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A B S T R A C T   

Accurate global horizontal irradiance (GHI) forecasting is critical for integrating solar energy into the power grid 
and operating solar power plants. The Weather Research and Forecasting model with its solar radiation extension 
(WRF-Solar) has been used to forecast solar irradiance in different regions around the world. However, the 
application of the WRF-Solar model to the prediction of GHI in West Africa, particularly Ghana, has not yet been 
investigated. The aim of this study is to evaluate the performance of the WRF-Solar model for predicting GHI in 
Ghana, focusing on three automatic weather stations (Akwatia, Kumasi and Kologo) for the year 2021. We used 
two one-way nested domains (D1 = 15 km and D2 = 3 km) to investigate the ability of the fully coupled WRF- 
Solar model to forecast GHI up to 72-hour  ahead under different atmospheric conditions. The initial and lateral 
boundary conditions were taken from the ECMWF high-resolution operational forecasts. Our findings reveal that 
the WRF-Solar model performs better under clear skies than cloudy skies. Under clear skies, Kologo performed 
best in predicting 72-hour GHI, with a first day nRMSE of 9.62 %. However, forecasting GHI under cloudy skies 
at all three sites had significant uncertainties. Additionally, WRF-Solar model is able to reproduce the observed 
GHI diurnal cycle under high AOD conditions in most of the selected days. This study enhances the under
standing of the WRF-Solar model’s capabilities and limitations for GHI forecasting in West Africa, particularly in 
Ghana. The findings provide valuable information for stakeholders involved in solar energy generation and grid 
integration towards optimized management in the region.   

1. Introduction 

Energy in all forms is critical to the running of any nation’s socio- 
economic activities. About 81 % of global energy generation comes 
from fossil fuels (IEA, 2021). With the rising demand for energy and the 
specific targets of the Paris Agreement, there is an urgent need to reduce 
dependence on fossil fuels [45]. Renewable energy such as solar energy 
has become a viable alternative to conventional forms of energy due to 
its low cost [33]. Over the last decade, solar photovoltaic (PV) tech
nologies have been part of the energy mix in many West African coun
tries, particularly in Ghana. Potentially high solar resources make Ghana 
a suitable location for developing robust solar energy projects for off- 
grid and grid-connected systems [24]. However, solar irradiance 
shows a strong seasonal variability in this country with reduced solar 

resources during the rainy season and Harmattan dust storm period 
[52]. 

Solar energy forecasting can play a significant role in the operational 
efficiency of solar power plants and their integration into the electricity 
grid[36,1]. Global horizontal irradiance (GHI) is one of the most 
important meteorological variables for assessing the potential of PV, as 
it helps to determine the amount of solar energy that can be generated at 
a specific location over a given forecast horizon[43]. Various methods 
are used for GHI forecasting and they can be classified into physical 
(dynamical) approaches and statistical approaches. Both approaches 
have their advantages and limitations, and their choice depends on data 
availability, computational resources and other issues[71]. Statistical 
approaches can be based on machine learning (ML) algorithms and rely 
on historical observations for GHI forecasting [57], while physical 
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approaches, such as numerical weather prediction (NWP) models, are 
based on physical equations to forecast GHI several hours or days in 
ahead[58,79,46]. The solar energy version of the Weather Research and 
Forecasting (WRF) model (WRF-Solar) is a numerical weather predic
tion model designed specifically for the solar energy industry. The model 
is widely used for GHI forecasting due to its ability to provide high- 
resolution and accurate forecasts. In addition, the WRF-Solar model is 
able to provide forecasts for different time periods (e.g., sub-hourly, or 
daily) in high spatial resolution, which is useful for various solar energy 
applications[31]. 

The WRF-Solar model is a valuable tool for GHI forecasting due to its 
ability to account for the effects of cloud cover, atmospheric water 
vapor, and aerosols on GHI values[31]. The model has been applied to 
GHI forecasting in various regions and has demonstrated improved ac
curacy compared to traditional GHI forecasting models. A study by Sosa- 
Tinoco et al. [67] compared the WRF-Solar model against observations 
from ground-based meteorological stations located in two major solar 
plants in Spain and India. They found that the model could reproduce 
the observed meteorological conditions of the solar radiation compo
nents with reasonable accuracy for the first and second-day forecast and 
demonstrated its potential for use in managing and optimizing of solar 
energy systems. Another study by Gueymard and Jimenez [23] evalu
ated the performance of the WRF-Solar model in forecasting the day- 
ahead GHI for the desert area at Shagaya, Kuwait and found that the 
model performed better under clear skies than under cloudy skies. 
[30,32] demonstrated the performance of WRF-Solar in forecasting GHI 
across the United States. Lee et al. [38] analyzed the performance of 
different nowcasting methods for forecasting GHI in real-time and 
evaluated their accuracy near Sacramento, California. Their results 
show that the WRF-Solar model was able to accurately forecast GHI 
under different atmospheric conditions. 

On the other hand, statistical approaches such as ML models were 
more reliable in forecasting GHI than NWP models for lead times up to 6 
h [72]. In Africa, most GHI forecasts are based on the ML models. A 
study by Mutavhatsindi et al. [51] showed that an ML algorithm based 
on long-term memory (LSTM) networks achieved high accuracy for GHI 
forecasting for Pretoria, while another study by Mpfumali et al. [49] 
found that quantile regression was most effective for Cape Town. 
Chaaraoui et al. [7] used ML techniques for short-term forecasts of solar 
irradiance using an all-sky camera in Ghana. Other statistical methods 
such as Gaussian process regression, genetic algorithm and different ML 
models have also been used for GHI forecasting in Africa [59,8,78]. 
However, the models from ML have drawbacks, including limited short- 
term forecasting (less than 24 h) and a narrow subset of meteorological 
data[65]. Moreover, ML models are highly dependent on the availability 
of accurate historical observations. They may not be suitable for sites 
with limited data or significant changes in weather patterns. For 
instance, the West Africa region has limited long-term observational 
time series and is characterized by complex and challenging weather 
patterns, such as dust storms and rapid fluctuations of cloud cover[53], 
which can negatively impact the performance of ML models[69]. Yet, 
the ML models may capture the general trend but fail to capture quick 
variations of GHI values[70]. Additionally, ML model methods have 
been found to have limited performance in terms of GHI day-ahead 
forecasting compared to NWP such as the WRF model[11,38]. 

To date, there is limited information on the performance of the WRF- 
Solar model in GHI forecasting in West Africa, even in Africa. Further 
research is needed to fully exploit the potential of the WRF-Solar model 
in GHI forecasting in West Africa and to further improve its accuracy. 
Therefore, this study investigates the performance of the state-of-the-art 
WRF-Solar model for 72-hour GHI forecasting in West Africa, particu
larly in Ghana for 1-hour temporal resolution and 3 km spatial 

Fig. 1. The WRF-Solar domain setup. Colors represent the model topography in meters. The red square denotes the inner domain (D2 = 3 km), while the outer 
domain (D1 = 15 km) encompasses the area outside this square. The black dots indicate the locations of the EnerShelF automatic weather stations (Akwatia, Kumasi, 
and Kologo). Additionally, the orange square marks the AERONET station in Koforidua. (For interpretation of the references to colour in this figure legend, the reader 
is referred to the web version of this article.) 
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resolution. The direct effect of aerosol is considered in this study as 
suggested by Sawadogo et al. [62] who showed that considering time- 
varying aerosol properties in the WRF-Solar model improves simulated 
GHI values for the region. Moreover, the 72-hour GHI forecasting are 
evaluated against ground observations from three novel automatic 
weather stations (AWS) using various statistical performance measures 
under different atmospheric conditions. The stations were implemented 
at three different health centres over Ghana as part of the EnerShelF 
(Energy Supply for Healthcare Facilities) project. One of the key ob
jectives of this project is to provide operational GHI forecast data for the 
three health center sites to improve PV-based energy solutions at these 
centers. 

The paper is structured as follows: The next section presents the 
description and configuration of the WRF-Solar model, as well as the 
study area, and the methodology. Section 3 provides the results and 
discussion of the evaluation of the model under clear-sky, cloudy sky, 
and all-sky conditions. Finally, the last section presents the main find
ings and conclusions of the study. 

2. Data and methodology 

2.1. Study area 

This study focuses on three locations, namely Akwatia, Kumasi and 
Kologo, in Ghana, West Africa (Fig. 1). Ghana is characterized by three 
climatic zones (Costal, Guinean Forest and Savannah) as defined by[4]. 
The sites of Akwatia and Kumasi belong to the Forest zone located in the 
southern part of Ghana. This zone has a tropical rainforest climate and is 
usually cloudy with stratiform type clouds associated with persistent 
rainfall [34]. There are two rainy seasons in this zone, the first from 
April to July and the second from September to November. The 
Savannah zone (Kologo) is located in the northern part of Ghana and 
characterized by a hot and dry climate. In this zone, it is mostly clear in 
the dry season. During the rainy season, clouds are of the cumulus type, 
which are associated with thunderstorms and strong rainfall events. The 
region has a rainy season from May to September with a peak in August. 

2.2. Data 

2.2.1. Automatic weather stations (AWS) 
We collected high-quality GHI for 2021 from three AWS as part of the 

EnerShelF project (https://www.enershelf.de) in Ghana, coordinated by 
the University of Applied Sciences Bonn-Rhine-Sieg (H-BRS). These 
stations were installed in late September 2020 by a joint team from the 
University of Augsburg (UniA), Germany, the West African Science 
Service Centre on Climate Change and Adapted Land Use (WASCAL), 
and the Ghana Meteorological Agency (GMet). The AWS are located at 
three different health centers: Saint Dominic Hospital (Akwatia), Saint 
Michael Hospital (Kumasi) and Kologo Health Center (Kologo). Fig. 2 
shows the AWS installed in the courtyard of the different health centers. 
The AWS measure various meteorological variables such as GHI, 

precipitation, relative humidity, air temperature at 2 m above ground 
level, soil temperature at different depths (5, 20 and 50 cm), surface 
pressure, wind speed and direction using the same measurement 
equipment. The data is recorded with an average five-minute interval. 
Main maintenance, usually every six months, consists of replacing 
defective batteries, cleaning or/and replacing different broken sensors, 
recalibrating the data logger in case of incorrect settings, and keeping 
the area (vegetation) around the stations clear to avoid any shading. 
Additionally, there is trained personnel at the different sites to clean the 
solar radiation sensors at night in case of dust events and other basis 
maintenance issues. The raw data is post-processed, and initial quality 
controlled by UniA and then upload to the WADI (WASCAL Data In
frastructures, https://www.wascal-dataportal.org) database for con
sumption by the end users of the project. 

2.2.2. AERONET 
The AERONET (AErosol RObotic NETwork) is a global network for 

ground-based measurement of atmospheric aerosols using the sun 
photometry [26]. The network was established in the early 1990′s and 
currently comprises about 1315 measurement sites scattered worldwide. 
AERONET provides various microphysical properties of aerosols such as 
size distribution, composition, and optical depth at different wave
lengths. About 16 sun photometer measurements have been installed in 
West Africa, of which Niger has the highest number (4). Ghana has only 
one site, Koforidua, located within our domain (see Fig. 1). The main 
campus of the All-Nations University houses the device on the roof of a 
building about 5 km from the center of Koforidua. From the AERONET 
platform, we retrieve the daily aerosol optical depth (AOD) level 2.0 
(high-quality data) at 440 nm and also the Ånsgtröm exponent (AE) at 
440–675 nm values for 2021. The AOD at 550 nm (AOD550) was 
calculated using the equation of [66]: 

AE =
− log τλ1

τλ2

log λ1
λ2

(1)  

where τλ1 and τλ2 is the total AOD at wavelength λ1 and λ2 respectively. 

2.2.3. Observational total cloud cover 
Clouds are an important parameter in GHI forecasting that remains 

one of the uncertainties in climate models. For a deeper analysis of the 
WRF-Solar GHI forecasting, we also evaluated the model’s fractional 
cloud cover (CFC) forecasting with satellite data. We used CFC from the 
Interim Climate Data Record (ICDR) SEVIRI (Spinning Enhanced Visible 
and InfraRed Imager) instrument on board the Meteosat Second Gen
eration (MSG) satellites [18]. The SEVIRI on MSG uses the CLAAS-2 
(CLoud property dAtAset using SEVIRI, Edition 2) algorithm to esti
mate clouds, providing an accurate and reliable estimation of cloud 
properties [3]. Daily and monthly mean values are available from 2018 
on with a spatial resolution of about 5 km. For this study, we retrieved 
the daily CFC data from the website CM SAF (EUMETSAT Satellite 
Application Facility on Climate Monitoring).. 

Fig. 2. Operational automatic weather stations (AWS) in the courtyard of three health centers in Ghana. Panel (a) shows the AWS at Saint Michael Hospital in 
Kumasi, panel (b) the AWS at Kologo Health Centre in Kologo and panel (c) the AWS at Saint Dominic Hospital in Akwatia. 
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2.2.4. Copernicus atmosphere Monitoring Service (CAMS) 
Copernicus Atmosphere Monitoring Service (CAMS) data use the 

Integrated Forecasting System (IFS) of the European Centre for Medium- 
Range Weather Forecasts (ECMWF) and enable near real-time fore
casting and reanalysis of aerosols. IFS uses 4D-VAR, a four-dimensional 
variational data assimilation technique, to incorporate various meteo
rological observations and satellite-based atmospheric composition 
queries [28]. Twice daily (at 00:00 UTC and 12:00 UTC), forecasts are 
produced for aerosols and chemical substances for the next five days. 
The forecast includes 56 reactive trace gases in the troposphere and 
stratospheric ozone. It also provides information on seven different 
types of aerosols, including desert dust, sea salt, organic matter, black 
carbon, sulphate, and nitrate and ammonium [15]. The CAMS has a 
horizontal spectral resolution of TL511 (~40 km) with 137 vertical 
levels from 0.01 to 1013 hPa. The forecast data are available in a 3-hour 
temporal resolution from 2015 on. We retrieved 72-hour forecast of 
AOD for 2021 at different wavelengths: 469, 550, and 865 nm with the 
initialized time at 00:00 UTC and then calculated the AE using Eq. (1). 
We also retrieved 3 hourly AOD550 reanalysis data from CAMS for 
comparison with the AERONET data at Koforidua for 2021. This com
parison aims to see how well the CAMS data simulate the AOD550 at 
Koforidua and the confidence of using the data in this study. 

2.2.5. ECWMF-HRES 
ECMWF is a pioneering organization in the field of weather fore

casting, providing global weather forecast information [16]. The fore
casts are continuously refined by updating the models with the latest 
observational data from satellites, weather balloons and other sources. 
The ECMWF offers different types of forecasts. For this study, we used 
the high-resolution forecast (HRES) data. HRES are produced using 
advanced NWP models that consider a large number of atmospheric 
variables and use high-resolution computational grids to produce 
comprehensive weather forecasts with a single prediction. HRES is 
ECMWF’s most accurate prediction of the weather forecast. In addition, 
with the updated IFS and its new operating cycle (45r1), HRES provides 
a more accurate forecast compared to the 43r3 cycle, especially in the 
tropics [25], such as the West Africa region. The forecast is produced 
twice daily based on observations at 00 and 12 UTC and ranges from the 
first day to 10 days ahead with a temporal resolution of 3 h. The HRES 

has an interpolated grid of about 9 km with 137 vertical levels and the 
pressure at the top of the model is about 0.01 hPa. We have obtained 3- 
hourly data for 72-hour forecasts at 00 UTC (initialization time) for all 
the necessary variables (surface and pressure level) required to drive 
WRF-Solar for the year 2021 from the ECMWF website. 

2.3. WRF-solar modeling 

The WRF-Solar configuration is specifically designed for forecasting 
of solar energy applications. For this study, we used WRF-Solar version 
4.2.1, with two one-way nested domains over West Africa. The opti
mized WRF-Solar for West Africa is highlighted by Sawadogo et al. [62]. 
To ensure consistency with the optimized study, we used the same do
mains and configurations for the GHI forecasting. The outer domain 
(D1) has a spatial resolution of 15 km and extends from 5◦S to 30◦N and 
from 23◦W to 23◦E, with 299x219 grid points. The inner domain (D2) 
covers a smaller area, from 1◦N to 14.5◦N and from 10◦W to 8.5◦E, with 
a higher resolution of 3 km and 600x400 grid points (as shown in Fig. 1). 
In the WRF Preprocessing System (WPS), the land use information was 
obtained from the 21-class Moderate Resolution Imaging Spectroradi
ometer (MODIS) land use index and fraction, and the green vegetation 
index from the Fraction of Photosynthetically Active Radiation (FPAR). 
To initialize the land use in the model, we used the GEODATA TOPO 10 
M United States Geological Survey (USGS) topography data. For the 
initial and lateral boundary conditions (LBC) of the model, we used the 
forecast data from ECMWF-HRES. For each day, the model was initial
ized at 00 UTC using the data from ECWMF-HRES and the forecast was 
produced up to 3 days ahead for the year 2021 (from 01-January to 31- 
December). Fig. 3 shows the flow of the forecast. Each forecast begins at 
00 UTC (initialization time) and ends at 03_day (00 UTC). 00_day de
notes the first day of the forecast; 01_day indicates the second day of the 
forecast, while 02_day is the third day of the forecast. Thus, three 
overlapping periods from different forecast initializations are obtained 
for every day. 

Microphysics, land surface model, cumulus convection and planetary 
boundary layer (PBL) schemes are the important parameterizations used 
the WRF-Solar model which greatly impact the accuracy of simulated 
GHI. The processes of cloud and precipitation formation, including 
phase changes of water is done through the microphysics scheme [68]. 

Fig. 3. Exemplary forecast cycle. Each day, the model is initialized with the ECWMF-HRES at 00 UTC. The forecast starts on the first day, denoted as 00_day and ends 
at 03_day (00 UTC). 01_day indicates the second day of the forecast, while 02_day is the third day of the forecast. 
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The scheme is crucial for the WRF-Solar configuration as it determines 
the amount of solar radiation that reaches the surface. The Thompson 
microphysics scheme is the recommended scheme for the WRF-Solar 
model. However, since aerosol information in the model improves the 
accuracy of GHI [62,9,39,31], the Thompson aerosol-aware micro
physics scheme [68] was used in this study instead. This scheme ac
counts for direct feedback between aerosol and cloud microphysics. For 
the direct effect of aerosol on radiation, we applied the approach of [60] 
to provide the time-varying AOD550 and AE in the model. The aerosol 
assimilation is not parameterized directly in the model, but rather 
transferred via the radiative transfer routine in each simulated grid cell 
where the radiation-aerosol interaction is modeled. The aerosol single 
scattering albedo (SSA) and aerosol asymmetry parameters are 
computed based on reference aerosol types and relative humidity [60]. 
The AOD550 and AE from CAMS were used for the fully coupled aerosol- 
cloud-radiation feedback in the WRF-Solar model and updated 3-hourly. 
The data from CAMS have also been used in previous studies for GHI 
forecasting [67]. The use of direct aerosol in the WRF-Solar model is 
realized with the RRTMG scheme for shortwave radiation as well as the 
scheme for longwave radiation [27]. 

The exchange of energy, water, and momentum between the atmo
sphere and the Earth’s surface is parametrized in the land surface model 
[19]. In this study, we used the Noah land surface model, a commonly 
used choice in WRF-Solar configurations as it provides a reasonable 
balance between computational efficiency and precision[54]. The 
Yonsei University PBL scheme was chosen, as it effectively captures the 
processes affecting solar radiation at the surface [56]. Cumulus schemes 
play a crucial role in climate models as they present a physically based 
representation of cloud processes. However, there are some limitations 
in the sub-grid scale clouds representation within cumulus convection 
schemes, which can be reduced by the use of shallow convection 
parametrization in the model [12]. Deng’s shallow convection param
etrization is favored in WRF-Solar to account for feedbacks between the 
radiation clouds at the sub-grid scale and produce reasonable cloud 
fractions [12]. The cumulus scheme was deactivated for both domains 
and replaced with Deng’s shallow convection scheme to reduce limita
tions in sub-grid scale cloud representation. This enables the activation 
of radiative feedbacks from both shallow and deep cumulus clouds using 
the mass-flux parameterization integrated into the WRF-Solar model. 
The max-flux parameterization uses a cloud entraining/detraining 
model to represent updrafts. In terms of cloud-radiation feedback, the 
Deng’s shallow convection employs two predictive equations for cloud 
fraction and cloud liquid/ice water content specific to neutrally buoyant 
clouds, contributing to the radiation scheme[29]. The Fast All-sky Ra
diation Model (FARMS) was implemented for faster and more accurate 
predictions of the solar radiation components, as it utilizes a simplified 
approach instead of complex mathematical algorithms[73]. We used the 
GHI from the FARMS (SWDOWN2) with gridded output every 1 h. The 
simulation uses 45 levels of terrain-following eta layers ranging from the 
surface (1000 hPa) to 50 hPa. 

2.4. Methods 

2.4.1. Wrf-solar evaluation 
The WRF-Solar model produces daily forecasts with hourly time 

resolution up to 3 days ahead every day for different variables. The 
analysis is carried out only for the high-resolution domain, i.e., at 3 km. 
We compared the GHI, the CFC of the model with observational data on 
00_day, 01_day and 02_day for all sky conditions. To understand the 
effect of clouds and aerosols on the forecasted GHI, the evaluation is also 
carried out under cloudy and clear sky conditions. As in previous studies 
[62,14], the clearness index (Kt) was used to identify cloudy and clear 
sky conditions. Different values of Kt are used for cloudy and clear skies, 
depending on the region considered. Based on prior studies for the re
gion [55,62,63], we defined cloudy sky when 0.12 ≤ Kt < 0.35 and 
clear sky when Kt ≥ 0.6. Moreover, the ability of the model during the 

occurrence of high ADO550 at the three sites is assessed using the 90th 
and 95th percentiles. 

Since the evaluation of the GHI forecast is done hourly, we have also 
selected the corresponding hourly instantaneous value of the different 
stations. If a value from the AWS is missing in the corresponding hour, 
then this hourly value is aggregated within the next 30 min for the 
corresponding hour. If there is still a missing value for the aggregated 
hourly instantaneous data, it is set as a missing value. These missing 
hours were excluded from the analysis. Reliable observational data is 
critical to the accuracy of model performance. A second quality- 
controlled check of GHI was carried out in accordance with Baseline 
Surface Radiation Network (BSRN) guidelines. This consists of removing 
suspect values of the GHI data outside the physically possible limits and 
extremely rare limits [42]. The analysis only considers GHI measure
ments taken when the sun’s zenith angle (SZA) is less than 75◦ to 
eliminate errors caused by measurement uncertainties at sunrise and 
sunset and their seasonal variations [21]. 

2.4.2. Error metrics 
Error metrics provide an objective evaluation of the model’s accu

racy. They are quantitative measures of the error between the forecasted 
and observed GHI. For this study, we used the root-mean-square error 
(RMSE, Eq. (2) and the mean absolute error (MAE, Eq. (3). We also 
calculated the normalized RMSE (nRMSE, Eq. (4) and normalized MAE 
(nMAE, Eq. (5). Moreover, the Pearson’s correlation (R, Eq. (6), the 
index of agreement (IOA, Eq. (7) and the mean bias error (MBE, Eq. (8) 
are also used for the model evaluation. 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1

(Pi − Oi)
2

n

√

(2)  

MAE =
1
n

∑n

i=1
(|Pi − Oi|) (3)  

nRMSE =

[
RMSE

max(O) − min(O)

]

*100 (4)  

nMAE =

[
MBE

max(O) − min(O)

]

*100 (5)  

R =

∑n
i=1(Oi − O )(Pi − P )

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1(Oi − O )
2∑n

i=1(Pi − P )
2

√ (6)  

IOA = 1 −
∑n

i=1(Pi − Oi)

∑n
i=1(

⃒
⃒
⃒Pi − O

⃒
⃒
⃒

⃒
⃒
⃒Oi − O

⃒
⃒
⃒

)2 (7)  

MBE =
1
n
∑n

i=1
(Pi − Oi) (8)  

where Pi is the forecasted value, Oi the observation data at timestep i and 
n is the number of data points used for comparison. max(O) and min(O)

are the maximum and minimum value of the observations. 
In addition to these metrics, we incorporated a skill score (s) for the 

purpose of forecast verification. The skill score (s) serves as a quantifi
cation of the relative accuracy of forecasts generated by two forecast 
systems, with one of them serving as the reference system and it 
expressed as[50]: 

s =
Af − Ar

Ap − Ar
(9)  

where Af , Ap, and Ar indicate are the accuracy of the forecasts of interest, 
accuracy of the perfect forecasts. s can be based on some statistical 
metrics, but RMSE is commonly used in solar energy forecasting 
[76,5,74]. Thus, s is expressed as: 
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s = 1 −
RMSE(f , x)
RMSE(r, x)

(10)  

where f , r, and x denote forecasts of interest, reference forecasts, and 
observations, respectively. When s > 0, it means that the forecast is 
better than the reference forecast, while and s < 0 indicates that the 

forecast performs worse than the reference forecast. A value of s = 0 
implies that the forecast’s performance is equivalent to that of a refer
ence forecast. 

The reference forecasts can be produced by either persistence or 
climatology methods. However, both approaches can be also combined 
to have an optimum reference forecast; this method is strongly 

Fig. 4. Comparison of aerosol optical depth at 550 nm (AOD550) between AERONET and the CAMS reanalysis datasets for 2021 at Koforidua. Panel (a) shows the 
time series, while panel (b) shows the scatter plot between the two datasets. RMSE, MAE and R are the root mean square error, mean absolute error and Pearson 
correlation, respectively. 

Fig. 5. Spatial distribution of monthly averaged aerosol optical depth at 550 (AOD550) from CAMS reanalysis data for the year 2021. The triangle indicates the 
different automatic weather stations. 
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recommended by [76] in solar energy applications. Therefore, we used 
the optimal convex combination of climatology and persistence methods 
to produce the reference forecast. A single valued internal reference 
forecast of each of the three stations for the year 2021 when SZA < 75◦ is 
used for the climatology method. As for the persistence approach, 48- 
hour-ahead predictions were used. For more details on the optimal 
convex combination of climatology and persistence methods, please see 
Yang [74]. 

3. Results and discussions 

3.1. Comparisons between CAMS and AERONET AOD550 

Fig. 4 shows the daily time series and scatter plot of CAMS and 

AERONET data from AOD550 for the year 2021 at the Koforidua station. 
The AERONET system provides AOD information at inconsistent times 
that are automatically identified as moments of clear sky conditions 
[61]. Consequently, there are substantial and inherent gaps in the data. 
These gaps were excluded from the CAMS data for the assessment. In 
general, CAMS can mimic the seasonal pattern of AERONET. CAMS is 
able to capture the lower values of AOD550 that occur mainly during the 
rainy season. Both data agree on the two maxima of AOD during the dry 
season (January and April). An underestimation of CAMS is observed in 
the peak values of AOD550 with a deviation of 0.8 in January and 1 in 
April. The biases observed in CAMS could be related to persistent clouds 
in the region that hinder proper aerosol retrievals due to the lack of clear 
sky conditions [20]. However, both data sets have a high correlation 
value of about ~ 0.9, an RMSE = 0.22 and MAE = 0.13. A good annual 

Fig. 6. All-sky evaluation of WRF-Solar simulations of hourly forecasted GHI density versus observational data for weather stations using a normalized Gaussian 
kernel function with values between 0 and 1 for the year 2021. The rows depict the forecast lead time, with “00_day” representing the first day, “01_day” the second 
day, and “02_day” the third day. Each of the column represents a weather station with its respective name given on the top. RMSE, R, IOA, MAE, s, and MBE are root- 
mean-square error, Pearson correlation, index of agreement, and mean absolute error, skill score and the mean bias error, respectively. The terms nRMSE and nMAE 
indicate the normalized RMSE and MAE, respectively. 
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correlation of AOD has been shown for the period 2016–2020 with 
CAMS reanalysis data[48], like the findings of Léon et al. (2021) when 
comparing AERONET AOD550 with MODIS data at Koforidua. In sum
mary, CAMS is able to reproduce the pattern of the observation and also 
to slightly peak the magnitude at lower values of AOD550.However, 
CAMS reanalyse underestimates high AOD550 values occurring in the dry 
season. 

3.1.1. Characterizations of aerosol 
Fig. 5 illustrates the spatial distribution of AOD550 over the study 

area on a monthly basis using CAMS reanalysis data. The spatial dis
tribution of AOD550 shows the month-to-month variability. December to 
March indicate a high aerosol load, especially in the southern region 
(Akwatia and Kumasi). April reveals moderately elevated AOD550 values 
compared to the subsequent months, with an average value of 0.4–0.6. 
The AOD550 in this part is mainly due to biomass burning [20]. Ac
cording to Mari et al. [44], this biomass burning results from vegetation 
fires transported from Central Africa. In addition, mineral dust aerosols 
from the Sahara desert and anthropogenic pollutants contribute to the 
high AOD levels in the area[13]. This combination of different aerosol 
types leads to a complex atmospheric interaction in the region, which 
could affect the performance of the model during high AOD. The 
northern part of Ghana (Kologo) experiences considerable AOD loads 
during these months but less than the southern part. The average 
AOD550 value ranges between 0.2 and 0.8, with March showing the 
highest value. Mineral dust aerosols from Saharan dust aloft are the 
main source of AOD in the area [53]. 

3.2. WRF-solar evaluation 

3.2.1. All-sky 
The GHI forecast for the 3 days ahead for the year 2021 under all sky 

conditions of the different AWS is shown in Fig. 6. In general, WRF-Solar 
performs better at all stations and lead time than the reference data as 
shown by the values of s. Most of the s values are comparable to the 
forecast days of different stations. However, WRF-Solar performance of 
the GHI forecast increases towards the north for all 3 days ahead. Kologo 
shows the highest performance compared to Kumasi and Akwatia. Thus, 
on the first day of the forecast, Kologo has RMSE of 214 W.m− 2, MAE of 
156 W.m− 2 with s value of 0.24, while Kumasi (RMSE = 226 W.m− 2, 
MAE = 170 W.m− 2, s = 0.1) and Akwatia (RMSE = 249 W.m− 2, MAE =
194 W.m− 2, s = 0.14) show low performance. Nevertheless, at all three 
sites the model shows an overestimation of the GHI forecast for the 3 
days ahead with the largest bias at Akwatia (MBE = 130, 149, and 137 
W.m− 2 for 00_day, 01_day and 02_day, respectively). Overall, the WRF- 
Solar model performs better in forecasting GHI in cloud-free regions 
than in cloudy regions. This holds true when analyzing satellite or 
reanalysis data estimated in GHI [63,64]). Moreover, the performance of 
the model decreases as the duration of the forecast day increases. 

WRF-Solar’s performance is better on the first day than on the second 
and third days. For example, in Akwatia, the 00_day shows a value of 
RMSE = 249 W.m− 2 (18.8 %), MAE = 194 W.m− 2 (14.66 %), R = 0.64, 
IOA = 0.71, while on 01_day the model shows a value of RMSE = 265 W. 
m− 2 (19.98 %), MAE = 208 W.m− 2 (15.72 %), R = 0.63, IOA = 0.69, and 
02_day has a value of RMSE = 267 W.m− 2 (20.2 %), MAE = W.m− 2 210 
(15.83 %), R = 0.6, IOA = 0.68. Additionally, there is not much dif
ference between the GHI predictions for 01_day and 02_day in terms of 
RMSE compared to 00_day, where there is a difference of about 16 W. 
m− 2 between 00_day and 01_day, mainly at the cloudy sites (Akwatia 
and Kumasi). The deviation is reduced by half at the cloud-free site 
(Kologo; 8 W.m− 2). High biases were also found by[37]in the GHI 
forecast with the WRF model at the Jerez station in Spain under all sky 
conditions, with 00_day (RMSE = 142 W.m− 2) performing better than 
01_day (RMSE = 147 W.m− 2) and 02_day (RMSE = 152 W.m− 2). The 

Fig. 7. Comparison of 3-hour time series of the forecasted from WRF-Solar model and real-time aerosol optical depth at 550 nm (AOD550) for the year 2021. The real- 
time data, represented by the black line, was obtained from the CAMS real-time measurement, while the forecasted AOD550 is represented by the red line from the 
WRF-Solar model. The days are labeled as “00_day” for the first day, “01_day” for the second day, and “02_day” for the third day of the forecast. (For interpretation of 
the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 8. Similar to Fig. 7 but displays the real-time fractional cloud cover (CFC) from the Interim Climate Data Record (ICDR) SEVIRI (Spinning Enhanced Visible and 
InfraRed Imager) and the forecasted CFC from the WRF-Solar model. 

Fig. 9. Diurnal cycle of 3-day ahead forecast in different AWS during a period of high AOD load in the year 2021. Days are identified as “00_day” for the first day, 
“01_day” for the second day, and “02_day” for the third day of the forecast. The black line indicates the observed GHI, while the purple, green and purple lines show 
the 00_day, 01_day, and 02_day GHI forecasts, respectively. The gray bar shows the AOD values from CAMS reanalysis. (For interpretation of the references to colour 
in this figure legend, the reader is referred to the web version of this article.) 
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discrepancies between the biases of both results could be related to the 
different climate zones or the model configurations. The high bias in the 
region could be attributed to the aerosol-radiation or cloud-radiation 
feedback in the WRF-Solar model. These hypotheses are investigated 
by showing the forecast AOD550 and the CFC. 

3.2.2. Predicted aerosol optical depth at 550 nm (AOD550) 
Fig. 7 shows the 3-day ahead time series of AOD550 with real-time 

data for the year 2021. The figure contains the real-time data from 
CAMS (3-hourly) and the forecasted AOD550 from the WRF-Solar model 
(averaged over 3 h). The purpose of this analysis is to verify the accuracy 
of the AOD550 forecast vis-à-vis CAMS reanalysis data. The AOD550 
forecast shows better performance for 00_day compared to 01_day and 
02_day. During high AOD550 episodes, especially in Akwatia and 
Kumasi, the prediction fails to capture the magnitude and becomes 
worse on 01_day and 02_day with a deviation of more than 2. The sit
uation is similar in the case of Kologo, but with a deviation of less than 1. 
Overall, the AOD550 forecast indicates an overestimation for all stations 
and across all the forecast days. However, the bias of the AOD550 fore
cast is significantly lower for events with low AOD550 values. This sug
gests that the AOD550 forecast performs better at low values than at high 
values. Note that the AOD550 from the CAMS data is biased compared to 
the AERONET data (see section 3.1). Considering all biases, the AOD550 
forecast from CAMS has a significant bias at high values, especially in 
the Guinea climate zone (Akwatia and Kumasi). This agrees with the 
finding by Meilinger and Mekeng [48] who found CAMS to underesti
mate AOD for high AOD values during the Harmattan period and 
overestimates AOD for low values during rainy periods when compared 
to AERONET. 

3.2.3. Prediction of fractional cloud cover (CFC) 
Another uncertainty in the prediction of GHI could be due to the 

accuracy of the forecasted CFC in the model. For that, we also plotted the 
daily averaged time series of real-time CFC from ICDR-SEVIRI and the 
WRF solar model (Fig. 8). In line with the forecasting performance of 
AOD550 and GHI, the 00_day demonstrates more accurate CFC fore
casting compared to the 01_day and 02_day. Across various stations, 
RMSE and MAE values exhibit consistency for each forecast day, while 
correlation values show variations. Kologo has the highest correlation 
value of about 0.65, but this value drops to 0.57 (02_day) and 0.56 
(01_day). Akwatia and Kumasi have slightly the same correlation for 
each forecast day. In general, WRF-Solar tends to overestimate the CFC 
during the dry season and also during the rainy season at all considered 
stations and forecast days, but in general, the forecast shows an un
derestimation. For example, on day_00, the MBE values is 7.39 % for 
Akwatia, − 9.85 % for Kumasi, and − 0.04 % for Kologo. Kologo exhibits 
the least bias, while Kumasi and Akwatia show relatively high bias 
across all forecast days. The daily CFC of the WRF-Solar model shows 
biases that could potentially lead to biases in its hourly CFC. The results 
show that the WRF-Solar model is not able to reproduce reasonable 
cloud patterns in West Africa, which is prone to low-level clouds [2,10]. 
This is consistent with the conclusions of Yang et al. [77], who show that 
the WRF-Solar model leads to inaccuracies in the forecasting of thin and 
low-level clouds over the CONUS region. This implies the necessity of 
further improvement of cloud forecasting in the WRF-Solar model to 
improve the accuracy of GHI forecasting in the region. Nevertheless, 
there are still uncertainties in the analysis due to the possible bias of the 
satellite data due to algorithm retrieval issues or missed clouds [6]. 

3.2.4. Aerosol-radiation interactions in GHI forecasting 
Fig. 9 shows the diurnal cycle of forecasted GHI for different AWS on 

Fig. 10. Similar to Fig. 9, but during clear sky days composites.  
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Fig. 11. Similar to Fig. 10, but for cloudy days.  

Fig. 12. Bar plot of the normalized root-mean-square-error (nRMSE) of GHI forecasting under clear and cloudy skies for different automatic weather stations (AWS) 
for the year 2021. The 00_day indicates the first forecast day, while the 01_day and 02_day show the second and the third forecast day, respectively. The value on 
each barplot indicates the skill score value. 
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high AOD days. The figure was generated using the 90th and 95th 
percentiles of daily AOD data from the CAMS reanalysis for the year 
2021 for Akwatia, Kumasi and Kologo, respectively. The dates obtained 
are consistent with Fig. 5, which shows that the high AOD loading in the 
region occurs between December and April. In order to reduce the po
tential impact of clouds during periods of heightened aerosol loading, 
we have set a threshold of CFC ≤ 20 % for the selected dates. The model 
generally captures the diurnal pattern of GHI during periods of relatively 
low AOD loading across all stations, with the 00_day forecast performing 
better than the 01_day and 02_day forecasts. In addition, the WRF-Solar 
model performs better on some days in Kologo than in Akwatia and 
Kumasi, likely due to the aerosol types in these areas and/or presence of 
clouds. The latter is discussed is section 3.2.5. For example, on 1 April 
2021, when the maximum AOD exceeded 2 in Akwatia, all forecasted 
days could not accurately reproduce the pattern of GHI, while the model 

closely reproduce the pattern of GHI in Kologo, where the maximum of 
AOD value is below 1.5. However, for relatively low value of AOD 
(<1.5), the model is able to mimic the pattern of the GHI observation 
especially in Akwatia and Kumasi where all the forecast days match well 
the pattern of the observed. Though, the WRF-Solar overestimates the 
maximum observed GHI in most of days mainly in Kologo. On the other 
hand, the bias of forecasted AOD during periods of high values could 
also contribute to the GHI forecasting biases. [22]reports that an exist
ing bias in AOD can lead to a bias in the GH estimate of up to 8 %. The 
uncertainties in the input AOD or the information loss during AOD data 
assimilation may lead to adverse indirect effects of aerosol (on cloud and 
radiative properties) in the model. 

3.2.5. GHI forecasting under clear sky 
Fig. 10 displays the analysis of the direct and/or indirect effects of 

Fig. 13. Spatial distribution of real-time and predicted fractional cloud cover (CFC) for Akwatia on different dates using selected cloudy day composites (displayed 
on the left side). The real-time data is sourced from the ICDR-SEVIRI dataset, while the predicted data is derived from the WRF-Solar model. The days are labeled as 
“00_day” for the first day, “01_day” for the second day, and “02_day” for the third day of the forecast. The “r” denotes the spatial correlation between the real-time 
data and the forecasted data. The triangle represents the location of the automatic weather station. 
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aerosols on radiative properties in GHI forecasting. This shows the 
diurnal cycle of GHI from the model and observation under clear sky 
conditions. The figure was constructed using days greater than or equal 
to the 75th percentile of clear sky days in Akwatia (kt = 0.63) and 
Kumasi (kt = 0.67) and the 95th percentile in Kologo (kt = 0.75), as the 
northern region experiences more clear sky days than the southern part 
(Sawadogo et al., 2022). In Akwatia and Kumasi, certain days exhibit 
variations in the diurnal pattern of the observed GHI, transitioning from 
clear to cloudy conditions. These variations are likely due to the 
frequent occurrence of cloud and/or albedo enhancement effects 
(Gueymard et al., 2019). 

All forecast days (00_day, 01_day and 02_day) are overlaid with the 
observed GHI on most of the average clear-sky days in Kologo. However, 
in Akwatia and Kumasi, the 00_day and 01_day agree well with the 
observed GHI pattern on some day. The results indicate that the model is 
able to reproduce the observed GHI pattern in the northern region where 
mineral dust is predominant, but not in the southern region where 
biomass burning, mineral dust and anthropogenic aerosol coexist. This 
poor performance could be attributed to the bias in the forecasting of 
AOD from CAMS data (see Fig. 6). This is consistent with previous 
studies that have shown that the deterioration of the WRF-Solar model 
performance in forecasting GHI under clear skies is due to a large bias in 
AOD input, rather than radiation parameterization [29,60]. Another 
reason could be due to the different radiation schemes used in WRF- 
Solar (RRTMG) and CAMS (ecRad) or to the partial loss of 

multispectral aerosol information resulting from the sole use of the 
CAMS AOD550 field in the WRF-Solar model [39]. 

3.2.6. GHI forecasting under cloudy sky 
To generate the selected days in the composite of cloudy days, we 

determined the 90th percentile of the total cloudy days for different 
AWS. The WRF-Solar model overestimated GHI under cloudy conditions 
for all stations (Fig. 11) and could not replicate the observational 
pattern. The 00_day GHI forecast had the least bias, indicating that 
uncertainties in GHI forecasting during cloudy conditions exist in the 
region. This is consistent with previous studies[40]; [64]) highlighting 
that the WRF-Solar model produces uncertainties in GHI forecasting 
during cloudy days. These limitations may be due to the cloud-radiation 
feedback associated with cloud transmittance. 

However, using Kt to identify cloudy days could lead to misidenti
fication of cloudy days due to aerosols or pollution. Therefore, we 
examined the spatial distribution of CFC and AOD550 for the different 
days in Fig. 11 for each station (see Appendix) using the reference data 
(ICDR-SEVIRI and CAMS) and the WRF-Solar forecasting. This helped us 
to isolate true cloudy days and also to investigate the feedback between 
clouds, aerosols and radiation in relation to GHI forecasting in the 
region. 

For instance, on 12 September 2021, the daily mean AOD550 at 
Akwatia was less than 0.3 (see Appendix Fig. 16 m), while the CFC based 
on real-time data was above 70 % (see Appendix Fig. 12 m), which we 

Fig. 14. Similar to Fig. 13, but for Kumasi.  
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classified as a cloudy day. Similar classified cloudy days were observed 
in Kumasi (15 September 2021; see Appendix Fig. 14 m & Fig. 17 m) and 
Kologo (25 August 2021; see Appendix Fig. 15 i & Fig. 18 i). The WRF- 
Solar model was able to predict the CFC in all stations for days ahead, 
albeit with some notable biases. However, the uncertainty in the GHI 
prediction under cloudy conditions suggests that the model is not able to 
simulate the rapid change in cloud fluctuation in the area at the right 
time (Fig. 11 a). This shows that the forecast of cloud properties remains 
a major challenge for the WRF-Solar model, which may also contribute 
to the uncertainties in the GHI forecast [30,32] in the region due to the 
frequent occurrence of low-level stratus clouds during the rainy season. 

On 22 March 2021 at Akwatia (see Appendix Fig. 13 a & Fig. 16 a) 
and on 16 June 2021 at Kologo (see Appendix Fig. 15 e & Fig. 18 e), 

there was a relatively high AOD load and CFC, and the model could not 
replicate the observational pattern (Fig. 11). The pattern of all pre
dictions for days ahead was similar to that of clear sky days. These 
“pseudo clear sky” conditions, produced by the model, could be related 
to the dissipation of clouds. Indeed, while aerosols can act as cloud 
condensation nuclei (CCN), increasing high concentrations of aerosols in 
non-precipitating clouds can lead to smaller cloud droplets that evapo
rate faster, which may result in clear skies under dry conditions[17]. 
This suggests that the WRF-Solar model tends to produce clear skies 
instead of cloudy skies when high AOD interacts with clouds in the re
gion. This also indicates uncertainties in the predictive ability of the 
WRF-Solar model when it comes to high AOD values resulting from 
biomass burning, anthropogenic pollution and dust interacting with 

Fig. 15. Similar to Fig. 13, but for Kologo.  
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clouds in the region. This could be due to the assimilation process of the 
AOD in the aerosol-aware Thompson-Eidhammer microphysics scheme 
[40] and/or the feedback between cloud, aerosol and radiation, as the 
AOD is directly transferred into the radiative transfer routine[60]. 
Nevertheless, the pattern of the WRF-Solar is much better than that of 
Akwatia on that date. This is line with Liu et al. [40] , where they found 
that the performance of the WRF-Solar model depends of the type of 
aerosols and sources. 

Overall, the study concludes that the aerosol-cloud-radiation feed
back in the WRF-Solar model can lead to uncertainties in the prediction 
of GHI on cloudy sky days when high AOD values are involved, which is 
consistent with previous findings[40]. The bias in AOD and CFC fore
casts may contribute to these large uncertainties. 

3.2.7. GHI forecasting under clear and cloudy skies 
Fig. 12 illustrates nRMSE and s of GHI forecasting for clear and 

cloudy days using different AWS when SZA > 75̊. In clear skies, the 3- 
day ahead forecast of GHI in Kologo outperforms the 00_day forecast 
in Akwatia and Kumasi. This is also shown by the values of s where the 
value of s is about 0.33 in Kologo and 0.17 and 0.29 in Kumasi and 
Akwatia, respectively. The relative low skill score values found could be 
explained by the employed method (optimal convex combination of 
climatology and persistence) used. Typically, this method yields lower 
skill scores compared to solely relying on climatology or persistence 
approach [47,75]. Liu et al. [41] demonstrated a shortfall ranging from 
0.2 to 0.6 in the skill score for solar irradiance forecasting across the 
CONUS region when employing the optimal convex combination of 
climatology and persistence method. They also suggested that using this 
method provides opportunities for improving solar irradiance 

Fig. 16. Spatial distribution of real-time and predicted AOD550 for Akwatia on different dates using selected cloudy day composites (displayed on the left side The 
real-time data comes from the CAMS data, while the predicted data is derived from the WRF-Solar model. The days are labeled as “00_day” for the first day, “01_day” 
for the second day, and “02_day” for the third day of the forecast. The “r” denotes the spatial correlation between the real-time data and the forecasted data. The 
triangle represents the location of the automatic weather station. 

W. Sawadogo et al.                                                                                                                                                                                                                             



Solar Energy 271 (2024) 112413

16

forecasting. However, among the forecasts in Kologo, the 00_day fore
cast has the best performance (9.62 %), followed by the 01_day (11.56 
%) and 02_day (12.29 %) forecasts. The performance difference between 
the 02_day forecast in Kologo and the 00_day forecast in Akwatia and 
Kumasi is approximately 3.86 % and 6.27 %, respectively. The 
discrepancy between Kologo and the other two sites could be due to 
variations in aerosol types and sources or uncertainties associated with 
the input AOD in the WRF-Solar model. In Akwatia and Kumasi, the 
00_day and 01_day forecasts are similar, indicating that the 00_day and 
01_day forecast are preferable in Akwatia and Kumasi, while in Kologo 
the 3-day ahead GHI forecast could be used. 

Under cloudy day composites, WRF-Solar performs worse in all the 
stations and forecast days with s ranges from − 1.06 to − 0.47. This 
suggests that the reference forecast perform better than the real forecast. 
However, the 00_day forecast is preferred in all AWS under cloudy skies. 
The poor performance of Kologo under cloudy skies could be related to 
the fact that the model does not properly represent the occurrence of 
cumulus clouds, as cumulus clouds are common in this area during the 
rainy season. This was also evident in the CONUS domain, where the 
deviation of the frequency of cumulus clouds from the WRF-Solar model 
could reach about 45 % [77]. Overall, Kologo shows the best perfor
mance under all-sky conditions. This suggests that the model compen
sates for the large bias in cloudy skies with clear skies. 

The uncertainties in GHI forecasting under cloudy skies may be also 
related to cloud predictions in the WRF-Solar model and the indirect 
effect of aerosols on clouds in the region. Clouds are difficult to predict 
due to their complex dynamics and microphysics. To improve GHI 
forecasting under cloudy skies,[30,32] suggested initializing clouds in 
the WRF-Solar model using satellite observations to detect and advect 
clouds within the model domain, providing more realistic cloud fields. 
Another method to reduce uncertainties in GHI forecasting could be the 
use of ensemble probabilistic systems (EPS) to generate multiple cloud 
scenarios based on perturbations of initial boundary conditions [77] or 
model parameterizations. Those two approaches could substantially 
reduce uncertainties in GHI forecasting and provide more accurate 
values. Accuracy in GHI forecasting will help various solar energy ap
plications, such as plant installation, demand and supply balancing, load 
dispatch scheduling, storage management, trading of generated power 
in the market [35]. 

4. Summary and conclusion 

The study has investigated the capability of the WRF-Solar model for 
GHI forecasting in the West African region, especially Ghana. The 
model’s accuracy is compared with three reliable AWS: Akwatia, Kumasi 
and Kologo for 2021. The ECMWF-HRES forecast data provided the 

Fig. 17. Similar to Fig. 16, but for Kumasi.  
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initial and lateral boundary conditions. Moreover, we fully coupled the 
WRF-Solar model with AOD from CAMS datasets. We analyzed the 
model under various weather conditions: cloudy, clear, and all-sky at an 
instantaneous hourly rate. We also investigated the aerosol-cloud- 
radiation feedback on a specific day. The results of this study can be 
summarized as follows:  

• CAMS AOD550 shows a considerable negative bias compared to 
AERONET data in the southern part of Ghana during the dry period 
and a positive bias during the rainy season. 

• CAMS AOD550 predicts high values poorly and its prediction accu
racy decreases with longer forecast days.  

• For all-sky conditions, GHI forecasting performs best for 00_day lead 
time and at the Kologo AWS.  

• There are some notable biases in the CFC predictions from the WRF- 
Solar model.  

• WRF-Solar model is able to reproduce the observed GHI diurnal cycle 
under high AOD conditions in most of the selected days.  

• For clear skies, GHI forecasting performs better for 00_day, 01_day 
and 02_day at Kologo, and for 00_day and 01_day at Akwatia and 
Kumasi.  

• Under cloudy skies, the WRF-Solar model exhibits large uncertainties 
at all the AWS and 00_day GHI forecast should be used. 

In this study, the WRF-Solar model has shown the capability of 

Fig. 18. Similar to Fig. 16, but for Kologo.  
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forecasting GHI in the West African region mainly under clear-sky 
conditions. However, on cloudy days, the model has larger un
certainties. The results of our study align with previous ones using the 
WRF-Solar model but differ in terms of uncertainties [23,31,37]. This 
could be related to the frequent low-level clouds in the region, as the 
WRF-Solar model cannot predict them accurately[77]. Moreover, the 
substantial uncertainties in GHI forecasting could be attributed to un
certainties in the input AOD during data assimilation within the model. 
The aerosol-cloud-radiation feedback parametrization should be 
improved when the high AOD is ingested in the model. One potential 
study is to compare AOD data from the CAMS and NASA’s GEOS-5 
global models, while using the fully coupled WRF-Solar model for GHI 
forecasting in the region. Additionally, studies should explore the use of 
the Multi-sensor Advection Diffusion nowCast (MAD-WRF) model in 
combination with the WRF-Solar model to initialize clouds using satel
lite data on cloud and relative humidity. Furthermore, it would be useful 
to assess the performance of the WRF-Solar EPS model in conjunction 
with the WRF-Solar model, as this can provide valuable insights into the 
uncertainties associated with GHI forecasting in the region. 

Our study found that the WRF-Solar model accurately forecast GHI 
up to 3 days in advance under clear-sky conditions. We identified some 
limitations in the analyzing of GHI forecasting. Specifically, using a 
clearness index for cloud classification may result in false cloudy days 
due to aerosol loading or pollution and also not a really clear sky day 
mainly in cloudy regions. In contrast, using a cloud mask may accurately 
classify cloudy and clear sky days. Additionally, our comparison of 
simulated CFC with observational data on a daily basis did not allow for 
deeper analysis. Despite these limitations, our study provides insight 
into the use of the WRF-Solar model for GHI forecasting in West Africa, 
which can benefit solar energy managers in energy management, plan
ning, grid integration, and cost reduction efforts. The results of our study 
may also be useful for healthcare centers seeking to enhance their PV- 
based energy solutions in Ghana. 
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C. Mari, H. Schlager, A. Schwarzenboeck, B. Adler, L. Amekudzi, V. Yoboué, The 

W. Sawadogo et al.                                                                                                                                                                                                                             

https://doi.org/10.1016/j.solener.2016.06.069
https://doi.org/10.1029/2020JD034028
https://doi.org/10.5194/essd-9-415-2017
https://doi.org/10.5194/essd-9-415-2017
https://doi.org/10.1002/met.2049
https://doi.org/10.1016/j.pecs.2018.10.003
https://doi.org/10.3390/rs10040616
https://doi.org/10.3390/rs10040616
https://doi.org/10.3390/en14020409
https://doi.org/10.3390/en14020409
https://doi.org/10.3390/a14060177
http://refhub.elsevier.com/S0038-092X(24)00107-5/h0045
http://refhub.elsevier.com/S0038-092X(24)00107-5/h0045
http://refhub.elsevier.com/S0038-092X(24)00107-5/h0045
http://refhub.elsevier.com/S0038-092X(24)00107-5/h0045
http://refhub.elsevier.com/S0038-092X(24)00107-5/h0050
http://refhub.elsevier.com/S0038-092X(24)00107-5/h0050
http://refhub.elsevier.com/S0038-092X(24)00107-5/h0050
https://doi.org/10.1088/2515-7620/ab7366
https://doi.org/10.5194/acp-19-473-2019
https://doi.org/10.5194/acp-19-473-2019
https://doi.org/10.1016/j.solener.2022.01.066
https://doi.org/10.1175/JAS-D-16-0037.1
https://doi.org/10.1029/2018MS001453


Solar Energy 271 (2024) 112413

19

Dynamics–Aerosol–Chemistry–Cloud Interactions in West Africa Field Campaign: 
Overview and Research Highlights, Bull. Am. Meteorol. Soc. 99 (1) (2018) 83–104, 
https://doi.org/10.1175/BAMS-D-16-0256.1. 

[21] J. Flemming, V. Huijnen, J. Arteta, P. Bechtold, A. Beljaars, A.-M. Blechschmidt, 
M. Diamantakis, R.J. Engelen, A. Gaudel, A. Inness, et al., Tropospheric chemistry 
in the Integrated Forecasting System of ECMWF, Geosci. Model Dev. 8 (4) (2015) 
975–1003. 

[22] C.A. Gueymard, Uncertainties in Modeled Direct Irradiance Around the Sahara as 
Affected by Aerosols: Are Current Datasets of Bankable Quality? J. Sol. Energy Eng. 
133 (3) (2011) https://doi.org/10.1115/1.4004386. 

[23] Gueymard, C., & Jimenez, P. (2019). Validation of Real-Time Solar Irradiance 
Simulations Over Kuwait Using WRF-Solar. 10.18086/eurosun2018.09.14. 

[24] S. Gyamfi, M. Modjinou, S. Djordjevic, Improving electricity supply security in 
Ghana—The potential of renewable energy, Renew. Sustain. Energy Rev. 43 (2015) 
1035–1045, https://doi.org/10.1016/j.rser.2014.11.102. 

[25] T. Haiden, M. Janousek, F. Vitart, Z.B. Bouallègue, L. Ferranti, F. Prates, 
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