝑓𝑟𝑎𝑝𝑢𝑏𝑙𝑖𝑐,𝑓𝑎𝑠𝑡
𝑡  % 100 100 100 

a The number of public fast charging locations for 2025 and 2030 follows the suggestions in EC (2021). FGSV (2011) foresees a 

maximum average distance between service areas of 50 to 60 km. This value is ensured in 2035.  
b The maximum number of fast charging plugs per location is based on Kippelt et al. (2022). Taking into account the assumptions in 

chapter 3.3, it is assumed that from 2020 to 2025, a maximum of 8 MVA - 12 plugs - can be installed. From 2025 to 2030, the 

maximum increases to 20 MV - 30 plugs. In the long term, the number of plugs is limited to 30 MVA - 45 plugs - per location, to 

avoid a completely new high-voltage substation.  
c Infrastructure costs are based on Basma et al. (2021) and Kippelt et al. (2022). For fast charging infrastructure, the values are 

endogenously updated in the infrastructure analysis module of ALADIN.  
d Markup based on Schroeder and Traber (2012). 
e Initially, infrastructure is assumed to be no restriction. MCS infrastructure, as part of the fast charging infrastructure, is available 

from 2025 onwards. For public fast charging infrastructure, the values are endogenously updated in the infrastructure analysis 

module of ALADIN.  
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A.4 Maximum average arrival rate according to queueing 

theory 

Figure A-4 shows the maximum average arrival rate at a charging location for a given number 

of charging points, as defined in subchapter 4.1.1.2. An average waiting time 𝑤𝑞 of 5 minutes 

is assumed. The average charging time 𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔𝑞 is defined as 30 min (green) and 60 min 

(blue). It can be seen that the maximum average arrival rate converges to the theoretical 

optimum without considering the queueing theory, as the number of charging points increas-

es.  

 

Figure A-4: Maximum average arrival rate at a charging location for a given number of charging points.  

 

Figure A-5: Maximum average arrival rate at a charging location for a given number of charging points for large 

locations. 
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A.5 Modeled number of public fast charging locations in 

Europe 

Table A-5 shows the calculated number of charging location and charging points per country 

for the scenarios Startup2025, Wide2030, Dense2030, and Dense2045. Additionally, the num-

ber of charging locations in the optimized network in the scenario Optimization2045 is given.  

Table A-5: Number of charging locations (loc) and charging points (char) per country in the scenarios Startup2025, 
Wide2030, Dense2030, Dense2045, and Optimization2045. 

Country Startup2025 Wide2030 Dense2030 Dense2045 Optimization2045 

 loc char loc char loc char loc char loc 

AT 24 62 24 133 44 161 44 686 8 

BE 11 41 11 96 26 132 26 660 4 

BG 20 23 20 41 39 63 39 155 10 

CH 18 46 18 92 32 101 32 416 5 

CZ 22 57 22 123 38 126 38 537 7 

DE 101 345 101 809 190 986 190 4,771 42 

DK 13 32 13 64 21 73 21 316 5 

EE 6 7 6 12 10 14 10 38 3 

ES 54 113 54 204 106 281 106 1,065 33 

FI 41 43 41 61 78 92 78 176 16 

FR 121 334 121 699 218 850 218 3,741 39 

GR 40 52 40 76 69 103 69 255 10 

HR 19 33 19 53 31 62 31 199 8 

HU 20 41 20 73 39 101 39 378 7 

IE 8 14 8 21 15 32 15 121 4 

IT 82 184 82 378 149 464 149 1,914 29 

LT 11 18 11 28 20 40 20 107 3 

LU 2 7 2 16 4 17 4 81 1 

LV 10 14 10 28 18 31 18 87 3 

NL 13 40 13 90 22 95 22 430 4 

NO 47 50 47 56 88 99 88 185 17 

PL 44 166 44 396 86 451 86 2,192 18 

PT 14 18 14 29 29 57 29 126 6 

RO 50 62 50 92 92 135 92 325 15 

SE 61 103 61 181 124 296 124 955 19 

SI 6 16 6 33 10 36 10 138 1 

SK 14 34 14 68 25 72 25 295 5 

UK 45 135 45 298 78 320 78 1,455 17 
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A.6 Load profiles for public fast charging 

Figure A-6 and Figure A-7 show the daily public fast charging behavior and the corresponding 

load curves for the simulated market diffusion in this thesis. Please note that the curves are 

subject to considerable fluctuations due to the sample size. However, general trends, for 

example the clear midday peak in the first years as well as the shift to the night with increasing 

vehicle range, as well as the magnitude of the energy demand can be estimated. Charging 

events with less than 44 kW average charging power are not part of the presented figures.  

   

   

Figure A-6: Public fast charging behavior of the simulated BET fleet from 2025 to 2050. The indicated charging 

power refers to the average power of the charging processes. All data refers to vehicles with a GVW of 

more than 12 t. Moving averages with a one hour span have been applied to all lines to reduce finite 

sample noise. Please note the different y-axes. 
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Figure A-7: Daily pubic fast charging load curve of the BET fleet from 2025 to 2050. The indicated charging power 

refers to the average power of the charging process. All data refers to vehicles with a GVW of more than 

12 t. Moving averages with a one hour span have been applied to all lines to reduce finite sample noise. 

Please note the different y-axes. 

A.7 Modeled public fast charging infrastructure for the 

simulated BET diffusion 

The following maps show the required public fast charging infrastructure in Germany for the 

market diffusion of BET modeled in this thesis. The infrastructure is shown in 5-year-steps 

from 2025 to 2050. The size and the color of the plotted points in the maps give an overview of 

the size of the individual charging locations. A distinction is made between the actually in-

stalled size and the needed location size. The difference results from charging points that were 

installed in previous years but are no longer needed due to increasing vehicle ranges. Charging 

points are assumed to be established for 15 years. Additionally, the installed number of charg-

ing points for each location is mentioned on the maps.  
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