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Abstract
In this article, we combine a Fast Fourier Transform based computational approach and a supervised machine learning
strategy to discover models for the anisotropic effective viscosity of shear-thinning fiber suspensions. Using the Fast Fourier
Transform based computational approach, we study the effects of the fiber orientation state and the imposed macroscopic
shear rate tensor on the effective viscosity for a broad range of shear rates of engineering process interest. We visualize the
effective viscosity in three dimensions and find that the anisotropy of the effective viscosity and its shear rate dependence
vary strongly with the fiber orientation state. Combining the results of this work with insights from literature, we formulate
four requirements a model of the effective viscosity should satisfy for shear-thinning fiber suspensions with a Cross-type
matrix fluid. Furthermore, we introduce four model candidates with differing numbers of parameters and different theoretical
motivations, and use supervised machine learning techniques for non-convex optimization to identify parameter sets for the
model candidates. By doing so, we leverage the flexibility of automatic differentiation and the robustness of gradient based,
supervised machine learning. Finally, we identify the most suitable model by comparing the prediction accuracy of the model
candidates on the fiber orientation triangle, and find that multiple models predict the anisotropic shear-thinning behavior to
engineering accuracy over a broad range of shear rates.

Keywords Effective viscosity · Fiber-reinforced composites · Non-Newtonian suspension · Supervised machine learning ·
Cross-fluid

1 Introduction

1.1 State of the art

Viscosity models for fiber polymer suspensions are widely
used in molding process simulations of composite parts [1],
which play amajor role in the lightweight design of engineer-
ing systems, i.e., in the automotive, aerospace, and energy
sectors [2, 3]. Molding process simulations are an estab-
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lished tool in composite part engineering, partly because of
the industrial benefits of digital twins [4] and virtual process
chains [2, 5, 6]. In molding simulations for fiber reinforced
plastics, accuratemodeling of the suspension viscosity is cru-
cial to predict various parameters of engineering interest.
The suspension viscosity influences manufacturing process
parameters [7, 8], as well as fiber orientation and fiber vol-
ume distributions [9]. Consequently, flowfields [10] and final
part properties [10, 11] are also affected by the suspension
viscosity. However, finding analytical models for the sus-
pension viscosity is a challenging task, partly because of the
locally inhomogeneous flow field inside the suspension, as
well as the hydrodynamic interactions [12] and mechanical
contacts [13] between the fibers. Furthermore, the suspension
viscosity also depends strongly on the local microstructure,
i.e., the fiber geometry [14], the fiber volume fraction [15],
and the fiber orientation state [16]. As far as external influ-
ences are concerned, the loading direction, the shear rate [17,
18], and the melt temperature [19] also affect the suspension
viscosity. Especially for suspensions with non-Newtonian
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solvents and fiber concentrations beyond the semi-delute
regime, capturing the large variety of effects in a single ana-
lytical model is a difficult task.

Based on the work by Batchelor [20, 21] on fiber sus-
pensions with Newtonian matrix behavior, Goddard [22,
23] proposed self-consistent analytical models of dilute and
semi-dilute fiber suspensions with power-law shear-thinning
matrix behavior.While themodel predictions agreewell with
experimental results qualitatively, as found by Goddard [24]
and Mobuchon et al. [25], quantitative accuracy can still be
improved. Later, Souloumiac and Vincent [26] incorporated
fiber orientation distributions into a self-consistent model-
ing approach for dilute, semi-dilute and concentrated fiber
suspensions. However, in a comparison with experimental
results in a convergent channel flow, the prediction accu-
racy of the model varies strongly with the shear rate and
the fiber volume fraction. More recently, Ferec et al. [27]
proposed semi-analytical and numerical self-consistentmod-
els for fiber suspensions with Ellis and Carreau-type matrix
behavior. Even though the semi-analytical model was able
to accurately replicate steady state solutions of a simple
shear flow simulation, the models have yet to be suc-
cessfully applied in other flow scenarios. Focusing on the
concentrated and the hyperconcentrated regime, Pipes et
al. [28–31] developed models of collimated fiber suspen-
sions, including uniformly distributed fiber misalignments
with an orientation averaging [32, 33] approach. The model
predictions agree well with experimental results by Bind-
ing [34], but the applicability of the model is restricted to
collimated fiber arrays. To improve existing molding simula-
tion solvers through small modifications, Favaloro et al. [35]
combined orientation averaging with a deformation mode
and microstructure dependent informed isotropic viscosity,
and successfully predicted the shell-core effect common in
fiber suspension molding. However, the error of the model
depends strongly on the applied deformation mode and
approximated anisotropic viscosity. Thus, including recent
developments [36, 37] it proves difficult to achieve high
model prediction accuracy over the wide variety of appli-
cation requirements in engineering systems.

In addition to the challenging analytical treatment, the
investigation of fiber suspensions via rheological exper-
iments is also difficult. Because of the transient effects
during fiber suspension molding, including fiber breakage
and change of orientation state, it is difficult to determine the
suspension viscosity for a particular microstructure and load
case [34, 38]. Furthermore, interaction of fibers with mea-
surement devices [39] can affect the measured quantities.

In light of the analytical and experimental difficulties
involved when studying the viscosity of fiber suspensions
with non-Newtonian solvents, computational approaches
provide insights and observations that are otherwise hard
to obtain. Švec et al. [40] combined the lattice Boltzmann

method for fluid flow, an immersed boundary procedure for
the interaction between fluid and rigid particles, and a mass
tracking algorithm for the free surface representation to simu-
late slump tests of a suspensionof rigid spherical particles and
fibers suspended in aBingham-typefluid. In comparisonwith
a slump test of pure matrix material, they observed a smaller
spread and increased height in the slump test of the suspen-
sion, suggesting an increased effective yield stress. Using
a Finite Element Method (FEM) based approach, Domu-
rath et al. [41] investigated the rheological coefficients of
the transversely isotropic fluid equation by Ericksen [32] in
the context of rigid fibers suspended in a power-law fluid.
In a simple shear flow, they found the model by Souloumiac
and Vincent [26] to overpredict the orientation dependence
of a rheological coefficient. Combining the RVEmethod [42]
and Fast Fourier Transform (FFT) based computational tech-
niques [43], Sterr et al. [18] extended work by Bertóti et
al. [44] on Newtonian fiber suspensions to suspensions with
non-Newtonian solvents. They visualized the anisotropic vis-
cosity tensor in the case of a Cross-type matrix fluid and
studied the effects of fiber volume fraction and shear rate on
the suspension viscosity.

1.2 Contributions

In this article, we combine high fidelity, FFT-based compu-
tational methods and a supervised machine learning strategy
to discover material models for the effective viscosity of
shear-thinning fiber suspensions. To do so, we study the
anisotropic and shear rate dependent effective viscosity of
fiber suspensions with a Cross-type matrix behavior and a
fiber volume fraction of 25%. In section 2 we outline the
setup for the FFT-based computational investigations, where
we compute the effective material response for 109 differ-
ent fiber orientation states and a variety of loading states.
In terms of computational scope, this constitutes a signifi-
cant extension to previous FFT-basedwork on shear-thinning
fiber suspensions, inwhich a single fiber orientation statewas
considered [18]. Based on the computational data, we visu-
alize the suspension viscosity tensor in three dimensions and
formulate an anisotropy criterion applicable in a non-linear
setting using a loading direction and shear rate dependent
scalar viscosity, see section 3. We find that the anisotropy
of the suspension viscosity shows a significantly different
shear rate dependence for different fiber orientation states.
Also, for all investigatedmicrostructures, we confirm that the
anisotropy of the suspension viscosity depends on the degree
of non-linearity of the matrix material, which was previously
only studied for a transversely isotropic microstructure [18].
In section 4, based on the insights into the shear rate and
orientation state dependence of the suspension viscosity, we
formulate requirements a model of the suspension viscosity
needs to fulfill. According to the formulated requirements we
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propose four models with different numbers of parameters,
as well as different phenomenological and theoretical moti-
vations. Using the ADAM algorithm, we employ supervised
machine learning techniques for non-convex optimization to
learn the parameters of the model candidates. Overall, three
models achieve similar maximum validation errors below
5.15 %, while one model based on superposition and orien-
tation averaging performs unfavorably.

2 A computational study of the effective
behavior of shear-thinning fiber
suspensions

2.1 Description of fiber orientation states

Since the effective behavior of a fiber suspension depends
on the fiber orientation statistics in the suspension, a mathe-
matical description of the orientation state is essential to the
study of fiber suspensions. In the following, we use a fiber
orientation distribution function [45]

ρ : S2 → R, n �→ ρ(n), (2.1)

to encode the probability that fibers are oriented in direc-
tion n on the 2-sphere S2, and thus describe the orientation
state of a fiber suspension. The temporal and spatial evolution
of the orientation distribution functionρ is governed by a par-
tial differential equation, the Fokker–Planck equation [46].
However, in component scale molding simulations, comput-
ing the evolution of the orientation distribution function ρ

using the Fokker-Planck equation requires huge computa-
tional effort. Instead, it is common [1] to use the second
order fiber orientation tensor [45, 47]

N =
∫
S2

n ⊗ n ρ(n) dS(n), (2.2)

as a measure for the fiber orientation state. The tensor N is
symmetric, positive semi-definite, and has unit trace, such
that

Nii = λ1 + λ2 + λ3 = 1, (2.3)

where λ1, λ2, and λ3 denote the eigenvalues of the tensor N .
By sorting the eigenvalues

λ1 ≥ λ2 ≥ λ3, (2.4)

and considering equation (2.3), the bounds for the largest
eigenvalue λ1 are found as

1 ≥ λ1 ≥ 1

3
. (2.5)

Additionally, an upper bound for the eigenvalue λ2 follows
from positive semi-definiteness of the tensor N , and a lower
bound may be derived by eliminating λ3 from equation (2.4)
using equation (2.3), such that

min (λ1, 1 − λ1) ≥ λ2 ≥ 1 − λ1

2
. (2.6)

Thus, we may parametrize the tensor N by its two eigen-
values λ1 and λ2, and the rotation Q in terms of an
eigendecomposition

N = Q diag(λ1, λ2, λ3) QT, (2.7)

where the diag operator constructs a second order tensor in
the standard basis of R3. By objectivity, the results of this
article generalize to all rotations Q, and for simplicity we
choose

Q = I, (2.8)

where I is the second order unit tensor. Consequently, any
second order fiber orientation tensor N may be encoded by a
vectorλ = (λ1, λ2)

T, and represents a point in the fiber orien-
tation triangle ST defined through equations (2.5) and (2.6),
such that

ST =
{
λ=(λ1, λ2)

T
∣∣∣∣ 1≥ λ1 ≥ 1

3
and

min (λ1, 1−λ1) ≥ λ2 ≥ 1 − λ1

2

}
. (2.9)

Following Köbler et al. [48], we use a CMYK coloring
scheme to visualize the fiber orientation state within the fiber
orientation triangle ST. The isotropic, unidirectional, and pla-
nar isotropic orientation states represent the corners of the
fiber orientation triangle and are colored cyan, magenta, and
yellow, respectively.

2.2 Computational homogenization procedure

In this article, we consider incompressible, shear-thinning
fiber suspensions, occupying a rectangular volume Y ⊆ R

3.
First, we give a short summary of the numerical procedure
for the homogenization of shear-thinning fiber suspensions
following Sterr et al. [18, §2]. We are interested in com-
puting the effective viscous stress τ̄ ∈ Sym0(3) of the
suspension in response to an applied, effective shear rate ten-
sor D̄ ∈ Sym0(3), where Sym0(3) denotes the vector space
of symmetric and traceless second-order tensors. For a pres-
sure field p : Y → R, a solenoidal velocity field v : Y → R3

and a local viscous stress field

τ = T (·, D̄ + ∇sv), (2.10)
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with associated stress operator

T : Y × Sym0(3) → Sym0(3), (2.11)

(x, D) �→ ∂�

∂D
(x, D), (2.12)

and dissipation potential � : Y × Sym0(3) → R, the local
balance of linear momentum without inertial effects

div τ − ∇ p = 0, (2.13)

needs to be fulfilled. In the context of suspensions with rigid
inclusions, the local viscous stress τ in equation (2.13) is,
constitutively, not well defined inside the rigid inclusions.
We address this issue by changing to a dual formulation as
follows. With the complementary dissipation potential

�(τ ) := sup
{
τ · D − �(D) | D ∈ Sym0(3)}, (2.14)

arising as the Legendre–Fenchel dual of the dissipation
potential�, we search forminimizers of the variational prob-
lem

〈
�(·, τ ) − τ · D̄〉

Y −→ inf . (2.15)

Here, 〈·〉Y denotes the spatial average

〈·〉Y ≡ 1

|Y |
∫
Y
(·) dx with |Y | ≡

∫
Y
dx, (2.16)

and the infimum is taken over all stress fields τ satisfying the
equilibrium equation (2.13). Minimizers of the variational
problem (2.15) satisfy the Euler–Lagrange equation

PE
[
∂�

∂τ
(τ ) − D̄

]
= 0, (2.17)

where PE refers to the L2-projector onto the shear stresses
satisfying the equilibriumequation (2.13).We refer toBertóti
et al. [44, §2] for a closed form expression of the action of
PE in Fourier space. In case of suspensions with rigid parti-
cles the shear rate tensor D and hence the derivative ∂�/∂τ

vanishes inside the particles. Thus, the formulation of the
optimization problem (2.15) in terms of the complemen-
tary dissipation potential � is advantageous for numerical
schemes based on the Euler–Lagrange equation (2.17). If the
optimization problem (2.15) is convex, a minimizer can be
found with, e.g., gradient descent [18], the Barzilai–Borwein
method [49], or Newton-CG [50, 51] approaches. Finally, the
effective viscous stress τ̄ can be computed by spatial aver-
aging, such that

τ̄ = 〈τ 〉Y . (2.18)

Table 1 Parameters of the Cross-type material law (2.19) for a com-
mercially available polyamide 6 [53]

η0 η∞ k m

288.9 Pa s 15.0 Pa s 10.9 · 10−4 1.1

2.3 Computational study setup andmaterial
parameters

To study the material response of shear-thinning fiber sus-
pensions with a variety of microstructures, we generated
fiber suspension microstructures for 109 points of the fiber
orientation triangle ST (2.9), see Figs. 1a and 2, using the
sequential addition and migration method [52]. Building
upon the investigations in Sterr et al. [18], a commercially
available polyamide 6 [53]was chosen as thematrixmaterial,
and a Cross-type material law

η(γ̇ ) = η∞ + η0 − η∞
1 + (kγ̇ )m

, (2.19)

was fitted to the available material data for shear rates γ̇ in
the interval [1.7, 16300] s−1 at a temperature of 250◦C. The
resulting model parameters are collected in Table 1.

The viscosities η0 and η∞ define the material behavior
for shear rates γ̇ = 0 and γ̇ → ∞, respectively, while the
parameters k andm control the non-linear transition between
the viscosities η0 and η∞. The suspension microstructures
were discretized on a staggered grid [54] using composite
voxels [55] with a general dual mixing rule for the special
case of rigid particles [18]. The resulting non-linear sys-
tem of equations was solved with a Newton-CG approach.
To limit the required computational effort, we restricted to
microstructures with a fiber volume fraction cF = 25%,
where all fibers have equal length 	 and diameter d. More
precisely, we prescribed an aspect ratio ra = 	/d of 10.
The resolutions and sizes of the microstructure volume ele-
ments were chosen according to the investigations in Sterr
et al. [18], such that the number of voxels per fiber diam-
eter is v/d = 15 and the edge length of the cubic volume
elements is L = 2.2	.

For each macroscopic scalar shear rate γ̇ in the set of
studied shear rates Sγ̇ , such that

γ̇ ∈ Sγ̇ =
{
a · 10b s−1| a = 1, 2, 5; b = 1, 2, 3, 4

}
∪{

105 s−1
}

, (2.20)

123



Computational Mechanics

Fig. 1 Fiber orientation triangle ST in CMYK coloring with 109 evaluation points (a), and material data with Cross-type fit for Ultramid®B3K (b)

we investigate the six load cases collected in the matrix D̄ in
Mandel notation

D̄ = γ̇

√
2

3

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 − 1
2 − 1

2 0 0 0
− 1

2 1 − 1
2 0 0 0

− 1
2 − 1

2 1 0 0 0

0 0 0
√

3
2 0 0

0 0 0 0
√

3
2 0

0 0 0 0 0
√

3
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2.21)

Here, the set of studied shear rates Sγ̇ is intended to cover
a broad variety of engineering process shear rates, and is
motivated by the typical shear rates in compression molding,
standard injection molding, as well as thin-wall and micro
molding [56, 57]. For shear rates γ̇ , where the matrix behav-
ior is mostly Newtonian and the superposition of material
responses is valid, we compute and collect the components
of the effective viscosity tensor V̄ in a matrix V̄ with

τ̄ = V̄ D̄, i.e., V̄ = τ̄ D̄
†
. (2.22)

Here, (·)† stands for theMoore–Penrosepseudoinverse, and τ̄

collects the computed effective stresses

τ̄ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

τ̄
(1)
11 τ̄

(2)
11 τ̄

(3)
11 τ̄

(4)
11 τ̄

(5)
11 τ̄

(6)
11

τ̄
(1)
22 τ̄

(2)
22 τ̄

(3)
22 τ̄

(4)
22 τ̄

(5)
22 τ̄

(6)
22

τ̄
(1)
33 τ̄

(2)
33 τ̄

(3)
33 τ̄

(4)
33 τ̄

(5)
33 τ̄

(6)
33√

2τ̄ (1)
23

√
2τ̄ (2)

23

√
2τ̄ (3)

23

√
2τ̄ (4)

23

√
2τ̄ (5)

23

√
2τ̄ (6)

23√
2τ̄ (1)

13

√
2τ̄ (2)

13

√
2τ̄ (3)

13

√
2τ̄ (4)

13

√
2τ̄ (5)

13

√
2τ̄ (6)

13√
2τ̄ (1)

12

√
2τ̄ (2)

12

√
2τ̄ (3)

12

√
2τ̄ (4)

12

√
2τ̄ (5)

12

√
2τ̄ (6)

12

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(2.23)

3 Spatial representation and anisotropy of
the effective suspension viscosity

With the goal of modeling the effective behavior of shear-
thinning fiber suspensions in mind, it is essential to under-
stand the anisotropic effective viscosity of such suspensions,
as well as its dependence on the fiber orientation state λ and
the shear rate γ̇ first. Accordingly, we begin by visualizing
the effective viscosity and studying its anisotropy for low
shear rates γ̇ in the following, before studying the effects of
non-linear shear-thinning. To reduce the dimensional com-
plexity when studying the effective viscosity, we use a scalar
elongational viscosity ηapp. Following Sterr et al. [18, §4],
we define the viscosity ηapp based on a modified approach
by Böhlke and Brüggemann [58], such that

ηapp(γ̇ , λ, d) = V̄(γ̇ , λ) · (d ⊗ d ⊗ d ⊗ d), (3.1)

where d ∈ S2 denotes the direction of elongation, λ ∈ ST
refers to the fiber orientation state, and ST is the fiber orienta-
tion triangle defined in equation (2.9). Weuse equation (2.22)
to approximate the effective viscosity V̄ and thus the elonga-
tional viscosity ηapp with

ηapp(γ̇ , λ, d) ≈ a(d)T V̄ (γ̇ , λ) a(d), (3.2)

where a(d) denotes the components of d ⊗ d in Mandel
notation. In addition to the elongational viscosity ηapp, the
bulk viscosity

ηb(γ̇ , λ, d) = I · V̄(γ̇ , λ)(d ⊗ d) = (d ⊗ d) · V̄[I], (3.3)

is required to capture all information contained in the effec-
tive viscosity V̄ [59, Sec. 4.3] if the effective material is
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Fig. 2 Investigated microstructures for isotropic (a), unidirectional (b), and planar isotropic (c) fiber orientation states

compressible.However, asweconsider incompressiblemate-
rial behavior, the bulk viscosity ηb vanishes, since

V̄[I] = 0. (3.4)

Hence, the elongational viscosity ηapp encodes all infor-
mation contained in the matrix V̄ (γ̇ , λ), and allows us to
study the anisotropic flow resistance of the suspension in a
complete manner. For the elongational viscosity and related
quantities we omit denoting the dependence on the shear
rate γ̇ , the fiber orientation state λ, and the direction of elon-
gation d explicitly. Because of the interpolating property of
equation (2.22), we may visualize the direction-dependent
material behavior for load cases not collected in D̄, and
develop intuition for the influence of different fiber orienta-
tion states on the elongational viscosityηapp. For a discussion
on the applicability of equation (2.22) in the case of non-
linear material behavior, we refer to Sterr et al. [18, §2.3, §4].
For the visualization of the elongational viscosity ηapp, we
restrict to a shear rate γ̇ = 10 s−1, where the material behav-
ior ismostly linear and the superposition principle encoded in
equation (2.22) holds. The elongational viscosity bodies for
the isotropic, the planar isotropic, the transversely isotropic,
and the unidirectional fiber orientation states are visualized
in Fig. 3 for a shear rate γ̇ = 10 s−1. To study the suspen-
sion anisotropy at the same shear rate γ̇ = 10 s−1, for each
orientation state and over all directions d, we compute the
range �ηapp and the ratio rapp

�ηapp = max(ηapp) − min(ηapp), rapp = max(ηapp)

min(ηapp)
,

(3.5)

and collect the results in Table 2. For the isotropic state,
the elongational viscosity ηapp lies between 1513 Pa s to
1576 Pa s, resulting in a range �ηapp = 63 Pa s and a

ratio rapp = 1.04. Because there is no principal fiber orienta-
tion axis in the isotropic state, the maximum viscosity ηapp,
the range �ηapp, and the ratio rapp are lower than in the
more strongly oriented states, see Fig. 3a. In contrast, the
maxima of the elongational viscosity ηapp occur in the prin-
cipal fiber orientation axes clearly visible in Fig. 3b–d. For
the planar isotropic state, the maximum of the elongational
viscosity ηapp occurs in the x-y plane with 1947 Pa s, and for
the transversely isotropic and unidirectional cases, the max-
ima occur in the x direction with 2973 Pa s and 4845 Pa s,
respectively. Also, with increasing degree of orientation, the
range �ηapp and ratio rapp grow from 977 Pa s and 2.01 in
the planar isotropic state, 1810 Pa s and 2.56 in the trans-
versely isotropic state, and up to 4130 Pa s and 6.78 in the
unidirectional state. The strong dependence of the maximum
elongational viscosity, the range�ηapp, and the ratio rapp on
the orientation state highlights the influence of the fibers on
the anisotropy and magnitude of the effective viscous mate-
rial behavior. Furthermore, the location andmagnitude of the
minimum elongational viscosity ηapp depend on the orienta-
tion state as well. In an isotropic volume element, the fibers
increase the elongational viscosity ηapp uniformly across ori-
entation space. Consequently, with a magnitude of 1513 Pa s,
the minimum of the effective viscosity ηapp in the isotropic
state is larger than in the other orientation states. In compar-
ison, the minima of the effective viscosity ηapp are 970 Pa s
in the planar isotropic state, 1163 Pa s in the transversely
isotropic state, and 715 Pa s in the unidirectional state. Inter-
estingly, the minima of the elongational viscosity ηapp occur
in directions where there is the least flow along the main
fiber orientation directions. Because of incompressibility, the
direction with the least flow in fiber direction is not perpen-
dicular to the principal fiber orientation axis. Rather, it occurs
at a specific angle which depends on the orientation state.

So far, we investigated the effective viscosity of selected
fiber suspensions for a relatively low shear rate γ̇ = 10 s−1
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Table 2 Range �ηapp (3.5) and ratio rapp (3.5) of the elongational viscosity ηapp at a shear rate γ̇ = 10 s−1 for isotropic, planar isotropic,
transversely isotropic, and unidirectional fiber orientation states

Isotropic Planar isotropic Transversely isotropic Unidirectional

�ηapp 63 977 1810 4130

rapp 1.04 2.01 2.56 6.78

(a) (b)

(c) (d)

Fig. 3 Elongational viscosity ηapp at a shear rate γ̇ = 10 1/s for isotropic (a), planar isotropic (b), transversely isotropic (c), and unidirectional
(d) fiber orientation states
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Fig. 4 Coefficient of variation Cη for shear rates γ̇ ∈ [10, 105] s−1 (a), and range of the coefficient of variation �Cη (b) over the fiber orientation
triangle ST

using the elongational viscosity ηapp, the range �ηapp, and
the ratio rapp. However, the ratio rapp or popular anisotropy
measures used in crystal elasticity [60–62] rely on the exis-
tence of load independent stiffness and compliance tensors.
Tomodel the effective suspension viscosity, wewant to study
its load dependence for all shear rates γ̇ ∈ Sγ̇ in the set
Sγ̇ , which includes shear rates where the effective mate-
rial behavior is non-linear. Thus, a way of computing the
suspension anisotropy without relying on the interpolative
properties of equation (2.22) is necessary and is introduced
in the following. A convenient expression for the elon-
gational viscosity ηapp in terms of the investigated load
cases collected in the matrix D̄ follows from equation (3.1)

with D̄ = γ̇ /
√
2 d ⊗ d and τ̄ = V̄[ D̄], such that

ηapp(γ̇ , λ, D̄) = 2
D̄ · τ̄
D̄ · D̄ . (3.6)

Weuse this expression (3.6) to define a vector η for all studied
shear rates γ̇

η(γ̇ , λ) = (ηapp(γ̇ , λ, D̄1), ηapp(γ̇ , λ, D̄2), ...,

ηapp(γ̇ , λ, D̄6))
T, (3.7)

which contains the elongational viscosity ηapp for each load
case D̄i collected in the columns of thematrix D̄. Tomeasure
the average magnitude and the dispersion of the elongational
viscosities ηapp collected in the vector η, we compute the
mean μη and the standard deviation sη

μη(γ̇ , λ) = 1

6

6∑
i=1

ηapp,i(γ̇ , λ),

sη(γ̇ , λ) =
√√√√1

6

6∑
i=1

(
ηapp,i(γ̇ , λ) − μη(γ̇ , λ)

)2
. (3.8)

The standard deviation sη is not a dimensionless quantity and
its magnitude is a nominal measure of dispersion. Thus, the
standard deviation sη is unsuitable to interpret the dispersion
of the values collected in the vector η in relation to their
magnitude. Instead, we use the coefficient of variation Cη

defined by the equation

Cη(γ̇ , λ) = sη(γ̇ , λ)

μη(γ̇ , λ)
, (3.9)

to relate the standard deviation sη to the mean μη and thus
compute a dimensionless anisotropy measure of the suspen-
sion viscosity for a given fiber orientation state.

Also, the coefficient of variation Cη is a useful quantity
to compare the anisotropy of fiber orientation states with
elongational viscositiesηapp of varyingmagnitudes. To study
the maximum load dependent change of the anisotropy for
a given fiber orientation state, we define the range over all
shear rates �Cη

�Cη(λ) = max
γ̇

(Cη(γ̇ , λ)) − min
γ̇

(Cη(γ̇ , λ)). (3.10)

The development of the coefficient of variation Cη for
selected orientation states over the shear rate γ̇ , and the
range �Cη for all fiber orientation states are shown in Fig. 4.
For all investigated shear rates and orientation states, the
coefficient of variation Cη is largest in the unidirectional
state, and smallest in the isotropic state, see Fig. 4a. The coef-
ficient of variation Cη for all other investigated orientation
states lies between these bounds. Qualitatively, the coeffi-
cient of variation Cη, and hence, the degree of anisotropy at
a given shear rate, decreases up to a shear rate γ̇ ≈ 103 s−1

for all orientation states. This decrease in the coefficient Cη

suggests increased local velocity gradients, and thus stronger
shear-thinning in the matrix, during flow along the fiber ori-
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entation directions. Quantitatively the range �Cη depends
on the orientation state, and is largest in the unidirectional
state, see Fig. 4(b).

In the isotropic state, the coefficient of variation Cη and
its range �Cη are close to zero for all investigated shear
rates, showing that non-linear shear thinning effects occur
at equivalent strengths, independent of the load direction.
With increasing degree of orientation, the coefficient of vari-
ation Cη and its range �Cη grow. In the planar isotropic
state, the coefficient of variation Cη varies with a range
�Cη = 0.13 between Cη = 0.38 at a shear rate γ̇ = 10 s−1

and Cη = 0.25 at a shear rate γ̇ = 103 s−1. The range �Cη

is largest in the unidirectional state, where the coefficient
of variation Cη varies strongly with a range �Cη = 0.32
betweenCη = 0.82 at a shear rate γ̇ = 10 s−1 andCη = 0.50
at a shear rate γ̇ = 103 s−1. The distinct differences in the
coefficient of variation Cη and the range �Cη between the
studied fiber orientation states highlight the strong influence
of the fiber orientation on themagnitude and anisotropy of the
effective material behavior. As a consequence of the Cross-
type material law (2.19) and increasing velocity gradients in
the polymer matrix, the coefficient of variation Cη increases
for shear rates γ̇ larger than 103 s−1 up to similar values
as observed for a shear rate γ̇ = 10 s−1. The results dis-
cussed in this section thus underline the need to account for
the shear rate and load direction dependent shear thinning
behavior of the suspension when modeling the suspension
viscosity. This is in line with findings in the literature [29,
31, 35, 63], where the effect of the suspended fibers on the
matrix shear rate is estimated using fiber orientation statis-
tics. In the next section we will use a different approach,
and discuss how the anisotropic shear thinning effect can be
characterized with supervised machine learning based on the
computational results of the FFT-based homogenization and
knowledge of the local Cross-type material law.

4 Modeling the effective suspension
viscosity

4.1 Model requirements

With the results presented in the previous section 3 at hand,
we wish to model the effective viscosity of shear-thinning
fiber suspensions with analytical means and identify the
model parameters using supervised machine learning. To do
so,we first summarize the key criteria amodel of the effective
viscous behavior should fulfill. The model should

1. be tensorial, i.e., capture shear rate and load direction
dependence objectively.

2. replicate the local Cross-type material behavior on the
macro-scale, i.e., the model should show Newtonian

behavior in the shear rate limits γ̇ → 0 s−1 and
γ̇ → ∞ s−1, and capture the shear rate and load direc-
tion dependent, non-linear transition between the two
Newtonian limits. This requirement is based on the
investigations in Sterr et al. [18, §4], the results of the
anisotropy investigation in the previous section 3, and
considerations in literature [29, 31, 35, 63].

3. yield an incompressible and orthotropic effective viscos-
ity V̄. Because the fourth order fiber orientation tensors
of the generated microstructures are orthotropic, see
Schneider [52] and Montgomery-Smith et al. [64], the
effective viscosity V̄ of the suspensions is orthotropic as
well.

4. be applicable on the whole fiber orientation triangle ST,
as defined in equation (2.9).

In accordance with requirements 1 and 2, we restrict our
investigations to tensorial models of the type

V̄(D, a) = V̄∞(a) + T8(D, a)
[
V̄0(a) − V̄∞(a)

]
, (4.1)

where a ∈ Rm , m ∈ N, is the vector of model parame-
ters, T8 : Sym0(3) × Rm → (R3)⊗8 stands for an eighth
order tensor function, and V̄0 : Rm → Sym0(3) as well
as V̄∞ : Rm → Sym0(3) denote fourth order tensor func-
tions. The functions V̄0 and V̄∞ are used to construct the
Newtonian viscosity tensors V̄0(a) and V̄∞(a) in the shear
rate limits γ̇ → 0 s−1 and γ̇ → ∞ s−1, respectively. Equa-
tion (4.1) is a tensor-valued generalization of the Cross-type
material law (2.19), where the scalar Newtonian viscosities
are replaced by the viscosity tensors V̄0(a) and V̄∞(a), and
the function T8 is introduced to model the non-linear tran-
sition between the two Newtonian viscosity tensors V̄0(a)

and V̄∞(a). The function T8 varies between the individual
models, and encodes the direction dependent non-linearity
of the models as stated in requirement 2. In summary, three
objects in the Ansatz (4.1) need to be modeled: the Newto-
nian viscosity tensors V̄0(a) and V̄∞(a), as well as the eighth
order tensor functionT8 controlling the anisotropic and non-
linear shear rate dependence. In the following sections, we
discuss the respective modeling approaches for these three
objects.

4.2 Modeling the Newtonian limits of the effective
suspension viscosity

To integrate orthotropic symmetry and incompressibility
according to requirement 3 into the models, we first consider
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the vector space V0 of fourth order incompressible tensors
with minor and major symmetries

V0 = {X | X ∈ (R3)⊗4, and X[I] = 0

and X
TH = X

TL = X
TR = X}, (4.2)

where (·)TH , (·)TL , and (·)TR stand for major transposition, left
transposition, and right transposition, respectively. Second,
we then define a basis B of the space V0

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −2√
6
0 0 0

−1√
2

1√
6
0 0 0

1√
2

1√
6
0 0 0

0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (4.3)

such that the columns of the matrix B represent the basis
vectors of B in Mandel notation. Finally, using the basis B,
we define a function

A : R6 → V+
0 (3), (4.4)

a �→ P+
BM(a) = P+

B

⎡
⎢⎢⎢⎢⎣

a1 a2 0 0 0
a2 a3 0 0 0
0 0 a4 0 0
0 0 0 a5 0
0 0 0 0 a6

⎤
⎥⎥⎥⎥⎦
B

, (4.5)

which constructs an orthotropic fourth order tensor using the
components ai of the model parameter vector a, and the non-
unique projectorP+

B into the space V+
0 of fourth order tensors

that are positive definite on the space spanned by the basis B.
Employing eigendecomposition, we define the action of the
projector P+

B as

P+
B [X] = P+

B

[
5∑

i=0

λi pi ⊗ pi

]
=

5∑
i=0

max(λi , β) pi⊗ pi ,

(4.6)

where λi and pi denote eigenvalue eigentensor pairs of a
fourth order tensor X on the space spanned by the basis B,
and β ∈ R>0 is a small positive and real constant. The defini-
tion of the projection operatorP+

B involves a tunable constant
β, which is required for numerical purposes. In fact, for-
mally setting β to zero leads to the projector onto positive
semi-definite tensors, i.e., those which may be degenerate.
However, positive definiteness on the incompressible sub-
space B is preferred over positive semi-definiteness, because
of the following physical and numerical reasons. We wish to
use the tensor functionA to build fourth order tensorsX ∈ V+

0
from six model parameters, i.e., the viscosity tensors V̄0(a)

and V̄∞(a). Therefore, encoding a vanishing stress response
through vanishing eigenvalues would not adhere to the phys-
ical model considered in the context of this article.

4.3 Modeling the anisotropic and non-linear shear
rate dependence of the effective suspension
viscosity

To capture the anisotropic and non-linear viscous behavior in
accordance with requirement 2, we incorporate a generalized
distance g from zero load

g : Sym0(3) × R7 → R, (4.7)

(D, a) �→ (D · A(a)[D])a7, (4.8)

into the models, which is similar to the Mahalanobis dis-
tance [65] popular in statistics. The generalized distance g
depends on the components ai collected in the model param-
eter vector a, as well as the magnitude and direction of
the shear rate tensor D. Because of these properties, we
use the generalized distance g as a model building block to
encode the fiber orientation state specific, anisotropic shear
rate dependence of the effective suspension viscosity. How-
ever, for an exponent a7 < 1 the gradient of this generalized
distance g is singular whenever D ·A(a)[D] vanishes, posing
a problemduringgradient based learningof themodel param-
eters a. This singularity is circumvented by the enforced
positive definiteness of the tensors constructed by the func-
tionA and non-vanishing load D. Here, the constant β acts as
a lower bound on the eigenvalues of the tensorA(a), as can be
seen from equations (4.4) and (4.6), and restricts the space
of possible tensors A(a) that can be constructed from the
model parameters a. Improper choice of the constant β, such
that β is greater than the smallest eigenvalue of the optimal
tensorA(a), could therefore influence the quality of fit. How-
ever, because we wish to learn the model parameters a from
homogenizationdata, the optimal tensorA(a) and its smallest
eigenvalue are not known a priori. Therefore, the constant β
should be chosen to be a small number, and we nominally
select β = 10−6 in the unit of the associated eigenvalue λi .
To model the anisotropic Cross-type non-linearity using the
generalized distance g, we define two non-linear eighth order
tensor functions T

(1)
8 and T

(2)
8 through their actions on an

orthotropic tensor X ∈ Sym0. We define the function T
(1)
8

through

T
(1)
8 (D, a) [X] = X

1 + g(D, a)
, a ∈ R7, (4.9)

such that the scalar shear rate dependence of the Cross-type
model (2.19) is replaced by the generalized distance g (4.7).
Thus, the function T

(1)
8 scales all the components of the

orthotropic tensor X equally, depending on the load D and
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the model parameter vector a. Because all components of
the tensor X are scaled equally, the anisotropy of the ten-
sor X remains unchanged under the function T(1)

8 . However,
the non-linear shear rate dependence encoded in the func-
tion T

(1)
8 may be anisotropic since the magnitude of the

scaling depends on the function g, and hence on a possi-
bly anisotropic tensor A(a) and the load D. Of the seven
model parameters collected in the model parameter vector a,
six model parameters control the influence of the direction
of the load D on the scaling, and one parameter controls
the rate of transition between the Newtonian limits for shear
rates γ̇ → 0 and γ̇ → ∞.

To allow for greater flexibility in the scaling of the
orthotropic tensor X, we also define the tensor function T(2)

8
through

T
(2)
8 (D, a) [X] =

⎡
⎢⎢⎢⎢⎣

h1(D, a)X11 h2(D, a)X12 0 0 0
h2(D, a)X12 h3(D, a)X22 0 0 0

0 0 h4(D, a)X33 0 0
0 0 0 h5(D, a)X44 0
0 0 0 0 h6(D, a)X55

⎤
⎥⎥⎥⎥⎦
B

, a ∈ R42, (4.10)

such that the six components of the tensor X are scaled indi-
vidually by a scalar hi (D, a), i ∈ {1, 2, 3, 4, 5, 6}, defined
as

hi (D, a) = 1

1 + g(D, f
i
)
, f

i
= (a7(i−1)+1, ..., a7i ) ∈ R7.

(4.11)

Like the scaling factor in the functionT(1)
8 , the scalarshi (D, a)

are each computed from seven model parameters, the shear
rate tensor D, and the function g. Therefore, the tensor X is
not only scaled under the function T(2)

8 , but the anisotropy of

the tensorXmay also change under the function T(2)
8 . In this

sense, the function T(1)
8 is a special case of the function T(2)

8 ,
where all scalars hi (D, a) are equal. The increased flexibil-
ity in the scaling of the tensor X with function T

(2)
8 requires

36 parameters to control the influence of the direction of
the load D, and six parameters to control the rate of tran-
sition between the Newtonian limits for shear rates γ̇ → 0
and γ̇ → ∞. This results in a total of 42 parameters for the
function T

(2)
8 .

4.4 Definitions of effective suspension viscosity
models

In the following, we combine the definitions of the previous
sections 4.2 and 4.3with theAnsatz (4.1) to build fourmodels
for the effective suspension viscosity. With the symbol ++

denoting concatenation of vectors the four models presented
in Table 3 are considered and described in the following.

Model 1

InModel 1, we use the functionA (4.4) to construct the New-
tonian viscosity tensors V̄0(b) and V̄∞(c) from twelvemodel
parameters collected in the vectors b ∈ R6 and c ∈ R6.
Also, we use the function T

(1)
8 (4.9) with seven parameters

collected in the vector d ∈ R7 to model the anisotropic and
non-linear shear rate dependence of the effective suspension
viscosity. Overall, Model 1 has 19 parameters and is themost
general considered model that uses the function T(1)

8 .

Model 2

Like in Model 1, we use the function A to construct the
Newtonian viscosity tensor V̄∞(b) in the shear rate limit
γ̇ → ∞ s−1 from six model parameters, and the non-linear
function T(1)

8 to model the non-linear transition between the
Newtonian limits with seven model parameters. These 13
parameters are collected in the vectors c ∈ R6 and d ∈ R7.
However, in Model 1, the viscosity tensor V̄0(b) in the
shear rate limit γ̇ → 0 s−1 is also constructed with the
function A (4.4), using six model parameters. In Model
2, we exploit the fact that the viscosity tensors V̄0(b)
and V̄∞(c) share the same anisotropy in the shear rate limits
γ̇ → 0 s−1 and γ̇ → ∞ s−1, see Fig. 4 and Sterr et al. [18],
and express the viscosity tensor V̄0(b) as a scalar multiple of
the tensor V̄∞(c), such that the condition

V0(b) = b1 V∞(c), (4.12)

is satisfied. This relation reduces the number of parameters
from 19 inModel 1 to 14 inModel 2.We found that this adap-
tion introduces only small errors, as we discuss in section 4.6
in more detail, and use equation (4.12) inModel 3 andModel
4 as well.

Model 3

In Model 3, like in Model 1 and Model 2, we use the func-
tion T

(1)
8 to model the non-linear transition between the

Newtonian limits with seven model parameters collected
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Table 3 Number of parameters m, choices for the functions V̄0, V̄∞, and T8, as well as the complete expression for the effective viscosity
tensor V̄(D, a) for the Models 1, 2, 3, and 4

in the vector d ∈ R7. Also, as in Model 2, we use equa-
tion (4.12) to relate the viscosity tensors V̄0(b) and V̄∞(c)
via a scalar coefficient collected in the vector b ∈ R1. To fur-
ther reduce the number ofmodel parameters through physical
considerations motivated by superposition and orientation
averaging [32, 33, 44], we introduce the equation

V̄∞(c) = P2 (c1 P2 + c2 I�sN + c3 N)P2, (4.13)

for the viscosity tensor V̄∞(c), where P2 denotes the iden-
tity on the space Sym0(3). The operator �s stands for the
symmetrized box product, which, for the second order ten-
sors A, B,C ∈ (

R3
)⊗2

, is defined as

A�sB = 1

2
(A�B + B�A), where(A�B) [C] = ACB.

(4.14)

Overall, this reduces the number of parameters from 14 in
Model 2 to 11 in Model 3.

Model 4

In Model 4, in contrast to the Models 1, 2, and 3, we use
the function T

(2)
8 instead of the function T

(1)
8 to model the

non-linear transition between the Newtonian limits. As dis-
cussed in the previous section 4.3, this allows for greater
flexibility in exchange for more model parameters, making
Model 4 the most general of the considered models. Like in
Model 2 and Model 3, we use seven parameters collected
in the vectors b ∈ R1 and c ∈ R6 to model the viscosity
tensors V̄0(b) and V̄∞(c). In combination with the 42 input
parameters of the function T(2)

8 , which we collect in the vec-
tor d , this leads to a total of 49 model parameters for Model
4. Overall, each model parameter controls a distinct effect
or quantity of the model. In other words, Model 4 could not
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be expressed with fewer parameters while maintaining the
same type of non-linearity and the same degree of modeling
flexibility.

4.5 Supervised learning of model parameters

In the previous sections 4.1 and 4.4, we described the require-
ments for models of the effective suspension viscosity and
presented four model candidates satisfying these require-
ments. In this section, we discuss the supervised machine
learning strategy we use to identify the model parameters.
To learn the model parameters from the data obtained with
FFT-based computational homogenization, we first construct
a loss functionLmeasuring the difference between themodel
predictions and the FFT-based computational results, and
then minimize the lossL using the ADAM [66] optimization
algorithm. We consider all fiber orientation states λ ∈ S109T
in the set S109T ⊂ ST of 109 points of the discretized fiber
orientation triangle shown in Figs. 1a and 4b. For every load
case D̄, fiber orientation state λ, and parameter vector a, we
define the loss L

L( D̄, λ, a) = ||τ̄ FFT( D̄, λ) − τ̄Model( D̄, λ, a)||2
||τ̄ FFT( D̄, λ)||2

, (4.15)

where || · ||2 stands for the Euclidean norm,
τ̄model : Sym0(3) × R2 × Rm → Sym0(3) refers to
the effective stress predicted by a particular model, and
τ̄ FFT : Sym0(3) × R2 → Sym0(3) refers to the effective
stress obtained with FFT-based computational homogeniza-
tion. Similar to section 3, we omit the dependence of the
loss L and the derived quantities on various variables for
improved readability and compactness. For each model and
fiber orientation stateλ, wewish to identify themodel param-
eters a minimizing the worst case loss L for the set of
investigated load cases D̄γ̇ , such that

a(λ) = argmina∈Rm max
D̄∈ D̄γ̇

L( D̄, λ, a). (4.16)

Here, the set of investigated load cases D̄γ̇ is defined via
equations (2.20) and (2.21). However, since the models
described in the previous section are not convex in the model
parameters a and have multiple local minima, the exact
minimizer a is difficult to determine. We wish to start our
investigations with a word of warning: identifying the model
parameters from computational multiscale simulations does
not qualify as a mathematically well-posed problem [67],
for a number of reasons. For a start, there might not be a
unique solution, and the outcome of the learning process,
i.e., themodel parameters, might change drastically for small
variations in the data. Also, depending on the optimization
algorithm and the optimization hyperparameters, the learned

model parameters can vary as well. Accordingly, the model
parameters obtained with the supervised learning procedure
we present in this article are possibly not the global minimiz-
ers of the optimization problem (4.16). However, as we show
in the next section 4.6, the presented supervised learning
procedure can be employed to successfully identify model
parameters which result in model predictions with engineer-
ing accuracy. To capitalize on the advances in the field of
non-convex optimization and machine learning, we use the
Python programming language and the machine learning
framework PyTorch [68] with version 1.12 to identify the
model parameters a. When this article was written, more
recent PyTorch versions were available that feature Just In
Time (JIT) compilation, which could possibly increase the
performance of custom code modules. However, for com-
patibility with existing code, we use version 1.12. For each
model and fiber orientation state λ, we randomly initialized
5000 realizations of the parameter vector a and then used
the field-tested ADAM [66] algorithm to improve the initial
guesses, thus generating the set Smin of minimizing param-
eter vectors a. We selected the ADAM algorithm from the
optimization algorithms available in the PyTorch framework,
since the ADAM algorithm combines an adaptive learn-
ing rate with a classical momentum [69] based approach.
This provides advantages over the standard gradient descent
method [70, 71], and algorithms relying on adaptive learn-
ing rates alone, such as AdaGrad [72], AdaDelta [73] and
RMSprop [74]. For a detailed discussion on the convergence
properties of the ADAM algorithm and its variants, we refer
the reader to an article by Chen et al. [75]. Also, for an
overview on a variety of other optimization algorithms in
machine learning, we refer the reader to a review by Sun
et al. [76]. Conveniently, the ADAM algorithm’s learning
rate hyperparameters are approximate bounds of the opti-
mization step size. Exploiting this feature, we use PyTorch’s
option to define parameter groups with individually varying
learning options for parameters with different magnitudes,
such that the step sizes for nominally large parameters are
not bounded by the step sizes for nominally small ones. As
a viable alternative to first-order optimization techniques,
PyTorch also offers the powerful second-order optimization
algorithmL-BFGS [77].However,when this articlewaswrit-
ten, the PyTorch L-BFGS algorithm did not support multiple
learning rates and parameter groups, which we have found
to be valuable in accelerating convergence. Therefore, we
opted to use the first-order optimization algorithm ADAM.
Overall, we use four parameter groups, with one group each
for the parameters of the functions V̄0 and V̄∞, as well as one
group each for the parameters associated with the anisotropy
and the rate of non-linear transition encoded in the tensor
function T8, see equations (4.9), (4.10) and (4.11). We dis-
tinguish the two parameter groups associated with the tensor
function T8 with the symbols Ganiso

8 , which contains six
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Table 4 Learning rate hyperparameter by parameter group for use with
the ADAM algorithm

V̄0 V̄∞ Ganiso
8 Gexpo

8

Learning rate 5 · 10−3 5 · 10−1 5 · 10−7 5 · 10−2

parameters in case of the function T(1)
8 and 36 parameters in

the case of the function T(2)
8 , as well as the group Gexpo

8 con-

taining one and six parameters for the functionsT(1)
8 andT(2)

8 ,
respectively. Except for Model 1, the learning rates for the
respective parameter groupswere chosen as shown inTable 4.
ForModel 1 in particular, the learning rate for the parameters
associated with the function V̄0 was chosen as 0.5, because
Model 1 does not use the scalar relationship (4.12).We deter-
mined the numerical values of the learning rates for each
parameter group by trial and error. To improve convergence
towards minima as the learning process proceeds [78, 79],
we used PyTorch’s ReduceLROnPlateau learning rate sched-
uler to half the learning rates if the loss L has not improved
for 200 epochs. This rule was applied with a cooldown of
400 epochs and all other options were kept standard. For
the ADAM algorithm, other than the learning rates, standard
hyperparameters were used such that the two momentum
coefficients β1 and β2 are set to β1 = 0.9 and β2 = 0.999,
and the stabilization constant ε is set to ε = 10−8. Finally, we
consider the learning process to be finished when the loss L
has not improved for 2000 epochs.

4.6 Model accuracy

To compare the accuracy of the presented models, we define
error measures and describe a validation procedure in the
following. Since finding a global minimum for the prob-
lem (4.16) is hard, we restrict to the set of minimizing
parameters Smin, and identify the parameters amin ∈ Smin

minimizing the worst case loss L over the set of investigated
load cases D̄γ̇ , such that

amin(λ) = argmina∈Smin
max
D̄∈ D̄γ̇

L( D̄, λ, a). (4.17)

The minimizing parameters amin are only available on the
given discretization points λ where homogenization data is
available as well. Yet, in accordance with requirement 4, we
are interested in generalizing a given model for fiber ori-
entation states λ where no minimizing parameters amin are
available. For this purpose, we follow Köbler et al. [48] and
use a convex linear combination to interpolate stresses as fol-
lows. Suppose the nodes λ1, λ2, and λ3 form a triangle and
the minimizing parameters amin are known in those nodes.

Then we compute the effective stresses τ̄C at some point λ

τ̄C( D̄, λ) =
3∑

i=1

si τ̄
model( D̄, λi , a

min(λi )), (4.18)

λ = s1 λ1 + s2 λ2 + s3 λ3, si ≥ 0, i ∈ 1, 2, 3,
3∑

i=1

si = 1, (4.19)

through interpolation of the model stresses τ̄model at the
points λ1, λ2, and λ3. In addition to generalizing the models
over the entire fiber orientation triangle ST, we use equa-
tion (4.18) to validate the models against the data obtained
with FFT-based computational homogenization. For this pur-
pose, we define the validation error eV similarly to the lossL,
i.e., we define

eV( D̄, λ) = ||τ̄ FFT( D̄, λ) − τ̄C( D̄, λ)||2
||τ̄ FFT( D̄, λ)||2

, (4.20)

for each considered model. Of the 109 triangulation points λ

contained in the set S109T we designate 45 points as the
set SFT ⊂ S109T of fitting points λF, see Fig. 5. For valida-
tion purposes, we designate the centroids of the triangles
formed by the fitting points λF as validation points, defining
the set SVT ⊂ S109T of 64 validation points λV . By definition
of the interpolation (4.18), the loss L coincides with the val-
idation error eV at the fitting points λF. To study the quality
of fit and the quality of the stress interpolation, we define the
largest loss Lmax and the largest validation error emax

V

Lmax = max
λ∈S109T

max
D̄∈ D̄γ̇

L( D̄, λ, amin(λ)),

emax
V = max

λ∈S109T

max
D̄∈ D̄γ̇

eV( D̄, λ). (4.21)

Furthermore, we define the mean validation error emean
V and

the maximum validation error e D̄V over the set of investigated
load cases D̄γ̇

emean
V = 1

109

∑
λ∈S109T

max
D̄∈ D̄γ̇

eV( D̄, λ),

e D̄V (λ) = max
D̄∈ D̄γ̇

eV( D̄, λ), (4.22)

that occurred for a given model on the discretized fiber ori-
entation triangle. Before discussing the prediction accuracy
of the presented models in detail, we briefly summarize
the supervised learning procedure presented in the previ-
ous section 4.5, and the validation approach for the stress
interpolation (4.18) discussed above. For each model, and in
each of the 109 investigated triangulation points λ ∈ S109T ,
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Table 5 Largest lossLmax, as well as validation errors emax
V , and emean

V
for the Models 1 to 4

Model 1 Model 2 Model 3 Model 4

Lmax in % 5.00 5.00 15.36 5.00

emax
V in % 5.05 5.15 15.36 5.00

emean
V in % 2.65 2.73 7.76 2.28

we conducted 5000 optimization runs for the minimization
problem (4.16) and thus obtained the set Smin of minimizing
parameter vectors a. From this set Smin, we identified the
single best parameter vector amin ∈ Smin (4.17), which is
associated with the smallest worst case loss of a model in a
fixed triangulation point λ. To study whether stress interpo-
lation (4.18) can be used to generalize a model beyond points
where the parameters amin are available, we designated the
45 points λF ∈ SFT as fitting points and the 64 points λV ∈ SVT
as validation points. On these points λF and λV, we compute
the validation error eV (4.20) using the stress interpolation
procedure defined through the equations (4.18) and (4.19),
such that only the parameter vectors amin in the fitting points
are used. Finally, to investigate whether a model captures the
underlying material behavior appropriately, how stress inter-
polation affects the prediction quality, and how the prediction
quality varies over the fiber orientation triangle ST, we are
interested in the error measures Lmax, emax

V , emean
V , and e D̄V .

Thus, we list the largest Loss Lmax, as well as the valida-
tion errors emax

V , and emean
V in Table 5, visualize the validation

error e D̄V over the fiber orientation triangle ST in Fig. 5, and
discuss the errors in the following.

Model 1 and Model 2 differ only in their modeling
approach for the viscosity tensor V̄0(b), where the parameter
based construction of an orthogonal tensor V̄0(b) = A(b) in
Model 1 is replaced by the scalar relationship (4.12) inModel
2. This reduction in dimensionality does not increase the
loss L, as the largest loss Lmax for both Model 1 and Model
2 is 5.00%. Also, the largest validation error emax

V = 5.15%
and mean validation error emean

V = 2.73% of Model 2 are
only 0.10% and 0.08% larger than the errors emax

V = 5.05%
and emean

V = 2.65% of Model 1. Hence, the scalar relation-
ship defined by equation (4.12) appears to be a valid assump-
tion in the context of the investigated physics andmicrostruc-
tures. The largest loss Lmax occurred for the orientation
stateλ = (0.83, 0.08)T for bothModel 1 andModel 2. In con-
trast, the largest validation errors emax

V occurred at orientation
states λ = (0.90, 0.07)T for Model 1 and λ = (0.59, 0.38)T

for Model 2. For the chosen discretization of the fiber ori-
entation triangle ST, a small additional error is introduced
by stress interpolation, as shown by the slight differences
between the largest losses Lmax and the largest validation
errors emax

V forModel 1 andModel 2. Among the investigated
models,Model 3 shows the largest loss and the largest valida-

tion error with Lmax = 15.36% and emax
V = 15.36%, occur-

ring at the orientation stateλ = (0.69, 0.31)T . For orientation
states towards the lower and left edges of the fiber orienta-
tion triangle ST, the magnitude of the validation error e D̄V for
Model 3 is comparable to that of the other models, see Fig. 5.
However, a mean validation error emean

V = 7.76% in combi-

nationwith the relatively large validation errors e D̄V occurring
at orientation states towards the upper edge of the fiber ori-
entation triangle ST indicate that equation (4.13) is not a
sufficiently accurate approximation over the whole fiber ori-
entation triangle ST. For themost generalmodel,Model 4, the
largest lossLmax and the largest validation error emax

V are both
5.00% for the orientation state λ = (0.83, 0.08)T . Hence,
the increased anisotropic capability of Model 4 improves
the quality of fit and prediction only slightly compared to
Models 1 and 2, albeit Model 4 uses more parameters. The
mean validation error emean

V = 2.28%ofModel 4 is also only
0.37% and 0.45% lower than for Models 1 and 2. In sum-
mary, Model 3 performed the worst among the investigated
models and Model 4 performed the best. The orientation
averaging incorporated in Model 3 reduced the prediction
accuracy, while the anisotropic function T

(2) improved the
prediction accuracy of Model 4. However, Models 1 and 2
use fewer parameters than Model 4 and show rather similar
prediction accuracy. Consequently, the degree of anisotropic
non-linearity encoded in Model 1 and Model 2 seems to be
sufficient to capture the effective viscous behavior to engi-
neering accuracy in the investigated load cases. In terms of
practical implementation, computational efficiency and bal-
anced prediction accuracy we consider Model 2 the best of
the investigated models, since it uses a moderate amount of
parameters and yields accuracy comparable to Model 4.

5 Conclusions

In this work, we used supervised machine learning and
FFT-based computational techniques to discover models for
the effective suspension viscosity of fiber suspensions with
shear-thinningmatrix behavior.Wefirst extended the compu-
tational investigations of previous work to a broad variety of
fiber orientation states. For all considered orientation states,
we studied the anisotropy and shear rate dependence of the
suspension viscosity over a wide range of shear rates of engi-
neering interest. Confirming previous observations in the
case of a transversely isotropic orientation state, we found
that the anisotropy of the suspension viscosity for a partic-
ular orientation state varies substantially depending on the
load direction and shear rate. Furthermore, the degree of
non-linearity of the matrix material in the studied volume
elements influences the anisotropy of the suspension vis-
cosity strongly. Based on the observed material behavior,
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Fig. 5 Validation error e D̄V over the fiber orientation triangle ST for Models 1 to 4

we introduced four requirements a model of the suspension
viscosity should satisfy, and formulated four model can-
didates according to these requirements. Using supervised
machine learning techniques for non-convex optimization,
we identified themodel parameters based on the high-fidelity
FFT-based computational results, and found that three of
the four presented models achieve validation errors below
5.15 %. One model containing an approximation of the sus-
pension viscosity based on superposition and orientation
averaging did not perform favorably when compared with
the other presented models.

In future work, the models presented in this article could
be employed to enhance the prediction accuracy of engineer-
ing process simulations, such as compression and injection
molding simulations. In component scale simulations, the
presented models could provide substantial reductions in
computational cost when compared with multiscale compu-
tational approaches, such as FE2 [80–82], or combinations
of the finite element method with FFT-based methods [83].
Prediction capabilities of the presented approach could be
further extended by considering additional physical effects,
such as temperature dependence and polymer crystallization
in the presented models, and in the FFT-based computa-

tional approach. Also, with the procedure presented in this
article, models for microstructures with curved fibers, fiber
bundles or fibers with higher aspect ratios could be devel-
oped to facilitate the development of engineering systems
in the context of long fiber reinforced systems. Further-
more, the supervised learning procedure presented in this
article could bemodified to potentially identifymore suitable
model parameters, and thus increase the prediction accuracy
of the presented models further. For example, the effect of
usingdifferent optimization algorithms, such asAdamW[84]
and NAdam [85], on the model prediction accuracy could
be explored. Also, different approaches to determine the
optimization hyperparameters, such as gradient-based tech-
niques, Bayesian optimization, and metaheuristic algorithms
could be used [86], and their effect on the model prediction
accuracy could be studied as well. Additionally, relation-
ships between themodel parameters and themodel prediction
quality could be investigated using visualization techniques
for high-dimensional data, such as t-Distributed Stochastic
Neighbor Embedding [87] or uniform manifold approxima-
tion and projection [88].
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