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a b s t r a c t

A graph is said to be interval colourable if it admits a proper edge-
colouring using palette N in which the set of colours of edges that
are incident to each vertex is an interval. The interval colouring
thickness of a graph G is the minimum k such that G can be edge-
decomposed into k interval colourable graphs. We show that
θ (n), the maximum interval colouring thickness of an n-vertex
graph, satisfies θ (n) = Ω(log(n)/log log(n)) and θ (n) ⩽ n5/6+o(1),
which improves on the trivial lower bound and the upper bound
given by the first author and Zheng. As a corollary, we answer
a question of Asratian, Casselgren, and Petrosyan and disprove
a conjecture of Borowiecka-Olszewska, Drgas-Burchardt, Javier-
Nol, and Zuazua. We also confirm a conjecture of the first author
that any interval colouring of an n-vertex planar graph uses at
most 3n/2 − 2 colours.

© 2024 Published by Elsevier Ltd.

1. Introduction

We say that a graph G is interval colourable if it has an interval colouring c , that is, a proper
dge-colouring c : E(G) → N such that the set of colours incident to each vertex v ∈ V (G),
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{c(vw) : w ∈ N(v)}, consists of consecutive integers. Since these notions were introduced by
sratian and Kamalian [2] in 1987, interval colourable graphs and their properties have been studied
xtensively (see, for example, [1–3,6,8,12,17]). Examples of interval colourable graphs include trees
nd regular class 1 graphs (and hence, in particular, regular bipartite graphs), while non-interval
olourable graphs include odd cycles and complete graphs with an odd number of vertices (see [17]
or a further, bipartite, example).

In the present paper, we principally study a parameter introduced recently by Asratian, Cassel-
ren, and Petrosyan [1] to quantify how far a graph is from being interval colourable. The interval
olouring thickness of a graph G, denoted θ (G), is the minimum number k such that G can be
dge-decomposed into k interval colourable subgraphs. Interval colouring thickness, and interval
olourings more generally, are of particular interest in theoretical computer science as they are
elated to scheduling tasks without waiting periods. For instance, suppose one wishes to schedule
ne on one meetings between certain attendees at a conference; let G be the graph with the
ttendees as vertices, and edges corresponding to the desired meetings. If each meeting lasts the
ame amount of time and nobody is willing to wait between any of their meetings on a given day,
hen the interval colouring thickness of G corresponds to the minimum number of days over which
he meetings must run.

We write θ (n) for the maximum interval colouring thickness of a graph on n vertices, and θ ′(m)
or the maximum interval colouring thickness of a graph with m edges. Upper bounds on θ (G) in
erms of the edge chromatic number of G obtained by Asratian, Casselgren, and Petrosyan [1] imply
hat θ (n) ⩽ 2 ⌈n/5⌉, and the same authors observe that an arboricity result of Dean, Hutchinson,
nd Scheinerman [9] gives θ ′(m) ⩽

⌈√
m/2

⌉
. The first author and Zheng [6] improved on the first

of these bounds, showing that θ (n) is sublinear. In Section 3 we show that a result of Rödl and
Wysocka [16] implies the following polynomial improvement.

Theorem 1. We have θ (n) ⩽ n5/6+o(1) and θ ′(m) ⩽ m5/11+o(1).

As noted above, various graphs G with θ (G) ⩾ 2 are known, but to the best of our knowledge
none with θ (G) ⩾ 3 have been found. In Section 2 we show that θ (n) = ω(1).

Theorem 2. We have θ (n) = Ω

(
log(n)

log log(n)

)
, and consequently θ ′(m) = Ω

(
log(m)

log log(m)

)
.

The first bound in Theorem 2 is proved via a random construction, which, in fact, produces a
bipartite graph. The bound on θ ′(m) follows trivially (see Section 2). One corollary of this theorem
is that for every integer k there exists a graph with interval colouring thickness k, answering
a question of Asratian, Casselgren, and Petrosyan [1]. Indeed, given a graph G of some interval
colouring thickness K , and an edge-decomposition of G into K interval colourable subgraphs, the
union of any k ⩽ K of these subgraphs has interval colouring thickness k.

Theorem 2 also disproves a conjecture of Borowiecka-Olszewska, Drgas-Burchardt, Javier-Nol,
and Zuazua [8], who defined an oriented graph to be consecutively colourable if it has an arc colouring
using palette N such that for each vertex v, the colours of the out-arcs from v are all different and
orm an interval, and similarly for the in-arcs to v. They conjectured that for every graph G, there
xists an orientation of its edges that is consecutively colourable. It is easy to see that this conjecture
mplies that θ (G) ⩽ 2 for every bipartite graph G, and hence is false by our construction.

In the last part of this paper we are interested in the maximum number of colours which can
e used in an interval colouring of a given interval colourable graph. To this end, for each interval
olourable graph G we define t(G) to be the greatest number of colours used in an interval colouring
f G. This parameter was introduced by Asratian and Kamalian [2] who proved that t(G) ⩽ |V (G)|−1
f |V (G)| ⩾ 1 and G contains no triangles and later [3] that t(G) ⩽ 2 |V (G)| − 1 for all graphs G
ith |V (G)| ⩾ 1. This was improved by Giaro, Kubale, and Małafiejski [10] to t(G) ⩽ 2 |V (G)| − 4

or all graphs with at least three vertices. The first author [4] improved this bound over the class
f planar graphs to t(G) ⩽ (11/6) |V (G)| and conjectured that this could be further improved to
(G) ⩽ (3/2) |V (G)|. We confirm this conjecture.
2
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Theorem 3. Let G be a planar graph on n ⩾ 2 vertices that admits an interval colouring. Then
(G) ⩽ (3/2)n − 2.

Theorem 3 was shown to be tight in [4]. In Section 4, where the theorem is proved, we recall
he constructions demonstrating this fact and extend them to a larger collection of graphs.

ote. This paper supersedes two independent works by subsets of the present authors which
ppeared on arXiv almost simultaneously [5,13]. In particular, Theorem 3 already appears in our
reprint [13]. Shortly after this, an independent proof of Theorem 3 was announced by Arsen
ambardzumyan and Levon Muradyan [11].

. Interval colouring thickness lower bound

In order to provide a lower bound on the interval colouring thickness of the graph G that we
onstruct below, we will need to show that every edge-decomposition of G into sufficiently few
arts has a part which is not interval colourable. Our approach to disproving interval colourability
s based on the following observation, noted by Sevastianov [17].

bservation 4. Let G be an interval colourable graph and let U ⊆ V (G). Suppose that there exists
∈ N such that for all distinct v, w ∈ U there is a path P in G from v to w such that

∑
x∈V (P) d(x) ⩽ d.

hen for all u ∈ V (G), we have |N(u) ∩ U | ⩽ d.

Proof. If |U | ⩽ 1 then the lemma holds trivially, so assume |U | ⩾ 2. Let c be an interval colouring
of G, let u ∈ V (G), and let v, w ∈ N(u) ∩ U be distinct. Fix a path P = x1 . . . xk in G from v = x1 to
w = xk such that

∑k
i=1 d(xi) ⩽ d. The colours under c of any two edges incident to a vertex x of G

differ by at most d(x)− 1, so it follows from the existence of P that any edge incident to v and any
edge incident to w have colours differing by at most

∑k
i=1(d(xi) − 1) ⩽ d − 1. Observe that we can

hoose v and w such that c(uv) − c(uw) ⩾ |N(u) ∩ U | − 1 which gives |N(u) ∩ U | ⩽ d. □

We shall construct a bipartite graph of large interval colouring thickness by patching together
any bipartite graphs of the form given by the following lemma.

emma 5. Fix α ∈ (0, 1/2] and let a and n be integers satisfying n ⩾ max{1000(log(a)+1)/α, a+1}.
hen there is a bipartite graph G on parts A and B of sizes a and n respectively satisfying the following.

(a) For all x ∈ A, d(x) = ⌊αn⌋.
(b) For each δ ∈ (0, 1] with δ ⩾ 10a−1/3α−1, if H is a subgraph of G with at least αδan edges, then

there exist A′
⊆ A and B′

⊆ B with
⏐⏐A′

⏐⏐ ⩽ 1/α and
⏐⏐B′

⏐⏐ ⩾ δn/16 such that the induced subgraph
H[A′

∪ B′
] has diameter at most 6.

roof. Let A and B be vertex sets of the desired sizes and consider the random bipartite graph
etween them in which every edge appears independently with probability 4α/3. For every vertex
∈ A, the random variable d(x) follows a binomial B(n, 4α

3 ) distribution, and therefore by a Chernoff
bound (see for instance Theorem 2.1 in [14]) we have

P(d(x) < αn) ⩽ e−
1
24 αn.

By a union bound over all vertices x ∈ A, it follows from n ⩾ 1000(log(a) + 1)/α that with failure
robability at most 1/e we have d(x) ⩾ αn for all x ∈ A.
For a fixed set U ⊆ B and y ∈ A, let EU,y be the event that |U ∩ N(y)| > 2α|U |. We will say

that property (⋆) holds in this random graph if for every U ⊆ B there are at most m := 24n/α|U |

vertices y ∈ A for which EU,y occurs.

Claim 1. Property (⋆) holds with failure probability at most 1/e.
3
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Proof. Fix U ⊆ B. For each y ∈ A, the random variable |U ∩ N(y)| follows a binomial B(|U |, 4α
3 )

distribution. Therefore by a Chernoff bound (see for instance Theorem 2.1 in [14]) we have

P(EU,y) = P(B(|U |,
4α
3

) > 2α|U |) ⩽ e−
1
11 α|U |.

Since the events EU,y are independent, for any set W ⊆ A the event
⋂

y∈W EU,y occurs with
probability at most e−

1
11 α|U ||W |. Taking a union bound over all such subsets W with |W | ⩾ m, we

ind that with failure probability at most 2ae−2n there are at most m vertices y ∈ A for which EU,y
occurs. The claim follows from a second union bound over all U ⊆ B, using that n ⩾ a + 1. □

Thus, there is a positive probability that in this random graph we have both d(x) ⩾ αn for
all x ∈ A, and property (⋆). Given an outcome with these properties, we can delete edges where
necessary to obtain a graph G satisfying (a) and (⋆). We will now show that G also satisfies (b).

Let δ ∈ (0, 1] with δ ⩾ 10a−
1
3 α−1 and fix a subgraph H of G with at least αδan edges. Let

{s1, . . . , sk} ⊆ A be a maximal set with the property that there is a collection of pairwise disjoint
sets {S1, . . . , Sk} such that Si ⊆ NH (si) and |Si| = ⌈αδn/4⌉ for each i ∈ [k]. Note that k ⩽ 4/(αδ)
(indeed, otherwise n = |B| ⩾

∑
i |Si| > n). By property (⋆), for each i ∈ [k] there are at most

m = 24n/(α|Si|) vertices y ∈ A with |Si ∩ NG(y)| > 2α |Si|. Since the degree in H of each vertex in A
is at most ⌊αn⌋, these vertices are incident to at most km ⌊αn⌋ edges in H . It follows, letting e(H)
enote the number of edges of H and using the fact that a ⩾ 1000/(α3δ3), that there exists a vertex
∈ A in H which has |Si ∩ NG(z)| ⩽ 2α |Si| for all i ∈ [k] with

dH (z) ⩾
e(H) − km ⌊αn⌋

a
⩾

αδan − 4α−1δ−1
· 96α−2δ−1αn

a
= αδn −

384n
α2δ2a

⩾
αδn
2

.

et S =
⋃

Si. If z ∈ {s1, . . . , sk}, then clearly |NH (z) ∩ S| ⩾ αδn/4. Otherwise, if z ∈ A \ {s1, . . . , sk},
et |NH (z) ∩ (B \ S)| ⩾ αδn/4, then we could add z to {s1, . . . , sk}, contradicting the maximality of
hat set. Hence, in either case |NH (z) ∩ S| ⩾ αδn/4. The number of the Si’s that have a non-empty
ntersection with NH (z) is at least |NH (z) ∩ S|/max{|NH (z) ∩ Si| : i = 1, . . . , k}, which is thus at least

αδn/4
2α⌈αδn/4⌉ ⩾ 1

4α .
Denote by B′ the union of the first ⌈1/(4α)⌉ of the Si’s which intersect NH (z) and let A′ be the

set containing z and the corresponding si. By construction, H[A′
∪ B′

] has diameter at most 6 and
we have

⏐⏐A′
⏐⏐ = ⌈1/(4α)⌉ + 1 ⩽ 1/α and

⏐⏐B′
⏐⏐ ⩾ ⌈1/(4α)⌉ · αδn/4 ⩾ δn/16, as required. □

To obtain Theorem 2, we will construct a graph G that is a union of t ≈ log(n) bipartite graphs
i with bipartitions (Ai, B) such that |Ai| =

√
n and |B| = n, and where the degrees of the vertices

n Ai−1 are twice those of the vertices in Ai. The graphs Gi are obtained by t separate applications of
Lemma 5 so that each of them satisfies (b) and we suppose towards a contradiction that G can be
edge-partitioned into ℓ ≈ log(n)/log log(n) interval colourable subgraphs. One of these subgraphs
H has

∑
i e(H ∩ Gi)/e(Gi) ⩾ t/ℓ ≈ log log(n). Letting δi := e(H ∩ Gi)/e(Gi), we restrict our attention

o those i ∈ [t] for which δi is large enough to invoke property (b) for H ∩ Gi, noting that this does
ot result in a significant loss of total edge density.
We now apply property (b) for each such i to find a small diameter subgraph G′

i of H ∩ Gi on
A′

i ∪ Bi where |A′

i| is small and |Bi| ≳ δin. Restricting the indices under consideration once more to
some set I ⊆ [t], we can achieve that for i < j ∈ I , the degrees in A′

i are much bigger than those in
A′

j , while maintaining that
∑

i δi ⩾ C for some constant C . We can now use Observation 4 to show
hat

⏐⏐Bi ∩ Bj
⏐⏐ is small for all i ̸= j. Combined with the fact that the sum of the sizes of the Bi is much

arger than n, this gives the required contradiction.

roof of Theorem 2. We may assume that n is large, so in what follows we will not concern
urselves with whether expressions are integers. Let ℓ = log(n)/(280 log log(n)). To prove the
heorem we will construct a graph G on at most 2n vertices which we will show has interval
olouring thickness greater than ℓ. Let t = log(n)/7 and let B be a set of n vertices. For each i ∈ [t],
et Ai be a set of a =

√
n vertices and let Gi be a bipartite graph with bipartition (Ai, B) of the

form given by Lemma 5, where α is taken to be α = 2−i. To see that the assumption on n in the
i

4
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statement of the lemma is satisfied in each case, note that n−1/7 ⩽ αi ⩽ 1/2 and that since n is
large, n ⩾ a + 1 and

1000(log(a) + 1)
αi

⩽ 1000 · n1/7
·

(
log(n)

2
+ 1

)
⩽ n.

et G be the union of the Gi, so that G is a bipartite graph with bipartition (
⋃

i Ai, B). Note that
V (G)| = n+ t

√
n = n+ log(n)

√
n/7 ⩽ 2n, and suppose towards a contradiction that G has an edge-

ecomposition into ℓ interval colourable subgraphs. For each subgraph H in such a decomposition,
nd each i ∈ [t], let δi(H) := |E(H) ∩ E(Gi)| /e(Gi). Note that∑

H

∑
i∈[t]

δi(H) = t,

so by the pigeonhole principle there is a subgraph H in the decomposition such that
∑

i∈[t] δi(H) ⩾
/ℓ ⩾ 40 log log(n).

By another application of the pigeonhole principle we can find I ′ ⊆ [t] such that j+2 log log(n) ⩽
for all j < i in I ′ and

∑
i∈I ′ δi(H) ⩾ 20. Now form I ⊆ I ′ by deleting any i for which δi(H) < 1/log(n),

nd note that since t ⩽ log(n), we still have
∑

i∈I δi(H) ⩾ 19. For each i ∈ I we have δi(H) ⩾

/log(n) ⩾ 10 · n−1/6
· n1/7 ⩾ 10a−1/3α−1

i , so by the construction of Gi there exist sets A′

i ⊆ Ai and
i ⊆ B such that

⏐⏐A′

i

⏐⏐ ⩽ α−1
i , |Bi| ⩾ δi(H)n/16, and H[A′

i ∪ Bi] has diameter at most 6. Next, we show
hat the intersection of any two of the sets Bi is small.

laim 2. For each pair j < i in I, we have
⏐⏐Bi ∩ Bj

⏐⏐ ⩽ 7αiα
−1
j n.

roof. We will apply Observation 4 to the interval colourable graph H , where U is taken to be
′

i ∪ Bi. For each x ∈ A′

i we have dH (x) ⩽ αin, for each y ∈ Bi we have dH (y) ⩽ t
√
n ⩽ αin, and

[A′

i ∪ Bi] has diameter at most 6, so between any two points in A′

i ∪ Bi there is a path in H whose
egree sum is at most 7αin. It follows that for all v ∈ A′

j with j ̸= i, we have |NH (v) ∩ Bi| ⩽ 7αin.
inally, since Bj ⊆ NH (A′

j), we have
⏐⏐Bi ∩ Bj

⏐⏐ ⩽ ∑
v∈A′

j
|NH (v) ∩ Bi| ⩽

⏐⏐A′

j

⏐⏐ 7αin ⩽ 7αiα
−1
j n. □

By the construction of I , for j < i in I we have αiα
−1
j ⩽ 2−2 log log(n), so by Claim 2 and recalling

hat |I| ⩽ t = log(n)/7, we have∑
j<i
i,j∈I

⏐⏐Bi ∩ Bj
⏐⏐ ⩽ |I|2 · 7 · 2−2 log log(n)n ⩽ 7t2 log(n)−2n =

n
7
.

t follows that

n ⩾

⏐⏐⏐⏐⏐⋃
i∈I

Bi

⏐⏐⏐⏐⏐ ⩾ ∑
i∈I

|Bi| −

∑
j<i
i,j∈I

⏐⏐Bi ∩ Bj
⏐⏐ ⩾ ∑

i∈I

δi(H)n
16

−
n
7

⩾
19n
16

−
n
7

> n,

hich gives the required contradiction and completes the proof of the bound on θ (n). It is
traightforward to deduce the bound on θ ′(m) by noting that any n-vertex graph contains at most
2 edges and θ ′ is a non-decreasing function, so θ ′(n2) ⩾ θ (n) for all n. □

. Interval colouring thickness upper bound

We prove Theorem 1 using an edge-decomposition into forests and regular bipartite subgraphs.
uch graphs are interval colourable (regular bipartite graphs can be edge-decomposed into perfect
atchings which can be taken as colour classes). To find large regular subgraphs of relatively dense
raphs we rely on the following result of Rödl and Wysocka [16].

heorem 6 ([16]). Let γ :N → [0, 1/2) satisfy γ (n) = ω(n−1/3). Then every n-vertex graph with at
east γ n2 edges contains an Ω(γ 3n)-regular subgraph.
5
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Before proving Theorem 1, we note that it is relatively straightforward to use Theorem 6 and
he bound θ ′(m) = O

(√
m

)
[1,9] mentioned in the introduction to prove that θ (n) = n1−Ω(1).

ndeed, let G be an n-vertex graph and suppose that e(G) = Ω(n2−2/13). Then G contains a
ipartite subgraph with Ω(n2−2/13) edges, which in turn contains an Ω(n1−6/13)-regular (bipartite)
ubgraph by Theorem 6. Such a subgraph contains Ω(n2−12/13) edges. Delete these edges from G,
nd repeat until the remaining graph has fewer than n2−2/13 edges. This process terminates after
(n2−2+12/13) = O(n12/13) steps, at which point we have partitioned G into O(n12/13) regular bipartite
and hence interval colourable) subgraphs, and a subgraph with O(n2−2/13) edges. This final portion
as interval colouring thickness O(

√
n2−2/13) = O(n12/13) by the bound on θ ′(m), so θ (G) = O(n12/13).

When upper bounding the number of steps in this process we assumed the worst: that there
were on the order of n2 edges in G to begin with. If this were the case, however, then we could
(and should) have taken the first few regular bipartite subgraphs to have more edges than we did.
Thus, to make optimal use of Theorem 6 we must adjust the sizes of the regular bipartite subgraphs
as we go through. Note that at the end of the process we appeal to a bound on θ ′(m), so the quality
of the bound on θ (n) that we can obtain from this argument will depend on the quality of our θ ′(m)
bound. The next lemma optimises this approach for any given polynomial upper bound on θ ′(m).

emma 7. Suppose that θ ′(m) = O(mβ ) for some β ∈ (0, 1/2]. Then θ (n) ⩽ nα+o(1), where α =
10β
5+β

.

roof. Fix ε > 0. It is sufficient to show that every n-vertex graph has interval colouring thickness
(nα+ε). Let αi =

α
5

(
1 −

1
6i

)
for each i ∈ N, let α0 = 0, and suppose that G is an n-vertex graph

ith n2−αi+1 ⩽ e(G) ⩽ n2−αi for some i ∈ N0. Then G contains a bipartite subgraph with at least
2−αi+1/2 edges which in turn has an Ω(n1−3αi+1 )-regular (bipartite) subgraph by Theorem 6 (note
hat αi+1 < 1/3). This subgraph has Ω(n2−6αi+1 ) edges, so if we delete these edges from G and
epeat the procedure until the remaining graph has fewer than n2−αi+1 edges, then the process will
erminate after O(n2−αi/n2−6αi+1 ) = O(n6αi+1−αi ) = O(nα) steps.

Let j ∈ N be large enough that αj ⩾
α
5 − β−1ε. Every n-vertex graph G has at most n2

= n2−α0

dges, so by repeatedly applying the above procedure, we can remove at most j · O(nα) = O(nα)
egular bipartite graphs from G so that fewer than n2−αj edges remain. By the assumed bound on
′(m), this remaining portion has interval colouring thickness O(nβ(2−αj)) = O(nβ(2−α/5+β−1ε)) =

(nα+ε). □

The next lemma converts an upper bound on θ (n) to one on θ ′(m). The proof is based on the
dea that every connected graph with m edges is either dense enough that we can apply the bound
n θ (n), or sparse enough that a spanning tree contains a large proportion of its edges.

emma 8. Suppose that θ (n) = O(nα) for some α ∈ (0, 1]. Then θ ′(m) = O(mβ ) where β =
α

1+α
.

Proof. Let λ ⩾ 1 be such that θ

(⌈
1
β
x
⌉)

⩽ λxα for all x ∈ [1, ∞). We will show that θ (G) ⩽ λmβ

for all graphs G with e(G) = m. We proceed by induction on m. First, observe that if G has
connected components G1, . . . ,Gk, then θ (G) = maxi θ (Gi), so we may assume that G is connected.
Let m′

:=

⌈
1
β
m1−β

⌉
. If |V (G)| > m′, then G contains a tree T with m′ edges. By induction and

pplying the mean value theorem to the function x ↦→ xβ , we obtain

θ (G − T ) ⩽ λ(m − m′)β ⩽ λ(mβ
− m′βmβ−1) ⩽ λ(mβ

− 1) ⩽ λmβ
− 1

ince λ ⩾ 1. As T is interval colourable we have θ (G) ⩽ λmβ as required. On the other hand, if
V (G)| ⩽ m′, then since θ is monotonic we have θ (G) ⩽ θ

(
m′

)
⩽ λmα−βα

= λmβ by our choice
f λ. □

We can now prove Theorem 1 by playing the preceding lemmas off against each other.

roof of Theorem 1. Let α0 = 1, then for each i ∈ N let βi =
αi−1

1+αi−1
and αi =

10βi
5+βi

=
10αi−1
5+6αi−1

.

Noting that β =
10βi−1 for i ⩾ 2, we see that α ∈ (0, 1) and β ∈ (0, 1/2] for all i ∈ N. Hence, if
i 5+11βi−1 i i

6
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θ (n) ⩽ nαi+o(1) for some i ∈ N0, then Lemma 8 yields θ ′(m) ⩽ mβi+1+o(1). This allows us to deduce
rom Lemma 7 that θ (G) ⩽ nαi+1+o(1). Clearly θ (n) ⩽ n = nα0 , so θ (n) ⩽ nαi+o(1) and θ ′(m) ⩽ mβi+o(1)

or all i ∈ N. The theorem now follows from the fact that αi →
5
6 and βi →

5
11 as i → ∞. □

. The maximal number of colours in an interval colouring of a planar graph

In this section we will prove Theorem 3 via the following slightly more general result.

heorem 9. Let k ∈ R⩾0 and let G be a graph on n ⩾ 2 vertices such that every subgraph
⊆ G on at least three vertices satisfies e(H) ⩽ k(|V (H)| − 2). If G admits an interval colouring,

hen t(G) ⩽ (k/2)n + 1 − k.

Note that a subgraph of a planar graph is also a planar graph, and that any planar graph H on at
east three vertices satisfies e(H) ⩽ 3(|V (H)|−2), so plugging k = 3 into Theorem 9 gives Theorem 3.
e observe that for k < 1 the result is trivial, since the condition on G implies (for n ⩾ 3) that G has
o edges. Also, for 1 ⩽ k < 2, the condition implies that G is a matching, so the result is again trivial.
or 2 ⩽ k < 3 the graph G is triangle-free, so the result is superseded by the result of Asratian and
amalian [2] stating that such graphs have t(G) ⩽ |V (G)| − 1. Finally, for k ⩾ 4 Theorem 9 is beaten
y the result of Giaro, Kubale, and Małafiejski [10] that t(G) ⩽ 2 |V (G)| − 4.

roof of Theorem 9. Fix k ⩾ 0 and assume for a contradiction that G is a counterexample to the
heorem on the fewest possible vertices. Let n = |V (G)| and let G be interval coloured with colours
, . . . , t (all used at least once), where t = t(G) ⩾ 2. Note that n ⩾ 3.
We first claim that there is a colour c with 1 < c < t such that there is a unique edge of G of

olour c. Indeed, if this were not the case, then all colours except perhaps 1 and t would occur at
east twice, and thus e(G) ⩾ 2(t − 2) + 2 = 2t − 2 > k(n − 2). This contradicts the assumption that
(G) ⩽ k(n − 2).
Hence, let vw be the unique edge of colour c . Let V1 be the set of vertices in V (G)\{v, w} that are

ncident only to edges of colours smaller than c and let V2 be the set of vertices in V (G)\{v, w} that
re incident only to edges of colours greater than c . We see that V (G) = V1 ∪ V2 ∪ {v, w}. Indeed,

otherwise there is a vertex y ∈ V (G)\ {v, w} that is incident to an edge of colour greater than c and
to an edge of colour less than c. Since vw is the only edge of colour c , y is not incident to an edge of
colour c and the set of colours on edges incident to y do not form an interval. From the definition
of V1 and V2 we see that there are no edges between these two sets. Hence, the induced colouring
on Gi = G[Vi ∪ {v, w}] is an interval colouring for i = 1, 2.

Note that |V (G1)| + |V (G2)| = n + 2 and t(G1) + t(G2) ⩾ t + 1. Since 1 < c < t , we have
1, V2 ̸= ∅, and thus 3 ⩽ |V (Gi)| < n for i = 1, 2. By the minimality of G, it follows that
(Gi) ⩽ (k/2) |V (Gi)|+1−k for i = 1, 2. Thus t ⩽ t(G1)+t(G2)−1 ⩽ (k/2)(|V (G1)|+|V (G2)|)+1−2k =

k/2)n + 1 − k, a contradiction. □

The bound in Theorem 3 is attained for even n by any graph G2s of the form shown in Fig. 1. This
igure also demonstrates how to interval colour these graphs. To see that they are indeed planar,
onsider the drawing as shown in Fig. 2, where the dashed lines marked in red should be drawn
o loop around the left-hand side of the graph. In fact, more extremal graphs can be obtained
y removing any set of dashed edges shown in blue in Fig. 1 (the extremal examples from [4]
orrespond to including no blue edges). Indeed, any such graph is interval colourable since in the
olouring shown in the figure, the colours of the blue edges are either the minimal or maximal
olour at every vertex they are incident to.
To see that the bound in Theorem 3 is tight (up to rounding) for odd n, take any extremal graph
on an even number of vertices, interval colour it using all the colours 1, . . . , t (where t = t(G)),

ind an edge uv which receives colour t , and add a new vertex w adjacent only to v. The interval
olouring of the original graph can now be extended to an interval colouring of the new graph by
ssigning the new edge colour t + 1.
7
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Fig. 1. A planar graph G2s on 2s vertices attaining the maximum value of t(G), shown here for s = 7. Any subset of the
blue dashed edges can be removed to find another graph attaining this maximum. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 2. An illustration to show that G2s is planar: the red dashed edges should loop around the left-hand side of the
raph.

. Concluding remarks

We have improved the bounds on the maximum interval colouring thickness of a graph on
vertices, showing that c log(n)/log log(n) ⩽ θ (n) ⩽ n5/6+o(1) for some constant c > 0. Clearly

here remains a large gap between the bounds, which it would be interesting to narrow. We are
articularly interested to know whether θ (n) is polynomial in n, and we believe this is not the case.

onjecture 10. It holds that θ (n) = no(1).

We proved our upper bound on θ (n) by showing that any graph could be edge-decomposed
into the desired number of regular bipartite graphs and forests (which are all interval colourable).
However, no bound of the form θ (n) = o(

√
n) can be obtained by decomposing only into these two

types of graphs, as the following example shows.

Observation 11. Every edge-decomposition of Kn,
√
n into forests and regular graphs has at least

1 − o(1))
√
n parts.

Proof. Any forest or regular subgraph H of Kn,
√
n satisfies e(H) ⩽ max{n +

√
n,

√
n
√
n} = n +

√
n.

ince e(Kn,
√
n) = n

√
n, it follows that every edge-decomposition of Kn,

√
n into forests and regular

raphs has at least n
√
n

n+
√
n = (1 − o(1))

√
n parts. □

This suggests that to further improve the upper bound on θ (n), it might be useful to prove an
pper bound on the interval colouring thickness of biregular graphs (where a graph is biregular if it
s bipartite and all vertices in the same part have the same degree). It is a longstanding conjecture
f Hansen [12] (see also [15,18]) that such graphs are, in fact, interval colourable.

onjecture 12 ([12]). Every biregular graph is interval colourable.
8
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We pose a weaker conjecture.

onjecture 13. There exists an absolute constant C such that θ (G) ⩽ C for every biregular graph G.

A proof of Conjecture 13 might pave the way to an improved bound on θ (n) via decomposi-
ions into forests and biregular graphs. We ask whether this strategy has the potential to prove
onjecture 10.

uestion 14. Can every n-vertex graph be edge-decomposed into no(1) forests and biregular graphs?

Béla Bollobás [7] has remarked to us that the notion of an interval colouring could be generalised
n the following way: given a constant α ⩾ 1, we say that a graph G = (V , E) is α-interval colourable
f there exists a proper edge colouring c : E → Z such that for every vertex x, the set {c(xy) : xy ∈ E}

of colours incident to x is contained in an interval of Z of size at most αd(x). Defining θα(G) in the
bvious way, one only needs to change the proof of Theorem 2 very slightly to obtain the bound
α(G) ⩾ cα(log n)1−o(1) for some constant cα > 0 depending only on α. It would be interesting,
however, to see if one can prove a stronger upper bound than Theorem 1 in this setting.

In regard to the section on planar graphs, we pose the following problem of determining all
extremal examples for Theorem 3.

Problem 15. Characterise the n-vertex planar graphs G for which t(G) = ⌊3n/2⌋ − 2.
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