KIT | KIT-Bibliothek | Impressum | Datenschutz

Elongational rheology of 2, 3 and 4 polymer stars connected by linear backbone chains

Hirschberg, Valerian 1; Schußmann, Max G. 1; Röpert, Marie-Christin 1; Goecke, Anika 1; Wilhelm, Manfred 1; Wagner, Manfred H.
1 Institut für Technische Chemie und Polymerchemie (ITCP), Karlsruher Institut für Technologie (KIT)

Abstract:

We consider the elongational rheology of model polystyrene topologies with 2, 3 and 4 stars, which are connected by one (2-star or “Pom-Pom”), two (3-star) and three (4-star) linear backbone chains. The number of arms of each star varies from $q_a$ = 3 to 24, the molecular weight of the arms from $M_w,_a$ = 25 kg/mol to 300 kg/mol, and the backbone chains from $M_w,_b$ = 100 kg/mol to 382 kg/mol. If the length of the arm is shorter than the length of the backbone, i.e. $M_w,_a$ < $M_w,_b$, and despite the vastly different topologies considered, the elongational stress growth coefficient can be modeled by the Hierarchical Multi-mode Molecular Stress Function (HMMSF) model, based exclusively on the linear-viscoelastic characterization and a single nonlinear parameter, the dilution modulus. If the length of the arms of the stars is similar or longer than the length of the backbone chain ($M_w,_a$ ≥ $M_w,_b$) connecting two stars, the impact of the backbone chain on the rheology vanishes and the elongational stress growth coefficient is dominated by the star topology showing similar features of the elongational stress growth coefficient as those of linear polymers.


Verlagsausgabe §
DOI: 10.5445/IR/1000171569
Veröffentlicht am 13.06.2024
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Technische Chemie und Polymerchemie (ITCP)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 06.2024
Sprache Englisch
Identifikator ISSN: 0035-4511, 1435-1528
KITopen-ID: 1000171569
Erschienen in Rheologica Acta
Verlag Springer
Band 63
Heft 6
Seiten 407–422
Vorab online veröffentlicht am 27.05.2024
Schlagwörter Polystyrene star, Pom-Pom, Long-chain branching, Elongational melt viscosity, Strain hardening, HMMSF model, ERS model, Entropic fracture criterion
Nachgewiesen in Scopus
Dimensions
Web of Science
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page