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Machine learning has emerged as a powerful solution to the modern challenges in accelerator physics.
However, the limited availability of beam time, the computational cost of simulations, and the high
dimensionality of optimization problems pose significant challenges in generating the required data for
training state-of-the-art machine learning models. In this work, we introduce Cheetah, a PyTorch-based high-
speed differentiable linear beam dynamics code. Cheetah enables the fast collection of large datasets by
reducing computation times by multiple orders of magnitude and facilitates efficient gradient-based
optimization for accelerator tuning and system identification. This positions Cheetah as a user-friendly,
readily extensible tool that integrates seamlessly with widely adopted machine learning tools. We showcase
the utility of Cheetah through five examples, including reinforcement learning training, gradient-based
beamline tuning, gradient-based system identification, physics-informed Bayesian optimization priors, and
modular neural network surrogate modeling of space charge effects. The use of such a high-speed
differentiable simulation code will simplify the development of machine learning-based methods for
particle accelerators and fast-track their integration into everyday operations of accelerator facilities.
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I. INTRODUCTION

Future particle accelerator experiments will place ever-
increasing demands on the performance and capabilities of
particle accelerator operations and experiment analysis. In
order to meet these demands, the research community is
increasingly turning to machine learning (ML) methods,
which have already demonstrated their ability to push the
envelope of what is possible in the field of accelerator
science [1–4].
One of the remaining challenges holding back this line of

research is the demand for large amounts of data (including
environment interactions) from these methods. Reinforce-
ment learning (RL), for example, has already successfully
been used to train intelligent tuning algorithms and con-
trollers that can outperform the currently deployed black-box
optimization algorithms and handcrafted controllers [1,5–7].
However, RL methods require many interactions with their
target task to train a well-performing policy. For example,
6 000 000 samples were needed in [1] to successfully train a

policy on a transverse beam tuning task.Orders ofmagnitude
larger number of samples are also common with other RL
applications [8,9]. The general scarcity of beam time makes
collecting experimental data for ML methods, such as RL, a
significant bottleneck. Gathering at least partial datasets in
simulation can alleviate this problem, but existing accelerator
simulation codes havemostly beendevelopedwith a focus on
the design phase of accelerators, where high fidelity and
physical correctness are critical, and computing times range
from minutes to several hours for one simulation.
Consequently, data collection with existing simulation codes
becomes impractical with the growing demand for large
datasets. In this paper, we introduce Cheetah, a PyTorch-based
high-speed differentiable linear beam dynamics code. Cheetah
is capable of accelerating beam dynamics simulations by
multiple orders of magnitude through tensorised computa-
tion and several speed optimization methods. In the specific
example of [1], this equates to a reduction inRL training time
from over 12 days when using the Ocelot simulation code [10]
to just over 1 h when using Cheetah.
At the same time, numerical optimization is fast becoming

an important tool for accelerator design, tuning, and model
calibration [11,12]. Advanced numerical optimization meth-
ods like Bayesian optimization (BO) have been used to
achieve impressive results [13]. However, demands to solve
optimization problems of increasing dimensionality are
growing, and BO may struggle to efficiently optimize
objective functions with more than a few dozen degrees of
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freedom [13]. In the field ofML, gradient-basedoptimization
has successfully been used to optimize up to 70 billion
parameters [14,15]. However, computing gradients of com-
plex models, like beam dynamics, using numerical or
analytical methods are computationally expensive. Instead,
automatic differentiation has found widespread adoption in
machine learning for the fast computation of gradients. ML
frameworks, such as PyTorch [16] and JAX [17], allow
convenient and computationally cheap automatic differen-
tiation to calculate the partial derivatives up to arbitrary
orders for all the parameters using the chain rule. Because
Cheetah is constructed upon PyTorch, it provides built-in support
for automatic differentiation to efficiently compute the
gradients of the beam dynamics models it implements.
Hence, Cheetah makes optimization over the large parameter
spaces of accelerator facilities tractable beyond the number
of parameters that can feasibly be optimized with the current
state-of-the-art numerical optimizers.
Surrogate modeling of start-to-end accelerator systems

utilizing neural networks (NNs) is another active area of
research [2–4]. Such surrogate models can be used to
acquire offline models of processes in accelerator facilities
or as a fast and differentiable stand-in for computationally
expensive simulations. Nevertheless, NNs are usually
trained on start-to-end data, taking actuators as inputs
and sensor values as output. This makes it difficult to
reuse trained models for applications beyond those
intended at the time of training. Moreover, NN surrogate
models are not commonly designed to interface with beam
dynamics simulators. Conveniently, Cheetah is implemented

using PyTorch, which is first and foremost an ML frame-
work. As a result, models implemented in Cheetah can be
readily integrated with NN surrogate models. This also
means that gradient propagation from NN surrogate models
through Cheetah and vice versa works out-of-the-box. With
Cheetah, it is, therefore, possible to combine modular NN
surrogate models with physical beam dynamics simula-
tions. In particular, Cheetah provides a practical platform for
integrating modular NN surrogate models with handcrafted
beam dynamics models, making the expensive-to-train
surrogate models more reusable.
In the following, we introduce Cheetah and its inner

workings in Sec. II, benchmarking its speed in Sec. II D.
In the second half of this paper, we present five different
application examples (also shown in context in Fig. 1),
taking advantage of Cheetah’s speed for reinforcement
learning in Sec. III A, and using its differentiability for
beam tuning in Sec. III B and system identification in
Sec. III C, followed by an example using Cheetah as a BO
prior in Sec. III D, and demonstrating how Cheetah may host
modular NN surrogate models in Sec. III E.

A. Related work

The field of programmatic beam dynamics modeling is
very mature. There exist various well-established simula-
tion codes for modeling beam dynamics in particle accel-
erators, e.g., ASTRA [18], Bmad [19], Elegant [20], and MAD-X
[21]. As Python has become increasingly popular in
scientific computing, many of these have been augmented
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FIG. 1. Overview of where Cheetah fits into the proposed applications, with the Cheetah logo marking its use as a component of these
applications. (a) Cheetah is used as a physical prior for BO. (b) Cheetah provides a differentiable beam dynamics model that can be used for
accelerator tuning and system identification. (c) Cheetah enables the implementation of fast beam dynamics environments for training RL
agents. (d) Cheetah provides the infrastructure to seamlessly integrate modular NN surrogate models with physical beam dynamics
simulations.
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with Python adaptors. Further, the Ocelot [10], Xsuite [22],
and Bmad-X [23] simulation codes have been specifically
developed directly in Python. Some calculations in Cheetah

are based on those used in Ocelot.
Neural network (NN) surrogate modeling is also finding

increased use to acquire fast and accurate models of
complex beam behaviors, including phase space informa-
tion [2,4,24] and space charge effects. In [25], an NN is
trained to predict the transverse emittance of low energy
beams which are strongly affected by space charge effects.
In [3], an NN surrogate model is trained to infer the space
charge field in a vacuum chamber cross section using a
physics-informed loss function including a partial differ-
ential equation with the Lorentz factor, elliptical bi-
Gaussian charge density, and boundary condition. The
NN model can further be used by an optimization algo-
rithm, such as extremum seeking, to achieve online accel-
erator tuning [26,27].
An overview of opportunities for differentiable program-

ming in particle physics instruments is given in [28].
Specialized handcrafted differentiable simulations have

been constructed for various applications. A handcrafted
differentiable physics model is used as the discriminator in
a generative adversarial network (GAN) setup to train an
NN to reconstruct time-domain measurements of x-ray
pulses without labeled data in [29]. In [30,31], the hysteron
density function of a Preisach model is fitted to accurately
model hysteresis from experimental data. In [31,32], a
differentiable beam dynamics simulation of a tomographic
beamline is used to reconstruct phase space distributions
from experimental screen images. Simultaneous calibration
of all detector parameters of a liquid argon time projection
chamber using a differentiable simulation of the latter is
performed in [33]. In [34], a differentiable self-consistent
space charge simulation model based on the truncated
power series algebra is developed to speed up the simulated
optimization of accelerator design parameters under con-
sideration of space charge induced effects.
A similar effort to Cheetah is pursued in [23], where the

authors introduce Bmad-X, a library-agnostic differentiable
particle tracking code written in Python based on Bmad.
They demonstrate the application of Bmad-X on examples of
beamline optimization, model calibration, and phase space
reconstruction. Bmad-X and Cheetah present very similar
advantages, with both offering fast differentiable beam
dynamics simulations. However, they differ in some
aspects. In contrast to Cheetah, Bmad-X can be used with
backend libraries other than PyTorch, while Cheetah has a
stronger focus on fast computations and currently supports
a larger number of lattice elements and conversions from
other simulation codes. Specifically, the goal of Cheetah is to
bridge the gap between fast hand-crafted and data-driven
particle accelerator models, streamlining their applications
to various applications. As such, it aims to enable research-
ers to collect low-fidelity data quickly and to use

differentiable models to train ML models or perform
complex system identification.
An early preliminary version of Cheetah was first pre-

sented in [35]. It was not yet designed to support automatic
differentiation and lacked the majority of the features
Cheetah now has.

II. FAST DIFFERENTIABLE LINEAR BEAM
DYNAMICS IN PyTorch

The overarching goal in implementing Cheetah was to
provide a differentiable beam dynamics code with
improved speed over existing simulation codes to be used
for ML applications. Here, the conscious decision is made
to trade accuracy to achieve these speed improvements.
This means that Cheetah, while faster than existing codes, is
lower fidelity than they are. With ML applications, this is a
worthwhile trade-off. Methods like domain randomization
[36] enable NN models trained on inaccurate simulated
data to effectively generalize to the real-world domain.
Moreover, initial training of an ML model on cheap low-
fidelity data followed by fine-tuning on high-fidelity data is a
widely used method to speed up the training of ML models.
At the same time, Cheetah is designed to integrate seamlessly
with popular ML tools. We intend for Cheetah to be used both
as a tool in ML applications, e.g., to support the training of
neural network models, and as an application of ML itself,
e.g., through the integration of neural network models in its
simulation pipeline. Last but not least, our goal is to make
Cheetah easy to use, easily extensible, and followbest practices
in its implementation with high-quality code.
To this end, Cheetah is implemented in the Python

programming language, which hosts an extensive ML
ecosystem and is widely used in scientific computing.
Cheetah employs the PyTorch [16] framework. While the
primary purpose of PyTorch is the implementation of ML
algorithms, its fast tensor compute capabilities, strong
graphics processing unit (GPU) support, and automatic
differentiation features make it an ideal fit for fast parallel
scientific computation.
To validate that Cheetah’s models the physics of beam

dynamics accurately and to ensure high code quality, Cheetah
makes use of various continuous integration pipelines.
Numerous tests are implemented to verify not only that
Cheetah runs without errors, but also that its outcomes are
physically plausible and match those computed by Ocelot

[10,11]. Automatic code formatting and linting are also
used to enforce a high standard of readability and main-
tainability for Cheetah’s code while ensuring that implemen-
tations follow the best programming practices of PEP8 and
minimizing the incidence of elusive future errors. The
official GitHub repository [37] is set up with clear con-
tribution guidelines and well maintained in an effort to
foster future collaboration in the development of Cheetah. To
lower the barrier of entry and ease installation, stable
versions of Cheetah are regularly deployed to PyPI.
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Reference documentation and some use case examples for
Cheetah are made available via Read the Docs [38].

A. Beam tracking in Cheetah

At its core, Cheetah is made up of two main object classes,
Beam and Element, which provide implementations of
charged particle beams and accelerator elements, such as
magnets and drift sections, respectively. Both of these
inherit from PyTorch’s Module, allowing their parameters to
be optimized with the tools provided by PyTorch when set to
a Parameter instead of a Tensor.

Cheetah provides two ways to represent the beam, a
ParticleBeam with coordinates of each macroparticle
and a ParameterBeam with only statistical values
representing the beam, both being a subclass of the
Beam. In ParticleBeam, each particle is represented
by a seven-dimensional vector

p ¼ ðx; x0; y; y0; τ; δ; 1Þ; ð1Þ

where fx; yg are the horizontal and vertical positions,
fx0; y0g are the slopes in trace space, τ is the longitudinal
displacement, and δ is the momentum offset with respect to
the nominal energy. The six-dimensional vector is
expanded at the end, analogous to an affine space, allowing
a coherent representation of transfer maps also for effects
like magnet misalignments and thin-lens magnets.
For applications that require faster computations and do

not require modeling of the bunch substructures, a second
representation, the ParameterBeam, is used. It assumes
a Gaussian beam and represents the entire beam by a seven-
dimensional vector μ of the mean position in each dimen-
sion of the phase space and a covariance matrix Σ.
Furthermore, the Beam subclasses implemented in

Cheetah offer convenient computation of various of their
properties. Both beam representations support generating
Gaussian beams or being loaded from files saved by other
particle tracking codes, a feature which is further discussed
in Sec. II C. In addition, ParticleBeam instances can be
generated with regularly spaced macroparticles.
The Element class represents accelerator beamline

elements, such as magnets, drift sections, or diagnostic
instruments. Each subclass must implement a track
method that transforms an incoming beam to an outgoing
beam that was affected by the element. To add a new
element to Cheetah, one simply inherits from Element and
implements the track method. The track method can
implement arbitrary computations from simple matrix
multiplications for first-order tracking to more complex
behaviors like higher-order transfer maps for nonlinear
elements, beam image computations for diagnostics
screens, or neural network inference. By default, Cheetah

elements compute linear beam dynamics using an imple-
mentation of the linear transfer map RCheetah ∈R7×7 that is
already provided

RCheetah ¼
�

R0
..
.

0 � � � 0 1

�
; ð2Þ

with R0 ∈R6×6 being the standard transfer matrix based on
[39]. For some elements, more complex behaviors are
already implemented in Cheetah. For example, the transverse
motion in accelerating cavities is modeled according to
[40]. In the remainder of this paper, all transfer matrices R
are assumed to be of the form RCheetah.
To track a beam through an element with a transfer

matrix R, the default implementation either computes

Pout ¼ PinR⊺ ð3Þ

for a ParticleBeam Pin ∈Rn×7 with n macroparticles, or

μout ¼ Rμin;

Σout ¼ RΣinR⊺ ð4Þ

for a ParameterBeam with the characteristic parame-
ters fμin;Σing.
For elements that only implement linear beam dynamics,

it is, therefore, sufficient to implement a transfer_map
method returning a first-order transfer matrix R for the
element. At the time of writing this paper, Cheetah has
support for drift sections, dipole magnets with adjustable
face angles (e.g., SBends and RBends), thin-lens corrector
magnets, quadrupole magnets, cavities, beam position
monitors (BPMs), markers, diagnostic screen stations,
apertures, solenoid magnets, and elements with custom
transfer maps. In addition, Cheetah provides a special
Segment subclass of Element. It represents a sequential
lattice of accelerator components and supports nesting of
other smaller Segment elements.
We continue to extend Cheetah with new elements and

features. In a further community-driven effort, users of
Cheetah can add new features, such as elements, physical
processes, and specialized transfer maps, according to task-
specific requirements.

B. Speed optimization

Cheetah achieves its speed through several automatic and
opt-in optimizations. First of these is the use of PyTorch,
which is itself implemented in C++ and Compute Unified
Device Architecture (CUDA) and is well-optimized thanks
to widespread community support. PyTorch holds a key
speed advantage over established packages like NumPy in
its built-in ability to run on GPUs supporting CUDA or
Metal Performance Shaders, which can provide significant
speed improvements for massively parallel computations,
such as a single particle tracking.
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Moreover, Cheetah automatically identifies sequences of
elements that can have their transfer matrices combined.
We refer to this optimization as dynamic transfer map
reduction. For example, if a Segment is made up of an
alternating sequence of dipole magnets and drift sections
following linear beam dynamics, followed by an active
diagnostic screen station and another sequence of alternat-
ing dipole magnets and drift sections, Cheetah will auto-
matically recognize that the transfer matrices fRM1;
RD1; RM2; RD2…g of the elements upstream of the screen
station can be combined into a single transfer matrix
Rupstream screen and that the same can be done for the
sequence of elements downstream of the screen station.
A simple example following this description is shown in
Fig. 2. This optimization can be influenced by the user to
some extent. Some elements, such as diagnostic screen
stations and BPM, support being activated or deactivated,
based on whether the user intends to use their functions.
Cheetah makes transfer map reduction decisions based on the
activation status of these elements. Other elements, such as
cavities, automatically determine whether they can be
optimized through transfer map reduction. Cavities, for
example, produce a drift transfer matrix when inactive,
which is automatically combined with other transfer maps,
but do not take part in transfer map reduction when they are
active and have more complex effects on the beam. Because
transfer map reduction does not always need to be
performed every time a beam is tracked through a
Segment, Cheetah provides an opt-in variant of the same
optimization, where the user can tell Cheetah which elements
may be changed in the future. All other elements are then
frozen, allowing Cheetah to perform static transfer map
reduction. This optimization can be very effective when
only a few parameters are changed between consecutive
simulations on large lattices.
In a similar vein, Cheetah can be commanded to find all

inactive elements that are effectively drift sections and
replace them with actual drift sections, which are generally
faster to compute. In addition, drift sections in Cheetah are pure
linear beamdynamics elements,meaning they can bemerged
with adjacent linear beamdynamics elements, either dynami-
cally and on-the-fly, or statically before tracking.

Especially when combining these optimizations, they
can significantly speed up computations in Cheetah.
Critically, all the implemented optimizations maintain
the differentiability and correct gradients of the models.

C. Integration with other codes

To facilitate the quick adoption of Cheetah, the ability to
load beams and lattices, especially from other particle
tracking codes, is crucial. Cheetah’s default lattice exchange
format is an adapted variant of the interoperable lattice
exchange format LatticeJSON [41]. Based on the standard
JSON format, this makes reading and writing of lattice files
which are compatible with Cheetah straightforward in any
programming language. Cheetah’s modular and simple
architecture further simplifies the implementation of con-
verters from other lattice and beam exchange formats.
Cheetah currently supports loading beams from ASTRA,
lattices from Bmad, and both beams and lattices from Ocelot.

D. Speed benchmarks

In this section, we benchmark the execution speed of
Cheetah with other simulation codes on the same tracking
tasks. The lattice considered for the benchmark is the
Experimental Area section of the ARES accelerator [42,43]
at DESY, which is further investigated in some of the use
case examples in Sec. III. The section is in total 2.05 m
long, consisting of three quadrupole magnets, two corrector
magnets, and drift sections in between. The benchmarks
were run on two different computing platforms to account
for the potential advantages of different hardware. First, we
ran simulations on a laptop with an Apple M1 Pro with 10
CPU Cores and 32 GB of RAM. Second, we considered a
high-performance computing (HPC) cluster node with two
AMDEPYC7643having a combined 192 cores, 1024GBof
RAM, and 4 Nvidia A100 GPUs, each having 80 GB of
VRAM.Both the central processing unit (CPU) and theGPU
were considered with Cheetah on the cluster node. Note that at
the time of writing, Cheetah can only use one GPU at any time.
Simulation times were averaged over multiple runs using
Python’s timeit package. Cheetah was run in multiple different
configurations: tracking a ParameterBeam, tracking a
ParticleBeam onCPU, and tracking aParticleBeam
on GPU. For all the configurations, we benchmarked with
and without the opt-in lattice optimizations. We further
compared Ocelot and ASTRA [18] with and without space
charge. Parallel ASTRAwas run using 8 performance cores on
M1 Pro and 48 cores on EPYC 7643, which we found to be
the fastest configurations for this particular benchmark. In
addition, we consider Bmad-X with a NumPy backend and
Xsuite for the benchmarks. The results of the speed benchmark
are listed in Table I. For Cheetah with ParticleBeam and
other simulation codes, a beam with 100 000 macroparticles
is used. The benchmarks were run with a prerelease version
of Cheetah v0.6.2.

FIG. 2. Visualization of a simple example for transfer map
reduction. The tracking function of the screen is denoted by fS. It
cannot be reduced along with other transfer maps. The transfer
maps drift sections and magnets upstream of the screen fRD1;
RM1; RD2g and downstream of the screen fRD3; RM2; RD4g can be
reduced to two transfer maps RA1 and RA2, one on each end of the
screen.
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We find that Cheetah can compute the benchmarked
simulation setup up to eight orders of magnitude faster
than the other benchmarked simulation codes. In particular,
Cheetah is about 5500 times faster than the fastest ASTRA

setup without space charge on the ARM laptop. The fastest
setup of Ocelot is outperformed by Cheetah by over 9000 times
on the same device. In our benchmarks, Cheetah also
achieves computational speeds around 1900 times faster
than the already very fast Bmad-X. Xsuite achieves speeds
comparable to Cheetah without Cheetah’s opt-in optimizations
turned on, but Cheetah is up to two orders of magnitude faster
when opt-in optimizations are used. Remember that these
speed advantages of Cheetah by design come at the cost of
accuracy, where higher-order effects, collective effects, and
others are left out by default in order to achieve the reported
speeds. We further find that in our benchmark Cheetah’s
ParameterBeam is tracked between 2 and 40 times
faster than the same ParticleBeam. GPU acceleration is
a sensible choice only with ParticleBeam, though it is
not guaranteed to improve compute times. With lattice
optimizations turned on, we did observe 8 times faster
simulations using GPU acceleration instead of running on
the CPU. However, without using lattice optimizations, the
simulations running on GPU slowed down due to the
overhead of data transfers between CPU and GPU. This is
the result of the benchmark beam tracking 100 000 par-
ticles. In this case, the overhead induced by sending
instructions and data to the GPU outweighs the perfor-
mance benefits of highly parallel computation. On the other
hand, when the number of tracked particles is increased to
10 000 000, tracking with optimizations turned on takes
37.5 ms on CPU and 998 μs on GPU. With optimizations
turned off, Cheetah tracks the same beam in 37.5 ms on CPU
and 5.36 ms on GPU. This is a significant improvement,
demonstrating the advantages of GPU acceleration in

Cheetah. Moreover, we find that in our benchmarks, opt-in
optimizations yielded up to 38 times faster execution on
CPU and up to 51 times faster execution on GPU. Note that
the opt-in optimizations benchmarked here are the most
extreme case, taking maximum advantage of the optimi-
zations to demonstrate Cheetah at its fastest and at its slowest.
In real-world use of opt-in optimizations, we expect results
to be slightly worse than the optimized cases showcased
here, as some user-defined exceptions might reduce the
effectiveness of Cheetah’s optimizations.
For the sub-pC bunch charge at ARES, which is the

operation mode during the beam time as described in
Sec. III A, the relative error of the Cheetah simulation result
compared to the ASTRA result is below 1%, making it a
reliable simulation tool. For the case with a higher bunch
charge or more complex beam shapes, see the example in
Appendix B.

III. USE CASE EXAMPLES

In the following, we would like to demonstrate in five
examples how Cheetah might be used and what it is capable
of. In Sec. III A, we demonstrate on the example of recently
published work, how Cheetah can be used to enable fast
reinforcement learning in simulation for policies that
transfer well to the real world. This is followed by examples
of using Cheetah’s automatic differentiation features to
perform gradient-based accelerator tuning in Sec. III B
and gradient-based system identification in Sec. III C. In
Sec. III D, we show Cheetah’s utility as a physics-based prior
in the context of Bayesian optimization. Finally, we
demonstrate Cheetah’s suitability for an extension by modu-
lar element neural network surrogate models in Sec. III E.
The following is not an exhaustive list of applications for
Cheetah. We believe that as Cheetah is adopted, users will find
many more problems that can solve.

TABLE I. Step computation times of simulation codes in milliseconds.

Code Comment Laptop HPC node

ASTRA Space charge 264000.00 3605000.00
No space charge 109000.00 183000.00

Parallel ASTRA Space charge 39000.00 17300.00
No space charge 16900.00 12600.00

Ocelot Space charge 22100.00 21700.00
No space charge 182.00 119.00

Bmad-X 40.50 74.30
Xsuite CPU, no space charge 0.81 2.82

GPU, no space charge · · · 0.57
Cheetah ParticleBeam 1.60 2.95

ParticleBeam + optimization 0.79 0.72
ParticleBeam + GPU · · · 4.63
ParticleBeam + optimizationþ GPU · · · 0.09
ParameterBeam 0.76 1.29
ParameterBeam + optimization 0.02 0.04
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A. High-speed simulations for reinforcement learning

In recent work, Cheetah played a key role in the successful
training of a neural network policy for tuning the transverse
beam properties in a particle accelerator through the
method of RL [1,5,44]—so-called reinforcement learn-
ing-trained optimization (RLO). Specifically, this work
considers a tuning task in the experimental area (EA)
beamline section at the ARES accelerator. The EA is made
up of a sequence fQ1; Q2; Cv;Q3; Chg of two quadrupole
magnets, followed by a vertical dipole magnet, a third
quadrupole magnet, and a horizontal dipole magnet. These
magnets allow for the tuning of the transverse beam
properties ðμx; σx; μy; σyÞ, i.e., position and size in the
horizontal and vertical dimensions. These properties are
measured with a diagnostic screen station downstream of
the magnets. At ARES, transverse beam parameter tuning
is commonly performed in preparations for experiments in
an experimental vacuum chamber installed downstream of
the EA. The goal of the transverse beam tuning task in the
EA is to find the magnet settings u ¼ ðkQ1

; kQ2
;

αCv
; kQ3

; αCh
Þ that minimize the difference between the

beam parameters observed on the screen b ¼ ðμx; σx;
μy; σyÞ and some target beam parameters b0 ¼
ðμ0x; σ0x; μ0y; σ0yÞ set by a human operator. In the EA, the
beam entering that section bin and the transverse misalign-
mentsm of components like quadrupoles and the screen are
not known, making this transverse beam tuning task more
challenging to solve. To date, transverse beam tuning is
mostly solved manually by experienced human operators,
which requires a lot of time and makes it difficult to
reproduce results.
In order to solve this beam tuning task utilizing RLO, a

task-specific RL loop is defined as shown in Fig. 3. In this
loop, the accelerator environment is implemented using
Cheetah at the time of training and then replaced with the real
ARES accelerator at the time of application. The Python
package Gymnasium [45] (the successor to the previously
popular OpenAI Gym [46]) is used to define the environ-
ment. A multilayer perceptron (MLP) of two hidden layers
is used as a policy model. Each layer has a width of 64
neurons and uses a rectified linear unit (ReLU) activation.
The policy takes as input the normalized observed beam b,
the currently set quadrupole strengths and deflection angles
of the magnets u, and the target beam parameters b0. Its
output is defined as normalized changes to the magnet
settings at ¼ Δu. The rewards and observations are nor-
malized using a running average during the training. The
actions are normalized to the action spaces, which is
½−3; 3� m−2 for quadrupole strengths, ½−0.6; 0.6� mrad
for vertical steering magnet, and ½−0.3; 0.3� mrad for
horizontal steering magnet. The different action ranges
of vertical and horizontal magnets are chosen so that they
have approximately the same steering effect at the position
of the diagnostics screen.

To train the policy, the Twin Delayed DDPG (TD3) [47]
algorithm is used for its relative training sample efficiency
among model-free RL algorithms. Specifically, we employ
the implementation provided by the Stable Baselines3 [48]
Python package. As originally introduced to the field of RL
for accelerators in [1], domain randomization [36] is
performed during training by sampling magnet and screen
misalignments, as well as the incoming beam parameters
and the target beam from a uniform distribution at the start
of each rollout episode. We define the reward for transverse
beam parameter tuning as

Rðst; atÞ ¼
�
R̂ðst; atÞ if R̂ðst; atÞ > 0

2 · R̂ðst; atÞ otherwise
; ð5Þ

with R̂ðst; atÞ ¼ OðutÞ −Oðutþ1Þ, where the objective
function OðutÞ is the logarithmic and weighted difference
between the observed and target beams

OðutÞ ≔ ln
1

4

X4
i¼1

wðiÞjbðiÞ − b0ðiÞj: ð6Þ

Aweight vector w ¼ ð1; 2; 1; 2Þ was chosen for the final
training.
The policy is trained over a total of 6 000 000 inter-

actions with the Cheetah environment. One interaction with
the real environment involves sending new set points to the
magnet power supplies, waiting for the power supplies to
finish ramping to their set points, and taking multiple
images of the diagnostic screen with the beam turned on
and with the beam turned off. Altogether this process takes
ca. 10 to 20 s. Consequently, training on the real ARES
accelerator would take about 3 years of continuous beam
time. With beam time a scarce resource, such a long
training is infeasible. Fast simulations like Cheetah can be
computed faster than real time and enable us to collect the

Environment

Agent

FIG. 3. Flowchart of the RL loop for the ARES EA transverse
tuning task. The environment—during training defined in terms
of Cheetah—outputs an observation ot and a rt based on the
previous action at−1. The agent then computes a new action at
using the neural network policy. The new action is applied to the
environment and results in the next observation otþ1 and
reward rtþ1.
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equivalent of many years of real time experience in much
more feasible time frames. As was shown in Sec. II D,
Cheetah is especially fast, allowing for the equivalent of
3 years of experience to be collected in just 27 min. Other
RL algorithms such as Proximal Policy Optimization also
allow for parallel rollouts on multiple environments. Using
a simulation like Cheetah means that experience could be
collected even faster in this case, while we usually do not
have access to multiple of the same accelerator for training.
Despite having been trained using a comparatively

simple simulation and deployed to the real-world zero-
shot without fine-tuning, our RL policy successfully tunes
the transverse beam parameters on the real accelerator,
finding magnet settings that achieve beam parameters
closer to the target than those found by other state-of-
the-art black box optimization algorithms. Moreover, the
trained policy converges on these magnet settings in just a
few samples, tuning the beam in less wall time than human
operators while achieving comparable results. An example

of a trained policy from [5] tuning the transverse beam
parameters in the EA is shown in Fig. 4. Here, it can be
observed that the target transverse beam parameters of b0 ¼
ð−0.61; 0.26; 1.03; and 0.35 mmÞ are reached after about
six steps. For more detailed results and discussions, refer
to [1,5].

B. Gradient-based beam tuning and lattice optimization

In the field of particle accelerators, there are various
optimization tasks, ranging from lattice optimization in the
design phase of a facility to tuning actuators at run time. In
some cases, these tasks have too many degrees of freedom
to be feasibly solvable by black box optimization algo-
rithms, such as BO or RLO. However, their underlying
function and its parameters may be known. In such cases,
gradient-based optimization may be used. The latter has
well-understood convergence properties and extensive
tooling for it has been developed in the field of ML.
Using gradient-based tuning on a model of an accelerator
can help find good setups without the need for beam time.
Even in cases where there exists a model mismatch, this
offline optimization approach can provide good starting
points close to the optimum, which can then be further
optimized online. Further, Cheetah can be used to reduce
model mismatches through gradient-based system identi-
fication as is described in Sec. III C.
In this example, we consider the same transverse beam

tuning task as in Sec. III A. In contrast to before, we assume
that unobserved properties, such as the incoming beam and
the beamline components’ misalignments, are known. This
may be the case in simulations during the design stage of an
accelerator, if an accelerator is known to deviate very little
from its design parameters, or if system identification like
in Sec. III C was performed ahead of time.
The ARES lattice is loaded as a Cheetah Segment.

Because Cheetah defines segments as PyTorch Module, all
that is needed for PyTorch to automatically compute the
gradient of the ARES EA with respect to the five magnet
settings, is to define the latter as PyTorch Parameter. A
fixed incoming beam is tracked through the EA Cheetah

Segment. The resulting beam parameters can then be read
from the diagnostic screen station at its end, and an MSE
loss, defined as

1

4

X4
i¼1

ðbðiÞ − b0ðiÞÞ2; ð7Þ

with b0 being the target beam and b the currently observed
beam at the screen station, can be computed, where bðiÞ
denotes the ith element of b. PyTorch’s automatic differ-
entiation features can then be used to compute the gradient
of the particle tracking and transverse beam parameter loss
function with respect to the magnet settings

b ¼ fEAðujm; binÞ: ð8Þ

(a)

(b)

(c)

(d)

FIG. 4. An NN policy trained with RL tuning of the transverse
beam parameters in the ARES EA. (a) The MSE loss develop-
ment over parameter update iterations. (b) Beam parameters on
the diagnostics screen over parameter update iterations. (c),
(d) quadrupole and dipole magnet settings over parameter update
iterations.
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Adam [49], a variant of stochastic gradient descent is
then used to compute the updates to the magnet settings
based on the computed gradient.
However, as is, this simple setup would result in unstable

convergence. This is because the magnet settings are on
very different scales, with the maximum quadrupole setting
at 72 m−2 and a maximum dipole magnet setting of
6.2 mrad. To address this, the magnet settings are normal-
ized, i.e., scaled to normally fall into the range ½−1; 1�. With
Cheetah, this is easily achieved by wrapping the ARES EA
Segment in an outer PyTorch Module with the normalized
magnet settings as the PyTorch Parameter. On every call
to the module’s forward method, the segment’s magnet
settings u are set to

u ¼ unormed ⊙ λ; ð9Þ
i.e., the element-wise product of the normalized actuator
parameters unormed and the scaling factors for each respec-
tive actuator component λ. For the presented case study, we

use λ ¼ ð5 m−2; 5 m−2; 6.2 mrad; 5 m−2; and 6.2 mradÞ.
Note that for the quadrupole magnets, the scaling factors
are chosen to be smaller than the physical limits of the real
magnets so that they represent the commonly used opera-
tional ranges of these magnets at ARES more accurately.
The resulting convergence of the magnet settings can be

seen in Fig. 5. In the shown example, the target beam
parameters are b0 ¼ ð0.0; 0.0; 0.0; and 0.0 μmÞ. We observe
that the final magnet settings result in the desired centered
and focused beam. The absolute deviation of the observed
transverse beam parameters to the target transverse beam
parameters is jΔμxj ¼ 0.33 μm, jΔσxj ¼ 6.66 μm, jΔμyj ¼
0.07 μm, and jΔσyj ¼ 0.85 μm, resulting in amean absolute
error of 1.98 μm. Convergence is generally smooth, with all
five magnets converging on their final settings after about 90
gradient steps. Note that the hyperparameters for this
example were not tuned and better results may be possible.

C. Gradient-based system identification
and virtual diagnostics

A common challenge with accelerators is that some
properties of the beam or the accelerator hardware itself
are not observable. Finding these properties usually requires
multiple samples at different system states, ideally collected
in a structured manner such as a grid scan for best results.
Using these samples to reconstruct the hidden properties
constitutes an inverse problem. Inverse problems are noto-
riously difficult to solve. Performing structured measure-
ments to identify hidden properties of an accelerator
necessitates an interruption of beam delivery, making it a
costly measurement that is only performed if strictly needed.
Here we consider a system identification task in the

ARES EA. There are two unknowns in the EA: The
incoming beam and the misalignments of the quadrupoles.
For this example, we aim to identify the misalignments of
the quadrupoles. Knowing these can help tune the accel-
erator, for example, by inserting the found misalignments
into the model used in Sect. III B, or by using them to better
align the quadrupoles and thereby reduce the dipole effect
they have on the beam when used for focusing.
The gradients are computed with respect to the misalign-

ments, i.e., the horizontal and vertical displacements of the
magnets. Similar to the tuning example, the misalignments
are normalized by wrapping the EA Segment in a PyTorch

module that holds normalized misalignmentmnormed param-
eters such that

b ¼ fEAðmnormedjbin; uÞ: ð10Þ

The resulting optimization problem is defined as

minmOðmÞ ¼ ðμx − μ0xÞ þ ðμy − μ0yÞ ð11Þ

to find the misalignments such that, when these misalign-
ments are assumed in the model, the beam positions

(a)

(b)

(c)

(d)

FIG. 5. Gradient-based tuning example of the transverse beam
parameters in the ARES EA. (a) The loss development over
parameter update iterations. (b) Beam parameters on the diag-
nostics screen over parameter update iterations. (c), (d) Quadru-
pole and dipole magnet settings over parameter update iterations.
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predicted on the screen best match the experimental
measurements. For this example, we use parasitically
acquired measurements from other unrelated experiments.
This effectively enables zero-shot system identification.
The specific data used here was collected during evalua-
tions of the RLO policies in [5], which was also referenced
in the example in Sec. III A.
We first start with data collected in simulations, where the

misalignments are known. This allows us to verify that the
gradient-based optimization arrives at correct misalign-
ments. Because we are considering simulated data, the
correct incoming beam is also known and may be assumed
in the Cheetah model. As can be seen in Figs. 6(a), 6(c),
and 6(e), the reconstruction arrives at the correct
misalignments.
Now trusting the misalignment reconstruction, the latter

may be tried on data collected from a real-world experi-
ment. With real-world data, however, the incoming beam is
often unknown. Therefore, a sensible assumption on the
incoming beam must be made. In the ARES EA, the goal is
to reduce the misalignments of the quadrupole magnets
with respect to the design orbit, which is the center of the
beam pipe in most cases. We, therefore, assume that the
incoming beam position and momentum are at zero, i.e., we
consider the observed orbit to be the design orbit. Doing so
effectively sets, the origin of the Cheetah model to the
observed orbit in the data, resulting in misalignments being
measured as deviations from that orbit. Other properties

such as the beam size and energy only marginally affect this
particular system identification setup and are, therefore, not
considered. As can be seen in Figs. 6(b), 6(d), and 6(f), the
reconstruction appears to also perform well and smoothly
arrive at sensible results under these conditions. However,
the results cannot be checked against the ground truth this
time, because the ground truth cannot be known.

D. Physics-based prior mean for Bayesian optimization

Thanks to its speed, Cheetah can provide fast predictions
of the beam parameters and guide optimization algorithms
during online tuning tasks, ultimately boosting their per-
formance. One particular use case is BO, which utilizes a
Gaussian process (GP) model to build a surrogate model of
the observed data and efficiently optimize the objective
function. However, when dealing with high-dimensional
tasks, BO tends to over explore the parameter space to find
the global optimum, inevitably increasing the required
number of samples [50]. This limits the tasks that are
solvable with classical BO algorithms to those that have
less than a few dozen of input parameters [13]. Recent
studies have shown that the convergence speed of BO can
be significantly improved by incorporating prior knowl-
edge of the accelerator system into the GP model, for
example, by including the correlation of quadrupole mag-
nets into the GP covariance [51] or using an NN surrogate
model as the prior mean function for the GP [52,53]. In the
case of an NN surrogate, it should be accurate enough, as a

(a)

(c)

(e)

(b)

(d)

(f)

FIG. 6. Two examples of gradient-based quadrupole misalignment identification. For the first example, using parasitically collected
simulated data, we show (a) the loss, (c) the horizontal misalignments, and (e) the vertical misalignments over epochs. Dashed lines
signify the ground truth misalignments, which are known in simulation. We show (b) the loss, (d) the horizontal misalignments, and
(f) the vertical misalignments for the second example using real-world parasitically collected data.
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wrong prior will only hamper the performance of BO.
However, training such an NN model requires many
samples either from simulation or real measurements,
which are often not readily available. Cheetah becomes a
promising alternative for the prior mean function for BO
due to its fast inference time. In addition, Cheetah’s differ-
entiability allows efficient acquisition function optimiza-
tion using gradient descent methods in modern BO
packages like BoTorch [54].
In the following, we demonstrate the usage of Cheetah as a

prior mean for BO in a beam-focusing task. The inves-
tigated lattice segment is an FODO cell consisting of two
quadrupole magnets fQ1; Q2g and a diagnostic screen at
the end. The objective is to minimize the mean beam size
measured at the screen

O ≔
1

2
ðjσxj þ jσyjÞ ð12Þ

by changing the quadrupole strengths fkQ1
; kQ2

g, where σx
and σy denote the horizontal and vertical beam sizes,
respectively.
We evaluated the performance of BO with a Cheetah

simulation model as a prior mean function and used BO
with a constant prior mean and Nelder-Mead simplex as
baselines. All algorithms are implemented based on the Xopt

package [55]. Both BO variants use the Matérn-5=2 kernel
and upper confidence bound acquisition function with
β ¼ 2.0, which is a standard choice of hyperparameters
for BO applications. Each algorithm was repeated 10 times
starting from the same detuned setting and the averaged
results with one standard deviation are shown in Fig. 7. In
the case of the prior mean matched to the tuning task, BO
with prior could immediately find the global minimum
without exploring much of the parameter space. We then
changed the lattice distances so that the BO prior mean is
mismatched to the ground truth of the tuning task. BO with
prior first sampled around the minimum predicted by the
prior mean, which is denoted by the dotted line in Fig. 7(b).
Since there was a difference between the predicted and
observed beam sizes, it continued exploring the parameter
space and subsequently converged to the minimum.
In both cases, BO with prior converged to the true

minimum within 15 steps and was more sample-efficient
than BO with a constant mean prior and simplex algorithm
even for the two-dimensional task. This is expected to have
a larger impact on higher-dimensional tasks as the param-
eter space grows exponentially. Furthermore, when BO
with a Cheetah prior mean is applied to real-world tasks, one
can use system identification to determine the mismatch
between the simulated and the real accelerator using the
obtained data parasitically, as shown in Sec. III C. This
allows further reduction of the discrepancy between the
physics-based prior mean and the real-world systems.

E. Integrating modular neural network surrogates with
beam dynamics simulations

Some beam dynamics such as collective effects require
expensive computations to simulate. This problem has
previously been solved using NN surrogate models. Data
from experiments or high-fidelity simulations can be used
to train an NN to approximate the real world or a high-
fidelity simulation with a high degree of accuracy, while
forward passes of NNs are cheap to compute. To date,
single NN surrogates are usually used to model, for
example, specific instruments or lattice setups [2,4,29].
As a result, these models have limited versatility and
reusability, and novel applications require the design and
training of new models, which necessitates further beam
time or computation to acquire new training datasets.
Modular surrogate models over all parameters of generic

accelerator elements can be used as a versatile, reusable,
and reconfigurable approach to modeling larger parts of
accelerators using NNs. This modular approach integrates
well with Cheetah, as shown in Fig. 1(d). Modular NN
surrogates computing expensive physical effects can seam-
lessly be wrapped as Cheetah elements and combined with
other elements using beam dynamics models already
implemented in Cheetah or other NN surrogates. Crucially,
NNs are differentiable and commonly implemented in
PyTorch. Hence, they integrate well with Cheetah’s PyTorch

backend and preserve PyTorch’s automatic differentiation
functionality.

FIG. 7. Optimization results of a beam focusing task using
Nelder-Mead simplex (blue), Bayesian optimization with a
constant mean function (orange), and BO with a Cheetah
Segment as the prior mean matched to the task (red) or
mismatched (green). The results are averaged over 10 runs for
each algorithm and shaded regions represent one standard
deviation. The dotted line shows the minimum objective of the
prior mean in the mismatched lattice and the dashed gray line
denotes the true minimum for each task obtained from grid scans.
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In this use case example, we demonstrate the imple-
mentation of a quadrupole magnet augmented with space
charge effects modeled using an NN and integrate it as an
element in Cheetah. The straightforward implementation of
an NN-based modular surrogate model would see the
track method in Cheetah implemented as a forward pass
of an NN

bout ¼ fSCðbinjlQ; kQÞ; ð13Þ

mapping the incoming beam bin and quadrupole parameters
ðlQ; kQÞ to an outgoing beam bout. Fortunately, the effects
of space charge in a quadrupole are secondary to the linear
beam dynamics, and linear beam dynamics can be modeled
easily. To reduce the complexity of the function modeled by
the NN and reduce the time and data required to train it, the
tracking function through the quadrupole element is instead
reformulated as

bout ¼ flinearðbinjlQ; kQÞ þ ΔΣSCðbinjlQ; kQÞ; ð14Þ

where flinearðbinjlQ; kQÞ is the handcrafted computation of
the linear beam dynamics through a quadrupole magnet
already implemented by Cheetah and ΔΣSCðbinjlQ; kQÞ is the
change induced to the outgoing beam by space charge
effects. The NN model is used to approximate
ΔΣSCðbinjlQ; kQÞ. An illustration of this process is provided
in Fig. 8.
Data for training the modular NN surrogate model are

generated using Ocelot [10] with space charge effects and
second-order tracking through a single quadrupole element.
Space charge effects are calculated with a mesh size of 633

and applied at a unit step size of 2 cm. A total of 100 000
samples are collected from uniform distributions over
length lQ and strength kQ of the quadrupole, as well as
log-uniform distributions over a subset of the incoming
beam parameters:

x ≔ ðσx; σx0 ; σy; σy0 ; στ; σδ; E; qÞ ⊂ bin; ð15Þ

where E is the beam energy and q is the total charge of the
beam. The ranges over which these are sampled for data

generation are shown in Table II. A log-uniform distribu-
tion was chosen for the beam input parameters because
their order of magnitude is more relevant in space charge
computations.
The neural network model takes x as input and outputs

y ≔ ðΔσx;Δσx0 ;Δσy;Δσy0 ;Δστ;ΔσδÞ ð16Þ

the changes to the beam parameters resulting from space
charge effects when compared to linear beam dynamics,
such that

ΔΣSCðbinjlQ; kQÞ ≈ y ¼ fNNðxÞ: ð17Þ

We choose an MLP architecture for the NN and the
Adam [49] gradient descent algorithm for adjusting the
parameters of the model. Early stopping with a patience
(number of steps with no improvement before the training
is terminated) of 10 was used. The dataset is split 60/20/20
into training, validation, and test sets, respectively. The
logarithm is taken of all beam parameter inputs before they
are input into the NN model. All inputs and outputs are
scaled to fit a unit-normal distribution with scaling on the
beam parameter inputs performed after taking the loga-
rithm. Hyperparameters were tuned over a total of 303
trainings using Bayesian optimization, with PyTorch
Lightning [56] used to implement the training and
Weights & Biases [57] for experiment tracking.

FIG. 8. Scheme of the NN-enhanced quadrupole module. The
incoming ParameterBeam P is multiplied with the magnet’s
transfer matrix RQ as in classical linear beam dynamics. The NN
model predicts changes ΔΣSC in beam parameters due to the
space charge effects, resulting in the outgoing beam bout.

TABLE II. Input parameter ranges for dataset generation.

Input parameter Range

σx ½10 μm; 1 mm�
σx0 ½10 μrad; 1 mrad�
σy ½10 μm; 1 mm�
σy0 ½10 μrad; 1 mrad�
στ ½300 nm; 300 μm�
σδ ½10−5; 10−3�
q ½1 PC; 5 nC�
E ½1 MeV; 1 GeV�

TABLE III. NN training hyperparameters.

Hyperparameter Value

Batch size 32
Hidden activation Sigmoid
Hidden layer width 256
Learning rate 2 × 10−5

Number of epochs 959 (max. 10 000)
Number of hidden layers 4
Gradient descent algorithm Adam
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The best-observed hyperparameters used for the final
model are listed in Table III.
Figure 9 shows the beam sizes, beam divergence, bunch

length, and energy spread over different beam energies as
computed by the NN-augmented quadrupole implemented
in Cheetah and compares them to Cheetah’s default linear beam
dynamics tracking and Ocelot’s space charge simulation. All
other parameters of the incoming beam and the quadrupole
parameters are fixed. We observe that the NN-augmented
quadrupole implementation correctly infers larger effects of
space charge at low energies when compared to linear beam
dynamics simulations without space charge effects.
Congruently, the beam parameters computed using the
NN-augmented quadrupole in Cheetah closely match those
computed using Ocelot with space charge effects, indicating
that our simulations accurately capture space charge
effects.
We benchmark the computational speed of the NN-

augmented space charge quadrupole element against
Ocelot’s space charge simulation. For this evaluation, the
incoming beam and quadrupole settings considered for the
experiments in Fig. 9 are used with an energy of 6.2 MeV.
Ocelot is configured with the same space charge simulation
setup as was used to generate the training data. We find that
Ocelot takes an average of 1.36 s to perform space charge
tracking through a single quadrupole, while the same
simulation is performed by the NN-augmented Cheetah

element in an average of 370 μs—a reduction in compute
time of more than three orders of magnitude. These
benchmarks were run on the same Apple M1 Pro SOC’s
CPU considered in Sec. II D. Unlike Ocelot’s space charge
implementation, Cheetah can take advantage of hardware

acceleration on GPU, which is expected to result in a
further reduction of compute times.
Moreover, because an NN is used for the modular

surrogate modeling, the computation remains fully differ-
entiable, in effect providing differentiable space charge
simulations that can seamlessly be integrated with other
beam dynamics simulations.
This example serves as a proof of concept for Cheetah’s

ability to provide a platform for modular surrogate model-
ing. In fact, to the best of our knowledge, this and similar
efforts made concurrently [58] present the first instances of
modular NN-based surrogate modeling in particle accel-
erator simulations. As such, the integration of modular NN
surrogate models in Cheetah enables us to build data-driven,
high-speed, high-fidelity models of beam dynamics that
would, otherwise, require computationally expensive mod-
els. Moreover, Cheetah can also be integrated with modular
NN surrogates trained on real-world data, allowing for
mitigation of model mismatches. In the future work, we
hope to add more NN-augmented and fully NN-based
elements to Cheetah. While the presented example applies to
parametrically defined beams, it can easily be extended to
beams defined as particle clouds by employing NN
architectures such as PointNet [59], which is intended as
a future extension of Cheetah.

IV. CONCLUSIONS

In this work, we introduced Cheetah, a Python package
providing high-speed differentiable beam dynamics
simulations for machine learning applications. Cheetah is
easy to use, provides an extensible platform for future

(a)

(d)

(b)

(e)

(c)

(f)

FIG. 9. Outgoing beam parameters (a) σx, (b) σx0 , (c) σy, (d) σy0 , (e) στ, and (f) σδ for the same incoming beam over different energies
tracked with the default linear quadrupole in Cheetah (black), the NN-augment space charge quadrupole (red), Ocelot without space
charge calculations (blue), and Ocelot with space charge calculations (green).
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differentiable models, and integrates well with the ML
ecosystem in Python. Moreover, we demonstrated Cheetah’s
capabilities using five example applications. We illustrated
its speed training an NN policy to perform transverse beam
tuning while achieving zero-shot transfer to the real world.
Further, we showed how automatic differentiation in Cheetah

can be used for gradient-based beamline tuning as well as
gradient-based system identification. Cheetah’s usefulness as
a differentiable prior for Bayesian optimization was also
shown while optimizing beam focusing through a FODO
cell. Finally, we presented an example of how Cheetah can
easily be extended by training a modular NN space charge
model to predict how space charge affects the beam when
tracked through a single quadrupole magnet.

Cheetah will see continued extension as a tool for our
work. We further hope that in the future, members of the
community will collaborate in extending Cheetah, for exam-
ple, with already developed differentiable models of
processes in particle accelerators. Such collaboration and
integration will help make these tools more accessible to
the community. Further extensions of Cheetah planned from
our side include the integration of additional modular
surrogate models, in particular for a single particle tracking
based on PointNet [59], and batched parallel execution of
simulations to increase speeds further. In addition, experi-
ments using JAX [17] as a backend for Cheetah might aid in
attaining even faster simulation speeds as was seen by
switching the backend of Stable Baselines3 to JAX in
SBX [48].

The source code of Cheetah is hosted at [60]. The code
for the presented use case examples is available from [61].
More extensive code regarding the RL example may be
found at [62].
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APPENDIX A: TRACKING EXAMPLE
CODE SNIPPETS

A Python code example in Cheetah for tracking a beam
distribution loaded from ASTRA results through a FODO
cell.

APPENDIX B: TRANSVERSE PHASE SPACE OF
THE TRACKING RESULT

We consider the same subsection of ARES seen in
Sec. II D. To better illustrate the effect of space charge on
the beam dynamics, we chose an artificial initial distribution
and used 5 pC bunch charge. Figure 10 shows the transverse
phases in the ðx; x0Þ plane using different tracking methods.
The Cheetah result agrees with the ASTRA result neglecting the
space charge effect. When including the space charge effect,
the beam distribution starts to diffuse and the sharp edges are
no longer visible, causing a relative error of 3% and 7% in
ðσx; σx0 Þ in this example. This error will increase for higher
bunch charges or at lower energies. In that case, one could
consider training an NN to account for the error as described
in Sec. III E.
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