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Cutting and abrasive processes affect the surface layer state of the components treated. This determines their
performance in service. An adjustment of the surface layer properties would allow for enhanced performance.
This paper introduces the influences of named processes on the surface layer state and their systematics.
Models and sensor concepts for surface conditioning are described and combined to soft sensors which are
the basis for active control within the processes. A validation study and actual applications of the condition-
ing concept are shown, allowing for further technological and scientific understanding of surface condition-
ing and its contribution to material and energy efficiency.
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1. Introduction

All manufacturing processes influence the surface layer state of a
component, which in turn significantly determines the properties of
parts in service. Although it is intended to successfully exploit these
effects, knowledge of the conditioning of the surfaces in the context
of the final cutting and abrasive process of the component is still only
very limited today. For surface conditioning in cutting and abrasive
processes, mainly of metallic materials, not only geometric features
but also the characteristics of the surface layer are determined and
controlled as target values at the same time. This represents a para-
digm shift in manufacturing, because process control variables that
were previously fixed can now be varied within permissible limits
in order to meet both objectives concurrently. The generation of
the surface layer must be robust against disturbance variables in the
process.

The surface conditioning concepts emerging in the horizon are
compiled and presented in this paper. After presenting the rele-
vant terminology in Section 2, Section 3 shows the major surface
layer properties which may be induced in machining processes
and their effects on the functional properties, which are mainly
restricted to fatigue, tribology, and corrosion resistance. This sec-
tion concludes with a compilation of measurement techniques
for surface layer states which are evaluated according to their
availability for in-process applications. Section 4 presents the
established and upcoming models in the description of surface
layers which were mainly physics-based and are increasingly
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shifting to data-driven as well as hybrid models. Their combination
into soft sensors is the focus of Section 5 and is followed by the
actual concepts available in active control of surface layer proper-
ties in Section 6. Finally, some first applications are described in
Section 7, followed by a summary of the work presented with the
outlook in Section 8.

2. Terminology: from surface integrity to surface conditioning

The functional performance of a component in operation is
strongly influenced by the transformation of the workpiece in a
machining process and can be assessed by functional properties.
As part of the component properties, functional properties result
from the component’s geometry as well as characteristics of the
bulk material and the manufacturing-related modified surface
layer and can be determined in functional tests. The fact that, in
addition to geometry, material characteristics, in particular of the
modified surface layer, influence functional properties, was promi-
nently addressed for the first time by Field and Kahles with the
term “surface integrity”, coined in 1964 [70]. They defined surface
integrity as the inherent or enhanced condition of a surface pro-
duced in a machining or other surface generating operation” and
released an extensive list of alterable surface layer properties (cf.
Section 3) [71].

Subsequently, researchers and users have increasingly paid
attention to the surface layer properties when designing compo-
nents in order to achieve an improvement in surface functional-
ity. In manufacturing technology, the deliberate generation of
desired surface layer properties by a machining process—also
known as the inverse problem of manufacturing because it
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determines the process parameters based on the resulting surface
properties—has been an objective under the term “surface engi-
neering”. With specified system parameters, the machining
parameters considered as actuating variables that can be set at
the respective machining device to control the machining process
were investigated in terms of their effect on the surface layer
properties. By means of correlations between machining parame-
ters and resulting surface layer properties, effects have been
established in the past. However, their validity is usually limited
to the specific machining process and the range of the investi-
gated system and machining parameters. In an international
round robin test, conducted by a CIRP Collaborative Working
Group on Surface Integrity and Functional Performance of Compo-
nents between 2008 and 2010, it was impressively demonstrated
how challenging the deliberate generation of specific surface
layer properties on this basis remains. Most of the participating
research institutes were unable to generate a surface residual
stress of 200 MPa by a machining process of their own choice
[121]. Accordingly, at that point in time it was not possible, or
only possible to a very limited extent, to apply the existing
knowledge in such a way that surface layer properties could be
deliberately generated without an iterative approximation.

Among others, Brinksmeier et al. [33] pointed out that a
detailed examination of the events during machining along the
so-called chain of effects, also referred to as causal sequence in
other contexts, (see Fig. 1)and the respective correlations within
is necessary to solve the inverse problem in manufacturing with-
out expensive iterations. In a first step, the process loads result-
ing from the machining process and its parameters are
considered, which characterize the external impact on the work-
piece. Here, a distinction can be made between mechanical, ther-
mal, and chemical (main) impact or a combination of these, e.g.,
a thermo-mechanical impact, which is mostly the case for cutting
and abrasive processes. Correlations between process loads and
resulting surface layer properties already lead to a broader pro-
cess understanding, but a transfer to another system and machin-
ing parameters remains challenging.

In a next step in the chain of effects, the internal material
loads resulting from the process loads and energy conversion pro-
cesses are considered. The material reacts to these on the basis of
its specific material behavior by generating certain material modifi-
cations, which indicate changes in surface layer properties. In 2011

Modification of surface layer properties caused by loads
during the process and generation of a defined topography

Surface layer properties which
may be decisive for the functional

Brinksmeier et al. introduced the term “Process Signature” for all
correlations between internal material loads and material modifica-
tions [30]. Accordingly, a knowledge-based predictive adjustment of
a machining process in order to generate specific surface layer prop-
erties is achieved by utilizing the Process Signature and the further
correlations within the chain of effects.

Establishing Process Signatures significantly depends on the abil-
ity to determine spatially and temporally resolved internal material
loads (e.g., temperature- and stress-fields) and spatially resolved
material modifications (e.g., changes in hardness and residual
stresses) [32,34]. Especially the access to the internal material loading
state during the process is not straightforward and has therefore to
be complemented by models (cf. Section 4).

As the internal material loads reflect what the material experi-
ences during machining, this allows a more general description of
machining processes. However, until now it has always been
assumed that the optimized machining parameters stay static.
Even when Process Signatures are considered, surface engineering
remains with the assumption that no disturbance variables occur
that did not already exist when the correlations were established.
In order to take into account these observable or hidden distur-
bance variables when solving the inverse problem in manufactur-
ing, a closed-loop machining approach is available with surface
conditioning (cf. Section 6) [248]. In contrast to surface engineer-
ing, this is a knowledge-based, in-process-management of surface
layer properties. Thus, it requires a reliable surface layer state
monitoring and a dynamic control of the machining process.
Because conventional measurement technology is not able to
measure surface layer properties during machining, soft sensors
have to be developed that combine appropriate sensors with accu-
rate and quick models (cf. Section 5). Fig 2 shows the chain of
effects from the system and machining parameters to the func-
tional properties and summarizes the described development
from surface integrity to surface conditioning. Additionally, defini-
tions of the terms explained in this section are given based on the
work of a CIRP task force on a common understanding of the term
“surface integrity” led by Brinksmeier and Meyer in 2018 and on
the comprehensive glossary provided by Schulze et al. [228].
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Fig. 1. Chain of effects and terminology from surface integrity to surface conditioning.

Fig. 2. Surface layer properties.
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3. Surface layer properties after cutting and abrasive processes

Surface layer properties can be subdivided into geometrical prop-
erties and material characteristics of the modified surface layer. Fig. 2
shows exemplary surface layer properties and a classification con-
ducted by the CIRP task force in 2018. Since Field and Kahles’s
research, we know that the hardness, the presence of cracks, the
microstructure, and the roughness of a machined surface as well as
other surface layer properties can have a significant influence on the
functional properties of highly stressed metallic components. These
properties were part of a so-called “Minimum Data Set” of the Ameri-
can National Standard on Surface Integrity published in 1986 [242]. It
was recommended to extend the set by parameters of residual stress
distribution and behavior under cyclic loading in order to provide a
“Surface Integrity Standard Data Set”. The reliable determination of
the residual stress state as well as the fatigue strength is associated
with high effort, which severely limits the number of available
results. The standard itself specifies more than 20 surface layer prop-
erties that can affect the functional performance and thus influence
the surface integrity.

3.1. Correlation of surface layer properties with functional properties

In order to describe the functional performance of components,
functional tests are carried out from which functional properties can
be derived. Depending on the application, components must fulfill a
wide variety of functional properties, e.g., optical, electrical, biologi-
cal, magnetic, and esthetic properties. In this section, functional prop-
erties are restricted to mechanical, tribological, and chemical
functional properties, as these are often the most important ones for
machined components. Nonetheless, the concept of surface condi-
tioning is applicable for all functional properties of interest. Within
the three categories considered in the following, known correlations
of these functional properties with correspondingly subdivided sur-
face layer properties are described. Often, there is a pronounced
interaction of several surface layer properties in these correlations.
The evaluation of a separated influence of a single surface layer prop-
erty is therefore difficult to achieve, but it is also not mandatory due
to the likewise complex interaction during surface modification in
machining.

3.1.1. Mechanical properties

Mechanical functional properties quantify the component’s ability
to withstand an applied load without failure or plastic deformation.
The types of loading can be transverse, axial, or torsional. Besides
static strength measures, cyclic loading reduces strength, thus fatigue
strength is often more important for the in-service functional perfor-
mance. Bending, torsion, and also notches lead to maximum stresses
on the component’s surface resulting in crack initiation and a low-
ered fatigue strength. This underlines the importance of surface layer
properties after machining. For the characterization of the fatigue
strength, cyclic stress is plotted against the cycles to failure in S-N
curves and a distinction is made between low cycle fatigue and high
cycle fatigue up to a fatigue limit, where an infinite number of load-
ing cycles can be applied. Regarding fatigue strength, the compo-
nent’s topography can be of particular importance. Novovic et al.
stated a non-negligible effect when the average surface roughness
exceeds Ra > 0.1 um [188]. In another work, Novovic et al. investi-
gated the high cycle fatigue of machined titanium alloy workpieces
and separated the influence of the topography and residual stresses
by means of stress relief annealing [187]. Again, it was proven that a
low surface roughness results in a longer lifetime of the component.
Moreover, compressive residual stresses also lead to a higher fatigue
strength.

This was also found in the early work of Field and Koster, who
demonstrated a direct influence of surface residual stresses after
grinding on the fatigue strength of bending fatigue specimens [72]. It

was shown that the fatigue strength could be more than doubled by
the introduction of compressive residual stresses alone. Scholtes and
Macherauch show results on the influence of milling on the bending
fatigue strength [223]. In soft-annealed specimens of AISI 1045, ten-
sile residual stresses of +210 MPa or compressive residual stresses of
—300 MPa could be generated with otherwise similar surface layer
properties. Despite differences in the magnitudes of the surface resi-
dual stresses of more than 500 MPa, the same S-N curves occur in
both cases. Thus, the residual stresses have no influence on the
fatigue strength. In contrast, hardened specimens of AISI 1045, in
which surface residual stresses of different magnitude and sign were
generated by different grinding parameters, show a strong influence
of residual stresses on the fatigue strength. Compressive residual
stresses increase the fatigue strength, while larger tensile residual
stresses drastically decrease it. The fatigue strength therefore
strongly depends on the material condition and the different stability
of the residual stresses. Measurements after certain numbers of load
cycles show that residual stresses are almost completely relieved
until fracture in the normalized state, while they remain almost
unchanged in the hardened state.

Smith et al. investigated the high cycle tension fatigue strength
after hard turning of AISI 52100 steel [245]. The results revealed that
the effect of residual stresses is more significant than the effect of a
white layer and the fatigue strength is directly proportional to both
the surface compressive residual stress and the maximum compres-
sive residual stress.

Sasahara investigated the effect of surface residual stress and
hardness resulting from different turning conditions (variation of
tool nose radius, feed rate, and kind of tool edge) of AISI 1045 steel
on rotating bending fatigue life (Fig. 3) [214]. Results show a higher
fatigue life if compressive residual stresses and high hardness can
be induced by the cutting process. This situation can be realized by
applying a low feed rate, a small corner radius and a chamfered cut-
ting edge tool. For hardened components, the calculation of the
influence of the local combinations of hardness and residual stress
depth profiles as well as roughness on the fatigue strength is possi-
ble using the concept of local fatigue strength or the weakest-link
concept [25]. The local failure probability after multi-axial and irreg-
ular loading can be determined on the basis of statistically distri-
buted irregularities in the component. Further conceptual
approaches regarding the correlation between surface layer proper-
ties and fatigue strength are summarized in [159,226]. While the
weakest-link concept focuses on crack initiation, crack growth-ori-
ented approaches are presented in [159] showing the possibility of
preventing cracks from growing due to residual stresses. A combi-
nation of evaluation of crack initiation and the ability of crack
growth is developed in [227]. More sophisticated concepts are given
by damage parameters introduced in [69,243].
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Fig. 3. Interaction of axial residual stress and hardness on fatigue life, grouped in four
regions (A, B, C, D) [214].
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3.1.2. Tribological properties

Tribological functional properties quantify the frictional and
wear behavior by investigating the component after various con-
tact tests. With regard to the friction and wear behavior of sliding
and rolling elements, both the initial condition of the surface or
the subsurface layer (e.g., topography, grain size, residual stresses)
set by the manufacturing process and their dynamic changes dur-
ing tribological loading are of great importance. The interrelation-
ships have been investigated in the past in a fundamental oriented
manner, e.g., on non-lubricated Cu pairs [14,117,206], but espe-
cially with regard to the running-in behavior of technical, lubri-
cated sliding systems [23,49,217,218]. Within the tribological
contact zone, depending on the initial grain size as well as the
stress and environmental conditions, grain refinement can occur
as a result of plastic deformation as well as grain coarsening due to
grain boundary movement and dynamic recrystallization. At the
same time, phase transformations, mechanical and chemical inter-
mixing can be observed. This leads to the formation of a so-called
third body, which under favorable conditions reaches a state of
equilibrium of new formation and degradation through wear,
which subsequently determines the friction and wear behavior of
the tribological system [84]. The complex relationships and mutual
interactions between friction coefficient, surface stress, and grain
size mean that the relevant processes have so far usually only been
described qualitatively.

Regarding the rolling contact fatigue of a hard turned specimen of
AISI 52100 steel (62 HRC), Schwach and Guo isolated the effects of
residual stresses by polishing to a roughness of Ra = 0.1 pm [229]. Their
results confirm the importance of surface and near-surface residual
stresses. They also reveal that a component without a white layer can
have a lifespan six times longer than a component with a white layer.
As the white layer increases in thickness, the fatigue life decreases.

For the same material, Guo and Waikar conducted sliding contact
tests on a ball-on-disk tribometer at dry and lubricated conditions
and different load levels [99]. A white layer generated in turning
decreases the coefficient of friction, while grinding significantly
increases the coefficient for dry conditions. For lubricated conditions,
these results reverse.

Cho et al. analyzed the white layer by nanoindentation and
revealed a higher elastic modulus, yield strength, and hardness than
the bulk material [51]. In terms of wear resistance, the increased
surface hardness can be beneficial. However, their results show a
dependency on the load level. For high contact pressures, fast crack
propagation can lead to delamination and reduces the wear resis-
tance.

3.1.3. Chemical properties

Important chemical functional properties mainly quantify the cor-
rosion behavior of components. As roughness increases the effective
surface, corrosion resistance is affected by the topography. Walter
and Kannan confirmed an increase in corrosion current and pitting
tendency with increasing surface roughness of a magnesium alloy in
chloride-containing environment [283]. The same is shown by vari-
ous researchers for stainless steels [109,215,236,310], where pitting
and the corrosion rate increases, and for copper [150], and titanium
alloys [40]. Moreover, Prevey and Cammett revealed that a higher
hardness increases corrosion resistance of aluminum alloys in a salt
fog environment [197].

3.2. Mechanisms of generation of surface layer properties

Modification of surface layer properties can have mechanical,
thermal, or chemical causes and, in the case of machining, often also
simultaneous combinations of these in a highly nonlinear manner.
Karpuschewski et al. [131] show the related mechanisms in a triangle
spanning these three causes, see Fig. 4. In this section, mechanisms
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Fig. 4. Triangle of process loads and classification of induced mechanisms therein
[131].

are explained in detail for changes in the topography, microstructure
and hardness as well as residual stresses.

3.2.1. Generation of topography

Along with the purely geometric topography formation that
takes place during machining due to a kinematic intrusion of the
tool cutting edges with the workpiece, material mechanisms also
modify the topography. In their comprehensive review, Liao et al.
summarize these mechanisms [155]. As an important cause, they
identify particles that are created during machining and get into the
contact zone. These result in plucking, but also in surface tearing
and grooves. In materials with a low ductility, cracks may originate
from this. Further mechanisms are smearing due to the plastic
deformation caused by the flank face and adhesion of material due
to high contact stress.

3.2.2. Generation of microstructure and hardness

In machining, a combination of all three types of process loads are
involved in modifying the microstructure and hardness. However, for
the description of important mechanisms, their impact will first be
discussed separately in the following section. The mechanical process
load leads to squeezing of the surface layer and thus to shearing and
high strains in the workpiece resulting in deformed grains and even
grain refinement and sub-grains in a mechanically induced white
layer. Dislocation lines slide through the crystal lattice until they
accumulate at grain or phase boundaries and lead to the work hard-
ening effect. Thus, the distortion of the crystal lattice significantly
contributes to an increased hardness value in the measurement. For
shot peening, Wohlfahrt developed a model described in [223,226]
which separates effects of Hertzian pressure from the stretching of
surface layers. Scholtes adopted this to cutting in [222]. This is shown
schematically in Fig. 5.

The thermal process load rapidly heats the surface layer, fol-
lowed by a rapid cooling due to self-quenching of the material and
heat loss via metal working fluid. Due to the resulting temperature
changes in time and space, the microstructure and hardness can be
modified. Already comparatively low temperatures can lead to a
softening/tempering effect and a reduction of hardness. When the
recrystallization temperature is exceeded, dynamic recrystallization
of highly deformed grains form a thermally-induced white layer.
Even higher temperatures lead to solid-state phase transformation.
For steels, a diffusive driven austenitization takes place and the unit
cell structure changes from body-centered to face-centered cubic.
Dependent on the following cooling rate, the grains transform into
ferrite, perlite, bainite, or martensite. The martensitic transforma-
tion especially affects the surface layer by a strength-increasing
grain refinement.
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tensile residual stresses

3.2.3. Generation of residual stresses

A typical residual stress depth profile after machining shows com-
pressive and tensile stresses in a “hook” shaped profile, where the
thermal process load leads to tensile stresses in the near-surface layer
and the mechanical load to compressive stresses with a greater influ-
enced depth. During machining, the mechanical load initially causes
compressive and then tensile stresses, which increase up to the yield
point. The plastically strained layers are elongated and must be com-
pressed by the residual stresses in order to maintain the cohesion of
the solid. Thus, compressive residual stresses remain after unloading.

The thermal load also generates typical residual stresses. The sur-
face layer expands with the temperature increase and leads to com-
pressive stresses while machining. According to the temperature-
dependent reduced yield point, the material deforms plastically. After
cooling, the shortened surface layer must be lengthened by tensile
residual stresses. This effect of thermal yielding can be outweighed
by an opposite mechanism when materials with low transformation
temperatures and a volume increase during transition from high to
low temperatures are machined. As a result of rapid self-quenching,
the solid-state phase transformation generates compressive residual
stresses.

The thermal driven process is depicted in more detail in Fig. 6.
Number 1 represents the compressive stresses in the surface layer,
while this stress is partially reduced in number 2 following the yield
strength. Without phase transformation, tensile residual stresses
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Fig. 6. Schematic illustration of residual stress formation in the surface layer during
thermal loading [231].

remain after cooling. In case of further heating, above austenitization
temperature, compressive stresses are initially reduced in number 3
and, due to a higher thermal expansion coefficient, increased again.
Number 4 represents the cooling, where the cooling rate plays an
important role. For low cooling rates, tensile residual stresses again
remain in the surface layer (number 5). High cooling rates lead to
martensite formation and the accompanying volume increase gener-
ates compressive stresses in number 6, which remain in the surface
(number 7).

3.3. Measurement of surface layer properties

The use of advanced surface characterization methods to assess
the roughness and form errors of the machined surface, as well as the
nature of the alterations produced in very thin layers of the machined
surface is the key means to ensure that the machined parts meet
application requirements, and in turn provides a reference for pro-
cess optimization. The surface measurement can be classified in
terms of conditions, as shown in Fig. 7 [80]. Among them, in-process
measurement, which is defined as an on-machine measurement of
workpiece surface carried out while the manufacturing process is
taking place, is the ultimate form of measurement. Although exten-
sive literature reviews have been carried out on surface integrity
evaluation, the measurement conditions are non in-process
[121,142,153,160,268]. Therefore, in this section we mainly focus on
in-process measurement. Measurement technologies mentioned
here include those that have already been used and those having
potential for possible use in industry. These measurement
approaches will also provide technical support for developing soft
sensors which will be further discussed in Section 5. The measure-
ment of surface layer properties will be discussed on the aspects of
topography, microstructure, and residual stress, which is in line with
the structure of Section 3.2.

In-process
Non in-process On-machine
In-line Off-process
(On-line) B
In-situ Off-Machine
Pre-process
Measurement Off-line
conditions Post-process
Ex-situ

Fig. 7. Conditions of surface layer properties measurement (modified from Ref. [80]).

3.3.1. Measurement of topography

Optical measurement systems, such as white-light interferometer
and confocal laser scanning microscope, and probe-scan systems,
such as scanning probe microscope, are commonly used for charac-
terizing surface form errors and surface texture. In the optical mea-
surement systems, a light beam is projected onto a certain area of the
workpiece surface for capturing the three-dimensional (3D) topo-
graphic information over an area. In the probe-scan systems, a
mechanical or optical stylus attached to a displacement sensor scans
the workpiece surface in a point-by-point or a continuous-path mode
to trace the surface texture. Integrating the above measurement sys-
tems into machine tools by replacing the motion stage of the original
measuring system with the machine tool axes, the workpiece surface
can be measured on the machine tool that manufactured it, which is
known as on-machine measurement systems. Gao et al. [80] provided
a review of the surface metrology for precision manufacturing and
discussed extensively on-machine measurement systems. Although
these on-machine measurement systems can measure the workpiece
topography with high accuracy, the machining must be stopped dur-
ing the measurement to reduce the environmental problems that are
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generated in the machining process, such as part vibration, and dis-
turbances of chips and cutting fluids.

In the in-process measurement, to deal with the environmental
problems, the use of sensors for indirect measuring is a possible solu-
tion. Angle-resolved scattered light (ARS) sensor is a state-of-the-art
sensor for in-process measurement. Uebel et al. [264] developed a
topography measurement system combining an ARS sensor and a
pneumatic distance sensor, as illustrated in Fig. 8. The measuring
point of workpiece surface is cleaned by dry ice from a pneumatic
cleaning nozzle, and the pneumatic sensor is used to position the ARS
sensor at the desired focal plane. A LED light source provides colli-
mated light which is imaged onto the workpiece surface by a mea-
surement objective lens. The workpiece surface reflects the light, and
the reflected intensities are measured by the ARS sensor. This mea-
surement process is very robust because the topography heights of
the surface are not measured but rather their surface angles. As a
result, high precision measurement data of the examined surface
structures is obtained [232].

Fig. 8. Schematic layout of the opto-pneumatic ARS sensor: (a) linear PDA, (b) LED, (c)
collimated beam, (d) scattering light, (e) lens, (f) window, (g) measuring chamber, (h)
measuring nozzle, (i) workpiece, (j) pre-nozzle, (k) pre-chamber, (1) air supply (modi-
fied from Ref. [264]).

Also, monitoring machining characteristics is an effective
method to in-process evaluate the variation trend of workpiece
topography with less complexity and high suitability. For example,
the use of acoustic emission sensors in the machining of brittle
materials can characterize crack formations [90]. Sensors for mea-
suring vibration, temperature, pressure, power consumption, and
cutting force also have the potential to evaluate workpiece topogra-
phy by observing the changes of the signals from these sensors
[79,138], although these signals cannot quantitatively describe the
topography.

3.3.2. Measurement of microstructure and hardness

Mechanical and thermal influence generated in machining
processes can alter the microstructure of the layer near the
machined surface. The conventional techniques for characterizing
the microstructures of both metals and non-metals are X-ray dif-
fraction (XRD), which detect surface oxidation/chemical reactions
[89,140], phase transformations [304,306], and metallographic
textures [167]; electron backscattered diffraction (EBSD), which
measures lattice rotation [293], local dislocation/misorientation
[115,177], and recrystallization/grain refinement [156,304]; and
micro/nano indentation, which determines surface layer hardness
[298,304]. Additionally, for non-metallic crystals, Raman spectros-
copy and catho-doluminescence spectroscopy are widely used to
detect phase transformation [296] and thickness of subsurface
damage layer [7], respectively.

In-process measurements of the microstructure of steel/alloy
surfaces have been well developed [37]. Micromagnetic Barkhau-
sen Noise (MBN) is a typical proven technique for monitoring sur-
face integrity [260]. An MBN sensor can detect the discrete jumps
of magnetic domain walls in a varying magnetic field. The motion
of these walls is influenced by mechanical properties such as resid-
ual stresses and microstructural features as grain sizes [220].
Therefore, MBN signals can be used to evaluate white layer forma-
tion [250] and phase transformation [181]. In general, if the surface
and subsurface layers of a workpiece exhibit reduced hardness due
to the thermal damage, the level of the MBN signal increases [106].
However, MBN sensors are not applicable when detecting nickel
superalloys and titanium alloys due to the paramagnetism of those
alloys. An Eddy current (EC) sensor is another suitable sensor,
which can fill the gap left by the limitation of MBN sensors. When
using an EC sensor, eddy currents are induced in the near surface
of a workpiece by a primary alternating magnetic field generated
by the test probe, as shown in Fig. 9. The magnitude of the eddy
currents is influenced by workpiece microstructural features. At
the same time, these eddy currents produce a magnetic field that
opposes the field generated by the probe coil. The magnetic fields
interaction is reflected in the voltage output. As a result, EC sensors
are useful for white layer detection and macroscopic grain texture
measurements [75,194]. Magnetic sensors exhibit high sensitivity
to process disturbances such as vibrations, as they can result in
variations in the sensor-workpiece distance or temperature fluctu-
ations, leading to localized modifications in the magnetic proper-
ties [101]. Surface acoustic wave (SAW) sensors are also applicable
to a surface microstructure detection because the propagation
velocities of the surface acoustic wave (also known as Rayleigh
waves) traveling along a workpiece surface are sensitive to the
crystallographic texture. Using a laser to thermo-elastically gener-
ate a surface acoustic wave on a workpiece followed by capturing
the frequency and wavelength of the generated acoustic wave,
subsurface defects and crystallographic texture changes can be
detected [36,244]. Additionally, acoustic emission (AE) sensors can
capture the ultrasound bursts that emit from microcrack forma-
tions within the workpiece or the chip segmentation process
[230].They are also used for monitoring the grinding burn phe-
nomenon [130,157] and subsurface integrity [95,258] in the grind-
ing of materials having low thermal conductivity. Similarly,
cutting force sensors [173,247], temperature sensors [289], and
thin-film sensors [85] have also been used to estimate white layer
thickness and surface hardness during the machining process by
analyzing the measured cutting forces and process temperatures.

Alternating current | — \\

Y/

Crack
Secondary magnetic field

| Electrical conductive material

Primary magnetic field

x Eddy currents

Fig. 9. Principle of eddy current testing [81].

3.3.3. Measurement of residual stress

The sin?¥ method-based XRD residual stress technique is the
most common way to obtain residual stress in machined crystalline
materials [93]. The stress is obtained from the slope of the relation of
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the diffraction angle or lattice strain plotted against the sin>¥, where
the diffraction angle is measured at several tilt angles ¥ of X-ray inci-
dence by the zero- or one-dimensional sensor. Also, many attempts
have been made to improve the measuring depth and analysis accu-
racy of residual stresses. For example, Genzel et al. [82] applied
energy-dispersive diffraction for residual stress depth profiling in the
zone deeper than 10 um from the surface. Erbacher et al. [68] devel-
oped a method based on polynomials fitted to the “26 vs. sin*¥ ” plot
obtained from XRD measurements to characterize residual stresses
with steep gradients. By contrast, a new method called the “cosa
method” using a two-dimensional sensor to obtain the crystal distor-
tion is receiving extensive attention [253]. The stress analyzers based
on this method are smaller in size and provide faster stress acquisi-
tion. Therefore, the cose method is promising for the in-process mea-
surement of residual stress. For non-metallic crystals, residual stress
is also often measured using Raman microscopy. The value of the
stress is determined by comparing the peak position in the machined
area with that in the unmachined area [116,178]. For glass, optical
tensor field tomography has been applied for automatic measure-
ment of residual stress [2], which has potential as a sensor to use in
the in-process measurement.

According to the working principle of Micromagnetic Barkhau-
sen Noise and eddy current sensors mentioned in subSection 3.2.2,
both sensors are capable of in-process measuring residual stress
[3,124]. Junge [128] developed a predictive model of residual stress
related to machining temperature and cutting forces, which conse-
quently allows for evaluating residual stress by using temperature
and cutting force sensors. Similarly, acoustic emission sensors can
be applied to monitor tool wear conditions and then estimate the
residual stress within the workpiece [230]. Moreover, combinations
of sensors can be made to measure the surface integrity more com-
prehensively. Typical examples are micromagnetic multiparametric
microstructure and stress (3MA) sensors, which combine Micro-
magnetic Barkhausen Noise, harmonic analysis of the tangential
magnetic field strength, multi-frequency eddy current analysis, and
incremental permeability for measuring microstructures and
mechanical properties of ferromagnetic materials [28,291]. Table 1
summarizes the sensors that can be used in the in-process measure-
ment of surface layer properties.

Table 1
List of typical sensors that can be used in the in-process measurement of surface
layer properties.

Type of sensors

Determinable surface layer
properties

Material
limitations

Angle-resolved scat-
tered light sensor

Acoustic emission
sensor

Temperature sensor

Cutting force sensor

Micromagnetic Bark-
hausen noise sensor

Eddy current sensor

Surface acoustic wave
sensor

Micromagnetic multi-
parametric micro-
structure and stress
analyzer (3MA)
sensor

Surface roughness [264]

Surface cracks [90], surface
burn [157,287], white layer
[95,258], residual stress
[230]

Hardness and grain size [289],
residual stress [128], surface
burn [78]

Hardness [247], white layer
[173,182], residual stress
[128]

Hardness and residual stress
[124], surface burn
[143,180],

phase transformation [181],
white layer [35,219,251]

Phase transformation [75],
residual stress [3], white
layer [194]

Subsurface defects [244],
phase transformation [36]
Hardness, microstructure fea-
tures, and residual stress

[291], white layer [28]

No limitations

No limitations

No limitations

No limitations

Ferromagnetic
materials

Electrical
conductors

No limitations

Ferromagnetic
materials

3.4. Correlation of surface layer properties with machining parameters

In this section, the influences of varying machining parameters on
the resulting surface layer properties after cutting are presented. As
already shown, the direct correlation between these two quantities is
usually only valid for the specific use case. In the following, therefore,
advanced approaches will also be presented which allow a material-
oriented relationship by correlating the surface layer properties with
process loads or internal material loads in Process Signatures. Fur-
thermore, the section is subdivided into effects on the topography,
microstructure, and hardness as well as residual stresses.

3.4.1. Effect on topography

During cutting, the shape of the tool is replicated in the work-
piece surface, and roughness is mostly affected by the feed rate. For
turning, for example, it is possible to determine the theoretical
roughness R, or R, of a non-deforming material after machining
on an ideally stiff machine tool by knowing the feed rate and the
tool corner radius. Fig. 10 shows the dependence of two surface
roughness quantities on the feed rate for hard turning of AISI 52100.
The measured, as well as the theoretical roughness increase with
increasing feed rate. However, especially at low feed rates, there is a
deviation from the theoretical value, which increases quadratically
with the feed rate and decreases linearly with the tool corner radius.
The generated topography therefore also results from the interac-
tion of mechanical and thermal loads. While the effects of machin-
ing parameters are not always unambiguous and depend on the tool
and the heat treatment, clear trends can be identified. Regarding an
increase of the feed rate, higher process forces must be taken into
account.

20 I « 03
i =
< ; g wm /
& um ¥ i ./l/
0,
: ‘ ! 202 I
< | (4 i i
210 | > 015 o
fe] 1 i
5 L attinn | Palil
g . Rp=f /87, | ® 01 » :
gos .") / : A ;
=1 @ 0.05
7] o i
oLlas—" g o '
0 0.05 01 mm 02 ®© V] 0.05 01 mm 0.2
feed f feed f
workpiece material: 100Cr6, tool geometry: cutting parameters:
AISI 52100  DNMA 120420 Ve = 150 m/min
60-62 HRC FRE: 5 X, ! ap=0.1mm
cutting tool material: PCBN % N % :,:e %_;a% ca} :’% 0 : } °
unwom tool il 55 6|20 mm

313/20187e © IFW

Fig. 10. Surface roughness after hard turning and its dependence on the feed rate
[259].

The higher mechanical load results in greater tool deflection and
an increased tendency for vibrations, as shown for example by Saini
et al. [211] and Rech et al. [204]. An increase in roughness with
increasing feed rate is thus also documented by many other authors,
e.g., [257,268,302]. Increasing the cutting velocity initially leads to a
reduction in the process forces, since the influence of thermal soften-
ing predominates over strain and strain rate hardening. As the cut-
ting velocity is further increased, this behavior reverses and the
process forces begin to increase. In high speed turning, cutting tem-
perature and forces decrease again. In this context, the cutting forces
are positively correlated with the surface roughness, i.e., a reduction
can be observed [211,305], followed by an increase in the roughness
[302]. An influence of the depth of cut on roughness has also been
reported in literature, but the nature of it seems to depend on the
specific process conditions. Thus, no influence as well as a positive
and negative influence of an increased depth of cut on the roughness
are found [211,257,268].

3.4.2. Effect on microstructure and hardness
Changes in microstructure and hardness are mainly studied for
hard machining with geometrically defined and undefined cutting
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edges. Bosheh and Mativenga analyzed white layers with a hardness
above the bulk material when hard turning H13 steel [26]. With
increasing cutting velocity, the width of the white layer and the
hardness decrease. A reason considered is that more heat is carried
away by the chips and less heat is transferred to the workpiece, in
an even shorter contact time. This was also observed in a review by
Yin et al. [302]. However, most of the works report an increase in
white layer width when increasing the cutting velocity or increasing
the feed rate [8,53,100,257,302]. These works reveal higher temper-
atures in the surface layer. Umbrello showed a hardness increase
and a deeper layer of modified hardness when increasing the cut-
ting velocity or the feed rate in turning of a Nickel-base superalloy
[270]. Regarding greater depths of cut, Grzesik et al. [88] and Stamp-
fer et al. [247] determined an increased hardness after turning of
steels.

More advanced approaches can mainly be identified for grinding
as temperatures are generally higher and modification in the micro-
structure is promoted. There are many works discussing the so-called
“grinding burn limit”, identifying a developing tempering zone and
an unwanted softening of the microstructure of hardened workpie-
ces. Pioneering work was undertaken by Malkin and Lenz [165] and
Malkin and Guo [164] who defined a critical specific energy in depen-
dence of the depth of cut and the tangential feed rate. Based on these
findings, Heinzel et al. suggest that the critical limit can be better pre-
dicted by considering the contact time in addition to the specific
grinding power [104] and developed so-called surface layer modifica-
tion charts [103]. In Fig. 11 micrograph results for different grinding
processes confirm the grinding burn limit and its dependence on the
process load.

A continuous generating gear grinding (AISI1.7131/16MnCr5): Malkin's grinding burn limit:
O external cylindrical grinding (AISI1.6587/18CrNiMo7-6) < empirically proven
O profile grinding (AISI1.7147/20MnCr5) x not proven empirically
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Fig. 11. Surface layer modification chart for different grinding processes [103].

Guba et al. even verified this critical limit for discontinuous profile
grinding [91]. In addition, surface layer modification charts were
developed, which represent the measured contact zone temperature
over the contact time or alternatively over the tempering time [125].
Thus, for the occurrence of grinding burn, the validity of correlations
could be demonstrated across materials and processes by means of
process loads and internal material loads.

Kohls et al. were able to develop correlations for the material
modification of hardness decrease with the Hollomon-Jaffe parame-
ter as a characteristic internal material load for the combined effect
of temperature and its change over time during grinding (see Fig. 12)
[137]. For specimens where annealing effects with/without temper-
ing zones and phase transformation were observed, individual Pro-
cess Signature components could be derived.

Influences on hardness were also investigated in the adjustment
of machining parameters for grind hardening. Heinzel et al. identified
an area within the surface layer modification chart from Fig. 11
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Fig. 12. Process Signature components describing the hardness change in grinding
with no visible (blue) and visible (red) tempering zone [137].

where a hardness increase was achieved with different grinding pro-
cesses [104]. Alonso et al. reveal a linear relationship between the
specific grinding energy and the hardening depth after grind harden-
ing of AISI 1045 [11].

3.4.3. Effect on residual stresses

The deliberate generation of beneficial residual stresses at the sur-
face and depth profiles on the basis of varied machining parameters
is the subject of a number of works. In general, it is stated that an
increase in the feed rate leads to a shift of the surface residual stresses
towards the tensile region due to higher thermal loads and to a shift
of the subsurface maximum compressive stresses towards the com-
pressive region due to higher mechanical loads [31,42,50,57,
92,166,268,302]. An increase in the cutting velocity raises the fric-
tional heat at the flank face and the dissipated heat in total. However,
contact time decreases and more heat is carried away by the chips.
Rech and Moisan [204] and Gunnberg et al. [92] determined a shift
towards the tensile region at the surface for hard turning steel. The
same was observed by Thakur and Gangopadhyay [257] and Chen et
al. [50] after turning nickel-based superalloys. In contrast, Nowag et
al. [189] and Brinksmeier et al. [31] identified a shift towards the
compressive region after turning annealed AISI 52100. For the influ-
ence of increasing depth of cut, different indications can be found in
the literature and no clear trends exists [257]. For hard turning, no
significant changes in the residual stress depth profile are reported
[42,57,92,166].

In a more advanced approach, measured residual stresses after
orthogonal cutting of quenched and tempered AISI 4140 could be
predicted by a Process Signature component from Buchkremer and
Klocke [38]. Fig. 13 shows the dependence of specific areas for resi-
dual stresses on the stored mechanical energy and the experienced
maximum thermal energy. The mechanical energy is the plastic work
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Fig. 13. Process Signature component describing the residual stress state in orthogonal
cutting [34].
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performed in a volume element of the workpiece material. The maxi-
mum thermal energy is proportional to the maximum temperature.
Lei et al. adopted the approach by Buchkremer and Klocke for orthog-
onal cutting of AISI 304 austenitic stainless steel [146]. In the depen-
dence of both energies, surface residual stresses and martensite
content were evaluated.

In case of grinding, system and machining parameters offer a wide
range of variations. Regarding residual stresses, Frerichs and Liibben
adjusted these parameters in such a way that the mechanical impact
can be neglected and modeling the process load by a moving surface
heat source is acceptable [74]. Fig. 14 shows the resulting Process Sig-
nature components for the residual stress change at the surface. A
characteristic internal material load has been found with the maxi-
mum temperature gradient. When temperatures are too low for aus-
tenitization, up to a gradient of approximately 100 K/mm, no residual
stresses will be generated due to no yielding. Above this gradient,
tensile residual stresses at the surface increase with increasing tem-
perature gradient until an asymptotic behavior is reached. When
temperatures are high enough for austenitization, a martensitic layer
and compressive residual stresses at the surface are generated. The
thickness of the martensitic layer decreases with increasing tempera-
ture gradient because the minimum temperature for initiating auste-
nitization moves closer to the surface. At a maximum temperature
gradient of 250 K/mm, maximum compressive residual stressed at
the surface was achieved. For higher temperature gradients, the
influence of this effect becomes smaller. Further Process Signature
components have been developed regarding the depth of the zero
crossings of the residual stress depth profile (see Fig. 15). The charac-
teristic internal material load considers the maximum temperature
and the square root of the contact time.
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Fig. 14. Process Signature components describing the residual stress at the surface in
grinding with a predominantly thermal impact [34].
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Fig. 15. Process Signature components describing the depths of zero crossings in
grinding with a predominantly thermal impact [34].

In contrast to these results, Heinzel and Bleil adjusted the system
and machining parameters in face grinding of annealed AISI 4140 in
such a way that the mechanical impact becomes predominant [102].
This was obtained by increasing the specific grinding energy due to
low cutting velocities, which results in a higher level of microplough-
ing and more plastic deformation in the surface layer. The higher
mechanical load can be seen in Fig. 16 with the increasing compres-
sive residual stresses at the surface for increasing specific grinding
energies.
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Fig. 16. Influence on residual stresses in grinding with a predominantly mechanical
impact [102].

4. Modeling of surface layer generation in cutting and abrasive
processes

4.1. Physics-based modeling of cutting processes

Pioneering early work on metal cutting in the late 1930s to mid-
1940s by Dr. M.E. Merchant [172] was the beginning of physics-based
model development. In 1995, the CIRP STC-C established a Coopera-
tive Working Group on Modeling of Machining Operations, which
resulted in two major activities with strong international collabora-
tion: (1) an international workshop/conference series on modeling of
machining operations starting in Atlanta, GA, USA [121] and lasting
until today; and (2) a CIRP keynote paper on modeling of machining
operations [279], which gave a first extensive review of all major
models (analytical, numerical, empirical, and Al-based).

In 2007, CIRP STC-C established another new Cooperative Work-
ing Group on Surface Integrity, which produced a CIRP keynote paper
[122] reporting modeling efforts in surface integrity by the research
community. A subsequent CIRP STC-C collaborative work on model-
ing of machining processes resulted in another CIRP keynote paper
[16], highlighting the need for physics-based analytical, numerical,
and hybrid (i.e., analytical + numerical) models. A recent extensive
review of the modeling of conventional machining processes by Mel-
kote et al. [170] covers major milestones in the modeling of machin-
ing processes including analytical and numerical models developed
for predicting machining performance and surface integrity. Outeiro
et al. [192] conducted an extensive benchmark study to evaluate the
numerical models for predicting machining performance and residual
stresses on a range of materials (AISI 1045, AISI 316L, AISI 52100,
Inconel 718 and Ti6Al4V alloy), with corresponding cutting tools
(materials, coatings, and geometry). Major software platforms such
as Deform, Abaqus, LS Dyna, and AdvantEdge were considered in the
numerical simulations performed by different participating research
laboratories. Simulated results were compared and experimentally
validated. Very wide variations were observed in machining perfor-
mance and residual stresses predicted by these software packages
and these variations were attributed to varying boundary conditions
and the constitutive relationships applied in the various models.
Recent achievements on surface topography generation are summa-
rized in the CIRP 2023 keynote paper [262].
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Over the last two decades, numerous modeling efforts have been
undertaken by the world research community for various materials.
The major predictive modeling efforts on surface integrity are pre-
sented here below and are summarized in Table 2.

Table 2
Summary of major surface integrity modeling efforts in machining processes for three
major material groups.

Material Group ~ Specific Material ~ Author(s)/ Modeling Predicted Surface
Modelled Reference Methods Integrity
(Year) Parameters

High strength ~ AISI 304 SS Guo and Liu [98]  Thermo-elastic- ~ Residual stress
hardened (2002) viscoplastic distribution
steels and explicit FEM,
difficult-to- Sequential Cuts
cut materials Hardened steels ~ Guo et al. [96] Thermo-mecha-  Residual stresses,

(AISI 4340, (2009) nical FEM Hardened sur-
AISI 52100) Multi-scale face layer,
AISI 304 SS modeling Microstructure
AISI 4340, AISI Liang and Su Thermo-mecha-  Residual stress

316LSS [152](2007) nical analytical
model

AISI316L SS Valiorgue et al. Thermo-mecha-  Residual stress
[278](2007) nical FE Model

AISI 52100 Ramesh and Mel-  Explicit dynamic  Residual stress
kote [202] FEM evolution,
(2008) White layer

formation

AISI 52100 Umbrello and Fil- Thermo-mecha- ~ White and dark
lice [272] nical FEM layer thickness,
(2009); Hardness,
Umbrello and Microstructural
Jawahir [274] evolution and
(2009); Residual
Umbrello et al. stresses
[275](2010);
and Umbrello
etal. [276]
(2010)

AISI 4340 Agarwal and Joshi  Physics-based Residual stress
[6](2013) analytical

model

AISI 52100 Ding and Shin Multi-physics Microstructure,
[60] (2013) model Grain size

AISI 4140 Tekkaya et al. Thermo-mecha- ~ White layer
[256] (2020); nical FEM and thickness,
and Tekkaya et physics-based Grain size,
al. [255] dislocation Residual stress.
(2023); Sade- density model Microstruc-
ghifar et al. tural changes
[209](2018)

Niand Ti high-  Ti-6Al-4V, Guo et al. [97] Thermo-mecha-  Residual stresses,
temperature IN718 (2009) nical FEM, surface layer,
alloys Multi-scale Microstructure

modeling

Waspaloy (Ni-Cr  Lazoglu et al. Thermo-mecha-  Residual stress

based) [144] (2008) nical analytical
model

Ti and Ni alloys Ulutan and Ozel Thermo-mecha-  Microstructure,
[268] (2011); nical FEM Surface layer,
and Nieslony Residual stress
etal. [186]

(2014)

IN718 Wang et al. [285]  Numerical and Residual stress,
(2017); Rinaldi empirical Microstructure
etal. [207] models
(2019)

Ti-6Al-4V Caudill [45] Thermo-mecha-  Microstructural
(2019); Xu et nical FEM changes, Grain
al. [295] size, Hardness
(2020); [294]

(2021); Shi et
al. [241]
(2022); and
Chen etal. [47]
(2022)

Lightweight Al AZ31B Mg alloy Shen et al. [240]
and Mg (2017); Puet
alloys al.[200] (2014)

Hardness varia-
tion in the SPD
layer, Micro-
stuctural
changes, Grain
size,

Physics-based
constitutive
FEM model

AA7075-T65 Rotella etal.[208] Physics-based Hardness varia-
(2013) constitutive tion in the SPD
FEM model layer, Micro-

stuctural
changes, Grain
size,

4.1.1. Models for the machining of high strength hardened steels and
difficult-to-cut materials

Chen et al. [47] reviewed a large number of publications involving
phenomenological models such as the Johnson-Cook (J-C) model,
Khan—Huang-Liang (KHL) model, models considering strain-rate
sensitivity (SRS), TANH model, modified Johnson-Cook model (JCM),
etc.; physics-based models such as Zerilli and Armstrong model,
Mecking and Kocks model, Viscoplastic self-consistent (VPSC) model,
Johnson—Mehl—Avrami—Kolmogorov (JMAK) model, etc.; and mod-
els considering the microstructure evolution such as J-C model and
JMAK-based dynamic recrystallization (DRX) model, TANH plastic
model, models considering dislocation mechanisms, etc. They devel-
oped a novel constitutive material model for Ti6Al4V which integra-
tes the well-known ]-C model with a temperature dependent work
hardening plastic model, while considering the influence of micro-
structural evolution and energy-density based damage evolution.
Fig. 17 shows the predicted and experimentally obtained grain size
distribution in machining of Ti6Al4V alloys for a range of cutting-
edge radii and uncut chip thickness values.

SDhv23
(Avg: 75%)

7.000
6.625
6.250
5.875

10um 10pm

10um 10pum

Fig. 17. Comparison of the predicted grain size distribution and machined sub-surface
microstructure at different edge radii of (a) <5 um, (b) 28 um, and (c) 50 xm and at
uncut chip thickness of (d) 30 xm and (e) 50 um [47].

Abboud et al. [1] presented a numerical model for predicting sur-
face residual stress in the machining of Ti-6AI-4V alloy for varying
cutting conditions and cutting edge radius. Also, Chen et al. [47]
recently studied machining-induced surface integrity and showed
that in machining of an Ti6AI4V alloy under a range of cooling/lubri-
cating regimes (Dry, MQL, LN2, Hybrid with LN2 and MQL) for vary-
ing cutting edge radii, the surface residual stress is heavily
influenced by the cooling/lubricating strategy. Near-surface regions
were shown to exhibit pronounced tensile residual stress states in
dry and MQL machining (particularly the former). Hybrid cooling
was shown to reduce the high surface temperatures generated dur-
ing machining, thus mitigating the thermal mechanisms which
drive the formation of tensile residual stresses, and allow for
mechanical (i.e., ploughing) effects to dictate the resultant stress
field. Thus, sustained compressive residual stresses were observed
during hybrid machining.
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With respect to Ni-based alloys, Ee et al. [66] presented a ther-
mal elastic-viscoplastic finite element model to evaluate the resid-
ual stresses developed in machining with tools having varying edge
radii and showed the effects of cutting conditions and sequential
cuts with multi-passes. Variations of temperature and stress fields,
along with the visco-plastic strain-rates, with time steps, were also
shown.

For steels, Outeiro et al. [191] presented the effects of tool geome-
try, including cutting tool edge radius, tool coating, and cutting
regime parameters on residual stress distribution in the machined
surface and subsurface of AISI 316L stainless steel and developed a
numerical model with elastic—viscoplastic FEM formulation, and vali-
dated their model experimentally. Their results also show that
sequential cuts tend to increase superficial residual stresses. The
thermo-mechanical analytical model presented by Liang and Su
[152] for predicting residual stresses in machining considered the
effect of cutting tool’s hone radius (edge radius), and the model was
validated in machining of AISI 316L stainless steel and AISI 4340 alloy
steel. The analytical model presented by Agarwal and Joshi [6] for the
prediction of residual stresses in orthogonal machining of AISI 4340
steel shows a good (86—88 %) agreement between the experimental
and predicted residual stresses. It has been shown that on the
machined surface, the tensile residual stresses decrease with increas-
ing edge radius and increase with increasing cutting speed, and in
the sub-surface, the compressive residual stresses increase with
increasing depth of cut. More recent work by Tekkaya et al. [255]
involves the prediction of white layer thickness and grain size in the
machining of AISI 4140 steel and predicted the white layer thickness
and grain size using Helmholtz free energy and Zener-Hollomon
models which includes the effects of cutting edge radius on white
layer thickness and grain size (Fig. 18). They also predicted the white
layer thickness for varying tool rake angles, which shows no effect
for tool rake angle variations from y = +3, 0, —3, and —6°.
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Fig. 18. Predicted white layer thickness and grain size in the machined sub-surface for
varying cutting edge radii in hard machining of AISI 4140 steel [255].

Imad et al. [118], showed the effects of varying edge radii on
surface integrity from using a 3D finite element model for the
milling of hardened steels. Their numerical model was able to
capture the effects of micro geometrical changes (between cutting
tools of five different edge radii between 25 ym and 45 pm) on
surface roughness, sub-surface plastic deformation, and sub-sur-
face microhardness.

4.1.2. Models for machining of OFHC copper

Denguir et al. [58] presented a physics-based model for surface
integrity prediction in the machining of OFHC copper. This model
includes the plasticity, damage, and microstructural behaviors, and
predicts the “classical” strain-rate and temperature effects and micro-
structural and the state of stress effects to improve the surface integ-
rity prediction induced by machining.

Predicted values of residual stress, dislocation density, and grain
size were also compared with experimental values showing that the
proposed constitutive model gives better predictions when com-
pared to the classical Johnson-Cook model [127]. Using a new phys-
ics-based “unified” material model Liu et al. [158] predicted the
surface hardness for machining of OFHC copper, and this model
seems to have captured the average grain size and dislocation density
evolutions due to hardening, dynamic recovery, and dynamic recrys-
tallization mechanism.

4.1.3. Models for machining magnesium alloys

Shen et al. [240] introduced a new physics-based constitutive
model involving material plasticity and grain refinement utilizing
both slip and twinning mechanisms and were implemented in a
finite-element (FE) analysis for the multi-pass cryogenic machin-
ing of AZ31B Mg alloy. Microstructure evolution with nanocrys-
talline grain refinement was predicted, along with hardness
variation and residual stresses in the sub-surface. The ultra-fine
grain (UFG) layer produced with a larger, edge-radiused tool is
far larger for both cases. Fig. 19 shows the experimentally deter-
mined grain size distributions in the UFG layers obtained from
cryogenic machining AZ31B Mg alloy, with a grain size in the
range of 30—60 nm. This is compared to those grain size distribu-
tions received from the numerical model of Pu et al. [200] incor-
porating the microstructural changes in the machining of the
AZ31B magnesium alloy to study the effects of surface integrity
under dry and cryogenic conditions.

4.1.4. Modeling of grinding processes

Much of the modeling research on grinding and other abrasive
processes during the last two decades has focused on process
modeling aiming at improved energy efficiency and economic
benefits with high productivity. Very little work has been
reported on the modeling of grinding processes for improved sur-
face integrity or engineered surfaces and sub-surface defects gen-
eration. However, a significant number of researchers have
attempted to model and predict surface roughness in grinding
processes.

Early CIRP collaborative work by Tonshoff et al. [261] pre-
sented state-of-the-art knowledge on modeling and simulation of
grinding processes and highlighted the need for the development
of surface integrity models. Empirical topography models for sur-
face generation including surface roughness predictions and sur-
face residual stress were presented in this paper. Subsequent
work by Hu and Chandra [113] presented a fracture mechanics
approach for modeling the strength degradation in ceramics
grinding processes. In this paper, the chip formation process was
numerically modeled as a two-dimensional system of radial and
lateral cracks to investigate the interactions of the radial and lat-
eral cracks with various distributions of planar microcracks. War-
necke and Zitt [288] presented a new concept for process
modeling with a software tool for analyzing and designing high
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Fig. 19. Predicted microhardness profiles compared with the experimental measure-
ments (Pu et al.,, 2012 [199], Experimental; and Shen et al., 2017 [240]—predicted).

performance grinding processes using kinematic simulation. Zhou
and Xi [308] presented a new method for predicting surface
roughness in grinding processes using the random distribution of
the grain protrusion heights.

In a CIRP keynote paper, Brinksmeier et al. [29] reviewed the
progress made in developing kinematic, analytical, and numerical
models, along with molecular dynamic models for grinding pro-
cesses, which provided a greater insight into the surface generation
process in grinding. Comparison of measured and predicted surface
roughness was also presented in this paper. This paper also shows
the emerging rule-based models that were built on fuzzy logic for
predictive model development in grinding processes. It presents a
qualitative comparison of various models for grinding processes in
terms of start-up requirements and the capability and effort require-
ments for modeling grinding processes.

Choi et al. [52] described generalized grinding process models
for cylindrical grinding processes based on systematic analysis
and experiments for predicting various grinding performance
measures including surface roughness. Aurich et al. [18] intro-
duced an analysis of different grinding models (analytical, nume-
rical-FEM, BEM, and multi body simulation) by considering the
machine tool kinematics and dynamics. Their simulation
approaches are based on four different grinding processes (face
grinding, speed stroke grinding, tool grinding, and NC-shape
grinding) and are compared to experimental data in [107]. Agar-
wal and Rao [4] presented an analytical model for predicting
surface roughness in grinding processes and compared the pre-
dictions with experiments. Subsequently, Li and Rong [151] mod-
eled the grinding processes by considering grinding as a time-
dependent process. They developed three-level models for:
(a) grinding wheels to study the topographical and mechanical
properties, (b) microscopic interactions to characterize the

performance, and (c) process integration to understand the
combined performance (Fig. 20). This model, among other para-
meters, was also shown to predict surface integrity and surface
texture.
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Fig. 20. The framework for a multi-level integrated predictive model for grinding
[151].

Jiang et al. [126] developed a numerical model by considering
the stochastic nature of the grinding process to predict the micro-
scopic interactions. Predicted ground surface roughness values
coincided well with the experimentally obtained values. Chen
et al. [48] developed a new method to predict the gear surface pro-
file generated by a grinding process by considering the random
distribution of the grain protrusion heights, and compared the pre-
dicted and experimental surface roughness values. Aslan and
Budak [17] developed a thermo-mechanical model to study the
grinding process parameter effects on performance and compared
the predicted and experimental surface roughness. Khare and
Agarwal [134] also developed a simplified model to predict
surface roughness in grinding and compared it with experiments.
All these studies resulted in good agreements between model and
experiment.

Zanger et al. [303] developed a discrete model for stream finish-
ing and utilized it in surface modification analysis in AISI 4140
steel. They established a comprehensive correlation between pro-
cess parameters, local contact conditions, and surface integrity.
Fig. 21 shows the surface texture direction and comparison of sur-
face texture before and after finishing. Setti et al. [234] conducted
an analytical and experimental study of the surface generation
mechanism in micro-grinding and studied the surface generation.
They compared the surface texture and roughness on the ground
surface for a range of operating conditions. Meng et al. [171] pre-
sented a critical review of predictive models developed during the
last 15 years and presented the future directions.

4.2. Machine learning-based modeling

Due to the rapidly growing advances in the digitalization pro-
cess (computation power, storage capacity, transmission rates),
the amount of Machine Learning (ML)-based models which are uti-
lized for the optimization of machining processes is increasing sig-
nificantly [235,290]. Apart from tool condition monitoring and tool
wear prediction [233], ML algorithms also offer great potential in
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modeling and predicting the surface integrity that is realized
when machining [136,163]. Fundamentals of ML-based modeling
as well as recent advantages and challenges for using these
models to predict surface layer properties are presented in this
section.

An ML model can be described as a function, assigning a suit-
able label or output to a subset of the input space. [129]. This pre-
dicting function is generally derived from an ML algorithm that is
specified to learn the hidden relationships between the given input
and output parameters. The application of ML algorithms consists
mainly of the same phases which are data acquisition, modeling
and its training, testing, as well as validation [201,267]. Since ML
models are generally data-driven, the amount and especially the
quality of the data provided highly impacts the performance of
the model. Most input data is generated by measuring forces or
power [195,224,292], acoustic emissions [174,216] and vibrations
[62,162], which occur during the machining process. Despite hav-
ing a severe impact on the machining process and the resulting
surface integrity, the use of the temperature as an input parameter
is only observed within a few investigations [83,87]. This can be
explained due to the challenging experimental setup for tempera-
ture measurements, especially for cutting and abrasive operations.
In this context, sensor fusion is a promising research field which
aims to identify correlations between input and output signals
using multi-view learning [10].

Aside from the data measured during machining, other process
characteristics are also utilized as input data. Most prominently used
are cutting parameters (cutting speed, feed, and depth of cut)
[205,210,307] but also tool coatings [286], wear [280], or the work-
piece material [73].

When the data has been acquired, data pre-processing, feature
extraction, and feature selection are mandatory steps which highly
impact the performance of the ML model [86,133].

Pre-processing typically includes but is not limited to [154]:

® Filtering and denoising

= Normalization and standardization
® Data labeling

= Data train-test-split

Feature extraction aims at a dimensional reduction of the input
space while preserving all relevant information [133]. This gener-
ally results in a promoted accuracy, visualization, and compre-
hensibility [46]. For the feature extraction, statistical methods

vector machines (SVM) and artificial neural networks (ANN)
[59,63,136,163].

SVM are linear models developed to solve either classification
(SVC) or regressions (SVR) problems. These problems typically
inhibit high-dimensional feature spaces which are solved by a reg-
ularized risk minimization approach using specific loss functions
[39]. Here, kernel functions like the linear kernel, polynomial
kernel, and gaussian kernel are frequently used to linearly
separate the data with higher dimensional spaces [221]. ANN are
directed graphs composed of nodes and their connections which
are inspired by neural networks of biological organisms (see
Fig. 22(b)) [130]. These nodes (neurons) are typically organized
within layers and with labeling/activation functions [145]. Every
ANN inhibits an input and output layer as well as various numbers
of hidden layers in between. Nodes are the elementary functional
units of the network as they receive weighted signals from the
input layer or preceding neurons, processing them and forwarding
them to subsequent neurons. The signal processing at the nodes is
performed by (mostly non-linear) activation functions like the sig-
moid function or the rectified linear unit (ReLU) function [225].
Due to the non-convexity and non-linearity of the activation func-
tions used and the generally large networks, ANN are often harder
to describe and explain in comparison to SVM. However, ANN
often show favorable prediction performances if sufficient data is
provided.
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Fig. 22. Schematic depiction of the architecture regarding SVM (a) and ANN (b)
[22,119].

The majority of ML models predicting surface layer properties
focus on conventional cutting processes, especially milling
[108,148,195] and turning [9,135,292]. Further applications are also
found regarding grinding [210,216], drilling [224,286], and non-con-
ventional machining processes e.g., electrical discharge machining
[266] and abrasive water jetting [56].

The prediction and modeling of many surface layer properties
has so far been conducted with very good results. However, most
of this research focuses on the prediction of the surface roughness
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[94,175,280,292,307]. This could be due to the fact that the surface
topography is faster and less complex to characterize in compari-
son to mechanical and metallurgical properties within the surface
layer. Regarding these properties, residual stresses are the most
prominent feature being predicted [67,135,205]. Apart from that,
there are also some studies focusing on the prediction of micro-
hardness [252] or microstructure [83] within the surface layer.

Despite these recent advantages and the high potential of ML-
based modeling, there are still obstacles to overcome to progress
towards industrial applications. The main challenges of ML models
refer to model overfitting and generalization issues [179,193].

Another main challenge with ML models is the size and quality
of data, which must be acquired. As data acquisition is time con-
suming and generally results in high costs, DOE and especially the
Taguchi method are often used to generate a suitable amount of
data with a reasonable effort [61,297]. However, the quantity of
the data collected is generally less important than its quality as
irregularly sampled or noisy measurements are of little use and
can lead to bias [141]. With this in mind, sensor failure is a chal-
lenging task, especially when using a single input source. Multi-
sensor data acquisition can be a suitable solution, but is not a triv-
ial task, since the collected data has to be synchronized, increases
computational costs, and may result in potential redundancy of
information [15,20].

In addition, generated ML models should be trained further,
otherwise they might lose their prediction performance over time.
This effect is known as concept drift which results from changes of
the input data, the machining process, or the environment [12].
Here, transfer learning approaches offer the potential for a contin-
ual retraining or adaption of the model [149].

Another promising approach is the use of independent data sets
in order to evaluate and improve the performance of ML models
[237]. However, in order to use independent data, e.g., provided by
published literature, availability and transparency of the whole ML
modeling process is mandatory [86,163,237]. This is especially evi-
dent regarding data acquisition. While the measurement setup is
generally described sufficiently, information about pre-processing
and feature extraction are only provided by few authors. Despite
that, the major effects of these steps on the performance of the ML
model is widely accepted [86]. Consequently, it is highly recom-
mended to provide sufficient information and data regarding all
ML modeling steps within future literature to solve one major
shortcoming of ML-based modelling [228,246].

4.3. Grey-box/hybrid modeling

The previous sections show that the use of physic-based and
ML-based models for the prediction of the surface integrity after
machining has been widely researched and can offer good results
with sufficient accuracy. However, both model types are associated
with intrinsic limitations that hinder a reliable application, espe-
cially for industrial applications. Physics-based models use a priori
knowledge derived from rules and theories to formulate a model
that aims to represent physical phenomena. Consequently these
models may be founded on incomplete or inaccurate knowledge,
or idealized assumptions, which decreases the accuracy of their
respective predictions [300]. ML models are statistical models that
use provided data sets to represent unknown systems. These sta-
tistical approximations are purely based on the features of the data
values without incorporating the physical relationships within the
system which is why no a priori knowledge is mandatory [238].
These models can compensate inaccuracies resulting from incom-
plete knowledge or simplified assumptions. However, their predic-
tion accuracy is highly dependent on the generally large number of
data sets that have to be provided [120,238].

Grey-box, or hybrid modeling stems from a modeling approach
that aims at combining the benefits of domain knowledge
(physics-based modeling) and empirical information (ML-based

modeling) [139]. The term “grey-box” is derived from the mixture
of white-box and black-box models. Here white-box models refer
to analytical and physical descriptions while the black-box refers
to the approximation of the unknown system via statistical analy-
sis [139,300]. The grey-box modeling method is schematically
depicted in Fig. 23. In general, these models inhibit a basic
structure as they include general physical rules (white-box) while
optimizing the parameters from actual experimental data sets
(black-box).

Statistical
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Theoretical
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White-box model »{ Grey-box model

. S

Physical
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Fig. 23. Schematic depiction of the relationship between physics-based white-box,
statistics-based black box, and hybrid grey box models [300].

According to Yang et al. [300], the development of a grey-box
model is summarized by the following three steps:

" Construction of the system’s foundation using a knowledge- based
model

" [dentification of the system’s physical parameters based on the
description of the system’s behavior

® Quantification of the identified parameters from experimental
data

Grey-box models are generally divided into parallel and serial
approaches [198]. The parallel approach utilizes both white-box and
black-box models to achieve a sufficient prediction accuracy that
would not be possible for an individual model e.g., due to incomplete
knowledge of physical phenomena or a lack of suitable data sets
[198]. Serial grey-box models are generally used to minimize uncer-
tainties within a model. For example, the additional use of actual
data can reduce uncertainties of an already established white-box
model [64]. Additionally, results of multi-physics models can be used
for the creation of training data sets as described in the CIRP 2023
keynote paper [262].

Although grey-box modeling offers a high potential to optimize
prediction accuracy and therefore the machining performance, the
amount of research dealing with the prediction of the surface integ-
rity for machining operations currently remains very limited. This is
especially evident when comparing with the research conducted
using only white-box or black-box models. However, there is some
research that uses grey-box models for milling [299], turning [271],
and grinding operations [147].

For centerless grinding operations, Leonesio and Fagiano [147]
developed a grey-box model to classify workpieces with suitable and
unsuitable surface topographies. Due to the complex and often unsta-
ble process kinematics and the lack of available, suitable data sets, the
application of white-box and black-box models produced poor
results here. However, a hybrid approach combining a multi-class
SVM with a physic-based, Low-Fidelity process model did result in a
correct classification rate (CCR) of 97 %.

Yang et al. [299] used a serial grey-box model approach to pre-
dict residual stress profiles within the surface layer in dependence
of the cutting parameters when peripheral milling Ti-6Al-4 V. First,
a Johnson-Cook constitutive model is generated to predict the
occurring loads within the surface-layer of the titanium alloy. The
resulting residual stress profiles induced by the machining process
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are then calculated using an exponentially damped cosine function.
A statistical model was then established to optimize the fit between
the simulation data and the residual stress profile using a particle
swarm optimization method. Comparing the simulated profiles
with measured residual stresses resulted in a prediction accuracy
ranging from 81.7 % to 99.2 %. To describe these residual stress pro-
files, the surface residual stress, the maximum compressive stress
and the penetration as well as the beneficial depth are identified
(see Fig. 24). Via regression analysis, the model was further estab-
lished to predict residual stress profiles in dependence of varying
cutting parameters when milling. With an accuracy of 95.3 % to
97.8 %, the residual stress profiles were predicted in dependence of
the cutting speed and the feed per tooth. As a result, the established
model allows for optimum cutting conditions in order to control
residual stress profiles for peripheral milling operations [299]. The
prediction of residual stresses using a grey-box model has also been
conducted for hard turning of AISI 52100 by Umbrello et al. [271].
The physics-based model is derived from a FEM that predicts the
residual stresses in axial and tangential direction in dependence of
the cutting parameters, the cutting edge geometry, and the material
properties [273]. Based on the numerical simulation, an ANN was
trained via backpropagation with a total of 86 data points (68 train-
ing, 18 testing) with varying cutting parameters (cutting speed, feed
rate) and cutting edge preparations (chamfered, honed). After vali-
dation with experimental data sets, an accuracy of 84 % to 96 % was
achieved [271]. By assigning the ANN a given residual stress profile,
the grey-box model did also allow for a prediction of the process
parameters that have to be supplied. For this inverse process design,
the characteristics of the residual stress profiles (see Fig. 24) in axial
and hoop direction were chosen as input parameters. Workpiece
hardness, feed rate, cutting speed, and the cutting edge geometry of
chamfered and/or honed cutting edges were set as output data. Vali-
dation via experimental data did result in accuracies between 86 %
and 92 %. If the number of input data was reduced, the trained ANN
model provided several options of parameter settings to achieve the
desired residual stresses. When regarding several options it
becomes possible to design the cutting process in a favorable way
regarding other surface properties like surface roughness. For exam-
ple, the solution with the lowest feed or highest cutting speed could
be chosen in order to reduce surface roughness while still providing
the residual stresses that have to be achieved. Thus the use of these
type of grey-box models offer the potential to optimize total
machining performance [271,300].
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Fig. 24. Definition of a surface residual stress profile after machining [271,299].

5. Soft sensors for the estimation of surface layer properties

For surface conditioning in cutting and abrasive processes, not
only geometric features but also the condition of the surface layer
must be specified and controlled as target values at the same time.
This requires real-time monitoring of surface layer characteristics
by means of soft sensing technology and synchronous control of
the relevant process parameters. In this section, we will focus on

soft sensor technology, that is, the combination of representative
sensor-measured variables and accompanying model/simulation
to determine a target variable which is not measured directly but
is calculated on the basis of correlating measured variables [228],
as illustrated in Fig. 25, while the establishment of closed-loop
control will be discussed in the Section 6.
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Fig. 25. General description of the soft sensor for surface layer properties prediction
(modified from [28]).

As reviewed in Section 4, numerous researchers have devel-
oped various models, trying to correlate the manufacturing pro-
cess with the surface layer properties. Therefore, it is important to
couple these models with advanced sensors to construct soft sen-
sors that can be integrated into the machining process. In general,
there are two types of signals output by sensors. One type of sig-
nals presents the mechanical conditions during the machining,
such as forces, temperatures, and the acoustic emission from tool-
workpiece contact, which does not directly reflect layer properties
changes in materials. The other type of signals presents material’s
conditions, such as the magnetic and electrical conductivity, as
well as the acoustic emission from crack formation in materials,
based on which the surface layer properties changes can be
directly extracted and analyzed. Therefore, for the former type of
signals, surface layer properties need to be assessed by the fusion
of models with signals, which is discussed in Section 5.1. For the
latter type of signals, since they are the result of the interaction of
various material properties, the signals need to be carefully inter-
preted to separate a certain surface layer property, which is dis-
cussed in Section 5.2.

5.1. Fusion of models with sensor signals

Cutting forces are the most obvious signals that respond to
mechanical machining. An example of a cutting, force-based soft
sensor is schematically illustrated in Fig. 26, which is developed
for the estimation of the maximum white layer thickness [173].
Machining parameters, including cutting speed v., uncut chip
thickness h, and width of cut b, are used as a first input. Cutting
force signals are collected in real time by force sensors and are
imported into an analytical temperature model to compute the
heat partition into the workpiece and the steady state temperature
fields for the given specific cutting conditions. Subsequently, the
maximum depth of white layer is predicted according to a dynamic
recrystallization model in which the recrystallized grain size is
determined by the temperature. In this soft sensor, the cutting
forces are used for determining the temperature which affects the
material microstructure changes. As an alternative, owing to the
fact that hardness, residual stress, and white layer formation in
workpiece material can be a function of tool flank wear
[181,182,247,251], the force signal can also be used to predict in-
process tool wear [54], consequently to estimate changes in sur-
face properties.
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Fig. 26. Schematics of a cutting force-based soft sensor for the estimation of the maxi-
mum white layer thickness (modified from [173]).

Since machining temperature greatly influences the changes in
surface layer properties, temperature is also an effective input signal
for soft sensors [196,289]. Fukuhara et al. [78] embedded a thermo-
couple in a grinding wheel to monitor the changes of entry tempera-
ture, maximum temperature, down slope after the maximum
temperature, and finish temperature in real time. The state of grind-
ing wheel surface and the grinding burn phenomenon were identi-
fied after a series of empirical criteria. To better understand the
interrelationship between the thermomechanical effects and the
resulting residual stresses, Junge et al. [128] performed a combined
measurement of the interface contact temperature with a tool-work-
piece thermocouple and the components of the resultant force. They
introduced a C-value, which has an approximately linear relationship
with the axial residual stresses, as illustrated in Fig. 27. Therefore,
substituting the in-process forces and temperature signals into the
empirical formula presented in Fig. 27, compressive residual stresses
in the axial direction can be obtained.

— (=0.766 MPa'- g, -
80+ 1
c=1460-L .5
s ] K F
©
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0 =190.6 MPa -
-40t - r _Mia %
0.766 K F.
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-80 -40 0 40 80 120

Axial residual stress (MPa)

Fig. 27. Relationship between the C-value and the axial residual stresses o.x, as well as
their linear fit for the calculation of the axial residual stresses o“. (modified from
[128]).

In cutting processes, chip segmentation frequency correlates
with tool wear, because the tool wear causes an increase in the tool-
work material friction, which leads to an increase in the deformed
chip thickness [184,230]. Several researchers have reported the
relationship between acoustic emission signals and tool wear condi-
tions [5,284]. Therefore, an acoustic, emission- based soft sensor can
be realized by importing the tool wear calculated by AE signals to
the function between surface layer properties and tool wear, the
flow chart of which is similar to the cutting force-based soft sensor
shown in Fig. 26. On the other hand, in grinding process, Tonshoff et
al. [258] reported a correlation between the measured values of the
parallel residual stresses near the surface and the root mean square
value of the acoustic emission signal of a grinding experiment. This
empirical model may be useful when developing soft sensors for
grinding.

5.2. Interpretation as surface layer properties

Micromagnetic Barkhausen Noise (MBN) sensors have found
potential applications in in-process measurement surface layer

dislocation density, which impedes domain wall movement [250].
On the other hand, the MBN amplitude generally increases with
increasing remanence, so that compressive residual stresses lead
to a low MBN amplitude and tensile stresses lead to a signal
increase [124]. The root mean square (RMS) value of the MBN is a
potential indicator of austenite-martensite phase transformation,
as it gradually increases with increasing volume fraction of mar-
tensite [183].

Strodick et al. [250] performed cutting experiments with vari-
ous cutting parameters and measured maximum MBN amplitude
Mqx during the cutting process, as shown in Fig. 28 (a). After the
cutting, cross-section specimens were made for observation of the
white layer, as shown in Fig. 28(b), trying to correlate the detected
Mnax With the microstructure of the subsurface zones of the speci-
mens. All specimens that had a white layer at the surface edge
zone showed significantly lower M,,.x as well as a low standard
deviation of MBN, whereas specimens without a white layer had
higher M,.x and a higher standard deviation between the values
measured. Therefore, the M4y signal of MBN proves to be an ade-
quate mean for in-process detection of white layers. However,
since the white layers have a dominating effect on M4y signals of
MBN, additional characteristics of the surface edge zones, e.g.,
residual stresses, cannot be identified by means of M4 signals of
MBN.
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Fig. 28. Results of the (a) micromagnetic investigations, and (b) metallographic inves-
tigation in drilling of AISI 4140+QT [250].

Instead of using M, signals of MBN as the only indicator,
Jedamski et al. [124] recorded the time-resolved evolution of
parameters M;,qx and Mpeqn, (amplitude averaged over one magne-
tization cycle) in grinding steel, as shown in Fig. 29(a). With the
start of material removal, both measured signals rise steeply and
reach a plateau. Then, Mo« remains unchanged at the same level
until the end of spark out. In contrast, the value M., decreases
from the beginning of spark out. Without grinding wheel contact,
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the initial and final values of M4, differ only slightly, while M,qx
remains at an elevated level. This suggests that the excitation of
the MBN by the external magnetic field is further influenced by
another effect during grinding, which has not been clearly under-
stood thus far. Under three specific material removal rates, by
comparing the in-process measured M,,,x and grinding forces (tan-
gential force F,, normal force F,) (Fig. 29(b)), as well as measuring
residual stress depth profiles and surface hardness after grinding
(Fig. 29(c)), it is proved that M., signals of MBN can be used to in-
process detect changes in residual stress. However, further investi-
gations on in-process quantitative residual stress determination
are needed.
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Fig. 29. (a) Typical Mpax and Mpean Signals during grinding process. (b) Average and
standard deviations of Mp,x, tangential and normal forces. (c) Depth profiles of axial
residual stresses and tangential residual stresses of the ground surfaces, (modified
from [124]).

According to the principle of eddy current sensors introduced in
Section 3.3 (see Fig. 9), the transformation of an austenitic micro-
structure with paramagnetic properties into a microstructure with
ferromagnetic properties, such as martensite, is accompanied by a
significant change in magnetic permeability and therefore shows a
great influence on the eddy current signal. Pure austenite does not
distort the waveform of the measurement signal with respect to the
excitation signal. In contrast, the non-linear magnetic hysteresis in
ferromagnetic materials produces higher harmonics in the measured
signal.

Among them, the 3rd harmonic is particularly suited to provide
information about the martensite volume content of the work-
piece, as illustrated in Fig. 30 [75,76]. The formation of martensite
is detected more accurate using eddy current sensors and modu-
lating the excitation frequency than using the magnetic testing
method [75]. The higher the excitation frequency, the lower the
measurement depth. As a result, the distinction between the dif-
ferent martensite contents within the subsurface becomes clearer
when using a higher frequency. In other words, when detecting
lower martensite contents, a higher frequency is needed. There-
fore, it is possible to determine the martensite content using the
amplitude of the 3rd harmonic provided that a suitable excitation
frequency is employed.

Since the characteristic dependence of the electric conductivity
on stress, eddy current can also be exploited for residual stress
profiling in certain materials. Botko et al. [27] examined the
response of the eddy currents to the cutting-induced residual
stresses in steel materials. They converted the measured values of
horizontal shift of voltage and vertical shift of voltage measured
with a EC sensor into the factors of phasor size and phasor angle,
and then plotted the dependence of phasor size and phasor angle
of eddy currents on residual stress, as shown in Fig. 31(a) and (b)
respectively. The linear trend of the average value of EC phasor
size with residual stress is statistically significant with a high cor-
relation coefficient (R*> = 0.9075), while the phasor angle has a
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Fig. 30. Schematic illustrating eddy current testing with analysis of the higher har-
monics that are caused by deformation-induced martensite transformation (modified
from [76]).

lower correlation coefficient with residual stress (R? = 0.7002).
Therefore, phasor size is an effective indicator for the in-process
measurement of residual stresses when using an eddy current sen-
sor. Acoustic emission sensors can not only be used to predict tool
wear and thus estimate surface layer properties, but also directly
monitor the changes in materials. The most common application is
the monitoring of grinding burn, because when overheating a
workpiece surface, a little transient source of acoustic emission
due to thermal stress will be created [157,287,301]. However, since
the AE produced by friction of tool-workpiece overlaps the signals
generated by the burn, the use of appropriate signal processing
techniques is crucial to accomplish the burn location. According to
Tavora et al. [254], the error of the location is less than 4 %.
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Fig. 31. Dependence of (a) phasor size and (b) phasor angle on induced residual stress.
(modified from [27]).

6. Functional properties by control of processes

In contrast to conventional phenomenological approaches
based on establishing correlations between the machine tool, pro-
cess parameters including potential disturbances of these and the
resulting geometry and surface layer state, the strategy of Con-
trolled Functional Properties is based on the mechanism-based
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hypothesis, that the fundamental thermal and mechanical loads
imposed by the process will determine the surface layer state. This
is combined with the available sensors plus models and the previ-
ously introduced soft sensors, which can be used in-process to
receive real-time information on the actual state of the surface
layer. The remaining challenge is to react in the process on devia-
tions and therefore actively control the process in order to assure
certain surface layer properties and therefore functional proper-
ties. This section will show the current state of the art with regard
to strategies for active control with results based on a recently
completed round robin activity focused on this topic.

6.1. Strategy of closed-loop control of surface layer properties

Fig. 32 shows the generic scheme of a surface-oriented process
control system as a basis for the surface conditioning [228,248].
Set values are classically the geometry but here the surface layer
state is also included. In the machine, the manufacturing process,
its disturbances due to changes of the material state, wear of the
tool, and other factors yield in variations of the set parameters. As
they cannot be measured directly in-process, the soft sensor-con-
cept is applied in order to close the control-loop with the observed
values of the surface layer properties to be controlled. This pro-
vides the possibility to permanently determine the proper set val-
ues and therefore finally the functional properties of the part.
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Fig. 32. Approach of closed-loop of the DFG priority program 2086 “surface condition-
ing in cutting processes”.

Fig. 33 shows the generalized approach to access the machine
control for a write—store—read of digital information, regardless of
the type of control or measurement method. Starting from the pro-
cess, a sensor or a measure from the programmable logic controller
(PLC) of the machine allow for data acquisition (DAQ) in a digital
manner, which is handled in the Field-Programmable-Gate-Array-
Module (FPGA). Here, the measures are combined with the process
model to the soft sensor and are applied to the controller. It gener-
ates an output to the override-input of the PLC or to an edge-PC,
which is directed to the PLC of the machine, where the process
itself is adapted. Edge also offers further cloud handling of process
data. This allows for continuous measurement of the target surface
properties with a reasonable cycle time [248] and further quasi-
real-time adjustment at the machine within the process.

Machine Tool

Machining Process

Sensor

DAQ PLC
fin Edge PC +
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Override f,n
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Processing miodel

Bitstreams
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Fig. 33. Generalized approach to access the machine control.

6.2. Validation of the strategy

The control approaches presented require validation in a real
industrial environment on machine tools. For this purpose, an
international round robin test was set up in which the compensa-
tion concepts adopted by the different institutions involved were
compared. The target variable was the residual stress profile in the
surface layer characterized by a value of oqxsurf < 200 MPa at the
surface and a value of o4 = -500 & 100 MPa at a depth of
100 + 25 pm during the external longitudinal turning of AISI4140
(42CrMo4) quenched and tempered at 450 °C for 1 h. The distur-
bance variable to be compensated was flank wear. For the tests in
external longitudinal turning, coated tools of the company Walter
AG of the type (ISO) CCMT120404-RP4 WPP20S with chip breakers
were used. Detailed geometric features of the tools and their orien-
tation are listed in Table 3.

Table 3
Specifications on the geometry of the tools pro-
vided for the participants.

Tool geometry Value
Geometry Rhombic 80°
Nose radius r 0.4 mm
Clearance angle « 7°
Macroscopic rake angle y 0°

Principal cutting edge anglex  95°

Cutting edge inclination 4 0°

In order to verify the initial processing, a reference cut using an
unworn tool with cutting parameters indicated in Table 4 was
specified. For compensating the influence of three predefined lev-
els of flank wear on the resulting residual stresses, the feed rate f
and the cutting speed v, could be adjusted, while the depth of cut
ap should be kept constant. The final specimen geometry with
three shaft sections for the compensating cuts and one for the ref-
erence cut is shown in Fig. 34.

Table 4
Parameters of the experiments.
Parameter Value
Cutting speed (reference cut) v, 200 m/min
Feed rate (reference cut) f 0.05 mm
Depth of cut a, 0.2 mm
Width of the wear marks in the test points < 0,1 mm
0.15 mm
0.25 mm

Reference
cut VB<0.1 —
VB=0.15 VB=0.25
43 42 41 40 [
35 35 35 35

Fig. 34. Geometry of the specimens (dimensions in mm).

The X-ray analysis of the surface layer and the measurement of
the residual stress values were carried out at the Bochum Univer-
sity of Applied Sciences, Bochum, Germany, using the cos-
a-method. The measurement depths prepared by means of electro-
chemical machining and other measurement parameters can be
found in Table 5.

In the series of experiments, a total of eight different concepts
were investigated to compensate the influence of tool wear on the
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Table 5
Parameters for the X-ray residual stress measurement.
Parameter Value
Measurement depth 0, 25, 50, 100, 150, 200 pm
Device pulstec p-X360S
Radiation Cr-K-Alpha
Method Cos-alpha
Angle of incidence 35° {211}
Spot diameter approx. 4 mm
X-ray Youngs modulus 210,000 MPa
Poison ratio 0.3
Accuracy +/- 30 MPa

residual stress profile. These can be divided into numerical and
empirical models and are accomplished by the application of
knowledge collected in literature. For the numerical methods, the
process parameters were determined using 3D simulations of the
process or substitute models. At the Leibniz Institute for Materials
Engineering (IWT), Bremen Germany, the machining parameters
were determined on the basis of a 3D-FEM chip formation simula-
tion based on [281,282]. The calculated and measured residual
stress profiles as a function of the feed rate were compared and
validated based on the process forces. A similar approach was
applied at the Ecole Nationale d’Ingénieurs de Saint-Etienne
(ENISE), Lyon, France. In their experiments, the process parameters
were determined using the MISULAB FEM-software and validation
using experimentally determined cutting forces [65]. In addition,
the parameters were optimized using residual stress measure-
ments. A different numerical approach was applied at the Institute
of Production Science (wbk) of the Karlsruhe Institute of Technol-
ogy, Karlsruhe, Germany. Here, 3D chip formation simulations
were used to calculate thermomechanical loads, which then were
applied to the workpiece in a substitute FEM-model of the turning
process [65]. The concept, resulting in shorter calculation times,
was verified by residual stress measurements [247,249].

Other experiment series were carried out based on empirical
methods. Researchers at the Institute for Production Engineering
and Photonic Technologies (IFT) of TU Wien, Vienna, Austria, chose
an approach based on passive forces during machining. Constant
passive forces were assumed to result in constant residual stresses.
At the Institute for Manufacturing Technology and Production Sys-
tems (FBK) of TU Kaiserslautern, Kaiserslautern, Germany, results
of turning experiments with varying cutting speed, feed rate, and
tool wear within ranges derived from literature were correlated
empirically with the resulting residual stresses measured using
the borehole method (Stresstech PRISM system) [309]. In addition
to the investigations at the research institutes, tests were also car-
ried out in industrial companies. At the Timken Company, Canton,
Ohio, USA, Barkhausen noise measurements were used to control
residual stresses in order to compensate tool wear based on empir-
ical findings. Other round robin participants did not carry out any
empirical determination or simulation of the process parameters
themselves, but used already-published results from the literature.
During the series of experiments at the Laboratory for Precision
Machining and Nano Processing (PMNP) of Keio University, Yoko-
hama, Japan, trends known from literature were taken into consid-
eration, such as the fact that compressive residual stress increases
with cutting speed [161,239], that the flank wear increases the
depth of the residual stress profile [55], or that decreasing the feed
rate decreases residual stress [42]. Similarly, researchers at the
Laboratory for Machine Tools and Production Engineering (WZL) of
RWTH Aachen University, Aachen, Germany, also considered the
literature. Here, counteracting effects of process parameters
and tool wear on the residual stresses were taken into account.
This can be summarized thus: in relations like compressive

axial residual stresses decrease with increasing feed rate
[42,43,114,176,203,212] and cutting speed does not significantly
affect the axial residual stress profiles [190,203,213], that orthogo-
nal cutting experiments show deeper compressive residual
stresses with increasing cutting speed [44], and that worn tools
produce lower residual stresses and lead to a greater depth of
engagement [176]. Fig. 35 shows an overview of the process
parameters as they were applied by the participants in the round
robin. The blue arrows indicate whether this value was increased,
decreased, or kept constant compared to the previous cut or the
reference cut. The variation of the process parameters in the differ-
ent approaches is indicated by arrows.
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VB < 0.1 mm VB =0.15mm VB = 0.25 mm

Number Method Sel::::.‘g Feed fe'fi"c'.'é Feed Sel;::g.‘g Feed

in m/min 'nmm in m/min nmm in m/min 'nmm
1 150 & 02 % 150 »  0.25% 200 * 0.25»
2 Numerical 200 » 0.05» 200 » 0.05» 200 » 0.1 %
3 100 & 0.1 % 200 * 0.15% 300 * 02 %
4 250 + 0.08 % 175 %  0.05% 160 ¢ 0.03 %
5 Empirical 200 » 0.05=» 180 & 0.04% 65 & 0.012%
6 80 ¢ 0.5 * 60 ¥ 0.5= 40 § 0.5 =
7 300 # 0.02% 270 8 0.04% 150 ¢  0.03 %

Literature

8 200 » 0.05% 200 % 0.05» 200 0.05=

¥ 9 % = Modification from the previous cut

Fig. 35. Process parameter adjustments applied in the round robin.

The results of the experiments performed on 8 specimens
are given in Fig. 36 and Fig. 37 at the reference cut and the 3 cuts
using the differently worn tools. It can be seen that the residual
stresses at the surface are mainly in the tensile area and do not
show a clear tendency with the wear state but range up to about
500 MPa, which is clearly out of the intended range. In contrast,
the residual stresses at a depth of 100 ym are mostly in the com-
pressive area but mainly in the range below 150 MPa with their
absolute value. Only a few values are higher and only a single
one approaches —400 MPa. With increasing wear, there is a ten-
dency to obtain higher compressive residual stresses. Neverthe-
less, all residual stresses are far below the intended value. In total,
it needs to be stated that all the different compensation strategies
did not lead to the intended distributions of the residual stresses
nor could they keep these constant with the wear state. This
means that substantial developments are necessary in order to
achieve a successful compensation of disturbances in technical
cutting operations.

600 -
450
Specimen no:
& 300 ¢ =1
= ——2
= 150+ —s—3
H ——4
o 0 5
. 6
-150 N |—7
v e g
-300 . T : :
Reference 0.1 0.15 0.25

VB in mm

Fig. 36. Axial residual stresses at the surface in each segment of the specimen.
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Fig. 37. Axial compressive residual stress at a measurement depth of 100 pm.

7. Applications of surface conditioning

7.1. Modeling the surface hardening when cryogenic turning austenitic
steal using an ML-based model (CRC 926)

Metastable, austenitic steels inhibit a favorable combination of
strength and ductility as well as an excellent corrosion resistance,
which is why they are widely used in industry. If these steels are
cryogenically machined, a surface hardening is achievable via
strain hardening in superposition with a deformation-induced
phase transformation from y-austenite into ¢- and «'-martensite
[19]. To promote these effects and therefore realize a sufficient
surface hardening, low temperatures as well as high mechanical
loads have to be provided by the cryogenic machining process
[111]. By applying surface hardening via cryogenic turning, the
fatigue strength [24] as well as wear resistance [77] of the austen-
itic steel could be improved.

However, in order to properly tailor the cryogenic process to
realize surface layer properties specified to certain application
requirements, the causal correlations between the input parame-
ters, the occurring thermo-mechanical loads and the resulting sur-
face integrity have to be understood. These causal relationships
have been investigated within the CRC 926 to develop a ML-based
model that can predict the martensite content within the surface
layer in dependence of the cryogenic turning process (see Fig. 38).
To model the resulting martensite, a priori knowledge is needed on
how the cutting process influences the occurring thermo-mechani-
cal loads which lead to the martensitic phase transformation. This
knowledge was gathered via cutting experiments which character-
ized the influence of cutting parameters [111,112,169], tool prop-
erties (cutting edge radius r4 rake angle y; K-factor K, coating
[110-112,168]), and cooling strategy (precooling, CO, mass flow
[111,169]) on the occurring forces and resulting temperatures dur-
ing cutting. Using the measured forces and temperatures as input
data, three algorithms (SVM, ANN, RF) were used to predict the
resulting martensite content ¢. A total of 55 data sets were used for
training and testing the ML algorithms with an 80 to 20 ratio
respectively. As a result, SVM delivered the best accuracy
(R? = 99.21%), followed by ANN (R? = 88.62%) and RF (R? = 70.78%)
in predicting the resulting martensite content [83].

input parameters cryogenic turning ML based model martensite content

coating

precooling hidden layer output layer

Fig. 38. Depiction of the ML-based model to predict the martensite content according
to[111].

properties.

7.2. In-process prediction of surface quality during cryogenic hard
turning using soft sensors (PP 2086)

In cryogenic hard turning of quenched and tempered 100Cr6,
the application behavior can also be optimized by targeted surface
conditioning. This is due to metallurgical changes in the surface
layer (e.g., grain refinement) and the introduction of favorable
residual compressive stresses [269,277]. To properly design this
process of surface conditioning, the causal relationships between
the input parameters of the cutting process (cutting speed, feed,
depth of cut, mass flow of the cryogenic coolant) and the resulting
surface layer properties have to be understood. These causal rela-
tionships have so far been investigated within the PP 2086 and are
well understood [13,21]. However, during turning, especially
within industrial applications, several disturbances like progress-
ing tool wear, altering cutting edge preparations or changes of the
batch occur, which have an influence on the process characteristics
and therefore the resulting surface layer properties. While their
respective influence on the surface layer properties has also been
investigated [87], these occurring disturbances still have to be
monitored during the process in order to control the surface condi-
tioning process. This is undertaken indirectly by measuring the
forces, temperatures, and acoustic emissions, which occur during
cutting. In addition, an opto-pneumatic sensor was developed
and implemented, allowing for an in-process measurement of the
surface topography [264]. These in-process measurements are
used as an input for a developed soft sensor [263]. This soft sensor
utilized models derived from the causal relations observed by the
experimental data to predict the resulting surface layer properties
in relation to the occurring process characteristics. This allows for
an in-situ prediction of the surface condition that is manufactured.
As a next step, a process control has to be implemented into the
soft sensor. This will allow for automated adjustments of the cut-
ting process independence of the in-process monitoring. If an
action is required, the soft sensor will choose to adjust a variable
which is easy to vary and has the biggest impact. For example,
when the required values of residual stresses in the surface area
cannot be reached anymore without altering the control variables,
the soft sensor will choose to raise the mass flow of coolant,
because the models show the highest impact on the residual
stresses. A schematic depiction of this process control is given in
Fig. 39.

7.3. In-process monitoring and adaptive process control of surface
integrity during grinding (PP 2086)

During grinding of hardened steels, the component experiences
a thermo-mechanical load that leads to a change in the surface
layer state. In case of an incorrect process design, e.g., material-
specific critical temperatures can be exceeded to such an extent
that damage such as tensile residual stresses and tempering or
even rehardening zones occur. Generally, the occurrence of these
unwanted modifications is referred to as grinding burn and acts as
a thermal process limit [165].
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To detect grinding burn, industry still relies on subjective meth-
ods such as nital etching or destructive testing methods. In addi-
tion, in many cases, no measurements of the modification can be
provided [132]. Analytical-empirical models and micromagnetic
measurement methods are suitable for a non-destructive detection
of grinding burn and quantitative surface layer analysis [103,105].
Both approaches combined in a soft sensor signal enable an adjust-
ment of the process towards a favorable surface layer state by a
process-oriented control between grinding cycles.

Based on an empirical model in surface layer modification
charts presented in Section 3.4 (c.f. Fig. 11), a thermal process limit
for avoiding tempering zones is implemented depending on the
specific grinding power Pc” and the contact time At [103,105]. The
grinding power can be measured directly or calculated by measur-
ing process forces. If the critical limit is exceeded, an onset of
grinding burn occurs. Therefore, the soft sensor adapts the radial
feed speed vg or workpiece speed v,, in the process control or even
carries out a dressing process to recondition the grinding wheel.
Since critical tensile residual stresses can already occur before the
onset of tempering zones, the micromagnetic measurement of Bark-
hausen noise is also used. For this purpose, an experimental setup
for in-process Barkhausen noise measurement using 3MA technology
was developed in order to be able to expand the soft sensor in the future
[123].

8. Summary and future research

This keynote paper has proposed a concept for a paradigm
change in machining, which allows the combination of the classical
demand of geometry justification with the new demand of surface
layer adjustment and therefore the control of workpiece functional
properties. This is called surface conditioning and combines in-
process measurement of changes in the process with models inter-
preting these changes as influence on the surface layer properties.
If these so-called soft sensors are used in active control of machin-
ing processes, the adjustment of the functional properties as
described is affordable.

At the beginning, it is shown how surface integrity or surface
engineering is established today and which variety of surface layer
states can be induced in machining. Additionally, mechanism-ori-
ented descriptions of major effects on the surface layer are described
according to the concept of process signatures and their correlations
with functional properties like fatigue, tribological properties, and
corrosion resistance are referred to.

In-process measurement methods, used in surface conditioning
may be referring to topography and based on optical sensors.
Acoustic emission, temperature, cutting force, micromagnetic Bar-
khausen noise, and eddy current sensors can indirectly measure
surface layer properties, which may be related to microstructure
and/or residual stresses analysis. They may be used in-process in
contrast to more precise and time consuming techniques like X-
ray diffraction, electron backscattered diffraction, micro/nano
indentation, and Raman spectroscopy. Combining in-process sen-
sors can provide comprehensive surface integrity measurement.

In the field of modeling surface layer effects in machining oper-
ations, physically based models of mechanical behavior and loads
as well as thermal loads due to processing are used. Special mod-
els like dynamical recrystallization and Helmholtz-free energy
description of phase changes are available and well established.
The use of machine learning-based models is increasing to opti-
mize the processes and predict surface integrity. They require
data acquisition from the in-process sensors mentioned before,
preprocessing, feature extraction, and selection of the appropriate
algorithm. Here, support vector machines and artificial neural net-
works are commonly used for prediction. Finally, grey-box/hybrid
models which combine physics-based and machine learning-
based models are emerging to improve prediction accuracy. All
these models are applicable as a basis for soft sensors when com-
bined with in-process measurement in cutting and abrasive pro-
cesses. Using these, a control of surface layer properties is
possible using concepts of active, real time control within the
machine tool. A joint round robin test on residual stress adjust-
ment showed the different approaches available and also the great
challenges remaining in the conditioning of surface layer proper-
ties. Besides some organizational issues, this was especially
caused by difficulties in accessing machine tool control and estab-
lishing active control loops implemented outside the machine
tool itself. Specifically, the identification of control parameters
and the previous validation of thorough models interpreting the
in-process sensor data still impose questions on the intensity of
necessary reactions in the process. In case of ML-supported strate-
gies, this may also be caused by the small amount of data used in
the training phase. In total, it needs to be stated that many of the
challenges and limitations encountered during the CIRP Collabo-
rative Working Group on Surface Integrity and Functional Perfor-
mance of Components which lead to the STC S keynote 2011 [122]
have basically not been overcome and are still valid. Substantial
developments are necessary in order to achieve a successful com-
pensation of disturbances in technical cutting operations. Never-
theless, a limited number of first positive applications of the
concepts described in relevant processes exists and examples are
given at the end of the paper.

In conclusion, surface conditioning by combining in-process
sensors with soft sensors models and their use in active process
control is a promising but still challenging concept to be applicable
for future machining applications. Besides single items regarding
sensors and models, a comprehensive approach ensuring access to
the machine tool control and establishing an external active con-
trol is missing. Even in an elaborated situation, a lot of data for
identification of the soft sensor model part and the control param-
eters is necessary to eventually yield to an economic perspective
in large-scale production. However, there clearly is a high poten-
tial in combining the adjustment of workpiece geometry with the
control of the surface layer state and therefore of the functional
properties.
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