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Kurzfassung

Probabilistische Vorhersage des Energiebedarfs und der Reichweite von
Elektrofahrzeugen mittels föderierten Lernens

Vernetzte Fahrzeuge und Backend-Infrastrukturen bilden ein verteiltes System,
in dem große Mengen an Fahrzeugdaten erzeugt werden. Maschinelle Lernalgo-
rithmen können diese Daten nutzen, um Vorhersagen und Prognosen künftiger
Ereignisse zu verbessern. Die dezentrale Datenerhebung stellt jedoch eine Her-
ausforderung dar. Fahrer von batterieelektrischen Fahrzeugen müssen mit einer
begrenzten Reichweite und einer limitierten Ladeinfrastruktur zurechtkommen.
Eine genaue Vorhersage des Energiebedarfs und der Reichweite ist daher wichtig
und ermöglicht zuverlässige Routenberechnung und Ladeplanung.

Maschinelle Lernalgorithmen verwenden große Datenmengen und stellen hohe
Anforderungen an die Rechenleistung. Eine herkömmliche Platzierung der
entsprechenden Software in einem Steuergerät (ECU) eines Fahrzeugs kann zu
hohen Latenzzeiten führen und damit die Benutzerfreundlichkeit beeinträchtigen.
Durch eine intelligente Verteilung der Software-Module über die Fahrzeugflotte
und das Backend, können hohe Latenzzeiten vermieden werden. Ein verteiltes
System sollte die Unsicherheit vonDaten undVorhersagen berücksichtigen. Diese
Unsicherheiten können direkt durch den Einsatz probabilistischer Lernalgorith-
men berücksichtigt werden.

In dieser Dissertation werden verteilte und probabilistische Vorhersagealgorith-
men sowie Systemarchitekturen für verteilte Systeme untersucht. Verschiedene
Systemarchitekturen und Modulplatzierungen werden im Hinblick auf Latenz-
zeiten, Netzwerknutzung, Energieverbrauch und Kosten analysiert. In einem
verteilten System können föderierte Lernalgorithmen wie Federated Averaging
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Kurzfassung

angewandt werden. Diese Algorithmen berücksichtigen jedoch keine Unsicher-
heiten der Vorhersagen. In dieser Dissertation wird daher eine Erweiterung von
Federated Averaging, FedAvg-Gaussian, vorgestellt, die probabilistische neuro-
nale Netze und lineare Regressionsmodelle kommunikationseffizient und unter
Wahrung des Datenschutzes trainieren kann. Die Vorhersagealgorithmen werden
anhand von realen Fahrdaten validiert.

Die Ergebnisse der Arbeit zeigen, dass ein zwischen dem Fahrzeug und der
Backend-Infrastruktur verteiltes System die Ende-zu-Ende-Latenzzeiten im Ver-
gleich zu einer herkömmlichen fahrzeugbasierten Platzierung um bis zu Faktor
Zehn reduziert. Ebenso wird die Netzwerknutzung im gleichen Maße reduziert.
Die Vorteile von probabilistischen Vorhersagealgorithmen gegenüber determinis-
tischen Vorhersagealgorithmen werden mit Proper Scoring Rules demonstriert.
Föderiertes Lernen kann das konventionelle, fahrerindividuelle Lernen verbessern
und mit probabilistischen Vorhersagen können variable Energiereserven auf Basis
der Ankommenswahrscheinlichkeit angewandt werden. In einer virtuellen Test-
umgebung mit der realen Straßen- und Ladeinfrastruktur werden die Wechselwir-
kungen zwischen Energiebedarfsvorhersage, Routenberechnung und Ladeplanung
untersucht. Die somit ermöglichten genauen Vorhersagen mit Unsicherheitsbe-
trachtung führen zu einer erhöhten erlebbaren Reichweite und zu einer reduzierten
Reisedauer für Fahrer von batterieelektrischen Fahrzeugen.
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Abstract

Connected vehicles and backend infrastructures comprise a distributed system,
in which large amounts of data are generated. Machine learning algorithms can
use this data to improve predictions and forecasts of future events. However,
the distribution of the data is a challenge. Today’s drivers of battery electric
vehicles must deal with limited driving range in a sparse charging infrastructure.
An accurate prediction of energy demand and driving range is therefore important
and enables reliable routing and charge planning applications.

Machine learning algorithms use a large amount of data and have high compu-
tational requirements. A traditional placement of the software within a vehicle’s
electronic control unit (ECU) could lead to high latencies and thus detrimental
to user experience. High latencies can be prevented with intelligent distribution
of the algorithm parts over the vehicle fleet and backend. A distributed system
should take the uncertainty of data and predictions into account. Predictive un-
certainty can be regarded directly with the use of probabilistic machine learning
algorithms.

In this dissertation, distributed and probabilistic prediction algorithms as well as
system architectures for distributed systems are investigated. Different system
architectures and module placements are analyzed in terms of latency, network
usage, energy usage and cost. Federated learning algorithms such as FedAvg
can be applied in this distributed setting, but predictive uncertainty is typically
not considered. In this dissertation, an extension of the federated averaging
algorithm, FedAvg-Gaussian, is applied to train probabilistic neural networks
and linear regression models in a communication-efficient and privacy-preserving
manner. The prediction algorithms are validated using real driving data.
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Abstract

The results show that a system distributed between the vehicle and the cloud
reduces the end-to-end latency by up to a factor of 10, when compared to a
traditional vehicle-based placement. Likewise, the network usage is decreased to
the same degree. The performance advantage of probabilistic prediction models
over deterministic prediction models is demonstrated using proper scoring rules
and it is shown that federated learning can improve the standard, driver-individual
learning. Using probabilistic predictions, routing and charge planning based on
destination attainability can be applied. Using a simulation framework with real
road and charging infrastructure, it is shown that accurate probabilistic predictions
lead to increased effective driving range and reduced travel time.
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1 Introduction

Modern vehicles are connected with each other, as well as to backend infrastruc-
tures in the cloud. The connected vehicles and backend infrastructures constitute
a distributed system, in which large amounts of data are generated and processed.
The abundance of data sources in this vehicular network enables the widespread,
commercial application of machine learning (ML) algorithms. In particular, pre-
dictions and forecasts can greatly profit from the rich database resulting from the
connectivity. However, the distributed nature of the data and resources poses a
challenge. The data are distributed over a large group of end devices and are
commonly transferred to a central server, where the learning of the ML models
can be performed using the entire dataset. A ML algorithm utilizing data from
this network must guarantee the privacy of the users and be able to function
without excessive computation and communication overhead. In federated learn-
ing (FL), each end device learns from local data, and a centralized server creates
a global model by aggregating the model weights received from the devices at
regular intervals. The global model is then sent back to the devices where the
learning continues [156]. FL algorithms, such as federated averaging (FedAvg),
are typically applied when a large dataset is desired, but sharing data between
devices is not possible or too expensive. In a distributed setting, data may not
be independent and identically distributed (IID) and a robust model should take
uncertainty into account. In many applications, uncertainty of estimations or
predictions can be significant. However, FL is not commonly applied to prob-
abilistic models. Bayesian deep learning (BDL) is typically applied to account
for uncertainty in neural networks (NNs) [166]. However, BDL methods are
computationally expensive in comparison to non-Bayesian methods and hardware
may as well be a limiting factor [134]. The inclusion of predictive uncertainty
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1 Introduction

in distributed settings should therefore be addressed. The dissertation presents
FedAvg-Gaussian (FedAG), where uncertainty is introduced in the aggregation
step of the FedAvg algorithm by treating the set of local weights as a posterior
distribution for the weights of the global model.

The prediction of the energy demand and driving range of battery electric vehi-
cles (BEVs) is a prediction problem frequently solved with ML algorithms [58].
An energy demand prediction (EDP) algorithm predicts the energy demand for
a given, planned route. Based on the EDP, the remaining driving range can be
computed. The uncertainty of the predictions is important and the advantage of a
large database can be considerable. The EDP algorithms rely on data distributed
between vehicles and backend infrastructures. In the vehicle, information such as
vehicle speed and acceleration are relevant. In backend infrastructures, informa-
tion such as live traffic speed and road slope are important features for the EDP.
Unifying and integrating these sources is an issue that currently hinders further
development of range prediction and charge planning software [202]. By applying
ML algorithms, many different features can be included in the range prediction,
without the need of exact mathematical or physical modeling of their influences on
the energy consumption. Furthermore, an online ML algorithm can automatically
adapt to changes in system behavior, resulting in a robust model. The EDP and
driving range prediction rests upon information about the driver, vehicle, route,
traffic, and other environmental factors. Because of the high number of influence
factors, large amounts of predictive data are required for an accurate prediction.
Few researchers have addressed the issue of uncertainty of these predictions [5].
By applying FedAG, the uncertainty is directly taken into account.

In current literature about energy demand and driving range prediction algorithms,
system architecture and the practicability of the proposed methods is rarely in-
vestigated. Researchers frequently propose ML algorithms that rely on big data
and distributed computing, yet the analysis from a systems aspect is neglected.
Not all devices and system architectures are ready for using ML software. This
is a problem adressed in theMachine Learning and Systems (MLSys) whitepaper
[188], where the authors discuss problems regarding the widespread use of ML
systems in commercial applications, such as:
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1.1 Motivation and Significance

• How can ML algorithms and systems be designed for device constraints
such as power, latency, and memory limits?

• How should distributed systems be designed to support ML training and
serving?

These and similar problems have been analyzed generally in the context of the
internet of things (IoT) paradigm and how IoT with its cloud, edge, and fog
computing can support the increasing amount of data that is transferred and used,
e.g., for ML-based systems [49]. An important aspect of system design is the user
experience (UX) and how applications can be deployed to ensure high quality
of service (QoS) [154]. Distributed computing in cloud, edge, and fog systems
is highly dependent on communication and can exhibit high system complexity
[43]. Even with the emergence of 5G, lean communications are still essential and
resources need to be used efficiently [64]. Despite these challenges, connected
vehicles can achieve significant improvements in efficiency, performance and QoS
with ML and IoT applications. The evaluation of system architecture is therefore
included in the dissertation.

1.1 Motivation and Significance

The call for low or zero emissions vehicles, along with improved battery tech-
nology, makes the BEV a serious candidate for the replacement of internal com-
bustion engine vehicles (ICEVs). Despite the advantages of such vehicles, they
have not gained significant popularity among the general public. BEVs have the
potential to solve future problems regarding greenhouse gas emissions from pas-
senger and commercial vehicles and establish independence from depleting fossil
fuel resources. Due to limited charging-infrastructure and the inevitably shorter
driving range, BEV drivers may experience range anxiety, which is the fear that
the energy storage will run out before reaching the destination [70]. To increase
driving range of BEVs, choosing a larger battery capacity is one option. However,
a large battery corresponds to high vehicle weight, costs, and demand for rare
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1 Introduction

minerals. Therefore, a solution where existing driving range can be fully utilized
is better. In order to eliminate range anxiety and increase the usability of BEVs,
there is a need for applications that help drivers in arriving safely at their destina-
tions without excessive time or cost. The primary goals of such applications are to
maximize the effective driving range and to accurately predict this range. Drivers
tend to reserve up to 20% of the battery capacity as a safety margin [82], i.e., the
utilization of the available battery energy is poor. The utilization of the battery
strongly depends on the calibration of the driving range prediction [2]. A central
challenge in this context is the prediction of future energy demand. The EDP is
not only used to display remaining driving range [243], but also for other purposes
such as the prediction of a destination’s attainability [5]. If the destination is not
attainable, charge planning is needed. Charge planning suggests suitable charg-
ing points along the route, considering battery capacity and the predicted energy
demand for the planned trip [163, 209]. Additionally, EDP have been applied
in energy optimal control [232, 237], BEV fleet management systems [81] and
charging infrastructure planning [233]. An accurate EDP can thus contribute in
many ways to improve BEVs and their acceptance.

1.2 Dissertation Goals and Contributions

This dissertation presents research and development ofmethods and techniques for
the advancement of the topic of energy demand and driving range prediction. The
advantages and benefits of the application of new methods to practical problems
in the field are shown and discussed. In contrast to related literature, the focus
is not only on the evaluation of the accuracy of the predictions, but additionally
on the quantification of the significance of this work in the applications of the
prediction results in routing and charge planning.

The main goals of the dissertation are:

1. Evaluate the effect of system architecture and module placement of dis-
tributed driving range prediction algorithms on QoS metrics.
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1.2 Dissertation Goals and Contributions

2. Develop a probabilistic learning scheme for distributed systems where data
from a fleet of vehicles are used to compute probabilistic predictions for
energy demand and driving range.

3. Investigate the application of probabilistic predictions in routing and charge
planning software and evaluate the effect of the prediction performance on
daily driving.

Consequently, the central contributions of the dissertation are the following:

1. It is shown that performance and QoS of range prediction and charge
planning software is highly dependent on system architecture. Therefore,
software concepts should be evaluated with respect to system architecture.

2. An extension of the FedAvg algorithm, FedAvg-Gaussian, is proposed,
where predictive uncertainty is introduced in the aggregation step. Thereby,
probabilistic ML models can be learned in an efficient manner.

3. The advantages of probabilistic predictions, computed with FedAG, are
demonstrated using open-source datasets as well as in the prediction of
energy demand and driving range. Proper scoring rules are used to compare
the prediction results to benchmark algorithms.

4. The probabilistic EDP is used to compute destination attainability levels
based on the available battery energy. Both initial predictions and the
evolution of the predictions during the trips are analyzed.

5. The effects of EDP on routing and charge planning and the everyday usabil-
ity of BEVs are investigated. A positive effect of predictive performance
on travel time is shown and the inter-dependencies between destination
attainability and travel time are illustrated.
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1 Introduction

1.3 Dissertation Organization and Previous
Publications

In this section, the organization of the dissertation is described. Several portions
of this dissertation are based on the author’s previous publications, which are
mentioned in the following overview. These publications have served as essential
foundations for the chapters within this thesis. While certain sections have been
directly reproduced, care has been taken to integrate them seamlessly into the
broader narrative of this dissertation. 1

Chapter 2 presents an overview of related literature on the prediction of energy
demand and driving range. Relevant influence parameters on energy demand are
put in context with the available data and candidate prediction algorithms are
discussed.

Chapter 3 introduces a thorough analysis of the digital eco-system, in which the
energy demand and driving range prediction operates. Possible system architec-
tures and software module placements are analyzed with respect to performance
indicators such as end-to-end latency and network usage. The material and results
in the chapter are based on the author’s journal article "Evaluating System Archi-
tectures for Driving Range Estimation and Charge Planning for Electric Vehicles",
which appeared in Software: Practice and Experience in 2021 [4].

Chapter 4 presents FedAG, a novel machine learning algorithm for learning prob-
abilistic models in distributed settings. The algorithm extends the FedAvg algo-
rithm to include predictive uncertainty. FedAG is validated with empirical data
from open-source datasets and compared to benchmark algorithms. The chapter
is based on the author’s journal article "Probabilistic Predictions with Federated

1 It is important to note that all material used in this thesis, including the verbatim text from the
mentioned publications, constitutes original contributions by the author. The specific content
utilized in this thesis is solely the author’s work and does not include contributions from co-
authors.
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Learning", which appeared in Entropy in 2020 [1] and on the poster presentation
"Federated Learning with Predictive Uncertainty" [7].

Chapter 5 shows the application of FedAG to the EDP problem. The predic-
tions are evaluated with proper scoring rules. Destination attainability levels are
computed and their calibration is shown. The findings in the chapter are based
on the author’s journal article "Probabilistic Prediction of Energy Demand and
Driving Range for Electric Vehicles with Federated Learning", which appeared in
the IEEE Open Journal of Vehicular Technology in 2021 [3].

Chapter 6 presents an investigation into the effects of the EDP on routing, charge
planning, and long-distance driving with BEVs. The chapter builds upon mate-
rial and methods presented by the author in the following sources: the journal
article "An Investigation into Key Influence Factors for the Everyday Usability
of Electric Vehicles", which appeared in the IEEE Open Journal of Vehicular
Technology in 2021 [2], as well as in the conference presentations "Analysis of
the Impact of Range Estimation Errors on Long-Distance Electric Vehicle Trips"
[6] and "Probabilistic Energy Demand Prediction, Routing, and Charge Planning
for Electric Vehicles" [8].

In Chapter 7, concluding remarks summarize the findings of the dissertation.
Additionally, possible directions for further work are discussed.
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2 Prediction of Energy Demand
and Driving Range

In this chapter, the fundamental background of the prediction of energy demand
and driving range is introduced. The central task in driving range prediction is to
first predict energy demand based on the available predictive data for the planned
route. Because of complex relationship between driver behavior, traffic situations
and vehicle energy consumption patterns, ML algorithms are applied. The focus
of this work lies in the prediction of tractive energy demand, as this makes up
the largest part of the total energy demand. Under normal conditions, i.e., mild
temperatures and moderate to high driving speed, auxiliary consumers make up
approximately 5 to 10% of the total energy demand. Furthermore, many auxiliary
consumers such as infotainment systems and electronic control units (ECUs)
account for a relatively constant load and do not have to be predicted separately.
In certain conditions, such as extreme heat or very low ambient temperatures, the
energy demand of heating, ventilation and air conditioning (HVAC) systems is
significantly higher than under normal conditions [149, 118, 240]. In that case,
a separete prediction of auxiliary energy demand is feasible. The prediction of
thermal management and HVAC energy demand falls out of the scope of this
dissertation, but was discussed by Engel et al. [72], Valentina et al. [215], and
Enthaler et al. [73].

The chapter is organized as follows. Section 2.1 presents a survey of related
literature on energy demand and driving range prediction. Section 2.2 gives
an overview of the parameters influencing the energy demand of BEVs and
how these parameters can be included in the prediction algorithm. Section 2.3
briefly introduces ML algorithms for prediction problems and the challenges in
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the application of ML algorithms in the EDP. Finally, Section 2.4 puts the EDP
into context with routing and charge planning.

2.1 Literature Survey

Current practice in energy demand prediction (EDP) is to use information from
the vehicle, such as driving speed, acceleration, and historic energy consumption
together with predictive information about the planned route from a traffic and
routing database (TRDB). TRDB information comprises static map data, e.g.,
road slope, legal speed limit, and dynamic data such as live traffic. Thus, a range
prediction algorithm shall use both data from the ego vehicle and from other
connected vehicles via the cloud. Live route and traffic information from a TRDB
is already available in some production vehicles. Traditionally, this is transmitted
in a low resolution over the traffic message channel (TMC). Another standard,
OpenLR, allows more flexibility and a higher resolution. An overview of live
traffic related data formats and protocols was given by Henrickson et al. [109].
The prediction of future energy consumption is frequently performed using ML
algorithms [46, 58, 84, 205]. The ML algorithm is trained to find the relation
between the available predictive information and the resulting tractive energy
consumption. The main advantage of ML algorithms is that an exact modeling of
themathematical relation between a feature and the target variable is not necessary,
or rather, the ML algorithm automatically creates this model. As an alternative to
ML algorithms, future energy consumption can be estimated using mechanistic
models based on physical principles and equations [163, 234, 101, 122, 133]. In
addition, a hybrid model combining a mechanistic model and ML can as well be
applied [209, 5].

Traditionally, automotive software is implemented on ECUs within the vehicle
and uses mostly data from the vehicle itself. This is also true for range prediction
and charge planning. Some research articles, however, have proposed distributed
systems with software placed partially or completely in the cloud. Table 2.1
shows a summary of these related works. The articles are classified by the method
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used for range prediction and by the system architecture which corresponds to
the proposed concepts. The range prediction methods can be divided into ML
models, mechanistic models, and hybrid models combining the two. Regarding
system architecture, it can be observed whether the software modules are placed
mainly in the cloud, in the vehicle or divided uniformly between the two in a
hybrid manner.

Table 2.1: Summary of related works on driving range prediction in distributed systems.

Work Prediction Method Architecture

Thibault et al. [209] hybrid model hybrid
Fukushima et al. [84] ML model cloud-based
Yi et al. [234] mechanistic model vehicle-based
Grubwinkler et al. [101, 100] mechanistic model cloud-based
Jayakumar et al. [122] mechanistic model hybrid
Scheubner et al. [5] hybrid model vehicle-based
Ferreira et al. [77] ML model vehicle-based
Lee et al. [136, 137] ML model cloud-based

In the articles, the system architectures are only vaguely described and the feasi-
bility of the proposed concepts regarding system performance is not investigated.
In further research articles, proposed algorithms rely on live-information such as
traffic or weather, which is normally not available in the vehicle without some
sort of connectivity [205, 46, 244, 212, 211, 186]. However, system architecture
and performance is not investigated.

2.2 Influence Parameters and Available Data

The EDP computes predictions for future energy demand based on information
about parameters that influence energy consumption. A review of parameters
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influencing the energy demand and driving range of BEVs was presented by
Smuts et al. [201]. The parameters can be divided into four groups [141]:

1. vehicle,

2. driver,

3. static environment,

4. dynamic environment.

The parameters in the first group are all vehicle-specific parameters that influence
the energy consumption. These can be summarized as the driving resistances of
the vehicle, i.e., mass, aerodynamic drag area, and rolling resistance coefficient
[191]. Furthermore, the efficiency and losses in components of the vehicle’s
powertrain influence the consumption significantly [20]. The second group rep-
resents the driver, which has a significant influence on the energy consumption
through his driving style, as the speed and acceleration behavior are important
influence factors [37]. The third group, static environment, constitutes the parts
of the environment that remain relatively constant, such as the road and charging
network [151]. The topology of the route, especially road grade, road curvature,
and speed limits are important influence factors [238, 146]. Furthermore, the
charging network has an effect on the course of the route and can even influence
driver behavior [66]. The fourth and last group is the dynamic part of the environ-
ment, i.e., environmental variables that change over time. Traffic is an important
factor that directly influences speed and acceleration behavior [5]. Ambient tem-
perature can affect the efficiency and losses in the vehicle [238]. Solar radiation
[72], wind speed [235], and road surface wetness [71], can have an impact on the
energy consumption, but it is difficult to obtain reliable predictive data for these
factors. In practice, a significant impact on tractive energy consumption caused by
variations of these factors is seldom, but may become more frequent with climate
change [123].

Using the vehicle’s sensors, information about the vehicle and the driver can be
gathered. Furthermore, the surroundings of the vehicle can be observed, e.g.,
with cameras and radar. For environmental data beyond the reach of the sensors,
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information is gathered from the TRDB. In the EDP, relevant parameters can
either act as input variables in the prediction model or as an inherent part of the
model. The decision whether and how a parameter is used in the EDP is based
on three factors:

• parameter importance,

• parameter variance,

• predictive parameter availability.

If a variable has an insignificant influence on energy demand, it does not have
to be directly considered in the prediction model. Some parameters may have an
important influence but exhibit a small variance. Such parameters can be modeled
as an inherent part of the model. An example is the aerodynamic drag area of
the vehicle, which is typically a constant. The third factor is the availability of
predictive information. Some parameters have both high importance and high
variance but predictive information about these parameters is severely limited or
non-existent. An example is the coefficient of rolling resistance between the tires
and the road, which has high influence on the energy consumption of the vehicle.
As the coefficient is dependent on numerous factors such as temperature, road
surface, and road surface wetness, there is generally no information available on
the variability of the coefficient for a given route [61].

If the effects of a parameter, or the variability of the effects, cannot be included
in the prediction model, they can be seen as parts of the predictive uncertainty
[162]. Here, aleatoric and epistemic predictive uncertainty may be distinguished.
Aleatoric uncertainty is also known as statistical uncertainty, and epistemic un-
certainty is also known as systematic uncertainty. The aleatoric part is irreducible
and is the result of intrinsic randomness of a physical relation. The epistemic
part originates from lack of knowledge about the modelled relation [112]. Due to
the lack of predictive information about influence parameters, it is necessary to
model the epistemic uncertainty of the EDP. Epistemic uncertainty is a central
part of Bayesian inference, which are discussed in Chapter 4 [130].
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2.3 Online Machine Learning Algorithms

Depending on the ML algorithm and the amount of data, the prediction algorithm
can demand a lot of resources. Smart system architectures are required to deal with
distributed data sources and to minimize end-to-end latencies. The data observed
in the vehicle is streaming data, which arrives sequentially. For streaming training
data, online learning algorithms are a good choice [29]. With these, the learning
can be done with a single pass over the observed data, which are then discarded.
Optionally, the datamay be saved, which leads to a set of training data, enabling the
application of batch learning algorithms in an offline learning setting. Usually, the
data cannot be stored completely and conventional batch learning is not applicable.
Therefore, the ML algorithm must be able to run online by learning iteratively
from single samples or from small batches, such as in the form of a sliding window
of samples. A significant benefit of online learning algorithms is that the range
prediction model is maintained live and can improve the prediction on-the-go.
The algorithms can therefore flexibly react to potential concept drifts, such as
changes in driver behavior or vehicle properties [223]. Fig. 2.1 shows a schematic
overview of the data stream structure. In the single pass setting of online learning,
the model is updated based on a single observation {x, y}i, where x is a vector of
input variables and y is the target variable. The model can also be updated online
based on a small batch of observations {x, y}i−2...i in a sliding window.

{x, y}i−3 {x, y}i−2 {x, y}i−1 {x, y}i {x, y}i+1 {x, y}i+2

Current observation

Sliding window of observations

Batch of observations

Figure 2.1: Data structure of the learning schemes.
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Not all ML algorithms are equally well applicable to online learning from data
streams. Tree-based learning algorithms, such as classification and regression
trees (CART), random forests, and gradient boosting, are typically applied to
complete datasets [30]. To apply such algorithms in an online learning setting,
special extensions are required, such as Streaming Gradient Boosting [114] or
Streaming Random Forests [11]. Support-vector machines (SVMs) also require
special online learning algorithms such as LASVM to function properly with
streaming data [34]. Neural networks (NNs) are naturally suited for the appli-
cation of online learning from data streams. Deep learning of NNs uses the
backpropagation algorithm to adapt internal parameters, weights w, in multiple
(hidden) layers to optimally represent observed data. Based on an objective func-
tion or a loss function L(w, y,x), a gradient vector is computed, which indicates
how the weights w should be adjusted [135]. The loss function and gradient
vector can be computed with the whole dataset, e.g., with batch gradient de-
scent (GD), using small batches of observations, e.g., with mini-batch GD, or
using single observations, e.g., with stochastic gradient descent (SGD) [31]. The
two latter methods, SGD and mini-batch GD, can be applied in online learning.
Linear regression (LR), which can be seen as a NN with zero hidden layers, is
also easily implemented in the online learning setting with SGD. SGD exists in
many variants and extensions, which are widely used learning algorithms [35].
Table 2.2 shows a summary of different machine learning algorithms and their
applicability in online learning.

Fig. 2.2 shows a neural network with three input variables xi, one output variable
ỹ1 and two hidden layers with seven hidden neurons h(j)

i , where j denotes the
hidden layer index and i denotes the hidden neuron index within layer j. The ˜
denotes that ỹ is a prediction variable. For regression problems, the neurons in
the hidden layers usually have a rectified linear unit (ReLU) activation function
y = max(0, x). The neuron in the last layer has a linear activation function
y = x, allowing the NN to predict both positive and negative continuous values
[96]. According to the universal approximation theorem, deep NNs with at least
one hidden layer can approximate any Borel measurable function, provided the
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Table 2.2: Machine Learning Algorithms and Online Learning Applicability

Algorithm Description Online Learning

LR Fits a linear model Yes
Decision Trees Builds a tree-like model No
Random Forest Ensemble of decision trees No
Gradient Boosting Ensemble with boosting No
SVM Uses support vectors No
NN with Batch GD Uses all the training data in each step No
NN with SGD Updates model incrementally Yes
NN with Mini-Batch GD Mini-batch updates Yes
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Figure 2.2: A NN with three inputs xi, one output ỹ1 and seven hidden units h(j)
i in two hidden

layers.

number of hidden neurons is high enough [55, 113]. This shows the capacity of
NNs to learn complex and non-linear patterns.

A squared loss function L of a NN with ReLUs activation functions can be
expressed as a polynomial function of the weights in the network, whose degree
is the number of layers, and whose number of monomials is the number of paths
from inputs to output [51]. The loss function is thus typically a non-convex
function with multiple local minima. An exception is LR, where the loss function
is the square of a linear combination of the observations, which is obliviously
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a convex function. Fig. 2.3a shows an exemplary loss surface for a deep NN.
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(a) NN loss surface.
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(b) LR loss surface.

Figure 2.3: Exemplary loss surfaces of a NN and a LR model.

The loss function exhibits several local minima and saddle points. Fig. 2.3b
shows an exemplary loss surface for a LR, where a single, global minimum is
present. The SGD algorithm typically requires more iterations in the learning of
NNs than in LR. LR models can therefore easily be implemented in an online,
single pass setting, whereas NNs may require more iterations on a sliding window
of observations [126]. Nevertheless, it has been shown that the learning can
be implemented in linear time, i.e., the learning time increases at most linearly
with the number of observations [83]. In the online learning setting, where new
data are constantly being observed, a strongly decreasing learning rate η is not
sensible. In this dissertation, SGDwith a momentum term and a constant learning
rate is applied, so that the algorithm can react appropriately to new data [187].
SGD is applied in many probabilistic learning algorithms, in approximations of
Bayesian learning algorithms, and in federated learning (FL), all of which are
further introduced in Chapter 4.
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2.4 Electric Vehicle Routing Process

The energy demand and driving range prediction algorithm is essential in the
planning of long-distance trips, where the driving range is shorter than the distance
to the destination and charging stops are necessary. The software requirements are
specified using the following description. The principle of most range prediction
algorithms is to first estimate the energy required for the given route. By comparing
the required energy with the battery’s estimated state of energy (SoE), the driving
range and destination attainability can be determined. Fig. 2.4 shows the process
of routing, range prediction and charge planning as a flowchart.

First, all relevant information, such as the road map and the live traffic feed is pre-
processed. Routing algorithms are then used to calculate the fastest route from
the starting point to the destination using corresponding graphs. Commercial
navigation software suppliers do not publish the exact details of their proprietary
methods. A standard routing algorithm is Dijkstra’s algorithm [62]. Dijkstra’s
algorithm is typically quite slow, whereas the A-star algorithm is a relatively
fast routing algorithm [104]. The A-star algorithm can be implemented with
different heuristics that speed up the algorithm, such as highway hierarchies, where
highway connections are preferred [59]. The route calculation can be extended to
include energy efficiency (eco-routing). In this case, edge weights representing
energy demand could be negative, since BEVs are able to regenerate energy
when decelerating or driving downhill. The Bellman-Ford algorithm [28, 80] can
handle negative edge weights and has been used in eco-routing [209, 47]. Based
on the calculated route, the energy demand is predicted. If the energy demand is
greater than the available battery energy, a new route with charging stops needs
to be planned. The charge planning algorithm is presented in Chapter 6. The
route and charging stop information, along with the route-based driving range, is
then displayed in the vehicle’s infotainment system. The routing, driving range
prediction, and charge planning process is analyzed in terms of QoS metrics in
Chapter 3, in terms of predictive performance in Chapter 5, and finally in terms
of everyday usability of BEVs in Chapter 6.
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Driver enters a destination

Load road map

Check traffic, weather etc.

Calculate fastest route

Energy demand prediction

Destination
attainable?

Add charging stations

Return route information, driving
range and SoC at destination

Yes
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Figure 2.4: A simplified flowchart for routing, range prediction, and charge planning.
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In this chapter, systems and software for energy demand prediction (EDP), rout-
ing, and charge planning are analyzed and their performance is evaluated in terms
of quality of service (QoS). Thereby, the question of how distributed systems
should be designed to support ML training and inference is addressed. This chap-
ter analyzes system architectures corresponding to modern commercial vehicles,
as well as to concepts proposed in related works. Furthermore, promising alterna-
tives to existing system architecture concepts are proposed. The system analysis
considers both learning and inference of machine learning (ML) based energy
demand and driving range prediction models. The task of performing prediction
or estimation with a learned model is understood under the term inference. Most
research focuses on the learning procedure, whereas in terms of user experience,
inference is just as important [52]. Thereby, the focus of this work is on model
inference and the performance of the system as a whole. The approach models
and simulates the software in a distributed computing setting and enables the
evaluation of different system architectures. It is proposed to estimate resource
requirements based on route length, algorithm time complexity and the number
of instructions in the compiled code. In that way, the software can be tested for
different use cases to ensure a sufficient QoS for routes of varying length.

The chapter is organized as follows. Section 3.1 gives an overview of related
literature on distributed systems. In Section 3.2, the necessary hardware and
software is described and modeled to enable system simulation. In Section 3.3,
system architecture variants are presented and their performance is evaluated with
simulations. Section 3.4 concludes the chapter and provides a summary of the
findings. The methods and results in the chapter were previously published in the

21



3 System Architecture Evaluation

author’s journal article "Evaluating System Architectures for Driving Range Esti-
mation and Charge Planning for Electric Vehicles", which appeared in Software:
Practice and Experience in 2021 [4].

3.1 Literature Survey

In connected vehicles, vehicle-to-vehicle (V2V) and vehicle-to-infrastructure
(V2I) communication is possible. Mobile internet (4G, 5G) and dedicated short
range communication (DSRC) are two competing communication technologies
used in vehicle-to-everything (V2X) settings, which can be seen in a survey
conducted by Abboud et al. [10]. Different computing principles are possible
in connected vehicles, such as cloud, edge and fog computing [239]. In the
vehicles, resources such as computing performance and storage are limited. In
turn, cloud resources are ample and a synergistic distribution in a system with
vehicles and clouds is reasonable. Deploying software in such systems is a chal-
lenge, as the system architecture has a significant impact on their performance
and latency. Distributed and cloud-based vehicle functions have been classified
into four different models: only cloud, fall-back method, duplicate function and
elastic application. This chapter focuses on the class elastic application, where
the software consists of several modules distributed between the vehicle and cloud
[160]. The challenge of the system architecture design is thus finding optimal
placements of the software modules.

Brogi et al. give an overview of existing methodologies for optimally solving mod-
ule placement problems in fog infrastructures [40]. The vehicle communication
platform CloudThink was developed to securely enable software functionality
divided between vehicle and cloud. Its system architecture consists of vehicle
ECUs as well as data and gateway servers that communicate over wireless con-
nections [224]. One of the elastic application use cases identified by Milani &
Beidl includes predictive functions relying on predictive cloud information, and
the EDP operates precisely in such a fashion [160]. Further examples for elastic
applications are functions using computation offloading. In such applications,
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computational or data intensive tasks, such as image processing and ML, are
offloaded to the cloud. This offloading can either be permanent or adaptive, but
in both cases the module placement is intelligently performed to minimize pa-
rameters such as latency, energy and cost [21]. There are many examples in the
literature where cloud or fog computing is used in vehicular technology. Siegel et
al. give an overview of the state of the art of connected vehicles and their applica-
tions [199]. Lee et al. use ML to analyze driving behavior in the cloud using data
from connected BEVs [137]. Wu et al. use cloud computing in electric vehicle
charging control and dispatch optimization [227]. Ozatay et al. implemented a
velocity profile optimization with dynamic programming where computationally
intensive calculations were performed in the cloud [175]. Saini et al. propose
a middleware for vehicular infotainment systems where computation tasks are
carried out in the cloud and only relevant content is forwarded to the vehicle
[189]. Yaseen et al. perform cloud-based video analytics using convolutional
neural networks [231]. Siegel et al. studied the feasibility of different connected
vehicle applications and even identified driving range prediction as an application
that could be deployed in connected vehicles [198]. In recent years, fog and cloud
based ML algorithms have received increased attention. Due to the diversity of
ML algorithms and their applications, corresponding systems are analyzed indi-
vidually. Tuli et al. analyzed a system for a fog-cloud based object detection with
deep learning [213], as well as a deep learning based smart healthcare system
[214]. Lin et al. proposed and analyzed a deep learning framework for smart
manufacturing inspection systems based on fog computing [143].

For optimal module placement and system architecture design, performance eval-
uation is important. Ghosal et al. defined and proposed diverse QoS metrics for
the evaluation of system architectures. These can be divided into non-functional
requirements, degree to accommodate changes, customer requirements and com-
patibility to legacy designs [90]. In this chapter, the most important metrics
regard the systems performance in terms of latency, network usage, reliability,
availability, flexibility, scalability, expandability, security, energy efficiency, and
cost [4]. For the user of the system, the latency or response time is a central
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criteria [169]. In the early stages of development, measurements of system per-
formance are rarely possible, but simulations can be performed to approximately
evaluate performance of different system architectures and module placements.
However, simulating the performance of distributed systems is a challenging task.
Cloud, edge and fog computing concepts introduce increased complexity with
high diversity of devices and high numbers of possible system architecture vari-
ants. Traditional tools for the simulation of embedded systems, such as chronSIM
[16] and SymTA/S [108], as well as tools for the simulation of wireless sensor
networks, such as OMNeT++ [216] and TOSSIM [140] are typically not applica-
ble in fog and edge computing scenarios. An overview of simulation scenarios
in fog and edge computing was given by Svorobej et al. In addition, their review
includes a brief comparison of simulation tools [206]. Cloudsim is a widely used
toolkit for the modeling and simulation of cloud computing environments [45]. In
an analysis of cloud and fog simulation tools, three of six tools were extensions of
Cloudsim [12]. The tool with the most options and flexibility, as well as the most
used tool according to a citation count, is iFogSim, which enables the simulation
of cloud, edge and fog computing settings to evaluate the impact of different mod-
ule placements and resource management techniques on different QoS metrics
[103]. Latency, energy usage, network usage, and cost of cloud execution are all
measurable with simulations in iFogSim and monetary cost of network commu-
nication can be derived from network usage, if the network provider’s conditions
are known. iFogSim fulfills all requirements, allows for variable modeling of
resource requirements, evaluates the correct metrics and is well-established in the
scientific community. A more detailed overview of iFogSim can be seen in [103].

3.2 Modeling of Software and Hardware
Systems

To investigate performance through simulations, the EDP software and the cor-
responding hardware must be modeled to construct the simulation framework. A
simulation framework for a distributed system comprising a cloud infrastructure,
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a fleet of vehicles, and a mobile network has several key requirements. Firstly,
the simulation should accurately represent the interactions between these com-
ponents, capturing the dynamic nature of their connections and dependencies. It
should also incorporate realistic communication models for the vehicles and mo-
bile network to mimic real-world scenarios effectively. Scalability and resilience
should be considered to evaluate the system’s performance under varying condi-
tions. In the following sections, the modeling of the software and hardware for
the simulation framework is introduced.

3.2.1 Hardware and Connectivity

In hardware modeling, memory, storage and bandwidth properties are trivial to
determine and model. Modeling the computational performance is not as trivial
and several different approaches and metrics exist. One option is to measure
processor capacity and load or the number of cores or virtual cores [105]. Al-
ternatively, generic and traditional metrics such as floating point operations per
second (FLOPS) and million instructions per second (MIPS) can be used [120].
Several variants and derivative metrics have been defined and an overview was
given by Wang et al. [221]. iFogSim defines hardware units with the following
indicators:

• processor performance [MIPS],

• RAM [e.g., GB],

• cost rate per MIPS used [e.g., $],

• busy and idle power [W].

Each hardware unit is modeled with these parameters. MIPS is not a perfect per-
formance indicator, its main defect is that it is architecture-dependent. However,
for a reduced instruction set computer (RISC), it is an acceptable performance
indicator [128].
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Figure 3.1: Cloud-Vehicle hardware topology.

For the EDP and charge planning, several dedicated hardware units are needed.
Fig. 3.1 shows an overview of the hardware units and their topology. The vehicle’s
central ECU is the main processing unit, whereas a connectivity module estab-
lishes a connection with the backend and handles data transfer over wireless or
mobile internet. In the cloud, an original equipment manufacturer (OEM) back-
end is used for all processing except the route calculation, which is performed in
a 3rd party backend from the navigation provider. Table 3.1 shows these devices
and their specified memory size, processor speed in MIPS, power usage, and
instruction set of the processor. In contrast to a dedicated cloud server, an ECU
needs to perform multiple tasks simultaneously, i.e., a single function does not
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generally have full access to the processor’s performance and memory. There-
fore, an available processor speed in the magnitude of 103 MIPS is assumed
for the ECUs [128]. The backend units are significantly more powerful than the
ECUs, therefore an estimated processor speed of 105 MIPS is assumed [45]. One
difference between processors of a cloud and a vehicle ECU is the architecture
and instruction set. Usually, RISC architecture chips are used in ECUs, whereas
complex instruction set computer (CISC) architecture processors are more com-
monly used in servers and backend units. This means that different compilers are
required, which can affect the number of instructions of a software module and
is therefore considered in the module placement analysis [176]. The power usage
of different hardware units is estimated based on commercial device information
[181, 38]. The cost of using cloud instances is estimated to be 1 $ per instance
per hour, based on commercial cloud services [45, 38].

Table 3.1: Specifications of the hardware units considered.

Device OEM Navigation Connectivity Central
Backend Backend Module ECU

Location Cloud Cloud Vehicle Vehicle
RAM [GB] 200 400 0.2 0.5

CPU Speed [MIPS] 1× 105 2× 105 1× 103 5× 103

Active Power [W] 1× 104 2× 104 45 90

Idle Power [W] 8× 103 1.6× 104 20 80

Instruction Set CISC CISC RISC RISC

Wired and wireless connections between hardware units in iFogSim are defined by
bandwidth and average network communication latency. The vehicle is connected
to the cloud via 4G mobile internet with common upload and download transfer
rates. The vehicle ECUs can be connected internally via controller area network
(CAN), ethernet, or similarly [152]. It is assumed that the cloud units have a high-
speed and low-latency wired connection. In Table 3.2, the estimated connection
speeds and communication latencies are shown. It is assumed that up to 100
vehicles will simultaneously use the service.
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Table 3.2: Data transfer rate in [Mbit s−1] and communication latency in [ms] from (row) to (col-
umn).

Device OEM Navigation Connectivity Central
Backend Backend Module ECU

OEM
-

100Mbit s−1 15Mbit s−1

N/A
Backend 50ms 100ms

Navigation 100Mbit s−1

- N/A N/A
Backend 50ms

Connectivity 10Mbit s−1

N/A -
10Mbit s−1

Module 100ms 1ms

Central
N/A N/A

10Mbit s−1

-
ECU 1ms

3.2.2 Software Modules and Resource Requirements

In this section, the modules of the proposed EDP and charge planning software are
introduced. For the realization of the routing, EDP, and charge planning process
shown in Fig. 2.4, different softwaremodules are required. A generic software that
fulfills the requirements discussed in Section 2.4 may consist of a user-interface,
route calculation, EDP, charging point (CP) database, and a vehicle configuration
module. Additionally, a controller module is required to coordinate the different
computing modules and the user-interface. Information is transferred between
the modules through application programming interfaces (APIs). Fig. 3.2 shows a
software block diagram, where the modules and their connections are visualized.

The software modules are modeled by the number of processor instructions re-
quired for the computational tasks and by the size of the response or data generated
by the module. The number of instructions is measured in million instructions
(MI) and the response size ismeasured in bytes. The instructions are dependent on
the processor architecture, such as RISC or CISC, and the number of instructions
for a softwaremodule is therefore dependent on the processor. Simple instructions
running in a single clock cycle is a typical characteristic of RISC architecture,
whereas many instructions in CISC architectures run over several clock cycles
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UI
Enter
destination

Controller
Route selection
and sending

Routing
Calculate route and
arrival time

EDP
Calculate energy for route

ChargingPoints
Find charging points

Vehicle Config
Options and properties

Start/Destination

EDP

Route getRoute getEnergyEnergy

getCPs
CPsgetConfig VehConfig

Figure 3.2: Software block diagram for routing, EDP, and charge planning.

[121]. The time required for a processor instruction is dependent on the type of
instruction, i.e., performing some instruction may take a shorter or longer time
than another instruction. To determine the number of instructions, one option is
to measure execution time on a certain processor with a known speed in MIPS
and then determine the number of instructions in MI. Here, the suggestion is,
however, to count the instructions directly in the compiled assembly code. In the
following, each step of the routing, EDP, and charge planning is described. For
each module, the requirements are estimated in terms of number of instructions
and response size. As the software is dependent on route length, the algorithm’s
time complexity is used to describe the number of instructions as a function of
route length.
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3.2.2.1 User Interface

In this module, the driver chooses the destination in the user interface (UI) and
the destination is sent to the route calculation module. The drivers input is a string
with the destination address or name. Before the communication is initiated, the
vehicle must be authenticated through a transport layer security (TLS) handshake.
The vehicle and backend exchange messages to establish a secure connection. The
duration of the TLS handshake comprises time for crypto-processing, network
latency and other delays due to message parsing [180].

3.2.2.2 Routing

After receiving starting position, destination, and routing options, this module
calculates the fastest possible route, with regard to actual traffic information.
The performance of a routing algorithm is strongly dependent on the graph that
represents the road network. The complexity is dependent on the number of
edges |E| and vertices |V | in the graph, as well as its sparsity and the branching
factor. For the A-star algorithm, the time complexity is between O (|V |) and
O(|E|+ |V | log |V |), depending on heuristic and graph type [195]. In this work,
the time complexity is estimated to be O(|E| + |V |). Thereby, the number of
instructions needed for a route calculation in a sub-graph with |E| edges and |V |
vertices is linearly dependent on the sum |E| + |V |. Based on real graphs for
USA [63] and Germany [98], an assumption is made that for a unit length route
and a given heuristic, a sub-graph with V (l) = 1, 600 vertices and E(l) = 4, 200

edges is required. In this work, the number of instructions for one iteration of
the A-star algorithm is 345 I. In addition, a baseline computation of 100MI is
assumed. The total number of instructions is thus

CPURouting
req (l) = 100MI + 345 I (E(l) + V (l))

= 100MI + 345 I
iter · (4200 + 1600) iterkm · l km

= (100 + 2 · l) MI , (3.1)
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where l is the route length in km. For a calculated route, its attributes for each
route segment are sent to the EDP. On average, the length of a segment is
approximately 200m, i.e., there are NS = 5 segments per l = 1km [110]. For
each segment, 20 attributes are stored as doubles (8B). Additionally, a constant
2000B is used to account for Hypertext Transfer Protocol (HTTP) header and
other data and overhead not dependent on route length. The total response size
for a route is therefore

SRouting(l) = 2000B + 20 ·NS(l) · 8B
= 2000B + 20 · 5l · 8B
= (2000 + 800 · l) B . (3.2)

3.2.2.3 Energy Demand Prediction

For the calculated route, the route specificEDP is computedwith theMLalgorithm
using attributes for the planned route as input parameters. In this regression
problem, a NN is used. The learning of the NN is a non-event based process
which runs in the background and is not considered in the control loop, but
rather analyzed separately in Section 3.3.3. The time complexity of the inference
is O(|NS |), where NS is the number of segments in the route. In this work,
inference with NNs can be efficiently performed with 200 I.

CPUEDP
req (l) = 100MI + 200 I

seg ·NS(l)

= 100MI + 200 I
seg · 5

seg
km · l km

= (100 + 10−3 · l) MI . (3.3)

By comparing the required energy with the battery’s state of energy (SoE), the
destination attainability can be determined. If the current SoE is sufficient to
reach the destination, route and energy information can be sent back to the driver.
If the destination is not attainable, a charging point search and a charge planning is
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triggered. The response includes the energy consumption for each route segment,
represented by 2 ·NS variables. Thereby, the response size is

SEDP(l) = 2000B + 2 ·NS(l) · 8B
= 2000B + 2 · l · 5 · 8B
= (2000 + 80 · l) B , (3.4)

where the 2000B represent HTTP header and other overhead.

3.2.2.4 Charging Point Search and Planner

When triggered, the search finds applicable charging points (CPs) in a geograph-
ical corridor along the route. It is assumed that there is always a free and func-
tioning plug at each CP. These CPs are then sent to the routing module. With an
analysis of the charging infrastructure in western Europe [95], it was established
that the mean distance between fast chargers (P ≥ 100kW) along major routes is
approximately 50 km, i.e., the number of CPs along a route is

nCPs (l) = 0.02 · l . (3.5)

The complexity of the CP search is dependent on the number of possible CPs,
i.e., it is dependent on route length. When implemented with linear search, the
time complexity is O(l) and the resource requirements are

CPUCPs
req(l) = 100MI + 0.02CPs

km · lkm · 500I (3.6)
= (100 + 10−5 · l) MI , (3.7)

where it is assumed that one search iteration can be performed with 500I. The
CPs’ GPS coordinates are given by two variables and the response size is therefore

SCPs(l) = 2000B + 2vars
CP · 0.02CPs

km · lkm · 8B
= (2000 + 0.32 · l) B , (3.8)

32



3.2 Modeling of Software and Hardware Systems

where the 2000B represents HTTP header and other overhead.

Through all reasonable combinations of these CPs, the fastest route is calculated.
Depending on battery SoE and maximum driving range, the number of reasonable
CP combinations for a route of length l can be up to

nCP-Comb. (l) = 2nCPs(l) = 20.02·l . (3.9)

Subsequently, the energy for all route segments between the CPs is estimated and
charging times at each charger are determined. Thereby, the total travel time is
calculated. The charge planner sends multiple requests to the routing and EDP,
dependent on the number of possible and reasonable routes. Ideally, the routes and
waypoints overlap to a certain extent, which means that a previously calculated
route and energy consumption can be partially used for another route. In the worst
case, all possible routes are different, which means that each route and its energy
consumption is calculated individually. The number of possible routes is given
by (3.9). The resulting worst-case resource requirements are

CPURouting, Mult.
req (l) = nCP-Comb.(l) · CPURouting

req (l)

=
(
100 + 20.02·l+1 · l

)
MI (3.10)

and

CPUEC, Mult.
req (l) = nCP-Comb.(l) · CPUEC

req(l)

= (100 + 20.02·l · 10−3 · l) MI . (3.11)

3.2.2.5 Route Selection and Sending

The final step is to choose the fastest route and charge plan, and to deliver this
information to the UI. Finding the fastest route means searching in the list of
calculated routes for the shortest travel time and can be achieved through linear
search. The time complexity of linear search is O(n) where n is the number of
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routes. Each comparison in the linear search requires approximately 10 I , so the
resource requirements are

CPURate
req (l) = 100MI + 10 · 10−6 · nCP-Comb.(l) MI

= 100MI + 10 · 10−6 · 20.02·l MI

= (100 + 10−5 · 20.02·l) MI (3.12)

and the response size is assumed to be 1 kB. Sending the final response, i.e., the
route, EDP and charge plan, to the UI requires 50MI. The route is represented
by one 8B variable for each route segment, so the response size is

SResp.(l) = 2000B +NS(l) · 8B
= 2000B + 5 · l · 8B
= (2000 + 40 · l) B , (3.13)

where the 2000B represent HTTP header and the display values for EDP and
charge plan, which are independent on route length.

Table 3.3: Resource requirements of EDP modules for a single trip.

Component Complexity Instructions [MI] Response size [kB]

enterDest() O(1) 11 1.4

getConfig() O(1) 20 1

getRoute() O(l) 100 + 2 · l 2 + 0.8 · l
getEnergy() O(l) 100 + 10−3 · l 1 + 8 · l · 10−2

checkAttainability() O(1) 100 1

getCPs() O(l) 100 + l · 10−5 1 + 0.32 · 10−3 · l
rateRoutes() O(l) 100 + 10−5 · 20.02·l 1

writeResults() O(1) 50 2 + 4 · 10−2 · l

In Table 3.3, the resource requirements of each module are summarized. The
complete process of the EDP and charge planning is shown in Fig. 3.3. The figure
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shows a sequence diagram describing the process beginning from when the driver
enters a destination ending with the display of the route, driving range and charge
plan.

In Fig. 3.4, a further visualization of the resource requirements of the software
modules is shown for different route lengths. Fig. 3.4a shows the response size
and Fig. 3.4b shows the number of instructions of the route-length-dependent
software modules as a function of route length. As can be seen in Fig. 3.4, the
routing algorithm and the EDP output the most data and also require the most
instructions. This gives a hint that the data output from these modules should
not be transmitted over a mobile internet connection and that placing these in the
cloud would result in lower end-to-end latencies.

3.3 Performance Evaluation

To evaluate the performance of the systems described in Section 3.2, simulations
are performed with iFogSim. The control loop shown in Fig. 3.3 is analyzed with
different route lengths and module placements. For the control loop, following
performance indicators are measured:

• latency,

• network usage,

• cost of cloud execution,

• energy usage in cloud and vehicle.

An optimal module placement minimizes all performance indicators for all route
lengths. In this work, the number of possible and reasonable combinations is
low. Therefore, all of these combinations can be analyzed to determine the opti-
mal module placement. For each module placement variation, the performance
indicators are calculated. Fig. 3.5 shows four module placement variants between
the vehicle and cloud. The placement in Fig. 3.5a is the classical vehicle-based
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interface:UI :Controller :VehicleConfig :Routing :EDP :ChargingPoints

enterDest
getConfig()

getRoute()

getEnergy()

checkAttainability()

R

getCPs()

getRoutes()

getEnergies()

rateRoutes()

R == 0R == 0 Route with charging stop(s)

Response

Run Control LoopRun Control Loop

Figure 3.3: Sequence diagram for routing, EDP, and optional charge planning.
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(a) Amount of data generated by the software modules
depending on route length.
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Figure 3.4: Resource requirements of route planning, EDP and charge planning.

placement used as a baseline for the evaluation. The vehicle-based placement is
commonly applied in current day BEVs. Furthermore, it was suggested by Yi et
al. [234], Scheubner et al. [5], and Ferreira et al. [77]. In that placement, all soft-
ware modules are placed in the vehicle except for the routing algorithm, which is
based in the cloud. The routing algorithm relies on real time information on traffic
and road conditions and can be seen as an external service. In the cloud-based
placement shown in Fig. 3.5b, all but the UI and vehicle configuration module
are placed in the cloud. In terms of inference, this placement corresponds to the
systems suggested by Fukushima et al. [84], Grubwinkler et al. [101, 100], and
Lee et al. [137]. The placement shown in Fig. 3.5c is a hybrid between the cloud-
and vehicle-based placements, where the routing algorithm and the CP search
are implemented in the cloud and the EDP module is placed dynamically both in
the cloud and in the vehicle. The second hybrid placement shown in Fig. 3.5d is
the same as hybrid 1, except the EDP module is only implemented in the cloud.
This placement corresponds to the systems suggested by Thibault et al. [209] and
Jayakumar et al. [122]. In the following, the simulations and their results are
discussed. In Section 3.3.1, the setup of the experiments in iFogSim is presented.
In Section 3.3.2, inference with the EDP algorithm is analyzed. In Section 3.3.3,
the learning of the eEDP is examined.

37



3 System Architecture Evaluation
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Figure 3.5: Software component diagram showing the four module placement variants.

3.3.1 Experiment Setup

To analyze the EDP and charge planning software, iFogSim is configured for
the simulation of the systems presented in Section 3.2. In the following, the
classes of iFogSim applied in the experiments are described. A FogDevice is
created for each of the hardware units in Table 3.1 with the given specifications.
According to the topology shown in Fig. 3.1, a direct hierarchy of FogDevices
is defined. The parent-child pair communication in the hierarchy is configured
according to the specification in Table 3.2. In addition, appropriate Sensors are
configured in the vehicle to measure velocity, energy consumption etc. Finally, a
Sensor and an Actuator are configured to represent the UI. The latency between a
Sensor/Actuator and the vehicle’s central ECU is estimated to be 5ms [217]. An
AppModule is created for each of the modules in the EDP and charge planning
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software shown in Fig. 3.2. For each of the edges between the software blocks in
Fig. 3.2, an AppEdge is created. Each edge carries a Tuple that defines the function
of the edge. The processing requirements of the edges’ tuples are specified
according to Table 3.3, where the variable l is used to specify the length of the
route. The edges are event-based and their function is triggered by an incoming
tuple from a source software module. To monitor and measure the end-to-end
latency of the control loop shown in Fig. 3.3, an AppLoop is specified according
to the sequence diagram. With the class ModulePlacement, the mapping of
the AppModules on the FogDevices is defined. Thereby, the module placement
variants shown in Fig. 3.5 can be configured for the simulations. The results of
the simulations include the end-to-end latency of the control loop, as well as the
network usage. Furthermore, each FogDevice measures the energy used during
the simulation and the cost of using cloud instances is calculated. In the following
section, an analysis of these results is presented.

3.3.2 Inference

For the EDP and charge planning software, the four different module placement
variants shown in Fig. 3.5 are simulated, each of which for different route lengths.
The route lengths simulated are 10, 50, 100, 200, 300, 400, 500 km. The mean
results based on the simulations are shown in Table 3.4. The table shows the
performance indicators control loop latency, cost of cloud execution, energy usage
in the cloud, energy usage in the vehicle and total network usage, in proportion to
the baseline vehicle-based placement (a). As the simulation includes uncertainty,
the results are shown in proportion to the baseline, not as the absolute values. In
that way, the absolute system specifications are of lower importance compared to
the ratio of the specifications of different system architectures. For all performance
indicators, the cloud-based placement (b) is the best. The control loop latency,
cost of execution in cloud and total network usage are significantly lower in the
cloud-based placement than in the other three placements. The energy usage,
both in the cloud and in the vehicle, is similar for all four module placements.
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The first hybrid placement (c) shows significantly better results than the vehicle-
based placement (a), but still fails to attain the performance of the cloud based
placement, which achieves more than tenfold improvement in latency, cost and
network usage.

Table 3.4: Performance indicators of module placements in proportion to the baseline, vehicle-based,
placement.

Placement (a) Vehicle-based (b) Cloud-based (c) Hybrid 1 (d) Hybrid 2

Latency [-] 1 0.09 0.56 0.80

Cost [-] 1 0.03 0.68 1.07

Energy Cloud [-] 1 0.92 0.98 1.00

Energy ECU [-] 1 0.99 1.00 1.00

Network usage [-] 1 0.03 0.60 0.98

Fig. 3.6 shows the control loop latency and network usage of different module
placements in proportion to the vehicle-based placement (a) for different route
lengths. For the driver, these performance indicators are most important in terms
of user experience. Fig. 3.6a shows the latency of the control loop and Fig. 3.6b
shows the network usage. For both latency and network usage, the cloud-based
placement (b) is consistently better than the vehicle-based placement (a). The
improvement in latency is approximately 10-fold for all route lengths. The network
usage of the cloud-based placement (b) is approximately 10 times lower than that
of the vehicle-based placement (a) for a route length of 500 km and even lower
for shorter route lengths. The Hybrid 1 placement’s (c) performance is similar
to the cloud-based placement (b) for shorter routes, but with increasing route
length the performance worsens and becomes similar to that of the vehicle-based
placement (a). The second hybrid placement’s (d) performance is similar to that
of the vehicle-based placement (a), apart from an improvement in relative latency
with increasing route length. The cloud-based placement (b) achieves clearly the
highest over-all performance.
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Figure 3.6: Relative latency and network usage of EDP of a route with charging stops.

If the causes for the differences are analyzed, the most important factor is the time
used down- or uploading data needed for the EDP and charge planning. In the
cloud-based placement (b), the EDP uses the route, road and traffic information
directly within the cloud and only transmits the final display values to the vehicle,
which are considerably smaller in size. Furthermore, computation in the cloud
is faster, which also improves the control loop’s latency. Of the four module
placement variants analyzed, cloud-based inference is clearly superior. The pro-
posed system architecture can enable energy demand and driving range prediction
concepts, such as those of Fukushima et al. [84], Grubwinkler et al. [101, 100],
and Lee et al. [136, 137] to perform efficiently.

3.3.3 Learning

In the previous section, it was observed that inference can be done efficiently
when the softwaremodules are distributed intelligently between vehicle and cloud.
However, the learning of models has yet to be considered. To ensure sufficient
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performance of the software, the correct placement of the learning module must
be decided. This section compares the latency and network usage of two different
strategies: vehicle-based (on-device) learning and cloud-based learning, utilizing
online learning algorithms [36]. In related works on cloud-based energy demand
and driving range prediction, cloud-based learning has to date been the preferred
choice [84, 136, 137].

The training data in the EDP is streaming data that arrives sequentially with
a frequency of up to 10Hz. As discussed in Section 2.2, some of the input
parameters for the EDP algorithms are traffic and road topology information
from a TRDB. This information is also necessary in the learning of the model.
However, only a description of the current situation is needed, which can be
observed in the vehicle directly. For example, the temperature can be measured
with the appropriate sensor and the traffic can be observed with on-board cameras
and other sensors [5].

Consider the number of iterations I needed for an algorithm, such as SGD,
to converge to an acceptable level. The time needed for each iteration is TI and
therefore the total time for the learning of an prediction model in a non-distributed
setting is

T = I · TI . (3.14)

In a distributed setting, the communication between vehicle and backend is also
important. If c is the latency of the communication, the total time needed for a
distributed learning of the model is

T = I · (c+ TI) , (3.15)

if communication in each iteration is assumed. Since algorithms, such as SGD,
require many fast iterations, even fast communications result in poor performance,
as c≫ TI [132]. The learning algorithm can be deployed in a vehicle ECU as well
as in the cloud. The communication latency c is estimated based on the data size
of the training data for cloud-based learning, compared with the model size for
vehicle-based learning. Fig. 3.7 shows the estimation of the communication cost in
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terms of data size. In the figure, the size of the 10Hz training data stream is shown
dependent on driving time in minutes. Additionally, the estimated model size of
a LR model and a NN with 100 hidden units in 2 hidden layers is visualized. The
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Figure 3.7: Size of the 10Hz training data stream and estimated model size of a LR model and a NN
in kB, dependent on driving time in minutes.

preferred placement of the learningmodule is dependent on the required frequency
of updates to the EDP in terms of driving time. The threshold values for the update
intervals can be observed as the points of intersection of the graphs in Fig. 3.7.
For the cloud-based learning setting, the communication cost is higher than in the
vehicle-based setting if the time interval between updates is greater than 0.24 s for
the LR, or 86 s for the NN. To minimize total network usage and communication
cost c, the update frequency should be as low as possible and as high as necessary
for the optimal user experience. Choosing update intervals greater than 0.24 s for
a LR or 86 s for a NN and placing the learning algorithm in the vehicle reduces
the communication cost, as the model size is then effectively smaller than the size
of the training data. In terms of communication and computation cost, vehicle-
based learning can therefore be significantly better than cloud-based learning.
In this respect, the vehicle-based ML concepts for energy demand and driving
range prediction by Scheubner et al. [5] and Ferreira et al. [77] can therefore be
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implemented with the proposed system architecture in an efficient way. Related
works such as by Fukushima et al. [84] and Lee et al. [136, 137], which have
favored cloud-based learning, could benefit from placing the learning modules
directly in the vehicles. Furthermore, by keeping the training data locally in the
vehicle, the privacy of the users remains protected.

3.4 Summary and Conclusions

In this chapter, the performance of an electric vehicle routing software was eval-
uated in different system architectures. The evaluation enables the comparison of
different module placements regarding latency, network usage, energy usage, and
cost. By modeling the software and the hardware, simulations with iFogSim were
performed. The results show that for the inference process, a cloud-based module
placement is superior to other investigated placements. The cloud-based module
placement is significantly better than the current day baseline, the vehicle-based
placement. It is estimated that the end-to-end latency from the input of the des-
tination to the display of the route and driving range can be improved by a factor
of 10, which improves the user experience significantly. Furthermore, network
usage can be reduced at least by a factor of 10. Additionally, different settings
for the learning process of the model were analyzed and a vehicle-based learning
setting was found to be a more feasible choice than cloud-based learning, which
was favored in related works. The result obtained with the analysis can be used in
early stages of the development to compare possible solutions and identify which
are promising and which are not practicable.

The investigation of the criteria reliability, availability, flexibility, scalability,
expandability, and security falls out of the scope of the simulations. From a
subjective point of view, the proposed cloud-based module placement offers more
flexibility, scalability and expandability than a traditional vehicle-based place-
ment, as software updates and changes are simpler in the cloud than in the vehi-
cle. As with all connected vehicle functions, the proposed system is dependent
on mobile connectivity, which may have negative impact on availability and thus,
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reliability. With the extension of mobile networks and the deployment of 5G
connectivity, availability and reliability continues to improve.
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4 Probabilistic Predictions with
Federated Learning

In Chapter 3, two problems were identified: transferring large amounts of data
between the vehicle and a backend may lead to high communication costs and
the privacy of the users may be compromised [219]. To counter these problems,
machine learning (ML) is performed on-device, so that the data are kept localized
on the device and are not uploaded to a central server. The most prominent
on-device ML methods are distributed learning [245, 119], gossip learning [173],
and federated learning (FL), e.g., federated averaging (FedAvg) [156].

This chapter focuses on the application of FL to generate a probabilistic model.
Inspired by related work on probabilistic predictions with NNs, the learning of a
probabilistic model through FL is proposed. The proposed algorithm, FedAvg-
Gaussian (FedAG), introduces weight uncertainty in the aggregation step of the
algorithm. In that way, the end devices can calculate probabilistic predictions but
only have to learn conventional, deterministicmodels. To accentuate the capability
of FedAG, the algorithm is validated using numerous open-source datasets, before
the algorithm is applied to the EDP in Chapter 5. The open-source datasets orig-
inate from different domains, which demonstrates the generalizability of FedAG.
This chapter is organized as follows: In Section 4.1, probabilistic predictions with
ML are discussed and an overview of related work is given. In Section 4.2, FedAG
is presented. In Section 4.3, a summary of proper scoring rules is presented, which
are necessary for the evaluation of probabilistic predictions. In Section 4.4, open-
source datasets are used to evaluate the performance of the method and the results
are compared to benchmarks from related literature. In Section 4.5, the compu-
tational complexity of the presented algorithms is discussed. Finally, Section 4.6
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gives concluding remarks and a summary. The results in this chapter were pre-
viously presented in the author’s journal article "Probabilistic Predictions with
Federated Learning", which appeared in Entropy in 2020 [1], as well as in the
poster presentation "Federated Learning with Predictive Uncertainty" [7] and are
directly reproduced in this chapter.

4.1 Literature Survey

A probabilistic prediction (or stochastic prediction) is when the prediction takes
the form of a probability distribution, instead of a scalar value [93]. The appli-
cation of ML in this topic is of significant relevance. Probabilistic predictions
are commonly used in geology [138], electricity markets [41], urban water con-
sumption [54], wind power [230], driver behavior [115], and vehicle dynamics
[85]. Two prominent probabilistic prediction methods are Bayesian deep learn-
ing (BDL) and ensemble methods, on both of which a summary was given by
Ashuka et al. [23]. In BDL, the model parameters, e.g., weights w, are random
variables represented by probability distributions p(w). With a dataset D, con-
sisting of features x and target variable y, the posterior distribution for the model
weights can be derived using the Bayes’ rule, which states that the posterior dis-
tribution is proportional to a prior probability p(w|θ) multiplied with likelihood
p(D|w, β)

p (w|D, θ, β) ∝ p(w|θ)p(D|w, β) , (4.1)

where θ is a precision parameter for the prior distributions on weights w and β

is a noise precision parameter. For simplicity, the weight posterior distribution
is written as p(w|D). To make predictions for new, unseen data, the predictive
distribution is obtained with

p(y|x,D) =
∫

p(y|x,D,w)p(w|D)dw . (4.2)
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The exact computation of (4.1) and (4.2) is usually intractable due to the non-
linearity of NNs [31]. The integration over the posterior is commonly ap-
proximated with Monte Carlo (MC) methods, such as Markov chain Monte
Carlo (MCMC) or Hamiltonian Monte Carlo (HMC) [166]. Alternative ap-
proximation methods are extended variational inference [60] and cubature rules
based on the unscented transformation [222].

A recent survey on BDLwas given byWang &Yeung [220]. Traditional Bayesian
neural networks (BNNs) do not scale well to large models and the posterior
p(w|D) is usually difficult to calculate and sample from, but various approxima-
tion approaches have succeeded in creating probabilistic NNs. In variational infer-
ence (VI), the posterior p(w|D) is approximated with a well-defined distribution
Qp(w|D) and the variational free energy F is minimized to minimize divergence
between p(w|D) and Qp(w|D) [97]. In Bayes by Backprop, the variational free
energy is not minimized naively but approximately using gradient descent [33]. In
probabilistic backpropagation (PBP), the posterior is determined with a calcula-
tion of a forward propagation of probabilities followed by a backwards calculation
of gradients [111]. Gal & Ghahramani used dropout to achieve a mathemati-
cal equivalent of a Bayesian approximation without probabilistic weights [86].
Maddox et al. proposed stochastic weight averaging Gaussian (SWAG), where an
approximate posterior distribution over NN weights is determined by observing
the SGD trajectory during the learning process [153]. Farquhar et al. showed that
a deep NN with mean-field weight distributions, e.g., Gaussian, can approximate
any posterior distribution over predictive functions [75].

An established alternative to BDL is the use of ensembles to generate a proba-
bilistic prediction. Thereby, multiple scalar predictions are combined to infer a
probabilistic prediction. The predictions are either calculated with several differ-
ent models or with a single model with varying initial conditions or input data.
In a statistical post-processing of the ensemble predictions, a single probability
density is derived [39]. A simple method is fitting a probability distribution to
the predictions, e.g., a normal distribution N (µ, σ2), by setting µ equal to the
ensemble mean and σ to the ensemble standard deviation [225]. Further tech-
niques exist, such as the ensemble model output statistics (EMOS) method [24],
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which is common in the atmospheric sciences [139]. Numerical models, mech-
anistic models and ML algorithms can all be used as individual predictors in the
ensemble, but in this work, the focus is set on the application of ML algorithms.

Deep ensembles (DE) are ensembles of NNs where each of the NNs predicts the
parameters of a predictive distribution, e.g., µ and σ, and the ensemble prediction
is then a mixture of Gaussians [134]. Snapshot ensembles are generated by
taking snapshots of NN weights at local minima during the training process, thus
achieving an ensemble of NNs by training a single NN [116]. Fast geometric
ensembling also trains a single NN and explores the weight space to find a set
of diverse weight samples with minimal loss, thereby generating an ensemble
of NNs [87]. Depth uncertainty networks are ensembles of sub-networks of
increasing depthwhich shareweights, thus needing only a single forward pass [17].
Ensembles of other ML algorithms also exist, e.g., gradient boosting ensembles
[155]. Out of these ensemble methods, DE have recently shown quite promising
results in terms of prediction performance. The nature of DE has a certain
resemblance to distributed methods, i.e., independent and parallel training of
multiple NNs.

The learning of probabilistic ML models in a distributed and federated setting is
the central challenge of this work. In partitioned variational inference (PVI), fed-
erated approximate learning of BNNs is presented [44]. Sharma et al. presented
an extension of PVI including differential privacy [196]. However, probabilistic
predictions of continuous variables are not implemented and these methods can
therefore not be used as benchmarks. Concurrent to this work, a number of articles
on probabilistic FL were published. Kassab & Simeone introduced distributed
Stein variational gradient descent (DSVGD), where non-random and interacting
particles represent the model global posterior. Iterative updates of the particles
are performed on the devices by minimizing the global free energy [129]. Al-
Shedivat et al. proposed federated posterior averaging (FedPA), where the clients
use MCMC to infer approximations of the local posteriors, and the server com-
putes an estimate of the model global posterior [14]. Zhang et al. used FedAvg
with differential privacy to learn a Bayesian long short-term memory (LSTM)
network, where Monte Carlo dropout is applied to compute probabilistic forecasts
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of solar irradiation [242]. Finally, Chen & Chao proposed federated Bayesian
ensemble (FedBE), where the local models are aggregated via Bayesian model
ensemble. There, a probability distribution is fitted to the local models but with
the assumption that the server has access to some training data [50]. In the
next section, an alternative method for the application of FL to probabilistic ML
models is proposed.

4.2 Federated Learning with Predictive
Uncertainty

The proposed method, FedAvg-Gaussian (FedAG), builds on the FedAvg algo-
rithm [156]. In FedAvg, clients perform quick local updates on the weights, which
are then aggregated in a central server. In turn, the aggregated weights are then
returned to the clients for further learning. FedAvg does not consider predictive
uncertainty. However, before the weights are aggregated, information on their
distribution over the clients is known. Xiao et al. showed that during FL, client
weights become increasingly correlated but not closer to each other in terms of
distance metrics [228]. This fact may be a sign that the client weights are a good,
approximate Bayesian marginalization, i.e., the weights represent multiple basins
of attraction in the posterior [226]. In the presented algorithm, this information
is used to introduce weight uncertainty in the aggregation step of the FedAvg
algorithm. Thereby, a probabilistic model is approximated by treating the set of
local weights of the clients as an empirical posterior distribution for the weights
of the global model. This approach is somewhat similar to SWAG, where instead
of the SGD trajectory, local weights of the federated model are used. Using the
probabilistic model, inference is performed by calculating predictive distributions
for new, unseen data.

A pseudo-code for FedAG is shown in Algorithm 1. In the aggregation step, a
probability distribution is fitted to the set of client weights. The choice of this
distribution is arbitrary, but for simplicity, normal distributions are considered in
this work. Hence, the posterior distributions are found by calculating the mean
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value µw and variance σ2
w of weights w(k). In turn, the posterior distributions

p(w|D) are returned to the clients. The clients use the expected value, i.e., the
mean value µw of the weight posterior distributions to further iterate local updates
to the global model using their own data, but calculate probabilistic predictions
with p(w|D).

Algorithm 1: FedAvg-Gaussian (FedAG). C is the fraction of devices used
in each round, K is the total number of devices, Dk is the data observed by
device k, B is the batch size, Ep is the number of local epochs, ηl is the
learning rate and L is the squared loss function.

1 Server executes:
2 initialize w0

3 for each round t = 1, 2, ... do
4 g ← max(C ·K, 1)
5 St ← (random set of g clients)
6 for each client k ∈ St do
7 w

(k)
t+1 ← ClientUpdate(k, p(wt|D))

8 end
9 p(wt+1|D)← N (µD(w

(k)
t+1), σ

2
D(w

(k)
t+1))

10 return p(wt+1|D) to clients
11 end
12

13 ClientUpdate(k, p(w|D)): // Run on client k
14 B ← (split Dk into batches of size B)
15 w← E(p(wt|D))
16 for each local epoch i = 1 to Ep do
17 for batch b ∈ B do
18 w← w − ηl∇L(w; b)
19 end
20 end
21 return w to server

As in FedAvg, the clients minimize the squared loss function. The client updates
are therefore fast and do not require extensions in order to learn a probabilistic
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model. FedAG is therefore significantly less complicated than PVI, DSVGD
and FedPA, which is beneficial when resources such as computing performance
and storage are limited. Additionally, the only target variable during training is
µ, so that the amount of operations is smaller in comparison to DE. FedAG
and FedBE exhibit strong similarities, except that the server in FedAG does not
require access to training data. Fig. 4.1 shows an overview of the training process
where a network of end devices learns a probabilistic model. For wi, the clients
return their local updates, to which a normal distribution is fitted to generate a
posterior probability distribution p(wi|D). The distributions p(wi|D) constitute
the weights of the NN with input variable x, hidden units hi, bias I and target
variable ỹ. FedAG does not require prior probabilities on the weights.

...

wi

h1

h2

h3

I

ỹ

x

I

p(wi|D)p(wi|D)

p(w0|D)p(w0|D)

p(w1|D)p(w1|D)
p(w2|D)p(w2|D)
p(w3|D)p(w3|D)

p(w4|D)p(w4|D)

p(w5|D)p(w5|D)

p(w6|D)p(w6|D)

p(w7|D)p(w7|D)

p(w8|D)p(w8|D)

p(w9|D)p(w9|D)

Figure 4.1: A network of end devices learns a probabilistic model.
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As mentioned in Section 4.1, an exact calculation of the integral in (4.2) for the
predictive distribution is generally intractable and some approximation is needed.
Two variations for the algorithm are proposed: ordinary Monte Carlo (OMC) and
non-parametric bootstrapping. In OMC,M sets of the weights are drawn from the
posterior distributions to calculateM scalar predictions ỹk for the target variable
y [89]. It may seem strange to draw sets of sample weights from a distribution
created by aggregating sets of sample weights. An alternative would be to use
the sample weights from the clients directly to calculate the predictions. In a
sense, this resembles non-parametric bootstrapping to create an ensemble [161].
In that way, ỹk are calculated directly from the client updates. In this work, the
latter sampling method is used. The predictive distribution is approximated with
a normal distribution N (µ̃y, σ̃

2
y)

p(y|x,D) =
∫

p(y|x,D,w)p(w|D)dw := N (µ̃y, σ̃
2
y) (4.3)

µ̃y ≈
1

M

M∑

k=1

ỹ(x,w(k)) (4.4)

σ̃2
y ≈

(
1

M

M∑

k=1

[
ỹ(x,w(k))

]2
)
− µ̃2

y , (4.5)

where ỹ(x,w(k)) is a prediction calculated with features x and weights w(k). In
the case of a linear model, the predictive distribution takes the form

p(y|x,D, β) = N
(
µT
wx, β−1 + x

[
σ2
wI
]
xT) , (4.6)

where β is a noise precision parameter for data D and is considered to be inde-
pendent of the distribution of the weights w, I is the identity matrix, µw and σ2

w

are the mean and variance of the weight posterior distribution p(w|D) [31].

The communication complexity of FedAG is different from that of FedAvg.
FedAG learns a posterior distribution for each weight of the model. There-
fore, its communication complexity is somewhat higher than that of FedAvg. If
a Gaussian posterior is assumed, each distribution is defined by its mean and

54



4.3 Proper Scoring Rules

standard deviation. Compared to FedAvg, the global model has twice the amount
of parameters. The communication complexity of sending the global model to the
clients in FedAG can thus be up to two times higher than in FedAvg, depending
on the communication overhead. However, the client updates only include scalar
weights w, so the upload communication complexity in FedAG is the same as in
FedAvg.

4.3 Proper Scoring Rules

To evaluate the performance of the prediction algorithms, proper scoring rules
are required. Scoring rules assess the quality of probabilistic predictions by
comparing the predictive distribution and the true observation [125]. A scoring
rule SR is proper if the expected score is optimized by issuing the true distribution
of observations as the prediction. In this work, scores are regarded as negatively
oriented, i.e., a better prediction leads to a lower score. The requirement for a
scoring rule SR to be proper is thus

Ey∼Pt
[SR(Pt, y)] ≤ Ey∼Pt

[SR(Qp, y)] , (4.7)

where y is the true observation of the target variable, Pt is the true distribution
of y and Qp is a predictive distribution. The scoring rule is strictly proper if the
equality in (4.7) only holds when Pt = Qp [92].

Popular scoring rules for the prediction of continuous variables are the logarithmic
scoreL(F, y), the continuous ranked probability score (CRPS) and its generaliza-
tion, the energy score (ES) [94]. In related work, negative log-likelihood (NLL)
has been favored as a performance indicator

NLL =
1

2
log(2πσ2

Qp
)) +

(y − µQp
)2

2σ2
Qp

, (4.8)

where µQp
and σ2

Qp
are the mean value and variance of the predictive distribution.

NLL is equal to the negative logarithmic score and is therefore also a proper scoring
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rule. Furthermore, NLL is unitless which is advantageous when evaluating a
model’s performance on different datasets.

A good prediction is well calibrated and sharp. Calibration is the statistical
consistency between the predictive distribution and the observation of the target
variable. Sharpness measures the concentration of the predictive distribution.
NLL measures both calibration and sharpness whereas root mean square error
(RMSE) only measures calibration. RMSE is not a proper scoring rule, but due
to its wide acceptance, it is included in this work to allow a direct comparison
to related works. Separate measures for calibration and sharpness allow a more
detailed comparison. The width of a central prediction interval, e.g., 50%, was
suggested by Gneiting &Raftery as a measure for sharpness [94]. As all candidate
algorithms in this work calculate a prediction in the form of a normal distribution,
the standard deviation appropriately measures the sharpness by indicating the
width of the central 68% prediction interval. This is also called determinant
sharpness (DS):

DS = det(Σ)1/2d , (4.9)

where Σ ∈ Rd×d is the covariance matrix of the predictive distribution and d is
the dimension of the target variable. In the evaluation using open-source datasets,
the proper scoring rule NLL is used, as well as RMSE and DS.

4.4 Experimental Evaluation

As commonly done in the field of ML, the proposed method is validated with
openly accessible empirical data. In this section, the experiments are described
and the results are analyzed. In Section 4.4.1, FedAG is applied to toy regres-
sion data. Section 4.4.2 shows the setup of the empirical validations and in
Section 4.4.3, the results are presented.
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4.4.1 Regression with Toy Data

To analyze the performance of the proposed method on simple data, a one-
dimensional toy dataset is generated as suggested by Hernández-Lobato & Adams
[111]. In the analysis, 10 clients draw 16 independent examples from y = x3 + ϵ

where ϵ ∼ N (0, 32). The clients collaborate in learning a probabilistic NNwith a
single hidden layerwith 100 hidden units from these data according toAlgorithm1.
The data are sampled in the interval [−4, 4] but predictions are calculated for the
interval [−6, 6]. Fig. 4.2 shows the resulting probabilistic predictions after 1, 3
and 5 communication rounds. The results after t = 5 rounds show that FedAG can
calculate accurate probabilistic predictions with low but appropriate uncertainty
for input data close to the observed training data. For input data farther away
from observed data, the uncertainty is high. The prediction interval thus includes
the ground truth despite the scarce training data, making the prediction superior
to those calculated after rounds t = 1 and t = 3. The results after t = 5

rounds are similar to those reported by Hernández-Lobato & Adams [111] and
Lakshminarayanan et al. [134].

4.4.2 Experiment Setup

For the empirical validation, FedAG is implemented with two models: a NN
with a single hidden layer and a linear regression model, denoted NN-FedAG
and LR-FedAG, respectively. The experiment setup is the same as described by
Hernández-Lobato & Adams [111], which was also used by Lakshminarayanan
et al. [134] and Gal & Ghahramani [86]. There, 10 datasets from the UCI
Machine Learning Repository are used [68]. Table 4.1 shows a summary of the
corresponding datasets.

The performance of FedAG is compared to three benchmarks: Bayesian linear
regression (BLR) [31], variational inference (VI) [97], and deep ensembles (DE)
[134], all of which are implemented in a non-distributed setting. Gaussian poste-
riors are used in VI and the DE consists of 5 networks. The NNs trained using VI,
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Figure 4.2: Results on regression for toy data after 1, 3 and 5 rounds. The blue line represents the
ground truth, the orange points are exemplary observed noisy training data, the black line
is the mean value of the predictive distribution and the grey area demarcates a prediction
interval containing ±3 standard deviations.

DE, and FedAG all have the same architecture with 50 hidden units with ReLU
activation functions in a single hidden layer. For the Protein Structure and Year
Prediction MSD datasets, 100 hidden units are used. A 20-fold cross validation is
performed to evaluate test performance, where Ep = 40 passes over the available
training data are done. For the Protein Structure dataset, a 5-fold cross validation
is performed and for the Year Prediction MSD dataset, the specified split is used.
The linear models, LR-FedAG and BLR, are validated in the same manner. In
the federated setting, K = 10 devices are simulated with C = 1 and batch size
B = 1. K and C are chosen so that the amount of data per device is maximized,
subject to the condition that the number of devices is sufficiently large to enable
an accurate approximation of the posterior distribution in the aggregation step.
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Table 4.1: Summary of the UCI datasets for regression.

Datasets Observations Features

Boston Housing 506 13

Concrete Compression Strength 1030 8

Energy Efficiency 768 8

Kin8nm 8192 8

Naval Propulsion Power Plant 11, 934 16

Combined Cycle Power Plant 9568 4

Protein Structure 45, 730 9

Red Wine Quality 1599 11

Yacht Hydrodynamics 308 6

Year Prediction MSD 515, 345 90

The training data are randomly divided intoK equally large shards, each of which
is assigned to a simulated device. Hence, each observation is uniquely assigned
to one device.

The training of a linear model is a convex optimization and it can be expected that
LR-FedAG should need no more than t = 1 rounds to converge. On the contrary,
the training of a NN is usually a non-convex optimization and t > 1 rounds
are therefore required for convergence of NN-FedAG in this setting. When each
device has a limited amount of data, such as in small datasets or when the number
of devices is increased, an even higher number of communication rounds might be
required. Strong baselines in BDL are important and this work tries to generate a
fair basis for the comparison of FedAG and the benchmarks [164]. For BLR and
LR-FedAG, appropriate precision parameters for the variance of the target variable
are estimated using the variance of the training data. In addition, conjugate priors
given by unit Gaussians are used for the weight posterior distributions p(w|D) in
BLR.
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4.4.3 Results

With the experiment setup and proper scoring rules, the performance of FedAG
and the benchmarks can be evaluated. In the following, the results of the vali-
dation are presented. Table 4.2 shows the mean NLL and standard error for the
algorithms on all datasets and Table 4.3 shows the RMSE and standard error. The
results for VI and DE are reported by Hernández-Lobato & Adams [111] and
Lakshminarayanan et al. [134], respectively. The entries in bold denote the best
performing model(s), where the performance is considered similar if the standard
error intervals overlap.

Table 4.2: Mean NLL and standard error of the predictions.

Dataset BLR VI LR-FedAG(t=1) NN-FedAG(t=5) DE

Boston 3.07± 0.03 2.90± 0.07 3.02± 0.03 2.58± 0.06 2.41± 0.25

Concrete 3.78± 0.02 3.39± 0.02 3.76± 0.03 3.21± 0.04 3.06± 0.18

Energy 5.12± 0.05 2.39± 0.03 5.31± 0.06 2.07± 0.04 1.38± 0.22

Kin8nm 1.17± 0.04 −0.90± 0.01 1.03± 0.04 −0.87± 0.01 −1.20± 0.02

Naval −3.55± 0.02 −3.73± 0.12 −3.45± 0.01 −3.21± 0.01 −5.63± 0.05

Power 2.97± 0.01 2.89± 0.01 2.94± 0.01 2.92± 0.01 2.79± 0.04

Protein 3.07± 0.00 2.99± 0.01 3.08± 0.00 2.95± 0.00 2.83± 0.04

Wine 1.50± 0.07 0.98± 0.01 1.01± 0.03 0.99± 0.02 0.94± 0.12

Yacht 3.63± 0.05 3.44± 0.16 4.02± 0.07 1.92± 0.06 1.18± 0.21

Year 3.73± NA 3.86± NA 3.72± NA 3.66± NA 3.35± NA

The performance of the two linear models, BLR and LR-FedAG is similar. In
8 out of 10 datasets, LR-FedAG(t=1) performs similarly or slightly better than
BLR in terms of NLL. BLR significantly outperforms LR-FedAG(t=1) only in
two datasets, the Energy Efficiency and Yacht Hydrodynamics datasets, which are
also two of the smallest datasets. Hence, each device only has access to a small
amount of data. In 9 out of 10 datasets, the performance of LR-FedAG(t=1) and
BLR is almost identical in terms of RMSE.

In the results for NNs, the difference between the three algorithms, VI, FedAG,
and DE is somewhat significant. DE achieve the best results, followed by FedAG
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Table 4.3: RMSE and standard error of the predictions.

Dataset BLR VI LR-FedAG(t=1) NN-FedAG(t=5) DE

Boston 4.87± 0.22 4.32± 0.29 4.96± 0.22 4.07± 0.18 3.28± 1.00

Concrete 10.58± 0.33 7.13± 0.12 10.52± 0.33 6.50± 0.20 6.03± 0.58

Energy 4.35± 0.14 2.65± 0.08 4.36± 0.14 2.02± 0.07 2.09± 0.29

Kin8nm 0.20± 0.00 0.10± 0.00 0.20± 0.00 0.10± 0.00 0.09± 0.00

Naval 0.01± 0.00 0.00± 0.00 0.01± 0.00 0.01± 0.00 0.00± 0.00

Power 4.74± 0.05 4.33± 0.04 4.56± 0.05 4.45± 0.05 4.11± 0.17

Protein 5.18± 0.02 4.84± 0.03 5.18± 0.02 4.63± 0.02 4.71± 0.06

Wine 0.65± 0.02 0.65± 0.01 0.65± 0.02 0.65± 0.02 0.64± 0.04

Yacht 9.12± 0.52 6.89± 0.67 9.12± 0.52 2.29± 0.15 1.58± 0.48

Year 9.51± NA 9.03± NA 9.51± NA 9.35± NA 8.89± NA

and VI. In 8 out of 10 datasets, FedAG outperforms VI in terms of NLL and in
3 out of 10 datasets, the performance of FedAG approaches that of DE. In terms
of RMSE, the performance of FedAG and DE is similar in 5 out of 10 datasets.
Further rounds (t > 5) do not improve the results of NN-FedAG significantly.

To further compare the performance of VI, DE and NN-FedAG over the course
of the communication rounds, the dataset Concrete Compression Strength is
investigated, where the performance of the methods is similar, and the dataset
Yacht Hydrodynamics where DE show a significant advantage in terms of NLL.
Fig. 4.3 shows the prediction performance (NLL and RMSE) of the algorithms
on these two datasets. In Fig. 4.3a and Fig. 4.3b, NN-FedAG outperforms VI
already after t = 1 rounds, both in terms of NLL and RMSE. However, NN-
FedAG reaches a certain saturation and cannot match the performance of DE,
despite a significant improvement in NLL and RMSE after t = 5 rounds. In
Fig. 4.3c and Fig. 4.3d, NN-FedAG and VI show similar performance after t = 1

rounds. With increasing number of communication rounds t, NLL and RMSE
of FedAG improve. After t = 5 rounds, the results of NN-FedAG and DE
overlap, i.e., the algorithms achieve similar performance, though DE still retains
a slight advantage. In the initial round of FedAG, different devices might find
weights corresponding to different minima of the NN’s loss function, so that the
global model’s initial weight posterior distributions are not optimal. As shown in
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Figure 4.3: Prediction performance of NNs trained with FedAG, DE, and VI in terms of NLL and
RMSE on the datasets Yacht Hydrodynamics and Concrete Compression Strength.
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Section 2.3, the degree of the loss function is dependent on the number of hidden
layers [51]. It can therefore be expected that loss functions of small NNs have few
local minima, and that the global minimum can be found within relatively few
communication rounds in FedAG. Accordingly, larger NNs might require more
communication rounds. On the two datasets in Fig. 4.3, it is observed how the
performance of NN-FedAG gradually improves with increased rounds t. This can
also be observed on other datasets.

Another important property of the predictive distributions is their sharpness,
which is measured with DS. In Table 4.4, the mean DS of the predictive dis-
tributions calculated with NN-FedAG(t=5) and DE are shown. Of the datasets
that exhibit similar performance in terms of NLL, Boston Housing and Concrete
Compression Strength can be predicted with greater sharpness by FedAG than
DE, whereas DE’s predictions of Red Wine Quality are sharper on average. In 7
out of 10 datasets, FedAG predicts on average a sharper distribution than DE.

Table 4.4: Mean determinant sharpness (DS) of the predictive distributions calculated with NN-
FedAG(t=5) and DE.

Dataset NN-FedAG(t=5) DE

Boston 4.05 4.79

Concrete 6.37 7.07

Energy 2.16 2.67

Kin8nm 0.10 0.14

Naval Propulsion 0.01 0.02

Power Plant 4.30 5.48

Protein 3.88 4.59

Red Wine 0.79 0.69

Yacht 2.85 0.94

Year Prediction 11.12 7.85
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4.5 Computational Complexity

In addition to the predictive performance of the algorithms, their computational
complexity is of significant importance. The candidate algorithms have different
computational complexity at training time and at testing time. On the one hand,
the two linear models BLR and LR-FedAG, have the same structure and the same
amount of parameters. The predictive distributions can be computed analytically
with (4.6) and no sampling is required. On the other hand, the NNs trained using
VI, DE, and FedAG are more complex. VI and FedAG learn probabilistic NNs
with Gaussian posterior, whereas DE are ensembles consisting of deterministic
NNs with scalar weights, but with two output variables. VI maximizes a lower
bound on the marginal likelihood of the NN. First, a Monte Carlo approxima-
tion for the lower bound is computed, which is then optimized using SGD. The
computational complexity at training time is therefore higher in VI than in DE
and FedAG, where SGD is applied directly. VI and FedAG approximate predic-
tive distributions using Monte Carlo sampling from the posterior distributions.
Contrarily, DE only have to analytically compute the two output variables of
the 5 networks in the ensemble. Subsequently, the predictive distribution is ap-
proximated as a mixture of the individually computed normal distributions. The
computational complexity at testing time is therefore higher in VI and FedAG
than in DE. Nevertheless, the complexity is within the assumptions made in
Section 3.2.

4.6 Summary and Conclusions

In this chapter, the important problem of predictive uncertainty in distributed and
federatedmachine learning algorithmswas addressed. FedAvg-Gaussian (FedAG)
was presented as an efficient method for the learning of probabilistic models in
a distributed, federated setting. FedAG extends FedAvg to include predictive
uncertainty, by treating the set of local weights as a posterior distribution for the
weights of the global model. Thereby, predictive uncertainty can be represented in
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a computation- and communication-efficient way, so that probabilistic on-device
machine learning is realized.

FedAGwas validated using open-source datasets fromdifferent fields to emphasize
the capability of the algorithm. FedAG was used to learn two different models, a
linear regression and a feed-forward neural networkwith a single hidden layer. The
performance of the proposedmethodwas evaluated onUCI regression datasets and
compared to benchmark methods using proper scoring rules. When implemented
with a linear regression model, FedAG’s performance is similar to that of a BLR.
FedAG with a neural network can after t = 5 communication rounds outperform
VI onmost datasets and its performance approaches that of DE on several datasets.

As each of the clients in FedAG only has access to a fraction of the dataset,
it cannot be expected to out-perform the benchmarks BLR, VI and DE, which
simultaneously have access to complete datasets. Nevertheless, the linear models
BLR and LR-FedAG attain almost identical performance. Consequently, LR-
FedAG can be applied as an alternative to BLR in federated, distributed settings.
In the case of a non-linear model, the performance of NN-FedAG can generally
compete with that of VI and approaches the performance of DE on some datasets.
Additionally, the sharpness of the predictive distributions calculated with FedAG
and DE is comparable. Hence, FedAG can be used as a probabilistic model in
a federated setting, achieving predictive performance comparable with state-of-
the-art non-distributed methods. Further advantages of FedAG are the retained
privacy and communication efficiency [19]. Thereby, FedAG offers prediction
performance comparable with state-of-the art probabilistic ML algorithms in an
efficient and privacy-preserving manner.
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In Chapter 4, an extension of FedAvg with predictive uncertainty, FedAvg-
Gaussian (FedAG), was presented. A network of connected BEVs and backend
infrastructure in the cloud constitute a distributed system with various sources
of information relevant for the energy demand prediction (EDP). By applying
federated learning (FL) and computing a probabilistic prediction, the uncertainty
of the distributed data is considered in a communication efficient and privacy
preserving manner. This chapter presents the application of FedAvg and FedAG
to the EDP of a BEV on a planned route. An efficient way to learn probabilistic
EDP models is shown and the advantages of probabilistic EDPs are evaluated and
accentuated. The chapter is organized as follows: An overview of related litera-
ture is given in Section 5.1. In Section 5.2, the prediction system and predictive
data are presented. Section 5.3 shows the velocity prediction processing. The
EDP algorithms and federated learning schemes are described in Section 5.4. The
validation of the prediction is shown in Section 5.5 before the chapter is concluded
in Section 5.6. The findings presented in this chapter were previously published
in the author’s journal article "Probabilistic Prediction of Energy Demand and
Driving Range for Electric Vehicles with Federated Learning", which appeared in
the IEEE Open Journal of Vehicular Technology in 2021 [3].
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5.1 Literature Survey

In the context of energy demand and driving range prediction and BEV routing,
few articles have addressed predictive uncertainty. Oliva et al. describe remaining
driving range as a random variable, where the remaining battery energy is esti-
mated with an unscented Kalman filter and the driving profile is predicted with a
Markov chain. With that, a probability density function for the remaining driving
range is computed [170]. Ondruska & Posner trained linear regression models
to describe the mean and the variance of the energy consumption based on road
segment features. Thereby, two deterministic models are used to calculate the pa-
rameters of a normal distribution for the prediction of energy consumption [172].
Scheubner et al. used a linear regression model to compute a stochastic velocity
prediction, which is then used to predict a probability distribution for the energy
consumption using a physical model and a sequential Monte Carlo simulation [5].

Data-driven predictions such as with ML algorithms benefit from a rich training
dataset [69]. A few articles have proposed sharing data between vehicles and the
cloud, so that a user can benefit from the experience of other users, ultimately
leading to more accurate predictions. Grubwinkler et al. proposed an energetic
road map created through crowd-sourcing by collecting information on energy
consumption of BEVs while driving a road segment [99]. Tseng & Chau applied
the concept of participatory sensing to gather crowd-sourced data for the predic-
tion of vehicle energy demand [211]. Straub et al. presented another approach
for creating an energetic road map, by collecting crowd-sourced driving profiles
where the gaps in data coverage were eliminated using ML methods [204].

By applying FedAG to the EDP problem, the advantages of crowd-sourcing can
be extended to probabilistic models in an efficient and privacy preserving manner.
Recent publications showed the application of FL in vehicle-to-vehicle (V2V)
communications [190], in autonomous driving [184], and in traffic flow prediction
[147]. To the best of the author’s knowledge, the first application of FL in EDP
for BEVs was presented in [3].

68



5.2 Probabilistic Prediction System

5.2 Probabilistic Prediction System

The digital ecosystem in which the EDP operates is a distributed system of con-
nected vehicles and backend infrastructures in the cloud. In this distributed system,
large amounts of data can be used to learn ML models, which typically have high
computational requirements. The central challenge is to make use of information
in the distributed system to enable accurate and robust probabilistic predictions,
while considering aspects such as privacy protection and lean communications.

In Chapter 3, the importance of system architecture and module placement was
demonstrated for the performance and QoS of driving range prediction and charge
planning software. By placing the prediction algorithm parts intelligently across
the vehicle and cloud, the performance can be increased. The learning of the
models is performed in the vehicle, so that training data remains in the vehicle.
Thereby, the communication between the vehicle and the cloud covers only the
transfer of the model weights. Furthermore, the predictions are computed in the
cloud, so that the transmission of predictive data from the cloud to the vehicle
is reduced to the final predictions. In that way, the amount of data transferred
between the vehicles and the cloud is minimized. Keeping the training data within
the vehicle and to generally minimize the data transfer is beneficial in terms of
security and data protection. Fig. 5.1 shows an overview of the distributed system.
The ego vehicle and the vehicle fleet share their model weights W in a central
backend in the cloud, where a probabilistic NN is built. When a destination D is
entered in the ego vehicle’s navigation system, the route and predictive information
is queried in the traffic and routing database (TRDB) and a probabilistic EDP Ẽc

is computed with the probabilistic NN.

5.2.1 Measurement Drives and Powertrain Model

In this work, a dataset first presented by Scheubner et al. is used [5]. The dataset
includes 20 real world measurement drives performed by 10 different drivers. All
relevant data is logged in the vehicle with a sampling rate of 10Hz. To generate
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Figure 5.1: Schematic overview of the distributed system.

unified driving data from the pool of measurements with different vehicles, a
simulation model for the powertrain of an electric vehicle is used. The simulation
model calculates the power P and energy Ec drawn from the battery based
on velocity v and driving resistance Fr. Fig. 5.2 shows a schematic overview
of the powertrain model. Based on efficiency maps for components such as the
gearbox (GB), electric motor (EM), and power electronics (PE), component losses
are computed. These losses are denoted by red arrows in Fig. 5.2. Losses in the
battery (B) are not only dependent on velocity v and driving resistance Fr, but
also on parameters such as battery temperature, voltage, and internal resistance
[207, 182]. The electrical and thermal modeling of the battery and the calculation
of its losses fall out of the scope of this dissertation. For a complete description
of the model, the reader is referred to [5]. An overview of the test drive data is
shown in Table 5.1.

5.2.2 Map and Traffic Data

To complement the driving data measured in the vehicles, map and traffic data are
acquired to match the driven routes. Using the GPS traces from the measurement
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GB EM, PE B
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Figure 5.2: Powertrain model with input variables v, Fr and output variable Ec. The red arrows
indicate simulated component losses.

Table 5.1: Test drive data

Number of drivers 10

Number of drives 20

Number of segments 1× 104

Total distance 1896 km

Total duration 22.2 h

Mean velocity 23.7m s−1

drives, the measured data can be matched to a map. Using the IDs of the road
segments that form the driven route, the TRDB can be queried to obtain static
map data as well as real-time traffic information for the exact date and time of the
test drive. The TRDB includes a list of properties such as road slopeα, street class
Λ, mean traffic speed u, road curvature κ, legal speed limit vlim, segment length
l etc. Contrary to the measured driving data, map and traffic have a much lower
spatial resolution, where a typical segment length is 200m. The TRDB does not
only report the mean traffic speed but also information on its distribution, such
as standard deviation σu and percentile values Pi(u) in steps of 5%. A further
aspect of traffic is the traffic phase. The three-phase traffic theory divides traffic
into free flow, synchronized flow, and wide moving jam [131]. Scheubner et al.
presented a method to classify the traffic phaseΘ directly in the vehicle using data
from on-board cameras and radar [5]. Using this method, the estimated traffic
phase is included in the dataset.
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5.3 Velocity Percentile Estimation

An important factor in the energy consumption pattern is the driving speed. In this
work, the velocity prediction reported by the TRDB is used. As different drivers
may exhibit different driving styles and cruise at different speeds in free flowing
traffic, the velocity predictions in this work are individualized. To this end, it is
observed to which percentile of the velocity distribution the driver belongs on a
complete trip. By minimizing the squared error between ego vehicle speed and
percentile values of the traffic speed distribution, the best matching percentile can
be found:

ρd = argmin
i

(v − Pi(u))
2
, (5.1)

where ρd is the percentile that best matches driver d, v is the speed of the
ego vehicle, and Pi(u) is the i-th percentile of the traffic speed distribution
u. As the traffic speed distribution is very narrow in the case of a traffic jam,
only synchronized flow and free flow are regarded to determine the best fitting
percentile.

For each of the drives, (5.1) is used to find the best fitting percentile. Fig. 5.3
presents the results of the velocity prediction. Fig. 5.3a shows the observed
velocity percentiles ρd for all 10 drivers. The drivers tend to drive faster than
the median traffic speed. Most drivers tend to drive consistently, i.e., the velocity
percentiles of trips 1 (×) and 2 ( ) are close to each other. However, drivers 2
and 10 have significant inconsistencies between trips 1 and 2. Fig. 5.3b shows a
histogram of the velocity prediction error ϵ = v − Pρ(u). The mean value of the
error distribution is 0m s−1 and the prediction is therefore unbiased.

5.4 Energy Demand Prediction Algorithm

The task of the EDP algorithm is to predict the energy demand for a planned
route from start to destination. The route consists of multiple road segments and
for each of the segments, the energy demand is predicted based on the features
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Figure 5.3: Velocity percentile observation and velocity prediction error.

corresponding to the segment. In the probabilistic approach, the EDP algorithm
computes a probability density for each of the segments. The total EDP is the
sum of the EDPs for the individual segments. The sum of random variables γ
and δ is equal to the convolution of their probability density functions:

pγ+δ(x) =

∫ ∞

−∞
fγ(y)fδ(x− y)dy = (fγ ∗ fδ)(x) . (5.2)

For a route with segments S1, S2, ..., SN and predictions Ẽc,1, Ẽc,2, ..., Ẽc,N the
probability density for the total EDP is

pẼc
(x) = (pẼc,1

∗ pẼc,2
∗ ... ∗ pẼc,N

)(x) . (5.3)

According to the central limit theorem (CLT), the sum of independent random
variables tends toward a normal distribution and the total EDP is

pẼc
(x) = N (µẼc

, σ2
Ẽc

) , (5.4)

whereµẼc
is themean value and σ2

Ẽc
is the variance of the normal distribution [5].

To describe the energy demand on a road segment as a function of the available
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data, two types of regression models are applied: a linear regression (LR) and
a neural network (NN). Both models can be used as probabilistic models with
random weights p(w).

The length of the road segments is not uniform. Furthermore, the training data
measured in the vehicle is measured with a relatively high sampling frequency
(10Hz). Therefore, the data exhibit certain irregularities. To make the most out
of the available data, a learning scheme operating on two scales is proposed in this
work. One part of the model is updated with the sampling frequency of the vehicle
measurement data while a second part is updated in accordance to the lower, event
based frequency of road segment changes. In the following, the two-scale method
and the application of FedAG are presented.

5.4.1 Two-Scale Regression Model

To optimally learn the regression model using unstructured data, two regression
models are applied. The first model (M1) is learned continuously with a data
stream (10Hz) to describe the current energy consumption. The second model
(M2) is learned based on the road segments and tries to correct the prediction
of the first model. Fig. 5.4 displays a block diagram of the ML process. Ec,i is

1
lk

∑
i∈k

Train M1 Pred. M1 Train M2

1
lk

∑
i∈k

Ec

xi

zk

Ec,i

W1

−

Ẽ
(1)
c,k +

Ec,k

W2

xi∈k

xi

Figure 5.4: Block diagram showing a schematic overview of the training process of the two-scale
regression model.

the vehicle’s measured energy consumption at time i and is the target variable
for M1. Feature vector xi includes the variables measured by the vehicle at time
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i. Thereby, model weightsW1 are learned. Simultaneously, the mean values of
features xi on segment k are calculated

xi∈k =
1

lk

∑

i∈k

xili , (5.5)

where lk is the length of segment k and li is the distance driven from time i−1 to
time i. Using the updated weightsW1 and features xi∈k, M1’s estimation of the
energy consumption on segment k, Ẽc,k is computed. The difference of the true
energy consumption Ec,k and the prediction Ẽc,k delivers the target variable for
M2. Based on the feature vector zk, weights W2 are learned. The first model’s
features xi are:

• v vehicle speed,

• α road slope,

• κ road curvature,

• Θ traffic phase,

• uh historic mean traffic speed,

• uc current mean traffic speed.

The second model’s features zk are xi∈k and additionally:

• vk − vk−1 segment speed difference,

• σ
(k)
v segment speed standard deviation,

• lk segment length.

The predictions step is limited to the road segments, as the predictive data is only
reported on that scale. The final EDP is the sum of the predictions computed with
M1 and M2:

Ẽc,k = Ẽ
(1)
c,k + Ẽ

(2)
c,k . (5.6)
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5.4.2 Federated Learning

To learn the proposed regression models including predictive uncertainty, FedAG
is applied as shown in Algorithm 1. The central part of the algorithm is the
aggregation step, where a Gaussian is fitted to the set of client weightsw. In this
work, the posterior distributions are found by calculating the mean value µw and
variance σ2

w of weights w(k). Subsequently, the posterior distributions for the
weights p(w|D) are returned to the clients. The clients use the expected value
µw of the weight posterior distributions for further training, but the predictive
distributions are computed with (4.2). FedAG learns a probabilistic prediction
model in an efficient manner, which benefits from a rich database of a vehicle
fleet, whileminimizing communication overhead and preserving the privacy of the
users. In case of an unstable internet connection, a client cannot send and receive
updates from the server until a stable connection is restored, i.e., the federated
learning becomes asynchronous [203]. In this work, a stable connection between
the vehicles and the server is assumed at all times.

Not all drivers and vehicles exhibit the same driving behavior and energy con-
sumption patterns. Therefore, a single, global model might not be the best choice
for the EDP. An alternative is to generate several models, each of which acts as a
global model for a subset of drivers. A cluster analysis can be executed to divide
the set of drivers into subsets. Drivers can then be assigned to these subsets by
observing their driving behavior and properties of their vehicles. In this work,
aggregated data from the drivers is used to create two driver clusters with k-means
clustering [148]. The features used in the clustering are:

• observed velocity percentile ρd,

• relative positive acceleration [74],

• relative velocity in free flowing traffic v/vlim,

• distribution of observed traffic phases Θ.
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The following driver subsets are generated by the cluster analysis:

S1 = {2, 4, 7, 8, 9} ,
S2 = {1, 3, 5, 6, 10} .

The drivers inS1 cooperate in learning onemodel and the drivers inS2 learn a sep-
arate model. FedAG with clustering is denoted by FedAG-Clustering (FedAGC)
with FedAvg-Clustering (FedAvgC) as the deterministic counterpart. With the
availability of a larger dataset with more variety, additional features, e.g., the type
of vehicle, geographical region, or the distribution of observed temperature, could
be included.

5.5 Prediction Validation

To validate the prediction algorithms presented in Section 5.4, the data presented
in Section 5.2 is used. A leave-one-out cross validation where the scheme depends
on the learning algorithm is applied [9]. FL algorithms effectively have access to
training data from the entire vehicle fleet, whereas conventional ML algorithms,
e.g., SGD, can typically only access data observed by the respective vehicle. In the
following, the learning algorithms FedAG, FedAGC, FedAvg, and conventional
driver-individual SGD are validated and compared. The algorithms are applied
to a LR and a NN. FedAGC is not applied to the NN, as a NN is able to
learn more sophisticated dependencies than a linear model and benefits from a
larger database. The NN has two hidden layers, each containing 50 hidden units.
Ep = 40 passes over the available training data are done. In FedAG, K = 10

devices denote the 10 drivers, each of which with C = 1 and batch size B = 1.
The training of a NN is a non-convex optimization and t > 1 rounds are usually
required to ensure convergence. The results are reported after t = 5 rounds, but
further rounds do not improve the results significantly. The training of the LR is
a convex optimization and no more than t = 1 rounds are needed for the training
to converge.
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The continuous ranked probability score (CRPS) is a proper scoring rule for
density predictions of continuous variables

CRPS(Qp, y) =

∫ ∞

−∞
(Qp(x)−H(x− y))2dx , (5.7)

whereH is the Heaviside step function. The CRPS can be directly compared with
the mean absolute error (MAE) of deterministic predictions. Thereby, CRPS can
be used to evaluate both probabilistic and deterministic predictions, whereas NLL
can only be applied to probabilistic predictions. Futhermore, CRPS is expressed
in the unit of the target variable, e.g., [kWh]. In the following, CRPS is used as
the main performance indicator in the evaluation of the prediction algorithms.

5.5.1 Prediction Performance Evaluation

Table 5.2 shows the mean CRPS (MCRPS), RMSE, and standard error for all
algorithms on all drives. The entries in bold denote the best performing models,
where the performance is considered similar if the standard error intervals overlap.
Boxplots for distribution of the CRPS on all drives for the algorithms are shown
in Fig. 5.5. The performance of the algorithms in terms of CRPS and RMSE
increases with increasing algorithm complexity and the NN trained using FedAG
achieves the best performance. For the LR, FedAGC slightly improves the results
of FedAG. Generally, the application of FL increases the performance signifi-
cantly. Finally yet importantly, the probabilistic prediction algorithms achieve a
much smaller CRPS than their deterministic counterparts.

A further visualization of the results of the two best performing algorithms is
shown in Fig. 5.6. The figure shows the mean values and 95% confidence
intervals of the predictions computed with a NN and a LR trained using FedAG
and FedAGC, respectively. The predictions are normalized with the true energy
consumption of the respective drive. The observed energy consumption rarely
matches the mean value exactly, but falls within the confidence intervals in all
drives. It can be observed that the predictions computed with the NNs tend to be
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Table 5.2: Performance evaluation of all algorithms on all drives with MCRPS, RMSE, and standard
error.

MCRPS [kWh] RMSE [kWh]
LR NN LR NN

SGD 1.2019± 0.2690 1.2078± 0.2059 1.6791± 0.2690 1.5048± 0.2059

FedAvg 0.9594± 0.1645 0.8088± 0.1274 1.1978± 0.1645 0.9811± 0.1274

FedAvgC 0.9333± 0.1572 - 1.1578± 0.1572 -
FedAG 0.6750± 0.1111 0.5628± 0.0905 1.1978± 0.1645 0.9811± 0.1274

FedAGC 0.6594± 0.0977 - 1.1578± 0.1572 -

0 1 2 3 4 5

LR - SGD
NN - SGD

LR - FedAvg
LR - FedAvgC
NN - FedAvg
LR - FedAG

LR - FedAGC
NN - FedAG

CRPS [kWh]

Figure 5.5: Boxplots showing the distribution of the CRPS on all test drives for the prediction
algorithms.

closer to the observed value and the confidence intervals are narrower than those
computed with LR.

The prediction for an exemplary drive (Nr. 18) using the best algorithm, NN-
FedAG is shown in Fig. 5.7. The green band represents a 95% confidence interval
for the accumulated energy consumption at each point in the drive. The measured
energy consumption is shown in purple. Additionally, the predicted traffic speed
percentile value ũ is shown in yellow and the observed driving speed v is shown
in blue. In Fig. 5.3a, the driver (Nr. 9) displayed a moderate inconsistency in
driving speed (55th and 70th percentiles). In Fig. 5.7, the velocity prediction fails
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Figure 5.6:Mean values and 95% confidence intervals of the predictions Ẽc computed with a NN
and a LR trained using FedAG and FedAGC, respectively, normalized by the true energy
consumption Ec.

to predict high driving speed of up to more than 50m s−1 at around 80 km. Apart
from this, the observed velocity is close to the prediction and the observed energy
consumption always lies within the 95% confidence interval of the prediction.

The sharpness of a prediction is a measure for the concentration of the predictive
distribution. The EDP is a univariate distribution and the determinant sharpness
(DS) therefore reduces to the standard deviation of the predictive distribution.
Fig. 5.8 shows boxplots displaying the distribution of the DS of the predictions on
all drives for the three probabilistic algorithms. The NN computes significantly
sharper predictive distributions than the LRs in all drives. The clustering in
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Figure 5.7: Predicted ũ and observed velocity profile v and predicted Ẽc and observed accumulated
energy consumption Ec of drive 18, computed with NN-FedAG.

FedAGC brings a marginally significant benefit in DS compared to FedAG when
tested with a two-sample Kolmogorov-Smirnov test [127].
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LR - FedAG
LR - FedAGC
NN - FedAG

Determinant Sharpness [Whkm−1]

Figure 5.8: Boxplots showing the distribution of the DS of the probabilistic EDP algorithms. A
smaller value represents a sharper and better prediction.
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5.5.2 Destination Attainability

With a probabilistic EDP and a known available battery energy, the probability
of reaching a destination, i.e., destination attainability p(a), can be calculated
[5]. However, this is not possible with a determinstic EDP. The available battery
energy is a variable that cannot be measured directly, but is estimated with some
uncertainty [150]. The attainability can thus be calculated with

p(a) = p(Êb ≥ Ẽc) = p(Êb − Ẽc ≥ 0) , (5.8)

where Êb is the estimated available battery energy. The ̂ denotes that Êb is an
estimated value. Additionally, the amount of energy needed to achieve p(a) =

0.99 can be calculated using the inverse of the normal cumulative distribution
function Φ

Ẽc,p = µẼc
+ σẼc

Φ−1(p) . (5.9)

With (5.9), the amount of energy to be charged in order to reach a destination
with probability p can be computed. An important feature of the prediction and
attainability estimation is that the destination is ultimately reached. To analyze
this, the energy needed for p(a) = 0.99 is computed with (5.9) for each drive,
the initial battery energy Êb is to this value, and the attainability p(a) is observed
during the trip. Fig. 5.9 shows the progression of the destination attainability
over the course of all drives. In some drives, the attainability exhibits fluctuation,
e.g., in drives 12 and 19, and p(a) is significantly lower than 0.99 at times. The
gradient of a sharp prediction’s cumulative distribution is proportionally large,
so that a single maneuver, e.g., strong acceleration during overtaking, can have a
significant impact on the attainability. However, the attainability converges to 1

when the destination is approached and the destination is reached in all drives.
The linear models trained using FedAG and FedAGC are also able to accurately
estimate the attainability.
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Figure 5.9: Destination attainability p(a) over the course of all drives based on the EDP computed
with a NN trained using FedAG.

5.5.3 Attainability Calibration

The value p(a) can also be called the confidence of the attainability estimation
and the observed ratio of drives in which the destination is reached can be denoted
as accuracy. If the confidence always matches the accuracy, the prediction is well
calibrated [102]. A measure for the calibration of the attainability decision is the
difference in expectation between confidence and accuracy

E
[∣∣∣P

(
Ỹ = Y |P̂ = p

)
− p
∣∣∣
]
, (5.10)

where the accuracy term P
(
Ỹ = Y |P̂ = p

)
is the probability of the prediction Ỹ

being equal to observation Y given the estimated confidence P̂ = p of the predic-
tor. A perfect calibration, although impossible, is when the expected difference
is zero [165]. Using (5.9) and the observed energy consumption, the accuracy
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for different p-values can be computed. In this work, accuracy ξ is the empirical
frequency of successful trips given EDP Ẽc,p and confidence p

ξ(p) =
1

ND

ND∑

j=1

1

(
Ẽ(j)

c (p) ≥ E(j)
c

)
, (5.11)

where ND is the total number of drives. The expected calibration error (ECE) is
defined as mean difference between accuracy and confidence

ECE =
1

Np

Np∑

i=1

|ξ(pi)− pi| , (5.12)

where Np is the number of confidence levels p tested. The maximum calibration
error (MCE) is the maximum difference

MCE = max
i
|ξ(pi)− pi| . (5.13)

Finally, the idealized root mean square calibration error (RMSCE) is defined as

RMSCE =

√√√√ 1

Np

Np∑

i=1

(
|ξ(pi)− pi|2

)
. (5.14)

Table 5.3: Calibration error measures for the destination attainability with probabilistic EDP algo-
rithms.

ECE MCE RMSCE

LR-FedAG 0.0426 0.1323 0.0520

LR-FedAGC 0.0322 0.0965 0.0396

NN-FedAG 0.0446 0.1576 0.0576

Table 5.3 shows the ECE,MCE andRMSCEvalues for the probabilistic prediction
algorithms. The LR trained with FedAGC has the lowest calibration errors,
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followed by the LR and NN trained with FedAG. The ranking of the algorithms
is thus not the same as according to the prediction performance in terms of CRPS
and RMSE. Fig. 5.10 shows a reliability diagram visualizing the expected sample
accuracy ξ of the attainability estimation as a function of the confidence p of
the prediction. The black, straight line with slope 1 is the ideal calibration.
NN-FedAG tends to be slightly under-confident for p < 0.5 but slightly over-
confident for p > 0.5. Guo et al. discovered that modern NNs are often poorly
calibrated [102]. A poorly calibrated prediction can not only lead to a driver being
stranded with an empty battery, but an under-confident prediction may lead to the
planning of unnecessary charging stops. Nonetheless, all three probabilistic EDP
algorithms exhibit a sufficient calibration.
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Figure 5.10: Reliability diagram for the destination attainability estimation using the probabilistic
EDP algorithms.
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5 Probabilistic Energy Demand and Driving Range Prediction

5.6 Summary and Conclusions

In the chapter, a probabilistic energy demand prediction was implemented with
federated learning algorithms. With a multi-scale regression, the prediction mod-
els can be trained using data measured in the vehicles while the predictions are
computed directly in the cloud with data from a traffic and routing database.
The energy demand predictions were validated with real driving data and the
performance was measured with proper scoring rules. The results show that the
performance of probabilistic predictions is superior to that of conventional, de-
terministic predictions. Furthermore, a non-linear model (NN) achieves higher
performance in terms of CRPS andRMSE than a linearmodel (LR). A probabilis-
tic prediction allows the estimation of destination attainability, i.e., the probability
of reaching a destination using the available battery energy. The destination attain-
ability estimation is well calibrated and the error between accuracy and confidence
is low for all algorithms.

86



6 Energy Demand Prediction and
Everyday Usability of Electric
Vehicles

When planning a trip with a battery electric vehicle (BEV), energy demand
prediction (EDP) is used to enable the planning of optimal charging stops by
predicting the energy demand Ẽc on a chosen route. Comparing Ẽc with the
battery’s SoE Êb results in the attainability of a specific destination. Most drivers
feel that their range prediction is not reliable and reserve a part of the capacity as
safety margin, e.g., 20% in [82]. Energy demand and range prediction accuracy
receives relatively little attention in related research on everyday usability of BEVs.
However, this factor is of high importance, as charge planning relies on the EDP.
Consequently, high errors in prediction accuracy could have a considerable effect
on the everyday usability of BEVs. With more accurate and reliable prediction
algorithms, drivers will use more of the installed capacity and therefore, more of
their range between charging stops. Furthermore, accurate prediction algorithms
can optimize charge planning and reduce total charging time. Higher utilization
of capacity translates into higher everyday usability of the vehicle, a key issue for
electric vehicles. Here, the goal is to investigate how accurate a range prediction
algorithm has to be to ensure everyday usability of BEVs.

This chapter introduces a detailed simulation framework to analyze the interaction
between energy demand and driving range prediction, routing, charge planning and
everyday usability of BEVs. The framework includes current road and charging
infrastructure, in which a realistic range prediction, charge planning as well as
vehicle simulation is carried out. The simulated vehicle is based on a powertrain
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model and can be adapted to different vehicle concepts. One simulation in the
framework consists of a single trip which comprises driving and possible charging
stops. Thereby, a multitude of realistic scenarios can be calculated by random trip
generation, where total travel time is the measure for the everyday usability.

The chapter is organized as follows: Section 6.1 shows a survey of relevant
literature. Section 6.2 introduces the routing and charge planning algorithm.
Section 6.3 presents the actual trip simulation framework and the analysis of the
key factors concerning everyday usability of BEVs. Subsequently, the results
of the simulations are shown in Section 6.4 before the chapter is concluded in
Section 6.5. Themethodology employed in this chapter was previously introduced
by the author in the following sources: the journal article "An Investigation into
Key Influence Factors for the Everyday Usability of Electric Vehicles", which
appeared in the IEEE Open Journal of Vehicular Technology in 2021 [2], as well
as in the conference presentations "Analysis of the Impact of Range Estimation
Errors on Long-Distance Electric Vehicle Trips" [6] and "Probabilistic Energy
Demand Prediction, Routing, and Charge Planning for Electric Vehicles" [8].
This methodology serves as the foundation for the current investigation.

6.1 Literature Survey

A primary goal of mobility is transporting people and goods as quickly as pos-
sible. A key performance indicator for everyday usability is therefore the time
spent charging and driving the vehicle on each trip [106, 194]. BEVs typically
have shorter driving ranges and longer charging times than conventional vehi-
cles, which, in turn, may limit everyday usability so that BEVs have not gained
significant popularity. Previous work on this topic has been done with limited
granularity. When looking at the everyday usability, the usual approach is to com-
pare the total ranges of BEVs with trip statistics from mobility surveys or with
driving profiles collected with GPS trackers [67, 159]. A significant drawback of
these approaches is that the variability in energy consumption and driving range
between different scenarios is not included. Moreover, Pasaoglu et al. found that
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mobility surveys alone are not enough to evaluate feasibility and the everyday
usability [177]. Driving profiles provide a basis for the evaluation of everyday
usability and a review of different studies using driving profiles was recently given
by Meinrenken et al. [157].

In the majority of published results, charging stops are either neglected or severely
simplified with assumptions about the availability of charging points (CPs) [241,
65, 158, 200]. Researchers rather tend to assume that no charging should be
necessary to make BEVs feasible [144, 88, 167, 178, 197, 142]. Driving profiles
as well as simulations have been used to determine optimal CP positioning [124,
229, 233], CP power demand [22, 18, 42, 91, 107, 171] as well as for battery
lifetime analysis [168].

One of the most important applications of EDP is, in addition to the display of
remaining driving range, BEV routing and charge planning. The objective of
routing and charge planning algorithms is to minimize total travel time, subject
to certain constraints such as driving range and charging capacity. Total travel
time is the sum of driving time, charging time, and time overhead for authen-
tication and handling at a CP. BEV routing and charge planning is a NP-hard
(non-deterministic polynomial-time hard) optimization problem that requires sub-
stantial computation effort [13]. Charge planning has been studied extensively
to enable time or energy-optimal routing for electric vehicles [15, 26, 193, 192].
Furthermore, the uncertainty of the EDP has been considered in BEV routing
applications [78, 236, 179, 117, 25]. By including velocity trajectory planning
and auxiliary consumer control in the optimization of route and charging stops,
the probability of finding a globally optimal strategy is increased. Small adjust-
ments to the velocity profile or auxiliary consumers may increase the range of the
vehicle, which in turn may lead to faster routes if a charging stop can be skipped
or optimized [27, 185, 53, 133]. The velocity trajectory planning significantly
increases the complexity of the optimization and falls out of the scope of this
dissertation.
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6.2 Electric Vehicle Routing and Charge
Planning

Conventional routing algorithms using deterministic EDPs cannot consider the
destination attainability or the estimated risk of a given route and charge plan.
Such routing algorithms can only determine a binary attainability based on a
constant safety margin ∆bE . Therefore, a destination such as a CP is deemed
attainable if

Ẽc ≤ (1−∆bE) Êb . (6.1)

In Section 5.5.2, the calculation of a destination attainability was presented,
which is the probability of reaching a destination given the available battery
energy. This is an important property which allows probabilistic predictions to
express their confidence. With a probabilistic EDP, the destination attainability
is a continuous scalar variable between 0 and 1. The task of probabilistic routing
and charge planning is thus to find a route π including necessary charging stops,
which minimizes travel time T subject to a destination attainability level p(a)

minT (π) s.t. p(a) ≥ ζ , (6.2)

where ζ is a threshold value for an acceptable attainability p(a) [174]. The
opposite value 1 − p(a) denotes the risk of the planned route. Fig. 6.1 shows
EDPs for three hypothetical routes. The left axis shows the amount of energy
needed to charge at a given charging stop as a function of the risk and the right
axis shows the corresponding charging time in minutes. A constant charging
power and equal driving times for the three route alternatives are assumed. The
three predictions have different expected values and different standard deviations.
When looking at the expected value of the predictions (at p(a) = 0.5), route
3 will have the shortest travel time. With a slightly higher risk, route 3 might
possibly be driven without a charging stop. With decreasing risk, the energy
demand increases according to the sharpness of the predictions. The prediction
for route 3 is not as sharp as for the other two routes, so that the energy demand
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increases faster with decreasing risk. For low risks, route 2 becomes the optimal
route. With such phenomena, there exist circumstances where travel times and
the route choice is highly dependent on the destination attainability p(a) or risk
1− p(a).
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Figure 6.1: Charging energy in kWh and charging time inmin as functions of risk 1− p(a).

The charge planning algorithm in this dissertation has no performance require-
ments except that the fastest route should be found. Therefore, a brute-force search
of all possible charging stop combinations can be performed. A maximum num-
ber of charging stops NCPs can be defined to reduce the number of combinations.
The algorithm then explores all unordered combinations of 1...NCPs nearby CPs.
An upper bound for the number of reasonable combinations can be determined
using the binomial coefficient

NCPs∑

i=0

(
NV

i

)
≤
(
NV

NCPs

)
NV − (NCPs − 1)

NV − (2NCPs − 1)
, (6.3)
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whereNV is the total number of candidate CPs in the geographical region between
the start and destination positions. To speed up the computation, candidate CPs
can be sorted by charging power into a priority queue VP with a stopping criteria
so that combinations with slow CPs are only explored if no solution using only
high-performance CPs is found. Combinations, in which a single leg is greater
than the range of the vehicle, can be discarded. The fastest path from the start
position to the destination with stops at the given CPs can be calculated with
A-Star or Dijkstra’s algorithm [104, 62].

For each charging stop, the amount of electrical energy needed to charge is
determined. If the vehicle’s characteristic charging curve decreasesmonotonically,
charging only until a CP with a greater charging power can be reached will lead
to time-optimal strategies. The corresponding charging time τ is calculated using
the relation

τ =

∫ Êb,end

Êb,start

dE

min(P (E), PV )
. (6.4)

Here, Êb,start and Êb,end are the battery SoEs at beginning and end of charging,
respectively, PV is the available CP power at vertex V , and P (E) is the possible
charging power at SoE Êb = q Q, where q is the state of charge (SoC) and Q

is the battery capacity. It is assumed that the CP is always free and based on
measurements for this work, the time overhead at a CP is 2.5min on average. The
charging times τ are then used to update the travel time T and the route with the
least travel time is selected. The procedure is shown in Algorithm 2.

6.3 Stochastic Framework for Trip Simulation

In this work, the approach for trip simulation consists of a stochastic framework,
whose individual steps are shown in Algorithm 3. First, vehicle parameters
are defined. Subsequently, the desired length of the trip is set, random start
and endpoints on the map are selected and the fastest route between them is
calculated. Ẽc is predicted analog to the EDP model presented in the previous
chapter and the destination attainability indicates whether charging is required
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Algorithm 2: Charge planning algorithm. Ẽc,k is the predicted energy de-
mand, V are nearby CPs, Q is the battery capacity, q is start SoC, l is route
length, T is travel time, ∆Eb is charging energy, τ is charging time and π is
route.

1 get maximum reasonable number of charging stops NCPs = f(q,Q, l, Ẽc)
2 get priority queue with CPs V
3 for n = 1, 2, ..., NCPs do
4 for each unordered combination of n CPs Vω do
5 calculate fastest path πω from start through Vω to destination
6 get travel time Tω

7 for each Vω in πω do
8 calculate necessary charging energy ∆Eb(V, Ẽc)
9 calculate charging time τ(∆Eb)

10 T ′
ω = Tω + τ

11 choose π′ with fastest travel time
Result: fastest route π′ including necessary charging stops

during the trip. If necessary, charging stops are added to the trip. Lastly, the
trip is simulated, generating virtual test drive data. To obtain insights into key
influences for everyday usability, a multitude of trips is simulated with different
EDP algorithms and algorithm properties. In the remainder of this section, the
individual steps in the simulation framework are explained in detail.

6.3.1 Vehicle Properties

The proposed framework includes a virtual vehicle with the powertrain topology
shown in Fig. 5.2. Different characteristic parameters can be adjusted, leading to
different energy consumption behavior. These parameters are vehicle mass m,
aerodynamic drag area cdA, and tire rolling resistance fr. Another important
specification is the charging power P , which is dependent on various factors such
as charging strategy and thermal conditions [210]. Modern BEVs are equipped
with systems that pre-condition the battery before charging, to maximize the
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Algorithm 3: Simulation process. π is the fastest route, Ẽc is the EDP, ∆bE
is safety margin, and Êb is battery capacity.

1 choose vehicle parameters
2 draw route start and destination points
3 get fastest route π
4 predict energy consumption Ẽc

5 if Ẽc > (1−∆bE) Êb then
6 plan charging stops with Algorithm 2
7 simulate trip with BEV powertrain model
Result: trip data

possible charging power at a charging stop [208]. Dependent on driving profile
and ambient temperature, optimal conditions may not be reached at all times.
Furthermore, the SoC at the beginning of the charging session is important.
Based on data published by Tesla drivers [145] and experiences with Porsche
Boxster and Porsche Taycan BEVs, three characteristic charging power curves are
defined for different levels of pre-conditioning and initial SoC. Fig. 6.2 shows
the characteristic curves for the charging power P dependent on SoC q. Each
of the charging curves includes an uncertainty margin, to account for variability
in driving profile, environment conditions and CP performance. The three levels
of pre-conditioning are optimal, near-optimal, and sub-optimal. The optimal
charging curve can be assumed if the initial SoC is low and battery temperature
is within optimal range. In case of higher initial SoC or battery temperatures
below the optimal range, near-optimal or sub-optimal pre-conditioning levels
can be assumed. In the simulation framework, a random variable following a
multinomial distribution indicates the level of pre-condition attained at a given
charging stop. For a higher SoC at the beginning of the charging, the probability of
a less-optimal charging curve is higher. Nevertheless, if a CP’s available charging
power is lower than the characteristic charging curve, then the CP is the limiting
factor. The most powerful public high-performance CPs can deliver a charging
power of up to 350 kW [218]. Nonetheless, the vast majority of CPs can only
charge with 50 kW or less [95]. The maximum charging power is dependent on
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Figure 6.2: Characteristic battery charging power curves as a function of battery state of charge q, for
three different levels of pre-conditioning.

the electrical current flowing in each battery module. A battery’s peak C-Rate is
defined as the ratio:

C-Rate =
Pmax

Q
, (6.5)

where Pmax is peak charging power. The Porsche Taycan has a peak C-
Rate of about 270 kW/93.4 kWh = 2.89 h−1 [218], and the Tesla Model 3
250 kW/75 kWh = 3.33 h−1 [208].

6.3.2 Trip Sampling

To achieve an accurate analysis of BEV driving, the trips should be chosen
so that they resemble typical mobility patterns and driver behavior. The trips
in this work are restricted to the region in which the test-drives were carried
out. The region is defined by parallels 47◦N and 54.5◦N and meridians 4◦E
and 14◦E, as shown in Fig. 6.3. The region includes parts of Germany, the
Netherlands, Belgium, Luxembourg, France, Switzerland, Liechtenstein, Austria
and the Czech Republic and shows diversity in road and charging infrastructure as
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well as in population density. To generate realistic mobility patterns, the empirical
probability distributions described in the following are used to draw samples for

• route length,

• time of departure,

• start and destination positions.

In real life, a driver’s daily milage is usually shorter than 72 km [183]. According
to the US National Household Travel Survey, only 9.8% of trips are 21 miles
(33.8 km) or longer [76]. AEuropean survey (France, Germany, Italy) showed that
an average personal trip distance is approximately 16 km and an average business
trip approximately 20 km. The average daily driven distance is approximately
55 km and approximately 70% of daily driving does not exceed 50 km [79].

In this dissertation, one main goal is to analyze the effects of EDP on routing and
charge planning and the everyday usability of BEVs. A primary concern regarding
BEV usability is their suitability for longer trips. Therefore, a total distribution
of trip distances is chosen with a significant bias toward long-distance trips longer
than 100 km, when compared to mobility surveys. Fig. 6.4a shows a histogram
of the distances of the sampled routes. The time of departure is relevant for the
traffic state in the trip data. The traffic state influences the driving speed which
has a direct influence on the vehicle’s energy consumption. For departure time,
a uniform distribution is used for the day of the week and a two modal normal
distribution for the time of day, with modes at 8:00 in the morning and 17:00 in
the afternoon as shown in Fig. 6.4b.

For each trip, the start and destination point samples are drawn from population
data that include estimates of population count for 30 arc-second grid cells [48].
Fig. 6.3 shows a contour plot of the population data in the chosen geographical
region. This population count is used as an empirical probability distribution
p (ϕ, λ|Ψ), where Ψ is population count and ϕ, λ are the geographic coordinates
of a grid cell. Thereby, highly traveled roads and routes, where population is high,
are favored over routes in remote and less populated regions. The procedure is
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Figure 6.4: Trip length and departure time distributions for the trip sampling.
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described in Algorithm 4. In the algorithm, the haversine formula is utilized to
calculate the air-line distance lair (as the crow flies) between the start point and a
potential destination as a first estimate of the route length [57].

Algorithm 4: Start and destination sampling. l is route length, ϕ and λ are
latitude and longitude, respectively,Ψ is population count,RE is earth radius,
and archav is the inverse haversine function.

1 draw sample ldesired from p(l)
2 draw sample (ϕ1, λ1) from p (Ψ|ϕ, λ)
3 initialize air-line distance lair ̸≈ ldesired
4 while lair ̸≈ ldesired do
5 draw sample (ϕ2, λ2) from p (Ψ|ϕ, λ)
6 estimate air-line distance lair = RE · archav (ϕ2, λ2, ϕ1, λ1)

Result: (ϕ1, λ1) and (ϕ2, λ2)

Using the TRDB, the fastest route π is calculated from the start point to the
destination based on the speed profile u derived from mean traffic speed. Using
the geographic coordinates of the route (ϕk, λk), nearby CPs can be found. In
this work, an open database is used to collect information such as CP location
and charging power of the current day charging infrastructure [95]. The CPs and
the start and destination points constitute the vertices of the trip’s directed graph
G. The weights of the edges between the vertices represent the travel time for
each edge, which again is determined using the TRDB. Additionally, for each
directed edge, the road segment information is extracted from the TRDB. This
information is necessary for the powertrain simulation model. The route sampling
is independent from the chosen vehicle, as the routes π and speed profiles u do
not exceed the limitations of the vehicle models. A resulting collection of routes
with CPs can be seen in Fig. 6.5.
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Figure 6.5: A collection of routes (colored lines) and nearby charging points (blue points). Map data
(c) OpenStreetMap contributors.
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6.3.3 Energy Demand Prediction

For each trip, the energy consumption is simulated with the model of a BEV
powertrain introduced in Section 5.2.1. The speed profile u acquired from the
TRDB is assumed to be the exact speed of the vehicle. As information about
acceleration is missing, the change in kinetic energy between road segments is
used to compensate for the missing acceleration data. The energy consumed on
segment k is:

Ec,k =

∫
Fr,k

ηstat(Fr,k, uk)
ds

︸ ︷︷ ︸
Êc|a=0

+
m

2ηdyn
[(uk+1)

2 − (uk)
2

︸ ︷︷ ︸
∆Ekin

]

+
lkPaux,k

uk
, (6.6)

where Fr is the driving resistance corresponding to the segment’s mean traffic
speed u, ηstat and ηdyn are static and dynamic efficiencies based on losses in
powertrain components, lk is segment length, and Paux is power of auxiliary
units. The first term describes the energy consumption without acceleration
and the second term calculates the change in kinetic energy due to acceleration
or deceleration between segments. The dynamic efficiency ηdyn is computed
separately for acceleration and deceleration. For deceleration, the inverse of the
efficiency is used. The third and last term encompasses the additional energy
consumed by auxiliary equipment, such as infotainment and HVAC systems,
which together draw power Paux. The model was validated in [5] and is applied
without changes. The total energy needed for a trip is thus

Ec =
∑

i∈π

∑

k∈i

Ec,k =
∑

i∈π

Ec,i , (6.7)

where π is the given route, consisting of edges i, which consist of segments k.
Paux is constant in all simulations and is based on mean temperature in the chosen
geographical region. The total power drawn by auxiliary equipment is estimated to
be 1.5 kW. In very hot or very cold weather conditions, the power demand of the
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auxiliaries can be significantly higher, but these corner cases are not considered
in the model.

At the beginning of each simulation, an EDP is calculated. Instead of calculating
this prediction explicitly as done in Chapter 5, an implicit prediction is done.
Using the energies required for the graph’s edges Ec,i and the error distribution
known from the results in Chapter 5, an EDP is implicitly calculated for each edge
i of the graph, i.e., for each leg of the route:

Ec,i = Ẽc,i + ϵ · li , (6.8)

where li is the edge length and ϵ is the error in the EDP drawn from the known
error distribution. Alternatively, ϵ can be drawn from an arbitrary distribution
to simulate other EDP algorithms. In this way, the impact of better or worse
performing range prediction algorithms can be examined. The predicted total
energy consumed on the route is thus:

Ẽc =
∑

i∈π

Ẽc,i . (6.9)

As discussed in Section 6.2, an EDP is always subject to uncertainty. Therefore,
a certain part of available battery energy needs to be reserved at CPs and other
destinations. This safety margin ∆bE is based on the error distribution of the
EDP. If the sum of Ẽc and ∆bEÊb is larger than the available battery energy
corresponding to the current SoC, Êb, charging stops need to be planned with
Algorithm 2.

6.3.4 Trip Simulation

Ultimately, the trip simulation is carried out as shown in Algorithm 5. The results
for the EDP algorithms in Chapter 5 are used in the simulations. In the following
sections, the results obtained by using different EDP algorithms and algorithm
settings for a collection of trips are analyzed.
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Algorithm 5: Trip simulation. π is route, Ẽc is the EDP, ∆bE is safety
margin, Êb is battery energy, V is vertex of route graph, and Ec is energy
consumption.

1 calculate fastest route π
2 calculate EDP: Ẽc with (6.9)
3 if Ẽc > (1−∆bE) Êb then
4 plan charging stops with Algorithm 2
5 start driving at vertex V = 0
6 for each edge i = 1, 2, ... in route π do
7 for each segment k = 1, 2, ... in edge i do
8 simulate Ec,k with (6.6)
9 Ec,i =

∑
k∈i Ec,k

10 Êb = Êb − Ec,i

11 re-calculate Ẽc,i for remaining edges i
12 if Êb < 0 then
13 vehicle stranded
14 else if Ẽc,i+1 > (1−∆bE) Êb then
15 plan additional charging stops with Algorithm 2
16 else if V is planned charging stop then
17 charge battery
18 else
19 continue

6.4 Experimental Evaluation

In this section, the results of the simulations are presented. The investigation aims
at examining the inter-dependencies of energy demand and driving range predic-
tion, routing, charge planning, and everyday usability of BEVs. The performance
indicator travel time is used to represent the results. The driving time is calculated
using the speed profile u derived from mean traffic speed. The charging time is
calculated with (6.4), where the characteristic charging curves shown in Fig. 6.2
are modeled from real data. Since the terms in the calculation of total travel time
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are independently valid, it is assumed that the travel time is valid as well. The
results are mainly analyzed in relation to a benchmark, and numerous conclusions
can be drawn from the characteristics of the results irrespective of their absolute
numerical values.

In the simulations, a mid-size vehicle is considered, as the error distributions were
determined using real data from this class of vehicles. The mid-size vehicle is
simulatedwith different EDP algorithm variants and corresponding safetymargins
∆bE , while other settings remain constant. Table 6.1 shows an overview of the
simulation data. Before the simulated test runs start, the SoC at the beginning
of each trip is set to 50%, thus a higher percentage of routes include at least
one charging stop. This means that the resulting travel times could be somewhat
longer than in the best case, when each trip starts with a fully charged battery.
Nonetheless, a direct comparison between the algorithms is presented.

Table 6.1: Simulation data overview

Number of trips 473

Total distance 225 503 km

Total number of charging stops 839

Mean velocity 27.5m s−1

Net battery capacity 90 kWh

Mean consumption 214Whkm−1

Start SoC 50%

cdA 0.62m2

m 2200 kg

fr 0.0090

Pmax 270 kW

An exemplary route with CPs can be seen in Fig. 6.6. The blue line shows the
fastest route π from the Ruhr area to Berlin. The blue points are the possible CPs
along this route and the red points are the two high-performance CPs at which
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Figure 6.6: Example route from the Ruhr area to Berlin (blue line) with possible charging points
(blue points) and planned charging points (red points). Map data (c) OpenStreetMap
contributors.

charging stops are planned with Algorithm 2. The results for the simulation of
this trip obtained with Algorithm 5 are shown in Table 6.2.

Table 6.2: Exemplary results for the simulation of the trip shown in Fig. 6.6.

1st driving leg 50...16 % SoC over 139 km in 1 h and 28min

1st charging stop 16...77 % SoC @ 320 kW in 18min

2nd driving leg 77...3 % SoC over 290 km in 2 h and 34min

2nd charging stop 3...44 % SoC @ 350 kW in 11min

3rd driving leg 44...6 % SoC over 161 km in 1 h and 41min

Driving time 5 h and 43min

Charging time 29min

Travel time 6 h and 12min

Distance 590 km

6.4.1 Probabilistic Safety Margin

As already mentioned, a requirement of the EDP is to predict the energy demand
so that a destination can be reached safely without an unnecessary large safety
margin ∆bE . A robust EDP should maximize the probability of attaining the
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destination while minimizing the safety margin, which in turn maximizes the
effective driving range of the vehicle. A driver primarily experiences how far he
can drive without charging and how fast he can safely travel from A to B. Hence,
the user experience is positively influenced by an appropriate safety margin. The
safety margin is closely related to the sharpness of the prediction and a sharp
prediction leads to a smaller safety margin than a less sharp prediction. In the
following, the safety margins resulting from the EDPs are analyzed as well as
their impact on travel time.

A deterministic prediction includes no information about the uncertainty of the
prediction and a safety margin can not be derived directly. The maximum length
of traversable edges is limited by the specificmaximum rangeRmax of the vehicle:

Rmax = (1−∆bE)
Q

dEc/ds
, (6.10)

where dEc/ds is the mean consumption. To determine a suitable ∆bE , the
following condition must be satisfied:

ϵmax Rmax ≤ ∆bE Q , (6.11)

with ϵmax being the maximum probable error in terms of energy per distance.
This leads to

∆b
(d)
E ≥

(
dEc/ds

ϵmax
+ 1

)−1

, (6.12)

where the superscripted (d) denotes that the safety margin is based on a deter-
ministic prediction.

With probabilistic predictions, the safety margin can be directly derived from
the predictive distribution. The difference between the expected value and the
p = 0.99 value of the predictive distribution can be seen as a safety margin. Using
(5.9), these values can be calculated and the safety margin ∆b

(p)
E is

∆b
(p)
E = 1− Ẽc,0.5

Ẽc,0.99

, (6.13)
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where the superscripted (p) denotes that the safety margin is based on a proba-
bilistic prediction. It can be observed that when (6.12) is applied to the expected
values of the probabilistic EDPs, a safety margin similar to the maximum value
of the probabilistic safety margins is found:

∆b
(d)
E ≈ max

[
∆b

(p)
E

]
. (6.14)

Fig. 6.7 shows empirical cumulative probability distributions for the resulting
safety margins of the EDP algorithms. The algorithms trained using FedAG
compute probabilistic predictions and the algorithms trained using FedAvg and
SGD compute deterministic predictions. The ranking of the algorithms is the
same as according to CRPS. Predictions with a NN lead to lower safety margins
than with a LR. Using the probabilisticML algorithm FedAG leads to lower safety
margins than with FedAvg and SGD. The figure clearly shows that a constant,
deterministic safety margin is frequently too large. An unnecessarily large safety
margin reduces the effective driving range and reduces the possibilities for feasible
routing and charge planning strategies [117].

6.4.2 Safety Margin and Travel Time

The safety margin determines the amount of reserved battery energy. The smaller
the safety margin, the further a BEV can drive before a charging stop needs to
be planned. Thereby, a faster CP might be attainable. Additionally, a planned
charging stop may be shorter, since with a smaller safety margin, the energy
needed for the continuation of the trip may be smaller. Additionally, the driving
time may be reduced as well, if a more convenient CP, i.e., closer to the fastest
route, is attainable with greater effective driving range. The safety margin has
therefore a direct influence on charging and travel time.

Using the stochastic simulation framework, the trips are simulated using different
EDP algorithms and corresponding safety margins. Table 6.3 shows the simulated
safety margins∆bE based on Fig. 6.7 and the resulting total driving, charging, and
travel times as percentages of a benchmark algorithmLR-SGD. With probabilistic
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Figure 6.7: Empirical cumulative probability distributions of safety margins ∆bE of the EDP algo-
rithms.

Table 6.3: Safety margin and driving, charging and travel time results.

∆bE Driving time Charging time Travel time

LR-SGD 0.1497 100% 100% 100%

NN-SGD 0.1253 99.8% 95.1% 99.2%

LR-FedAvg 0.1230 99.7% 94.6% 99.1%

LR-FedAvgC 0.1214 99.7% 94.2% 99.1%

LR-FedAG N (0.1078, 0.00842) 99.7% 90.7% 98.6%

LR-FedAGC N (0.1066, 0.00802) 99.6% 90.5% 98.5%

NN-FedAvg 0.0823 99.4% 86.4% 97.8%

NN-FedAG N (0.0743, 0.00472) 99.3% 84.7% 97.6%
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predictions, the safety margins follow a normal distribution. The results in
Table 6.3 show that a decreased safety margin∆bE leads to a decrease in driving
time, charging time, and travel time. The advantage of a probabilistic EDP, such
as with FedAG, over a deterministic EDP can be seen as well. The driving time
can be slightly reduced with better EDP algorithms. With a better prediction
and a lower safety margin, more CPs may be attainable and the probability of
a faster route increases. Subsequently, better CPs in terms of charging power
may be attainable and by arriving at a CP with a lower SoC, higher charging
power can be achieved as shown in Fig. 6.2. In turn, the charging time is reduced
significantly. As charging time is generally a smaller part of total travel time than
driving time, a moderate reduction in total travel time is observed. A further
analysis of the charging time benefit of probabilistic EDPs can be seen in Fig. 6.8,
where the empirical probability distribution of difference in charging time over
the complete route collective is shown. In the case of LR, the mean reduction in
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Figure 6.8: Empirical probability distribution of proportional charging time reduction between prob-
abilistic and deterministic EDP algorithms.

charging time is approximately 4.7% when predictive uncertainty is considered.
For aNN, including predictive uncertainty leads to amean charging time reduction
of 2.3%. Predictions computed with NNs are generally significantly sharper than
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those computed with LRs. This means that the variance in sharpness and thus
∆bE is smaller. This leads to the somewhat smaller charging time reduction.
Thus, considering predictive uncertainty explicitly improves driving, charging,
and travel time, especially in regions with sparse charging infrastructure.

6.4.3 Destination Attainability and Travel Time

As stated in Section 6.2, the routing and charge planning algorithms minimize
travel time subject to the destination attainability p(a) or risk 1 − p(a). In
Fig. 6.1, it can be observed that with increasing risk, travel and charging time
may decrease. Conversely, minimizing risk could lead to increased travel and
charging times. A desired quality of an EDP is that the risk can be minimized
sufficiently without a significant increase in travel time. To analyze the connection
between destination attainability, risk, and travel time, the stochastic simulation
framework is used. Using the setup and trips shown in Table 6.1, the simulations
are performed with different minimum destination attainability thresholds p(a).
Fig. 6.9 shows the resulting travel and charging times in proportion to the greatest
travel and charging time, computed with LR and p(a) = 0.9999, as functions of
risk 1 − p(a). Furthermore, the proportion of failed trips, i.e., the accuracy of
the destination attainability estimation, is shown on the right axis of Fig. 6.9. The
figure only displays the results for LR-FedAGC and NN-FedAG. The plots of
charging and travel time formPareto fronts, where charging and travel time reduces
with increased risk. However, the total travel time decreases only minimally with
increased risk. The calibration of the NN is close to the ideal calibration and
the maximum calibration error (MCE) is 0.030. On the other hand, the LR is
somewhat over-confident and exhibits a worse calibration with MCE of 0.103.

In Section 5.5.2, it was observed that all 20 measurement drives could be safely
drivenwith p(a) = 0.99. With the larger set of drives in the simulation framework,
0.42% of the routing and charge plans using p(a) = 0.99 lead to failures. In
sparse charging infrastructures, the worst case scenario is that the driver will
end up being stranded with an empty battery. That means that in some cases,

109



6. Energy Demand Prediction and Everyday Usability of Electric Vehicles

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

0.7

0.8

0.9

1

Risk 1− p(a) [-]

Ti
m
e
[-]

NN Travel Time NN Charging Time LR Travel Time
LR Charging Time NN Calibration LR Calibration
Ideal Calibration

0

0.1

0.2

0.3

Fa
ilu

re
s1
−
ξ
[-]

Figure 6.9: Proportional travel time, charging time (left axis) and trip failure quota (right axis) for the
EDP algorithms LR-FedAGC and NN-FedAG as functions of risk 1− p(a).

a new route and charge plan may need to be calculated during the trip. When
minimizing the risk, it can seen in Fig. 6.9 that the travel time is not significantly
increased, e.g., the proportional travel time increases from 0.96 at p(a) = 0.8

to 0.97 at p(a) = 0.99 for the NN and from 0.97 at p(a) = 0.8 to 0.98 at
p(a) = 0.99 for the LR. Therefore, both EDP algorithms enable robust routing
and charge planning where risk can be minimized without a significant increase
in travel time. The change in charging and travel time with a change in risk is
smaller with a NN than with a LR, since a NN with FedAG computes sharper
predictive distributions than a LR. A sharper prediction therefore reduces the cost
of minimizing risk.
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6.5 Summary and Conclusions

In this chapter, the inter-dependencies between energy demand prediction, rout-
ing, charge planning, and the everyday usability of battery electric vehicles was
investigated. The total travel time was chosen as a mathematical equivalent to the
everyday usability, as this encompasses the ultimate goal of mobility: bringing
people from A to B as quickly as possible. The difference between electric vehi-
cles compared to conventional ones, lies in the limited driving range and charging
time. Therefore, this work was concentrated on these aspects when executing a
stochastic trip simulation. Random trips were drew according to probability dis-
tributions from mobility patterns and performed simulations with different EDP
algorithms, safety margins, and attainability levels to investigate the influence of
the EDP on everyday usability of BEVs.

A central advantage of an accurate, probabilistic energy demand prediction is the
variable safety margin. This leads to a better utilization of the battery energy,
where the usable battery capacity is effectively increased as the safety margin
is smaller. In turn, this increases the effective driving range. Additionally, this
translates into shorter driving, charging, and travel times on long distance trips.
This is a more cost efficient choice than increasing total battery capacity.

The destination attainability level of a probabilistic EDP algorithm influences the
accuracy and failure quota of the simulated trips. With decreasing attainability,
the risk of failure increases. Furthermore, charging and travel time is influenced by
the attainability. With decreasing attainability, i.e., increasing risk, charging and
travel time is reduced. Nevertheless, the EDP algorithms compute sharp predictive
distributions and travel time increases insignificantly when risk is minimized.
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This dissertation presents an investigation of the application of probabilistic ma-
chine learning algorithms to the prediction of energy demand and driving range
in distributed systems of electric vehicles. The primary goal of this work was to
develop a prediction system for a fleet of connected vehicles, in which the vehicles
cooperate in learning a probabilistic model.

First, the performance of system architectures was analyzed in terms of perfor-
mance indicators for the quality of service, such as end-to-end latency and network
usage. The relevant hardware and software was modeled for the analysis of the
control loop from the driver’s destination input to the display of the planned route
and remaining driving range. The simulation results show that the right system
architecture for driving range prediction can improve the user experience signifi-
cantly, by reducing latency and network usage. The optimized system learns the
prediction model from local data within the vehicle, but computes predictions in
the cloud.

Secondly, an extension of the FedAvg algorithm was presented, where predictive
uncertainty is included. FedAvg-Gaussian (FedAG) treats the distribution of local
weights as a posterior distribution for the weights of the global model. Therefore,
the global model is learned efficiently through multiple vehicles. With the global
model, predictive distributions for the target variable are computed. FedAG
was applied to open-source datasets from the UCI Machine Learning Repository
and to a dataset with real driving data from 10 different drivers. Using proper
scoring rules, the predictive performance was evaluated, e.g., the calibration and
sharpness of the predictions. On the UCI regression datasets, FedAG achieves
similar performance as benchmark algorithms in non-distributed settings. In the
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energy demand prediction (EDP), FedAG computes probabilistic predictions for
the energy demand of a planned route. Probabilistic predictions computed using
FedAG are significantly better than deterministic predictions computed using
FedAvg. Moreover, a neural network can more accurately predict the energy
demand than a linear regression model. Furthermore, a destination attainability
level was computed, enabling the estimation of the confidence of the predictions.
In addition to the initial predictions, the evolution of the prediction during the
trips was analyzed. In a vast majority of the trips, the predictions are stable and
the destination attainability is well calibrated.

Lastly, the inter-dependencies between the EDP, routing, charge planning, and
everyday usability of BEVs were investigated. In a stochastic simulation frame-
work, a multitude of trips was simulated in the current, real road and charging
infrastructure. A probabilistic EDP enables routing and charge planning with a
variable safety margin, whereas with a deterministic EDP a constant safety mar-
gin must be chosen. With a smaller safety margin, travel time can be decreased.
Additionally, travel time is dependent on the destination attainability level and
increased attainability leads to an increase in travel time. Nevertheless, the EDP
algorithms compute sharp predictions and the attainability can be maximized,
i.e., risk can be minimized, without a significant increase in travel time.

FedAG can be implemented in a distributed system architecture to learn proba-
bilistic ML models in an efficient manner. By keeping data locally within the
devices, the privacy of the users is protected. The probabilistic EDP computed
with FedAG are well calibrated and sharp. Hopefully, the improved quality of
service, optimized travel time, and ensured safety through probabilistic EDPs will
drive the acceptance of BEVs.

The research presented in this dissertation opens up interesting avenues for further
work. To confirm the conclusions drawn from this dissertation, the performance
of different system architectures can be tested using a fleet of connected vehicles.
In addition, a strategy for deploying the proposed system in large scale can
be devised. Moreover, an ever-expanding database of real driving data can be
used to confirm the presented advantages of FedAvg-Gaussian and probabilistic
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models for BEV driving. An important question is how global, federated models
can be personalized for the participating drivers. For the personalization of the
local models, different aggregation and initialization methods can be applied.
Evaluating such concepts in an asynchronous federated learning environment
might prove an important area for future research. FedAG could benefit from an
aggregation step more robust to outliers and adversarial attacks, such as in the
methods Krum [32] and Aggregathor [56]. Furthermore, larger neural networks
and other deep learning architectures can be applied and analyzed. Furthermore,
future research should aim to benchmark FedAG against other novel federated
learning concepts, such as partitioned variational inference (PVI) [44], distributed
Stein variational gradient descent (DSVGD) [129], federated posterior averaging
(FedPA) [14], federated Bayesian ensemble (FedBE) [50], and the combination
of FedAvg and Monte Carlo dropout [242].

Developing probabilistic charge planning algorithms with stricter performance
requirements for a deployment in production vehicles might prove an important
area for future research. With increasing popularity of BEVs, methods from
queuing theory can be used to account for waiting times at occupied charging
points. The availability of charging at home or at a workplace is an interesting
aspect that could be analyzed and integrated in the framework. Future research
should certainly examine the aspect of velocity trajectory planning as well as
auxiliary consumer control within probabilistic routing and charge planning. In
the estimation of destination attainability, accounting for increasing uncertainty
in the battery’s state of charge estimation over the lifetime of a vehicle is an issue
for future research to explore. Moreover, considering battery degradation as an
additional criteria in the charge planning algorithm may extend the lifetime of
BEVs. Lastly, including different weather conditions and environmental effects
such as temperature, wind, and precipitation in the prediction would enable the
analysis of more detailed scenarios with an increased variance in tractive and
auxiliary energy consumption.
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