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Abstract

Predicting the separation performance of decanter centrifuges is challenging

due to dynamic events within the apparatus. Current methods for designing

decanter centrifuges rely on simplified models, often leading to inaccuracies.

Consequently, manufacturers must perform time-intensive pilot scale experi-

ments to derive their own correction factors. Growing computing power sparks

interest in alternative modeling strategies. Grey box models (GBM) combine

mechanistic white box models (WBM) and data-driven black box models

(BBM), with the optimal structure (parallel or serial) varying by application.

For modeling decanter centrifuges, we propose a serial GBM that comprises an

artificial neural network that outputs unknown material parameters into a

first-principle multi-compartment model. Comparing this approach to alterna-

tive data-driven modeling strategies (pure BBM, parallel GBM), we conclude

that the serial GBM excels in terms of extrapolation, prediction ability, and

transparency while also enabling a better comprehension of the separation

process.
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1 | INTRODUCTION

Continuous solid bowl centrifuges, such as decanter cen-
trifuges, are widely used in food, chemical and mineral
processing industries and play a crucial role in processes
such as clarification, dewatering, and solid–liquid separa-
tion. For instance, decanter centrifuges play a pivotal role
in reducing waste and environmental impact by separat-
ing harmful pollutants from water during wastewater
treatment. The separation efficiency of solid bowl

centrifuges is heavily dependent on their design and the
selection of process parameters. Achieving the desired
separation efficiency and dryness of the sediment is of
significant importance for the product quality and the
energy consumption of subsequent process steps, such as
thermal drying. Inadequate dimensioning and process
conditions can lead to poor separation performance and
increased energy consumption. A cost-effective operation
is typically achieved based on expert knowledge and
process understanding gained over time. However,
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predicting the effect of individual process parameters on
the separation result can be difficult due to the complex
interplay of the process parameters and centrifuge geom-
etry. This makes the dimensioning, scale-up, and efficient
operation of solid bowl centrifuges challenging.

As the technological landscape evolves, there is a
growing interest in the use of predictive models to
address challenges related to dimensioning, optimizing
operational efficiency, and reducing energy consumption.
There are numerous modeling approaches to predict the
separation outcome in decanter centrifuges. Basic steady-
state models, including the sigma theory by Ambler,[1]

are still commonly used. However, these models neglect
dynamic events within the apparatus, such as the
hindered settling, the build-up and consolidation of the
sediment. Consequently, manufacturers must conduct
time-consuming pilot scale experiments and derive their
own empirical factors to account for model inaccuracies.
Therefore, it is of great significance to develop models
which are more reliable and accurate.

On one hand, the use of numerical models has
become more prevalent due to the ever-increasing com-
puting power. On the other hand, the increasing use of
sensors in machines allows for the collection of large
amounts of process data, such as volumetric flow rate,
solids content, and particle size distribution. This has led
to an increased interest in data-driven models.

Generally, the models can be categorized into three
types: White box models (WBMs), black box models
(BBMs), and grey box models (GBMs). WBMs are mecha-
nistic first-principle models that typically use prior
knowledge of the process in form of mass, energy, or
momentum balances. Calculations done by WBMs are
completely transparent. The complexity of WBMs range
from simple equations to nonlinear partial differential
equations. While computational fluid dynamics (CFD)
methods allow for fully resolved flow simulations of
decanter centrifuges,[2] the computation time is signifi-
cant, which makes them unsuitable for real-time applica-
tions, such as model-predictive control. On the other
hand, so-called real-time models simplify complex sys-
tems through assumptions, reducing the computational
effort significantly. Gleiß et al.[3] present a real-time first-
principle model for counter-current decanter centrifuges
by discretizing the unrolled helical path of the conveyor
into a defined number of compartments. The approach
can describe the settling behavior of the particles and the
sediment build-up in the cylindrical part of a decanter
centrifuge by coupling the residence time behavior of the
decanter centrifuge with empirical material functions.
Menesklou et al.[4] extended the model by including the
conical part of the decanter centrifuge, which plays a cru-
cial role in the dewatering and transport behavior of the

sediment. Furthermore, Menesklou et al.[5] conducted
experiments using various calcium carbonate water sus-
pensions and a decanter centrifuge of laboratory and
industrial scale to validate the real-time model. Although
the predictions are reliable overall, certain phenomena,
such as local flow effects at deeper pool depth, are not
considered in the model, leading to inaccuracies for spe-
cific process conditions. Bai et al.[6,7] present a similar
model to predict the separation and classification out-
come of decanter centrifuges. The study analyzes differ-
ent flow patterns, including plug flow, parabolic flow,
and a flow pattern that considers backflow near the bowl
wall and sediment surface. The authors conclude that the
most accurate flow pattern is the one that considers
the backflow. However, the consolidation behavior of
compressible material is not considered in their model.

BBMs, such as artificial neural networks (ANNs), can
be used without prior knowledge of the process. They
require a sufficient amount of process data for the train-
ing procedure. As data-driven models, the prediction
quality depends mainly on the quantity and quality of
the available input data. Generally, sparse or noisy data
results in unreliable predictions. BBMs also tend to per-
form poorly in extrapolation. Jiménez et al.[8,9] use an
ANN to optimize the olive oil elaboration process in a
decanter centrifuge. In their studies, the input parameters
of their ANN comprised of process parameters such as
flow rate, temperature, and dilution ratio of the feed.
Meanwhile, the output parameters are the fat content
and the moisture in the olive pomace. While the authors
demonstrate that the ANN makes reasonable predictions
for this particular application, the influence of other
important process parameters of a decanter centrifuge,
such as the rotational speed of the bowl and the differen-
tial speed of the conveyor, are not considered.

Another modeling approach involves combining a
WBM and a BBM to create a hybrid model, also known
as grey box model (GBM). In general, the WBM and the
BBM can be connected in a serial or in a parallel way. In
a parallel arrangement, the BBM learns the mismatch
between the WBM and experimental data to consider
unmodeled effects, non-linearity or dynamic
behavior.[10–15] Various approaches exist to fuse the out-
puts of the BBM and WBM, including the most com-
monly used approach of simple superposition.
Menesklou et al.[12] demonstrate an example of a parallel
GBM for modeling decanter centrifuges by combining
the previously mentioned real-time model[3,4] with an
ANN in their study. The ANN functions as an estimator
of the deviation between the WBM and the experimental
data. Results show that the predictions of the parallel
GBM are considerably more accurate compared to that of
the pure WBM. In a serial arrangement, the BBM
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estimates non-measurable intermediate parameters of the
WBM that cannot be directly measured.[13,16–24] Psicho-
gias et al.[25] use a GBM with a serial arrangement for
modeling and model-based control of a fed-batch biore-
actor. In their approach, an ANN estimates an unknown
kinetic parameter, which is subsequently fed into the
component mass balances of the first-principle model.
According to the authors, this approach leads to less
model complexity required and an improved perfor-
mance in comparison to a pure ANN. Choosing the opti-
mal structure for a hybrid model is a challenging task as
it is highly dependent on the specific application. Com-
plicating matters further, the choice of the BBM can also
have a large impact on model performance. Rhein
et al.[26] and Chen et al.[27] propose hybrid modeling
frameworks, and evaluate the performance of various
model structures, including a parallel GBM, a serial
GBM and a pure BBM using different Machine Learning
algorithms for their application. Rhein et al.[26] con-
clude that the serial approach outperforms the other
model structures in terms of prediction performance,
interpolation ability, and model transparency, proving
that it is the optimal choice for their case study of
modeling a hetero-agglomeration process. Chen et al.[27]

propose a framework for identifying plant-model mis-
match and applying hybrid modeling using a first-order
reactor model. They demonstrate, with two pharmaceu-
tical unit operation case studies, that hybrid modeling
increases the accuracy of the reactor model, while the
optimal model structure varies depending on the case.
Bradley et al.[28] review recent contributions in three
areas of dynamic process modeling: Hybrid modeling,
Physics-Informed Machine Learning, and Model Cali-
bration. They discuss the pros and cons of each area and
conclude that, in general, hybrid models outperform
purely data-driven models. For optimization applica-
tions, they suggest using hybrid modeling based on
mechanism estimation. This approach demonstrates
better extrapolation ability and generalizability,
although the authors emphasize the importance of
avoiding excessive influence of the data-driven compo-
nent on the model output and preserving the interpret-
ability of the model.

In this study, we introduce a GBM with a serial
arrangement to predict the separation process in a
counter-current decanter centrifuge, incorporating a pos-
teriori knowledge into the real-time model developed by
Gleiß et al.[3] and Menesklou et al.[4] The GBM considers
the fundamental physical principles of the separation
process while incorporating empirical data to address
uncertainties associated with the material functions
within the WBM. Additionally, we compare the perfor-
mance of the serial GBM with that of the pure WBM, a

pure BBM, and a parallel GBM for predicting the separa-
tion outcome of a laboratory scale decanter centrifuge
under various operating conditions. This is the first time
that a comprehensive analysis of different model struc-
tures for decanter centrifuges and their ability to extrapo-
late is carried out.

2 | MODELING APPROACHES

2.1 | Black box model: Artificial neural
network

There are numerous Machine Learning methods avail-
able, each with its own advantages and disadvantages.
One widely used method is the artificial neural network
(ANN), which is inspired by the architecture of the brain
and acts as a data-based universal function approxima-
tor.[29] ANNs consist of an input layer, at least one hid-
den layer, and an output layer, connected by weighted
connections. During training, the weights are adjusted to
minimize loss. The parameters that regulate the structure
of the ANN, such as the learning rate, the number of
neurons, and the number of layers, are referred to as
hyperparameters (HP) and have to be tuned to the
available data. A loss function, such as the root mean
squared error (RMSE), is used to evaluate the model
performance:

RMSE¼
ffiffiffiffiffiffiffiffiffiffi
MSE

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
i

Y i� bYi

� �2

vuut ð1Þ

with the prediction bY , the true value Y , and the total
number of samples N . In order to prevent poor generali-
zation, regularization techniques are important to avoid
overfitting resulting from high model complexity and var-
iance. Ridge regression[30] is a method to prevent individ-
ual weights from becoming overly dominant relative to
other weights by adding a penalty term to the loss func-
tion. Using the ridge regression in combination with the
mean squared error (MSE), the following modified loss
function is obtained:

1
N

XN
i

Y i� bYi

� �2

|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
loss function

þ λ
XM
m

XL
l

w2
m,l|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

penalty term

λ� 0,∞½ Þ ð2Þ

where wm,l is the weight of layer L and connection M and
λ controls the strength of the penalty on large weights.
Aggarwal[31] gives a more in depth overview of the theo-
retical concepts and practical applications of ANNs.
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2.2 | White box model: Multi-
compartment model of decanter
centrifuges

A schematic depiction of a counter-current decanter cen-
trifuge is shown in Figure 1. The feed, with a specified
solids concentration, particle size distribution and volu-
metric flow rate, enters the decanter centrifuge through
an inlet pipe. Due to the rotation of the bowl, centrifugal
forces are generated, causing the denser phase to settle
towards the inner wall of the bowl. When higher density
particles are dispersed in a lower density liquid phase,
the settled particles accumulate and form a sediment. To
transport the sediment, a screw conveyor rotates at a dif-
ferent speed relative to the rotational speed of the bowl.
This introduces shear forces into the sediment, causing
the sediment to move along the conical part of the bowl
until it is discharged. In a counter-current decanter cen-
trifuge, the clarified suspension, known as centrate, flows
in the opposite direction over a weir. Stahl[33] describes
the basic operation of decanter centrifuges and how vari-
ous process parameters affect the separation result in
detail.

For this work, a real-time first-principle process
model presented in the work of Gleiß et al.[3,32] and
Menesklou et al.[4] is used as the WBM. The geometry of
the decanter centrifuge, the process parameters, and the
material parameters are necessary inputs for the model.
Its output includes the filling capacity of the centrifuge,
the solids content and the particle size distribution of the
centrate and sediment. This study focuses on the solids
content since it is the most easily validated. In the WBM,
the helical conveyor channel is first unrolled and then

discretized into a predefined number of compartments,
which are linked by mass balances and represent the resi-
dence time behavior of the decanter centrifuge. The dis-
cretization is illustrated in Figure 1. Due to the vastly
different material behavior of the suspension and the sed-
iment, each compartment is further divided into a sus-
pension zone and a sediment zone. A material-specific
solids fraction volume fraction, also known as the gel
point ϕv,gel, characterizes the abrupt transition from sus-
pension to sediment and describes the solids concentra-
tion at which first particle-particle contacts occur. The
gel point is determined empirically according to Stick-
land[34] and Spelter.[35] Empirical material functions are
utilized for describing the settling behavior in the settling
zone. To accurately describe the settling dynamics in the
apparatus, the hindered settling has to be considered. In
the case of highly concentrated liquid suspensions, the
momentum exchange between the particles and the fluid
leads to a reduced settling velocity compared to the
Stokes' settling velocity[36] uStokes. In order to account for
this reduced settling velocity, a modified hindered set-
tling function H ϕvð Þ according to Micheals et al.[37]

is used:

H ϕvð Þ¼ u
uStokes

¼ r1 1�ϕv

r2

� �r3

ð3Þ

Here, the hindered settling velocity u depends on the
solids volume fraction ϕv and the empirical material-
specific parameters r1, r2, r3, which are experimentally
determined for each material by an analytical centrifuge
LUMiSizer (LUM GmbH). A detailed description of the
measurement principle and the methodology is given by

FIGURE 1 Schematic illustration of a counter-current decanter centrifuge with the cylindical length Lcyl, the conical length Lcon, the

pool depth hp, the cone angle α, and the bowl radius Rbo. The discretization of the decanter centrifuge is depicted for one compartment c

with incoming suspension flow _Vc�1, outgoing suspension flow _V c, flow of settled particles _V sep,c, incoming sediment flow _V sed,cþ1, and

outgoing sediment flow _V sed,c. The illustration focuses on relevant material functions. Further details regarding discretization can be found

in Gleiß et al.[3,32] and Menesklou et al.[4]
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Lerche et al.[38] and Zhai et al.[39] While this methodol-
ogy allows for determining the hindered settling velocity
on a smaller scale, it may not accurately depict the set-
tling behavior in a decanter centrifuge. This is discussed
further in Section 2.3.

The sediment formation process of compressible
materials is described by further discretizing the built-up
sediment in the radial direction.[3,4] The solids volume
fraction of the sediment ϕv,sed is calculated in each dis-
crete sediment layer using a power law according to
Green et al.[40]:

ϕv,sed ¼ϕv,gel 1þpo
p1

� � 1
p2 ð4Þ

with the normal stress po and the empirical material
parameters p1 and p2, which are determined by uniaxial
compression experiments.[41] To account for the addi-
tional compaction resulting from shearing,[33,42,43]

Menesklou et al.[4,44] extended the power law with an
additional offset parameter ϕv,sh:

ϕv,sed ¼ϕv,gel 1þpo
p1

� � 1
p2 þϕv,sh ð5Þ

The offset parameter ϕv,sh describes the amount of com-
paction caused by shearing. While it is possible to deter-
mine ϕv,sh empirically with laboratory shear devices, the
shear in these devices is highly simplified compared to
the shear in a decanter centrifuge. This makes it chal-
lenging to scale the shear compaction derived from shear
devices to decanter centrifuges. A direct correlation
would require the determination of the actual local shear
gradients in the shear devices and the decanter centrifuge
in a comparable manner, which is not possible with cur-
rent methods.[4] Therefore, the shear compaction is
neglected in the pure WBM (ϕv,sh ¼ 0).

2.3 | Grey box model

A GBM combines a WBM and a BBM and uses them in
conjunction to determine the result. This can have
numerous advantages over a pure WBM or BBM, as dis-
cussed in Section 4. In general, a GBM can be arranged
in either a serial or a parallel structure, which can have a
significant impact on the functionality of the model. The
optimal structure depends on the specific use case, avail-
able data, and quality of the WBM. A parallel GBM is
commonly used to address inadequately modeled or
missing effects in a WBM by means of a BBM.[10–15,27,45]

In this arrangement, the WBM operates independently of

the BBM since the BBM only alters the output of the
WBM. Consequently, the internal computation of
the WBM remains unaffected, which may lead to non-
transparent results. Moreover, the final output of a paral-
lel GBM is not constrained by the WBM, allowing for
non-physical outputs. There are different ways to com-
bine the WBM and BBM outputs, such as addition or
multiplication. Another option is to arrange a GBM in a
serial structure. In this arrangement, the BBM feeds
intermediate parameters that are either difficult or
impossible to measure (e.g., kinetic parameters) to the
WBM. In contrast to the parallel structure, the WBM
requires the output of the BBM to compute. Due to the
physical constraints imposed by the WBM, the output of
a serial GBM is always constrained. Another difference is
the level of transparency. In the serial GBM, the internal
computation of the WBM is also affected by the BBM,
leading to a more transparent model in general. The per-
formance of a serial GBM is highly dependent on the
quality of the WBM. Figure 2 depicts the model struc-
tures examined in this study and the corresponding input
and output parameters. The pure BBM directly correlates
the selected input parameters (see Section 3.2) with the
solids content ϕ. In the parallel GBM, the BBM outputs
the residual ϕcorr between the output of the WBM ϕWBM

and the empirical data ϕexp :

ϕcorr ¼ϕWBM�ϕexp ð6Þ

thus acting as an estimator of the inaccuracies of the
WBM. The final output of the parallel GBM is deter-
mined through simple superposition:

ϕ¼ϕWBMþϕcorr ð7Þ

Menesklou et al.[12] demonstrate that this arrange-
ment can account for local flow effects at deeper pool
depths, which improves the accuracy of the predictions.
While the authors focus on the interpolation ability, we
also evaluate the extrapolation ability in Section 4.2.
Before going into details of the serial GBM, it is impor-
tant to look at the shortcomings of the WBM. As already
discussed in Section 2.2, there is currently no reliable
method to precisely determine the shear parameter ϕv,sh.
Furthermore, the methodology used to obtain the hin-
dered settling function has some shortcomings, such as
the relatively narrow (2mm) measurement cell, which
can potentially affect the measurements due to wall
effects. In addition, the assumption of spherical particles
can result in inaccuracies if the particles are not perfectly
spherical. In reality, particles of different sizes can
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experience different levels of hindrance. However, the
WBM assumes a characteristic hindered settling factor,
resulting in uniform hindrance for all particle sizes. This
is discussed in more detail by Zhai et al.[39] Additionally,
even though the described methodology for deriving the
settling velocity is suitable for more ideal conditions like
those found in the analytical centrifuge, its validity may
be limited in decanter centrifuges due to the more com-
plex flow conditions present. These limitations are thor-
oughly discussed in Section 4.1. Due to the limitations,
we propose incorporating a correction parameter Hcorr to
account for the uncertainties that arise. When combined
with Equation (3), we obtain the adjusted hindered set-
tling function:

Hcorr �H ϕvð Þ¼Hcorr � r1 1�ϕv

r2

� �r3

ð8Þ

It is important to note that the parameters of the
empirical hindered settling function remain unchanged.
The serial GBM presented in this study uses a BBM
(ANN) to adjust the material functions according to the
process conditions. Therefore, the BBM output consists of
the difficult to measure shear parameter ϕv,sh (see Equa-
tion 5) and the correction factor Hcorr (see Equation 8).
Since labeled targets are required for supervised learning,
and the parameters ϕv,sh and Hcorr cannot be directly
measured, they must be identified beforehand through
optimization. The parameter identification and super-
vised training are performed separately. While the
parameters ϕv,sh and Hcorr are not measurable, they are
correlated to the measurable solids content. Hence, a
Bayesian optimizer[46] (see Section 2.4) is combined with

the WBM to identify parameters that minimize the differ-
ence between the prediction and the empirical data. The
identified parameters are subsequently used for
the supervised training process. An alternative option is
to use the hybrid model's output as an error signal for
identifying the parameters of the BBM.[24,47] However,
the computation time of this option is heavily dependent
on the complexity of the WBM and is deemed ineffective
for this study.

2.4 | Model optimization and evaluation

For a direct comparison of the different model structures
shown in Figure 2, it is important to optimize the HPs of
the BBM for each model structure (pure BBM, parallel
and serial GBM) and evaluate the models in a systematic
manner. Since the output parameter of the BBM varies
depending on the model structure, it is necessary to opti-
mize the HPs separately for each approach. The search
space of the considered HPs, which includes the learning
rate, the number of neurons, the number of epochs, the
regularization parameter λ, and the activation function,
is presented in Table 1. A common practice is to split the
available data into training and test sets, with the latter
being used for the model evaluation.[29] One drawback of
this practice is that the model is only evaluated once on a
selected data partition. To reduce the influence of the
choice of training and test data on the model perfor-
mance, k-fold cross validation (CV) is a frequently used
method. In k-fold CV, the dataset is partitioned into k
folds, with each fold used once as the test set while the
rest of the folds are used for training, resulting in k

FIGURE 2 Overview of the input

and output parameters depending on the

modeling structure: (A) pure BBM,

(B) parallel GBM and (C) serial GBM.

The choice of the input parameters is

discussed in Section 3.2.
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metrics. Using the RMSE in Equation (1) as the metric,
an average score RMSECV across all k folds can be
calculated:

RMSECV ¼ 1
k

Xk
i

RMSEi ð9Þ

Nested CV is an extension of the conventional k-fold
CV and combines HP optimization and model evalua-
tion. Using the same data for HP optimization and
model evaluation in k-fold CV can lead to overly opti-
mistic results and overfitting because the model has
prior knowledge. Varma et al.[48] demonstrate that
Nested CV significantly reduces bias in error estimation.
To reduce bias, Nested CV incorporates an inner CV
specifically for HP optimization and an outer CV for
model evaluation. Hereby, the training data of each
kouter-fold is further divided into kinner-folds to determine
the optimal HPs. The model is subsequently trained with
the optimal HPs using the training data from the outer
fold and evaluated using the test data from the outer fold.
This procedure is repeated for each kouter-fold. While
Nested CV is considered more robust than regular k-fold
CV, it also requires more computational resources. How-
ever, Nested CV is recommended, particularly for small
datasets.[26]

In this study, HP optimization and model evaluation
were conducted using Nested CV with three kinner-folds
and five kouter-folds. For HP optimization, we use a
Bayesian optimizer, which approximates the unknown
objective function by using a probabilistic surrogate
model (Random forest) to iteratively update the beliefs
about the objective function. The Bayesian optimizer
is efficient since it minimizes the number of evalua-
tions. Furthermore, it is possible to balance the explo-
ration and the exploitation in the search space
through an acquisition function, making the Bayesian
optimizer a well-suited method for global optimization
tasks. A more in-depth description is given by Brochu
et al.[46]

3 | METHODOLOGY

3.1 | Experimental setup and materials

The experiments were conducted using a laboratory scale
decanter centrifuge. Each data point was obtained by
conducting three measurements through gravimetric
analysis. The inlet solids content was measured shortly
before the start of the experiments. Samples of the cen-
trate and sediment were collected in a sample container
after the process reached a state of equilibrium and
immediately weighted. To cover a wide range of process
conditions, significant process parameters were varied.
Since the maximum torque of the conveyor's drive is a
limiting factor and is reached under different process
conditions depending on the material, the range of pro-
cess parameters differs based on the material. Table 2
presents the geometric parameters of the decanter centri-
fuge and the process parameters with their respective
upper and lower limits. The suspensions used in this
study are composed of demineralized water as the contin-
uous phase and either milk calcium (MC), polyvi-
nylchloride (PVC), or limestone (LS) particles as the
disperse phase. To stabilize the LS-water and PVC-water
suspension, 0.1 wt% sodium pyrophosphate was added to
the suspension. Table 3 shows the density and median
particle size of the used materials. The suspensions were
stirred continuously throughout the experiments using
an impeller stirrer to ensure homogeneous suspensions.
More detailed information about the particle size distri-
bution and material functions are presented in the
Supplementary Materials.

TABLE 2 Geometry of the laboratory scale decanter centrifuge

MD80 (Lemitec GmbH) and varied process parameters with their

respective upper and lower limits. The g-force G refers to the radius

of the bowl.

Geometry parameter Value Dimension

Bowl radius Rbo 0.04 m

Length cylinder Lcyl 0.155 m

Length cone Lcon 0.16 m

Cone angle α 7 �

Process parameter Range Dimension

Pool depth hp [0.006, 0.012] m

Volumetric flow rate _V in [5, 80] L h�1

Rotational speed n [500, 5500] min�1

g-force G [11, 1353] m s�2

Differential speed Δn [10, 45] min�1

Solids content inlet ϕm,in [4, 15] wt%

TABLE 1 Search space of the Bayesian optimizer. Listed are

the range and type of the HPs for the HP optimization.

HP Range Type

Number of neurons [10, 150] Integer

Number of epochs [200, 1500] Integer

Regularization
parameter λ

[10�7, 10�1] Log-uniform

Learning rate [10�3, 10�1] Log-uniform

Activation function [ReLu, tanh,
sigmoid]

Categorical
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3.2 | Data structure and data scaling

The dataset consists of 238 data points representing a
wide range of process conditions. Significant process
parameters of a decanter centrifuge are selected as fea-
tures f , including the inlet volumetric flow rate _V in, the
inlet solids mass content ϕm,in, the g-force G, the differen-
tial speed Δn, the pool depth hp and the material Mt. As
the rotational speed n correlates directly with the g-force,
it is not selected as a feature to avoid overweighting. All
features are numerical, except for the material, which is
categorical. Table 4 illustrates the data structure, where
Xi,f represents the value of feature f and index i.

To prevent the domination of certain features purely
due to different scales, it is important to uniformly scale
each feature. Different scaling methods, such as normali-
zation and standardization, are available. As there is no
specific distribution within the available data and to pre-
serve the relative relationship between values, each fea-
ture is scaled using normalization. Since the material is a
categorical feature, a different kind of scaling is needed.
One-Hot-Encoding (OHE), is a commonly used method
to convert categorical features into numerical values by
transforming them into unit vectors, preventing the mis-
interpretation of an ordinal relationship between them
where none exists.[29] Therefore, we use OHE to trans-
form the material into a numerical feature.

4 | RESULTS

4.1 | Prediction accuracy and
interpolation ability

For a performance evaluation of the serial GBM, a com-
parison is made between the serial GBM and the pure
WBM in this section. It is important to analyze if any

signs of overfitting are present in the predictions made by
the serial GBM. Therefore, the interpolation ability is
examined in Figure 3 using exemplary cases. As depicted
in Figure 3A, the solids content ϕm in the centrate
decreases as the g-force increases. This is due to the
increasing centrifugal forces and the resulting increase in
particle settling velocities. With higher solids content
in the inlet, the solids content in the centrate increases
due to the increased momentum exchange between the
solid and liquid phase. Furthermore, more particles are
fed into the decanter centrifuge, resulting in a higher sed-
iment and thus a reduced cross-sectional area of the liq-
uid pond. While the WBM accounts for both effects, its
predictions deviate from the experimental data, especially
at high solids concentrations and low g-forces. The over-
estimation of the solids content is also apparent in
Figure 3C. Here, an increase in the volumetric flow rate
leads to a higher solids content, due to the shorter resi-
dence time of the particles. While this phenomena is
modeled by the WBM, it is striking that the discrepancy
between the WBM and experimental data increases at a
higher inlet solids content of ϕm,in ¼ 15 wt% while the
predictions at an inlet solids content of ϕm,in ¼ 9 wt% are
more in agreement with the experimental results. In
addition, the WBM's accuracy decreases as the volumetric
flow rate increases. These trends can be further analyzed
in Figure 3B,D by examining the predicted values of the
parameter Hcorr. As a point of reference, the target value
obtained by optimization (see Section 2.4) is shown,
which is the ideal prediction of the BBM. When using the
pure WBM, the parameter value is always set to Hcorr ¼ 1,
indicating that no adjustment is made to the hindered
settling function (see Equation 8). In Figure 3B, the
amount of correction required increases as the inlet solids
content increases and as the g-force decreases. This indi-
cates that the settling velocity is underestimated, particu-
larly at higher solids contents, which can be partly

TABLE 3 Solid density ρsolid and

median particle size x50,3 of the

materials Milk Calcium (MC),

Polyvinylchloride (PVC) and Limestone

(LS). More information about the

materials is presented in the

Supplementary Materials.

Material parameter MC PVC LS Dimension

Solid density ρsolid 2310 1400 2700 kg m�3

Median particle size x50,3 1.28 2.40 3.68 μm

TABLE 4 Selected features and

data structure.
Index/- Mt/- ϕm,in/- _V in/Lh�3 Δn/min�1 G/m s�2 hp/m

1 X1,1 X1,2 X1,3 X1,4 X1,5 X1,6

2 X2,1 X2,2 X2,3 X2,4 X2,5 X2,6

… … … … … … …

I XI,1 XI,2 XI,3 XI,4 XI,5 XI,6
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explained with the uncertainties arising from the empiri-
cal derivation of the hindered settling function, as dis-
cussed in Section 2.2. Furthermore, Figure 3D
demonstrates that the required correction increases for
higher volumetric flow rates, indicating that the discrep-
ancies between WBM and experimental data may not
solely caused by the hindered settling function. Another
possible cause is the assumption of plug flow within the
WBM, whereas the real flow pattern is complex and
depends on numerous factors, leading to various
approaches for describing the flow pattern inside
decanter centrifuges. According to Leung,[49] a thin layer
beneath the pool surface is the only part of the pool that
moves. The remaining pool is considered to be stagnant.
Research studies by Faust et al.[50] and Madsen[51] show
that two distinctive flows exist. The upper part of the pool
moves towards the weir, whereas the lower part near the
inner wall of the bowl moves in the opposite direction.
Bai et al.[6] have implemented this flow pattern in a first-
principle model, showing good agreement with experi-
mental data. Stahl[33] argues this flow pattern has only
been observed at low g-forces and questions its validity at
higher g-forces. The accurate description of the flow pat-
tern in decanter centrifuges remains challenging.
Although adjusting the hindered settling function does
not address the inaccuracies caused by the idealized flow
pattern directly, it allows the effects to be considered at a
more macroscopic level. Notably, Figure 3A,C demon-
strate a significantly improved prediction accuracy of the
serial GBM, particularly for higher solids concentrations

and throughput rates. In particular, the prediction curves
for an inlet solids content of ϕm,in ¼ 8wt% and
ϕm,in ¼ 15wt% are in better agreement with the experi-
mental data than the WBM.

Examining the solids content of the sediment in
Figure 4A, the experimental findings demonstrate a ris-
ing trend in the solids content with higher g-forces.
Increasing centrifugal forces result in greater pressure
from the upper sediment layers on the lower layers, lead-
ing to a denser and dryer sediment. In Figure 4C, the
solids content stays roughly constant as the volumetric
flow rate increases. On one hand, an increased number
of particles enter the decanter centrifuge resulting in a
greater sediment height. On the other hand, the composi-
tion of the sediment changes due to the shorter residence
time, causing a shift towards larger particles in the cut
particle size and thus, reducing the consolidation poten-
tial. Although the WBM accounts for these phenomena,
there is a noticeable discrepancy between the experimen-
tal data and the predictions of the WBM. As discussed in
Section 2.2, determining the shear parameter ϕv,sh is chal-
lenging, which is why the parameter is set to ϕv,sh ¼ 0 in
the WBM. As a result, shear compaction of the sediment
is neglected within the WBM, causing an underestima-
tion of the solids content, as evidenced in Figure 4A,C.
The serial GBM uses the BBM to adjust the material func-
tion for sediment compressibility (see Equation 5) with
the estimated shear parameter ϕv,sh based on the process
conditions. Figure 4B,D demonstrate the output of the
BBM at different inlet solid contents, g-forces, and

FIGURE 3 Prediction of the

solids mass content of the centrate

for the material: (A) MC, (C) LS.

The result of the serial GBM

(GBMs) is compared to that of the

WBM. Corresponding prediction of

the parameter Hcorr for the

material: (B) MC, (D) LS. For

reference, the target value for the

parameter Hcorr obtained by

optimization is shown. Constant

process parameters in: (A),

(B) Δn¼ 25min�1, _V in ¼ 34Lh�1,

hp ¼ 0:012m, (c),

(d) Δn¼ 25min�1,

G ϕm,in ¼ 9wt%
� 	¼ 179 g,

G ϕm,in ¼ 15wt%
� 	¼ 101 g,

hp ¼ 0:012m:
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volumetric flow rates. Interestingly, the parameter ϕv,sh is
not constant for the regarded materials, suggesting the
amount of shear compaction depends on the process con-
ditions. The results, as depicted in Figure 4A,C, high-
lights the improvement of the model accuracy compared
to that of the WBM. The tendency of predicting a less
compacted sediment is corrected with the estimated
shear parameter. Furthermore, the interpolated data
show a plausible trend without any indications of overfit-
ting. This will undergo additional evaluation in
Section 4.2.

Figure 5 provides an overview of the serial GBM's per-
formance in relation to alternative model structures.
Here, the predictions of the pure BBM, serial and parallel

GBM correspond with the test data of each outer fold
(see Section 2.4). In Figure 5, it is apparent that the WBM
has the tendency to overestimate the solids content of the
centrate and to underestimate the solids content of
the sediment for previously discussed reasons. When
comparing the performance of the data-based model
structures, it is noteworthy that all data-driven models
deliver a similar performance. This is also evident in
Figure 6, which shows the averaged CV score RMSECV

with the standard deviation of the outer folds. For the
WBM, the RMSE of all samples is shown, as CV is only
relevant for data-driven methods. Although the WBM
has a significantly larger prediction error, it should be
noted that a fair comparison with the data-driven models

FIGURE 4 Prediction of the

solids mass content of the

sediment for the material:

(A) MC, (C) LS. The result of the

serial GBM (GBMs) is compared

to that of the WBM.

Corresponding prediction of the

parameter ϕv,sh for the material:

(B) MC, (D) LS. For reference,

the target value for the parameter

ϕv,sh obtained by optimization is

shown. Constant process

parameters in: (A),

(B) Δn¼ 25min�1,
_Vin ¼ 34Lh�1, hp ¼ 0:012m, (C),

(D) Δn¼ 25min�1,

G ϕm,in ¼ 9wt%
� 	¼ 179 g,

G ϕm,in ¼ 15wt%
� 	¼ 101 g,

hp ¼ 0:012m.

FIGURE 5 Comparison of the

experimental data (reference) and

the predictions of the pure WBM,

the pure BBM, the parallel GBM

(GBMp), and the serial GBM

(GBMs) for the solids mass content

of the: (A) centrate, (B) sediment.

The solid diagonal line shows an

ideal prediction and the dotted

diagonal line shows a relative

deviation of +20% and �20%. The

red area marks results that are non-

physical.
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is not possible since data-driven models require a poster-
iori knowledge, whereas the WBM uses a priori knowl-
edge for prediction. This enables an initial evaluation of
the centrifuge's performance. Nevertheless, a comparison
between the WBM and the data-driven approaches can
be seen as a benchmark for the accuracy improvement
achieved by using a posteriori knowledge. The perfor-
mance of the BBM and both GBMs is similar with no sig-
nificant difference in their averaged CV scores. These
findings suggests that, on one hand, the available data is
significant enough for a pure BBM to perform similarly
to a GBM and, on the other hand, the input parameters
listed in Table 4 are suitable for predicting the separation
outcome in decanter centrifuges. The serial GBM has the
lowest standard deviation, which can be interpreted as a
sign of good generalization. It is worth noting that the
comparison focuses on the prediction quality, and model
transparency may also be an important factor when
selecting a modeling structure. In this respect, the serial
GBM stands out as the most transparent data-driven
model, since internal calculations, such as the local kinet-
ics of the separation process and the spatial degree of fill-
ing, are available. This allows for a better overall
understanding of the process.

4.2 | Extrapolation cases: Comparison of
the model structures

The main advantage of a GBM over a pure BBM is the
physical background provided by the WBM. In theory,
this should lead to a better generalization and extrapola-
tion ability. Particularly the latter is a general weakness
of pure BBMs. To evaluate the extrapolation ability of the
models, we examine specific cases. Even with Nested CV
(see Section 2.4), model extrapolation is not guaranteed,
as multiple data points may represent similar process

conditions. Data points partitioned as test data may lie
inside the trained limits. For ease of distinction, the
results obtained by Nested CV are considered to be inter-
polation, even though technically there is the potential
for a minor degree of extrapolation. However, this simpli-
fication is justified when comparing the minor degree of
extrapolation involved in Nested CV with that of the
deliberate extrapolation cases described in the following
section.

In the examined extrapolation cases, the training data
is restricted to only represent a limited range of g-force.
The g-force was selected as the restricted parameter due
to its significance on the separation outcome. As the
lower and upper limit of the g-force are material specific
(see Section 3.1), two training data ranges are defined:
data points within the ranges 178g<G<280g for the
material LS and 547g<G<906g for the materials PVC
and MC are used for training, while the remaining data
is held back for testing. This manual training-test split
reduces the amount of training data to 101 data points
and forces the models to extrapolate when predicting the
test data. While the studied cases are specific, they pro-
vide a general insight of the extrapolation ability of the
models. The HPs of the ANN in the examined model
structures are optimized on the entire training data. We
do not apply Nested CV in the extrapolation cases due to
the present limitations of the training data. Figures 7 and
8 give an overview of the prediction accuracy of the data-
driven models for the extrapolated data. Comparing Fig-
ures 5 and 7, it is evident that the overall prediction error
is significantly higher with the constrained training data.
This is to be expected since the number of training data
is reduced and the range of process conditions covered by
the training data is significantly narrower. The choice of
training data does not affect the WBM, and thus, it is not
shown here. Figure 7A demonstrates that the constrained
training data leads to noticeably poorer performance of

FIGURE 6 Average CV score

RMSECV with the standard deviation

of the outer folds for predicting the

solids mass content of the:

(A) centrate, (B) sediment. The

RMSE of the WBM is shown as a

reference.
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the pure BBM when predicting the solids content of the
centrate. The pure BBM even predicts negative solids
contents due to the absence of physical boundaries. In
contrast, the serial GBM proves to be reliable despite the
limited training data, highlighting the advantages of this
model structure. The WBM acts as a stabilizer leading to
more accurate extrapolation. Negative results for the
solids content are not possible due to the constraints
imposed by the WBM. The parallel GBM performs notice-
ably better than the pure BBM but worse than the serial
GBM. Interestingly, the differences between the models
are less pronounced when predicting the solids content
of the sediment, as observed in Figure 7B. Here, the lim-
ited training data has a smaller impact on the predictions,
except for a few outliers marked in Figure 7B. It is worth
noting that these outliers were collected under similar
process conditions, specifically at low g-forces G¼ 11gð Þ
with the material LS. The sample collection proved chal-
lenging due to slow sediment build-up, requiring a signif-
icant amount of time to accumulate sufficient sediment
for transport. These extreme process conditions pose a
challenge for all models to extrapolate. However, it is
worth noting that these low g-forces are generally techni-
cally irrelevant. The results presented in Figure 8 allow

for further discussion of the extrapolation ability of the
models. The difference between the Nested CV score (see
Figure 6) and the extrapolation score can be interpreted
as the model's reliance on the training data. A larger dif-
ference between the two scores indicates a greater impact
of the training data on the prediction error. For ease of
comparison, the Nested CV score is also shown in
Figure 8. Comparing the scores leads to the conclusion
that the constrained training data has the greatest impact
on the pure BBM, as the RMSE is significantly higher for
the extrapolation cases. The serial GBM's prediction error
for the solids content of the centrate is similar for extrap-
olation and Nested CV, which highlights the generaliza-
tion ability of the serial GBM. As depicted in Figure 8B,
the prediction error for the solids content of the sedi-
ments gets noticeably larger for all modeling approaches
for the extrapolation cases. However, the outliers repre-
senting extreme process conditions mentioned earlier
largely contribute to the prediction error.

While Figures 7 and 8 give a general impression of
the extrapolation ability of the models, it is important to
examine them in more detail to further rule out overfit-
ting. The exemplary prediction curves in Figure 9 allow
for further discussion. Here, the models must predict the

FIGURE 7 Comparison of the

experimental data (reference) and

predictions of the extrapolated

(test) data of the pure BBM, the

parallel GBM (GBMp), and the

serial GBM (GBMs) for the solids

mass content of the: (A) centrate,

(B) sediment. The solid diagonal

line shows an ideal prediction and

the dotted diagonal line shows a

relative deviation of +20% and

�20%. The red area marks results

that are non-physical. Extreme

process conditions G¼ 11 gð Þ are
highlighted with a red circle.

FIGURE 8 RMSE for predicting the

extrapolation cases for the: (A) centrate,

(B) sediment. The average CV score

RMSECV is shown for easier comparison.
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operation under process conditions that are not repre-
sented in the constricted training data. To illustrate the
limited information the available training data contains,
the range of the training data is displayed in Figure 9.
While all data-based models make similar predictions
within the training data range, it is striking that the pure
BBM struggles to make reliable predictions beyond this
range. In Figure 9, the pure BBM predicts a nearly linear
trend in the solids content with respect to the g-force,
which is not in accordance with the experimental data.
Furthermore, Figure 9A shows that the pure BBM pre-
dicts a decreasing trend in the solids content of the cen-
trate at lower g-forces, which is implausible as lower
centrifugal forces should result in less particle settling.
Although the pure BBM may learn this correlation with
additional training data, it highlights the shortcomings of
purely data-driven models. Due to the insufficient infor-
mation provided by the sparse training data and the lack
of physical information, the pure BBM is unable to reli-
ably extrapolate in the examined cases. This is a common
issue among purely data-driven models. In contrast, the
serial GBM shows a physically correct trend that is con-
sistent with the experimental data. In Figure 9A,C, the
solids content of the centrate increases at lower g-forces
and approaches the inlet solids mass content ϕm,in. This
behavior is expected as very low g-forces should result in
an unpurified centrate. The parallel GBM performs better
than the pure BBM, but there are some inconsistencies.
From Figure 9A, it is evident that the parallel GBM
predicts an increasing solids content of the centrate at g-
forces G>800g, which is contrary to the theory.

Additionally, although the solids content increases at
lower g-forces in Figure 9A,C, it does not reach the inlet
solids content as anticipated. The differences between the
models are less pronounced when predicting the solids
content of the sediment, as depicted in Figure 9B,D. This
can be explained with the general trend of the data. The
centrate is generally more sensitive to the varied process
parameters for the examined materials and process con-
ditions. Moreover, the materials compress mainly at low
g-forces. At higher g-forces, the compressive potential is
approached, leading to a more or less linear trend of the
data, which is comparatively easier to predict. Neverthe-
less, in the examples shown in Figure 9B,D, both GBMs
perform better than the pure BBM, especially at lower g-
forces. These findings confirm the statement that pure
BBMs are unreliable for extrapolation. In the application
case of a decanter centrifuge, the examined BBM requires
an adequate amount of data representing the full range
of process conditions for reliable predictions. In contrast,
the presented serial GBM requires less data as a result of
the a priori knowledge provided by the WBM and shows
a significantly better extrapolation performance.
Although the examined cases of extrapolation are spe-
cific, they clearly demonstrate the structural advantages
of the serial GBM.

5 | CONCLUSION

This paper explores the efficacy of hybrid modeling as a
strategy for accurately predicting the separation

FIGURE 9 Comparison of the

extrapolated data for the:

(A) centrate and the material MC,

(B) sediment and the material MC,

(C) centrate and the material LS,

(D) sediment and the material

LS. The depicted range covered by

the training data allows for

differentiating between

interpolation and extrapolation.

Constant process parameters in:

(A), (B) ϕm,in ¼ 8wt%,

Δn¼ 25min�1, _V in ¼ 34 L h�1,

hp ¼ 0:012m, (c), (d) ϕm,in ¼ 6wt%,

Δn¼ 25min�1,
_V in ¼ 34 L h�1, hp ¼ 0:012m.
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performance of decanter centrifuges. A systematic com-
parison of the interpolation and extrapolation ability of
various modeling approaches, including a pure white box
model (WBM), a pure black box model (BBM) and both a
serial and a parallel grey box model (GBM), underscore
the importance of the model structure. The findings high-
light the advantages of the introduced serial GBM, which
integrates an artificial neural network (ANN) with a real-
time first-principle model to predict unknown material
parameters. Notably, while the data-driven models
exhibit comparable prediction accuracy and interpolation
ability with sufficient training data, the serial GBM excels
in extrapolation, providing more reliable predictions for
unseen process conditions.

Overall, the results demonstrate the potential of
hybrid modeling as a valuable tool for accurately predict-
ing the separation result of decanter centrifuges. This
enables the optimization of the operation to achieve a
cost-effective and sustainable separation process.

In terms of future research, using the serial GBM for
scale-up purposes by predicting separation performance
of larger scale machines through laboratory scale training
would allow for further exploration of its extrapolation
ability. Additionally, considering its real-time capability
and high prediction accuracy, the presented serial GBM
holds promise as a foundation for model predictive con-
trol of decanter centrifuges.

6 | PLS

Designing solid bowl centrifuges, including decanter cen-
trifuges, is challenging due to dynamic events within the
apparatus, such as particle settling, sediment build-up,
and consolidation. Current methods rely on simplified
models, often leading to inaccuracies. Therefore, manu-
facturers must perform time-intensive pilot scale experi-
ments to derive their own correction factors. The
increasing computing power has led to a growing interest
in alternative modeling strategies, such as hybrid models.
Grey box models (GBMs) are a combination of mechanis-
tic white box models (WBM) and data-driven black box
models (BBM). The WBM and BBM can be arranged in
various ways, either in parallel or in series, with the opti-
mal arrangement depending on the specific application.
To improve the process design of decanter centrifuges,
we conducted a comprehensive comparison of different
modeling strategies, including a pure BBM, a parallel
GBM and a serial GBM. Our proposed serial GBM
includes an artificial neural network and a mechanistic
model that divides the helical screw channel of the
decanter centrifuge into multiple compartments.
The neural network feeds unknown material parameters

into the mechanistic multi-compartment model to better
reflect the real material behavior. This approach outper-
forms other data-driven modeling strategies in terms of
extrapolation, prediction ability, model transparency, and
efficiency while also enabling a better comprehension of
the separation process in decanter centrifuges.
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