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A B S T R A C T   

Depth estimation and 3D model reconstruction from aerial imagery is an important task in photogrammetry, 
remote sensing, and computer vision. To compare the performance of different image-based approaches, this 
study presents a benchmark for UAV-based aerial imagery using the UseGeo dataset. The contributions include 
the release of various evaluation routines on GitHub, as well as a comprehensive comparison of baseline ap
proaches, such as methods for offline multi-view 3D reconstruction resulting in point clouds and triangle meshes, 
online multi-view depth estimation, as well as single-image depth estimation using self-supervised deep learning. 
With the release of our evaluation routines, we aim to provide a universal protocol for the evaluation of depth 
estimation and 3D reconstruction methods on the UseGeo dataset. The conducted experiments and analyses show 
that each method excels in a different category: the depth estimation from COLMAP outperforms that of the other 
approaches, ACMMP achieves the lowest error and highest completeness for point clouds, while OpenMVS 
produces triangle meshes with the lowest error. Among the online methods for depth estimation, the approach 
from the Plane-Sweep Library outperforms the FaSS-MVS approach, while the latter achieves the lowest pro
cessing time. And even though the particularly challenging nature of the dataset and the small amount of training 
data leads to a significantly higher error in the results of the self-supervised single-image depth estimation 
approach, it outperforms all other approaches in terms of processing time and frame rate. In our evaluation, we 
have also considered modern learning-based approaches that can be used for image-based 3D reconstruction, 
such as NeRFs. However, due to the significantly lower quality of the resulting 3D models, we have only included 
a qualitative comparison between NeRF-based and conventional approaches in the scope of this work.   

1. Introduction 

Depth estimation and the reconstruction of 3D models from aerial 
imagery is a fundamental task in the fields of photogrammetry, remote 
sensing, and computer vision. Especially due to the high availability of 
commercial off-the-shelf (COTS) unmanned aerial vehicles (UAVs), 
which has greatly increased over the past years, the interest and the 
studies conducted in this field of research have greatly intensified. 
Especially the use of image-based techniques to create such models 
becomes increasingly popular, due to the cost-efficient and simple 

acquisition of image data and the recent advancements achieved in the 
field of photogrammetric 3D modeling. With the recently presented 
UseGeo dataset1(Nex et al., 2024), a new possibility to quantitatively 
and qualitatively evaluate approaches for image-based depth estimation 
and 3D reconstruction from UAV-borne imagery is now available to the 
scientific community. It has been specifically acquired for a rigorous 
assessment of the performance of approaches for 3D reconstruction from 
aerial UAV-borne imagery (in terms of either single-image depth esti
mation or multi-view 3D reconstruction). 

In this paper, we present an extensive evaluation on the UseGeo 

* Corresponding author. 
E-mail addresses: max.hermann@kit.edu (M. Hermann), martin.weinmann@kit.edu (M. Weinmann), f.nex@utwente.nl (F. Nex), estathopoulou@fbk.eu 

(E.K. Stathopoulou), remondino@fbk.eu (F. Remondino), boris.jutzi@kit.edu (B. Jutzi), boitumelo.ruf@iosb.fraunhofer.de (B. Ruf).   
1 https://usegeo.fbk.eu, https://github.com/3DOM-FBK/usegeo. 

Contents lists available at ScienceDirect 

ISPRS Open Journal of Photogrammetry  
and Remote Sensing 

journal homepage: www.journals.elsevier.com/isprs-open-journal-of-photogrammetry-and-remote- 

sensing 

https://doi.org/10.1016/j.ophoto.2024.100065 
Received 19 December 2023; Received in revised form 7 March 2024; Accepted 22 April 2024   

mailto:max.hermann@kit.edu
mailto:martin.weinmann@kit.edu
mailto:f.nex@utwente.nl
mailto:estathopoulou@fbk.eu
mailto:remondino@fbk.eu
mailto:boris.jutzi@kit.edu
mailto:boitumelo.ruf@iosb.fraunhofer.de
https://usegeo.fbk.eu
https://github.com/3DOM-FBK/usegeo
www.sciencedirect.com/science/journal/26673932
https://www.journals.elsevier.com/isprs-open-journal-of-photogrammetry-and-remote-sensing
https://www.journals.elsevier.com/isprs-open-journal-of-photogrammetry-and-remote-sensing
https://doi.org/10.1016/j.ophoto.2024.100065
https://doi.org/10.1016/j.ophoto.2024.100065
https://doi.org/10.1016/j.ophoto.2024.100065
http://creativecommons.org/licenses/by/4.0/


ISPRS Open Journal of Photogrammetry and Remote Sensing 13 (2024) 100065

2

dataset. We provide evaluation routines for the quantitative assessment 
of depth maps as well as 3D point clouds and 3D meshes generated from 
UAV-borne imagery. Furthermore, with these evaluation routines, we 
investigate the performance of six different approaches for depth esti
mation and 3D reconstruction on the UseGeo dataset, namely COLMAP 
(Schönberger and Frahm, 2016; Schönberger et al., 2016), OpenMVS,2 

ACMMP (Xu et al., 2022), Plane-Sweep Library (Häne et al., 2014), 
FaSS-MVS (Ruf et al., 2021), and a self-supervised monocular depth 
estimation approach (Hermann et al., 2020). Thereby, we examine three 
offline multi-view stereo (MVS) approaches that allow the generation of 
a full 3D model, two approaches for online dense image matching (DIM) 
and depth estimation, as well as one learning-based approach for 
single-image depth estimation. Online depth estimation from 
UAV-borne imagery facilitates a wide variety of applications, such as 
mapping and monitoring (Zhang et al., 2023a; Fanta-Jende et al., 2023), 
precision agriculture (Botta et al., 2022), and disaster management (Ruf, 
2022). In this context, we use the terminology “online” to denote fast 
processing without setting hard time constraints, but ideally keeping up 
with the frame rate of the input data. In this, the user shouldn’t have to 
wait a couple of hours for the processing to finish but instead would get a 
first impression of the results right away. In contrast, “offline” MVS 
processing is independent with respect to the actual acquisition of the 
input data. Such approaches have full access to the available input data 
and are focused on the accuracy and completeness of the resulting 
product, rather than on fast execution and quick availability of the re
sults. Detailed and accurate 3D point clouds or meshed models are of 
increasing importance for a large number of applications. Prominent 
examples of such applications are architecture and civil engineering 
(Tsoraeva et al., 2021), environmental monitoring (Bayomi and Fer
nandez, 2023), preserving cultural heritage (Pepe et al., 2022) as well as 
disaster relief and mission planning (Kerle et al., 2020; Furutani and 
Minami, 2021). 

In summary, our contributions are as follows:  

● We evaluate the performance of approaches for 3D reconstruction 
and image-based depth estimation from UAV-borne aerial imagery 
on the recently presented UseGeo dataset.  

● We provide a comprehensive comparison of baseline approaches 
evaluated on the UseGeo dataset. This includes approaches for off
line multi-view 3D reconstruction and online multi-view depth 
estimation, as well as approaches for single-image depth estimation 
and modern learning-based approaches that can be used for image- 
based 3D reconstruction, such as NeRFs.  

● We release the routines used to evaluate the quality of derived depth 
maps, 3D point clouds, and 3D meshes on GitHub.3 This aims to 
provide a universal protocol for the evaluation of depth estimation 
and 3D reconstruction methods on the UseGeo dataset. 

This paper is organized as follows. In Section 2, we summarize 
related work. In this regard, we briefly revisit related work on 3D 
reconstruction with offline multi-view stereo approaches and subse
quently address recent progress regarding the tasks of online dense 
image matching and respective depth estimation as well as single-image 
depth estimation. In Section 3, we provide details about the studied 
approaches for offline and online 3D reconstruction as well as for single- 
image depth estimation. In Section 4, we focus on the evaluation con
ducted on the basis of depth maps, point clouds, and triangle meshes, 
and we describe the used evaluation metrics. In Section 5, we provide a 
comprehensive comparison of results achieved by the applied ap
proaches on the UseGeo dataset. In Section 6, we discuss the achieved 
results in detail. Finally, in Section 7, we provide concluding remarks as 

well as suggestions for future work. 

2. Related work 

In the following section, we briefly discuss related work in the area of 
depth estimation and 3D reconstruction. For this purpose, we will first 
summarize approaches regarding offline 3D reconstruction in Section 
2.1, followed by methods for online depth estimation in Section 2.2. 
Finally, in Section 2.3, we present related work regarding methods for 
depth estimation based on deep learning. 

2.1. 3D model generation with offline multi-view stereo 

The software suite PhotoTourism (Snavely et al., 2006), later known 
as Bundler, was one of the first open-source software toolkits to perform 
an image-based 3D reconstruction and point cloud generation from a set 
of internet photos without preliminary knowledge of the scene or 
camera geometry. While it was first restricted to a rather small-scaled 
scene, like a single building, it was further extended and demonstrated 
by Agarwal et al. (2011) that the approach can also be used for 
large-scale city reconstruction. Despite the impressive results, these 
approaches were not able to create a fully dense reconstruction of the 
scene as they only matched and triangulated point image features be
tween the input images. With VisualSfM (Wu, 2011, 2013), an 
easy-to-use software suite was published that, as one of the first, inte
grated an end-to-end processing pipeline to generate dense 3D point 
clouds directly from image data by means of MVS. In this, it integrated 
the dense multi-image matching approach PMVS/CMVS (Furukawa and 
Ponce, 2009; Furukawa et al., 2010) to densify the point cloud from the 
triangulation of the point image features. 

Since these early achievements, a variety of structure-from-motion 
(SFM) and MVS approaches and libraries have been released, each tar
geting different aspects of the full processing pipeline. Prominent ex
amples are OpenMVG (Moulon et al., 2016) and OpenSFM (Adorjan, 
2016) for the task of structure-from-motion, as well as MVE (Fuhrmann 
et al., 2015), OpenMVS, Gipuma (Galliani et al., 2015) and ACMMP (Xu 
et al., 2022) for the task of multi-view stereo. These approaches and 
libraries typically provide interoperability with each other or can be 
used with the aforementioned toolkits to build a custom processing 
pipeline. The most recent, all-in-one open-source software suite that 
implements a full end-to-end SFM and MVS pipeline is COLMAP 
(Schönberger and Frahm, 2016; Schönberger et al., 2016). It allows the 
computation of highly accurate 3D point clouds and meshes directly 
from image data. Furthermore, it is actively maintained and extensively 
used by the photogrammetry and computer vision community. Since it is 
also equipped with a graphical user interface and an automatic recon
struction pipeline, it is suitable for both expert and non-expert users. 

In the scope of this study, we evaluate the accuracy of the results 
achieved with COLMAP due to its popularity and extensive use. We also 
evaluate the accuracy of the meshes computed by OpenMVS, since these 
meshes are optimized with respect to the number of triangles and, thus, 
more practical to use. Lastly, we also evaluate the depth maps and point 
clouds produced by ACMMP, since this approach aims at estimating 
more complete depth maps and, in turn, point clouds with higher point 
density. 

2.2. Online dense image matching and depth estimation 

The approaches presented by Gallup et al. (2007) and Pollefeys et al. 
(2008) are part of the first scientific work that tackles the task of online 
camera-based mapping of urban surroundings. In this, they use images 
captured from vehicle-mounted cameras to reconstruct building facades, 
while the vehicle is moving through the streets. In order to allow for 
online depth estimation, they employ the plane-sweep algorithm 
(Collins, 1996) for dense multi-image matching and optimize it for 
concurrent execution on GPU hardware. And since most objects in urban 

2 https://github.com/cdcseacave/openMVS.  
3 https://github.com/UseGeoEvaluation/DepthEstimationAnd3DReconstruct 
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scenery can be approximated well by planar structures, DIM based on 
the plane-sweep algorithm is a well-suited approach for this task. This 
advantage is also exploited by other approaches, such as those from 
Furukawa and Ponce (2009), Sinha et al. (2009), or Gallup et al. (2010), 
which fit multiple, differently orientated planes into the scene to 
implement a piece-wise planar reconstruction of urban scenes. The best 
composition of the planes is then found by minimizing an energy func
tion and optimizing photometric consistency. 

Initially intended for two-view stereo depth estimation, the so-called 
Semi-Global Matching (SGM) algorithm was proposed by Hirschmueller 
(2005, 2008). Due to its proven efficiency and convincing results, it 
quickly evolved into one of the most widely used approaches for 
real-time, online, and offline DIM for both two-view (Hernandez-Juarez 
et al., 2016; Spangenberg et al., 2014; Zhao et al., 2020) and multi-view 
stereo (Rothermel et al., 2012; Sinha et al., 2014; Haala et al., 2015). 

More recently, approaches as those presented by Kern et al. (2020), 
Hermann et al. (2021) and Zhao et al. (2022) present full processing 
pipelines for online 3D mapping from aerial imagery. These pipelines 
generally consist of a tracking and camera pose estimation step, fol
lowed by dense depth estimation from a bundle of selected input images, 
as well as a depth map fusion and a number of post-processing steps. The 
approaches of Kern et al. (2020) and Hermann et al. (2021) estimate 
dense depth maps by performing dense multi-image matching using 
PlaneSweepLib (Häne et al., 2014) and FaSS-MVS (Ruf et al., 2021), 
respectively. Both are part of the evaluation in the scope of this study. 
RTSfM (Zhao et al., 2022) on the other hand, rather focuses on an effi
cient and globally consistent SFM and pose estimation in real-time. For 
the estimation of dense depth maps, the two-view stereo approach ELAS 
(Geiger et al., 2011) is executed on pairs of images. However, since the 
estimation of dense depth maps from aerial imagery is not constrained to 
only using two views for the depth estimation, unless one is working 
with an actual two-view stereo camera, a MVS approach seems more 
appropriate. This is because such approaches rely on three or more input 
images for the DIM which, in turn, can increase the reliability of the 
estimates and allow for more complete depth maps due to a higher 
number of observations and vantage points, resulting in less occluded 
image areas. 

2.3. Learning of image-based depth estimation 

Due to the advancements in the field of deep learning and the results 
achieved by deep convolutional neural networks (CNNs) for computer 
vision and photogrammetric tasks, the use of learning-based approaches 
for DIM and depth estimation has also thrived in recent years. First 
approaches (Häne et al., 2014; Hartmann et al., 2017; Zbontar and 
LeCun, 2016) aim at learning a similarity score between image patches 
with the help of CNNs and use this to compute disparity hypotheses from 
which depth maps can be extracted by means of conventional optimi
zation strategies, such as SGM. Succeeding approaches, such as MVSNet 
(Yao et al., 2018) and DeepMVS (Huang et al., 2018) build upon these 
insights of learning a similarity score from multi-image matching. But 
instead of using conventional approaches to regularize the cost-volume, 
they both aim at establishing an end-to-end learning-based approach 
and thus rely on the U-Net (Ronneberger et al., 2015) to extract the 
resulting depth map. Despite their convincing results, a great disad
vantage of such approaches is their need for ground truth data for su
pervised training. Approaches aiming at an unsupervised training of 
such models (Khot et al., 2019; Huang et al., 2021), try to overcome this 
problem by using the projection error between different viewpoints as a 
training signal. Although their results are typically superior to those 
achieved by conventional approaches, their ability for generalization 
and, in turn, their practical use in partially unknown environments still 
need to be proven. 

A great advantage of learning-based approaches for image-based 
depth estimation over approaches that rely on conventional DIM, 
however, is their ability to also learn image cues based on the input data, 

which are typically difficult to model. Similar to the empirical knowl
edge of human beings, it is assumed that approaches relying on deep 
CNNs are able to learn how to predict relative scene depth even from a 
single image. This constitutes a major advantage over two-view or multi- 
view stereo approaches since it would lead to reduced latency, allow the 
prediction of depth for dynamic scenes, and remove the constraining 
relationship between baseline and maximum depth. Thus, great effort 
has recently been put into studying approaches for single-image depth 
estimation. In particular, self-supervised approaches are of great inter
est, as they do not rely on special training data but can learn to predict 
depth from solely a tuple of input images by formulating the training 
task as a novel view synthesis and image reconstruction problem. 

First approaches, such as those presented by Flynn et al. (2016) and 
Xie et al. (2016) aim at synthesizing images from new viewpoints. In 
this, the model learns how to predict the depth from this new vantage 
point in order to correctly sample new image data. Focusing on the 
prediction of depth and considering the novel-view-synthesis as an in
termediate stage, this methodology can be utilized to learn how to 
predict depth from a single view, as proposed by Godard et al. (2017). By 
relying on a stereo camera setup during training, the approach of God
ard et al. (2017) does not require predicting the extrinsic transformation 
between the input images but can use the data of a preliminary cali
bration. Succeeding approaches like (Mahjourian et al., 2018; Wang 
et al., 2018; Zhao et al., 2016; Godard et al., 2019) make use of the 
monocular MVS, using images of a single moving camera during 
training. However, this also requires learning how to predict the relative 
transformation between the input images. This is usually implemented 
using a neural network, which estimates the camera movement in six 
degrees of freedom using the images as input. While the aforementioned 
architectures are mostly based on conventional convolution layers, there 
are an increasing number of approaches that rely on vision transformers 
(Dosovitskiy et al., 2021) as backbone to increase performance under 
certain circumstances (Ranftl et al., 2021) or alternatively to reduce the 
model size (Zhang et al., 2023b). 

As one of the first, Knöbelreiter et al. (2018) demonstrate the feasi
bility of using a self-supervised learning approach for two-view stereo 
reconstruction from aerial imagery, which is significantly different from 
images of street scenes as used by the previous approaches, due to the 
higher degrees of freedom in the camera movement. The approaches of 
Madhuanand et al. (2021) and Hermann et al. (2020) aim at predicting 
the depth from a single moving camera attached to a COTS UAV. In 
contrast to the approach of Hermann et al. (2020), which is evaluated in 
the scope of this study, Madhuanand et al. (2021) rely on a 2D CNN 
encoder and a 3D CNN decoder and further introduce two additional loss 
functions. 

Similar to the self-supervised learning approaches for depth esti
mation, NeRF-based approaches learn the representation of a scene by 
synthesizing new images. By optimizing a continuous volumetric scene 
representation, Mildenhall et al. (2021) predict the color and density for 
a given coordinate and viewing direction in 3D space using a fully 
connected neural network. In order to obtain a discrete point cloud, this 
latent space can be systematically sampled, whereby all points whose 
density lies above a threshold value are selected as valid points. In order 
to be able to reconstruct large scenes and to be able to parallelize the 
reconstruction, Turki et al. (2022) divide the scene into sub-modules by 
clustering the camera poses and representing them by individual NeRF 
models. Mip-NeRF (Barron et al., 2021) extends the NeRF concept by 
using conical frustums instead of rays to reduce aliasing artifacts, which 
increases accuracy and speed. Tancik et al. (2022) also divide the scene 
into sub-modules utilizing the Mip-NeRF approach for the individual 
models and adding a visibility check for higher consistency. Instead of 
relying on a continuous space, Sun et al. (2022) use discrete voxel grids 
and thus achieves higher speed with comparable quality. 
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3. Evaluated methods 

In this chapter, different approaches for offline depth estimation, as 
well as point cloud and mesh generation (Sections 3.1 to 3.3) are pre
sented. Furthermore, methods for online depth estimation (Sections 3.4 
and 3.5) and a self-supervised monocular approach for depth estimation 
from a single image (Section 3.6) are introduced. 

3.1. COLMAP 

To the best of our knowledge, COLMAP4 (Schönberger and Frahm, 
2016; Schönberger et al., 2016) is one of the few open-source software 
suites that implements a full end-to-end SFM and MVS pipeline, while 
there are a couple of methods that cover parts of the pipeline. For 
camera pose estimation and sparse scene modeling within the SFM part 
of the processing pipeline, COLMAP first extracts Scale-Invariant 
Feature Transform (SIFT) image features (Lowe, 2004). These features 
are then matched against each other to establish correspondences be
tween the individual images. In this, the user can choose from a number 
of different matching techniques, e.g. exhaustive, sequential, or vocab
ulary tree matching. From these correspondences, a scene graph is 
created enforcing geometric consistency between the matched image 
features. The estimation of the camera poses and the simultaneous 
sparse scene reconstruction is then realized by an incremental SFM 
approach implementing a next-best view selection followed by 
multi-view point triangulation for image resection. To avoid drifting of 
the model and to improve the camera pose estimation, a global bundle 
adjustment is employed every few iterations using the CERES5 solver. In 
addition to the estimation of extrinsic camera parameters during the 
sparse reconstruction, COLMAP also allows for the simultaneous esti
mation of intrinsic camera parameters. For this, different models for 
focal length, principal point, and distortion parameters are supported. 

After the estimation of the camera poses and the sparse scene rep
resentation, a dense point cloud can be estimated using an offline MVS 
pipeline. In this, a probabilistic patch-match stereo approach is used, 
which extends the approach presented by Zheng et al. (2014) to jointly 
estimate the per-pixel depth and surface normals in order to avoid 
stair-casing artifacts on oblique structures. Generally, MVS approaches 
based on patch-match stereo create surface hypotheses for each pixel by 
performing dense multi-image matching based on a plane-induced 
homography with respect to individual 3D plane patches, from which 
depth estimates are recovered. Schönberger et al. (2016) further 
improve the depth and normal estimation by employing a number of 
different priors, i.e. triangulation, resolution, and incident prior, to 
select the best views for MVS. In the estimation of the pixel-wise depth 
and normal information, a photometric consistency based on a bilater
ally weighted normalized cross correlation (NCC) similarity score, as 
well as a geometric consistency is implemented. In a final step, the 
geometric consistent depth maps are fused into a dense point cloud using 
visibility constraints to handle occluded or duplicated areas. Since the 
points of the fused point clouds are enhanced with a normal vector, the 
point cloud can directly be meshed into a surface model using the 
Poisson reconstruction algorithm proposed by Kazhdan and Hoppe 
(2013). 

3.2. OpenMVS 

While the MVS Pipeline of COLMAP contains the functionality to 
create a dense mesh from the reconstructed point cloud, it is not a main 
area of focus of the framework and is not really suitable for large-scale 
reconstructions. This is because the Poisson meshing inside COLMAP 
directly computes a meshed model from the dense point cloud, not 

incorporating a mesh decimation step which, in turn, leads to large 
models with respect to the required memory resources, due to a large 
number of surface triangles. Furthermore, only the vertices are colored 
by COLMAP, which is why the color resolution depends on the number 
of vertices. Texturing of the triangles, on the other hand, is not per
formed. The OpenMVS6 library aims to fill this gap by providing a set of 
algorithms to reconstruct a dense point cloud from a set of input images 
with corresponding camera poses by means of MVS. With this, it can 
recover a detailed and yet useable meshed surface model by minimizing 
the number of surface triangles, while at the same time preserving 
structural details. In addition, the created triangle meshes can be 
textured with high-resolution imagery. 

The estimation of depth maps by means of MVS is based on the 
approach presented by Shen (2013). This approach is also based on 
patch-match stereo matching to generate the depth maps with a subse
quent refinement process to enforce consistency between multiple 
views. Again, as a similarity score to recover the optimal surface 
patches, the NCC is used. To generate a surface mesh from the dense 
point cloud, OpenMVS implements a Delaunay triangulation method, 
followed by mesh decimation and refinement to fuse neighboring tri
angles in areas with less structural details while simultaneously 
enhancing fine structures. In a subsequent step, the meshed model is 
further refined with the provided images by calculating the error for the 
reprojection between neighboring images. OpenMVS further provides 
functionalities to generate an accurate and high-resolution mesh texture 
from the input images in order to colorize the resulting surface model. 
Due to the computed mesh texture and the varying level-of-detail, the 
resulting surface model is accurate, yet visually appealing. 

As already mentioned, OpenMVS only provides MVS functionalities 
and, thus, requires the input images to be enhanced with projection 
matrices P = K[R|t], consisting of the intrinsic camera matrix K and the 
extrinsic camera pose [R|t]. In this, the input images are to be free of lens 
distortion. While this data could be recovered by a variety of open- 
source SFM libraries or toolboxes, in the scope of this study we use 
the intrinsic and extrinsic camera calibration provided with the UseGeo 
dataset. 

3.3. ACMMP 

Inherent to all MVS techniques, including COLMAP and OpenMVS, 
that rely on a photometric consistency during dense image matching, is 
the difficulty in estimating reliable correspondences in low-textured 
image regions. With ACMMP,7 Xu et al. (2022) aim at tackling this 
difficulty by proposing a multi-scale geometric consistency guided and 
planar prior assisted MVS. It combines ACMH, ACMM, and ACMP (Xu 
and Tao, 2019, 2020) into a single framework. 

ACMMP also employs patch-match stereo matching for accurate 
depth map estimation. However, instead of relying on a probabilistic 
view selection strategy, as done by COLMAP, ACMMP implements an 
adaptive checkerboard sampling and multi-hypothesis view selection 
(ACMH). This is supposed to increase efficiency by increasing the 
parallelism, while at the same time improving accuracy by adaptively 
increasing the support region. A multi-scale processing is introduced as 
part of ACMM to reduce ambiguities in low-textured areas. In this, the 
estimates from the coarser scales are propagated to finer scales to 
constrain the local depth estimation. Since this coarse-to-fine propaga
tion often results in a loss of detail on finer scales, difference maps be
tween adjacent scales with respect to the photometric consistency are 
used to restore details. Lastly, with ACMP a planar prior is used to assist 
the patch-match MVS to further increase the effectiveness to also 
compute depth estimates in low-textured image regions. Just as COL
MAP, ACMMP also uses a bilaterally weighted NCC as a similarity 

4 https://github.com/colmap/colmap.  
5 https://github.com/ceres-solver/ceres-solver. 

6 https://github.com/cdcseacave/openMVS.  
7 https://github.com/GhiXu/ACMMP. 
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measure in the process of dense image matching. 

3.4. Plane-Sweep Library 

The use of the so-called plane-sweep algorithm is a prominent 
approach for online depth estimation based on MVS (Gallup et al., 2007; 
Pollefeys et al., 2008; Sinha et al., 2014). First proposed by Collins 
(1996), it allows for true multi-image matching by warping an arbitrary 
number of matching images I k into the view of a reference camera, via 
a set of imaginary scene planes, and matching them against the reference 
image I ref . In this, all images are assumed to be free of lens distortion. If 
the scene plane, which is used for the image warping, is close to an 
actual geometry, the corresponding image regions between I ref and the 
warped matching image I ʹ

k will match, yielding high photometric 
similarity. Thus, with the plane-sweep algorithm, the scene is sampled 
with a set of imaginary planes implicitly providing depth hypotheses 
from which the final scene depth can be reconstructed. 

The scene planes are parameterized by their orientation in the form 
of a normal vector n, as well as their distance d from the reference 
camera along their normal vector. Together with the intrinsic camera 
matrices Kk and the extrinsic relative poses [R|t] between the matching 
images and the reference image, the plane-induced homography H can 
be computed according to Equation (1) with which the matching images 
I k are warped into the view of the I ref . 

H = Kref ⋅
R − t⋅n⊺

d
⋅K− 1

k (1) 

From a selected set of depth hypotheses which should make up the 
final depth map D , the pixel-wise scene depth can be reconstructed by 
doing a ray cast for each pixel p = (u v)⊺ and intersecting the viewing ray 
with the corresponding scene plane according to: 

D (p) =
− d

n⊺⋅K− 1
ref ⋅(u v 1)⊺. (2) 

The warping of images via a plane-induced homography can be 
efficiently implemented using the projective texture mapping func
tionality of graphic processing units (GPUs) and together with the ca
pabilities of modern hardware, the plane-sweep algorithm can be 
executed with real-time processing rates and is, thus, well suited for 
online MVS depth estimation. 

The PlaneSweepLib8 provides an open-source implementation of the 
plane-sweep algorithm for online depth estimation using MVS. While 
the presented study only considers images from a camera with a stan
dard pinhole camera model, the Plane-Sweep Library (PSL) also allows 
performing depth estimation using images from a fisheye camera. The 
PSL implementation of the plane-sweep algorithm follows the descrip
tion given by Gallup et al. (2007). In this, they use a bundle of five input 
images I and corresponding camera projection matrices P as input to 
the algorithm. The sampling planes are parameterized with multiple 
sweeping directions, i.e. multiple sets of plane families with the same 
normal vector so that they are similar to the prominent planes of the 
scene which is to be reconstructed. The distances of the individual 
planes from the reference camera are selected in such a way that the 
maximum disparity shift between two consecutive planes is less or equal 
to one pixel. As a similarity measure and matching cost, the PSL im
plements the sum of absolute differences (SAD) as well as the NCC, with 
the latter one being used in the scope of this study. In their work, Gallup 
et al. (2007) and Häne et al. (2014) assume that the input images are 
part of an image sequence with a dominant motion direction. Thus, in 
order to account for occlusions, the PSL relies on the approach of Kang 
et al. (2001) which splits the input images into two disjoint sets to the 
left and right of the I ref and separately performs the dense image 

matching in each of the two sets. From the plane hypotheses, a final 
depth map is extracted using a graph-cut optimization method. 

3.5. FaSS-MVS – fast multi-view stereo with Surface-Aware Semi-Global 
Matching 

As illustrated by Fig. 1, the approach for fast multi-view stereo with 
surface-aware Semi-Global Matching (FaSS-MVS) (Ruf et al., 2021) uses 
an input bundle Ω, consisting of k input images I and corresponding full 
cameras projection matrices P, to compute a set of depth, normal and 
confidence maps (D ,N ,C ) for a selected reference image, typically the 
middle one inside Ω. Again, the input images are to be free of lens 
distortion and should be provided in sequential order, depicting the 
scene from slightly different viewpoints. Pk = K[R|t]k [R|t]

In order to allow for online processing, the computational 
complexity is reduced by employing a hierarchical processing scheme. 
This allows to restrict the search space for depth hypotheses and with it 
the overall run-time, in particular for scenes with a large depth range, e. 
g. oblique aerial imagery. To do so, first, a Gaussian image pyramid is 
created for each input image, halving the image size in both image 

Fig. 1. Overview of the processing pipeline for Fast Multi-View Stereo with 
Surface-Aware Semi-Global Matching (FaSS-MVS). Adapted from (Ruf 
et al., 2021). 8 https://www.cvg.ethz.ch/research/planeSweepLib. 
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dimensions on each pyramid level with respect to the previous level. 
Starting off on the highest pyramid level, i.e. the one with the smallest 
resolution and, thus, coarsest image, the algorithm is initialized to 
sample the complete depth range for depth hypotheses. In the subse
quent stages, the sampling of the scene space is initialized with the re
sults of the previous pyramid level by upscaling the depth and normal 
maps and recovering a pixel-wise local depth range around the available 
depth estimated. This results in coarse-to-fine processing since the sizes 
of the depth sampling steps are determined based on the disparity shift 
in image space and are, thus, increasing when moving down the 
pyramid. 

At each pyramid level, the scaled input images and camera projec
tion matrices are used to first estimate a depth map D for the selected 
reference image I ref . In this, a plane-sweep algorithm for multi-image 
matching, similar to that implemented in the PSL (cf. Section 3.4), is 
used to generate depth hypotheses. As also done by the PSL, a separate 
image matching is done for the left and right subset of the input images 
with respect to I ref in order to account for occlusions. This is followed 
by an estimation of a single depth map using an adaptation of the Semi- 
Global Matching (SGM) algorithm (Hirschmueller, 2005, 2008) to ac
count for the plane-wise depth hypotheses generated by the plane-sweep 
algorithm. A final depth refinement and filtering step with a 5 × 5 pixels 
sized median kernel removes remaining outliers and increases the 
smoothness of the depth map. 

The depth estimation is then followed by a normal and confidence 
map estimation. The normal map N is computed based on the depth 
estimates given in the depth map D , by considering the surface gradient 
within a local neighborhood. With a subsequent appearance-based 
weighted Gaussian smoothing, a more extensive consistency and 
smoothness within the normal map are enforced. Given the normal map 
N and the depth map D , the confidence map C is computed based on 
the pixel-wise incidence angle of the viewing ray on the corresponding 
surface. 

When the bottom of the image pyramid, and with it, the original 
image size is reached, a final post-processing step is performed to further 
remove the remaining outliers. This includes Difference-of-Gaussian 
(DoG) filtering which unmasks non-distinctive image regions with lit
tle to no texture, i.e. homogeneous image regions, that lead to unreliable 
image matching. Assuming that the input images belong to an image 
sequence, a geometric consistency check with respect to previously 
computed depth maps of the same object or area can be performed to 
increase the overall consistency between consecutive depth maps. 

In the scope of this benchmark evaluation, we have used the NCC 
with a support window of 9 × 9 pixels. In the SGM optimization we have 
relied on the SGMΠ with a P1 = 80 and an adaptive P2 based on the 
image-gradient. Even though FaSS-MVS also estimates normal and 
confidence maps, only the accuracy of the depth maps are evaluated in 
the scope of this study. 

3.6. Depth estimation from a single image by self-supervision 

Due to the technological advancements achieved in the field of deep 
learning in recent years, the use and extensive study of learning-based 
approaches with deep CNNs have immensely increased in all fields of 
computer vision and photogrammetry. The use of deep CNNs to predict a 
depth map from a single input image is of particular interest since it 
would remedy a number of disadvantages of depth estimation by two- 
view or multi-view stereo. For example, depth estimation from a sin
gle image allows for predicting the depth of dynamic scenes without 
being subjected to a maximum depth range due to the restrictions in the 
stereo baseline. With respect to MVS from images captured by a single 
camera, for example, the depth estimation from a single image has 
sufficiently lower latency, since it does not require an ego-motion of the 
camera. The process of predicting a depth map from a single image is 
referred to as monocular or single-view depth estimation. 

In the scope of this work, we evaluate an approach for self-supervised 

monocular depth estimation (SMDE), namely the one proposed by 
Hermann et al. (2020)9 Learning depth estimation in a self-supervised 
manner means that, during the training process, the task of depth esti
mation is posed as a view synthesis and image reconstruction problem. 
This allows the approach, unlike approaches based on supervised 
learning, to not be dependent on ground truth depth maps for learning 
how to predict the scene depth. In contrast, it only requires a bundle of 
input images depicting the scene from slightly different vantage points. 
Similar to the approaches presented in Sections 3.4 and 3.5, the network 
learns to predict the depth for a reference image I ref by synthesizing a 
new image for the same view based on the neighboring images in the 
input bundle and comparing it with the actual image. When the syn
thesized image I ’ and the actual image I ref are most similar with 
respect to their matching costs, it is assumed that the network has 
learned to correctly predict the depth. Because the scene depth, together 
with the relative transformation between the images, is required to 
correctly synthesize a new view. 

Fig. 2 illustrates the steps executed in each training iteration and for 
each image bundle. i) First, an encoder-decoder network is used to 
predict a depth map D corresponding to I ref . ii) In the second step, the 
relative transformations Eref→k = [R|t] between the reference image and 
the matching images are predicted. iii) With the predicted depth map D 

and the relative transformations Eref→k, a synthetic reference image is 
sampled from the matching images in step three, using a spatial trans
former network (STN) (Jaderberg et al., 2015). iv) Lastly, the training 
loss, comprised of a similarity and a smoothness score, is computed by 
comparing the synthetic reference image to the actual I ref and is 
backpropagated through the CNN. At the beginning of the training, the 
predictions of D and Eref→k will be of low quality. But with more and 
more iterations, the network will learn appropriate image cues to 
correctly synthesize a visually correct appearing reference image from 
the matching images and with it correct depth maps and relative 
transformations. 

Other than described by Hermann et al. (2020), we do not share the 
weights between the encoders of both networks. We also pre-train the 
camera movement estimation network on the WildUAV dataset (Florea 
et al., 2021). Both help a lot in the convergence of the whole network. To 
make the best use of the limited data, we heavily rely on data 
augmentation. At this point, the high resolution of the images helps, as 
random cropping and resizing can be used to create many variants of the 
original images. As backbone for the pose estimation network, we use 
the ResNet18 architecture (He et al., 2016) in all experiments. For the 
depth estimation backbone, we investigate ResNet18, ResNet50 and 
PackNet (Guizilini et al., 2020). We use ADAM as optimizer with the 
standard parameterization, a learning rate of 0.0001, and a batch size of 
5 for all experiments. 

4. Evaluation 

The evaluation of the methods described in the previous sections is 
divided into the evaluation of depth maps, point clouds, and triangle 
meshes. To ensure reproducibility, the code used for this evaluation is 
available on GitHub.10 In the following, the metrics and evaluation 
routines are briefly described. 

4.1. UseGeo dataset 

The UseGeo dataset (Nex et al., 2024; ISPRS Scientific Initiative 
UseGeo, 2023a, 2023b) has been acquired in the scope of one of the 
ISPRS Scientific Initiatives 2021–2022 to specifically allow for a 
rigorous assessment of the performance of approaches for 3D 

9 https://github.com/Max-Hermann/SelfSupervisedAerialDepthEstimator.  
10 https://github.com/UseGeoEvaluation/DepthEstimationAnd3DReconstruct 

ion. 
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reconstruction from imagery (in terms of either single image depth 
estimation or multi-view 3D reconstruction). 

More specifically, the data was acquired with a UAV equipped with a 
SONY ILCE-7RM3 camera and a RIEGL miniVUX-3UAV scanner. Flights 
were performed for three different urban and peri-urban areas to address 
scenarios of different complexity, and a total of 829 images (with 7952 
× 5304 pixels) were collected, whereby the average height above 
ground was about 80 m. Thus, the ground sampling distance of acquired 
imagery amounts to approximately 2 cm, and the laser point cloud has a 
point density of about 51 pt/m2, in some areas even higher. For details 
on the data preprocessing, we refer to (Nex et al., 2024). The laser point 
cloud may serve as a reference for evaluating the quality of derived 3D 
reconstructions. 

The UseGeo dataset presents a particular challenge for learning- 
based methods, as a total of only 829 images with nadir perspectives 
are available. Even though they cover a diverse scene with high reso
lution, the overlap between the individual images is relatively small. 
This is problematic because for example the self-supervised method used 
here performs both depth estimation and estimation of relative camera 
movement at the same time. For a reasonable result, both parts of the 
network have to converge, which is especially difficult for a camera pose 
estimation network. 

In the following, the data acquired for each flight are referred to as 
Dataset-1, Dataset-2 and Dataset-3, respectively. 

4.2. Evaluation of depth maps 

To evaluate the depth maps derived with the methods presented in 
Section 3, the supplied ground truth is used, which was generated by 
projecting the points of the LiDAR point cloud into the image plane. 
However, since the provided ground truth is in the form of range maps, 
we first transform these into depth maps by converting the range values 
into orthogonal distance values. Methods that do not use the ground 
truth extrinsic camera parameters, such as the self-supervised approach, 
do not provide depth maps that have the same scaling as the ground 
truth. In this case, they are aligned using median scaling, where the 
estimated depth map is scaled by the median of the depth values in the 
ground truth. As metrics, we use both absolute and relative metrics, and 
based on these, the L1 error as well as accuracy (Acc) and completeness 
(Cpl). The latter two help to investigate the trade-off between sparse but 
accurate depth maps on the one hand, and more complete depth maps, 
with potentially higher error, on the other hand. 

L1 − abs
(
D est ,D gt

)
=

1
|V |

∑

p∈V

|D est(p) − D gt(p)| (3)  

L1 − rel
(
D est ,D gt

)
=

1
|V |

∑

p∈V

⃒
⃒D est(p) − D gt(p)

⃒
⃒

D gt(p)
(4)  

Accθ
(
D est,D gt

)
=

1
|E |

∑

p∈V

max
(

D est(p)
D gt(p)

,
D gt(p)
D est(p)

)

< θ (5)  

Cplθ
(
D est,D gt

)
=

1
|G |

∑

p∈V

max
(

D est(p)
D gt(p)

,
D gt(p)
D est(p)

)

< θ (6) 

For the L1-metrics, the per-pixel depth estimate D est(p) is compared 
with the ground truth depth D gt(p) and averaged over the number of 
valid pixels V . In the case of the two L1 error metrics, the set of valid 
pixels is made up of the pixels for which both D est(p) and D gt(p) exist. 
The accuracy and completeness, on the other hand, are normalized by 
the number of valid pixels E in the estimated depth map and by the 
number of non-zero pixels G in the ground truth depth map, respec
tively. Originating from the domain of image-based classification, the 
accuracy and completeness metric determines the ratio of correct pixels 
in the estimated depth map by comparing it to the corresponding 
measurement in the ground truth depth map, within a predefined 
threshold θ. This particular measurement is commonly employed by the 
KITTI (Menze and Geiger, 2015) and ETH3D (Schöps et al., 2017) 
benchmarks as well. In contrast, in the case of the accuracy using the 
absolute error, a threshold value in meters is used instead of a per
centage deviation. 

The quantitative results are divided into two tables: one presenting 
the results based on the relative error and another displaying the results 
based on the absolute error. The relative error measure favors close 
objects by giving less weight to pixels with higher ground truth depth, 
resulting in tree tops and roofs being weighted differently than for 
example roads due to the nadir perspective. The absolute error metric, 
on the other hand, is unaffected by this bias and simplifies the 
interpretation. 

To evaluate the performance of the self-supervised trained network, 
the UseGeo dataset was divided into training and test data. The majority 
of the first sub-dataset was used for the test dataset, while the remaining 
two sub-datasets were designated as training data. To avoid data leakage 
caused by the overlapping nature of the three sub-datasets, certain 
portions of the first dataset had to be excluded. Furthermore, a minimum 
requirement of three consecutive images with sufficient overlap was 
necessary for training purposes, resulting in the exclusion of additional 
images. In total, the training and test datasets encompassed 510 and 192 
images, with 127 images being excluded. We use 768 × 448 pixels as the 
image resolution to train the self-supervised method. The division of 
dataset into continuous sequences and into training and test areas is 
publicly available for the purpose of reproducibility. 

Fig. 2. Illustration of the self-supervised training process for the task of single-view depth estimation. Adapted from (Hermann et al., 2020).  
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4.3. Evaluation of point clouds 

Unlike depth maps, the estimated point clouds lack a specific order, 
which presents challenges in finding precise correspondences between 
estimated points and their respective ground truth equivalent. Conse
quently, for each estimated point, first, a search is conducted to find its 
nearest neighbor in the ground truth. Subsequently, the error is calcu
lated based on the point-to-point distance instead of point-to-plane, as 
the ground truth does not include normal vectors and the estimation 
could lead to uncertainties. For the experiments that do not use the given 
extrinsic and intrinsic camera parameters and in which SFM is per
formed, an alignment to the ground truth is performed. Initially, a coarse 
manual alignment is performed, followed by a more refined registration 
using the iterative-closest-point (ICP) algorithm (Besl and McKay, 
1992). Additionally, ICP with scaling as an additional parameter is 
employed. Following the approach outlined in the work of Seitz et al. 
(2006), all errors are calculated at a completeness level of 90 % to assign 
less significance to outliers. A threshold of 0.2 m is used to determine 
completeness, indicating that all points in the ground truth point cloud 
within this distance of an estimated point are considered when calcu
lating the completeness metric. The absolute error (L1-abs), 
root-mean-square error (RMSE), and completeness are employed as 
metrics for evaluation: 

L1 − abs
(
P est ,P gt

)
=

1
|E |

∑

p∈E

|P est(p) − P gt(p)| (7)  

RMSE
(
P est ,P gt

)
=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
|E |

∑

p∈E

(
P est(p) − P gt(p)

)2
√

(8)  

Cplθ
(
P est,P gt

)
=

1
|G |

∑

p∈G

|P est(p) − P gt(p)| < θ (9) 

Here, P est represents the estimated point cloud and P gt the ground 
truth point cloud. For L1-abs and RMSE, the distance to the corre
sponding point in the ground truth point cloud P gt(p) is calculated for 
each estimated point P est(p) and normalized by the number of points in 
the estimated point cloud E . By contrast in the case of the completeness, 
the distance to the corresponding point P est(p) in the estimate is 
calculated for every point P gt(p) in the ground truth point cloud and 
normalized by its number of points G . If this distance is below the 
threshold value θ, it is considered a valid point that contributes to the 
completeness. As a correspondence, the spatially closest point of the 
other point cloud is used in each case. 

4.4. Triangle meshes 

Triangle meshes, like point clouds, lack a specific order. However, in 

Table 1 
Results of the depth estimation methods using offline processing, evaluated with the metrics based on the relative error. The 
results are listed by dataset, with the second-best result per column highlighted underlined and the best result additionally by 
bold print. The different COLMAP methods use either no prior knowledge COLMAPSFM + MVS or the given intrinsic and extrinsic 
camera calibration COLMAPMVS. For comparison, we also provide corresponding results for the case when a higher resolution is 
considered COLMAPMVS+8K. 
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addition to vertices, they also consist of triangles that compose the 
actual mesh structure. To assess the quality of the meshes, it is necessary 
to determine the minimum distance for each triangle to the ground truth 
point cloud, which is computationally time-consuming. To accomplish 
this with a reasonable run-time, a raycasting technique is employed, 
originating from every point within the ground truth point cloud. This 
approach enables efficient determination of the closest triangle for each 
point, along with the precise intersection point on the triangle. The 
distance between the position of the ground truth point and the point on 
the triangle serves as an error measure. Similar to the evaluation of point 
clouds, the metrics of L1-abs (Eq. (7)), RMSE (Eq. (8)), and Cpl (Eq. (9)) 
are employed. 

5. Experimental results 

In the following analysis, we review the results achieved by the 
presented methods on the dataset. Initially, we examine the perfor
mance in relation to depth estimation, assessing the approaches through 
the application of both relative and absolute error metrics. At this point, 
we distinguish between offline and online processing methods. Subse
quently, we evaluate the reconstructed point clouds, and where appli
cable, the reconstructed triangle meshes. 

5.1. Offline depth estimation 

Approaches for offline depth estimation and 3D reconstruction focus 
primarily on the best possible results by using offline processing. This 
implies that the methods have access to all images during processing and 
can thus use several viewpoints to estimate the depth of an image and 
benefit from subsequent geometric filtering with multiple spatially close 
images, which all methods implement. As a result, all techniques yield 
significantly improved outcomes compared to the results achieved by 
online methods (cf. Section 5.2). The similarity of the results of the L1- 
rel error between the offline and online depth estimation approaches 
suggests that the L1-relative error metric is not appropriate for the 
comparison of these two different types of methods. However, as soon as 
Accθ or especially the absolute error is considered, the difference is 
apparent. Nonetheless, the offline methods also differ considerably from 
each other. 

In this section the offline depth estimation, i.e. the precision of the 
depth maps estimated by COLMAP, OpenMVS, and ACMMP is evalu
ated. Unless otherwise specified, the experiments performed rely on the 
given resolution of 1989 × 1320 pixels with the standard parameteri
zation of the evaluated toolbox. As mentioned above, OpenMVS and 
ACMMP only provide algorithms for dense depth estimation and 3D 
reconstruction with MVS and, thus, to evaluate these two approaches the 
given intrinsic and extrinsic camera parameters were used. In the case of 
COLMAP, we have evaluated three different configurations of input 

Table 2 
Quantitative results of the depth estimation methods using offline processing, evaluated with the metrics based on the absolute 
error. The results are listed by dataset, with the second-best result per column highlighted underlined and the best result 
additionally by bold print. The different COLMAP methods use either no prior knowledge COLMAPSFM + MVS or the given 
intrinsic and extrinsic camera calibration COLMAPMVS. For comparison, we also provide corresponding results for the case 
when a higher resolution is considered COLMAPMVS+8K. 
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data. In the configuration denoted as COLMAPSFM + MVS, we have solely 
provided the down-scaled input images as input and let COLMAP esti
mate the intrinsic and extrinsic camera parameters by means of SFM. For 
COLMAPMVS the camera parameters given within the UseGeo dataset 
were used, just as with the other two approaches. And lastly, for 
COLMAPMVS+8K we have used the full-resolution imagery. But again, we 
rely on the provided intrinsic and extrinsic camera data. As the approach 

with the highest image resolution, namely COLMAPMVS+8K, always 
yields the best quantitative results, we have also highlighted the second- 
best result in the tables below. 

The importance of the quality of camera poses and camera calibra
tion becomes apparent when comparing the depth maps of COLMAP 
with and without the given extrinsic and intrinsic calibration. As shown 
in Table 2, the L1-abs error of COLMAPMVS is up to 6 % lower compared 

Fig. 3. Results of the depth estimation methods using offline processing. For each section, the depth maps are displayed in the first row, and the color-coded error 
maps with respect to the available ground truth in the second row. (For interpretation of the references to color in this figure legend, the reader is referred to the Web 
version of this article.) 
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to COLMAPSFM + MVS. Increasing the resolution to 8K, which corresponds 
to about 16 times the number of pixels, leads to an expected greatly 
improved result, particularly with respect to the absolute error, which 
suggests that distant objects can be estimated more accurately. The 
depth maps estimated by OpenMVS achieve a slightly lower quality in 
terms of accuracy and completeness than comparable depth maps esti
mated by COLMAP. As displayed in Table 1, the depth maps of ACMMP, 
however, show significantly higher relative errors, which is probably 
due to considerably reduced filtering, since the completeness is higher. 
This effect is also visible in Fig. 3. The depth maps of ACMMP are clearly 
more complete, but it is evident from the error maps that the error is 
high compared to those estimated by COLMAP and OpenMVS in areas 
that are not filtered out. Interestingly, this flips when considering the 
absolute error, as can be seen from the rather strict criterion Acc0.05. 
Here, ACMMP performs significantly better, suggesting that distant 
pixels are better estimated. Compared to the others, the depth maps of 

OpenMVS in some cases show more noise at object edges, which could 
explain the results of slightly lower quality. 

5.2. Online depth estimation 

Online methods are characterized by their ability to process image 
streams directly, without relying on global operations such as global 
bundle adjustment. Consequently, these methods typically utilize only a 
limited number of consecutive images or, in the case of the self- 
supervised approach, estimate depth solely based on the current 
image. As a result, the primary focus of these techniques lies in their 
execution speed, rather than the best possible result. Results for relative 
and absolute error are shown in Table 3 and Table 4. They are broken 
down for the individual subsets of the dataset. Here, the results of the 
self-supervised method are only available for the first sub-dataset, as the 
other two are part of the training data. Fig. 4 shows the results of the 

Table 3 
Quantitative results of the depth estimation methods using online processing, evaluated with the metrics based on the relative error. Results are listed by dataset, with 
those from the self-supervised approach available only for Dataset-1. The second-best result per column is underlined, while the best result is additionally printed in 
bold script. All the methods use the provided intrinsic camera calibration, while the FaSS-MVS and PSL methods make use of the ground truth extrinsic parameters.  

Dataset-1 ↓L1-rel ↑Acc1.1 ↑Cpl1.1 ↑Acc1.05 ↑Cpl1.05 ↑Acc1.01 ↑Cpl1.01 

FaSS-MVSGPP 0.0096 0.9793 0.7689 0.9492 0.7451 0.8111 0.6355 
PSLSplitOcc 0.0556 0.8025 0.8025 0.7621 0.7621 0.6734 0.6734 
PSLSplitOcc GPP 0.0060 0.9841 0.5432 0.9742 0.5377 0.9031 0.4980 
PSLBestKOcc 0.0300 0.8957 0.8957 0.8693 0.8693 0.8006 0.8006 
PSLBestKOcc GPP 0.0040 0.9903 0.6563 0.9822 0.6509 0.9307 0.6163 
SMDEResNet18 0.0614 0.9399 0.9399 0.7436 0.7436 0.1994 0.1994 
SMDEResNet50 0.0350 0.9485 0.9485 0.7665 0.7665 0.2149 0.2149 
SMDEPackNet01 0.0345 0.9498 0.9498 0.7689 0.7689 0.2186 0.2186 

Dataset-2 ↓L1-rel ↑Acc1.1 ↑Cpl1.1 ↑Acc1.05 ↑Cpl1.05 ↑Acc1.01 ↑Cpl1.01 

FaSS-MVSGPP 0.0092 0.9794 0.7669 0.9541 0.7473 0.7623 0.5959 
PSLSplitOcc 0.0606 0.7974 0.7974 0.7508 0.7508 0.6398 0.6398 
PSLSplitOcc GPP 0.0069 0.9776 0.5243 0.9646 0.5174 0.8674 0.4646 
PSLBestKOcc 0.0353 0.8854 0.8854 0.8535 0.8535 0.7627 0.7627 
PSLBestKOcc GPP 0.0046 0.9843 0.6314 0.9737 0.6246 0.9011 0.5772 

Dataset-3 ↓L1-rel ↑Acc1.1 ↑Cpl1.1 ↑Acc1.05 ↑Cpl1.05 ↑Acc1.01 ↑Cpl1.01 

FaSS-MVSGPP 0.0088 0.9725 0.7771 0.9481 0.7575 0.7564 0.6036 
PSLSplitOcc 0.0594 0.8114 0.8114 0.7731 0.7731 0.6646 0.6646 
PSLSplitOcc GPP 0.0066 0.9717 0.5564 0.9607 0.5502 0.8614 0.4934 
PSLBestKOcc 0.0358 0.8853 0.8853 0.8563 0.8563 0.7676 0.7676 
PSLBestKOcc GPP 0.0047 0.9764 0.6422 0.9668 0.6359 0.8936 0.5877  

Table 4 
Quantitative results of the depth estimation methods using online processing, evaluated with the metrics based on the absolute error. Results are listed by dataset, with 
those from the self-supervised approach available only for Dataset-1. The second-best result per column is underlined, while the best result is additionally printed in 
bold script. All the methods use the provided intrinsic camera calibration, while the FaSS-MVS and PSL methods make use of the ground truth extrinsic parameters.  

Dataset-1 ↓L1-abs ↑Acc0.5 ↑Cpl0.5 ↑Acc0.1 ↑Cpl0.1 ↑Acc0.05 ↑Cpl0.05 

FaSS-MVSGPP 0.7486 0.7620 0.5965 0.3612 0.2819 0.1943 0.1517 
PSLSplitOcc 4.5773 0.6291 0.6291 0.3042 0.3042 0.1663 0.1663 
PSLSplitOcc GPP 0.4884 0.8458 0.4659 0.4187 0.2291 0.2299 0.1257 
PSLBestKOcc 2.3804 0.7611 0.7611 0.3735 0.3735 0.2009 0.2009 
PSLBestKOcc GPP 0.3217 0.8894 0.5885 0.4565 0.3014 0.2468 0.1630 
SMDEResNet18 4.9545 0.1233 0.1233 0.0248 0.0248 0.0124 0.0124 
SMDEResNet50 2.8260 0.1332 0.1332 0.0269 0.0269 0.0134 0.0134 
SMDEPackNet01 2.7866 0.1362 0.1362 0.0275 0.0275 0.0138 0.0138 

Dataset-2 ↓L1-abs ↑Acc0.5 ↑Cpl0.5 ↑Acc0.1 ↑Cpl0.1 ↑Acc0.05 ↑Cpl0.05 

FaSS-MVSGPP 0.7681 0.6549 0.5110 0.2455 0.1912 0.1310 0.1021 
PSLSplitOcc 5.2157 0.5842 0.5842 0.2592 0.2592 0.1395 0.1395 
PSLSplitOcc GPP 0.5870 0.7925 0.4238 0.3562 0.1891 0.1920 0.1018 
PSLBestKOcc 2.9696 0.7103 0.7103 0.3178 0.3178 0.1686 0.1686 
PSLBestKOcc GPP 0.3949 0.8437 0.5395 0.3896 0.2478 0.2074 0.1318 

Dataset-3 ↓L1-abs ↑Acc0.5 ↑Cpl0.5 ↑Acc0.1 ↑Cpl0.1 ↑Acc0.05 ↑Cpl0.05 

FaSS-MVSGPP 0.7624 0.6474 0.5163 0.2330 0.1855 0.1217 0.0969 
PSLSplitOcc 5.3428 0.5963 0.5963 0.2425 0.2425 0.1288 0.1288 
PSLSplitOcc GPP 0.5795 0.7723 0.4424 0.3183 0.1826 0.1695 0.0973 
PSLBestKOcc 3.1116 0.7029 0.7029 0.2904 0.2904 0.1529 0.1529 
PSLBestKOcc GPP 0.4137 0.8227 0.5409 0.3516 0.2309 0.1859 0.1220  
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online depth estimation methods. Each section includes the estimated 
depth maps in the first row and a color-coded error map representing the 
L1-abs error in the next row. Black pixels in the depth map indicate 
pixels that have been filtered out, resulting in lower completeness. The 
methods FaSS-MVS and PSL use the image resolution of 1989 × 1320 
pixels and the self-supervised method uses a resolution of 768 × 448 

pixels. 
In the following, the specific parameterization of the methods is 

indicated by their subscript. The labels SplitOcc and BestKOcc indicate 
how occlusions are handled in the PSL approach. If geometric filtering is 
applied in post-processing, this is shown by the additional label geo
metric postprocessing (GPP). For the learning-based methods, the 

Fig. 4. Results of the depth estimation methods using online processing. For each section, the depth maps are displayed in the first row and the color-coded error 
maps with respect to the available ground truth in the second row. The red highlighted result of the self-supervised method in the last row is taken from the training 
data to show the potential of a more diverse training set. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of 
this article.) 
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backbone used for the encoder of the depth network is specified. 
As can be seen in Table 3 and Table 4, PSLBestKOcc GPP performs best in 

terms of accuracy, followed by PSLSplitOcc GPP and FaSS-MVSGPP. Espe
cially noteworthy here is the effectiveness of the geometric verification 
in post-processing (GPP), as this significantly improves the results 
compared to the basic methods. However, this inevitably reduces the 
completeness, which means that PSLBestKOcc is the best overall method in 
terms of this metric. As visible in the quantitative results, the different 
scenery of the individual sub-datasets also affects the outcome of the 
approaches, as the results differ considerably. For example, the L1-abs of 
PSLBestKOcc GPP is 22.2 % higher on Dataset-3 than on Dataset-1. 

Despite PSLBestKOcc GPP achieving superior quantitative outcomes, it 
requires by far the longest processing time, with an average 9300 ms, 
while PSLSplitOcc GPP requires 527 ms and FaSS-MVSGPP only 442 ms of 
computation time per image using a NVIDIA RTX A2000 GPU. 

In contrast to FaSS-MVS and PSL, the self-supervised method re
quires only one image to estimate the depth map, which is the reason 
why no geometric verification can be performed. However, as can be 
seen from the relative error in Table 3, and especially from the absolute 
error in Table 4, the performance is inferior compared to the non- 
learning-based methods. The performance seems to depend directly on 
the amount of training data, since experiments using only Dataset-2 for 
training already achieve significantly worse results. It can therefore be 
assumed that a larger training dataset with similar properties could lead 
to much better results. In the field of autonomous driving, with 

considerably larger datasets available, self-supervised monocular ap
proaches already achieve results in the range of supervised trained 
methods (Guizilini et al., 2020). Another indication that more training 
data could improve the results is that the complexity of the encoder does 
not have a great influence on the results. Although an encoder based on a 
ResNet50 has more than twice as many parameters as a ResNet18, the 
results regarding Accθ do not improve significantly. In fact, the jump to a 
much more complex and advanced architecture like PackNet (Guizilini 
et al., 2020) results in almost no improvement in performance. The last 
image in the bottom-right corner of Fig. 4, which is highlighted with a 
red frame, shows an example from the training dataset. Both visually 
and from the error map, a significantly better result is visible, repre
senting the potential performance achievable with a better training 
dataset. 

5.3. Offline 3D reconstruction 

Regarding the reconstruction of a dense point cloud, we have only 
considered offline-based methods in this work. For this reason, only the 
results for COLMAP, OpenMVS and ACMMP are examined in the 
following, as can be seen in Table 5. For COLMAP, results with higher 
resolution as well as with SFM are additionally shown. Results in the 
form of color-coded error maps with respect to the available ground 
truth are shown in Fig. 5. All experiments were conducted on a server 
with 4 Titan X GPUs and a 24 core CPU, using the default parameters for 

Table 5 
Quantitative results of the fused point clouds. The results are listed by dataset, with the second-best result per column high
lighted underlined and the best result additionally by bold print. In each case, the point-to-point distance between the 
calculated and the ground truth point cloud is used as the measurement method. The different methods use either no prior 
knowledge like COLMAPSFM + MVS or the given intrinsic and extrinsic camera calibration denoted with MVS. For comparison, 
we also provide corresponding results for the case when a higher resolution is considered with COLMAPMVS+8K. 
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each framework. 
As visible in Tables 5, if the same configuration is considered, i.e. the 

same image resolution and the use of the given extrinsic and intrinsic 
camera parameters, then ACMMP clearly outperforms COLMAP and 
OpenMVS. ACMMP achieves both lower errors in terms of L1-abs and 
RMSE, as well as higher completeness. This means that ACMMP delivers 

the best result for the three sub-datasets in each case and also delivers 
more points in the point cloud than the other two methods combined. 
Only the COLMAP reconstruction which uses the full image resolution of 
8K, i.e. COLMAPMVS+8K, achieves slightly better results than ACMMP in 
terms of L1-abs, RMSE, and Cpl. However, the number of points of the 
resulting point cloud is also significantly higher. As with the depth maps, 

Fig. 5. Results of the reconstructed point clouds. The first row shows a colored point cloud for reference and the following rows show the error maps.  
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the point clouds also show that performing SFM instead of using the 
ground truth camera parameters leads to a significantly worse result, 
even though the point clouds are aligned using ICP. This is particularly 
visible in the results in Fig. 5 on Dataset-2 and Dataset-3. Here, clearly 
more points are colored with red tones, which indicates a higher L1-abs 
error. In these exemplary images, OpenMVS also shows the erroneous 
points that presumably lead to poorer quantitative results. However, it 
should be noted that, unlike ACMMP, OpenMVS is intended for the 
reconstruction of a triangle mesh and accordingly the point cloud is only 
an intermediate product. 

As can be seen in Table 5, all methods achieve a relatively low 
completeness score, which is probably due to the fact that the ground 
truth point cloud extends well beyond the areas covered by the images 
(cf. Fig. 8). 

Regarding run-time complexity across all three sub-datasets, 
OpenMVS required on average 1 h 25 min, COLMAP 2 h 59 min and 
ACMMP 5 h 08 min to reconstruct a dense point cloud. 

5.4. Offline mesh reconstruction 

Since only COLMAP and OpenMVS support the reconstruction of 
triangle meshes, the following evaluation focuses on these two methods. 
To investigate the improvement of the OpenMVS refinement step in 
quality, we evaluate the reconstruction step by itself in addition to the 
final result. Similar to the evaluation of the point clouds, we use the 

LiDAR point cloud as ground truth to determine the deviation of the 
triangles. For this purpose, we use the point on each triangle that cor
responds to the minimum distance to a point in the ground truth point 
cloud as a distance metric. The quantitative results obtained in this re
gard are shown in Table 6. One example from the results is shown in 
Fig. 6. For each method, there is a shaded rendering of the mesh at the 
evaluated level-of-detail, as well as a color-coded error maps with 
respect to the available ground truth showing the L1-abs error per 
triangle. 

As Table 6 and Fig. 6 show, the triangle meshes generated by 
OpenMVS and COLMAP differ not only in terms of their error metrics but 
also in their level-of-detail. The final models of OpenMVS have only 3 % 
of the number of triangles compared to the mesh of COLMAP using the 
same image and camera configuration, despite the fact that the point 
clouds of OpenMVS have almost twice as many points as COLMAP. This 
is because the number of triangles is automatically reduced during the 
generation of the mesh. This reduction can be seen in Fig. 6 in the 
smoother surface, for example, at the railing of the bridge. Despite this 
massive reduction in the level-of-detail, the reconstructions using 
OpenMVS perform best in terms of error metrics, which is particularly 
striking since the COLMAP reconstruction with 8K image resolution is 
also outperformed in almost all cases. The strong mesh decimation seem 
to be only noticeable with respect to the completeness, as COLMAP 
performs up to 6 % better here. At this point, the mesh refinement step 
of OpenMVS should be highlighted, as it significantly improves the 

Table 6 
Quantitative results of the reconstructed triangle meshes. The results are listed by dataset, with the second-best result per 
column highlighted underlined and the best result additionally by bold print. In each case, the point-to-point distance between 
the individual triangles and the ground truth point cloud is used for error assessment. The different methods use either no prior 
knowledge like COLMAPSFM + MVS or the given intrinsic and extrinsic camera calibration denoted with MVS. For comparison, 
we also provide corresponding results for the case when a higher resolution is considered with COLMAPMVS+8K. 
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result both in terms of error metrics and completeness, which can also be 
seen in Fig. 6. The error map of the final result appears in a darker blue, 
which indicates an overall better result. As already stated in the previous 
evaluations, the use of SFM also leads to worse results in terms of mesh 
generation. It is important to emphasize that COLMAP focuses on SFM 
and MVS and does not prioritize the meshing of the point clouds. 
OpenMVS, on the other hand, focuses strongly on the generation and 
refinement of triangle meshes, which is also reflected in the results. 

6. Discussion 

In the preceding section, it became evident that there are several 
significant differences between the presented online and offline ap
proaches. In the case of the online methods, only depth estimation was 
examined. Table 7 provides a short overview of the results from the 
previous chapter in the categories of run-time complexity, accuracy and 
completeness. The symbols represent a ranking of the individual 
methods from poor (–) to high (++). As can be seen here, PSLBestKOcc GPP 
achieves the best result in terms of accuracy, followed by PSLSplitOcc GPP 
and FaSS-MVSGPP. This impression is further emphasized when exam
ining the absolute error and thus weighting farther away objects equally 
with those that are close by. In terms of completeness, the ranking of the 
methods remains the same, whereby the variants without geometric 
filtering show better results. At this point, the effect of the geometric 
filtering in post-processing becomes apparent, which significantly in
creases the accuracy, but also results in lower completeness. Another 

Table 7 
Overview table for the online approaches. The different methods denoted with 
GPP use geometric filtering. The symbols represent a ranking of the individual 
methods from poor (–) to high (++).  

Online approaches Run-time Complexity Depth map Acc Depth map Cpl 

FaSS-MVSGPP + + +

PSLSplitOcc + o +

PSLSplitOcc GPP + + o 
PSLBestKOcc - - o +

PSLBestKOcc GPP - - ++ o 
SMDE ++ - - o  

Table 8 
Overview table for the offline approaches. The different methods use either no 
prior knowledge like COLMAPSFM + MVS or the given intrinsic and extrinsic 
camera calibration denoted with MVS. ACMMP does not implement a mesh 
reconstruction step. The symbols represent a ranking of the individual methods 
from poor (–) to high (++).  

Offline 
approaches 

Run-time 
complexity 

Depth 
map 

Point 
cloud 

Triangle 
mesh 

COLMAPSFM +

MVS 

o + – o 

COLMAPMVS + ++ + +

OpenMVS ++ + o ++

ACMMP – + ++ N/A  

Fig. 6. Results of the reconstructed triangle meshes. The left column shows a rendered image of the mesh and the right column shows the error for each triangle 
color-coded compared to the ground truth point cloud. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of 
this article.) 
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aspect to consider is the trade-off between execution speed and quan
titative results. Which is why PSLSplitOcc GPP and FaSS-MVSGPP are 
probably the better compromise, as PSLBestKOcc GPP takes significantly 
longer, as shown above. Fast execution is a major criterion, particularly 
for real-time processing applications, which are the inherent focus of 
online methods. This aligns with the findings of the self-supervised 
method, which notably exhibits the fastest execution speed and can 
efficiently handle real-time video streams even on low-performance 
hardware. Furthermore, unlike other online methods, the self- 
supervised approach does not require image bundles for inference 
since it estimates depth using only a single image. However, these ad
vantages come at the cost of significantly poorer accuracy and lower 
completeness. The big difference between training and test errors also 
suggests that a larger and more diverse dataset may be helpful in this 
situation. In addition, the setting of the dataset proved to be quite 
challenging, to which the nadir perspective of the images probably 
contributed in particular. Thus, in order for the investigated 

architectures to converge reliably on the dataset, a pre-training of the 
network has been necessary in order to correctly estimate the camera 
movement. 

In contrast, offline approaches, where processing times are in the 
order of minutes or hours rather than milliseconds or seconds, do not 
place as much emphasis on speed. For these methods, the depth esti
mation, the reconstruction of a dense point cloud and, if available, the 
generation of a triangle mesh are examined. It is shown that each 
method prioritizes different domains, which is also reflected in the 
overview in Table 8. In terms of depth estimation, COLMAP achieves the 
best result, followed by ACMMP and OpenMVS, if the same prerequisites 
such as image resolution and given extrinsic and intrinsic data are 
applied. ACMMP has a considerably higher completeness, which prob
ably also explains the comparatively high L1 error. However, ACMMP 
reconstructs far away objects better, which is revealed by the higher 
Acc0.1 and Acc0.05 shown in Table 2. If the absolute L1 error is analyzed 
for the depth maps, some online methods perform slightly better than 

Fig. 7. Results of the NeRF based methods. The COLMAP dense reconstruction and the NeRF-volume-rendering-based reconstructions. The examples shown in this 
figure used three sub-modules for Mega-NeRF and Block-NeRF. 

Fig. 8. Filtered ground truth. The red area shows the provided LiDAR point clouds, which extend beyond the area covered by the images. The blue area represents 
our adjusted ground truth. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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offline methods, which is particularly true for the methods with geo
metric post processing. This suggests that geometric filtering is used 
much more aggressively here, as the resulting completeness values are 
considerably lower. The effect is relativized when the results for accu
racy are compared, as the offline methods perform significantly better. 
When the individual point clouds are compared, ACMMP achieves the 
best results ahead of COLMAP in terms of both accuracy and 
completeness, while at the same time, the point cloud is by far the 
densest. However, if the triangle mesh is evaluated, OpenMVS achieves 
the best result in terms of accuracy, but with slightly lower completeness 
compared to COLMAP. This is probably due to the significantly lower 
number of triangles in the mesh since OpenMVS decimates the recon
structed mesh in its standard configuration. The mesh refinement step of 
OpenMVS is particularly noteworthy, as it significantly improves the 
result. The ACMMP method does not include any mesh generation. 

In terms of depth estimation and reconstruction of the point clouds, 
the experiments with COLMAPMVS+8K, which uses the full image reso
lution of 7953 × 5279 pixels, stand out. However, since the advantage in 
point cloud reconstruction is small compared to ACMMP with the 
standard resolution and OpenMVS delivers better results in mesh gen
eration, it is questionable whether the significantly longer computation 
time is justified. At this point, it would be interesting to see the results 
achieved by the other two methods, i.e. OpenMVS and ACMMP, using 
the high-resolution imagery. This, however, is challenging due to 
hardware limitations and very long processing times, due to their less 
sophisticated parallelization compared to COLMAP. 

6.1. Influence of the given camera calibration on the reconstruction 
quality 

Since the datasets have both extrinsic and intrinsic camera calibra
tion, comparative studies can be performed that additionally emphasize 
the SFM pipeline. In contrast to the other experiments, COLMAPSFM +

MVS does not use any prior knowledge in the form of intrinsic and 
extrinsic camera calibration, so SFM must be performed to determine 
the camera parameters. Due to the fact that COLMAPSFM + MVS has no 
prior knowledge of the scene, the resulting 3D model is also not metric 
and cannot be directly compared to the ground truth. Instead, we use a 
coarse manual alignment followed by ICP and an additional ICP with 
scale estimation as refinement. Compared to the other results, the results 
drop significantly when SFM has to be performed, which is especially 
visible in the results for the point clouds and the meshes. However, if for 
the reconstruction with COLMAP the intrinsic camera calibration is 
fixed and only the extrinsic calibration is estimated, the results almost 
reach the level of the reconstruction with fixed intrinsic and extrinsic 
calibration. This shows that a good intrinsic calibration, which is much 
easier to obtain than the extrinsic parameters, already leads to signifi
cantly better results. Accordingly, a large part of this drop-off in per
formance could be due to the inaccurate estimation of the intrinsic 
camera calibration, if, in addition, the extrinsic parameters have to be 
estimated as well. Especially in the case of the three datasets considered 
here with nearly nadir perspectives on the scene, a correct estimation of 
the focal length is challenging. Due to the fact that an inaccurately 
estimated focal length causes the resulting 3D reconstruction to be 
deformed, the comparison with the ground truth is difficult, which 
probably also contributes to the worse result. One way to account for the 
inaccurate estimation of the focal length would be to scale the point 
cloud along the vertical axis (here Z-axis), which improves the result. 
But we decided not to display these results because we wanted to 
evaluate the out-of-the-box performance of the frameworks. 

In addition to the experiments listed in the tables above, we have also 
investigated whether the initialization with the given camera calibra
tion, followed by SFM to estimate the extrinsic camera data, as well as to 
refine the given intrinsic parameters, improves the result. By using the 
full calibration as a starting point and then refining both the focal length 
and the principal point, we achieve slightly better results on all three 

datasets. On Dataset-1, the difference is the smallest with 0.2 % and 
0.3 % lower L1-abs error on point cloud and mesh, respectively, and a 
0.1 % higher Acc0.05 for the depth maps. However, on Dataset-2 and 
Dataset-3, the improvements are much more significant at 8.4 %, 
13.0 %, 2.8 %, and 2.8 %, 5 %, 5 %, respectively for point clouds, 
meshes, and depth maps. This could be due to the run-to-run variances. 
However, it is noticeable that the results for all three datasets are better, 
albeit marginally so for Dataset-1. An alternative explanation is that the 
improved intrinsic calibration works better for COLMAP as a frame
work, which does not necessarily mean that the calibration is universally 
better. 

6.2. Comparison with methods based on volume rendering 

Since the work of Mildenhall et al. (2021), approaches based on 
neural rendering have gained a lot of attention. Even though the actual 
goal is to synthesize new perspectives, they can also be used to recon
struct point clouds or implicit surfaces. For this purpose, the continuous 
space is usually sampled at equidistant steps and a density threshold is 
used to select valid points. As part of this work, we carried out extensive 
investigations on all three sub-datasets and used three different 
methods: Mega-NeRF (Turki et al., 2022), Block-NeRF (Tancik et al., 
2022) and Direct Voxel Grid Optimization (Sun et al., 2022). However, 
as Fig. 7 evidently shows, the results fall short of the performance of 
conventional methods. This also applies to the quantitative results, 
which is why we limit the discussion here to qualitative examples. For 
the examples shown in Fig. 7 three sub-modules for Mega-NeRF and 
Block-NeRF were used. A larger number of sub-modules did not provide 
any added value in our experiments. Row one shows the reconstruction 
with COLMAPMVS as a reference. As long as the point clouds are viewed 
from the nadir perspective, the models look visually appealing. But as 
soon as this viewing angle is changed, this is no longer the case. This is 
particularly visible in the last column, which displays the side 
perspective of a big slope in Dataset-1. Here, it can be seen that the 
NeRF-based approaches have great difficulties in reconstructing the 
correct geometry. This is also consistent with the findings of Nex et al. 
(2023) using NeRF-based approaches on the UseGeo dataset. 

Similar to the SMDE method, the low number of images and their 
nadir perspective on the scene could be responsible for the rather poor 
results. In addition, most NeRF-based methods do not focus on recon
structing large-scale outdoor scenes or, as in the case of Mega-NeRF, 
usually use large amounts of oblique imagery. The fact that the result
ing point clouds look good from a nadir perspective is probably because 
these approaches are mainly trained and used for creating new view
points which are similar to the original images. 

6.3. Overlap between camera images and LiDAR ground truth 

Since all areas covered by the camera are also covered by the LiDAR 
ground truth, it is possible to use the nearest ground truth point for each 
point or triangle to calculate the accuracy of the point clouds and 
meshes. For the completeness score, however, we need to assign a cor
respondence in the estimate to each point in the ground truth point 
cloud, which is problematic because the LiDAR scan extends well 
beyond the area covered by images. For this reason, the results pre
sented earlier obtained in terms of completeness appear rather low. To 
get a more realistic value, we have additionally filtered the ground truth 
by removing all points at the edge. For this purpose, we use a distance 
threshold compared to our densest reconstruction, the COLMAP recon
struction using images with 8K resolution. To prevent photogram
metrically challenging regions, such as vegetation and weakly textured 
areas that are often not included in the reconstruction from also being 
filtered out of the LiDAR point cloud, we project both point clouds onto 
the horizontal plane (here XY-plane). Then we remove all points that are 
farther than 5 m from a point of the photogrammetric point cloud. In this 
way, we remove between 14 % and 18 % of the points from the datasets. 
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Fig. 8 visualizes this filtering process by showing the adjusted LiDAR 
point cloud in blue and the excluded points in red. However, as partic
ularly visible in Dataset-1 and Dataset-2, this procedure leads to clusters 
of points around outliers of the photogrammetric reconstruction. On 
average, evaluating with this adjusted ground truth leads to a 10 % 
higher completeness. 

7. Conclusion 

In summary, we have extensively evaluated multiple approaches on 
the UseGeo dataset. In doing so, we have created a baseline in the field of 
offline and online depth estimation, as well as dense reconstruction of 
point clouds and triangle meshes from UAV-borne aerial imagery using 
current state-of-the-art methods. The evaluation routines used for this 
are freely available on GitHub,11 facilitating a universal and comparable 
evaluation of depth estimation and 3D reconstruction methods on the 
UseGeo dataset. 

Our analyses of this dataset have shown that, depending on the 
scenario, different methods excel in distinct categories. Among the off
line methods, COLMAP gives the lowest overall error in terms of depth 
estimation, but the depth maps of ACMMP are more complete. However, 
when evaluating the point clouds, ACMMP produces both the lowest 
error and the highest completeness while also providing the densest 
result. But when considering the quality of the triangle meshes, 
OpenMVS produces meshes with the lowest error while, at the same 
time, decimating the meshes to reduce their size. In the future, it could 
be interesting to investigate whether a combination of the three ap
proaches would lead to a better overall result. In terms of volume-based 
neural rendering approaches, the results were quite poor, which might 
be due to the nadir perspective and total number of images. 

In the approaches for online depth estimation, the effect of geometric 
verification is particularly evident, as it significantly reduces the error at 
the cost of completeness. Although the variant PSLBestKOcc GPP achieves 
the best result compared to PSLSplitOcc GPP and FaSS-MVSGPP, it also has 
by far the highest run time. The self-supervised method has the advan
tage that the depth is only estimated from a singular image, which leads 
to its fast execution speed, but the error is significantly higher when 
compared to using the conventional methods. One factor here is prob
ably the particularly challenging nature and small amount of the 
training data, which is also reflected in the fact that the deeper archi
tectures offer little added value. 

Even though the focus of this work was on depth estimation and 
dense reconstruction, the importance of good camera calibration is 
noticeable. The experiments that conducted SFM to estimate intrinsic 
and extrinsic camera parameters instead of using the ground truth in
formation yielded significantly worse results. However, this can be 
largely mitigated if at least the intrinsic parameters are specified. In the 
future, it would be interesting to investigate the performance of SFM 
using different approaches in more detail by comparing the recon
structed camera trajectory with the ground truth. We have only indi
rectly evaluated this by observing a drop in performance in terms of 
depth estimation and dense reconstruction. 
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2016. Embedded real-time stereo estimation via semi-global matching on the gpu. 
Procedia Comput. Sci. 80, 143–153. 

Hirschmueller, H., 2005. Accurate and efficient stereo processing by semi-global 
matching and mutual information. In: Proc. IEEE Computer Society Conference on 
Computer Vision and Pattern Recognition, pp. 807–814. IEEE.  

11 https://github.com/UseGeoEvaluation/DepthEstimationAnd3DReconstruct 
ion. 

M. Hermann et al.                                                                                                                                                                                                                              

https://github.com/mapillary/OpenSfM
http://refhub.elsevier.com/S2667-3932(24)00008-5/sref2
http://refhub.elsevier.com/S2667-3932(24)00008-5/sref2
http://refhub.elsevier.com/S2667-3932(24)00008-5/sref3
http://refhub.elsevier.com/S2667-3932(24)00008-5/sref3
http://refhub.elsevier.com/S2667-3932(24)00008-5/sref3
http://refhub.elsevier.com/S2667-3932(24)00008-5/sref4
http://refhub.elsevier.com/S2667-3932(24)00008-5/sref4
http://refhub.elsevier.com/S2667-3932(24)00008-5/sref5
http://refhub.elsevier.com/S2667-3932(24)00008-5/sref5
http://refhub.elsevier.com/S2667-3932(24)00008-5/sref6
http://refhub.elsevier.com/S2667-3932(24)00008-5/sref6
http://refhub.elsevier.com/S2667-3932(24)00008-5/sref6
http://refhub.elsevier.com/S2667-3932(24)00008-5/sref7
http://refhub.elsevier.com/S2667-3932(24)00008-5/sref7
https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=YicbFdNTTy
http://refhub.elsevier.com/S2667-3932(24)00008-5/sref9
http://refhub.elsevier.com/S2667-3932(24)00008-5/sref9
http://refhub.elsevier.com/S2667-3932(24)00008-5/sref9
http://refhub.elsevier.com/S2667-3932(24)00008-5/sref10
http://refhub.elsevier.com/S2667-3932(24)00008-5/sref10
http://refhub.elsevier.com/S2667-3932(24)00008-5/sref10
http://refhub.elsevier.com/S2667-3932(24)00008-5/sref11
http://refhub.elsevier.com/S2667-3932(24)00008-5/sref11
http://refhub.elsevier.com/S2667-3932(24)00008-5/sref11
http://refhub.elsevier.com/S2667-3932(24)00008-5/sref12
http://refhub.elsevier.com/S2667-3932(24)00008-5/sref12
http://refhub.elsevier.com/S2667-3932(24)00008-5/sref13
http://refhub.elsevier.com/S2667-3932(24)00008-5/sref13
http://refhub.elsevier.com/S2667-3932(24)00008-5/sref13
http://refhub.elsevier.com/S2667-3932(24)00008-5/sref14
http://refhub.elsevier.com/S2667-3932(24)00008-5/sref14
http://refhub.elsevier.com/S2667-3932(24)00008-5/sref15
http://refhub.elsevier.com/S2667-3932(24)00008-5/sref15
http://refhub.elsevier.com/S2667-3932(24)00008-5/sref16
http://refhub.elsevier.com/S2667-3932(24)00008-5/sref16
http://refhub.elsevier.com/S2667-3932(24)00008-5/sref16
http://refhub.elsevier.com/S2667-3932(24)00008-5/sref17
http://refhub.elsevier.com/S2667-3932(24)00008-5/sref17
http://refhub.elsevier.com/S2667-3932(24)00008-5/sref17
http://refhub.elsevier.com/S2667-3932(24)00008-5/sref18
http://refhub.elsevier.com/S2667-3932(24)00008-5/sref18
http://refhub.elsevier.com/S2667-3932(24)00008-5/sref18
http://refhub.elsevier.com/S2667-3932(24)00008-5/sref19
http://refhub.elsevier.com/S2667-3932(24)00008-5/sref19
http://refhub.elsevier.com/S2667-3932(24)00008-5/sref20
http://refhub.elsevier.com/S2667-3932(24)00008-5/sref20
http://refhub.elsevier.com/S2667-3932(24)00008-5/sref20
http://refhub.elsevier.com/S2667-3932(24)00008-5/sref21
http://refhub.elsevier.com/S2667-3932(24)00008-5/sref21
http://refhub.elsevier.com/S2667-3932(24)00008-5/sref21
http://refhub.elsevier.com/S2667-3932(24)00008-5/sref22
http://refhub.elsevier.com/S2667-3932(24)00008-5/sref22
http://refhub.elsevier.com/S2667-3932(24)00008-5/sref22
http://refhub.elsevier.com/S2667-3932(24)00008-5/sref23
http://refhub.elsevier.com/S2667-3932(24)00008-5/sref23
http://refhub.elsevier.com/S2667-3932(24)00008-5/sref24
http://refhub.elsevier.com/S2667-3932(24)00008-5/sref24
http://refhub.elsevier.com/S2667-3932(24)00008-5/sref24
http://refhub.elsevier.com/S2667-3932(24)00008-5/sref25
http://refhub.elsevier.com/S2667-3932(24)00008-5/sref25
http://refhub.elsevier.com/S2667-3932(24)00008-5/sref25
http://refhub.elsevier.com/S2667-3932(24)00008-5/sref26
http://refhub.elsevier.com/S2667-3932(24)00008-5/sref26
http://refhub.elsevier.com/S2667-3932(24)00008-5/sref27
http://refhub.elsevier.com/S2667-3932(24)00008-5/sref27
http://refhub.elsevier.com/S2667-3932(24)00008-5/sref27
http://refhub.elsevier.com/S2667-3932(24)00008-5/sref28
http://refhub.elsevier.com/S2667-3932(24)00008-5/sref28
http://refhub.elsevier.com/S2667-3932(24)00008-5/sref28
http://refhub.elsevier.com/S2667-3932(24)00008-5/sref29
http://refhub.elsevier.com/S2667-3932(24)00008-5/sref29
http://refhub.elsevier.com/S2667-3932(24)00008-5/sref29
http://refhub.elsevier.com/S2667-3932(24)00008-5/sref30
http://refhub.elsevier.com/S2667-3932(24)00008-5/sref30
http://refhub.elsevier.com/S2667-3932(24)00008-5/sref30
https://github.com/UseGeoEvaluation/DepthEstimationAnd3DReconstruction
https://github.com/UseGeoEvaluation/DepthEstimationAnd3DReconstruction


ISPRS Open Journal of Photogrammetry and Remote Sensing 13 (2024) 100065

20

Hirschmueller, H., 2008. Stereo processing by semi-global matching and mutual 
information. IEEE Trans. Pattern Anal. Mach. Intell. 30, 328–341. 

Huang, B., Yi, H., Huang, C., He, Y., Liu, J., Liu, X., 2021. M3VSNET: unsupervised multi- 
metric multi-view stereo network. In: Proc. IEEE International Conference on Image 
Processing, pp. 3163–3167. 

Huang, P.H., Matzen, K., Kopf, J., Ahuja, N., Huang, J.B., 2018. DeepMVS: learning 
multi-view stereopsis. In: Proc. IEEE Conference on Computer Vision and Pattern 
Recognition, pp. 2821–2830. 

ISPRS Scientific Initiative UseGeo, 2023a. UAV-based multi-sensor datasets for 
geospatial research – ISPRS Scientific Initiative 2021-2022. URL: https://usegeo.fbk. 
eu/. Aug 2023.  

ISPRS Scientific Initiative UseGeo, 2023b. UseGeo – UAV-based multi-sensor dataset for 
geospatial research. URL: https://github.com/3DOM-FBK/usegeo. Aug 2023.  

Jaderberg, M., Simonyan, K., Zisserman, A., Kavukcuoglu, K., 2015. Spatial transformer 
networks. In: Proc. Advances in Neural Information Processing Systems, 
pp. 2017–2025. 

Kang, S.B., Szeliski, R., Chai, J., 2001. Handling occlusions in dense multi-view stereo. 
In: Proc. IEEE Computer Society Conference on Computer Vision and Pattern 
Recognition, pp. 103–110. 

Kazhdan, M., Hoppe, H., 2013. Screened Poisson surface reconstruction. ACM Trans. 
Graph. 32, 1–13. 

Kerle, N., Nex, F., Gerke, M., Duarte, D., Vetrivel, A., 2020. UAV-based structural damage 
mapping: a review. ISPRS Int. J. Geo-Inf. 9. 

Kern, A., Bobbe, M., Khedar, Y., Bestmann, U., 2020. OpenREALM: real-time mapping for 
unmanned aerial vehicles. In: Proc. International Conference on Unmanned Aircraft 
Systems, pp. 902–911. 

Khot, T., Agrawal, S., Tulsiani, S., Mertz, C., Lucey, S., Hebert, M., 2019. Learning 
unsupervised multi-view stereopsis via robust photometric consistency. In: Proc. 
IEEE Conference on Computer Vision and Pattern Recognition Workshops. 
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