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1 Introduction

The gradient-flow formalism (GFF) [1–3] extends the fields of QCD in terms of the flow
time t and is meanwhile an established tool in lattice gauge theory calculations. Its main
application up to now has been in the scale setting procedure, required to determine the lattice
spacing in physical units [3, 4], as a scheme for defining the strong coupling constant [3, 5–
10], or simply as a smearing mechanism [1, 3]. However, it has been shown that the
GFF has a much larger potential. One of the key elements for this is the short-flow-time
expansion (SFTX), where composite operators of flowed fields are expressed in terms of a
regular operator product expansion (OPE). By inversion of a complete basis of operators,
this lets one express an effective Lagrangian in regular QCD in terms of flowed operators
and corresponding flowed Wilson coefficients [11–14]. Matrix elements of the former do not
require renormalization [11, 15, 16] and are thus ideally suited to be computed on the lattice.
The flowed Wilson coefficients, on the other hand, can be obtained from the regular MS
results via suitable conversion factors, which can be calculated perturbatively. Obviously,
the perturbative order of these conversion factors has to match the one of the regular MS
Wilson coefficients. This is why, in many cases, next-to-leading order (NLO) results are
not sufficient, but higher orders are required.

The feasibility of the above approach was demonstrated via a flowed formulation of
the energy-momentum tensor in QCD [12, 13, 17] which was subsequently used to extract
thermodynamical observables from the lattice [18–27]. In this case, the coefficients of the
regular operators are rational numbers. It was shown that the next-to-next-to-leading
order (NNLO) corrections to the matching matrix, which determines the conversion to
flowed operators, lead to a significant improvement in the extrapolation to the physical
limit at t = 0 [23].
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As is well known from regular perturbation theory, every additional order leads to an
enormous increase in complexity. Fortunately, however, many of the tools and techniques
from regular perturbation theory can be adapted to higher orders in the GFF. An outline of
this strategy has been described in ref. [28], where a number of three-loop quantities were
evaluated at finite flow time. Using this approach allowed to extend the NLO results for the
effective weak |∆F | = 2 Hamiltonian [29] or the magnetic dipole moment operator [30] to
the NNLO in ref. [31] and ref. [32], respectively. Similarly, the matching matrix between
flowed and regular operators and Wilson coefficients was obtained to the same order for
the hadronic vacuum polarization [33].

One of the main benefits of the GFF is the exponential suppression of high-momentum
modes. As already mentioned above, this implies that composite operators of flowed fields do
not require renormalization. Matrix elements of operators which only involve flowed gluons
are even finite after renormalization of the regular QCD parameters (strong coupling and
masses). Flowed quark fields, on the other hand, still require multiplicative renormalization,
typically denoted by Zχ, see section 2.1. In order to match perturbative and lattice results,
one needs to define a suitable renormalization scheme, most conveniently via a Green’s
function which involves two flowed quark fields. One option is the so-called ringed scheme,
originally proposed in ref. [13], which fixes Zχ via the tree-level vacuum expectation value of
the quark kinetic operator. The conversion factor between the MS and the ringed scheme
is known through NNLO [28].

However, other options for the scheme of Zχ may be more convenient. For example,
one may fix it via the SFTX of some quark bilinear operator, usually called current. A
preliminary lattice study of this strategy was recently presented in ref. [34], where the flowed
four-quark operator was normalized to the flowed axialvector current. Which current is most
suitable may depend on the specific calculation or observable under consideration. It will
therefore be useful to have all the associated results at disposal.

Moreover, the simplicity of the quark currents could also be used for systematic studies
of the SFTX. First, one can compare perturbative and non-perturbative determinations
of the matching coefficients with each other. Some preliminary studies in this direction
have already been carried out in ref. [35] for the CP-violating quark chromoelectric dipole
moment operator and for the currents in ref. [36]. Secondly, one can compare results for the
renormalized currents obtained through the SFTX with results obtained in more conventional
non-perturbative schemes. This may allow one to test non-perturbatively the accuracy of
the SFTX and assess the systematics associated with the t → 0 limit. A first study of
higher-power terms has been done in the context of the energy-momentum tensor in ref. [26].
Besides these indirect applications, the SFTX of the currents directly contribute to a number
of observables in the GFF such as the chiral condensate [19] or semileptonic contributions
to the neutron electric dipole moment [37].

Through NLO, the SFTX of the currents has been calculated already several years
ago [38, 39].1 In order to be consistent with the uncertainties expected from the associated
lattice calculations, one can expect that higher orders of the matching coefficients will be
relevant. In this paper, we will therefore derive the corresponding NNLO results.

1While the scalar, pseudoscalar, vector, and axialvector currents are renormalized and discussed in more
detail, for the tensor current only the bare result is provided in ref. [39].
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The remainder of this paper is structured as follows: in section 2, we discuss the theoretical
basis of our calculation, starting with the GFF in section 2.1, the definition of the regular
and flowed currents in section 2.2, and the methods to obtain the SFTX in section 2.3. Our
results for the matching coefficients are presented in section 3. The latter also allow us to
evaluate the so-called flowed anomalous dimensions, describing the logarithmic flow-time
evolution of the currents. This is presented in section 4. Section 5 contains our conclusions.

2 Theoretical framework

2.1 The QCD gradient flow

In this paper, we work in D-dimensional Euclidean space-time with D = 4− 2ϵ. The GFF
continues the gluon and quark fields Aµ and ψ of regular2 QCD to fields Bµ(t) and χ(t)
through the initial conditions

Bµ(t = 0) = Aµ , χ(t = 0) = ψ , (2.1)

and the flow equations [1, 3, 15]

∂tBµ = DνGνµ + κDµ∂νBν ,

∂tχ = ∆χ− κ gB∂µBµχ ,

∂tχ̄ = χ̄
←−
∆ + κ gBχ̄∂µBµ ,

(2.2)

where the “flow time” t is a parameter of mass dimension [t] = −2, gB is the bare strong
coupling, and κ is a gauge parameter which drops out of physical observables. In our
calculations, we set κ = 1.

The flowed field-strength tensor is defined as

Gµν = ∂µBν − ∂νBµ + gB[Bµ, Bν ] , (2.3)

the flowed covariant derivative in the adjoint representation is given by

Dµ = ∂µ + gB[Bµ, · ] , (2.4)

and

∆ = DF
µDF

µ ,
←−
∆ =←−DF

µ

←−
DF

µ , (2.5)

with the flowed covariant derivative in the fundamental representation,

DF
µ = ∂µ + gBBµ ,

←−
DF

µ =
←−
∂ µ − gBBµ . (2.6)

The flow equations can be solved perturbatively, leading to generalized QCD Feynman
rules which involve exponential factors for the quark and gluon propagators, plus additional
“flow-lines” representing the evolution of the fields in the flow time. The latter couple to

2We use the terms “flowed” and “regular” QCD to distinguish quantities defined at t > 0 from those
defined at t = 0. The dependence on the D-dimensional space-time variable x is suppressed. µ, ν, ρ, . . . denote
D-dimensional Lorentz indices, while color and spinor indices are suppressed.
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the quarks and gluons via “flowed vertices”. The general formalism has been worked out in
refs. [11, 15], and more details can be found in ref. [28].

Since the flow time acts as regulator for ultraviolet divergences, the GFF improves the
renormalization properties. After renormalization of the fundamental parameters of QCD,
the flowed gluon field Bµ(t) is finite and does not require field renormalization [3, 11, 16]. The
flowed quark fields χ(t), on the other hand, require multiplicative field renormalization [15].
Throughout this paper, we will adopt the ringed scheme [13], where

χ̊ = Z̊1/2
χ χ , Z̊χ = ζχ Z

MS
χ . (2.7)

Both the MS expression ZMS
χ as well as the finite conversion factor to the ringed scheme, ζχ,

are available through NNLO [13, 15, 17, 28]. Explicit expressions are collected in appendix A.
Parameter and field renormalization are sufficient to render physical matrix elements of

composite operators finite [11, 15, 16]. Thus, composite flowed operators do not mix under
renormalization, which enormously facilitates the lattice evaluation of their matrix elements
compared to those of regular operators, in particular if the latter mix with operators of
different mass dimension. Connection of the flowed matrix elements to physics at t = 0 can
be made through a perturbative calculation, as will be explained in more detail in section 2.3.

2.2 Quark currents

In this paper, we consider nf = nl + nh quark flavors, where nl is the number of massless
quarks, while the remaining nh quarks have identical mass m. The bare non-diagonal and
diagonal currents are defined as

jB
pq = ψ̄pΓψq , jB

p = ψ̄pΓψp , (2.8)

respectively, where p, q ∈ {1, . . . , nf} are flavor indices3 with p ̸= q. We furthermore define
the bare and renormalized singlet and non-singlet currents as

ja,ns
B =

∑
p ̸=q

ha
pq j

B
pq +

∑
p

ha
pp j

B
p , js

B =
∑

p

jB
p ,

ja,ns = Znsja,ns
B , js = Zsjs

B − 4Z−3
m Z1m

3
B1 ,

(2.9)

where ha is a traceless flavor generator, and mB is the bare quark mass which is related
to the MS renormalized mass m through

mB = Zmm, (2.10)

with Zm ≡ ZMS
m given in eqs. (A.6) and (A.12). Zs, Zns, and Z1 are renormalization constants

which will be specified below. They depend on the Dirac structure Γ ∈ {ΓS,Γµ
V,Γ

µν
T ,Γµ

A,ΓP}
of the current, where

ΓS = 1 , Γµ
V = γµ , Γµν

T = σµν ≡ 1
2 [γµ, γν ] ,

Γµ
A = γµγ5 , ΓP = γ5 ,

(2.11)

3Throughout the paper, sums over these flavor indices will be explicitly indicated by the
∑

symbol.
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i.e. we consider the “natural-parity” scalar, vector, and tensor currents, and the “pseudo-
parity” axialvector and pseudoscalar currents.4 The renormalization constant Z1 allows for
the possibility of the currents to mix with the unit operator.

2.3 Short-flow-time expansion

Returning to the non-diagonal and diagonal notation, we define the flowed currents as

j̃pq(t) = Z̊χ χ̄p(t)Γχq(t) , j̃p(t) = Z̊χ χ̄p(t)Γχp(t) . (2.12)

The flowed singlet and non-singlet currents are defined by replacing the diagonal and non-
diagonal currents by their flowed versions.

The SFTX [11] for the singlet and non-singlet current can be written as

j̃a,ns(t) = ζns
B (t) ja,ns

B +O(t) ≡ ζns(t) ja,ns +O(t) ,

j̃s(t) = nhmB

[1
t
ζ

(1)
B (t) +m2

B ζ
(3)
B (t)

]
1+ ζs

B(t) js
B +O(t)

≡ nhm

[1
t
ζ(1)(t) +m2 ζ(3)(t)

]
1+ ζs(t) js +O(t) ,

(2.13)

where we have taken into account that we have nh massive quarks of equal mass m. The
terms of order t will be neglected in this paper.

The dependence of the matching coefficients ζ(t) on the flow time t is logarithmic. They
are most conveniently computed by defining projectors onto the regular-QCD (i.e. not flowed)
diagonal and non-diagonal currents. In our case, we choose

P (1)[O] = t
∂

∂mB
⟨0|O|0⟩

∣∣∣∣
mB=0

, P (3)[O] = 1
3!

∂3

∂m3
B
⟨0|O|0⟩

∣∣∣∣
mB=0

, (2.14)

and
Ppq[O] = N−1Tr(ΓMpq(q1, q2))

∣∣∣∣
q1=q2=m=0

, (2.15)

where Mpq is a two-quark Green’s function defined as∫
d4x⟨ψp(q1)|O|ψq(q2)⟩ = ūp(q1)Mpq(q1, q2)uq(q2) , (2.16)

the trace is over spinor and color indices, and

N = Tr (ΓΓ) . (2.17)

The nullification of the masses and external momenta in eqs. (2.14) and (2.15) is understood
to be taken before any loop integral is evaluated. This means that only tree-level diagrams
contribute when the projectors are applied to the r.h.s. of eq. (2.13), because all higher-order
diagrams are scaleless and thus vanish in dimensional regularization.

4This naming is inspired by the fact that, if all Lorentz indices are chosen spatial, the parity of the scalar,
vector, and tensor currents is “natural” (i.e. (−1)rank of tensor), whereas it is the opposite of that for the
axialvector and pseudoscalar currents.
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(a) (b) (c) (d)

Figure 1. Sample diagrams contributing to ζ(1)(t) and ζ(3)(t). Spiral lines are gluons, straight lines
denote quarks; lines with accompanying arrows are the corresponding flow lines (they are always
connected to flowed vertices, denoted by small circles). The two fermion lines in diagram (c) can be of
different flavor. The vertex with the cross denotes the current. All Feynman diagrams in this paper
have been drawn with FeynGame [40].

The matching coefficients are then obtained as

ζns
B (t) = Ppq[j̃pq] and ζs

B(t) = ζns
B (t) + nfζ

∆
B , (2.18)

where
ζ∆

B (t) = Ppp[j̃q] , (2.19)

with p ̸= q, and

ζ
(1)
B (t) = P (1)[j̃p] , ζ

(3)
B (t) = P (3)[j̃p] , (2.20)

for a massive quark flavor p. The renormalized matching coefficients follow from this by
inserting eq. (2.9) into eq. (2.13):

ζ(1)(t) = Zm ζ
(1)
B (t) ,

ζ(3)(t) = Z3
mζ

(3)
B (t) + 4

nh
Z1(Zs)−1ζs

B ,

ζns(t) = (Zns)−1ζns
B (t) ,

ζs(t) = (Zs)−1
[
ζns

B (t) + nfζ
∆
B (t)

]
= (Zs)−1Znsζns(t) + nf(Zs)−1ζ∆

B (t)

≡ ζns(t) + nfζ
∆(t) ,

⇒ ζ∆(t) = (Zs)−1
[
ζ∆

B (t)− 1
nf
(Zs − Zns)ζns(t)

]
.

(2.21)

ζ
(1)
B and ζ

(3)
B are just given by the first two terms in an expansion in m2

Bt of the currents’
vacuum expectation values. Due to Lorentz and parity invariance, they are non-zero only
for the scalar current, corresponding to the so-called quark condensate. Since the one-loop
contribution is of order g0

B, it is required to three-loop order in order to obtain the SFTX
up to NNLO QCD. Sample three-loop diagrams are shown in figure 1.

In contrast, the projections for the other matching coefficients in eq. (2.20) require only
two-loop calculations. In the diagrams that contribute to ζns

B , the current is connected to

– 6 –
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Figure 2. Examples for contributions to the non-singlet matching coefficients. The notation is the
same as in figure 1.

Figure 3. Examples for contributions to the singlet matching coefficients. The notation is the same
as in figure 1.

the external states by a single quark line, cf. figure 2, as opposed to ζ∆
B , where the current

and the external states belong to different quark lines, cf. figure 3.
We will refer to the latter class as triangle diagrams in what follows. The triangle

diagrams for the scalar, pseudoscalar, and tensor currents vanish after taking the fermion
trace. For the vector current, they only start to contribute from three-loop order due to
Furry’s theorem. At the perturbative order considered here, we can therefore drop the
superscripts “ns” and “s” in these cases and simply write

ζX(t) ≡ ζns
X (t) = ζs

X(t) for X ̸= A , (2.22)

and analogously for the bare matching coefficients. For the axial current, on the other hand,
we will find ζ∆

B (t) ̸= 0 at the two-loop level.
We evaluate all diagrams in D = 4 − 2ϵ space-time dimensions. The occurrence of γ5

in eq. (2.11) causes the well-known complications which we take care of by following the
strategy outlined in refs. [41–43]. This means to replace

Γµ
A → Γ̂µ

A = 1
3!ε

µαβγγαγβγγ , ΓP → Γ̂P = 1
4!ε

αβγδγαγβγγγδ (2.23)
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both in the currents of eq. (2.12) as well as in the projectors of eq. (2.15). The resulting
products of two (intrinsically four-dimensional) ε tensors are replaced by

εαβγδεα′β′γ′δ′ = g
[α
α′ g

β
β′ g

γ
γ′ g

δ]
δ′ , εµαβγεµα′β′γ′ = g

[α
α′ g

β
β′ g

γ]
γ′ , (2.24)

where the square brackets denote the anti-symmetric combination, e.g.

g
[α
α′ g

β]
β′ = gα

α′g
β
β′ − gβ

α′g
α
β′ . (2.25)

This also affects the normalization factors of eq. (2.17) via5

Tr(Γ̂µ
AΓ̂

µ
A) = −

2nc
3 D(D − 1)(D − 2) ,

Tr(Γ̂PΓ̂P) = −
nc
3!D(D − 1)(D − 2)(D − 3) .

(2.26)

This strategy violates the Ward identities, but they can be restored by an additional finite
renormalization discussed below.

For the actual calculation, we adopt the framework developed in ref. [28], which is based
on qgraf [44, 45] for the generation of the diagrams, q2e/exp [46, 47] for inserting the
Feynman rules and identifying the momentum topologies, in-house FORM [48–50] routines
for performing various computer algebraic operations including Dirac and color algebra [51],
and Kira⊗FireFly [52–55] for the reduction to master integrals employing integration-by-
parts-like relations [28, 56, 57] and the Laporta algorithm [58]. Up to two-loop level, we
find the same master integrals as in ref. [17]. They can be evaluated analytically in terms
of the transcendentals6

ζ2 = Li2(1) =
π2

6 = 1.64493 . . . , ζ3 = Li3(1) = 1.20205 . . . ,

Li2(1/4) = 0.267652 . . . ,
(2.27)

where Lin(z) =
∑∞

k=1 z
k/kn is the polylogarithm of order n.

The three-loop vacuum expectation value contributing to ζ(1)(t) and ζ(3)(t) of eq. (2.21)
leads to 304 diagrams which are reduced to 216 master integrals. They have been evaluated
numerically in ref. [33] following the strategy described in ref. [59].

3 Results

Natural-parity currents. For the currents which do not involve γ5, we adopt the MS
scheme, i.e., we define the renormalization constants of eq. (2.8) as

ZX = ZMS
X , X ∈ {S,V,T} . (3.1)

Because of Lorentz and parity invariance, only the scalar current can mix with the identity
operator. Thus, we have

Z1,S = ZMS
1,S =

(
µ2eγE

4π

)−ϵ

Z0 and Z1,X = 0 , X ∈ {V,P,A,T} , (3.2)

5Recall that the trace also includes color.
6We caution the reader not to confuse the multiple use of the symbol ζ in this paper.
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where Z0 is the renormalization constant of the vacuum energy which can be found in
eq. (A.14), µ is the renormalization scale in the MS scheme, and γE = −Γ′(1) = 0.577216 . . .
is the Euler-Mascheroni constant, with Euler’s gamma function Γ(z). The Ward-Takahashi
identities ensure that ZMS

V = 1 and ZMS
S = Zm, with Zm the quark mass renormalization

constant introduced above. For the tensor current, the renormalization constant is given
in eqs. (A.5) and (A.16).

We express our results in terms of the color factors

CF = TR
n2

c − 1
nc

, CA = 2TRnc , TR = 1
2 ,

(3.3)

where in QCD, the number of colors is nc = 3. Furthermore, we introduce

Lµt = ln 2µ2t+ γE ≡ ln µ
2

µ2
t

, (3.4)

where we have implicitly defined the t-dependent energy scale µt, and

as =
g2

4π2 = αs

π
, (3.5)

with g the MS renormalized strong coupling, see eq. (A.1). We then find the following
matching coefficients for the natural-parity currents:

ζ
(1)
S (t) = − nc

8π2

{
1 + asCF

(
1 + ln 2− 3

4 ln 3 + 3
4Lµt

)

+ a2
s

[
1.228C2

F + 2.587CACF − 0.9873CFTRnf

+ Lµt
(
0.7456C2

F + 1.807CACF − 0.4981CFTRnf
)

+ L2
µt

(
0.2813C2

F + 0.3438CACF − 0.1250CFTRnf
)]}

+O(a3
s ) , (3.6)

ζ
(3)
S (t) = − nc

4π2

{
1 + Lµt + asCF

[
7
2 + 4 ln 2− 21

4 ln 3− 3Li2 (1/4)

+ Lµt

(11
4 − ln 2− 3

4 ln 3
)
+ 3

4L
2
µt

]

+ a2
s

(
5.455C2

F + 0.1028CACF −
(
1.078nl + 6.411nh

)
CFTR

+ Lµt
[
3.095C2

F + 0.3964CACF −
(
0.1512nl + 3.151nh

)
CFTR

]
+ L2

µt

[
1.862C2

F + 0.6510CACF − 0.07763CFTRnf
]

+ L3
µt

[
0.6563C2

F + 0.1146CACF − 0.04167CFTRnf
])}

+O(a3
s ) , (3.7)
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ζS(t) = 1 + asCF

(
−1
2 − ln 2− 3

4 ln 3− 3
4Lµt

)

+ a2
s

{
1
16c

(2)
χ + C2

F

(1
2 + 1

2ζ2 −
3
2 ln 2 + 1

4 ln2 2 + 21
8 ln 3 + 3Li2 (1/4)

)

+ CACF

(
−197

48 −
7
16ζ2 −

9
2 ln 2 + 1

4 ln2 2 + 9
2 ln 3 + 3

2Li2 (1/4)
)

+ CFTRnf

(5
6 + 1

4ζ2

)
+ Lµt

[
C2

F

(3
4 ln 2 + 9

16 ln 3 + 9
32

)

+ CACF

(
−11
12 ln 2− 11

16 ln 3− 47
32

)
+ CFTRnf

(1
3 ln 2 + 1

4 ln 3 + 3
8

)]

+ L2
µt

( 9
32C

2
F −

11
32CACF + 1

8CFTRnf

)}
+O(a3

s ) , (3.8)

ζV(t) = 1 + asCF

(1
8 − ln 2− 3

4 ln 3
)

+ a2
s

{
1
16c

(2)
χ + C2

F

(
− 41
128 −

5
32ζ2 +

3
8 ln 2 + 1

4 ln2 2− 3
32 ln 3 + 3

2Li2 (1/4)
)

+ CACF

(
−763
384 −

5
32ζ2 −

13
4 ln 2 + 1

4 ln2 2 + 27
8 ln 3 + 21

16Li2 (1/4)
)

+ CFTRnf

(35
96 + 1

8ζ2

)
+ Lµt

[
CACF

(
−11
12 ln 2− 11

16 ln 3 + 11
96

)

+ CFTRnf

(1
3 ln 2 + 1

4 ln 3− 1
24

)]}
+O(a3

s ) , (3.9)

ζT(t) = 1 + asCF

(
− ln 2− 3

4 ln 3 + 1
4Lµt

)

+ a2
s

{
1
16c

(2)
χ + C2

F

(
− 7
12 −

1
4ζ2 +

4
3 ln 2 + 1

4 ln2 2− 3
4 ln 3 + Li2 (1/4)

)

+ CACF

(
−1159

864 −
1
16ζ2 −

17
6 ln 2 + 1

4 ln2 2 + 3 ln 3 + 5
4Li2 (1/4)

)
+ CFTRnf

( 47
216 + 1

12ζ2

)
+ Lµt

[
C2

F

(
−1
4 ln 2− 3

16 ln 3− 19
32

)

+ CACF

(
−11
12 ln 2− 11

16 ln 3 + 257
288

)
+ CFTRnf

(1
3 ln 2 + 1

4 ln 3− 13
72

)]

+ L2
µt

( 1
32C

2
F + 11

96CACF −
1
24CFTRnf

)}
+O(a3

s ) . (3.10)

c
(2)
χ is associated with the ringed scheme and would not appear if the fermions were renor-

malized in the MS scheme. Its explicit form is given in eqs. (A.24) and (A.25). The results
for ζ(1)

S (t) and ζS(t) are already known from refs. [15, 28, 30, 32, 39].7 For the sake of
7In ref. [28], ζ

(1)
S (t) was called the quark condensate ⟨S̊(t)⟩, while in ref. [32], ζS(t) was called sS and quoted

only numerically for QCD with nf = 1. ζS(t) was also calculated in the context of ref. [17], but not published.
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brevity, we quote the three-loop results with only four significant digits here. In the sup-
plementary material attached to this paper, we provide the results with higher numerical
accuracy, as well as analytic expressions for the logarithmic terms and the coefficient of
CFTRnf of ζ(1)

S (t) (see appendix B). Moreover, while all results in this paper are in the
ringed scheme, the supplementary material contain the matching coefficients lso in the MS
scheme of the flowed fermions.

Pseudo-parity currents. For the pseudo-parity currents, one has to introduce a non-
minimal renormalization in order to restore the associated Ward identities in regular QCD
for the non-singlet cases, and the correct anomaly in the singlet axialvector case, which are
broken by adopting eq. (2.23) combined with minimal subtraction. Therefore, we define the
renormalization constants of eq. (2.8) in these cases as

ZX(as) = ZMS
X (as)Z5,X(as) , X ∈ {A,P} , (3.11)

where the MS part is given in eqs. (A.5) and (A.16). The Z5,X are finite renormalization
constants given in eq. (A.18). For the non-singlet cases, taking them into account is actually
equivalent to working with a naively anti-commuting γ5 combined with minimal subtraction,
which means that

ζP(t) = ζS(t) , ζns
A (t) = ζV(t) . (3.12)

We explicitly verified these relations by using eq. (2.23) and the corresponding renormalization
constants of eq. (3.11). This provides a strong validity check of our calculational setup.

For the renormalized triangle contribution of eq. (2.21), on the other hand, we find

ζ∆
A (t) = a2

sCFTR

(
−3
8 + 1

8ζ2 +
9
2 ln 2− 9

4 ln 3

+ 15
8 Li2 (1/4) +

3
4Lµt

)
+O(a3

s ) .
(3.13)

Additional checks. In order to further corroborate the correctness of our results, we
performed all calculations in general Rξ gauge and confirmed that the dependence on the
gauge parameter drops out in the final result. The only exception to this check is ζ(3)(t),
for which the calculation in Rξ gauge exceeds our computing resources. Through NLO, the
matching coefficients ζX(t) were already computed in refs. [38, 39], and we find full agreement
after fixing the erroneous finite renormalization8 for ζP(t) and ζS(t). For ζT(t), only the bare
NLO result is provided in ref. [39], and it agrees with our bare result.

Numerical results for ζV(t). In order to see the improvement of the impact of the
NNLO terms, we display in figure 4 the result for ζV(t) as a function of the unphysical
renormalization scale µ at leading order (LO), NLO, and NNLO. We consider two exemplary
values of the flow time t, defined in terms of the energy scale µt, see eq. (3.4). The first one,
µt = 3GeV, corresponding to t ≈ 0.03GeV−2, seems to constitute a reasonable compromise

8The “(−4)” in the O(g2) coefficient of eq. (2.7) in ref. [39] should read “(−8)”. This also affects a number
of the subsequent equations in ref. [39]. We would like to thank H. Suzuki for clarifying communications on
this issue.
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Figure 4. ζV(t) at two different values of t = e−γE/(2µ2
t ) as a function of µ/µt.

between the t-region preferred in lattice calculations and the perturbative regime (see the
preliminary study in ref. [34]). For comparison, on the other hand, we also present results for
µt = 10GeV, corresponding to t ≈ 0.003GeV−2, which is well in the perturbative regime.

For the plot at µt = 3GeV, we set nf = 3 and use α(nf=3)
s (3GeV) = 0.2485 as input. For

the plot at µt = 10GeV, we set nf = 5 and use α(nf=5)
s (10GeV) = 0.1880 as input. We then

evaluate αs(µ) through one-, two-, and three-loop running for µt/3 ≤ µ ≤ 3µt and insert it
into the LO-, NLO-, and NNLO-approximation of ζV(t), respectively (with the corresponding
value for nf), in order to obtain the three curves in the plots.

Since this quantity is RG invariant, we expect the µ dependence to decrease from NLO
to NNLO, and this is indeed what we observe. Taking the variation of µ around µt by
a factor of two as an estimate of the perturbative uncertainty, we find that it decreases
from 4.4% to 1.4% at µt = 3GeV, and from 1.8% to 0.4% at 10 GeV. This is indicated
by the red and blue bands in the plot. Another important observation is that these bands
overlap, indicating that µt as defined in eq. (3.4) is indeed a reasonable choice for the central
renormalization scale. Since the other matching coefficients are not RG invariant, we refrain
from showing the analogous plots for them.

4 Flowed anomalous dimension

As suggested in ref. [33] for a general set of flowed operators O = (O1, . . . ,Op), one may define
flowed anomalous dimensions which allow to resum their logarithmic t-dependence. Let us
briefly recapitulate the idea behind it. First consider the flow time t and the renormalization
scale µ as independent quantities. The regular operators O are then independent of t, the
flowed operators Õ are independent of µ, and the elements of the matching matrix ζ are
functions of as(µ) and Lµt. Therefore, neglecting terms that vanish as t → 0,

0 = t
d
dtO = t

d
dtζ

−1 Õ (4.1)

and thus

t
d
dtÕ = γ̃ Õ , with γ̃ =

(
t
d
dtζ

)
ζ−1 , (4.2)
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where the flowed anomalous dimension matrix γ̃ is a function of as(µ) and Lµt, which is,
however, formally independent of µ:

µ2 d
dµ2 γ̃ = 0 . (4.3)

Note that the derivative acting on ζ in eq. (4.2) only affects the logarithmic terms Lµt.
The latter can be derived at higher orders by noting that flowed operators (in the ringed
scheme) are µ-independent, i.e.

0 = µ2 d
dµ2 Õ = µ2 d

dµ2 ζ O =
[(

∂

∂Lµt
+ asβ

∂

∂as

)
ζ

]
O + ζ γO , (4.4)

where γ is the anomalous dimension matrix of the regular operators O, i.e. µ2 d
dµ2O = γO,

and β is defined in appendix A. Therefore,

γ̃ = −
(
asβ

∂

∂as
ζ

)
ζ−1 − ζγζ−1 . (4.5)

The term in brackets starts at O(a2
s ), and thus the one-loop term of the flowed anomalous

dimension is given by the (negative of the) regular anomalous dimension of the current.
Furthermore, knowledge of ζ at order an

s is sufficient to obtain γ̃ through order an+1
s , given

that γ is known to an+1
s and β to an

s .
It may be interesting to note that eq. (4.5) can also be derived by tying the flow time

and the renormalization scale together from the start, i.e., setting µ = c/
√
t, with some

constant c. In this case, also the regular operators become t dependent, while ζ depends
on t only through as(c/

√
t), and thus

t
d
dtO = −µ2 d

dµ2O = −γO and t
d
dtζ(t) = −asβ

∂

∂as
ζ(t) , (4.6)

which again leads to

t
d
dtÕ =

[
−asβ

∂

∂as
ζ − ζγ

]
ζ−1Õ . (4.7)

Applied to the current operators considered in this paper, eq. (4.2) reads

t
d
dt j̃ = γ̃ j̃ , (4.8)

and using eqs. (3.8)–(3.10), (4.5), (A.16) and (A.17), we find

γ̃S(t) = −
3
4asCF + a2

s

[
− 3

32C
2
F + CACF

(
−47
32 −

11
12 ln 2− 11

16 ln 3
)

+ CFTRnf

(3
8 + 1

3 ln 2 + 1
4 ln 3

)]

+ a3
s

{(11
96CA −

1
24TRnf

)
c(2)

χ −
129
128C

3
F + C2

FCA

(305
256 + 11

12ζ2 −
11
3 ln 2
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− 11
24 ln2 2− 11

8 ln 2 ln 3 + 33
8 ln 3− 33

64 ln2 3 + 11
2 Li2 (1/4)

)
+ CFC

2
A

(
−65869

6912 −
77
96ζ2 −

215
24 ln 2 + 11

24 ln2 2 + 247
32 ln 3 + 11

4 Li2 (1/4)
)

+ C2
FTRnf

(19
32 −

1
3ζ2 +

19
12 ln 2 + 1

6 ln2 2 + 1
2 ln 2 ln 3− 21

16 ln 3 + 3
16 ln2 3

− 2Li2 (1/4)−
3
4ζ3

)
+ CFT

2
Rn

2
f

(
−205
432 −

1
6ζ2

)

+ CFCATRnf

(2071
432 + 3

4ζ2 +
41
12 ln 2− 1

6 ln2 2− 43
16 ln 3

− Li2 (1/4) +
3
4ζ3

)}
+O(a4

s ) , (4.9)

γ̃V(t) = a2
s

[
CACF

(11
96 −

11
12 ln 2− 11

16 ln 3
)
+ CFTRnf

(
− 1
24 + 1

3 ln 2 + 1
4 ln 3

)]

+ a3
s

{(11
96CA −

1
24TRnf

)
c(2)

χ + C2
FCA

(
− 77
128 −

55
192ζ2 +

11
12 ln 2

− 11
24 ln2 2− 11

8 ln 2 ln 3− 33
64 ln2 3 + 11

4 Li2 (1/4)
)

+ CFC
2
A

(
−8189
2304 −

55
192ζ2 −

20
3 ln 2 + 11

24 ln2 2 + 181
32 ln 3 + 77

32Li2 (1/4)
)

+ C2
FTRnf

( 3
16 + 5

48ζ2 −
1
12 ln 2 + 1

6 ln2 2 + 1
2 ln 2 ln 3 + 3

16 ln 3

+ 3
16 ln2 3− Li2 (1/4)

)
+ CFT

2
Rn

2
f

(
− 35
144 −

1
12ζ2

)

+ CFCATRnf

(559
288 + 1

3ζ2 +
31
12 ln 2− 1

6 ln2 2− 31
16 ln 3− 7

8Li2 (1/4)
)}

+O(a4
s ) , (4.10)

γ̃T(t) =
1
4asCF + a2

s

[
− 19

32C
2
F + CACF

(257
288 −

11
12 ln 2− 11

16 ln 3
)

+ CFTRnf

(
−13
72 + 1

3 ln 2 + 1
4 ln 3

)]

+ a3
s

{(11
96CA −

1
24TRnf

)
c(2)

χ + C3
F

(365
384 − ζ3

)

+ C2
FCA

(
−9287
2304 −

11
24ζ2 +

22
9 ln 2− 11

24 ln2 2

− 11
8 ln 2 ln 3− 11

8 ln 3− 33
64 ln2 3 + 11

6 Li2 (1/4) +
7
4ζ3

)
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+ CFC
2
A

(
−10079
20736 −

11
96ζ2 −

425
72 ln 2 + 11

24 ln2 2 + 159
32 ln 3

+ 55
24Li2 (1/4)−

5
8ζ3

)

+ C2
FTRnf

(161
288 + 1

6ζ2 −
23
36 ln 2 + 1

6 ln2 2 + 1
2 ln 2 ln 3 + 11

16 ln 3 + 3
16 ln2 3

− 2
3Li2 (1/4) +

1
4ζ3

)
+ CFT

2
Rn

2
f

(
− 215
1296 −

1
18ζ2

)

+ CFCATRnf

( 923
1296 + 7

36ζ2 +
83
36 ln 2− 1

6 ln2 2− 27
16 ln 3

− 5
6Li2 (1/4)−

1
4ζ3

)}
+O(a4

s ) , (4.11)

γ̃P(t) = γ̃S(t) , (4.12)

γ̃ns
A (t) = γ̃V(t) , (4.13)

γ̃s
A(t) = γ̃ns

A (t) + 3
4a

2
sCFTRnf + a3

s

[
− 9

16C
2
FTRnf

+ CFT
2
Rn

2
f

(1
6 −

1
12ζ2 − 3 ln 2 + 3

2 ln 3− 5
4Li2 (1/4)

)
+ CFCATRnf

(19
24 + 11

48ζ2 +
33
4 ln 2− 33

8 ln 3 + 55
16Li2 (1/4)

)]
+O(a4

s ) . (4.14)

Note that, in these formulas, as is still renormalized in the MS scheme, and we have set
µ = µt, see eq. (3.4) (the expression for general µ can be easily reconstructed using eq. (4.3);
it is also given in the supplementary material atttached to this paper, see appendix B).
In order to eliminate any reference to the MS scheme, one can simply convert as in these
expressions to the gradient-flow scheme according to [3]

as = âs
[
1− e1âs + â2

s (2e2
1 − e2) +O(â3

s ) . . .
]
, (4.15)

where
e0 = e00 , e1 = e10 + β0 Lµt ,

e2 = e20 + (2β0 e10 + β1)Lµt + β2
0 L

2
µt ,

(4.16)

with β0, β1 from eq. (A.4), and [3, 28, 59]

e00 = 1 , e10 =
(13

9 + 11
6 ln 2− 3

4 ln 3
)
CA −

2
9TRnf ,

e20 = 1.74865C2
A − (1.97283 . . .)CATRnf +

(
ζ3 −

43
48

)
CFTRnf

+
(1
9ζ2 −

5
81

)
T 2

Rn
2
f .

(4.17)

The exact expression for the coefficient of CATRnf can be found in ref. [28].
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Numerical values for the flowed anomalous dimensions are shown in figure 5. The
input parameters are the same as in figure 4. Also here, we observe the expected reduction
of the renormalization scale dependence when including higher orders, albeit sometimes
less pronounced than for ζV(t). But also here the NLO and the NNLO uncertainty bands
nicely overlap.

5 Conclusions

In this paper, we have considered the SFTX of the scalar, pseudoscalar, vector, axialvector,
and tensor currents and computed the corresponding matching coefficients through NNLO in
QCD. Possible applications of these results are the calculation of the chiral condensate on
the lattice [19] or the semileptonic contributions to the neutron electric dipole moment [37].

Our results could also serve as alternatives to the ringed renormalization scheme [13],
which requires the calculation of the vacuum expectation value of the quark kinetic operator.
In certain cases, it may be more efficient to normalize quark matrix elements to one of the
currents instead. We believe that this strategy will especially find applications in flavor physics,
in particular in combination with the SFTX of the relevant four-quark operators [29, 31].
A first preliminary study, already employing the result for the axialvector current obtained
in the present paper, has been published in ref. [34].

Finally, the simplicity of the quark currents could also be advantageous for systematic
studies of the SFTX, building up on the preliminary studies of refs. [26, 35, 36] in different
contexts.
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A Renormalization constants

In this appendix, we collect the renormalization constants required to arrive at the finite
results presented in this paper. Most of these constants are known to higher loop orders, but
we will display only the orders which are relevant for our calculation.

The relation between the bare and MS-renormalized gauge coupling is given by the
regular-QCD expression

gB =
(
µ2eγE

4π

)ϵ/2

Zg(as(µ))g(µ) , (A.1)

with µ the renormalization scale, γE = 0.577215 . . . the Euler-Mascheroni constant,

Zg(as) = 1− as
β0
2ϵ + a2

s

(
3β2

0
8ϵ2 −

β1
4ϵ

)
+O(a3

s ) , (A.2)
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Figure 5. The flowed anomalous dimensions at two different values of t = e−γE/(2µ2
t ) as

functions of µ/µt.
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as from eq. (3.5), and the coefficients of the QCD beta function,

β(as) = −ϵ− as

∞∑
n=0

βna
n
s , (A.3)

given by

β0 = 1
4

(11
3 CA −

4
3TRnf

)
, β1 = 1

16

[34
3 C

2
A −

(
4CF + 20

3 CA

)
TRnf

]
. (A.4)

The QCD color factors are defined in eq. (3.3), and nf is the number of quark flavors. The
remaining MS renormalization constants are cast into the generic form

ZMS(as) = 1− as
γ0
ϵ

+ a2
s

[ 1
2ϵ2

(
γ2

0 + β0γ0
)
− γ1

2ϵ

]
+O(a3

s ) , (A.5)

where the γn are the perturbative coefficients of the corresponding anomalous dimensions.
For the quark mass, the latter is defined as

γm(as) = −as
∑
n≥0

an
s γm,n ≡ −asβ(as)

d
das

lnZMS
m (as) , (A.6)

and thus

µ2 d
dµ2m(µ) = γm(as)m(µ) . (A.7)

For the current j, we define

γ(as) = as
∑
n≥0

an
s γn ≡ asβ(as)

d
das

lnZMS(as) . (A.8)

The renormalization group equation for the currents is thus given by

µ2 d
dµ2 j(µ) =

[
γ(as) + γfin(as)

]
j(µ) , (A.9)

where γfin arises from any finite renormalization as introduced for the pseudo-parity currents
when adopting eq. (2.23). Specifically, if

Z(as) = Zfin(as)ZMS(as) , with Zfin(as) = 1 +
∞∑

n=1
an

s zn0 , (A.10)

then
γfin(as) = −a2

s β0 z10 − a3
s

[
β1 z10 − β0 z

2
10 + 2β0 z20

]
+O(a4

s ) . (A.11)

In this paper, we need the MS quark mass renormalization constant Zm ≡ ZMS
m through

O(a3
s ), given by

γm,0 = 3
4CF , γm,1 = 3

32C
2
F + 97

96CACF −
5
24CFTRnf ,

γm,2 = 1
64

[129
2 C3

F −
129
4 C2

FCA + 11413
108 CFC

2
A

+ C2
FTRnf (−46 + 48ζ3) + CFCATRnf

(
−556

27 − 48ζ3

)
− 140

27 CFT
2
Rn

2
f

]
,

(A.12)
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as well as the renormalization constant of the vacuum energy Z0 through O(a2
s ). It is related

to the corresponding anomalous dimension γ0 through

γ0(as) = [4γm(as)− ϵ]Z0(as) + β(as)as
∂

∂as
Z0(as) ≡ −

ncnh
(4π)2

∑
n≥0

an
s γ0,n , (A.13)

which leads to

Z0(as) =
ncnh
(4π)2ϵ

{
1 + as

(
γ0,1
2 −

2γm,0
ϵ

)
+ a2

s

[
2
3ϵ2 (β0γm,0 + 4γ2

m,0)

− 1
6ϵ(β0γ0,1 + 4γ0,1γm,0 + 8γm,1) +

1
3γ0,2

]}
+O(a3

s ) .
(A.14)

The first three perturbative coefficients are given by [60, 61]

γ0,0 = 1 , γ0,1 = CF ,

γ0,2 = −C2
F

(131
32 − 3ζ3

)
− CFCA

(
−109

32 + 3
2ζ3

)
− CFTR

(5
8nf + 3nh

)
.

(A.15)

The current renormalizations ZMS
T , ZMS

P , and ZMS
A are needed through O(a2

s ). For
these [42, 43, 62],

γT,0 = −1
4CF , γT,1 = 19

32C
2
F −

257
288CACF + 13

72CFTRnf ,

γP,0 = 3
4CF , γP,1 = 3

32C
2
F −

79
96CACF + 11

24CFTRnf ,

γns
A,0 = 0 , γns

A,1 = −11
12CACF + 1

3CFTRnf ,

γs
A,0 = 0 , γs

A,1 = γns
A,1 −

3
4CFTRnf .

(A.16)

In order to derive the O(a3
s ) terms of γ̃ in section 4, we also need the terms at O(a3

s ) [42, 43, 63]:

γT,2 =
(
ζ3 −

365
384

)
C3

F +
(6823
2304 −

7
4ζ3

)
C2

FCA +
(5
8ζ3 −

13639
6912

)
CFC

2
A

−
( 49
288 + 1

4ζ3

)
C2

FTRnf +
1
48CFT

2
Rn

2
f +

(251
432 + 1

4ζ3

)
CFCATRnf ,

γP,2 = 599
2304C

2
ACF −

3203
768 CAC

2
F + 129

128C
3
F + 29

48CACFnfTR + 107
96 C

2
FnfTR

− 17
144CFT

2
Rn

2
f −

3
4ζ3CACFTRnf +

3
4ζ3C

2
FTRnf ,

γns
A,2 = 77

48C
2
FCA −

1789
864 CFC

2
A −

1
3C

2
FTRnf −

1
54CFT

2
Rn

2
f +

26
27CFCATRnf ,

γs
A,2 = γns

A,2 +
9
16C

2
FTRnf −

1
24CFT

2
Rn

2
f −

109
96 CFCATRnf .

(A.17)

Recall that the vector current does not require renormalization, and the scalar current
renormalizes with ZS ≡ Zm. The finite renormalization constants for the axial and the

– 19 –



J
H
E
P
0
5
(
2
0
2
4
)
1
7
9

pseudoscalar current introduced in eq. (3.11) are given by [42, 43]

Z5,P(as) = 1− 2 asCF + a2
s

( 1
72CFCA + 1

18CFTRnf

)
+O(a3

s ) ,

Zns
5,A(as) = 1− asCF + a2

s

(11
8 C

2
F −

107
144CFCA + 1

36CFTRnf

)
+O(a3

s ) ,

Zs
5,A(as) = Zns

5,A + 3
16a

2
s CFTRnf +O(a3

s ) .

(A.18)

Let us remark that quoting the results for Zns
5,A and Z5,P is redundant, because they could

be derived from eq. (A.11) and

γS = γP + γfin
P , γV = γns

A + γns,fin
A . (A.19)

The flowed-quark field renormalization constant introduced in eq. (2.7) assumes the same
form as eq. (A.5) with the anomalous dimensions given by [15, 17]

γχ,0 = −3
4CF , γχ,1 =

(1
2 ln 2− 223

96

)
CACF +

( 3
32 + 1

2 ln 2
)
C2

F + 11
24CFTRnf . (A.20)

Besides the MS scheme, the so-called ringed scheme is determined from the all-order con-
dition [13]

Z̊χ⟨χ̄p(t)
←→
/D Fχp(t)⟩

∣∣∣∣
m=0

≡ − 2ncnf
(4πt)2 . (A.21)

It is related to the MS scheme by

Z̊χ = ζχ(t, µ)ZMS
χ , (A.22)

with the finite renormalization constant [13, 28]

ζχ(t, µ) = 1− as

(
γχ,0Lµt +

3
4CF ln 3 + CF ln 2

)

+ a2
s

{
γχ,0
2 (γχ,0 − β0)L2

µt +
[
γχ,0 (β0 − γχ,0) ln 3

+ 4
3γχ,0 (β0 − γχ,0) ln 2− γχ,1

]
Lµt +

c
(2)
χ

16

}
+O(a3

s ) ,

(A.23)

where
c(2)

χ = CACF cχ,A + C2
F cχ,F + CFTRnf cχ,R . (A.24)

The coefficients have been evaluated in ref. [28]:9

cχ,A = −23.7947, cχ,F = 30.3914,

cχ,R = −131
18 + 46

3 ζ2 +
944
9 ln 2 + 160

3 ln2 2− 172
3 ln 3 + 104

3 ln 2 ln 3

− 178
3 ln2 3 + 8

3Li2(1/9)−
400
3 Li2(1/3) +

112
3 Li2(3/4) = −3.92255 . . . .

(A.25)

Only digits are quoted in eq. (A.25) which are not affected by the numerical uncertainty.
9The factor −1/18 should read 1/18 in eq. (B.3) of ref. [28] (eq. (130) in the arXiv version).
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expression meaning reference
zetaS1 ζ

(1)
S eq. (3.6)

zetaS3 ζ
(3)
S eq. (3.7)

zetaS ζS eq. (3.8)
zetaV ζV eq. (3.9)
zetaT ζT eq. (3.10)
zetaAns ζns

A eq. (3.12)
zetaP ζP eq. (3.12)
zetaAtriangle ζ∆

A eq. (3.13)
tildegammaS γ̃S eq. (4.9)
tildegammaV γ̃V eq. (4.10)
tildegammaT γ̃T eq. (4.11)
tildegammaAns γ̃ns

A eq. (4.13)
tildegammaAs γ̃s

A eq. (4.14)
tildegammaP γ̃P eq. (4.12)

Table 1. The expressions of the supplementary material that encode the main results of this paper.

symbol meaning reference
nc nc eq. (3.3)
tr TR eq. (3.3)
cf CF eq. (3.3)
ca CA eq. (3.3)
Lmut Lµt eq. (3.4)
as as eq. (3.5)
nf nf section 2.2
nl nl section 2.2
nh nh section 2.2

Table 2. Notation for the variables in the supplementary material.

B Supplementary material

For the reader’s convenience, we provide the main results of this paper as a file in Mathematica
format. The results are encoded in the expressions listed in table 1. The matching coefficients
ζ are provided both in the ringed scheme of the fermions as well as in the MS scheme. One
may switch between the two schemes by setting the variable Xzetachi to 0 (MS scheme) or 1
(ringed scheme). The flowed anomalous dimensions γ̃ are provided only in the ringed scheme.

The results depend on the variables listed in table 2. The matching coefficients in the
ringed scheme also contain the symbol C2, which corresponds to the coefficient c(2)

χ , defined
in eqs. (A.24) and (A.25). The latter relations are provided in the form of a Mathematica
replacement rule named ReplaceC2.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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