
X =1.00

X =0.01
perf

lossSD
Software Design and Quality

Modelling and Analysing
Zero-Trust-Architectures Regarding

Performance and Security

Master’s Thesis of

Evgeni Cholakov

at the Department of Informatics

KASTEL – Institute of Information Security and Dependability

Reviewer: Prof. Dr. Ralf Reussner

Second reviewer: Prof. Dr.-Ing. Anne Koziolek

Advisor: M.Sc. Larissa Schmid

Second advisor: M.Sc. Nicolas Boltz

Third advisor: M.Sc. Bahareh Taghavi

17. July 2023 – 17. January 2024

Abstract

Integrating a Zero Trust Architecture (ZTA) into a system is a step towards establishing a

good defence against external and internal threats. However, there are different approaches

to integrating a ZTA which vary in the used components, their assembly and allocation. The

earlier in the development process those approaches are evaluated and the right one is selected

the more costs and effort can be reduced.

In this thesis, we analyse the most prominent standards and specifications for integrating

a ZTA and derive a general model by extracting core ZTA tasks and logical components.

We model these using the Palladio Component Model to enable assessing ZTAs at design

time. In our components, we encapsulate different variations of the functionality of these

components to make them reusable and adaptable to the varying ZTA approaches. We make

our components extensible to allow developers to adjust them to their design requirements. We

combine performance and security annotations to create a single model which supports both

performance and security analysis. By doing this we also assess the possibility of combining

performance and security analyses.

We demonstrate the ability to analyze different ZTAs in Palladio and assess the applicability

of our model by modelling different ZTAs from the literature using the created in this thesis

elements. We evaluate whether we can detect performance impact induced by different ZTA

configurations by comparing the performance simulation of a Palladio example system with

and without ZTA. For the security analyses, we evaluate unauthorized and unauthenticated

access to resources as well as violations of the least privilege principle by using Data Flow

Analysis.

From the evaluation, we conclude that we can model ZTA using Palladio without needing

to extend the Palladio Component Model with new features. Our components can be used

off-the-shelf with little adjustments to legacy systems and even less when designing a system

with security in mind from the beginning. During the performance and security analyses, we

identified compatibility issues when combining performance and security annotations. How-

ever, the model still allowed the detection of performance impact induced by new components

as well as the detection of security violations such as unauthorized and unauthenticated access

and violations of the least privilege principle.

i

Contents

Abstract i

1 Introduction 1
1.1 Motivation . 1

1.2 Objective . 2

1.3 Structure of the Thesis . 3

2 Foundations 4
2.1 Zero Trust Architecture . 4

2.1.1 NIST Zero Trust Architecture . 4

2.1.2 Microsoft Zero Trust Architecture . 6

2.2 UK NCSC Zero Trust Architecture Design Principles 6

2.3 CISA ZTA Maturity Model . 8

2.4 Palladio . 10

2.4.1 Analysis . 11

3 RelatedWork 14
3.1 Modelling for Performance and Security Analysis 14

3.2 Modelling Zero Trust Architectures . 15

4 Running example: JPlag 19
4.1 JPlag . 19

4.2 JPlag Scenario . 19

4.3 JPlag System without ZTA . 19

5 ZTA Meta-Model 21
5.1 ZTA Request Evaluation Process . 21

5.2 ZTA Tasks . 23

5.3 Logical Components . 24

5.4 ZTA Meta-model . 24

6 Modelling with Palladio 26
6.1 Composite Data Types . 27

6.2 Interfaces . 28

6.3 Basic Components . 30

6.3.1 Policy Enforcement Point . 30

6.3.2 Policy Engine . 34

6.3.3 Policy Administrator . 37

ii

Contents

6.4 Context Providers . 39

6.4.1 Authentication . 39

6.4.2 Device Authentication . 41

6.4.3 Store . 42

6.4.4 Logging of Events and Data . 42

6.4.5 Trust Algorithm . 43

6.4.6 Context Evaluator . 44

6.5 Modelling Templates . 46

6.5.1 SDP Model . 47

6.5.2 Beyondcorp Model . 47

6.6 Applying ZTAs on the Running Example . 50

6.6.1 JPlag with ZTA . 51

6.6.2 JPlag with SDP . 52

6.6.3 JPlag with BeyondCorp . 53

6.6.4 Discussion on applying ZTA Elements 55

7 Data Flow Analysis Model 56
7.1 Concept . 56

7.1.1 Authorization . 56

7.1.2 Authentication . 57

7.2 Data Dictionary . 57

7.3 Nodes Behaviour . 59

7.3.1 PolicyEngine Behaviour . 59

7.3.2 Authenticator Behaviour . 60

7.3.3 DeviceAuthenticator and TrustAlgorithm 62

7.4 Violations . 62

7.4.1 Multiple Authorization Labels . 62

7.4.2 Unauthorized Access . 62

7.4.3 Least Privilege Principle . 63

7.4.4 Unauthenitcated Access . 63

7.4.5 Device Unauthenticated Access, Untrusted Access 63

7.5 Generalising ZTA security analysis . 63

7.5.1 Defining a Java Enum . 64

7.5.2 Violation Data Class . 64

7.5.3 ZTAReport Data Class . 64

7.5.4 ZTAReporter . 65

7.6 Applying Security Annotations to JPlag Models 67

8 Evaluation 69
8.1 Evaluation Design . 69

8.1.1 Design for Evaluating Model Completeness 69

8.1.2 Design for Evaluating Model Applicability 70

8.1.3 Design for Evaluating Performance Inference 70

8.1.4 Design for Evaluating Security Violations Detection 71

iii

Contents

8.2 Evaluation Setup . 72

8.2.1 Media Store . 72

8.2.2 Integrating ZTA into the Media Store 74

8.2.3 Resource Environment . 78

8.2.4 Allocation . 80

8.2.5 Usage model . 81

8.2.6 ZTA Maturity Evaluation . 82

8.2.7 Setups for Data Flow Analysis . 88

8.2.8 Discussion . 90

8.3 Evaluation Results . 91

8.3.1 Discussion on Model Completeness . 91

8.3.2 Discussion on Model Applicability . 91

8.3.3 Discussion on Performance Analysis 97

8.3.4 Discussion on Security Analysis . 109

8.4 Threats to Validity . 112

8.5 Assumptions and Limitations . 114

8.6 Data Availability . 114

9 Conclusion 115
9.1 Conclusion . 115

9.2 Future work . 116

Bibliography 118

iv

1 Introduction

Zero Trust Architectures (ZTA) provide a shift from traditional perimeter-based defences to a

more robust, flexible and fine-grained security. In the following chapter, we present why such

security is needed nowadays and motivate the need to be able to evaluate such architectures at

design time.

1.1 Motivation

The advancement of the Internet of Things (IoT), 5G networks and cloud technologies have

allowed systems as well as critical infrastructures to shift to more distributed and off-premise

practices in their way of functioning. For example, such technologies allow for evolution in

the energy management systems and the introduction of Virtual Power Plants [5, 44]. Typical

for such power plants is the interaction of multiple distributed power-generating components,

energy-storing units and management systems. Another example of critical infrastructures

which make use of distribution and remote communications are medical systems namely remote

surgery [35, 50]. The IoT market is growing rapidly and IoT connections amount to almost 18

billion in 2023 with predicted growth to 38 billion until 2028 according to market insights [23].

Almost 77% of the examined global companies in [23] intend to implement IoT technologies in

the following years.

In the business sector, the home office has beenwidely accepted recently andmany companies

have integrated it into the work life of their employees [22]. This means that business resources

are being accessed off-site and through different devices. This is why secure software and

system design with fine-grained access control should be more deeply researched.

These trends, however, are followed by an increased attack surface for the systems and

spikes in cyber attacks.[23] These attacks cannot be underestimated since they can lead to

cases where a city power grid is compromised [8] or a country’s nuclear program is damaged

[3]. This is why a secure software and system design should be more deeply researched.

A more traditional approach to cope with security problems is the perimeter-based architec-

ture. In this type of architecture, the system is separated into internal and external domains

with a border between them. The border is created using different access interfaces, firewalls,

intrusion detection systems and intrusion prevention systems. Even strategies such as deploy-

ing resources inside the internal domain of the system and forbidding access to them from the

external domain are also utilized. This type of approach to border definition suffers from one

main drawback. Once an adversary manages to infiltrate the internal domain of the system,

they gain significant trust and can easily access critical system components and resources

without being checked. According to reports from 2019, the US health industry has suffered

over 3,8 million cases of patient record breaches due to inside attacks, which was a 26% rise

from the previous year [52]. The infamous WannaCry ransomware is an example of an attack

1

1 Introduction

which had a severe impact on the National Healthcare Service (NHS). The worm was able to

spread due to outdated OS versions.

ZTAs provide a new approach to system design which can cope with the issue of preventing

internal attacks. ZTAs follow the principle that no subject, no matter whether it is internal or

external, should be trusted before correctly authenticating itself. In addition, trust in the subject

making the request should be constantly evaluated by analysing multiple information sources

such as the subject’s location or behaviour. Each access request to a protected resource should

be evaluated for required permissions and permissions are granted only following the Least

Privilege Principle (LPP), where only the required permissions for solving the task are assigned

and no more. There are already suggestions about integrating ZTA into critical infrastructures

similar to the ones we mentioned in the beginning. ZTA can applied to enhance security in a

Virtual Power Plant [1] or in smart healthcare, [9]. Manufacturers from Industry 4.0 can also

benefit from integrating a ZTA [39]. In the case of the WannaCry attack from the previous

paragraph, if infected devices have been micro-segmented and requests evaluated according to

Zero Trust principles, the impact of the attack could have been greatly contained [52].

However, designing or migrating to a ZTA is not a straightforward task [49]. The architecture

introduces new components, such as Trust Algorithm (TA), Policy Decision Point (PDP), etc. and

additional authentication and authorization checks. This can produce additional performance

and cost issues. Additionally, there are multiple ways to design a ZTA [48]. Designing and

testing each design alternative, in order to choose the right one, costs time and resources.

Hence it is inefficient. By modelling the ZTA we can perform early performance analysis and

try to identify access control violations, which can hinder the system’s confidentiality. Analysis

at design time can also detect errors in a system’s architecture. An error may be induced in a

system long before its implementation and deployment. Design time errors prove to be harder

to diagnose, require more time to be corrected and cost much more resources when handled at

a later stage of the development process[6, 7]. Currently, there is no existing model of a ZTA

suitable for performance and security analyses.

Modelling of such architecture can be achieved using Architectural Design Languages.

Palladio offers the opportunity to create a model of a system by defining its components,

with their behaviour and relations as well as deployment environments and usage models.

Then analysis can be performed on the created model to test the quality requirements such as

performance or security[43].

1.2 Objective

Currently, ZTAs have not been modelled using Palladio. Additionally, performance and security

analyses have been performed separately in Palladio until now. If we can combine both of the

performance and security annotations in a single model we would enable the simultaneous

analysis of both quality requirements.

The objective of the following master’s thesis is to model reusable ZTA components and

interfaces using elements of the Palladio Component Model. We want to create components

which can be used by developers in their own Palladio projects to include ZTA concepts with

minimal adjustments. We want to develop an approach to detect security violations in a system

with ZTA using Data Flow Analysis. We want to include the security annotations alongside

2

1 Introduction

performance annotations to enable both of the analyses at design time with a single model.

We then evaluate if the created components can be reused off-the-shelf to model varying

suggestions of ZTA from the literature. We also want to test if we can detect the performance

impact induced by the ZTA components as well as security violations in an example model.

1.3 Structure of the Thesis

Chapter 2 presents the needed concepts to understand the work done in this thesis. We describe

in more detail what ZTA is and provide an integration guide and maturity model which we

will later use in our evaluation. We also provide a description of Palladio.

In Chapter 3 we present approaches for modelling systems for performance and security

analyses from the literature. We also discuss suggested models of ZTA from the field.

In Chapter 4 we create a model of the JPlag [24] system which we use as a running example

throughout the thesis.

In Chapter 5 we analyse standards for ZTA and extract from them the main tasks as well as

logical components responsible for these tasks and their relations. We convert this knowledge

into a ZTA meta-model.

In Chapter 6 we describe the the whole process of modelling ZTA concepts using Palladio

and the resulting data types, interfaces and components. We then showcase how to apply the

created elements to the running example in order to integrate into it a ZTA.

In Chapter 7 we present the development of the security model of a ZTA for Data Flow

Analysis. We describe the label definitions and nodes’ behaviour. We define the possible

violations our model can detect and then present a reusable Java implementation for analysing

ZTA for these violations by specifying constraints. We then apply the security annotations to

our running example.

In Chapter 8 we perform the evaluation. We describe the example Palladio model which we

use in our evaluation and describe how we integrate a ZTA into it according to the guide from

Chapter 2. To provide a closer to real-scenario context we evaluate the created model according

to the ZTA maturity model presented in Chapter 2. We propose scenarios for evaluating the

security model. We assess how thoroughly we were able to recreate ZTA concepts using

Palladio and test the applicability of our elements by modelling systems from the literature.

We then execute performance and security analyses on the example Palladio model with ZTA.

In Chapter 9 we conclude the thesis and discuss topics for future work.

3

2 Foundations

In the following chapter are presented key topics for understanding the rest of the thesis. We

first present what is the meaning of a ZTA and what principles it follows. Then we present

Palladio which will be used in this project to create the model and perform the analyses. Finally,

we introduce a guide for integrating a ZTA in a system and present also a maturity model

which we use in the projector to evaluate the maturity level of the ZTA model we use in the

evaluation.

2.1 Zero Trust Architecture

To explain what a ZTA means we present two standards from the literature which describe

what is the definition of Zero Trust and what practices and concepts are included in a ZTA. We

observe the NIST standard document as well as Microsoft’s white paper on the topic of ZTA.

2.1.1 NIST Zero Trust Architecture

Zero Trust [48] can be described as a cybersecurity paradigm which is focused on access control

of non-public resources (data, services, devices, Internet of Things actuators) per request based

on trust and enforces the LPP. The LPP states that a subject should not be given more than the

required authorization for accessing a resource. Trust in the context of Zero Trust can be given

through a complex evaluation of the subject’s (user, device or combination of both) identity,

the resource’s required permissions and the context of the environment as well as the request.

The two main goals of Zero Trust are to restrict access to unauthorized subjects and enforce

access control as granular as possible. ZTAs are architectures which apply the concepts of Zero

Trust in their structure and functionality. The main concepts of Zero Trust can be summarized

as follows [48]:

• Under the term resources we should consider all data sources, provided services and

devices, which access classified resources.

• Communication is always secured.

• Access is granted per request.

• Access is determined through dynamic policies which observe identity state, resource

state, and behavioural and environmental contexts.

• Security and integrity of resources, as well as access request and infrastructure state, are

constantly monitored.

4

2 Foundations

Policy Enforcement Point

Policy Decision Point

Policy Engine Policy
Administrator

Subject

Resource

Figure 2.1: ZTA core components according to NIST standard [48]

• Access control is strictly enforced.

The two core components of a ZTA, which stand between the subject and the resource, as

shown in Figure 2.1, are Policy Enforcement Point (PEP) and Policy Decision Point [48]. The

PEP is responsible for intercepting the access request and then forwarding it to the PDP. It

also monitors the access of the resources, if granted, and also terminates the connection to

the resource. The PDP is broken down into two sub-components - the Policy Engine (PE) and

Policy Administrator (PA). The PE is responsible for assessing the access request by evaluating

static policies as well as information from additional sources such as threat intelligence, identity

management systems, activity logs, etc. The PE takes the final decision of whether to grant

access or deny it. This ultimate decision is passed on to the PA. The PA is responsible for

configuring the communication between the subject and the resource based on the decision

of the PE. If access is granted the PA may create needed access tokens or credentials for the

subject and pass them on to the PEP to start the communication. If access is denied PA is

responsible for signalling the PEP to terminate the connection.

Apart from the core components, a ZTA may include additional components to its structure

which enhance the decision-making process. Such components may be [48]:

• Identity management system

• Continuous diagnostics and mitigation system

• Threat intelligence feed

• Network Monitor

• Industry compliance system

• Public Key Infrastructure

5

2 Foundations

2.1.2 Microsoft Zero Trust Architecture

In their white paper on the topic ZTA [18], Microsoft outlines similar principles of the Zero

Trust. These are:

• Always verify a request explicitly.

• Integrate all available data about identity, device health, location, anomalies, etc. into the

decision-making process.

• Allow access only according to the LPP.

• Consider the system always as breached.

• Integrate micro-segmentation, encryption, monitoring as well as automated threat re-

sponse to reduce the impact of breaches.

Furthermore, there are some logical components of a ZTA outlined. On the side of the accessing

entities, there are Identities and Endpoints. Identities may represent a user or a device and

require strong authentication. Least privileges should be provided to an Identity when accessing

and behaviour should be monitored for anomalies. Endpoints represent the device which is

used to perform the access request. Endpoints should be evaluated for device policy compliance

as well and their health should be monitored. Resources, which are being accessed, are divided

into Data, Applications and Infrastructure. Data is what is being ultimately protected and should

be identified, labelled, classified, encrypted and accessed only through required attributes.

Applications as well as Infrastructure are used to consume the data and should be monitored

for abnormal use and faulty configurations. Since all data is accessed through the network, a

Network component is outlined. The network should be segmented and protective measures

such as end-to-end encryption as well as Intrusion Detection/Prevention Systems should

be employed. A Threat Protection component feeds from the information provided by the

monitoring of the previously mentioned components and calculates risk assessments. These

assessments can be manually analyzed or sent to the Policy Enforcement component for

decision-making. The Policy Enforcement intercepts requests and makes access decisions. It

incorporates all of the provided information by the other components into its decision-making

process. Lastly, the Policy Optimization component is mentioned. It covers the organization’s

specific policies which are adjusted to comply with business rules, industry requirements and

end-user experience.

2.2 UK NCSC Zero Trust Architecture Design Principles

When designing a ZTA or looking to integrate Zero Trust principles in an existing system is a

good practice to follow a structured guidance which outlines important aspects and suggests

practices in covering the Zero Trust principles. For our evaluation later in the thesis we will be

applying a ZTA to an existing Palladio model. We do not want to apply components from our

repository in a random and unjustified way. We also want to put the integration process in a

more real-life scenario to provide a better demonstration of a real-life application of our ZTA

elements. Therefore we are going to use a guidance document which navigates us through

6

2 Foundations

the steps of applying a ZTA and we will map the use of our components to these steps. For

this case, we will be using the Zero Trust Design Principles Document [57] provided by the

United Kingdom’s National Cyber Security Center (UK NCSC). The guide is aimed at assisting

systems in an enterprise environment to review their Zero Trust requirements and implement

needed concepts to integrate a ZTA. The guide consists of 8 principles which we will briefly

discuss in the following section.

1. Know your architecture including users, devices, services and data The first step in the

integration process according to the document is to perform a full-scale examination of your

system. This includes the discovery of all assets such as devices, services and accessing users.

The data stored by the system should be examined as well and classified according to its

sensitivity and locations of storage. Performing such a survey on your system helps to better

understand the critical points and weaknesses of an architecture. It also allows us to identify

which resources need protection and balance costs and efforts to achieve it. This examination

would also allow for performing a better risk assessment and determining risk handling politics.

2. Know your User, Service and Device identities The second step of the guide is concerned

with identities in the system. Identities are part of the authenticity security goal and without it,

a system cannot determine whether a request is genuine or not. In a ZTA identities are fed

to a PE for the decision-making process. Hence the guide suggests establishing unique user,

device and service identities. Identities should be stored in a secure dedicated directory which

is unique for a system. This would ensure that there is no ambiguous information stored about

an identity in the system. Establishing identities also allows the assignment of roles to assets

in the system and the enforcement of the LPP. However, implementing and maintaining an

Identity Management System is a whole research topic. The authors of the document reference

their dedicated guides for this purpose. This is why here the identities topic is covered on a

more abstract level.

3. Assess user behaviour, service and device health The third step encompasses the processes

of observing and assessing the behaviours of users as well as the health of devices and services.

User accounts might be stolen and used in an unusual way and devices may be compromised

after a successful enrollment in the system. Indications of such events should be constantly

monitored in a ZTA and analysed. This is why in this step of the guide, a system should be

provided with solutions to detect such events. For example, devices should be evaluated to

predefined configuration requirements or their security state should be evaluated per request

based on a device fingerprint. Users should be monitored from what location they are making a

request as well as the frequency or type of requests they are performing. Monitoring the state

of resources and services should also be performed to ensure that nothing has been corrupted.

Data collected in those processes is then to be supplied to the PE of the system to impact the

final decision.

4. Use policies to authorise requests The next topic of the guide is the policies and their

evaluation. Policies are defined by the authors as the power of a ZTA and their evaluation

happens in a PE. Enterprises should take the time to carefully integrate a PE and design it to

make decisions based on multiple signals to improve the policy evaluation process. The policies

and PE should be protected components of the architecture and should not be exposed to

unauthorized access or access by user end devices in order to limit the possibility of corruption.

7

2 Foundations

5. Authenticate and Authorise everywhere As a fifth step in the integrating process, we have

the requirement for authentication and authorization everywhere. This means that requests

for every critical resource should always be passed through a PE and evaluated there based

on multiple inputs. Critical resources should not be accessible via an alternative path. The

requirement for authentication ensures that the authenticity of a user or device performing

the request can be checked and the authors discuss that a Multi-Factor authentication system

should always be applied and not a simple authentication scheme.

6. Focus your monitoring on users, devices and services The next concept of the guide is the

monitoring of users, devices and services. A system should constantly collect logs about who

accesses what using which device as well as how services function upon requests. This data

should be forwarded to a centralized monitor where analyzed and the result of the analysis

should be used when evaluating requests. This would also help in identifying problems in the

functionality of the ZTA itself as well as improve the quality of policies.

7. Do not trust any network, including your own The seventh guidance principle is aimed at

the perception of the network a system is using. It directly quotes one of the core Zero Trust

principles namely to not trust any network even your own. Trust should be built into devices,

users and services and not in the communication between them. Although the network is

always treated as hostile in a Zero Trust context, network hygiene should not be neglected and

the network should constantly be inspected for unauthorized hosts, for example, or unpatched

network components.

8. Choose services which have been designed for zero trust The last guidance principle discussed

the types of services we are using in our system. The authors suggest that when choosing a

new service, its compatibility with a ZTA should also be considered and carefully evaluated.

This would reduce the complexity of architecture and reduce the costs of integrating the service

in a secure environment. Legacy systems, meaning that they are not designed for zero trust,

might require additional components and configurations which increases the time and effort

required to integrate them as well as the complexity of the architecture. Zero Trust Solutions

provided by trained professionals should always be preferred to self-made Zero Trust solutions

because the error probability in developing Zero Trust solutions is too high to be neglected

according to the authors.

2.3 CISA ZTA Maturity Model

Achieving Zero Trust is a task which extends to multiple aspects of an enterprise. Solutions

should be applied to manage users and devices as well as policies and practices should be

established about processes happening in an enterprise. Therefore enterprises apply multiple

changes in their governance and introduce new components and services with the aim to cover

the Zero Trust principles. In this process of implementing a ZTA, it is good to be able to evaluate

the progress achieved in a structured way. This is where a maturity model plays a significant

role. A maturity model defines levels of maturity of a certain concept and describes what

requirements should be met to be able to achieve this level of maturity. The Cybersecurity and

Infrastructure Security Agency (CISA) have developed such a maturity model for evaluating

8

2 Foundations

the level of zero trust achieved by an agency. The CISA maturity model divides an agency into

five pillars which are Identity, Devices, Networks, Applications and Workloads and Data. Each
of these pillars might advance at its own pace, meaning that the level among pillars might

vary. Additionally, the model outlines three cross-cutting capabilities which are contained in

all of the pillars and for which each pillar provides a requirement. The maturity model outlines

four levels of maturity. These are the Traditional, Initial, Advanced and Optimal. Each of the

levels requires more effort and greater detail and complexity in the applied solutions than the

previous one. Each of the pillars is further divided into functions and each function provides a

requirement for each of the maturity levels. In the following section, we provide a summary of

the pillars and the functions they are comprised of.

Identity Pillar An identity in the maturity model context is the set of attributes that uniquely

describe a subject, no matter whether it is a person, a device or a service. The identity

pillar encompasses aspects of authentication, identity management and the requirement to

provide the right entities with the least privileged access to the right resources. Mentioned

in this pillar are the needs for credential, identity and attributes manager combined with a

strong authentication solution. The functions of this pillar are Authentication, Identity Stores,

Risk Assessment, Access Management as well as the three cross-cutting capabilities. The

Authentication function describes requirements for authentication solutions such as the use

of a Multi-factor authentication system and its qualities such as phishing-resistant. Identity

Stores function evaluates the stores where identity information is stored and their location.

The Risk Assessment function evaluates the requirement for assessing risks concerned with the

identity of an entity. The Access Management function observes the type of access provided

to identities. Whether it is a permanent access or one that expires eventually and needs to be

reevaluated.

Devices Pillar A device in the maturity model is considered every asset with its software,

hardware and firmware that has the ability to connect to a network. The pillar encompasses re-

quirements for monitoring and maintaining the health and security posture of company-owned

devices as well as requirements for handling devices in a bring-your-own-device environment.

The functions of the pillar are Policy Enforcement and Compliance Monitoring, Asset and

Supply Chain Risk Management, Resource Access, Device Threat Protection and the three

cross-cutting capabilities. Policy Enforcement and Compliance Monitoring encompasses prac-

tices and solutions to monitor the posture of devices, compare it to company policies and

enforce changes and updates to a device’s configuration and/or software. The Asset and Supply

Management function evaluates the inventorying and storing of device information. Resource

Access describes the requirements for considering device information when evaluating access

requests. Lastly, the Device Threat Protection function describes solutions which need to be

applied to devices in order to protect them from attacks and corruption.

Networks Pillar Networks in the maturity model are considered every open communication

medium which is capable of transporting messages. In the pillar are mentioned requirements

about segmenting the mediums into multiple separate parts and bringing security controls

closer to the protected resource. The functions in this pillar are Network Segmentation, Network

traffic, Traffic Encryption, Network Resilience and the three cross-cutting capabilities. The

Network Segmentation function evaluates the level of segmentation of the system architecture.

9

2 Foundations

Whether the system uses a single broad defence perimeter or is separated into multiple smaller

ones. Network Traffic Management is concerned with establishing traffic rules and whether

they are static for the system or different for applications based on application profiles. The

Traffic Encryption function discusses security mechanisms and their use in the encryption

of traffic when transporting along mediums. Network Resilience observes the configuring of

the network to respond to applications’ resource demands and the network’s capability to

dynamically adapt to these demands.

Applications and Workloads Pillar Applications and Workloads in the context of the model

are all systems, computer programs or services executed on-premises, mobile device or cloud

environments. The pillar encompasses requirements for the governance and management of

applications throughout their lifecycle from development, through testing and deployment.

It is evaluated also how access to applications is granted, how applications are protected and

how are they exposed to the end user. The functions of the pillar are Application Access,

Application Threat Protection, Accessible Application, Secure Application Development and

Workflow and Application Security Testing and the three cross-cutting capabilities. In the

Application Access function, it is observed whether access to applications is provided based on

static attributes or contextual information is also evaluated. Similar to the threat protection in

the devices pillar, here the Application Threat Protection is concentrated on applying threat

protection solutions to applications and their workflows. Whether the applications are accessed

only through dedicated networks or are available on public ones is evaluated in the Accessible

Applications function. Secure Application Development and Deployment workflow observes

the practices, tools and environments of the development and deployment of an application

and how they are protected. Lastly, the Application Security Testing evaluates to what extent

security tests are integrated into the applications’ development process.

Data Pillar In this maturity model, data is defined as every structured or unstructured file or

fragment and their metadata which is stored on on- or off-premise stores. The pillar determines

thematurity level of how data is being handled in the agency. The functions which are contained

in the pillar are Data Inventory Management, Data Categorization, Data Availability, Data

Access, Data Encryption and the three cross-cutting capabilities. Data Inventory Management

determines the level of inventorying the data and data categorization and labeling is observed

by the Data Categorization function. From where data can be accessed is evaluated in the Data

Availability function. The access controls to data and the LPP are observed in the Data Access

function and lastly, whether stored data is encrypted and what mechanism are used for it is

evaluated in the Data Encryption function.

2.4 Palladio

Palladio [43] is a component modelling approach which can be used to model systems and then

perform analysis of quality requirements on those models. This allows for making predictions

about a system’s quality requirements at design time, which are not based only on educated

guess but rather on the system’s possible structure, behaviour, deployment and usage models.

The building blocks of a Palladio model are the first-order elements Basic Component and
Interface. As per the Palladio book [43] the Components are defined as "contractually specified

10

2 Foundations

building blocks which can be composed, deployed and adapted without understanding their

internals" and Interfaces are the points of interaction between components. Components are
described by specifying their required and provided Interfaces. They are specified in a Repository
which holds all of the Basic Components, Interfaces and Composite Components. Composite
components are components which are assembled by combining other Basic Components and
again specifying required and provided interfaces.

The components and interfaces then can be used in order to specify a system. A system has

again its own provided and required interfaces and contains inside components which are

connected to each other via interfaces. This strongly resembles the structure of a composite

component. However, the main difference is the possible allocation. Different parts of a system

can be deployed on different resource containers. On the other hand, this is not possible for a

composite component.

In order to specify the behaviour of a component a Service Effect Specification (SEFF) is used.

SEFFs define the connection between a component’s required and provided interface. Calls to

the required interface are specified as External Call Actions and functions of the component,

to which the SEFF belong, are modelled as Internal Actions. The internals of the actions, such
as algorithms, are abstracted from the representation. The control flow is represented as a

sequence of actions as well as loops, forks or branches. To further specify the quality model

of a component, SEFFs can be extended to Resource Demanding SEFF (RDSFF). In RDSEFF

resource demands, such as CPU, and HDD, are modelled using abstract work units, for example,

10 CPU work units. After a deployment context has been specified with exact resources, the

actual processing time can be calculated. The RDSFFs allow for further specification of failure

probabilities. These refer to probabilities of software errors and allow the analysis of the

reliability of a component.

Palladio also allows the specification of the execution environment by modelling the resource

container with their processing resources such as CPU and HDD. Resource containers can be

connected by linking resources with specified communication resources such as network speed.

After the execution environment has been defined, the allocation model can be created, which

specifies on which containers the different parts of the system are deployed.

Finally, the usage model of a system is defined. This model represents how a system could be

used in its operational phase. With the usage model, we can define different workloads which

a system can experience.

2.4.1 Analysis

After putting all of the pieces from the previous sections together, we have a complete model

of a system on which we can perform quality analysis. Palladio offers multiple analysis

tools, which use different analysis techniques, in order to gather quality metrics about the

system. One example is the SimuCom simulator which can provide response times and resource

utilization for single components or the entire system, based on the provided Palladio model.

Further metrics which can be calculated with Palladio include throughput and software failure

potentials.

When doing a performance analysis, the simulator starts feeding requests to the system

model according to the usage model. The system workload can be defined as a closed one and

the number of requests which circulate in a system is specified. The workload might also be

11

2 Foundations

open, where there is no limit on the requests which arrive at the system but we need to specify

the interarrival time of the requests. We specify a limit to the simulation time and the number

of measurements that should be made within this time limit.

Confidentiality issues arise when data arrives at a place in a system where it should not be.

Since confidentiality issues compromise seriously a system’s security and can be hard to resolve

in later phases we need to be able to discover them at design time. Model-based confidentiality

analyses prove to be suitable in this case and such analysis can be performed in the following

way [46]:

1. Create an Analysis Definition

2. Model the system

3. Run the analysis

In the first step, which can be performed by a security expert or a system designer, the following

elements should be specified:

• Properties of nodes

• Properties of data

• Behaviour of nodes, which specifies what are the output data properties based on the

input data properties.

• Comparison function, which detects violations by comparing the properties of data and

nodes.

In the second step, which is performed by the system designer, the system is modelled and the

elements from the Analysis Definition are applied to the model. In the last step, the analysis

is executed and violations are detected based on the comparison function. The analysis itself

maps the model with the added Analysis Definition elements to a label propagation network.

In a label propagation network the properties of nodes and data are treated as labels and the

behaviour of nodes is the label propagation function. After the execution of the analysis, it

is known what data at which node has arrived as well as the labels of the data at each node.

According to the comparison function labels are evaluated to detect violations [46].

To specify labels and node behaviours in Palladio we use security annotations. Firstly, as per

the confidentiality modelling documentation [17], labels and characteristic types are specified in

a data dictionary. The dictionary is a file of type .pddc in the Palladio project and for specifying

labels in it there is a dedicated syntax. Labels and their value range are specified as an enum
and then characteristics of nodes are specified as enumCharactersiticType which uses an enum.

After, we have specified the characteristics we can define how Palladio components handle

them in the SEFF diagrams. For this purpose, we use confidentiality variable usages, where

we set the variable and expressions for the characteristics. Expressions are evaluated to true

or false and a true value means that a characteristic is available for this variable. Expressions

have the form of variable.characteristicType.value := Term where vairable is the variable of
the variable usage, characteristicType is the characteristic and value represents a value from
the enum of the characteristic. Terms on the right side can take the constant values true or

12

2 Foundations

false, can be evaluated using binary logic and can also reference other confidentiality variables,

for example, parameters or return values of functions. Node characteristics are specified in a

.nodecharacteristics file where we can set variable characterisations for component instances

from the assembly model and resource containers from the resource environment model. In

the usage mode of a Palladio model, we set the characteristic of input data to the system by

using again variable usages and setting the input parameters of system entry calls.

When we have a Palladio model we need to extract a Data Flow Diagram from it. Then on

the diagram, we need to evaluate the node behaviours in order to perform the label propagation.

Then, in the end, we obtain a set of nodes with their node characteristics and the characteristics

of the received data by the node. The required tools to extract data flow diagrams from a Palladio

project and propagate labels are coded in a Java library in the org.dataflowanalysis.analysis
package. We instantiate the DataFlowConfidentialityAnalysis class where we set the paths to
the usage model, the allocation model and the node characteristics of the analysed system.

Then we use the findAllSequence and evluateDataFlows functions of the class to obtain a list of

ActionSequence objects. ActionSequence objects contain lists of AbstractActionSequenceElements,
which we iterate to extract node labels. Constraints are defined as logical expressions which

compare the extracted labels.

13

3 RelatedWork

In the following chapter, we present research in the field of modelling systems for performance

and security analysis. In the second section, we discuss suggested models of ZTAs from the

literature.

3.1 Modelling for Performance and Security Analysis

In this chapter, we explore how system architectures might be modelled in order to analyse

quality requirements. We also look at different proposals of how a ZTA could be modelled for

different systems and eventually implemented.

Fernandez et al. [19] perform an analysis on ZTAs regarding the principles of Saltzer and

Schroeder for creating a secure system. Various ZTAs are mapped to the principles which

they enforce. The security patterns which help to enforce those principles are discussed. The

paper aims to outline a Security Reference Architecture (SRA) of ZTA. The proposed SRA

extracts elements from different security patterns in order to form a concept model of a ZTA.

The authors then try to evaluate ZTA by answering questions regarding the performance and

security of such a system. However since no quantitative measures of ZTA systems are available

as well as the proposed model is only a concept model and no analysis can be performed on it,

the answers in the evaluation are based only on educated guess.

Cortellessa et al. [12] introduce a framework which allows modelling the performance

and security aspects of a software architecture. The idea is to create a performance model

which contains security annotations and can be compared to alternative performance models

which may contain different security mechanisms or not at all. The authors have created a

UML library which models the basic security mechanisms of encryption, decryption, signature

generation and verification. Then with these models, they have modelled composite security

mechanisms such as Data Confidentiality which contains in itself encryption and decryption

mechanisms. When modelling a system, first an Application Model is created which consists

of static and dynamic descriptions of the system in UML. Then, the model is annotated with

security requirements. Then Security Enabling Model is obtained by embedding the modelled

mechanisms from the described UML library into the UML model. Lastly, the Security Enabling

Model is translated to a Generalized Stochastic Petri Nets model to analyse performance.

Sharma et al. [47] are using Discrete Time Markov Chains (DTMC) to make predictions about

the performance, security, reliability and cache miss behaviour of a system. Their idea is to

map a software architecture to an absorbing DTMC, which means that the DTMC has one state

which has no outgoing transitions. This state represents the termination of the execution of a

system. Each architectural component is then mapped to a state in DTMC and the transitions

between states represent the flow of control between components in the architecture. The

metric which is observed from this initial modelling of the architecture is the number of visits to

14

3 Related Work

a state before reaching the absorbing state or in other words, the number of times a component

is visited in an execution. Then the model is enhanced with additional information such as

reliability or performance information so that different analyses can be performed.

3.2 Modelling Zero Trust Architectures

Google present their approach towards a ZTA, Beyondcorp, in [55]. The system aims to provide

fine-grained access control for different company resources based on full authentication and

authorization per each request. The ZTA has two database modules - Device Inventory Database,
for storing company-registered devices and the Users/Groups Database, for storing users’ roles

and responsibilities. A Single Sign On (SSO) component is responsible for authenticating a

user/device on requests and providing an authentication token to be presented to the Access

Proxy (AP). The AP serves as a PEP and redirects requests to the Access Control Engine (ACE),

where policies are evaluated. A Pipeline is responsible for feeding information to the Access
Control System from the databases as well as the Trust Inference component. In the Trust

Inference component, a trust score is calculated for the accessing user/device. The paper [37]

continues the discussion of Beyondcorp’s architecture. There a more abstract categorization of

the ZTA components is presented. We can distinguish between:

• Data Sources - providing contextual information.

• Access Intelligence Components - which encompass the ACE, Access Policies and Trust

Inference.

• Gateways - these are the various PEPs, such as network switches and web proxies.

• Resources - the assets, services and data which need to be protected.

In [39] Biplob and Muzaffar propose a ZTA model for a smart industry system, where manu-

facturing devices communicate with each other and need to be managed by an operator. The

architecture consists of two core components. The first one is the Authentication Component

and the second is the Authorization Component. An additional component for device discovery,

validation and certificate assignment, named Enterprise Discovery System, is suggested. An

Endpoint Compliance Management (ECM) system is suggested as a component responsible for

regularly monitoring if the devices’ state complies with security policies. When an operator is

accessing a device the Authentication component performs a signature and integrity check in

order to authenticate the operator. Then the Authorization component evaluates the operator’s

authority by using the information provided by the ECM. Internal device-to-device communi-

cation happens when manufacturing devices send data to a storage server. However, authors

have only suggested encrypted communication in this case which can be argued whether this

is enough to comply with the ZTA core concepts since no policy evaluation is enforced. The

authors have modelled an additional scenario where the storage server resides on a cloud

server. In this case, a Cloud Connector component is introduced which enforces policies when

communicating with the cloud. The paper however does not provide additional performance

or security analysis on the suggested model.

15

3 Related Work

Ramezanpour et al. [42] propose a framework for an intelligent ZTA (i-ZTA) in next-

generation networks 5G/6G. The system is categorized as intelligent since it incorporates

machine-learning approaches in the decision-making process. Before presenting their frame-

work the authors provide a general ZTA reference architecture based on ZTA focus areas,

proposed by the U.S. Department of Defence. The proposed focus areas include users, devices,

data, network, analytics, automation and workload. In the presented basic architecture we

can observe the suggested core components and their relationships. A user device, which

has its own security state, is accessing data, applications, assets, and services (DAAS). The

request is intercepted by a PEP and forwarded to a Network Access Control (NAC), which

can be mapped to a PDP. Inside the NAC is the core process of the architecture - the Trust

Evaluation (TE). In order to evaluate the trust, data comes from multiple sources apart from the

policies. The most important of these is an authentication component which provides identity

information. The device communicates additionally its security state. There are also different

analytic components such as user/device, network and anomaly detection. In the centre of the

actual i-ZTA framework are again the PEP and PDP components. Additionally, the architecture

contains three intelligent components. These are:

• Intelligent agent/portal (IGP) - responsible for analyzing the security state of the accessing

device.

• Intelligent Network Security State Analysis (INSSA) - responsible for analysing the

environment and providing dynamic rules using information from multiple components,

mentioned under.

• Intelligent Policy Engine (IPE) - responsible for aggregating and analysing the information

from the IGP, INSSA and static policies in order to make the final decision.

The static rules for the system come from the Data Access Policy, PKI, ID management and

Industry Compliance. The INSSA is using a CDM System, SIEM system, Activity logs and

Threat intelligence to perform its analysis. The authors then propose a design of a 5G network

integrating their i-ZTA. However, no actual implementation is presented as well as performance

and security evaluation of the model. This evaluation is important since integrating machine

learning components in a system could result in additional performance issues as well as attack

vectors.

In [10] Chen et al. are presenting a ZTA for 6G networks. The network consists of communi-

ties of user equipment (UE). The ZTA is described in a scenario where UE from one community

is accessing another community. However, if we set the source and destination to be the same

community we can assume that we can use the ZTA for internal communication. When a UE

sends an access request to another community it is intercepted by an Access Control Proxy

(ACP). The ACP forwards the request to the local controller. There an Identity Management

system verifies the identity of the UE. A Trust Evaluation Engine calculates the trust score

with the help of three external services - Vulnerability Database (VDB), Cybersecurity Event

Ledger (CEL) and Anomalous Behaviour Detector (ABD). Then the trust score is provided to

a Security Policy Engine (SPE) where the request is evaluated according to policies and the

trust score. The SPE makes the decision whether to access or deny the request and forwards

it to the ACP to implement it. The author evaluates the effectiveness of the architecture by

16

3 Related Work

comparing it to two other security architectures. Worm spreading is simulated in the three

architectures and the filtering rates of attack packets as well as the number of missed attack

packets are measured. The authors also test the robustness of the system by setting a validity

period on accepted requests, during which access by this device is not re-evaluated. The system

maintains a good attack packet filtering rate while increasing performance. However, we can

argue whether this characteristic should be evaluated since the practice of trust validity does

not comply with a core ZTA principle - enforce access control on every request. Finally, the

authors pay attention to the performance of the system as an open issue. Trust evaluation is

categorized as a costly process, which can be optimized using different design alternatives,

such as distributed external services across the communities or periodic active synchronisation

of logs instead of on-demand requests. However, in order to evaluate these alternatives a more

detailed model of the architecture is required on which to perform performance analysis.

Boo et al. [26] propose a ZTA for blocking malicious access to enterprise resources. The

architecture consists of three main components - a PDP, PEP and an Authentication Server

Function (AUSF), which consists of multiple sub-components. The PEP consists of Wi-Fi routers

and a VPN server. In the PDP the authors outline the User Control Function (UCF), Device

Control Function (DCF) and Connection Control Function (CCF). The AUSF provides a database

for storing user identities and credentials which are provided and managed by the UCF. The

DCF is responsible for keeping track of all devices which have access to the enterprise resources

as well as checking their security state. The DCF also manages the routers in the PEP. Users first

should be authenticated by the PDP and the PDP deploys policies to the PEP which describe

the resources which can be accessed by the user. Users should connect to the VPN in order to

be able to send access requests for the resources.

In [31], Lee et al. incorporate security situational awareness (SSA) into a Risk Adaptable

Access Control (RAdAC) model in order to propose a ZTA. Typical for RAdAC is the attempt

to balance the operational and security needs of an enterprise. This means that access to

corporate resources might be relaxed in order to maximize the benefits in safer situations. If

the enterprise is, however, in a tight security state then the risk is evaluated as higher and

access to resources might become more fine-grained. As PEP the authors suggest elements of

the network infrastructure, such as a WiFi base station, which intercepts requests and sends

them to a Context Handler. The Context Handler is an unusual component, compared to the

other suggested architectures, and is used as a centralized control unit which coordinates the

access evaluation process. The architecture also has a Policy DB, a Risk Evaluation Function

and an Access Decision Function. These three components form the PDP. Context information

is provided by the Environment Evaluation component. It consists of multiple plug-in sub-

components such as SSA or Location service. The Environment Evaluation Components

translate context information into attributes which can be used by the PDP in the decision-

making process. Information about subjects and objects is stored in a Subject/Object DB. Lastly,

policies are enforced with the help of firewalls on the path between subject and object. The

Firewall Provisioning component of the architecture is responsible for identifying the firewalls

standing on the path of a request and supplying them with policies by translating PDP decisions

into firewall-specific rules.

The Cloud Security Alliance (CSA) provides a specification for a Software Defined Perimeter

(SDP) in [13]. SDP provides a way to segment the network by using software-defined perimeters

and thus hide resources. This also allows to control access and prevent unauthorized access.

17

3 Related Work

SDP enforces a policy-based, identity-centric access model. In SDP the two main components

are an SDP Controller and an SDP Host. Hosts can be either an Accepting Host (AH) or an

Initiating Host (IH). AHs can be seen as the PEP of the system. They might be deployed on

the same device as the resources or on the path to it. AHs evaluate requests based on the

policies provided prior to the request from the SDP Controller. By default, all access requests

are denied if no instructions are present. The IH represents the entity making the request and

thus can be either a user or a device. IH should authenticate themselves to the SDP Controller

before requesting access to resources. After authenticating, the SDP controller determines what

resources an IH can access and deploys instructions to the AH of those resources to accept

requests from this IH. Since the SDP Controller evaluates an IH and makes the decision of

which resources to allow the IH to access, the SDP Controller is the PDP of the architecture.

To authorize access, the controller may use an on-premise policies provider or a third-party

service such as an Active Directory which can be hosted off-premise. Additionally, the controls

may obtain information about the context of the IH such as geolocation or a host validation

service. This type of data as well as identity and device attributes of the IH are integrated

into the decision-making process. For the authentication, the SDP controller may utilize an

on-premise service such as an internal user table or a third-party Identity Management System

which can be hosted again on-premise or in the cloud.

18

4 Running example: JPlag

As a running example, which we will use throughout the chapters to demonstrate how we

apply the developed in this thesis concepts, we define a system. We create a model of the

JPlag[24] system in this chapter, with the intent to later extend it with a ZTA and security

annotations.

4.1 JPlag

JPlag [24] is a system which enables the automatic detection of plagiarism among multiple

files containing source code, EMF meta-models or natural language. JPlag performs a rather

complex text analysis than simply comparing text bytes. This is because JPlag considers the

programming syntax and structure of programs. Therefore, JPlag can even detect plagiarism in

files which are trying to circumvent traditional similarity detection approaches. The system

accepts files or folders containing files to compare and analyse them. Based on the result of the

analysis the system creates a report which can be viewed using the JPlag’s dedicated report

viewer. Currently, the system is available for local use via the CLI or programmatically via its

Java API. The report viewer can similarly be used locally but is also available on the project’s

GitHub pages[25].

4.2 JPlag Scenario

For our example, we have the following scenario. We assume that JPlag is a publically deployed

system on a university network. which accepts files for evaluation and generates reports. The

JPlag system should offer the user a GUI through which the user can send their files for analysis.

The JPlag algorithm resides on a backend server alongside the report generator. After the

analysis is performed the system requests a report from the report generator and saves the

result in a database. The user can access the database to obtain the result or take it directly

from the JPlag response. The system should also offer a deployed version of the report viewer

where the user can send the generated reports for displaying.

4.3 JPlag Systemwithout ZTA

Following the scenario from the previous section we model the following components inside a

JPlag repository. Since we are designing the system from scratch we are going to do it with

security in mind. This means that we will enable components to propagate requests throughout

the system that contain security features such as authentication or authorization for example.

First, we create a JPlagGUI which requires and provides the IJPlag interface. The IJPlag

19

4 Running example: JPlag

<<System>>
JPlag No ZTA

JPlagGUI
IJPlag

IJPlag JPlagIJPlag IReportGenerator

ReportGenerator

ReportViewerIReportViewer

UniversirtyDB
IDBAccess IReportGenerator

IDBAccess

IReportViewer

IJPlag

IDBAccess

Figure 4.1: JPlag Assembly Diagram

interface has a single signature run(). When the component’s provided function is called it

forwards the request to its required interface to obtain a JPlag report and finally calls the

IDBAccess interface to store the report. The IDBAccess interface has two signatures put() and
get(). It is used to describe database access.

Next, we have the JPlag component which represents the JPlag’s analysing functionality. The

component provides the IJPlag interface and requires IReportGenerator. When the provided

functionality is called, the component performs the inner action of analysing the input and

then makes a request to its required interface to obtain a report for its result.

The ReportGenerator component provides the functionality of generating a report through

the IReportGenerator interface. When called, the component simply performs the inner action

of generating a report.

Lastly, we define the components UniversityDB and ReportViewer. The UniversityDB provided

the IDBAccess interfaces and is our database where reports are stored. The ReportViewer
component provides the IReportViewer interface and we use it to represent the entity where

users send reports of JPlag to be visualized.

Using the components from our JPlag repository we create the example system shown in

Figure 4.1. The system provides the interface IReportViewer, IJPlag and IDBAccess to allow the

user to request analysis, view reports and access the university’s database.

20

5 ZTA Meta-Model

In the following chapter, we summarize and present the general request evaluating process

in a ZTA. Next, we extract the logical components which are responsible for the different

processes in the general workflow. We identify the connections between those components.

After performing this analysis, we end up with a meta-model of a ZTA which we instantiate in

the next chapter.

5.1 ZTA Request Evaluation Process

When analysing the Zero Trust solutions presented in the NIST document[48], the SDP specifi-

cations [13] and Beyondcorp paper [55], we can extract three evaluation processes of a request

in a ZTA.

From the NIST document [48] we extract the process of evaluating an access request shown

in Figure 5.1. After the subject has sent a request it is intercepted and forwarded to a PDP. For

the evaluation, the PDP obtains policies and context data before proceeding with the evaluation.

According to this evaluation, it forms a decision and creates a configuration based on this

decision. Then it forwards the configuration to the interceptor. The interceptor of the request

acts based on this configuration and either forwards the request to the requested resource or

denies it.

The situation in an SDP-integrating architecture is a bit different and is presented in Figure

5.2. There the subject must first interact with the controller entity before sending a request to

a resource. The subject first contacts the controller and an authentication takes place. Then

the controller evaluates the request and creates configurations for the Accepting Hosts. The

configurations are then distributed to the Accepting Hosts and the subject. After that, the

subject sends the actual access request for a resource to an Accepting Host. Based on the

distributed configurations the Accepting Hosts allow or deny the request. It is important to

notice that we are paying more attention to the interaction of the subject with the SDP, rather

than the interaction with the Accepting Host. The request evaluation process in the Accepting

Host resembles strongly the functionality of a simple firewall. Technically the Accepting Host

enforces policies but the enforcement manner depends on a previous decision made by the

SDP. Therefore, the SDP is indirectly enforcing the policies. Since the SDP also evaluates the

context of a subject, we want to focus on its policy evaluation process.

In the case of Beyondcorp, as shown in Figure 5.3, the subject sends an access request to the

Accessing Proxy which checks the authentication and forwards the request to an authenticating

entity if needed. Then the request is forwarded to an Access Control Engine where policies are

evaluated. The engine acquires context data from different sources to evaluate context. Then a

decision is made and is sent to the Accessing Proxy. It then either forwards the request to a

resource or drops it.

21

5 ZTA Meta-Model

Subject sends
request Request intercepted Forward request to

PDP

Get policies Evaluate Policies Get context data

Evaluate context Form decision Create
configuration

Send configuration
to interceptor

Yes

No

Request
accepted?

Forward request to
resource

Figure 5.1: NIST ZTA Access workflow

Subject sends
request to SDP Authenticate SDP evaluates

request

SDP creates
configurations

SDP sends
configurations to

Accepting Hosts and
Subject

Subject requests
access to resource

Yes

No

Accept
request?

Forward request to
resource

Figure 5.2: SDP Access workflow

22

5 ZTA Meta-Model

Subject sends
request

Access Proxy
checks

authentication
Forward request to

Access Control
Engine

Evaluate policies Get context data

Yes

No

Accept
request?

Forward request to
resource

No

Yes
Authenticated?

Forward request to
autnenticator

Make decisionEvaluate context

Send decision to
Access Proxy

Figure 5.3: Beyondcorp Access workflow

5.2 ZTA Tasks

When looking at a system we need to identify what tasks happen during its workflow. If we

can identify these, we can then determine different roles and create components which are

responsible for performing those roles. In the previous section, we observed three different

workflows of architectures which follow Zero Trust principles. Although they may vary in

some aspects we can identify the main tasks which need to be performed in a ZTA. We end up

with the following tasks:

1. Request interception - request for accessing a resource should be collected before

getting to the resource.

2. Forwarding requests to a Decision Point - each unauthorized request should be

forwarded to a Decision Point.

3. Evaluating policies - a request should be evaluated according to the system’s policies.

4. Supplying context data - information about the context of a request should be proved.

Context data may be information about authentication or geolocation.

5. Evaluating context - the provided context data should be used in the decision-making

process.

6. Making a decision about the request.

7. Creating configuration - based on the decision about a request a configuration is created

to establish or terminate a communication path between subject and resource.

8. Supplying configuration to interceptors.

23

5 ZTA Meta-Model

1
PolicyEnforcementPoint

1

*PolicyEngine

*

1

PolicyAdministrator

ContextProvider

Figure 5.4: ZTA Meta-model

9. Enforcing a decision - a decision made by the decision point should be enforced

according to the created configuration. This happens by either forwarding the request to

the resource or dropping it.

5.3 Logical Components

Following the request evaluation process analysis and the identified tasks, we specify logical

components. The components have a specific role in the architecture, described by their

tasks, and need to be included in an architecture to be able to recreate the Zero Trust request

evaluation process. The components are:

1. Policy Enforcement Point which is responsible for performing tasks of intercepting a

request, forwarding it to a decision point and lastly enforcing the decision.

2. Policy Engine which is responsible for evaluating policies as well as context and making

the decision.

3. Policy Administrator which also forwards requests to the decision point, prepares

configurations for the interceptors and distributes them.

4. Context Provider which takes the role of supplying context data to the decision point.

5.4 ZTA Meta-model

When we combine the components from the previous section we end up with the following

meta-model of a ZTA as shown in Figure 5.4. The PolicEnforcementPoint communicates with a

PolicyAdministrator. The PolicyAdministrator may manage multiple PolicyEnforcementPoints.
The PolicyAdministrator communicates with a PolicyEngine thus forming a PDP. We divide the

PDP into two separate components for a better separation of privileges. The PolicyEngine has
multiple ContextProviders which provide context data.

Then we have the following general access workflow of a ZTA. First, the PolicyEnforcementPoint
receives the request by the user and is an entry point to the ZTA. The PolicyEnforcementPoint
forwards the request to the PolicyAdministrator which forwards it to the PolicyEngine for

24

5 ZTA Meta-Model

evaluation. After evaluation by the PolicyEngine, the PolicyAdministrator component also

prepares a configuration and manages the PolicyEnforcementPoint to accept or deny a request.

When receiving the request the PolicyEngine evaluates whether the request complies with the

policies. If yes, it proceeds to evaluate the context of the request. The three main aspects which

form the base of a request context in a ZTA are the user authentication, the device authentication

and the output of the trust algorithm. The processes behind user and device authentication

and trust calculation may be performed by their own components. However since they all

provide information about the context of a request, we can summarize them as instances of

a ContextProvider component. After context evaluation has finished the PolicyEngine makes

the decision and propagates back the decision to the PolicyEnforcementPoint through the same

path it has reached the PolicyEngine. The PolicyEnforcementPoint then based on the decision

by the PolicyEngine and configuration by the PolicyAdministrator, forwards the request to a

protected resource or terminates the process if the request has been denied.

25

6 Modelling with Palladio

In the following chapter, we model the core concepts of a ZTA using Palladio. We first define

Composite Data Types to model the data flowing in a ZTA. Then we model interfaces and basic

ZTA components. The idea is to model the basic ZTA components so they can be reused later by

developers when modelling systems that integrate the ZTA. The basic components encapsulate

the main functionalities of a ZTA identified in Section 5.2, such as intercepting and forwarding

a request, evaluating policies and context, and managing interceptors. Since we want to be able

to reuse these components we try to model them as generally as possible while still preserving

the specific functionality of each component. However, different standards and architectural

examples introduce variations of the basic components which makes it hard to completely

summarize the functionality of a basic component in a single model. Therefore, extension

points are introduced into the model that capture the points of variation (POV). Moreover,

these extension points allow developers to customize the basic components and adjust them

better to their architectural needs.

As per the NIST ZTA standard document [48], apart from the basic components such as

a PE, PA and PEP, there can be multiple other components which may exist in a ZTA. These

components have the role of additional data sources which provide data to the PE for the

decision-making process. They may also provide or aid in fulfilling processes in a ZTA such as

authentication or logging and monitoring. The NIST document mentions an SIEM system, a

PKI, Threat Intelligence, ID Management, a CDM system and Activity Logs as additional data

sources in a ZTA. These components may be internal to the system or external, provided by

a third party. As we see further from the SDP specification [13] and the BeyondCorp paper

[55], not every one of these components is mandatory to be present in a system in order to

achieve Zero Trust. However, some are still crucial for the principles of Zero Trust, such as

an authenticator component. From the CISA [11] and Microsoft [34] Zero Trust Maturity

Models, we observe that the presence or absence of components and technologies may change

the maturity level of a company’s Zero Trust integration. This also shows that if a certain

component is not integrated it does not necessarily mean that a ZTA is not present. Therefore,

we separate those components from the basic ones and dedicate a separate section for them.

Another point for the separation is the fact that for each of those systems, different solutions

exist on the market which vary in functionality. It is really hard to generalise those components

and model them as universal plug-ins for the ZTA. Therefore, we are going to model a basic

functionality for some of those systems which can be used to simulate the presence of a such

system in a ZTA model. Developers may further extend that general functionality to match

their needs or remodel such systems from the bottom to customize them according to their

requirements completely.

After creating our repository, we are going to model components for the ZTA solutions

BeyondCorp and SDP. With these models, we demonstrate basic combinations of the modelled

26

6 Modelling with Palladio

ZTA components to represent more complex ZTA solutions. Moreover, we create templates

which can be later reused in systems where SDP or BeyondCorp may be applied.

Lastly, we apply our created components and templates to the JPlag running example. We

create three different ZTA configurations to demonstrate the application of the model in a

system and show the model’s flexibility.

6.1 Composite Data Types

We define two composite data types in the repository - Request and ContextData. They are used
to specify parameters passed between the components as well as return types of signatures. In

a ZTA the main data which is passed between different components is a request. A request is

sent by the user to the system and is then propagated throughout the system for evaluation.

Therefore, wemodel it as a composite data type. In the Request data type we define the following
boolean fields:

1. Authorized - this field describes whether the request has been authorized or not. The

field is modified by the PE in case of evaluation. We can also use it to simulate authorized

requests sent to the PEP by the user in the case of a firewall-like PEP (see Subsection 6.3.1).

2. EvaluationEligible - this field represents whether the request requires pre-processing

before being sent to the PDP. In some cases, other functionalities may be triggered (e.g.

authentication) before forwarding to the PDP (see Subsection 6.3.1).

3. PolicyAuthorized - this field represents whether the request complies with the policies.

The field plays a significant role in the path a request may take in the evaluation process

as well as the execution path which comes after the evaluation process. If a request is

policy-authorized it will pass the first check in the PE, see Subsection 6.3.2. If a request

is not policy-authorized it will be rejected by the system. Hence the execution path

for accessing a resource which comes after the request evaluation will not be started.

Therefore by using this field, a developer can control the frequency of requests being

accepted at the first check in the PE.

4. ContextAuthorized - this field represents whether a request has been authorized according

to its context. This is the second check which a request passes in the PE. When the

value of the field is set to false, this would trigger a context evaluation process by the

PE. According to the standard of Zero Trust by NIST context evaluation is mandatory.

However, by providing the modeller with this field we provide them with more flexibility

through the option to switch off the context evaluation process, in case of a system which

may require only policies.

5. UserAuthenticated - this field represents whether the user of the request has passed the

authentication process.

6. DeviceAuthenticated - this field represents whether the device which sends the request

has passed the device authentication process.

7. Trusted - this field represents whether the request is trusted by the trust algorithm.

27

6 Modelling with Palladio

Based on the values of these fields, components modelled in this section change their func-

tionality. For example, setting the Trusted field to true could result in a system not starting

a trust calculation process and hence will not make calls to the components responsible for

that. Therefore, the fields modelled in this composite type are meant to be used to control the

execution paths which a request takes during simulation.

The next composite data type - ContextData - is used to represent data returned by context

providers. It has only one field ContextAuthorized which represents whether the context

provider has authorized the request according to its evaluation process.

6.2 Interfaces

We create interfaces in our ZTA repository. We use them later in component modelling to

describe the required and provided roles of the components.

IRequest

Wemodel the interface IRequest which has one signature request(Request request). The signature
takes one parameter of the composite data type Request. It returns also data of type Request. We

create this interface since passing around a request is one of the main communications which

happen in a ZTA. Since the Request data type has fields which are altered during execution, the

idea is to pass around a request with this interface and then act according to the altered fields

from the returned data. For example, a PEP uses the interface to forward a request to a PE and

then acts according to the Authorized attribute of the returned data.

IPolicies

The next interface we model is the IPolicies. It has a single signature providePolicies() which
takes no parameter and has a void return type. In ZTA, policy evaluation is one of the core tasks,

as we discussed in Section 5.2. To do this, a component is required to obtain policies and with

this interface, we can describe this required role of a component. Furthermore, components

which are responsible for loading and supplying policies should provide this interface.

IContext

We model the interface IContext. It has a single signature provideContext(Request request)
which takes one parameter of type Request. The signature has a return type of ContextData.
Providing context data and evaluating context are other core tasks of a ZTA. Therefore, there

are components which perform these actions and to describe their roles of a ContextProvider
we use this interface. We pass the Request as a parameter so context providers can act based

on the fields for which they supply data or provide context evaluation. With the return type

ContextData we describe what the outcome of the context evaluation is.

IManage

The next interface we introduce is IManage. The interface has a single signature named

manage(). It takes no parameters and has a void return type. In a ZTA, rules and configurations

28

6 Modelling with Palladio

of PEP are being constantly updated. To enable this type of communication we propose this

interface. Components which need to be configured should require this interface. Respectively,

a component which is responsible for configuring rules and deploying them provides the

IManage interface.

IObligation

We propose the interface IObligation with the single signature named performObligations().
The signature has no parameters and a void return type. Romain Laborder et al. [30, 29] specify

the behaviour of enforcing obligations. They propose this behaviour in the context of the PEP.
Apart from the decision, the PEP receives obligations that it needs to perform. Examples of

obligations could be logging or storing configuration. To satisfy the obligations, the PEP can

be plugged with additional components such as a logging component. When receiving the

obligation of logging, for example, the PEP calls the service of the logging component. We

want to use this concept of obligations to provide extension points in our components. We

discuss the need for such extension points in more detail later in this chapter. The idea is for

components to require this interface when we want to make them extendable and customizable

in their behaviour.

ICredentials

The ICredentials interface has a single signature provideCredentials which has a void return

type and has no parameters. In the process of authentication, an authenticating component

needs to obtain the subject’s credentials to compare them with the stored ones. This can be

done using the ICredentials interface. Respectively, components with which we model the

process of inputting or generating credentials should provide this interface.

IStoreAccess

We propose also the interface IStoreAccess. The interface has two signatures - store() and
retrieve(). Both of the functions do not require parameters and have a void return type. In

a ZTA we may need to store some kind of data such as logs, for example, in a storage. To

communicate with a store, we use the IStoreAccess. The names of the signatures are also a

description of their purpose - store is for storing data and retrieve is for retrieving data from a

store.

ILog

We model the interface ILog. The interface has a single signature log() which takes no pa-

rameters and has a void return type. Logging is an important part of the Zero Trust request

evaluation process. Components responsible for logging data in a ZTA should provide this role.

If components need to perform some logging then a call to this interface’s signature should be

included in the execution flow.

IResource

Lastly, we propose the IResource interface. It has one signature named accessResource(Request

29

6 Modelling with Palladio

request) which takes a Request type parameter. Components which serve as a gateway to a

protected resource should require this interface to communicate with resources. Respectively,

components which represent the assets protected by the ZTA should provide this interface.

6.3 Basic Components

The following section describes the components which form the core of a ZTA. These compo-

nents should be used to model the foundations of a system that integrates Zero Trust principles.

We discuss possible variations in the context of PEP and model two variations of the compo-

nent. The checking of policies and context is captured in a PolicyEngine component. Turkmen

and Crispo [51] present some implementations of policy evaluators and we can identify two

main phases of the process. They are the policy loading and policy evaluation. Following the

separation of privileges principle, we model the process similarly. We delegate the tasks of

loading policies to a PoliciesProvider components and the evaluation, as mentioned in previous

sentences, to the PolicyEngine. We also model a PolicyAdministrator component. It is mentioned

in [48] that the PolicyAdministrator can be directly combined with the PolicyEngine in a single

PDP component. Further suggestions of ZTA support this claim. For example, in the SDP

architecture [13], the controller makes the decision and sends configurations to the PEPs.
However, separating the PolicyAdministrator from the PolicyEngine enforces better separation
of privileges. Furthermore, it allows the developer to specify systems where the PolicyEngine
and the PolicyAdministrator reside on different hardware.

6.3.1 Policy Enforcement Point

The PEP is the component which intercepts the request from the client and forwards it for

further evaluation to the PA as well as monitors, establishes and terminates connections to a

resource, according to the NIST standard [48]. In [14], Carlos Da Silva, Welkson Medeiros, and

Silvio Sampaio implement the PEP as a service request interceptor. It forwards then the request

to the PDP. After receiving the decision from the PDP, the PEP either forwards the request to

the service it protects or denies the connection. Romain Laborde et al [30, 29] define the PEP in

their works with similar functionality. Although this general pattern of functionality is similar

across different PEP models there exist POVs which we consider when creating the final model

of a PEP.

Discussion on Points of Variation

Request Translation - In [14], the PEP collects information such as requesting user or URL

of access and sends it to the PDP. In [30, 29], the PEP is again mentioned as a component

which translates application-specific requests to requests compatible with the language of the

PDP. This is a critical point for legacy systems which are looking to integrate the Zero Trust

principles into their workflow. An application-specific request may contain in its data the

whole information required by a PDP and in this case, a simple data extraction may be enough.

However, it is possible that the PEP needs to make additional calls to other components if the

required data for translation is not present.

30

6 Modelling with Palladio

Communication Behaviour - Furthermore, after analysing the NIST standard[48], Beyondcorp

paper[55] and the SDP specification[13], we extract another varying functionality of a PEP in

the communication behaviour. The NIST [48] and Beyondcorp’s [55] PEPs forward requests

to the PE and accept rule updates. In the case of the SDP [13], the PEP can be summarized as

a simple firewall, which only receives rule updates from the controller, without forwarding

requests to it, and drops every unrecognized request. When we observe the rule updates the

communication is similar in all of the cases. However, when it comes to request processing,

the communication differs. In one case the communication channel is duplex where PEP
communicates with the PDP to forward a request and receive updates. In the other case, the

PEP only receives messages from the PEP and therefore the communication channel can be

categorized as simplex.

Additional Functionalities - The next POV which can be identified from the descriptions are

the additional functionalities of a PEP. In the Beyondcorp architecture [55], apart from the

standard functionalities the PEP also communicates with an authenticating entity to initiate

authentication in the event of an unrecognized request. The NIST standard [48] defines the PEP
also as a communication monitor. Such tasks could be triggered at different steps of the request

handling process of the PEP. For example, on a dropped request, authentication is triggered or

on an accepted request the decision and received configuration are logged. Therefore, we need

to enable the developer to customize the additional tasks performed by a PEP.

Modelling Decisions for discussed Points of Variation

Request Translation - Since translating application-specific requests to PE-compatible requests

may vary between different systems, we are not including it in the general model of a PEP.
We suggest that developers define their own translation component which requires and pro-

vides the IRequest interface and specify in that component the overhead required for request

translation. As for the general model of a PEP, there might still be little overhead for request

processing which we can model as an internal action.

Communication Behaviour - First, we separate the communications of PEP into a communi-

cation channel for request forwarding and a communication channel for receiving rule updates.

We do this because the request processing communication differs and we want to capture both

of the variations there. The rule updates channel is similar in all PEP and we will use a single

modelling approach for it. We model two basic components for the PEP. One of the components

is a SimplexPEP and represents one-way communication in the context of request processing.

The second component we model is a DuplexPEP.
Additional Functionalities - To enable our model to represent as many as possible additional

functionalities we will include extension points in the SEFFs. For this purpose, we are going

the use the concept of obligations, as described in the IObligation interface definition from

Section 6.2. Therefore, we include calls to the IObligation interface where we want to model

varying functionality.

SimplexPEP

The Simplex PEP provides the IRequest interface so it can intercept access requests and the

IManage interface so it can be configured by a PA. The component also has two required roles

for the IObligation interface to provide extension points on the events of accepting or denying

31

6 Modelling with Palladio

<<Internal action>>
Check rules

true
false

request.Authorized

<<External call>>
IObligation.OnAccepted

<<External call>>
IObligation.OnDenied

Set return RETURN.Authorized = request.Authorized.VALUE

<<CPU>>
1000 Units

Figure 6.1: SimplexPEP SEFF of request(Request request)

a request. The component provides a simple firewall-like functionality. We provide the SEFF

of the request function of the IRequest interface in Figure 6.1. When the function is called it

simulates the task of checking its rules with an internal action. Then, based on the Authorized
field of the Request parameter it triggers either the OnAccepted or OnDenied obligation through

an external call to the respectiveIObligation required role. In the end, the component returns

the value of the Authorized field of the input parameter without altering it.

The manage function of the IManage provided role simply executes an internal action to

simulate the process of updating internal rules. Since there is not any complex logic present in

its SEFF we do not provide an activity diagram for it.

DuplexPEP

The DuplexPEP provides the IRequest interface and the IManage interface. It again requires two

IObligation interfaces for events of accepting and denying a request. The component requires

additionally the IRequest interface to be able to forward requests to a PDP another instance of the
IObligatoin interface for including an extension point when a request requires pre-processing

before being forwarded to a PDP. In Figure 6.2, we show the SEFF of the request signature of the
IRequest provided role. When it receives a request, it first simulates the overhead of translating

a request through an internal action. Then it decides to accept the request for evaluation or

drop it based on the EvaluationEligible field of the Request parameter. This is how we model

the Additional Functionalities POV. If a request is not suitable for evaluation it triggers the

OnRequestIneligible obligation, where a developer can plug in a component providing additional

functionality. On accepting a request for evaluation, it forwards the request to a PDP by calling

32

6 Modelling with Palladio

true
false

request.EvaluationEligible

<<External call>>
 IOligation.OnEvaluationIneligible

<<External call>>
Call IRequest.request

Set requestReturn

Input: copy all fields of request parameter
Output: requestReturn.Authorized = RETURN.Authorized

truefalse
requestReturn.Authorized

<<External call>>
IObligation.OnAccepted

<<External call>>
IObligation.OnDenied

Set return RETURN.Authorized = requestReturn.Authorized

<<Internal action>>
Request handling overhead

<<CPU>>
1000 Units

Figure 6.2: Duplex PEP SEFF request(Request request)

the IRequest interface. This external call returns a Request response, stored in the requestReturn
variable, which contains the decision about the request in the Authorized field. Based on the

value of this field, the PEP triggers respectively the OnAccepted or OnDenied obligation. Before

finishing execution, the PEP sets the Authorized field of its RETURN variable to the value of

the Authorized field from the requestReturn.

Customizing a PEP with multiple obligations

We want to allow the model of the PEP to support multiple obligations. However, it is not

possible to plug in multiple components to the same required interface and call different

implementations of the same interface in a loop. We propose the following way to combine

multiple obligations:

1. The component developer specifies a component ObligationAggregator which provides

IObligation and requires it multiple times.

33

6 Modelling with Palladio

Interface

do(ApplicationSpecific aRequest) : void

InterfaceProtected

do(ApplicationSpecific aRequest, Request request) : void

Figure 6.3: Copying an interface

2. Multiple IObligation components can be plugged into the requiring ends.

3. In the SEFF of the ObligationAggregator, the developer specifies how the services are

being called (sequential, parallel, etc.).

4. The ObligatoinAggregator is plugged to the PEP via the IObligation interface.

The same pattern can be followed for every other extension point of the other components.

Gateways

In Palladio, we cannot directly copy an input parameter in a SEFF and forward it to another

external call. We need to specify explicitly each field of an input parameter to an external

call. Different resources require different parameters and it is impossible to know in advance

every possible field which needs to be forwarded. This limits our ability to create a generic PEP
which, apart from the request parameter, accepts an application-specific request parameter and

forwards it to the resource it is protecting using a generic interface such as the IResource. To
tackle this limitation we can use gateways we propose the following template for modelling and

general functionality. A gateway should provide an interface which should mimic the signatures

of the protected by the PEP interface and should extend themwith an additional parameter of the

Request type. We demonstrate this copying of interface in Figure 6.3. The gateway component

provides this protected version of the interface and requires the unprotected interface as well as

the IRequest interface, as shown in Figure 6.4. As a result, the gateway receives two parameters

when called - one is the application-specific request and the other is a Request, as defined in

Section 6.1. In Figure 6.5 we propose a generic SEFF for such gateways. The gateway first

forwards the Request parameter to the PEP through the IRequest interface to start a request

evaluation. As a response, it receives a Request data containing the decision. Then, according
to the Authorized field, if the value is true, the gateway calls the interface it is protecting and

forwards the application-specific parameters.

In our ZTA repository, we model a GenericGateway, as shown Figure 6.9, which provides and

requires the IResource interface. Additionally, the gateway also requires the IRequest interface
to forward a request to a PEP. The component has the general functionality described in this

paragraph. The component serves as an example in the repository of how component developers

should define a gateway with its SEFF and variable usages. There is still the possibility to use

the generic component directly in projects which integrate a ZTA from the beginning and use

the IResource to provide protected resources.

6.3.2 Policy Engine

The PE is the component that makes the ultimate decision to deny or accept a request based

on policies and context information about the request [48]. Therefore, we introduce the basic

34

6 Modelling with Palladio

GatewayInterfaceProtected
Interface

IRequest

Figure 6.4: Gateway component example

<<External call>>
IRequest.request

true
requestReturn.Authorized <<External call>>

Interface.do

false

Input: request.* = request.*
Output: requestReturn.Authorized = RETURN.Authorized Input: aRequest.* = aRequest.*

Figure 6.5: Gateway general functionality

component PolicyEngine, shown in Figure 6.9, for evaluating policies. The PolicyEngine provides
the IRequest interface so it can receive a request for evaluation and decision-making. To make

the decision the component requires the IPolicies interface, to obtain policies for evaluation

and the IContext interface to acquire information about context evaluation.

The SEFF of the request(Request request) functions of the provided IRequest roles is shown
in Figure 6.6. When it receives a request the PolicyEngine evaluates first whether the request
complies with policies. This process is modelled with an external call to the IPolicies interface
to trigger the policies loading process. Then with an external action, we simulate the process

of checking policies. The actual decision of whether a request complies with policies is present

in the PolicyAuthorized field of the request parameter. Based on this field of the request, the

PolicyEngine either terminates the process or continues to evaluate the context of a request.

The modeller is also provided with the option to switch off the context evaluation by setting

the ContextAuthorized field of a request to true in the usage model. This would cause the

execution to jump directly to the set return variable action and modify the Authorized field of

the return variable based only on the PolicyAutohrized field which in this case should be true.
If the request’s context should be evaluated then the PolicyEngine will start the process with an

external call to its required IContext interface. The call returns a result of the context evaluation
in the requestReturn variable. At the end of the execution, it will set the Authorized field of the

return variable based on the PolicyAuthorized of the reuqest parameter and ContextAuthorized
field of the requestReturn variable. At the end of the PolicyExecution execution flow we provide

an extension point by making a call to the IObligations interface.
Similar to the obligations in paragraph 6.3.1, multiple context providers might be used in a

context evaluation process. However, since it is implementation dependent, we do not know in

advance the number of all used context providers and we cannot specify in the general SEFF

of the PolicyEngine all of the possible combinations. Hence, we propose the following way of

plugging multiple context providers to the PolicyEngine:

1. The component developer creates a component named ContextAggregator, which provides
IContext and requires it multiple times equal to the used context providers.

35

6 Modelling with Palladio

<<Internal action>>
Evaluate policies

<<External call>>
IPolicies.providePolicies

<<CPU>>
1000 Units

false

true
request.ContextEvaluated

<<External call>>
IContext.provideContext

Set return

Input: copy all fields of request parameter
Output: requestReturn.ContextAuthorized = RETURN.ContextAuthorized

RETURN.Authorized = request.PolicyAuthorized AND requestReturn.ContextAuthorized

Figure 6.6: Policy Engine SEFF request(Request request)

2. In the SEFF of the ContextAggregator, the developer specifies how the different providers

are called (sequential, parallel, etc.).

3. The ContextAggregator is plugged to the PolicyEngine.

PoliciesProvider

A PE needs policies in order to operate. Therefore we specify the basic component Poli-
ciesProvider, as shown in Figure 6.9, which is responsible for loading the policies. By doing

this we also allow the specification of different policy providers, since policies might originate

from external providers [51] (e.g. industry compliance policies [48]). Furthermore, the main

workload generator in the policy evaluation process is the loading of policies. Algorithms for

more efficient loading are being researched [51, 16]. By externalizing the policy loading module,

we can allow developers to experiment with the policy provider model using different algorithm

models and further refine the policy loading process. The PoliciesProvider component provides

the IPolicies interface. The component aims to simulate a simple policy loading process. The

resource requirements and performance of such components are strongly dependent on the

number of policies and the number of rules contained in a single policy [16]. Therefore, we

model the two variables numberOfPolicies and rulesPerPolicy as component parameters. The

36

6 Modelling with Palladio

<<Internal action>>
Load policies

<<CPU>>
numberOfPolicies * rulesPerPolicy * 100 Units

Figure 6.7: Policies Provider SEFF providePolicies()

variables influence directly the processing time of the internal action of evaluating policies, as

shown in the SEFF diagram of the component Figure 6.7. These variables should be set when

instantiating the component in an assembly model of a system.

6.3.3 Policy Administrator

The PA is responsible for configuring the connection between the subject and the resource

based on the decision provided by the PE [48]. It does so by creating configurations, generating

session-specific tokens and instructing the PEP which actions to perform and how to respond

to the user’s request. The PolicyAdministrator requires the IRequest interface to forward the

request to the PE for decision-making. The component also provides the interface IRequest,
as shown in Figure 6.9. When the execution of the request function of the provided role

is called, the component first makes a call to its required IRequest interface. The response
of the external call is saved in the requestReturn variable. It then generates a configuration

based on the decision of the PolicyEngine. This process, however, is implementation-specific

since generating a configuration might include generating session tokens or creating firewall

rules [53]. We abstract it as an internal action, as shown in Figure 6.8. Then the component

performs a call to the IManage interface to simulate the process of managing a PEP. We model

an extension point at this part of the SEFF by making a call to the IObligation component. The

PolicyAdminitrator finishes its execution by setting the Authorized field of its return variable to

the Authorized field of the requestReturn variable.

Managing Multiple PEPs

There are cases where a PolicyAdministrator should manage more than a single PEP. For

example, in an SDP[13] architecture, the Controller configures multiple Accepting Hosts. The

configuring process of a PEP is expressed in the SEFF of the PolicyAdministrator with the

external call to themanage signature of the IManage interface, as shown in Figure 6.8. However,

we can only plug a single IManage provided role to the required role of the PolicyAdministrator
component. To cope with this problem we suggest using a similar modelling pattern to the one

of modelling multiple context providers, Subsection 6.3.2. Therefore we define the component

PEPsManager. The component provides IManage interface and has as many IManage required
roles as PEPs it has to manage. We model a starting case of managing two PEPs, so we have

two required IManage interfaces. The component can be extended to support more PEPs by

37

6 Modelling with Palladio

<<Internal action>>
Create configuration

<<External call>>
IRequest.request

<<External call>>
IObligation.enforceObligation

<<External call>>
IManage.manage

Set return

Input: copy all fields of request parameter
Output: requestReturn.Authorized = RETURN.Authorized

<<CPU>>
1000 Units

RETURN.Authorized = requestReturn.Authorized

Figure 6.8: Policy Administrator SEFF request(Request request)

38

6 Modelling with Palladio

adding more required roles to it. In its SEFF, the component simply calls all of its required roles

in a sequential order and performs no internal actions.

6.4 Context Providers

In the following section, we discuss important Context Providers. As we mentioned previously

in the chapter, Context Providers are systems or components for which different solutions

exist on the market. These systems are not a strict part of a Zero Trust environment and are

also used outside of the context of a ZTA. However, when integrated into a ZTA they enhance

its functionalities and help in covering the Zero Trust principles. Although these systems

originate from their own research fields and may require a broader analysis and even separate

projects in order to model all of their specialities, we generalize as much as possible about

their functionality in the following section. We model templates for these systems which can

be combined with the proposed in the previous section basic components to achieve a ZTA.

Developers, however, can still opt to model these systems on their own when combining them

with our basic components. In this section, we provide modelling solutions for a multi-factor

user authentication system, a device authentication system, an events logging system, data

storage and a trust algorithm.

6.4.1 Authentication

According to a review of authentication systems [4], there are multiple ways in which an

entity can be authenticated. Authentication can be based on possession (smart cards, hardware

tokens, etc.), knowledge (password, pin, etc.) or biometrics (fingerprint, voice, etc.). These

methods could be used separately or combined in various ways in multi-factor authentication

systems. Furthermore, authentication might happen at different places in a ZTA. For example,

in the SDP model [13], the authentication happens in a communication between the client

and the SDP controller, which has the role of a PDP. In the Google approach [55], the user

has to authenticate themselves with the help of a separate authentication component before

communicating with PEPs. As we see, a common authentication approach does not exist as

standard which tells us how exactly we should apply authentication in a ZTA. However, if we

observe the authentication process on an abstract level, we can identify its core activities. They

are the supply of credentials by the entity being authenticated, the acquisition of credentials

stored for this entity and the comparison of both credentials. In a suggested authentication

system for ZTA [15], we observe that the user sends a token, which is compared to a token stored

in an Identity Access Management system. Similarly, in the SDP specification [13], the system

issues credentials, which are stored in a database and later compared to the credentials provided

by a requesting entity. In an authentication method based on Windows Active Directory [27],

we identify in its core again the process of collecting user credentials and comparing them to

stored ones in the Active Directory. Following this core process, we model the authentication

in the following way.

We introduce a basic component Authenticator, shown in Figure 6.12, which is responsible for

comparing the provided by the user and by the system credentials. The component provides the

IContext interface. The Authenticator requires the interfaces IStoreAccess to obtain credentials

39

6 Modelling with Palladio

SimplexPEP
IRequest

IManage

IObligation.OnAccepted

IObligation.OnDenied

DuplexPEP
IRequest

IManage

IRequest

IObligation.OnAccepted

IObligation.OnDenied

PolicyEngineIRequest

IPolicies

IContext

IObligation

PolicyAdministratorIRequest

IRequest

IObligation

IManage

PoliciesProvider

numberOfPolicies: int
rulesPerPolicy: int

IPolicies

PEPsManagerIRequest

IRequest

IObligation

IManage

GenericGatewayIResource
IResource

IRequest

Figure 6.9: Basic components

40

6 Modelling with Palladio

<<External call>>
ICredentials.provideCredentials

<<External call>>
IStoreAccess.retrieve

<<Internal action>>
Compare credentials

<<CPU>>
1000 Units

true

false

isLastFactor Set return

Set return<<External call>>
IContext.provdeContext

RETURN.ContextAuthorized = AuthenticationProbability

Output: requestReturn.ContextAuthorized = RETURN.ContextAuthorized RETURN.ContextAuthorized =
AuthenticationProbability AND requestReturn.ContextAuthorized

Figure 6.10: Authenticator SEFF provideContext(Request request)

from an Identity Store and requires the ICredentials interface to obtain credentials from the user.

A CredentialsProvider component should provide the ICredentials interface and this allows the

developer to specify multiple different credentials (passwords, fingerprints, tokens) as well as

model the time and resources required to supply them in their SEFF. Furthermore, this type of

structure would allow the authentication process to be triggered from anywhere in the system

since it is not required to propagate credentials alongside the request. The system may call the

provided by the Authenticator provideContext service and the Authenticator will require the
user to supply credentials through a CredentialsProvider.
To allow for modelling Multi-Factor-Authentication (MFA), the Authenticator component

has the isLastFactor component parameter and requires the IContext interface. When the

parameter is set to false, the component calls the authentication service of the next plugged-in

Authenticator. This allows the developer to chain multiple Authenticators and form an MFA

authentication system. In the end, the component returns whether the user is authenticated

or not based on another component parameter AuthenticationProbability and the result of the

next in-chain authentication factor. The AuthenitcationProbability parameter is specified in an

assembly model when instantiating the Authenticator component. To ensure that the result of

such an MFA system is only true when all of the factors have returned true we use the logical

AND operation to compare the output of the current component and the result produced by

the next-in-chain Authenticator. We suggest that the AuthenticationProbability variable is set

as a boolean Probability Mass Function (PMF). Then, tuning the probability of true and false

we can simulate different scenarios with more or less successful authentications.

6.4.2 Device Authentication

Device authentication happens by comparing attributes of a device such as the version of the

OS, enabled security features, installed software, etc. with policies which describe what should

be the state of a device. In a ZTA we have two options to obtain the information about the

device. The first one is to have a database that stores device fingerprints which are constantly

updated there. Upon authentication, we retrieve the device information from there. The second

option is to request the device to provide a fingerprint each time an authentication is happening.

It is debatable whether the second option is suitable from a security point of view since devices

41

6 Modelling with Palladio

might lie about their fingerprint. Since it provides more flexibility for modelling systems which

have not yet integrated a device managing system in their architecture, we model both of the

options for authenticating a device.

We propose two types of the DeviceAuthenitcator component, as shown in Figure 6.12. First,

we have the DeviceAuthenticatorStore which provides the IContext interface and requires the

IStoreAccess interface. The second component DeviceAuthenticatorLogs is different in the aspect

that it requires the ILog interface. Both of the components perform an external call to their

required services after execution starts and then perform an internal action of authenticating

the device. In the end, the authentication result is set according to the component parameter

AuthenitcationProbability value. This component parameter is set when the component is

instantiated in an assembly model of a system. The developer is encouraged to use a boolean

PMF for this variable so they can tune the rate of successful device authentications.

6.4.3 Store

In a ZTA there is data such as a subject’s identity or logs of events and interactions. This is

important information which needs to be stored. However, the data is not stored in a single

format. As an example, we can store logs as files on a hard drive and identities might be

stored in a relational database. To cope with this, the Store component is introduced. The Store
component abstracts the possible ways of storing data in a ZTA. It could represent a database

or a hard drive where files are stored. The component provides the IStoreAccess interface.

6.4.4 Logging of Events and Data

Logging interactions and events is another concept of a ZTA [48]. A PE might log the decisions

it has made, and a PEP might log the enforcement of these decisions and the obligations which

were applied parallel with a decision. Further examples of logging could be keeping track of

user interactions with the system to monitor user behaviour as well as logging security events

of devices to monitor their security posture. Keeping track of things happening in the system

helps in identifying anomalous behaviour, and detecting early security threats. It additionally

supports the non-repudiation security goal.

If we observe the core functionality of the logging process, we see that it is nothing more

than storing data about a component’s action or state in some kind of store (file, database,

etc.). On a high abstract level, a basic logging component can be observed as a store. It stores

logs which can be retrieved on demand. However, logs in their raw format may be difficult to

analyze and correlate. Moreover, manually expecting logs and deriving important information

is a time and resource-consuming task. The process of logging and processing of system events

and interactions can be modelled in a whole separate system which can then be included

in the ZTA. These types of systems are called Security Information and Event Management

(SIEM) systems. Currently, on the market exist multiple SIEM solutions [21]. Although these

solutions vary in the functionalities they offer or in the extent to which certain functionalities

are implemented, we can still extract some common components which are present in the

systems and summarize a generic SIEM system. In general, the main roles of a SIEM are to

collect, store and analyse logs as well as provide reports and alerts based on its analysis [21,

54, 2]. In the architecture models suggested in [54, 2] there are components for collecting and

42

6 Modelling with Palladio

storing the logs, components for normalizing and analyzing and components for presenting

the data for further use. In [54], the authors specify additional components about enriching

logs as well as for different types of result representation. However, in order to keep the overall

ZTA model simple we are not going to go into full detail when specifying the SIEM system.

We specify only three components that summarise a generic SIEM’s functionality and then

combine them into a composite component.

Firstly, we define a LogCollector component, as shown in Figure 6.12, which requires the

interfaces IStoreAcces and ILog and provides the IObligation and ILog interfaces. The role of

the component is to collect logs through both of its providing interfaces. The IObligation
interface can be called, for example, by the PEP after receiving a decision from the PDP, see
paragraph 6.3.1. The ILog interface can be called by another component which directly sends

logs. In both of the SEFFs of the IObligation and ILog, the LogCollector simply performs a call

to the IStoreAccess interface to store the logs. Next, we define a LogNormalizer, as shown in

Figure 6.12, since logs may originate from different sources and we simulate converting those

logs to a single format, ready for analysis. Lastly, we define the LogAnalyzer, as shown in

Figure 6.12, which analyses logs and presents the results to the ZTA as context information

through the IContext interface. We then combine these three components in a composite

component to form a SIEM component which can be plugged into a ZTA. Keep in mind that

this component represents a generic SIEM system and a developer is free to further specify

additional components and functionality in order to model a more detailed SIEM system.

6.4.5 Trust Algorithm

The trust algorithm is described as the "thought process" of a ZTA according to the NIST

standard document [48]. It has a significant role in improving the evaluation process of a

request since it aggregates and processes multiple sources of information about the request

and outputs a trust score based on which more fine-grained access control can be performed.

Therefore we want to include the trust algorithm in our set of ZTA components. However,

generalizing a trust algorithm is not an easy task. In the NIST document[48] trust algorithms

are classified as score or criteria-based and singular or contextual. Score-based algorithms

assign weights to inputs and output a quantity metric about the trust whereas criteria-based

algorithms evaluate a request according to rules. The trust inference in BeyondCorp[55], for

example, evaluates data about the user and device according to heuristics and rules in order to

reduce or increase trust. The difference between a singular and contextual algorithm is the

scope of requests the algorithm is observing when evaluating the trust for the current request.

In the case of a singular algorithm, it only evaluates the current request whereas contextual

algorithms also consider previous requests by the same user. Trying to represent all of these

variations of a trust algorithm in our model may cross the boundaries of implementation-

specific details. What we are interested in here is the most basic concept of the trust algorithm.

Observed abstractly, the trust algorithm simply performs calls to multiple input sources before

performing the trust evaluation and producing an output. Therefore, this is what we are going

to represent in the model of a general trust algorithm. We cannot predict how many input

sources a system might use for its trust algorithm. We will model the general component with

just two sources and describe briefly how it can be extended to support more. As shown in

Figure 6.12, we create the component TrustAlgorithmwhich requires two IContext interfaces for

43

6 Modelling with Palladio

<<External call>>
IContext.FirstProvider

<<External call>>
IContext.SecondProvider

<<Internal Action>>
Calculate turst

Set return RETURN.ContextAuthorized = true

Figure 6.11: TrustAlgorithm provideContext(Request request) SEFF

the two input sources. We can classify the trust algorithm also as a context provider according

to our meta-model, see Section 5.3 since it supplies data about the context of a request to the PE
for the evaluation process. Hence, the component provides the IContext interface. In the SEFF

diagram of the component, Figure 6.11, we model the actions as described previously in this

section. First, we call sequentially both information providers before performing the internal

action of calculating trust. Lastly, the component sets the ContextAuthorized field of its return

variable of type ContextData to true. As we said we cannot cover all possible input sources

of a trust algorithm and therefore we offer the option to component developers to extend the

current model in case they need more sources. The developer should simply add additional

required roles for the IContext interface and then include them in the SEFF as external calls

between the call to the second provider and the trust calculation internal action.

6.4.6 Context Evaluator

We have already specified models of user and device authenticating systems as well as a simple

trust algorithm. We can use these components to form the context of a request and include it

in the request evaluation process presented in the PolicyEngine, Subsection 6.3.2. To combine

these models in the process of context evaluation we propose a ContextEvaluator component.

The component provides the IContext interface and requires three times the same interface -

one for the user authenticator, one for the device authenticator and one for the trust algorithm.

In the end, it evaluates the context based on the returned decision by each component. The

modeller here has again the option, as shown in the SEFF of the component Figure 6.13, to

44

6 Modelling with Palladio

Authenticator

isLastFactor: boolean
AuthenticationProbability: boolean

IContext

IContext

ICredentials

IStoreAccess

DeviceAuthenticatorLogs

AuthenticationProbability: boolean

IContext ILogs

DeviceAuthenticatorStore

 AuthenticationProbability: boolean

IContext IStoreAccess

LogCollector

ILog

IStoreAccess

Log NormalizerILog ILog

LogAnalyzerIContext
ILog

IStoreAccess

IObligation

 StoreIStoreAccess

TrustAlgorithmIContext
IContext.FirstProvider

IContext.SecondProvider

Context EvaluatorIContext

IContext.UserAuthentication

IContext.DeviceContext

IContext.TrustAlgorithm

Figure 6.12: Context Providers

45

6 Modelling with Palladio

false
request.UserAuthneitcated

<<External call>>
IContext.Authenticator

false
request.DeviceAuthneitcated

<<External call>>
IContext.DeviceAuthneitcator

false

true

request.Trusted

Set return

<<External call>>
IContext.TrustAlgorithm

true

true

Output: userAuthneitcationReturn.ContextAuthorized = RETURN.ContextAuthorized

Output: deviceAuthenticationReturn.ContextAuthorized = RETURN.ContextAuthorized

Output: trustReturn.ContextAuthorized = RETURN.ContextAuthorized

RETURN.ContextAuthorized = userAuthneitcateReturn.ContextAuthorized
AND deviceAuthenitcatedReturn.ContextAuthorized

AND trustreturn.ContextAuthorized

Figure 6.13: ContextEvaluator SEFF provideContext(Request request)

switch off different components by using the UserAuthenticated, DeviceAuthenticated, Trusted
fields in the request. In the end, the component sets its returned variable based on the output

of the three external calls to context providers using the logical AND operator.

6.5 Modelling Templates

In the following section, we are going to take the components and interfaces we have modelled

in our base ZTA repository and use them to model ZTA approaches from the literature. We are

going to model the SDP according to its specification [13] and the Beyondcorp architecture [37]

which we described in Chapter 3. This is the first demonstration of how we can use off-the-shelf

the modelled in this section components and reuse them among different ZTA approaches. As

46

6 Modelling with Palladio

a result, we can further reuse the created models of SDP and Beyondcorp to model systems

which are integrating specifically the SDP or the Beyondcorp architecture.

6.5.1 SDP Model

We create a repository where we model the base components of an SDP - the SDP Controller

and the Accepting Host - as composite components.

SDP Controller

According to the specification of the SDP, firstly the client should authenticate themselves

through the SDP controller, then an access request is started in the controller to determine

the resources to which the client has access. Lastly, the Accepting Hosts are configured to

accept requests from the client. To be able to guide the process in this order we specify SDP-
ContextHandler component. Therefore, we model the component, as shown in Figure 6.14, to

provide the IRequest interface from the ZTA base repository as well as to require an IContext,
where an authentication provider should be plugged, an IRequest interface, where we plug
a PDP and the IObligation interface as to allow further customization of the process. Upon

authentication request, the SDP context handler first initiates authentication and then sends

a request for evaluation through a call to the IRequest required role. Finally, it executes the

additional obligations, if plugged any. We use the SDPContextHandler inside the SDPController-
InternalAuthentication composite component to guide the process. We integrate a single-factor

authentication inside the SDP controller to create a basic case of an SDP controller. Developers

should specify an external Identity Store provider and plug it in the SDP controller through

the IStoreAccess interface. Inside the SDP controller composite component, we instantiate

and connect a PolicyAdministrator and a PolicyEngnine. Since it is a basic SDP controller we

include the PoliciesProvider inside, though it can be also externalized by simply removing the

component from there and making the SDP controller require the IPolicies interface. Further
data sources can be plugged into the SDP controller with the help of the IContext interface.

SDP Accepting Hosts

From the SDP specification, we determine that the AcceptingHost composite component, as

shown in Figure 6.15, is no more than a simple firewall which has its rule managed to accept to

deny requests by clients. Therefore, to model it we use a SimplexPEP and close its obligation

points to represent a simple firewall functionality. If customization is required then the com-

posite component can be directly swapped with a SimplexPEP and obligations can be plugged

into the extension points.

6.5.2 Beyondcorp Model

Now we are going to do the same as in the previous section but this time we will model the

BeyondCorp approach using our components. First, we will introduce some additional basic

components which are specific to BeyondCorp. Then we will model the more complex parts of

the architecture - the AccessingProxy, the AccessControlEngine and the SingleSignOn system -

as composite components.

47

6 Modelling with Palladio

<<Composite Component>>
SDPControllerInternalAuthentication

EmptyObligationIObligation

PolicyEngine

IRequest

IContext IPolicies

IObligation

PolicyAdministrator

IRequest

IRequest

IManage

IObligation

PoliciesProviderIPolicies

Authenticator

isLastFactor = true

IContext

IContext

ICredentials

IStoreAccess

SDPContextHandler

IRequest

IContext

IObligation

IRequest

IRequest

ICredentials

IStoreAccess

IObligation

IContext

Figure 6.14: SDPControllerInternalAuthentication Composite Component

<<Composite Component>>
Accepting Host

SimplexPEP
IRequest

IManage IObligation.OnAccepted

IObligation.OnDenied

GenericGateway
IResource IResource

IRequest

EmptyObligation IObligation

IResource
IResource

IManage

Figure 6.15: SDP’s AcceptingHost Composite Component

48

6 Modelling with Palladio

BeyondCorp Basic Components

Firstly, we model the Pipeline as a basic component, mentioned in BeyondCorp’s specification.

The component is responsible for feeding data to the PE for the request evaluation. Therefore

we can classify the component as a context provider. Since it is a context provider the Pipeline
provides the IContext interface. The component should feed data from a user’s database, a

device’s database as well as a trust algorithm. That is whywe add to the component two required

roles for the IStoreAccess interface and a required role for the IContext interface. When called,

the Pipeline simply calls its required interfaces in a sequential order to simulate the process of

collecting data to feed from input sources. Next, we create a TrustInference component. The

trust inference in BeyondCorp is the trust algorithm of the system. However, in the provided

architecture diagram in the document, the algorithm is not connected to any input sources. In

the description of the component it is mentioned that it might process data about a device’s

OS or a user’s location but it is not further specified how it does so. Therefore, we will not be

using our more complex TrustAlgorithm component from the ZTA repository but we model a

new one here. The TrustInference component simply provides the IContext interface and when

called it performs a single internal action of calculating the trust. As a last basic component of

this repository, we create an obligation component. According to the BeyondCorp specification

when a request reaches the AccessingProxy it is first checked for a successful authentication

and in the absence of such the request is forwarded to an authenticating system. We create the

OnAuthenitcationMissingObligation component which provides the IObligation interface and

requires the IContext and IRequest interfaces. When called the component forwards a request

to its IContext required role, where an authenticating system should be plugged and after that,

it returns the request to the AccessingProxy through the IRequest interface.

Accessing Proxy

The PEP in BeyondCorp is called Accessing Proxy. It should be able to intercept requests

and forward them to an authentication system if needed as well as to the PE. We model it as a

composite component, as shown in Figure 6.16. In contrast to the SDP approach, here the PEP
has more functionalities than a simple firewall. That is why we are going to use a DuplexPEP
component so we can forward requests to an authenticator and a PE. As a gateway, we instan-
tiate the GenericGateway component from the ZTA repository. To forward unauthenticated

requests to an authenticating system we use the modelled in the basic components section, see

paragraph 6.5.2, OnMissingAuthenticationObligation.

Single Sign On

The authentication system in BeyondCorp is called Single Sign On. It utilizes a 2-factor

Authentication where users should provide first credentials and then a passcode from a token.

Since we need to combine two Authenticator components to represent this authentication

approach we are going to model the Single Sign On as a composite component. We create the

composite component SingleSignOn, as shown in Figure 6.17. We instantiate two Authenitcator
components - one for the first factor and one for the second factor. The authentication proba-

bilities we set as boolean PMF and give priority to successful authentication. These values can

49

6 Modelling with Palladio

<<Composite Component>>
Accessing Proxy

GenericGateway

OnMissingAuthenticationObligation

DuplexPEP

EmptyObligation
IResource

IResource

IRequest

IRequest
IManage IRequest

IObligation.OnAccepted
IObligation.OnDenied

IObligation.OnEvaluationIneligible

IObligation

IObligation

IResource

IResource

IRequestIManage

Figure 6.16: Accessing Proxy composite component

<<Composite Component>>
Single Sign On

IContext
Authenticator

isLastFactor = false
AuthenticationProbability = BoolPMF[(true;0.9)(false;0.1)]

IContext

ICredentials IStoreAccess

IContext
Authenticator

isLastFactor = true
AuthenticationProbability = BoolPMF[(true;0.9)(false;0.1)]

IContext

ICredentials IStoreAccess

IContext

ICredentials.FirstFactor ICredentials.SecondFactorIStoreAccess.FirstFactor IStoreAccess.SecondFactor

Figure 6.17: Single Sign On composite component

however be tuned by component developers. The component provides the IContext interface
and requires IStoreAccess and ICredentials for both of the authentication factors.

Access Control Engine

The last composite component which we specify in the BeyondCorp repository is the PE,
which in the context of BeyondCorp is called Access Control Engine. As shown in Figure 6.18,

we model the component AccessControlEngine by instantiating in it a PolicyAdministrator and
a PolicyEngine components. The policies are also integrated directly into the control engine

and therefore we instantiate a PoliciesProvdier component. As example values for the num-
berOfPolicies and rulesPerPolicy we set respectively 100 and 10 since we do not have access

to BeyondCorp’s policies database and cannot approximate more accurately the number of

policies.

6.6 Applying ZTAs on the Running Example

In this section, we use the created elements from the ZTA repository as well as the templates

from the SDP and Beyondcorp repositories to integrate different ZTAs into the JPlag running

example.

50

6 Modelling with Palladio

<<Composite Component>>
Access Control Engine

PolicyAdministrator

IRequest

IRequest
IManage PolicyEngineIRequest

IPolicies

IContext

PoliciesProvider

numberOfPolicies = 100
rulesPerPolicy = 10

IPolicies
IObligation IObligation

EmptyObligation

IObligation

IRequest

IManage

IContext

Figure 6.18: Access Control Engine composite component

6.6.1 JPlag with ZTA

We are going to integrate a ZTA into the JPlag system from the previous section, following a

basic design from the NIST standard document [48]. The architecture of the base JPlag system

is the same as in Figure 4.1. In this scenario, we want to protect the JPlag functionality. This

means that we want to intercept requests to access the JPlag GUI and evaluate them. To do

this we need to instantiate a PEP from our ZTA repository in front of the JPlag GUI and make

the users send requests to the PEP. We select the DuplexPEP component from the repository

since it allows us to accept requests and forward them to a PolicyEngine. As a gateway, we are
going to use the GenericGateway from the ZTA repository. We also need to add an additional

component to our JPlag repository in order to bridge the interfaces of the GenericGateway
and JPlag. That is why we introduce the JPlagResourceAdapter. The component provides the

IResource interface and requires IJPlag interface. Its sole purpose is to translate a request from

the IResource to IJPlag. There is another way to model this without using the GenericGateway
provided in the ZTA repository. A component developer might directly define a JPlag gateway

following the modelling of the generic gateway and only change the IResource interface with
the IJPlag interface. However, a more complex SEFF should be declared compared to the

modelling of a simple adapter like the one above. After we have done this, we are ready to

fully integrate the PEP into our system. We instantiate the DuplexPEP, GenericGateway and the

JPlagResourceAdapter and connect them using the corresponding interfaces. We change the

JPlag provided interface of the system to IResource and now our gateway is the entry point

to the JPlag functionality. Next, we need to instantiate the PolicyEngine component and the

PolicyAdministrator. The PolicyEngine requires policies to be able to operate. Therefore, we

instantiate the PoliciesProvider component from the ZTA repository. This component requires

us to specify values for the number of policies and the rules per policy. For this scenario, we

are going to use example values and define that the number of policies is 100 and the rules

contained per policy is also 100. Next, the PolicyEngine needs to evaluate context and for this

scenario as a context, we are going to observe only user authentication. For this purpose,

we instantiate an Authenitcator component from the ZTA repository. We are going to use a

single-factor authentication and therefore in the component’s isLastFactor variable, we define
true. Additionally, we need to set the probability of correct user authentication. We define that

51

6 Modelling with Palladio

<<System>>
JPlag with ZTA

JPlagGUI
IJPlag

IJPlag JPlagIJPlag IReportGenerator

ReportGenerator

ReportViewerIReportViewer

UniversirtyDB
IDBAccess

IReportGenerator

IDBAccess

IReportViewer

IResource

IDBAccess

GenericGateway
IResource

IResource
IRequest

JPlagResourceAdapterIResource
IJPlag

DuplexPEP
IRequest

IManage
IRequest

IObligation.OnAccepted

IObligation.OnDenied

PolicyAdministrator

IRequest

IRequest IObligation

IManage
EmptyObligation

IObligation

PolicyEngine
IRequest

IPolicies

IObligation

IContext

PoliciesProvider

numberOfPolicies = 100
rulesPerPolicy = 100

IPolicies

Authenticator

isLastFactor = true
AuthenticationProbability= BoolPMF

IContext

IContext

ICredentials

IStoreAccess

IStoreAccess

JPlagCredentialsProvider

ICredentials

Figure 6.19: JPlag with ZTA

in 80% of the cases the users authenticate themselves correctly and in 20% of the cases they do

not. The Authenitcator requires access to a store to be able to obtain user data. We already have

a UniversityDB component in the system which can provide such data. We only need to edit the

component to provide the IStoreAccess so it can be compatible with the Authneitcator’s required
interface. Lastly, we specify in the JPlag repository a JPlagCredentialProvider component which

we use to simulate the input of credentials by the user. To keep the example simple we will

not specify obligations for our components. Therefore, we can use the dummy obligation

component provided in the ZTA repository - the EmptyObligation - and plug it into each

required IObligation interface. This is how we can integrate a basic ZTA architecture in our

already present JPlag system and model it using components from Chapter 6 to obtain the

system displayed in Figure 6.19.

6.6.2 JPlag with SDP

Now we are going to model another version of JPlag integrating a ZTA but this time we are

following the SDP approach. This means that now the protected resources are hidden behind

a PEP which only filters requests based on its configuration and does not forward them to

a PolicyEngine. In this scenario, the user needs to be able to contact the PolicyEngine for

authentication and authorisation and then the PEPs are distributed configurations to filter the

user’s requests. We start again by identifying the resource which we are going to protect. To

demonstrate a different scenario from the one in the previous section we will not protect the

JPlag algorithm now. We will be shielding the ReportViewer and the UniversityDB with two

separate PEPs. Recall that in the SDP approach, PEPs are called Accepting Hosts and in the

SDP repository from Subsection 6.5.1, we already have modelled an AcceptingHost component

52

6 Modelling with Palladio

<<System>>
JPlag with SDP

JPlagGUI
IJPlag

IJPlag JPlagIJPlag IReportGenerator

ReportGenerator

ReportViewerIReportViewer

UniversirtyDB
IDBAccess IReportGenerator

IDBAccess

SDPControllerInternalAuth
IRequest

IManage IObligation

ICredentials

IStoreAccess IStoreAccess

JPlagCredentialsProvider
ICredentials

EmptyObligation
IObligation

ReportViewerResourceAdapterIResource
IReportViewer

AcceptingHostReportViewer

IManage

IResource

IResource

AcceptingHostManager IManage

IManage.ReportViewer

IManage.Get IManage.Put

AcceptingHostDB
IResource.Put

IDBAccess
IManage.PutIManage.Get

IResource.Get

IResource.ReportViewer

IResource.Get

IResource.Put

IJPlag

IRequest

Figure 6.20: JPlag with SDP Assembly

using a SimplexPEP with a GenericGateway. We can use this composite component in our JPlag

system. Since the AcceptingHost is using the IResource interface as an access point to a protected

resource, theAcceptingHost in its initial form can be used to protect a single resource. In the case

of the ReportViewer, we are protecting only the viewReport() functionality. Therefore, we create
an ReportViewerResourceAdapter similar to the JPlagReosurceAdapter from the previous section

to bridge the interfaces IResource and IReportViewer. Then we can go ahead and integrate the

AcceptingHost alongside the created adapter to establish a perimeter around the ReportViewer
as shown in Figure 6.20. For the UniversityDB, we need to make some adjustments to the

AcceptingHost. The UniversityDB component provides the IDBAccess interface and therefore

there are two functions to be protected - the get() and put() functionalities. That is why we

create a composite component which combines two AcceptingHosts as shown in Figure 6.21.

To bridge the IDBAccess and IResource interfaces of the accepting hosts we create two adapters

- DBResourceAdapterGet and DBResourceAdapterPut. Next, we need an SDP controller. We have

modelled one in our SDP repository and we are going to use it here directly. The whole system

now needs to provide the IRequest interface of the SDPControllerWithInternalAuthentication
component to allow the user to make authentication and authorization requests. We can

again use the JPlagCredentialsProvider which we modelled in the previous section and again to

keep the model simple we will not attach additional obligations to the SDP controller. Lastly,

we need to enable the controller to manage multiple Accepting Hosts. To do this, we use

PEPsManager component from our ZTA base repository, which accepts manage() calls from
the SDP controller and forwards them to all of its required IManage roles. This is how we

integrate an SDP architecture into our JPlag system with two Accepting Hosts and a single

SDP controller.

6.6.3 JPlag with BeyondCorp

In this subsection, we are showing one last example of integrating ZTA into the JPlag sys-

tem. This time we are going to use the BeyondCorp approach. We have already modelled

the core BeyondCore component as per in the BeyondCorp repository from Subsection 6.5.2.

53

6 Modelling with Palladio

<<Composite Component>>
AcceptingHostDB

AcceptingHostGet
IResource

IManage
IResource

AcceptingHostGet
IManage

IResource
IResource

DBResourceAdapterGetIResource IDBAccess

DBResourceAdapterPutIResource IDBAccess

IResource.Get

IManage.Get

IManage.Put

IResource.Put

IDBAccess

Figure 6.21: Accepting Host for UniversityDB Composite Component

<<System>>
JPlag with BeyondCorp

JPlagGUI
IJPlag

IJPlag JPlagIJPlag IReportGenerator

ReportGenerator

ReportViewerIReportViewer

UniversirtyDB
IDBAccess

IReportGenerator

IDBAccess
JPlagResourceAdapter

IResource

IJPlag

Trust Inference
IContext

IStoreAccess

JPlagCredentialsProvider

ICredentials

Accessing Proxy
IResource

IContext

IResource

IRequest

IManage

Single Sign OnIContext
IStoreAceess.FirstFactor

IStoreAceess.SecondFactor

Access Control Engine

IManage IRequest

PipelineIStoreAccess

IContext

IStoreAccess

IContext

IContext

ICredentials.FirstFactor ICredentials.SecondFactor

IReportViewer

IResource

IDBAccess

Figure 6.22: JPlag with BeyondCorp

Therefore, we can directly use the components from the repository and instantiate them in

the system to obtain the modified system shown in Figure 6.22. Again the only adjustments

which we need to make in the underlying JPlag system are the modelling of the JPlagReo-
surceResourceAdapter and extending the UniversityDB to provide the IDBAccess interface. We

instantiate the AccessProxy and the adapter components to form a perimeter around the JPlag

functionality. Since in BeyondCorp requests might be stopped by the Access Proxy due to

missing authentication we instantiate the SingleSignOn component to authenticate users. We

plug it into the UniversityDB to get information about user data for the first- and second-factor

authentication. As a credentials provider, we use the same JPlagCredentialsProvider for both
factors. It is possible here to plug different credentials providers that have different delays

to simulate the input of a password and the input of a secret token for example. Then, we

instantiate the AccessControlEngine component which is the PDP of the system. It requires

context data that is being provided by the instantiated Pipeline component. The Pipeline uses
the UniversityDB to obtain users’ and devices’ data. For the trust mechanism, the pipeline is

using again the modelled in the BeyondCorp repository TrustInference component.

54

6 Modelling with Palladio

6.6.4 Discussion on applying ZTA Elements

As we see from the previous examples, we can use the modelled ZTA components to create

different versions of ZTA. We created an architecture following the NIST standard, the SDP

specification and the Beyondcorp, described in Section 2.1 and Section 3.2, with little changes

made to the underlying system. There is even an easier approach to integrating a ZTA into a

system. This is the case where from the beginning of the design we know what variation of a

ZTAwewant to apply to a system and design the system’s components to be compatible with the

ZTA components. For example, in the ZTA system, we might not design the IDBAccess interface
and directly use the IStoreAccess since it provides similar functionality. Then we will not need

to extend the UniveristyDB component since it will directly provide the IStoreAccess interface.
If we go even further we can directly replace the UniversityDB with the Store component from

the ZTA repository. Another possibility to enable compatibility with ZTA components in the

system’s base design is to design the JPlagGUI component to provide a gateway functionality.

We can edit its SEFF to forward requests to a PEP and to access the protected resource, in this

case, the JPlag algorithm, only after a response from a PEP component. This would omit the

need to specify additional adapter or gateway components.

55

7 Data Flow Analysis Model

In Palladio, security analyses can be performed using the Data Flow Analysis, presented in

Section 2.4. However, to enable it, we first need to define a security model. The security

model includes defining a dictionary with characteristics as well as specifying the behaviour of

components when handling characteristics. In the following chapter, we propose a concept for

a security model in a ZTA. Then following the concept we derive and define data dictionary and

node behaviours for the proposed components from Chapter 6. We then propose six security

violations which can be detected with our security model. Next, we want to make our Data

Flow Analysis of ZTA models reusable. Therefore, we propose a Java implementation of our

analysis which can be used off-the-shelf and can be extended to cover different result reporting

formats. In our implementation, we include constraints for label evaluation, data classes to

hold identified violations as well as basic reporting capability. Lastly, we demonstrate how our

security model can be integrated by including it in the JPlag running example, presented in

Chapter 4.

7.1 Concept

Whenwe are assessing the security of a ZTAwe need first to identify what we consider as secure.

In the case of the ZTA, we need to make sure that only authorized requests reach protected

resources. Additionally, only requests performed by an authenticated user, from an authenticated
device and trusted by the trust algorithm reach the protected resource. Furthermore, we examine

also the level of authorization which is granted to a request. Since the LPP is one of the core

concepts of Zero Trust, we also observe if the level granted to a request does not supersede

the required by the resource level. To be able to detect such violations we need the model the

following things.

7.1.1 Authorization

We need to model labels which represent authorized and unauthorized data. These labels should

also represent the level of authorization. That is why we can create labels "Authorized Level N",

where N represents the level of authorization. Those levels are ordered which means that the

label "Authorized Level 2" would supersede "Authorized Level 1". We set the label "Authorized

level 0" to express unauthorized data. With these labels, we can annotate the highest level a

user can be authorized to in a system as well as the current authorized level of data. In the

end, we try to match the authorization levels of the data and the required authorization level

of the resource node the data has reached. If the level of data is lower then we detect that

unauthorized access was allowed. If we detect a data level higher than the resource node level,

then it means that the LPP was not enforced.

56

7 Data Flow Analysis Model

Data should be set with default "Authorization Level 0" and only one component in a ZTA

should be able to modify the authorization levels of the data. Other nodes should only perform

forwarding actions. If data with level 0 reaches a protected resource node then it means that

data has not been propagated through an authorizing entity.

7.1.2 Authentication

To be able to detect whether a request was made by an authenticated user from an authenticated

device and has passed the trust algorithm we model authentication labels. We outline the

"Device Authenticated" and "Trust Authenticated" labels. For user authentication, we also

need to consider for which of the authentication factors a user was authenticated. Hence

we need to model the user authentication label in such a manner that it captures different

factors. Therefore we create the label "Authenticated N Factor" where N represent the factor

number. Then similarly to the authorization, these labels should only be modified by dedicated

components. Any other node should perform only forwarding action for these labels. At the

end of the analysis, we check whether the data has all of these labels. A missing label would

mean that data was not passed through the needed component for authentication and therefore

a violation can be identified.

7.2 Data Dictionary

Now that we have specified a concept for our security model and proposed concepts for labels

we try to model them in Palladio. We need to specify a data dictionary which holds all of

the characteristic types and their possible values. The values which a characteristic can take

are defined as an enum. Following the concept for authorization labels from Subsection 7.1.1,

the value with which data can be labelled is the level of authorization - Level 1, Level 2, etc.
Therefore we define an enum to capture the possible authorization levels, Listing 7.1 lines 1-6.

Only 3 levels plus the unauthorized level 0 are hard-coded as labels. These however can be

expanded with more levels if required.

Characteristics of data are defined as enumCharacteristicTypes which use a previously defined
enum. We use these characteristics later to label nodes and data that propagates in the system.

When we label data we set one or more of the values of the enum used by this characteristic

to true. We want to be able to characterize requests and nodes with their authorization level.

Additionally, we want to characterize data with the highest authorization level which a user

can achieve and the required authorization level of the resource. As shown in Listing 7.1 lines

8-10, we use enumCharactersiticTypes to represent those aspects of the security concept. The

enum characteristic type Authorized represents the authorization level that is assigned to the

request. The MaxUserLevel represent the highest level of the user who makes the request and

is the highest level which can be assigned to a request. The ResourceRequireLevel represents
what is the level needed to access the resource.

1 enum AuthorizationLevels {

2 Level 0

3 Level 1

4 Level 2

5 Level 3

57

7 Data Flow Analysis Model

6 }

7

8 enumCharacteristicType Authorized using AuthorizationLevels

9 enumCharacteristicType MaxUserLevel using AuthorizationLevels

10 enumCharacteristicType ResourceRequriedLevel using AuthorizationLevels

Listing 7.1: Authorization characteristics definition

Next, we do a similar label definition but this time we capture the concepts for user authentica-

tion. As discussed, we want to represent different factors of authentication. There, we model the

AuthenticationLevels enum, Listing 7.2 lines 1-4. We define only two values for authentication

labels. The definition can be extended with more authentication factors if required. Then to

represent the user authentication characteristic of data we define the enumCharactersiticType
Authenticated, Listing 7.2 line 6.

1 enum AuthenticationLevel {

2 FirstFactor

3 SecondFactor

4 }

5

6 enumCharacteristicType Authenticated using AuthenticationLevel

Listing 7.2: User Authentication characteristics definition

For device authentication and trust we want to have a simple value which signals if data has

passed a device authentication unit and respectively a trust algorithm. This is a binary state.

Data is either authenticated/trusted or it is not. Therefore we can use a single-valued label.

The presence of the label signals a positive state of authentication/trust and its lack signals a

negative state. This is why we model the Authenticated, Listing 7.3 lines 1-3, with the single

value authenticated. Then to represent whether data has been sent by an authenticated device or
the subject is trusted we model the characteristics DeviceAuthenticated and Trusted, Listing 7.3

lines 5 and 6.

1 enum Authenticated {

2 authenticated

3 }

4

5 enumCharacteristicType DeviceAuthenticated using Authenticated

6 enumCharacteristicType Trusted using Authenticated

Listing 7.3: Device Authentication and Trust characteristics definition

We want to be able to label nodes which represent the protected by the ZTA resources. We want

to distinguish them so we can evaluate constraints at these nodes in the Data Flow Analysis.

For this purpose, we define the enum Protected with a single value protected, Listing 7.4 lines
1-3. We define also the enumCharactersitictype with the similar name Protected, Listing 7.4 line

4, to characterize nodes as protected.

1 enum Protected {

2 protected

3 }

4 enumCharacteristicType Protected using Protected

Listing 7.4: Protected characteristic definition

58

7 Data Flow Analysis Model

Lastly, we need to define a characterisation which describes that data has passed through

a PolicyEngine component. Therefore, we define the enum Protected which is used by the

enumCharacteristicType Evaluated, as shown in Listing 7.5. Although data may be propagated

through a PolicyEngine and authorization levels correctly set, data with a lower authorization

level will still arrive at the protected node. However, if the lower level data is also labelled

with the Evaluated characteristic, it represents that data has passed policy evaluation and in a

real-life scenario will be stopped at that point. A combination of a lower authorization level

label than required and the Evlauated label invalidates the raising of an unauthorized access

issue.

1 enum Evaluated {

2 evaluated

3 }

4 enumCharacteristicType Evaluated using Evaluated

Listing 7.5: Evaluated characteristic definition

7.3 Nodes Behaviour

We need to specify the behaviour of processing data labels of our proposed components from

Chapter 6. This behaviour defines whether a component alters data labels. If this is the case

we specify how it alters the data labels. Node behaviours are part of the security model. As we

mentioned in the concept Section 7.1, most of the nodes have a forwarding behaviour which

means that they simply take the labels from the input data and apply them unchanged on the

output data. Therefore, we set in their return variables RETURN.*.* = request.*.* where request is
the received data. This expression means that all labels of the RETURN variable are the same as

all of the labels of the reuqest parameter. Still, there are certain components which have special

behaviour and can alter labels. These components are:

1. PolicyEngine - can alter the Authorized and Evaluated enum characteristic types.

2. Authenticator - can alter the UserAuthenticated.

3. DeviceAuthenticator - can alter the DeviceAuthenticated.

4. TrustAlgorithm - can alter the Trusted.

Although we are using the names of the components as proposed in Chapter 6, the behaviours

specified in this section are not tightly connected to these specific models. If a developer swaps

one of these components with their own modelled version they can still reuse the proposed

here annotations and behaviour definitions without changing them. This can be done by simply

copying the presented here annotations and pasting them into their model of a component.

7.3.1 PolicyEngine Behaviour

Since the PolicyEngine is the component which is responsible for making decisions about the

authorization of a request, it is logical that this component should be able to alter the Autho-
rized characteristic in the security model. When doing so, the component should consider the,

59

7 Data Flow Analysis Model

required by the resource, authorization level as well as the highest possible authorization level

of the subject. Since we have modelled characteristics for these requirements - MaxUserLevel
and ResourceRequiredLevel - the component should consider them in its behaviour definition.

The PolicyEngine should not authorize a request if the MaxUserLevel is lower than the Re-
sourceRequiredLevel. Additionally, a PolicyEngine should follow the LPP. Hence, it should not

set the Authorized label to a higher level than the ResourceRequiredLevle, even if the MaxUser-
Level allows it. Following these rules, we define the behaviour of a PolicyEngine as shown in

Listing 7.6. In lines 3,8 and 14 we observe that the first condition for assigning an authorized

level of a certain degree to the return variable is the same level to be required by the resource.

For example, this eliminates the option of assigning a Level3 label to a Level1 resource, since in
the ResourceRequiredLevel characteristic of a request, the Level3 label is missing which would

cause the expression from lines 14-16 to be evaluated to false. Next, we make sure that only a

subject does not get authorized to a higher level than their highest possible. We only assign

a level if the MaxUserLevel characteristic of the request supersedes it. For example, in lines

3-5, we authorize with Level1 when the request has any of the currently defined authorization

levels in its MaxUserLevel characteristic. However, from lines 10 and 11 we see that a request

cannot be authorized to Level2 if its MaxUserLevel characteristic has Level1 authorization.
Lastly, the PolicyEngine sets the Evaluated.evaluated characteristic of the data as well as

removes the Level0 label from the data, Listing 7.6 lines 17 and 18. This indicates later in the

analysis that data has passed through a policy evaluation component.

Apart from the Authorized and Evaluated characteristics, the PolicyEngine does not alter any
other characteristics. It simply forwards them.

1 RETURN.Authorized.Level1 = request.ResourceRequiredLevel.Level1

2 AND (

3 request.MaxUserLevel.Level1

4 OR request.MaxUserLevel.Level2

5 OR request.MaxUserLevel.Level3

6)

7

8 RETURN.Authorized.Level2 = request.ResourceRequiredLevel.Level2

9 AND (

10 request.MaxUserLevel.Level2

11 OR request.MaxUserLevel.Level3

12)

13

14 RETURN.Authorized.Level3 = request.ResourceRequiredLevel.Level3

15 AND request.MaxUserLevel.Level3

16

17 RETURN.Authorized.Level0 = false

18 RETURN.Evaluated.evaluated = true

Listing 7.6: Node behaviour of the PolicyEngine component

7.3.2 Authenticator Behaviour

Next, we are modelling the behaviour of the Authenticator component. It is a model of an

authentication system and therefore can alter the UserAuthenitcated characteristic. Since

the modelled component is responsible for authenticating only one factor and passing the

60

7 Data Flow Analysis Model

authentication request to the next factor it should also only alter its respective factor label. To

achieve this, we propose that the component should have a node characteristicUserAuthenitcated
defined when it is instantiated in an assembly model. In this characteristic, we set only the

label of the factor for which the instance of the Authenticator component is responsible. For

example, if an instance of the component is responsible for authenticating the first factor in an

authentication process, it should have only the UserAuthenitcated.FirstFactor label set to true,

as shown in Listing 7.7.

When altering the UserAuthenitcated characteristic, the component needs to consider the

output of the next in chain Authenticators, if present. If the Authenticator is just a single factor
or it is the last factor in an authentication chain then the component directly copies all of

the UserAuthenitcated labels of the ComponentConfiguration variable, which represents the

node characteristic, to the output data labels, as shown in Listing 7.8 line 1. However, if there

is an additional Authenticator component in the authentication chain, then at some point of

its execution before returning, the component calls it and receives a requestReturn variable

containing the authentication labels of all next-in-chain Authenticators. Then, in its return

variable, the Authenticator needs to copy it ComponentConfiguration without changing the

received from other Authenitcaotrs labels. To do this we perform a logical OR operation on the

UserAuthenitcated characteristics of the requestReturn and ComponentConfiguration variables.

The OR operation ensures also that no labels get overwritten.

To provide a better understanding of the behaviour we demonstrate it in an example. We

take a two-factor authentication system which consists of two Authenticator components -

FirstFactor and SecondFactor.

1. When data arrives at FirstFactor it is propagated to SecondFactor.

2. Since SecondFactor is the last factor in the process it does not propagate it further and

directly jumps to setting the labels for its return data. Since it has not received any labels

by subsequent component it copies its ComponentConfigurtion, as shown in Listing 7.8

line 1, and returns the data to FirstFactor.

3. FirstFactor receives this data and stores it in the requestReturn variable.

4. FirstFactor jumps to the setting the return variable and performs an OR operation, as

shown in Listing 7.8 lines 3 and 4.

1 UserAuthenticated.FirstFactor = true

2 UserAuthenitcated.SecondFactor = false

Listing 7.7: Node characteristic of Authenitcator component responsible for the first factor

1 RETURN.UserAuthenticated.* = ComponentConfiguration.UserAuthenticated.*
2

3 RETURN.UserAuthenticated.* =

4 ComponentConfiguration.UserAuthenticated OR requestReturn.UserAuthenticated.*

Listing 7.8: Node behaviour of the Authenticator component

61

7 Data Flow Analysis Model

7.3.3 DeviceAuthenticator and TrustAlgorithm

We have modelled DeviceAuthenitcator components which are responsible for authenticating

a device and a TrustAlgorithm component responsible for calculating trust. Therefore, these

components should also be able to alter respectively the DeviceAuthenitcated and Trusted
characteristics. When receiving a request these components simply alter the labels for which

they are responsible by setting their value to true, as shown in Listing 7.9. For the other labels,

the components perform a forwarding action.

1 RETURN.DeviceAuthenticated.authenticated = true

2

3 RETURN.Trusted.authenticated = true

Listing 7.9: Node behaviours of DeviceAuthenticator and TrustAlgorithm components

7.4 Violations

Now that we have defined our labels and have defined how our components handle these

labels we can outline the possible violations. Since we have created a general security model,

the violations which we can detect with it are also general for models which integrate the

components from our repository.

7.4.1 Multiple Authorization Labels

Following the logic of the node behaviour of a PE, we know that multiple authorization labels

cannot be assigned to the same request. Moreover, we cannot identify a case where this should

even be logical. For example, a request cannot at the same time acquire Authorization Level 1
and Authorization Level 2. If the request should be authorized at Level 2 then it does not make

sense to also have the Level 1 label since those permissions are already contained in Level 2.
We have defined our labels as an ordered set with each next level extending the permissions of

the previous one. Next, if a request is authorized to Level 2 when it should only be Level 1 then
indicates a breach in the LPP. This violation is also an important prerequisite for the evaluation

of the next defined violations. If there are multiple authorization labels to be evaluated then

this would induce ambiguity in a request’s authorisation and we will fail to detect which label

was assigned by the PE and which was added after the request has left the PE. Then we will not

be able to differentiate whether a violation breaches the LPP or if it is an unauthorized request.

Additionally, this type of violation could help us identify the presence of components other

than the PE on the request path which assigns authorization labels and therefore are capable of

authorizing requests. This is a violation since in a ZTA, only the PE should be responsible for

that. Furthermore, if a developer models their own PE and uses our security annotations in it

they could check if their PE handles labels the right way.

7.4.2 Unauthorized Access

The next violation that it is possible to detect is the unauthorized access. This happens when a

request arrives at a resource and the assigned authorization level is lower than the assigned

62

7 Data Flow Analysis Model

authorization level of the resource. This violation could be an indication of an alternative path

to protected resources which avoids the PEP.

7.4.3 Least Privilege Principle

Due to the ordered set of labels, we can enable the identification of LPP breaches. This could

happen when a request arrives at a resource and the assigned authorization level of the request

is higher than the level required by the resource. This violation could indicate that either a PE
is not authorizing a request following the principle or there is a component on the path to the

resource which elevates the permissions of a request.

7.4.4 Unauthenitcated Access

Another violation which we can detect with our annotations is the unauthenticated access. This

violation can happen when a request arrives at a resource and is missing authentication labels.

We say labels since our authentication model includes labels for a two-factor authentication.

The violation could indicate the lack of an authentication entity on the path if the labels are

missing. It is also possible that only one of the authentication labels is missing. This also

results in an unauthenticated request and could represent that either one of the factors is not

functioning properly or it was not traversed at all.

7.4.5 Device Unauthenticated Access, Untrusted Access

The last two violations are similar in their logic and therefore we are going to summarize them

in a single section. How one is detected and what it represents is similar to the other two.

Therefore we will talk about device unauthenticated access. It happens when a request arrives

at a resource with a missing device authentication label. This would mean that along the path

no entity responsible for authenticating the device was visited. Similar to that is detected an

untrusted access and it represents the same problem. These two violations, however, can be

considered less serious than the other violations in the section. This is because some systems

might not have reached the level of ZTA where they authenticate a device or include a trust

algorithm in their system. Therefore, in such systems entities which alter those labels are not

present and the violations will be present. This presence of the violation in such systems is not

unnecessary since it turns the attention of a developer to the need to eventually include device

authentication and a trust algorithm in their system.

7.5 Generalising ZTA security analysis

After we have outlined the possible violations, we want to have a common approach to detect

them. In the Data Flow Analysis, this happens by evaluating constraints. Since the violations

are general for each model using our components we can also define general constraints in

the form of Java functions which can be reused. We go even further and try to generalize the

whole process of analysing a ZTA model for the defined above violations by providing a class

which encapsulates all of the constraints and the whole process of iterating nodes and checking

63

7 Data Flow Analysis Model

them. We also implement data classes which form a ZTA report. Data classes in Java are only

responsible for holding data and do not provide complex logic. Using these data classes, we can

specify a universal way for reporting results from our analysis as well as provide the option to

extend further the reporting process by allowing the data classes to be converted to data of

other formats such as a JSON or XML schema. Apart from the re-usability of the whole analysis,

this implementation would allow the obtaining of report results which can be analysed or

visualised by other services.

7.5.1 Defining a Java Enum

To represent the violations in our Java implementation of the security analysis we specify a

Java enum ViolationTypes, as shown in Listing 7.10, to represent each of the possible violations.

1 public enum ViolationTypes {

2 MULTIPLE_AUTHORIZATION_LABELS,

3 UNAUTHORIZED_ACCESS,

4 LEAST_PRIVILEGE_VIOLATION,

5 UNAUTHENTICATED_ACCESS,

6 DEVICE_UNAUTHENTICATED_ACCESS,

7 UNTRUSTED_ACCESS

8 }

Listing 7.10: ViolationTypes.java

7.5.2 Violation Data Class

First, we want to specify a data class which encapsulates all of the information concerning a

violation. We want to store as attributes what is the type of violation, an identifier of the node

where it was detected and lists of the characteristics present on the node and received by it.

Therefore in the Violation Java class, we define a private field for each one of the mentioned

attributes as shown in Listing 7.11.

1 public class Violation {

2

3 private String type;

4 private Violation node;

5 private List<String> nodeLabels;

6 private List<String> recievedLabels;

7 ...

8 }

Listing 7.11: Structure of the violation data class

The class has additional getters and setters for these fields, which we omit from the displayed

code snippet for simplicity.

7.5.3 ZTAReport Data Class

Next, we define a data class, as shown in Listing 7.12, which represents the whole report. The

report should contain all of the detected violations. Therefore, we are going to define a list

64

7 Data Flow Analysis Model

of Violation elements for each of the violation types (Listing 7.11, Lines 3-8) and define only

report functions (Listing 7.11, Lines 10-20) which add a new violation to a list. Only one of the

report functions is presented since all of them follow the same logic and we just change the

list to which they are adding the violation and the violation type. We create the data class as

shown below:

1 public class ZTAReport {

2

3 private List<Violation> multipleAuthorizationLabels;

4 private List<Violation> unauthorizedAccess;

5 private List<Violation> leastPrivilegeViolation;

6 private List<Violation> unauthneitcatedAccess;

7 private List<Violation> deviceUnauthenitcatedAccess;

8 private List<Violation> untrustedAccess;

9

10 public void reportMultipleAuthorization(String nodeName,

11 List<String> nodeLabels,

12 List<String> recievedLabels) {

13 this.multipleAuthorizationLabels.add(new Violation(

14 ViolationTypes.MULTIPLE_AUTHORIZATION_LABELS.toString(),

15 nodeName,

16 nodeLabels,

17 recievedLabels

18)

19);

20 }

21 ...

22 }

Listing 7.12: Strucutre of ZTA report data class

7.5.4 ZTAReporter

Now we need to implement the logic of the reporter and we do this in the ZTAReporter class.
The class has an instance of the ZTAReport class, which it uses to save violations. Then in

the ZTAReporter we can define different functions which convert the ZTAReport object into
different formats. Since it is out of the scope of this thesis we have not defined any conversion

functions apart from the printReport(). This one simply prints out the ZTA report in the console

in a readable format by using the toString() function of the report which we have overridden in

the ZTAReport class. Now, the main logic which we need to implement is the constraints for

our dataflow analysis. We are going to define the constraints as functions which receive an

AbstracSequenceElement as a parameter, perform constraint evaluation on it and save the found

violations in the ZTAReport instance. To reduce the complexity of the code snippets, only the

constraints will be displayed which are defined in the form of if-statements. The variables

nodeLabels and dataLabels are a list of strings which are respectively the labels on the node

and the labels of the received data.

Multiple Authorization Labels Constraint The multiple authorization labels constraint is shown

in listing Listing 7.13. Here the nodeLabels and dataLabels lists contain the labels for the

Authorized characteristics from the data dictionary, see Section 7.2. To check the constraint we

65

7 Data Flow Analysis Model

look at the size of both nodeLabels and dataLabels lists and check if either of them is greater

than one. If one of the checks is true then it indicates that either a node has been configured

with multiple labels or data has arrived at the node with multiple authorization.

1 if(nodeAuthorization.size() > 1 || dataAuthorization.size() > 1) {

2 report.reportMultipleAuthorization(node.toString(),

3 nodeAuthorization,

4 dataAuthorization);

5

6 return true;

7 }

Listing 7.13: Multiple Authorization Labels constraint

Unauthorized Access and Least Privilege Violation Constraints Since we have created multiple

authorization levels as an ordered set, we can use this definition to evaluate unauthorized

access and violations of the LPP. To do this we compare labels but first, we need to extract a

number from the label. The levels are defined as "Level N", see Section 7.2, and we can directly

extract the number of the level from the label string as shown in listing Listing 7.14. We use

for this the defined in the ZTAReporter private function extratAuthorizationLevel(String label).
1 int nodeAuthorizationLevel = extractAuthenticationLevel(nodeAuthorization.get(0));

2 int dataAuthorizationLevel = extractAuthenticationLevel(dataAuthorization.get(0));

Listing 7.14: Extracting number of authorization level

After we have obtained the levels of authorization in the nodeAuthorizationLevel and dataAu-
thorizationLevel variables we can compare them to check for violations. First, we check if the

node authorization level is higher than the data authorisation level, as shown in Listing 7.15. In

the evaluation of the unauthorized access constraint, we have an additional labels list evaluated.
This list holds the label Evaluated.evaluated if present. We check if the evaluatedLabel is missing

from the data. If it is missing and the node label is larger than the data label, then this indicates

unauthorized access. Then, as shown in Listing 7.16, we check if the data authorization is

higher than the node authorization. If true, then this is an indication of a violation of the LPP.

1 if(nodeAuthorization > dataAuthorization) {

2 report.reportLeastPrivilegeViolation(node.toString(), nodeAuthorizationLevel,

dataAuthorizationLevel);

3 return true;

4 }

Listing 7.15: Checking for unauthorized access

1 if(nodeAuthorization < dataAuthorization && evaluated.isEmpty()) {

2 report.reportUnauthorizedAcess(node.toString(), nodeAuthorizationLevel,

dataAuthorizationLevel);

3 return true;

4 }

Listing 7.16: Checking for unauthorized access

66

7 Data Flow Analysis Model

Unauthenticated Access Constraint Next, we define the constraint for detecting unauthenti-

cated access. In the nodeAuthorization list we obtain now the Protected characteristic of the

node and in the dataAuthorization we obtain the UserAuthenticated characteristic. As shown

below in listing Listing 7.17, we first check if the size of nodeAuthorization is greater than

one. This indicates that the Protected characteristic is present and thus we should check for

unauthenticated access. Then, we check if the dataAuthorization list has two labels - one for

first-factor authentication and one for second-factor authentication. If one of the labels is

missing then we report an unauthenticated access.

1 if (nodeAuthorizationLevel.isEmpty()) {

2 return false;

3 }

4

5 if(dataAuthorizationLevel.size() != 2) {

6 report.reportUnauthenitcatedAcess(node.toString(), nodeAuthorizationLevel,

dataAuthorizationLevel);

7 return true;

8 }

Listing 7.17: Checking for unauthenticated access

Device Unauthenticated Access and Untrusted Access Constriants Both of the constraints for

device unauthenticated access and untrusted access follow the same pattern only the checked

labels differ. Therefore, we present here only the constraint for device unauthenticated access

where we obtain in the nodeAuthorization list again the Protected characteristic of the node and

in the dataAuthorization list we obtain the DeviceAuthenticated characteristic. In the case of

an untrusted access check, the difference is that the dataAuthorization list stores the Trusted
characteristic of the data. Similarly to the user authentication check we first check if the

Protected characteristic is present on the node, as shown in listing Listing 7.18. Next, we check

if the DeviceAuthenticated label is present. If it is not present, then this signals that the device

used for the request has not been authenticated.

1 if (nodeAuthorizationLevel.isEmpty()) {

2 return false;

3 }

4

5 if(dataAuthorizationLevel.size() != 1) {

6 report.reportDeviceUnAuthneitcatedAccess(node.toString(), nodeAuthorizationLevel,

dataAuthorizationLevel);

7 return true;

8 }

Listing 7.18: Checking for device unauthenticated access

7.6 Applying Security Annotations to JPlag Models

Now that we have defined security annotations and applied them to the ZTA components, we

will discuss what else needs to be done to have a complete security model for JPlag. For the

components which we take from the ZTA repository, we do not need to make any adjustments

67

7 Data Flow Analysis Model

since they already have the security annotations specified in their SEFFs in the previous sections.

However, we still need to specify the behaviour of the components we created in the JPlag

repository as well as a .nodecharaacteristics file for each of the assembly models.

JPlag with standard ZTA and with Beyondcorp We first observe the JPlag model with standard

ZTA and Beyondcorp. The models are similar in the aspect that in both we are protecting the

JPlagGUI component. For those models, we have only created one additional component in

the JPlag repository - the JPlagResourceAdapter. In the SEFF of the component, there is only

an external call to the IJPlag.run() function. We add forwarding behaviour to this external

call, which means that we create an input variable usage for the request parameter which

copies all of the characteristics of the data received by the JPlagResourceAdapter. Next, we
create a .nodecharacteristics file for the model and inside we define an Assembly Assignee
for the IJPlagGUI component. In this Assembly Assignee we set the Protected.protected label.

Additionally, the authorized level label should be set according to the desired authorization

level.

JPlag with SDP In this variation of JPlag with a ZTA we are protecting the ReportViewer
and the UniversityDB components. Again, here we have modelled additionally three adapter

components. Similar to the JPlag with standard ZTA scenario we need to define forwarding

behaviour for these three components. Then we again need to define a .nodecharactersitics file
where we set the Protected.protected label for the ReportViewer and UniversityDB.

68

8 Evaluation

In the following chapter, we present the evaluation of the developed in this thesis model. In

order to have a structured evaluation we will be using the Goal-Question-Metric (GQM) [20]

approach.

8.1 Evaluation Design

For the evaluation of the created ZTA model, we use the GQM approach. The approach requires

defining clear goals. For each of the goals, we define what questions arise that need to be

answered to prove the achievement of the goals. Where it is possible to answer the questions

quantitatively, we define metrics. Following the approach, we define the goals:

• G1: Examine the completeness of the model regarding modelling power and identified

elements from the literature.

• G2: Examine the applicability of our proposed ZTA components.

• G3: Examine the ability of the model to infer performance impact due to applied ZTA

components.

• G4: Examine the ability of the model to detect security violations according to the

proposed ZTA security violations concept.

8.1.1 Design for Evaluating Model Completeness

When evaluating the completeness of the proposed ZTA model, we consider first the modelling

power of Palladio. Since there were no attempts to model ZTAs in Palladio until now, we want

to observe if we were able to represent the researched concepts of ZTA using the currently

implemented elements of the Palladio Component Model. Next, we want to concentrate on the

identified ZTA elements during the research and analysis of ZTA standards. In the meta-model

extraction, Chapter 5, we outlined 4 base logical components. In addition to that, we extracted

also 9 main tasks which need to be performed by components in a ZTA. Here we raise the

question if the modelling power of Palladio allows us to represent all of these components and

tasks. Following these thoughts, we formulate the questions for the goal as follows:

• Q1.1Were all identified components and tasks represented using Palladio?

• Q1.2 Did Palladio require adjustments during the modelling process?

69

8 Evaluation

Looking at the nature of the questions and the aspect they are evaluating, we claim that we are

able to answer them quantitatively. Therefore we can define metrics for both of the questions.

We do this as follows:

• M1.1 Percentage of modelled elements from total identified elements.

• M1.2 Number of adjustments made to Palladio.

8.1.2 Design for Evaluating Model Applicability

The next quality we want to evaluate in our proposed model is its applicability. Since as an

objective of our work, we set the task of developing reusable components which generalize

the concepts of ZTAs we want to focus on the generality of the components. This means

that we want to test whether we can use the same components from our repository to model

varying suggested ZTA models from the literature which were not used during the modelling

process. As a next step in evaluating applicability, we want to assess what efforts are required to

integrate the proposed ZTA elements into an existing system. Here we need to assess first what

changes our components need to undergo to be used as well as what compatibility adjustments

the model into which we integrate our components requires. In the context of this goal, we ask

the following questions:

• Q2.1 Are the proposed elements a general representation of ZTA components?

• Q2.2 Can the proposed elements be used off-the-shelf in existing system models?

• Q2.3 Does a system need to be modified to integrate the proposed ZTA components?

Question Q2.1 does not allow a quantitative answer through the use of metrics. Therefore, we

are going to approach the question by providing examples of mapping suggested ZTA models

from the literature to the proposed in this thesis elements. We also provide a discussion on the

mapping. For questions Q2.2 and Q2.3 we can specify metrics to help us answer the questions.

We formulate them as follows:

• M2.1 Number of adjustments to our components to make them compatible with an

existing system model.

• M2.2 Number of changes made to already present components of the model, where we

integrate our elements.

• M2.3 Number of new elements modelled to make a system compatible with our compo-

nents.

8.1.3 Design for Evaluating Performance Inference

Since we want to enable performance analyses of systems integrating a ZTA we want to

evaluate the ability of our components to induce performance overhead. We want to observe if

the components and execution path which can be tuned using the modelled parameters from

our repository, alter the simulated execution time of a system. This can be done by comparing

70

8 Evaluation

the simulations executed on a model without ZTA and simulations executed on the same model

but with included ZTA components. By experimenting with multiple usage scenarios we can

observe the variations in the execution time and resource utilization as well as paths taken

during the execution. For this goal, we define the following questions:

• Q3.1Does the model allow the analysis of the performance impact induced by ZTA

components and different execution flows?

• Q3.2 Does the model allow the analysis of the performance impact of different ZTA

execution flows?

To answer these questions we can observe the difference in the worst execution time achieved

by an example model with and without ZTA components in varying usage scenarios.

8.1.4 Design for Evaluating Security Violations Detection

To evaluate the ability of the model to detect security violations we will be using Data Flow

Analysis, as described in Section 2.4. We defined security violations in Section 7.4 which can

happen in a ZTA. We evaluate whether our proposed model and security annotations are

capable of detecting these violations. For this purpose, we introduce a total of five scenarios of

the Media Store system with and without security issues. Issues may arise from wrong security

annotations or missing authentication and/or authorization on the path to a protected resource.

We define the evaluation scenarios as follows:

• S0 - No security violations

• S1 - Presence of unauthorized access

• S2 - Presence of LPP violation

• S3 - Missing user authentication factor

• S4 - Lack of trust calculation

Following the evaluation approach, we ask the following question for this goal:

• Q4.1 How accurately does the analysis detect introduced issues?

To be able to answer the questions we will be using the metrics of precision and recall. We

define those metrics as follows:

• M4.1 Precision - precision is the amount of true positive (TP) values to the sum of TP and

false positives (FP) - TP
TP + FP . In our evaluation, TP are the correctly identified issues. FP

are identified issues which were not introduced in the scenario. Therefore we calculate

the ratio of the correctly identified issues in a scenario to the sum of correctly identified

issues and identified issues which were not introduced in the scenario [40]. A high value

for the precision metric ensures a higher credibility of the detection of issues.

71

8 Evaluation

• M4.2 Recall - recall is calculated by dividing the TP by the sum of TP and false negatives

FN -
TP

TP + FN . In our case, FN are the issues which were present in a scenario but not

identified. Hence, we calculate the ratio of correctly identified issues to the total amount

of identified and unidentified issues [40]. The higher the value of the recall the better our

analysis is at detecting introduced issues.

8.2 Evaluation Setup

To be able to answer the questions of goals G2, G3 and G4 presented in chapter 8, we need to

apply the components of our ZTA repository to an already existing Palladio model. For this

task, we have selected the case study of a Media Store. This model has been used to demonstrate

the modelling power of Palladio and is also a running example used in the Palladio book and

paper [43]. The model is suitable since it is a complete model of a system in the aspects that it

has all of its components, interfaces, SEFFs and resource demands specified. This allows the

model to produce response times and utilization of resources which simulate a real system

behaviour. In the following section, an overview of the example model of the Media Store is

presented. Then, we describe how we apply our ZTA according to the ZTA design principles

by UK NCSC [57], described in Section 2.2. We then provide additional real-life context to the

newly created Media Store with ZTA system by evaluating its maturity according to the CISA

ZTA maturity model [11], described in Section 2.3.

8.2.1 Media Store

The Media Store example represents an audio storage system. The system allows users to

access audio files stored in remote storage. The users are able to obtain a list of all available

audio files on the server. The users can also upload files to the server as well as download

files. The system also offers a packaging functionality. In the case of more than one file being

downloaded, the system zips the requested files in a single package before sending it to the

user.

Media Store Repository

In the initial repository of the Media Store, as shown in Figure 8.1, we observe the following

components. A FileStorage component is modelled, to simulate the retrieving and storing of

files on a server. It does so through its provided role of the IFileStorage interface. Next, we
have the MediaAccess component which serves as a storage access component. It requires the

IFileStorage interface and provides both the IDownload and IMediaAccess interfaces. Next, we
have the Packaging component that simulates the zipping process of files. The component

provides the IPackaging. Lastly, we have the MediaManagement component that serves as

an access point to the system. To provide this functionality, the component provides the

IMediaManagement interface. The interface consists of three signatures. They are upload which

accepts a FileContent parameter, download, which accepts an AudioCollectionRequest parameter

and returns FileContent, and getFileList which has no parameters.

Apart from the basic description of the components, we are not going to go into more detail

and discuss thoroughly the SEFFs of each component and signature. A detailed modelling of

72

8 Evaluation

MediaManagementIMediaManagement

IPackaging

PackagingIPackaging

MediaAccess

IMediaAccess

FileStorageIFIleStorage

IMediaAccess

IDownload
IDownload

IFileStorage

Figure 8.1: Components present in the initial Media Store repository

<<Interface>>
IMediaManagement

+ void upload(FileContent file)
+ FIleContent download(AudioCollectionRequest)
+ void getFileList()

Figure 8.2: IMediaManagement interface from initial Media Store repository

the functionality of each media store component, as well as additional components which were

not introduced here due to irrelevance, can be observed in the Palladio examples repository

[38].

Media Store System

The initial cacheless Media Store System is presented in Figure 8.3. The MediaManagement
component is instantiated and connected to an instance of the Packaging component with the

IPackage interface. Next, the MediaManagement is connected to an instance of the MediaAccess
component with both the IDownload and IMediaAccess interfaces. The FileStorage component is

also instantiated and is connected to the MediaAccess through the IFileStorage interface. Lastly,
the system offers an entry point through the IMediaManagement provided role.

<<System>>
MediaStore no ZTA

MediaManagementIMediaManagement

IPackaging

Packaging
IPackaging

MediaAccess

IMediaAccess

FileStorage
IFIleStorage

IMediaAccess

IDownload
IDownload

IFileStorage
IMediaManagement

Figure 8.3: Initial Media Store assembly diagram

73

8 Evaluation

8.2.2 Integrating ZTA into the Media Store

Now we are going to integrate a ZTA into the Media Store system following the steps presented

in the UK NSCS Zero Trust Guide [57], described in Section 2.2.

Knowing your architecture and assets

As a first step, we need to make sure that we are aware of the system’s architecture namely the

assets we are protecting and how they are accessed. When we look at the possible parts of the

system we might want to protect we can identify:

• File Access - Audio files are digital assets. We might want to protect the FileStorage
component.

• Download Function - Requests for multiple file downloads execute the zipping functionality

of the system. Multiple requests to the Packaging component might result in a denial

of service. Therefore, we might want to limit the downloading of multiple files only to

permitted users.

• Upload Function - We might also want to restrict the uploading of files to the system only

to allowed users.

Next, we take a look at the architecture of the system. In our case, we are protecting a legacy

system from the Zero Trust point of view. This means that the model was developed without

security in mind. Because of that it is harder to dissect the architecture in smaller pieces and

establish multiple fine-grained defense perimeters without applying serious changes to the

underlying model. We discuss this in more detail in the discussion part, Subsection 8.2.8. To be

able to protect the discussed above assets we need to find a point to place a PEP to intercept the

request to all of these assets. Such point is the MediaManagement component since it forwards

requests for file access, downloading, uploading and file packaging. Thus, this is going to be

the component where we will establish our defence parameter.

Since we have identified that we want to intercept requests to theMediaManagement compo-

nents this is where we are placing our PEP. We want our PEP to forward each request to a PE for

evaluation. Therefore, we select the DuplexPEP as a suitable PEP for this case. Then, due to the

limitations discussed in paragraph 6.3.1, we need to include a gateway component. We cannot

use the generic gateway modelled in the ZTA repository since it accesses the protected resource

through the IReosurce interface and here the protected resources are accessed through the

IMediaManagement interface. We create a newMediaStoreGateway component. The component

resembles strongly the functionality of the generic gateway. This means that the SEFFs for

each of its signatures follow the same execution:

1. Create a Zero Trust request from the received application-specific request and forward it

to the PDP through the IRequest interface.

2. When a decision is received, if it is positive then forward the application-specific request

to the protected functionality through the IMediaManagement interface. If the decision is

negative - terminate the process.

74

8 Evaluation

MediaStoreGateway

IMediaManagementProtected

IMediaManagement

CredentialsProviderICredentials

GeolocatorIContext

IRequest

IStoreAccess

Figure 8.4: Basic components introduced during the ZTA integration

<<Interface>>
IMediaManagementProtected

+ void upload(FileContent file, Request request)
+ FIleContent download(AudioCollectionRequest, Request request)
+ void getFileList(Request request)

Figure 8.5: IMediaManagementProtected interface introduced during ZTA integration

Since the IMediaManagment interface only offers application-specific requests and its signatures
do not accept Zero Trust requests as parameters, the gateway cannot simply provide it as an

interface. If we do so, then the gateway will not have a source to obtain the required variables

to create a request for the PDD. We solve this by introducing a new interface called IMedia-
ManagementProtected, as shown in Figure 8.5. The interface has the same signatures as the

IMediaManagement. However, its signatures are extended to also accept a Request(Section 6.1)

parameter. This is the interface which our MediaStoreGateway will provide. In the end, we

obtain theMediaStoreGateway as shown in Figure 8.4. Now that we have a gateway component

we can create a composite component which will be our application-specific PEP. We create

the composite component MediaStorePEP, as shown in Figure 8.6. Next, after we have modelled

our PEP we can go ahead and integrate it into the Media Store system. We place the PEP in

front of the MediaManagement and connect it to it through the IMediaManagement interface.
The system now should provide as an entry point the interface IMediaManagementProtected
instead of IMediaManagement. We delegate this provided role to the MediaStorePEP’s provided
IMediaManagementProtected role. This is how we establish a perimeter to protect our identified

assets: File Access, Download Function and Upload Function. The other required roles of the PEP
will be discussed in the next steps of the ZTA integration process.

User and Device Identities

In the second step of the integration process, we need to make sure that we keep track

of the identities of users and devices accessing the protected assets. To do this in our exam-

ple system, we need to introduce databases where users’ and devices’ information is stored.

These databases will later be used also for the authentication of users and devices and need

to be compatible with our authentication components from the ZTA repository. Due to this

fact, we are going to use the Store component from the ZTA repository. We instantiate two

Store components, as shown in Figure 8.7, one for users and one for devices. We name them

respectively - UsersDB and DevicesDB.

75

8 Evaluation

<<Composite Component>>
MediaStorePEP

MediaStoreGatewayIMediaManagement
IMediaManagement

IRequest

DuplexPEP

IRequest

IManage

IRequest

IObligation.OnAccepted

IObligation.OnDenied

EmptyObligationIObligatoin

IObligation.OnRequestIneligible

IMediaManagement

IManage

IMediaManagement

IRequest

IObligation.OnAccepted

IObligation.OnDenied

Figure 8.6: MediaStorePEP Composite component

Assess user behaviour and device health

As a next step of the process, we need to take into consideration the behaviour of users as

well as the posture of devices when making decisions. To do this we are going to introduce a

trust algorithm which forms its decision based on data about the user’s behaviour and device

state. In the ZTA repository, we have modelled a generic trust algorithm which combines data

from two sources. We instantiate the component TrustAlgorithm in the Media Store assembly

model. Now we need to define what we are going to observe when we assess user behaviour.

Factors which can form a user behaviour can be logs from previous access requests by the

user, the device’s state and the user’s current location. The state of a device can be assessed

through constant logs it supplies to the system, as well as logs from previous requests made by

the device. We already have integrated a logs source for the trust algorithm. Therefore, we

can say that the call to the SIEM system also simulates the obtaining of information about the

device’s health. We can additionally include a second call to the SIEM system in the SEFF of

the TrustAlgorithm component to increase the processing time. This however can be observed

as inducing implementation details into the model. Therefore we will restrain from doing so.

We will say that a single call to a logging system is enough for the trust algorithm to obtain its

needed data about the user’s behaviour as well as the device’s health. These sources will be

the input to our trust algorithm. Therefore we need two context providers which we will then

connect to the required IContext roles of the TrustAlgorithm component.

First, we will discuss how we include the user’s logged behaviour as well as device logs into

the system. We need to be able to store logs somewhere. Similar to the users’ and devices’

information from the previous subsection we will need to include a database for logs. Therefore,

we instantiate another Store component from our ZTA repository and name it LogsDB. Plain
logs however may not be suitable for analysis since they might require pre-processing or

correlation, see Subsection 6.4.4. We have already modelled such system which processes and

analyzes logs namely the SIEM composite component from our ZTA repository. Thus we go

ahead and instantiate this composite component into the Media Store system and connect it to

the LogsDB. We also connect it to the TrustAlgorithm as a first context provider. We now have

integrated assessing of user’s logged behaviour in the system.

76

8 Evaluation

As a next part of the user’s behaviour, we have selected to observe the location of the user at

the time of request. Geolocation is not part of the core components of a ZTA. Furthermore, it

is optional for a system and models of extracting a geolocation may vary from determining

geolocation based on IP address to requesting data from a GPS tracker. This is why we have not

modelled a general geolocation service in our core ZTA repository. If a component developer

would like to have such a service integrated into their system they have to model it themselves

in the repository of their system. Therefore, for our Media Store system, we will model a

simple geolocation system. We base our model on the geolocation by IP approach namely the

MaxMind GeoLite [33]. MaxMind GeoLite offers the user a database that contains geolocation

data for IP addresses and is updated twice every week. The user simply downloads the database

on their server and write their own service queries to the database to extract geolocation

information. What we do in our system is to include another Store component into the Media

Store assembly model and name it GeolocationDB. This is where the GeoLite database resides.
Then in the Media Store repository, we create a Geolocator component which provides the

IContext interface and requires the IStoreAccess interface. When the component is called, it

simply makes a retireve call to its IStoreAccess required rolled and then in an internal action

it simulates the mapping of IP to geolocation. We instantiate the Geolocator in the assembly

model and connect it to the GeolocationDB as well as to the TrustAlgorithm as a second IContext
provider.

Integrating Policies

As a next step in the process, we need to integrate policies and policy evaluation into the system.

We instantiate and connect with each other a PolicyEngine component which will be responsible

for policy evaluation and a PolicyAdministrator component which will create configurations

based on the decisions and manage the PEP. Next, the PolicyEngine requires a policy source.

From our ZTA repository, we take the PoliciesProvider component and instantiate it as a policies

provider for the PolicyEngine. According to the documentation of the PoliciesProvider, see 6.3.2,
we need to specify values for the numberOfPolicies and rulesPerPolicy. For this case, we will
use example values and set both of the variables to 100.

Authorization based on context and authentication

The next part of the process is to take care of authentication as well as authorization based on

request context. We need to make sure that we authenticate the users accessing the resources

and the device they are using for this purpose. We also need to integrate additional factors

such as user and device information and the authentication itself into the authorization process

of the PolicyEngine.
We start by taking care of the user authentication. The UK NCSC guide [57] we are following

requires that we integrate a Multi-Factor Authentication. Therefore, we need two instances

of the modelled in the ZTA repository Authenticator component. The first instance will be

responsible for the first factor. As per the documentation of the component, see Subsection 6.4.1,

we set its isLastFactor variable to false. Then we also set its AuthenticationProbability variable

as boolean PMF, where we define that in 90% of the cases, the authentication outcome will

be true and in 10% it will be false. These values can be tuned later if we want to simulate

different scenarios of the system - for example with more failed authentications. We also

77

8 Evaluation

connect the Authenticator to the UsersDB from paragraph 8.2.2. Now we need a credentials

provider component. We specify this component in the Media Store repository. The component

simply simulates the input of credentials by the user through an internal action in its SEFF.

Then we instantiate the CredentialsProivider and connect it to our Authenticator. For the second
factor, we use again an Authenticator component and set it up similarly to the component

responsible for the first factor. The only difference here is that we set the isLastFactor variable
to true. This is how we instantiate a 2-factor User Authentication in our Media Store assembly

model.

For the device authentication, we are going to use a simple approach and not include multiple

factors. In our ZTA repository, we have the DeviceAuthenticatorWithStore component which we

are going to use here. We instantiate it and set its AuthenitcationProbability again to a boolean

PMF with 90% of the authentication outcomes as true and 10% as false. Again these values can

be tuned to simulate different scenarios. We connect the component to the DevicesDB from

paragraph 8.2.2.

Since we now have user authentication, device authentication and a trust algorithm, see

paragraph 8.2.2, which form the context of a user request, we can add context evaluation to our

PolicyEngine. In our ZTA repository, we have modelled the ContextEvaluator component which

is able to aggregate information from multiple context providers and simulate the process of

context evaluation. We instantiate the component and connect it to the PolicyEngine component.

Next, we connect the user authentication, the device authentication and the trust algorithm to

its required IContext roles.

Monitoring

Lastly, we need to integrate monitoring into the system. We already have included an SIEM

component that apart from providing context data can also collect and analyze logs from

various components in the architecture. The component provides the IObligation interface,

which when called simulates the process of logging data, see Subsection 6.4.4. Therefore, we are

going to use the SIEM component as a monitor. From the documentation of the modelled ZTA

components, see Chapter 6, we know that most of the components provide extension points

through the IObligation interface. We can go ahead and connect each of the required IObligation
roles of the MediaStorePEP, PolicyAdministrator and PolicyEngine to the SIEM component’s

IObligation provided role. We can now simulate the process of logging accepted or denied deci-

sions, decisions made by the PolicyEngine and configurations made by the PolicyAdministrator.

8.2.3 Resource Environment

As a resource environment, we will be using the same resource environment of the initial

Media Store model extended with only one additional container, as shown in figure 8.8. The

environment consists of anApplication Server, aDatabase Server and a linking resource -Network.
We are extending the environment by adding a third container which is the ClientDevice. We

define a processing resource for the new container with a First Come First Serve scheduling
policy. Since the ApplicationServer provides a processing power of 1000 * 1000 * 1000 units and

78

8 Evaluation

<<
Sy

st
em

>>
M

ed
ia

St
or

eS
ys

te
m

ZT
A

M
ed

ia
M

an
ag

em
en

t
IM

ed
ia

M
an

ag
em

en
t

IP
ac

ka
gi

ng

Pa
ck

ag
in

g
IP

ac
ka

gi
ng

M
ed

ia
A

cc
es

s

IM
ed

ia
Ac

ce
ss

Fi
le

St
or

ag
e

IF
Ile

St
or

ag
e

IM
ed

ia
Ac

ce
ss

ID
ow

nl
oa

d
ID

ow
nl

oa
d

IF
ile

St
or

ag
e

Po
lic

yE
ng

in
e

IR
eq

ue
st

IP
ol

ic
ie

s

IC
on

te
xt

IO
bl

ig
at

io
n

Po
lic

yA
dm

in
is

tr
at

or

IR
eq

ue
st

IR
eq

ue
st

IO
bl

ig
at

io
n

IM
an

ag
e

Po
lic

ie
sP

ro
vi

de
r

nu
m

be
rO

fP
ol

ic
ie

s:
 in

t
ru

le
sP

er
Po

lic
y:

 in
t

IP
ol

ic
ie

s

A
ut

he
nt

ic
at

or

is
La

st
Fa

ct
or

 =
 tr

ue
Au

th
en

tic
at

io
nP

ro
ba

bi
lit

y
=

Bo
ol

PM
F(

0.
9,

 0
.1

)
IC

on
te

xt

IC
re

de
nt

ia
ls

IS
to

re
Ac

ce
ss

IC
on

te
xt

D
ev

ic
eA

ut
he

nt
ic

at
or

St
or

e

 A
ut

he
nt

ic
at

io
nP

ro
ba

bi
lit

y:
 b

oo
le

an
IC

on
te

xt

IS
to

re
Ac

ce
ss

 D
ev

ic
es

D
B

IS
to

re
Ac

ce
ss

Tr
us

tA
lg

or
ith

m

IC
on

te
xt

IC
on

te
xt

.F
irs

tP
ro

vi
de

r

IC
on

te
xt

.S
ec

on
dP

ro
vi

de
rC

on
te

xt
 E

va
lu

at
or

IC
on

te
xt

IC
on

te
xt

.U
se

rA
ut

he
nt

ic
at

io
n

IC
on

te
xt

.D
ev

ic
eC

on
te

xt

IC
on

te
xt

.T
ru

st
Al

go
rit

hm

A
ut

he
nt

ic
at

or

is
La

st
Fa

ct
or

 =
 fa

ls
e

Au
th

en
tic

at
io

nP
ro

ba
bi

lit
y

=
Bo

ol
PM

F(
0.

9,
 0

.1
)

IC
on

te
xt

IC
on

te
xt

IC
re

de
nt

ia
ls

IS
to

re
Ac

ce
ss

 U
se

rs
D

BIS
to

re
Ac

ce
ss

 G
eo

lo
ca

to
rD

B

 L
og

sD
B

G
eo

lo
ca

to
r

IC
on

te
xt

IS
to

re
Ac

ce
ss

IS
to

re
Ac

ce
ss

IS
to

re
Ac

ce
ss

SI
EM

IC
on

te
xt

IS
to

re
Ac

ce
ss

IO
bl

ig
at

io
n

 C
re

de
nt

ia
ls

Pr
ov

id
er

IC
re

de
nt

ia
ls

M
ed

ia
M

an
ag

em
en

t
Pr

ot
ec

te
d

IM
ed

ia
M

an
ag

em
en

tP
ro

te
ct

ed

IM
ed

ia
M

an
ag

em
en

t

IR
eq

ue
st

IM
an

ag
e

IO
bl

ig
at

io
n.

O
nA

cc
ep

t

IO
bl

ig
at

io
n.

O
nD

en
y

IM
ed

ia
M

an
ag

em
en

tP
ro

te
ct

ed

Figure 8.7: Media Store with ZTA Assembly

79

8 Evaluation

Figure 8.8: Media Store resource environment

a client device is normally less powerful than a server, we define the processing rate of the new

container as only 1000 * 1000 units.

8.2.4 Allocation

When allocating the components of the new systemwewill not be changing the initial allocation

of the Media Store. This means that on the DatabaseServer will reside the FileStorage. On
the ApplicationServer are allocated the MediaAccess, MediaManagement and Packaging. The
newly introduced components are allocated in the following way. Each instance of the Store
component is allocated on the database server since these components represent a database.

So the UsersDB, DevicesDB, LogsDB, GeolocationDB are all allocated on the DatabaseServer. On
the newly introduced container ClientDevice we allocate the CredentialsProvider component.

Next, we observe that components which perform some kind of functionality, such as zipping

files or forwarding audio requests, are allocated on the ApplicationServer. Furthermore, we do

not want to add additional resource containers for our core ZTA components since this would

influence our evaluation. Since we are out of options, on the ApplicationServer, we allocate:

• TrustAlgorithm

• PolicesProvider

• PolicyEngine

• PolicyAdministrator

• SIEM

80

8 Evaluation

RUM DUM

Probability calling download 0.8 1.0

Probability calling upload 0.2 0.0

audioRequest.Count IntPMF 4

audioRequest.Size IntPMF 40568000

Table 8.1: RUM compared to DUM

• ContextEvaluator

• Geolocator

• MediaStorePEP

• AuthenticatorFirstFactor

• AuthenticatorSecondfactor

8.2.5 Usage model

The initial usage model of the Media Store defines a realistic usage of the system. We will adjust

it slightly so it can be compatible with the new system and use it in our evaluation. Instead of

calling the MediaManagement, we now use the IMediaManagementProtected interface as an

entry point to the system. We also need to define additional variable usages to the ones from

the initial usage model. We will define multiple variations of the initialization of the newly

introduced variables to trigger different execution flows and analyse the performance impact

of the new components. However, before using the realistic usage model (RUM) we will also

derive another usage from the realistic one where we eliminate the probabilities present in

the initial model. We call it a derived usage model (DUM). We do this to obtain a constant

behaviour of the system and perform a more accurate comparison of the basic functionality

of the initial system model and the one with the ZTA elements. For example, in the initial

usage model, there is a probabilistic behaviour when it comes to calling one of the system entry

calls. In our (DUM), we alter the probabilities so only the download system call is used. The

upload functionality has weaker resource demands than the download. In a scenario where

more uploads are called, it could result in improved performance although ZTA elements are

present in the model and this improvement is not because of the ZTA elements but because of

probabilities in the initial usage model. Following the same logic we alter the specifications for

the input parameters to the download function from the initial model - the audioRequest.Count
and the audioRequest.Size. We set the audiotRequest.Count parameter to always request 4 files

and the audioRequest.Size to 40568000 which is one of the possible sizes from the RUM. In

Table 8.1 the differences between the RUM and the DUM are summarized.

Next, we define the variations for the values of the new parameters required by the Zero Trust

components - the request.PolicyAuthorized, request.EvaluationEligible, request.PolicyAuthorized,
request.ContextAuthorized, request.UserAuthenticated, request.DeviceAuthenitcated and request.Trusted.
In Table 8.2, we summarize the different configurations of the initial variable values. UM stands

81

8 Evaluation

UM1 UM2 UM3 UM4 UM5

Authorized false false false false false

EvaluationEligible true true true true true

PolicyAuthorized true BPMF 9 1 BPMF 9 1 true true

ContextAuthorized false false false true false

UserAuthenitcated false false false false false

DeviceAuthenitcated false false false false true

Trusted false false false false true

Table 8.2: ZTA variables configurations

UM1 UM2 UM3 UM4 UM5

User Authentication Probability true true BPMF 9 1 true true

Device Authentication Probability true true BPMF 9 1 true true

Table 8.3: Configurations for the authentication probability of the device and user authentica-

tion components

for Usage Model and BPMF 9 1 stands for BooleanPMF with 0.9 probability for true and 0.1

probability for false.
Since the component configuration of the device and user authentication components also

impact the execution flow we summarize in table 8.3 the different configurations of the authen-

tication probability for the device authenticating component and the first factor for the user

authentication.

In UM1 we set all requests to be policy-authorized and not context-authorized. This would

result in the execution of the complete path where for every request each part of the context

is evaluated. Since authentication probabilities are set to true each request should pass the

evaluation and should be forwarded to the initial Media Store components. In UM2 we have
BPMF for the policy authorized value and this should result in requests dropped at the PE
without evaluating their context. In UM3 we again have the possibility of not evaluating

context and directly dropping a request but there is also the possibility of evaluating context

and dropping requests due to failed authentication since the authentication probabilities are

now a BPMF. In UM4 we simulate the scenario where all requests are policy- and context-

authorized. This means no context evaluation is triggered and all requests reach the initial

Media Store components. Lastly, in UM5 we simulate the execution path where the device

authenticator and trust algorithm are not used in the system.

To obtain a RUM1 we combine the usage model configuration for RUM from Table 8.1, the

variable values for UM1 from Table 8.2 and the authentication probabilities for UM1 from

Table 8.3. To obtain the other RUM2-5 as well as DUM1-5 we follow the same logic.

8.2.6 ZTA Maturity Evaluation

In the following section, we are going to evaluate the created ZTA model of the Media Store

according to CISA’s Zero Trust Maturity Model [11]. As described inSection 2.3, the Maturity

Model evaluates the Zero Trust level of different pillars of an agency. The model observes the

82

8 Evaluation

level in the aspects of Identities, Devices, Networks, Applications and Workload and Data. We will

assess our model by looking at the same pillars and following the observed functions for each

of these pillars. However, since the model is designed to assess an agency as a whole including

its system architecture, infrastructure, personnel and practices, there are aspects which cannot

be covered by our architectural model and therefore evaluated according to the maturity model.

For example, the governance capabilities are connected to the practices and behaviour of an

agency as a whole. In the authentication function of the identity pillar, it is stated that an

agency implements identity policies and the difference between the initial and advanced levels

is the level of automation and the frequency of policy updates. Our authentication subsystem

does not represent automation or frequency of updates and since it is abstract we can make any

claims about these attributes. Therefore an assessment about this aspect of the authentication

system becomes quite subjective and it is inappropriate.

Identities

In our model, we have integrated a database for user identities. We also have authentication

components and observe authentication on each access request. Therefore, we can assess the

Zero Trust level of the Identities pillar of the maturity model.

Authentication - First, we need to assess authentication itself. Since we have integrated a 2-

factor authentication and we trigger both of the factors on each request, we cover the traditional

level of the authentication function. The initial level requires that additional attributes apart

from the credentials such as locale or activity are used in the authentication process. The

current model of Authenticator in our ZTA repository does not support context data. The

next step to the advanced level is the phishing resistance of the factors, however, this quality

of a factor cannot be represented with our model. The last step requires to provide again

phishing-resistant as well as continuous authentication. Currently, our model does not support

continuous authentication.

Identity Stores - Next, we observe the identity stores. In our system, we have one identity

store defined which is the UsersDB component. This is the only store for user identities in

our system and is deployed according to our allocation model on the database server. We can

assume the server is located on-premise. Further, identity stores located on remote servers are

not present. Therefore, according to the maturity model our architecture covers the traditional

level.

Risk Assessment - The risk assessment function is a little bit more complex to assess since it

cannot be expressed thoroughly in a Palladio model. Risk assessment might include heuristics

evaluation or manual actions performed by a user. However, looking at the definitions for

advanced and optimal levels of zero trust for this function we claim that the model covers

them. We have integrated a logging functionality in the system and therefore may claim

that information about user activity and their identity is logged throughout the execution.

Furthermore, since authorization and authentication in the current assembly and usage model

are based on probabilities, see paragraph 8.2.2 and Subsection 8.2.5, this means that an accepted

request might be rejected on the next attempt. This simulates the dynamic adjustment of

policies. To sum up, we have an automatic collection of user behaviour and dynamic policies,

hence we cover the optimal level of this function according to its definition.

83

8 Evaluation

Access Management - In our scenario, access is evaluated per each request. No previously

authorized requests are fed to the system and the DuplexPEP which we have integrated always

forwards requests for evaluation before forwarding to a resource. Therefore, no permanent

access is granted. Then, following the description of the function in the maturity model

document, our model covers an advanced level of zero trust. We may claim even that an

optimal level is covered since we perform request evaluation for each of the exposed-to-user

functions (download, upload and getFileList). However, we may also argue that the defence

perimeter is not fine-grained, see Subsection 8.2.8, since it has only one access point beyond

which access is not continuously checked. That is why we are going to assess the level here as

advanced rather than optimal.

Visibility and Analytics Capabilities - In the visibility and analytics definition of the identities

pillar, it is required to collect activity logs and perform some analysis on these logs. As we

discussed in the Risk Assessment function in paragraph 8.2.6, we have integrated a logging

functionality in the model. Moreover, the SIEM component also has a LogAnalyzer component

and therefore we simulate also this functionality. Hence, we can say that we cover the initial

level for the visibility and analytics function.

Devices

As a next step of the assessment, we observe the devices pillar. In our model, we have integrated,

similarly to the identities, a store component for device information as well as a component

for device authentication. We also have included the client’s device as an additional resource

container which provides us with more possibilities to simulate the user’s device monitoring,

as described in the next subsections. Therefore, we can evaluate the Zero Trust level which is

covered from the devices’ point of view.

Policy Enforcement and Compliance Monitoring - According to the description of this function,

policy enforcement and compliance monitoring across devices represent the functionalities of

evaluating a device’s state according to an agency’s device policies and enforcing commands

such as software or configuration updates. Currently, our model has only a DevicesDBwhere we

keep track of enrolled devices. Furthermore, we claim that, since device evaluation is also part

of the request evaluation process, we do have some partial policy enforcement on a device’s

state. A request might fail due to an unauthenticated device and the next one might succeed.

In a real-life scenario what happens between requests might be the update of software which

causes the successful authentication on the next request. This is an indirect device policy

enforcement and is currently simulated with our Palladio model although it is not explicitly

represented. Hence, our current model covers the traditional level in the Zero Trust model with

visibility over devices and partial policy enforcement. Resource Access - In the resource access

aspect of the devices pillar, it is mentioned the requirement for device evaluation upon access

request. In our model it is represented this type of evaluation when making a request and

therefore our architecture can be categorized at least one level above the traditional. However,

which certain higher level our model categorizes as can be subjective. The initial level requires

device evaluation upon request which our model covers and to achieve an advanced level an

agency considers verified devices. If we assume that our client container is verified then we

cover this level simply by making an assumption. Currently, we cannot represent the verified

quality of a component in our model. The highest level requires real-time risk analysis within

84

8 Evaluation

the device. Device risk analysis algorithms were not part of the research for this project since

they are out of the scope of the researched ZTAs. Therefore, they are not modelled in our

ZTA repository. On the other hand, due to the probability of authenticating a device, see

paragraph 8.2.2, we can make the claim that device evaluation sometimes fails due to internal

risk analysis and hence cover the requirement of simulating device internal risk analysis. This

claim can be observed as subjective. Due to these reasons we will not be giving the model the

highest maturity level and will simply stick with the initial level of this function.

Remaining functions - Our model cannot be assessed according to the remaining functions of

the pillar since they observe aspects which are out of the scope of the architectural modelling

of a system. Device threat protection is a topic which spans out of the scope of ZTA modelling.

Protecting a device could range from integrating an anti-virus system to policies about how to

handle a device. Also, modelling a threat protection system with its variations would require

separate research [56]. As we see in the maturity model on all levels threat protection is

mentioned as capabilities, processes or solutions. No single architectural solution can be

outlined and therefore it is difficult to represent it with general components from our ZTA

repository. This is why we cannot make assessments about this function of the devices pillar.

The visibility and analytics functions encompass methods for labelling, analysing and using

device information. The automation and orchestration part observes the practices in the

processes of provisioning, configuring and registering devices. These are aspects which we

cannot represent in our Palladio model.

Network

The network pillar observes aspects of a network infrastructure and network technologies

implemented to make it more secure The functions observe concepts such as the application

of network rules, encryption on traffic, network configurations for availability demands and

resilience and communication protocols. Those concepts cannot be represented in our current

model and therefore we cannot assess these functions. The only thing for which we can perform

an assessment is the network segmentation function. The function observes how granularly

the network is divided into separate defence perimeters and protected. In our case, we have a

single PEP that defines our perimeter. If we assume that the critical workloads are the functions

of the media store and the file storage they can only be accessed through this PEP and therefore

are isolated. We can say that our model covers the initial level of network segmentation. We

discuss a finer network segmentation and our limitation in achieving it in the Discussion

section Subsection 8.2.8.

Applications and Workloads

The applications and workloads pillar is concentrated on the functions of the underlying

system which is protected by Zero Trust principles, In our case this is the Media Store and its

initial components. The pillar encompasses aspects of development, testing and deployment

processes and practices of applications. It observes also whether an application is exposed

on a public network or hidden behind a VPN. Monitoring of the application behaviour is also

included here but this would require us to modify the components of the Media Store and its

core functionality which is out of the scope of this research. The application threat protection

aspect is similar to the threat protection discussed in the devices pillar. Hence, our model does

85

8 Evaluation

not provide the required concepts to assess the zero trust maturity of this pillar. The only

thing which we can observe is the application access function. Our model represents an access

evaluation based on complex context evaluation and assigning of authorization levels based

on the LPP. Therefore, it covers the advanced maturity level of this function. The model also

simulates logging throughout the whole evaluation process and therefore we may state that

we log usage patterns. Also, due to the probabilistic nature of our decision-making process,

a request might first be accepted and in the next interaction denied or vice versa. From a

subjective point of view, we can claim that this is due to the fact of logged and analysed usage

behaviour and therefore we cover the highest optimal level of the maturity model. However,

we will remain with the assessment that our model goes as high as the advanced level.

Data

The data pillar concentrates on how an agency handles its data. It observes the practices

of inventorying and categorizing data, encrypting data as well as managing the lifecycle of

data and policies connected to it. Again we cannot represent those aspects in our architectural

model and therefore cannot asses the maturity model. However, we can assess the maturity of

the functions Data Availability and Data Access since they observe the deployment of data and

management of access to it.

Data Availability - Data availability assesses where data is deployed in an agency infrastruc-

ture and what backups it has. In our architectural model, all of our database components are

allocated on a single database server. Therefore, we are storing data in a database which we can

assume is on-premise. Therefore we can cover only the first level of maturity in this function.

Data Access - Data access observes what type of control is performed when accessing data.

In our model, we are accessing files from the file storage. The access to the file storage happens

only through a request intercepted by a PEP and forwarded to the PE where it is authorized

according to the LPP. For the access, context is evaluated and decisions are only valid for a

single request. Hence, in this aspect, we cover the advanced level of maturity. When it comes

to the data obtained from the database, currently only the components from the Zero Trust

infrastructure have access to this data. The databases are not exposed to outside access.

ZTA Maturity Evaluation Summarized

Table 8.4 presents a summarized version of which level was covered for the different pil-

lar functions. As we discussed at the beginning of the section since the maturity model is

designed to evaluate an agent as a whole and not only the architecture of a service it provides,

there are concepts which we cannot cover with our model. Therefore, the functions which

cannot be covered are omitted from the table. As we see from the table, for every function

which we could evaluate with our model, the model covers at least the first level of maturity.

In four functions Identity Store, Identities Visibility and Analytics, Resource Access and Network
segmentation we covered the initial level of maturity. In the functions Access Management,
Application Access and Data Access we achieved an advanced level of maturity. Lastly, only for

the Risk Assessment, we managed to cover the optimal level. For the rest, the Authentication,
Policy Enforcement and Compliance Monitoring and Data Availability, we cover the traditional
level.

86

8 Evaluation

Discussion on Possible Improvements

For the functions Authentication, Identity Stores, Policy Enforcement and Compliance Moni-
toring and Data Availability from the maturity model, we discussed the borderlines between

higher levels. In those borderlines, we identify possible improvements which can be applied to

our model to achieve the higher level. In the following paragraph, we propose how we can

achieve those levels in our model using Palladio and our proposed ZTA components. The pos-

sible improvements were discovered during the maturity evaluation of the model. We choose

not to apply those improvements in the final model since this could be observed as tuning the

model to improve evaluation results and reduce the validity of the evaluation. Furthermore,

some of the improvements require editing parts of the initial Media Store model. We avoid

these types of actions during the whole ZTA integration process.

Authentiation - Lack of support for context data in our Authenitcatior is one of the limitations

to achieving a higher maturity level. However, this can be easily fixed. The Authenticator
component can be extended with a required IContext interface and in its SEFF a call to this

required interface should be added. The next limitation our model can theoretically overcome

is the support for continuous authentication. Continuous authentication can be represented

in our model. We can extend different components of the system with the IContext interface
where we plug the authentication subsystem. Then in the SEFF diagram, we add somewhere

on the execution path a branching action. One of the branches simply continues the execution

without changes. The other branch makes a call to the IContext interface and triggers an

authentication. Then we define the branch execution to be guarded by probabilities. In our

case, for example, we can extend the Packaging and MediaAccess components following this

pattern and simulate continuous authentication.

Identity Stores - In this function, we are limited to the traditional level of the maturity model

due to only a single identities database. A scenario in which we achieve a greater level would

be a case where we externalize the authentication subsystem on a separate server defining its

own additional Store component as an additional identity store. This would cover the initial

level of the maturity model where the system combines an on-premise identity store with one

stored in a remote location.

Policy Enforcement and Compliance Monitoring - For this function, we cannot achieve a

higher maturity level due to the lack of dedicated device policy enforcement and compliance

monitoring subsystem. However, as we know so far, some of the basic tasks of Zero Trust are

indeed policy enforcement and compliance monitoring and we have the components for those

tasks and it is possible to model a such subsystem inside the model with ZTA. For example,

we can include in our system a second PDP created again by combining the PolicyEngine and
PolicyAdministrator components. We include also an additional PolicyProvider which represents

only device policies or we can assume that an organization has a single policy source for all

its activities and use the already instantiated one. Next, we create a simple component which

we can call DeviceConfigurator and which provides the IManage interface and in its SEFF has

a single internal action with the resource demands for updating a device. We connect this

component directly to the PDP’s IManage required interface. Then, we expose the new PDP’s

IRequest interface as a system entry point. In the allocation model, we can allocate the PDP

again on the application server and the new device updating component on the client device

container. Lastly, we need to change the usage model to include, with some probability, calls to

87

8 Evaluation

Traditional Initial Advanced Optimal

Identities
Authentication

Identity Stores

Risk Assessment

Access Management

Visibility and Analytics

Devices
Policy Enforcement and Compliance Monitoring

Resource Access

Network
Network segmentation

Applications and Workload
Application Access

Data
Data Availability

Data Access

Table 8.4: Covered Maturity levels of pillar functions

this new system entry point and we are done. This is a quick scheme of how we can simulate

this policy enforcement and monitoring process for a higher maturity level using our Palladio

components.

Data Availability - The borderline between our achieved level and the higher one in this

function is the lack of distribution in storing system data. If we want to improve the level

we can introduce additional database components and deploy them on an additional database

container. Then in the SEFFs where we are accessing some kind of data, we can define a

branching action where each branch requests data from a different data storing component.

The branches are defined to be guarded by probabilities, for example, 90% of the requests go to

the initial database server and 10% of the cases are forwarded to the backup server. By doing

this we can now simulate redundancy of data storing and increase the maturity level.

8.2.7 Setups for Data Flow Analysis

To carry out the evaluation of the security analysis we need to prepare the scenarios mentioned

in Section 8.1. Additionally, due to limitations presented by the Data Flow Analysis implemen-

tation, discussed in Section 8.5, we need to introduce new components as well as make changes

to the Media Store with ZTA assembly model.

First, we remove the SIEM composite component and replace it with its building components.

Next, we introduce copy components of the DuplexPEP, MediaStoreGateway, Authenticator
and ContextEvaluator. The copy components mimic closely the functionality of their root

component without including complex branching actions. Additionally, we apply changes to

the behaviour of the copy Authenticator component. Currently, component variables are not

88

8 Evaluation

propagated alongside other variables in a SEFF. In our initial definition of the behaviour of

the Authenticator, we use such a variable. However, we now replace the behaviour definition

with a simpler one by excluding the component variable. We replace the root components in

the Media Store with the ZTA assembly model with their copies. Now that we have prepared

the model for evaluation we set it for the different scenarios in the following way. Where not

mentioned explicitly we use the same configuration for the .nodecharacteristics file. We set the

following node labels for the instance of the MediaManagement component:

• Authorized.Level1

• Protected.protected

Again, if not mentioned explicitly, we use the same usage model where we specify the user

behaviour as a call to the download functions of the IMediaManagementProtected system entry

point. We define the following data labels for the input request parameter:

• Authorized.Level0

• MaxUserLevel.Level2

• ResourceRequiredLevel.Level1

For S0 we will not be applying any additional changes to introduce issues. For this scenario,

we do not expect any issues to be identified.

S1 Unauthorized Access

For S1 we want to test the detection of unauthorized access. Therefore, we introduce an

issue in the model in the following way. We integrate into the system a new component which

allows employees to manage the Media Store. We add a PlatformManager component to our

repository which requires and provides the IMediaManagement interface. Since we assume

that the component will be accessed only by employees and on the premises of the Media

Store it is directly connected to the MediaManagement component to allow employees faster

access by skipping the request evaluation process. We expose a new entry point to the system

with the IMediaManagement interface and delegate it to the PlatformManager instance. In
the usage model, we add a branching behaviour, where half of the requests are made to the

IMediaManagementProtected and the other half are made to the IMediaManagement entry point.
We alter the data labels of the request parameter for the call to the IMediaManagement interface
as follows:

• Authorized.Level0 - a user who does not have the required permission to access the

resource makes a request.

• UserAuthenticated.*, DeviceAuthenitcated.* and Trusted.* are all set to true. We assume that

in the usage scenario, if a call is made to IMediaManagement, it comes from the premises

of the Media Store and therefore the user and device are authenticated and eventually

trusted.

89

8 Evaluation

S2 Violation of LPP

In the second scenario, we introduce a violation of the LPP. We use the setup of the assembly

model from S1 with the PlatformManager instantiated. This time, however, we change the

behaviour of the PlatformManager. To allow for easier access to all resources, the component

elevates the privileges of every request to the system’s highest possible level. In our case, this

is Level3. We also use the usage model from S1.

S3 Missing user authentication factor

In this scenario, we test the detection of incomplete authentication. This could result when

multi-factor authentication is not implemented in a system. For this purpose, we set one of

the authentication factor components to always return false. This would cause data to be

propagated with only one authentication label.

S4 Missing device authentication and trust calculation

In the last scenario, we introduce two issues in our model. These are the lack of device

authentication and trust calculation. To do so, we are going to disconnect the ContextEvaluator,
DeviceAuthenticationStore and TrustAlgorithm components in the assembly model. The only

context provider which we leave connected to the PolicyEngine is the Authenticator. This would
result in trust and device labels not being included in the data flow labels.

8.2.8 Discussion

For the following evaluation, we are going to observe only one approach to integrate a ZTA

although we have demonstrated in chapter 4 that there are multiple ways to do it. We will not

be applying the additional ZTA to the Media Store because of its initial design. In contrast to the

system from Chapter 4, where we designed it from the bottom up and considered the security

aspect, in the Media Store case study security is not included in the initial design. The model

was constructed to represent only the required aspects of a system for a certain evaluation

and no more. Therefore an integration of a ZTA was not foreseen. To be able to include

more complex ZTA in the aspect of segmentation where the system is divided into smaller

parts each protected by its own PEP, we need to make significant changes to the underlying

model. To be able to integrate a PEP directly in front of the FileStorage, for example, we need to

alter all interfaces that are on the path to it to accept an additional parameter in its signature.

Without the Request parameter we cannot forward the required by the PEP and PE parameters

to simulate the ZTA workflow. Additionally, we need to change each SEFF of each function

along the way to forward those parameters. As an alternative, we can adjust only the last

interface before the FileStorage which is the IFileStorage to accept a parameter and then in the

SEFF of the MediaAccess component define the needed variable usages. This, however, would

prevent us from defining different ZTA scenarios in the usage model since we cannot now set

the Request fields in system entry point calls.

90

8 Evaluation

8.3 Evaluation Results

In the following section, we discuss the results obtained for the evaluation defined in Section 8.1.

8.3.1 Discussion on Model Completeness

We start with the first goal of evaluation in which we observe to what extent we have managed

to model the ZTA components using Palladio. We want to see whether we were able to cover all

tasks and logical components identified in Chapter 5. We also evaluate whether those modelled

elements are representative enough to be applied to various ZTAs suggested in the literature.

Discussion on Q1.1

We have outlined Policy Enforcement Point, Policy Engine, Policy Administrator and Context
Provider. In our repository from Chapter 6 we were able to model two types of Policy En-
forcement Points to cover variations as described in Subsection 6.3.1, a PolicyAdministrator
component and a PolicyEngine. When it comes to Context Providers, they cannot be represented

with a single component since they are heterogeneous and may also play additional roles apart

from providing context. What we did was to provide the needed interface IContext and patterns
which demonstrate how a Context Provider can be modelled or adjusted to be compatible with

the rest of the architecture. Examples of such Context Providers are the Authenitcator, SIEM,
Trust Algorithm, etc.. Following these thoughts, we can say that we were able to cover 100% of

the identified logical components using Palladio elements. When we look at the task which

we identified in Section 5.2, we see that we were able to represent them all in our model. The

tasks of intercepting a request, forwarding it to a decision point, and enforcing the decision

are all modelled inside the created PEPs. The evaluation of policies and making a decision is

simulated in the PolicyEngine component. The various Context Providers supply context data

to a PE. Lastly, the tasks of creating configurations and distributing them amongst interceptors

are represented in the PolicyAdministrator. This is why we claim that we have modelled 100%

of the identified tasks in a ZTA using Palladio.

The next metric of this question is the number of adjustments needed by Palladio to model a

ZTA. Although there were some obstacles, for example forwarding application-specific requests

as described in Subsection 6.3.1 or calling multiple Context Providers as in Subsection 6.3.2,

they were merely a limitation in the fine-tuning of the model to be as simple as possible

without losing its representative power. We were able to find workarounds in the face of

adding a component, as in paragraph 6.3.1 and providing patterns to overcome such obstacles,

as the ContextAggregator in Subsection 6.3.2. Therefore, we were able to fully model all of

the identified ZTA logical components and simulate the tasks in a ZTA without applying any

changes to the underlying Palladio model.

8.3.2 Discussion on Model Applicability

In the second goal, we observe the applicability of the proposed model. We look at the generality

of the proposed components. We also observe what changes our model as well as the model,

where we integrate our components, require to be compatible with each other.

91

8 Evaluation

Discussion on Q2.1

We observe how we can map suggested ZTA models from the literature to components from

our repository. We look at the systems presented in Section 3.2 and we exclude the models of

BeyondCorp and SDP since they were used in the modelling process of the general components.

We will present and describe diagrams where we have mapped components mentioned in

the papers of the observed systems to components of our repository. The names used for the

components are the same as the names mentioned in the papers to make the mapping more

intuitive and easier to read. Where the name of the component is too application-specific and

cannot be intuitively mapped to an element from the repository we mentioned in brackets

under it what component from our repository we are using for it. We have removed some of

the unplugged interfaces of the components from the diagrams to increase their simplicity.

However, this does not mean that components have been changed in any way and if the

presented systems are instantiated in the Palladio then everything as per the component’s

documentation from Chapter 6 will be present. If there are components which are not modelled

in our repository but can be modelled using one of the patterns discussed in Chapter 6 it will

be noted in the diagram description.

We begin by observing the system presented in the paper of Biplob and Muzafar [39].

The system consists of an Authorizer, Authenticator, Endpoint Compliance Management

(ECM) system and Enterprise Discovery Service. Received requests are authenticated by the

Authenticator and then evaluated by the Authorizer based on ECM information. The mapping

of the system to ZTA components is displayed in Figure 8.9. Since requests are intercepted

and authenticated first we can use a similar approach to the BeyondCorp modelling 6.5.2

and therefore use a DuplexPEP combined with OnAuthenticationMissing component which

redirects the request to an Authenticator which we take directly from our repository. The

OnAuthenticationMissing component can be defined additionally by a developer or taken from

our BeyondCorp repository. The PE of the system is the Authorizer and for this component, we

instantiate a PolicyEngine component from our repository. Since the ECM provides policies

for authorization and also monitors devices in the system it can modelled with a composite

component which has instances of a PolicyProvider and SIEM in it. According to the paper device

monitoring is triggered periodically and therefore we expose the ECM’s IContext interface
which comes from the contained inside SIEM as an entry point to the system and in the usage

model we define the probability of calling the device monitoring functionality. The model also

exposes the IRequest interface to intercept requests. The mentioned in the paper Enterprise

Discovery System is not mapped here since apart from mentioning it no more details about its

integration in the whole process are described in the paper.

The next system we discuss is the intelligent ZTA, which integrates machine learning in its

components, proposed by Ramezanpur et al. in [42]. In the architecture, the authors outline

an Intelligent agent/portal (IGP), Intelligent Network Security State Analysis (INSSA) and

Intelligent Policy Engine (IPE). Further, they mention multiple sources of policies such as Data

Access Policy (DAP), Public Key Infrastructure (PKI), ID Management and Industry Compliance

systems. There is also a SIEM system, activity logs and threat intelligence which supply data

to the INSSA for analysis. We present the mapping of the system in Figure 8.10. The IPE is the

component which plays the role of a PE and therefore we map it directly to the PolicyEngine.
As per the paper, the DAP, PKI and Industry Compliance components provide policies and

92

8 Evaluation

Biplob and Muzaffar

Authorizer
(Policy Engine)IRequest

IPolicies

DuplexPEPIRequest

IRequest

IObligation

Authenticator IContext

ECM
(Policy Provider, SIEM)

IContext
IPolicies

OnAuthMissing
(Policy Engine)

IObligation

IContextIRequest

IContext

IContext

Figure 8.9: Biplob and Muzafar model [39] mapped to ZTA components

therefore we can instantiate them using the PoliciesProvider component. Since we cannot plug

multiple policy providers into the IPolicies requiring role of the IPE we need an additional

component PoliciesAggregator. This component can be modelled by following the pattern

for creating a ContextAggregator, see Subsection 6.3.2. The INSSA component resembles the

functionality of a Trust algorithm and therefore we can use the TrustAlgorithm component for

it. We can map the SIEM directly to the SIEM component from the repository and for the Threat

intelligence which can be mapped to the role of a Context Provider, a developer can specify a

new component which provides the IContext interface. Next, since the IGP component observes

devices and feeds data to the PE about them we can associate it with a Device Authenticator.

In our repository, we have modelled two device authenticating components and for this case,

we can use the DeviceAuthenticatorWithLogs component which obtains the device’s data from

the device directly and from a database. Lastly, a ContextAggregator is needed to be able to

connect all of the Context Providers to the PolicyEngine. What makes this suggested model

different is the fact that it integrates machine learning. This can also be represented in our

components. The IPE (PolicyEngine), IGP (DeviceAuthenitcator) and INSSA (TrustAlgorithm)

all perform an internal action inside their SEFF. A developer can edit this internal action by

setting it to a resource demand estimated for their machine learning algorithm. By doing this,

the performance impact of a machine learning algorithm can be introduced into the model.

Then we look at the system suggested by Chen et al. [10]. The components which the authors

outline in the architecture are an Access Control Proxy (ACP), an Identity Management System

and a Trust Evaluation System. The Trust Evaluation uses a Vulnerability Database (VDB),

Cybersecurity Event Ledger (CEL) and Anomalous Behaviour Detector (ABD) for calculating

the trust. Lastly, there is the Security Policy Engine (SPE), which makes the final decision of

allowing or denying a request. The mapping of the system is presented in Figure 8.11. We first

map the ACP to a PEP and according to the description of the ACP, we can use a DuplexPEP
which forwards requests to a PolicyEngine. Then, we map the SPE to a PolicyEngine component.

No policy provider has been discussed in this paper and therefore we leave this aspect of

the architecture unmapped. Next, as per the description of the architecture, user requests

are authenticated and trust evaluation is performed. Therefore we can go ahead and use the

ContextEvaluator component from our repository to connect an Authenticator component and

93

8 Evaluation

Ramezanpour et al.

IGP
(Context Provider)

IContext ILog

INSSA
(Context Provider)

IContext

IContext

IContext

IPE
(Policy Engine)

IRequest

IPolicies

IContext

Policies Aggregator
(Policies Provider)

IPolicies

IPolicies

IPolicies

Context Aggregator
(Context Provider)

IContext

IContext

IContext

DAP
(Policies Porvider)

IPolicies

PKI
(Policies Porvider)

IPolicies

Industry Compliance
(Policies Porvider)

IPolicies

IPolicies

SIEM
(Context Provider)

IContext

Threat intelligence
(Context Provider) IContext

IRequest

Figure 8.10: Ramenzapour et al. model [42] mapped to ZTA components

Chen et al.

Access Control
Proxy
(PEP)

IRequest

IRequest

Security Policy Engine
(Policy Engine)

IRequest

IPolicies

IContext

Context Evaluator
(Context Provider)

IContext

IContext

IContext

Authenticator
(Context Provider)

IContext
IStoreAcces

ICredentials

Trust Evaluation
(Context Provider)

IContext IContext

IContext

VDB
(Context Provider)

IContext

CEL
(Context Provider)

IContext

ABD
(Context Provider)

IContext

IContext

Figure 8.11: Chen et al. model [10] mapped to ZTA components

a TrustAlgorithm component to the SPE. At this point, the TrustAlgorithm from our repository

is not fully suitable since we have modelled it to obtain input from only two Context Providers

and in this paper are mentioned three. However, we have discussed this issue already in the

modelling chapter and have described how our TrustAlgorithm component can be altered to

accept more inputs. We can apply this method here to make the TrustAlgorithm compati-

ble. Lastly, the sources for it are components which we have not specified in our repository.

However, they can easily be mapped to Context Providers and therefore be modelled as basic

components and made compatible with the use of the IContext interface.
Lastly, we observe the system of Lee et al. [31]. In the description of the architecture, we find

the components WiFi base station, Context Handler, Policy Database, Subject/Object Database,

Risk Evaluation Function, Access Decision Function, Environment Evaluation Function and

Firewall Provisioning. The Environment Evaluation Function has as subcomponents mentioned

a Security Situational Awareness (SSA) and Location. However, not enough data is provided

to map the SSA component more precisely to one of our components and we can only say it

is a Context Provider. The location service is also not fully specified and cannot be modelled.

However, we have demonstrated in paragraph 8.2.2 how a location service can be represented

94

8 Evaluation

Lee et al.

DuplexPEPIRequest
IRequest

Access Decision Function
(PolicyEngine, PolicyAdministrator)

IRequest
IPolicies

Risk Evaluation
(Context Provider)

IContext

Environment Evaluation
(Context Provider)

IContext

PoliciesDB
(PoliciesProvider)

IPolicies

IManage

Firewall Provisioning
(MultiplePEPsManager)

IManageIManage

IRequest

IManage

Context Handler

IRequest

IContext

IContext

IPolicies

IStoreAccess
IManage

IManage

IContext

Subject/Object DB
(Store)

IStoreAccess

IPolicies

IContext

IRequest

Figure 8.12: Lee et al. model [31] mapped to ZTA components

with our components. We will consider both components as part of the Environment Evaluation

and display only this component in our diagram. The Context Handler is another component

which we have to discuss before we start mapping. As per the description, the Context Handler

navigates the process or in other words in what order other components are called. This type of

component can be easily modelled using Palladio and the defined interfaces in our repository.

We have modelled a Context Handler for the model of the SDP architecture, see 6.5.1. Similar

to this one can be modelled for the system of Chen et al as shown in figure 8.12. We start

the mapping with the WiFi base station which intercepts requests and hence we use for it a

DuplexPEP. The Access Decision Function we can map to a composite component consisting

of a PolicyEngine and a PolicyAdministrator. Policies are provided by the Policies Database

component and therefore we map it to the PoliciesProvider. Since the Access Control Function
uses the Risk Evaluation and Environment Evaluation components to make decisions, we map

them to Context Provider components and model them as basic components which provide

the IContext interface. Lastly, to represent the provisioning of firewalls we map the Firewall

Provisioning component to aMultiplePEPsManager component. The full mapping of the system

can be observed in Figure 8.12.

Discussion on Q2.2

We observe the quality of the components to be used off-the-shelf. This means that we can

take an element from our repository and include it in its initial form in the existing model

without altering its required or provided interfaces as well as its SEFF. We will be observing

the assembly model of the Media Store, as shown in figure 8.7. We have instantiated a MediaS-
torePEP which is a composite component containing a DuplexPEP and a MediaStoreGateway.
The DuplexPEP is instantiated directly without any changes. TheMediaStoreGateway is a newly

introduced component which we will discuss in the second question of G2 and not here. Next,

we have the PolicyAdministrator and PolicyEngine components. Both of them are also used in

the assembly model without applying any changes to them. The PolicyProvider component, on

the other hand, requires minimal adjustment. We have instantiated it as it is and then we have

95

8 Evaluation

specified values for the variables numberOfPolicies and rulesPerPolicy. Apart from these variable

specifications, no other changes were made to the component. The SIEM, TrustAlgorithm and
ContextEvaluator components are also instantiated without applying any changes. Then we

have the DeviceAuthenitcator component and the two Authenticator instances - FirstFactor
and SecondFactor. The three components were adjusted after being instantiated. For the De-
viceAuthenticator we have specified a value for the AuthenticationProbability variable. For both

FirstFactor and SecondFactor components, apart from the AuthenticationProbability, we have
also defined the isLastFactor variable. One last change needs to be made to an Authenticator
component and that is the definition of the security node characteristic ComponentConfigura-
tion.First and ComponentConfiguration.SecondFacotr which describes which label in a request

the component may alter. All of the Store instances which represent the databases in a ZTA

are used in their initial version. These are all of the components in the Media Store assembly

which are also part of the core ZTA repository. As we see most of them can be used directly

in a system without changing required and provided roles and editing SEFF. For three of the

components - the DeviceAuthenticator, Authenticator and PolicyProvider - minor adjustments

need to be applied. Hence, we can claim that components from our ZTA repository may be

used off-the-shelf.

Discussion on Q2.3

In the third question for G2, we look at the system into which we integrate a ZTA. We want to

evaluate how much of a change needs to be applied in order to be made compatible with the

elements from the ZTA repository. This is why we will observe first the number of changes

to existing components and interfaces of the system and then the number of newly intro-

duced components and interfaces in the system’s repository. First, we start by examining the

components which were in the initial version of the Media Store. These are the components

MediaManagement, Packaging, MediaAccess and FileStorage. During the integration of the

ZTA, none of them were altered in any way. This is because, in the current architecture of

Media Store with ZTA, the process of evaluating a request happens prior to any processes

performed by the initial Media Store model. Moreover, the chosen approach to create a greater

defence perimeter and not multiple finer ones also contributes to the lack of modifications to

initial components. However, as we have discussed in the Discussion section of the Evaluation

Preparation chapter if we were to integrate PEPs in front of the Packaging component or the

FileStorage then we would have had to modify each component on the way to these PEPs to be

able to forward Zero Trust requests. This means that the interfaces should have been modified

to accept an additional parameter and the SEFF diagrams should also be edited to forward these

parameters. In the scenario of a Media Store with PEPs in front of the Packaging and FileStorage
components this would require a change to the IPakcaging, IMediaManagement, IMediaAccess,
IDownload and IFileStorage interfaces and changes in all SEFFs of the MediaManagement and
MediaAccess components.

In the second metric of the question, we examine the new elements which were modelled

inside the Media Store repository to enable integration of the components from the ZTA repos-

itory. We have modelled a total of three new elements which are crucial for integrating a ZTA.

These are the MediaStoreGateway, CredentialsProvider and IMediaManagementProtected. The
composite component MediaStorePEP, although also new for the repository can be represented

96

8 Evaluation

again from its building components directly in the assembly and therefore is not mandatory.

The Geolocator component was also created for the ZTA integration, however, it is not part of

the core elements of a ZTA. A ZTA may exist without a location service and hence this one

is again not mandatory. In the theoretical scenario mentioned in the previous metric where

we have PEPs in front of the FileStorage and Packaging components, we would again need

to specify a protected version of the interface that is hidden behind the PEP and a gateway

component per each protected interface. So in general if the system does not allow the use of

the GenericGateway from the ZTA repository then always two new elements should be added

per protected interface.

Final Discussion on G2

In conclusion, as we see from the mappings of the system we were able to reproduce the

suggested models using only components, interface and modelling patterns described in our

repository from 6. In cases where we did not have an already created component to which we

could directly map we described how a new one can be introduced without needing to alter

anything in our already present core elements. Therefore we can conclude that our components

are general enough to represent various suggested ZTAs.

We saw that in the evaluation model where we have specified a broader defence perimeter

we need to apply minimal changes to the underlying system to make it compatible with our

ZTA components. The need for specifying a gateway is also due to the limitation by Palladio to

forward whole variables. Hence in this case we can state that our ZTAmodel is easily applicable.

On the other hand, when finer defence perimeters need to be established the underlying system

requires more changes. But when a system was not designed with a certain concept in mind

which later is decided to be added to a system it is normal to require changes in the core model.

This is one of the main concerns which we mention in our introduction - flaws in the design

lead to more required effort in later changes. In our case, the Media Store model was not

intended to integrate a ZTA in its initial design and therefore makes further adjustments more

costly.

8.3.3 Discussion on Performance Analysis

In the third goal of the evaluation, we want to observe whether the ZTA components introduce

a performance impact in an existing model and as a consequence allow the evaluation of

performance after adding a ZTA to a system. We also want to evaluate the flexibility of

the performance analysis to represent performance differences in scenarios where different

execution flows of the request evaluation process are triggered. We will be using the derived

and initial usage models as described in 8.2.5. We will first execute simulations for the Media

Store systems without the Zero Trust components in order to obtain the performance of a

system without ZTA and later compare it to the simulation results of the same system but

with ZTA integrated. We first start by analysing the results from executing the derived usage

model before analysing the realistic one. We will be analysing the Cumulative Distribution

Functions (CDF) of the usage model runs which describe the probability (y-axis) of response

time to be equal to or less than a certain value (x-axis). We look at histograms which display

97

8 Evaluation

the probabilities of different execution times. We also examine XY plots which present on the

x-axis a point in execution time and on the y-axis the response time at this point in execution

time. Response time is measured in seconds.

Derived Usage Model

We begin the analysis with the derived usage model executed on the Media Store version

without ZTA and in Figure 8.13a it is displayed the CDF of the derived usage model of the

Media Store without a ZTA. The chart shows us that the worst execution time achieved is

around 7.000 seconds and the probability of execution time increases drastically at around

2.000 seconds. This means that half of the requests have achieved a time of less than or equal

to 2.000 seconds response time. Next, we execute the different usage models presented in

Subsection 8.2.5 on the Media Store model with ZTA and compare them.

InDUM1, all of the requests are policy-authorized and require context evaluation. According
to the configuration of the device and user authentication components for this usage model,

the requests are always successfully authenticated. All requests should pass the evaluation

successfully and be forwarded to the media store components. Therefore each request should

traverse the full execution path and all of the internal actions should be triggered. This means,

that we are expecting the worst response time to be increased since additionally to the executed

actions from the initial storemodel, the execution triggers the newly introduced actions from the

ZTA components. As we see from the CDF in Figure 8.17b, the worst execution time increases

above 15.000 seconds. Additionally, we have a more gradual increase in the probability of

achieving an execution time lower than a value. From the histograms of both executions, we see

that the execution time with the highest probability is between 3.000 seconds and 6.000 seconds

and in the DUM without ZTA is between 1.500 seconds and 2.500 seconds. The performance

impact of the new components can be detected using the simulation.

In DUM2, we now introduce the possibility of having requests which are not policy-

authorized and therefore the system drops them earlier without further processing. We still

expect that the worst execution time should be increased compared to the default usage model

since accepted requests still traverse the full execution path. From the CDF of the execution of

the second usage model, shown in Figure 8.17c, we see that indeed the worst execution time

increases but with less compared to usage model 1. In the XY plots in Figure 8.16 of usage

models 1 and 2 we can observe the points in execution time where requests are dropped and the

response times for these are significantly less. The overall better system performance might be

due to the fact that dropped requests induce less resource utilization and resource containers

have more resources to process authorized requests.

In the execution of RUM3, we observe an abnormal behaviour of the system. The third usage

model introduces probabilities in the authentication of the user and device. This means that

there are requests for either the user or device or both that are not successfully authenticated

and the request is dropped before being sent to the initial Media Store components. However,

there are still requests which reach the initial Media Store components and therefore we

expect the worst response time to be similar to the time from the DUM2. However, the result

presented in Figure 8.18a shows a completely different outcome where the response time

significantly drops. We interpret that this might be due to the higher uncertainty in a request

being dropped because compared to usage model 2, here apart from the probability of dropping

98

8 Evaluation

(a) Default DUM

(b) DUM1

Figure 8.13: Probabilities of the execution time of default DUM and DUM1

99

8 Evaluation

a request due to not being policy authorized, a request may be dropped also due to not being

authenticated successfully. Therefore, we eliminate this uncertainty and run some additional

simulations using usage models derived from usage model 3. As said we remove the BPMF

value of the PolicyAuthorized variable and set it to always true and run a simulation. Then we

run simulations also for the cases where we have a BPMF only for the AuthenitcationProbability
of the DeviceAuthenticator component and one only for the AuthenitcationProbability of the

Authenticator component. We do this to determine whether one of these components is causing

the unusual behaviour. Lastly, we play with the probabilities of the BPMF functions, to see how

they affect the outcome of the simulation. In Figure 8.14a are shown the results of the previously

mentioned variations of usage model 3. As we see from the result, even if we eliminate the

probability in the PolicyAuthorized variable, Figure 8.14a, the simulations still yield low response

times. If we limit even the probabilities to one of the authentication components in order to

check if one of them is causing this time decrease we again obtain really low response times as

shown in Figure 8.14b and Figure 8.14c. Next, we tuned the probabilities of authentication to

check how these affect the outcome. According to the results, when see set the probabilities

to a successful authentication probability of 50% and thus limit the percentage of requests

sent to the initial Media Store components, we see that the system starts behaving even faster.

If we increase the probability to 99% of successful authentications then the system yields

a closer response time to the one achieved in the other usage models. A concern emerged,

when first observing the results of DUM3, that there is a possible error in the model which

is triggered by setting authentication probabilities of the authentication components. Failed

authentications cause the execution to not forward requests completely. This would reduce

response time. Palladio offers the ability to trace what calls to what components were performed.

When observing the calls made in the different variations of DUM3, we saw that requests

were actually forwarded to the initial Media Store components and no calls were skipped.

Theoretically, the response time should have been slower. Currently, we cannot provide a

logical explanation for why this behaviour of the system is present. This indicates that maybe

the model is not suitable for playing with authentication probabilities.

In DUM4, we evaluate the scenario where no context evaluation is performed. It is a valid

usage model for systems which are at the beginning of their ZTA maturity and depend only

on policy authorization. From the resulting CDF, shown in Figure 8.18b from the execution,

we observe that the worst execution time is higher than the time from the default usage

model and the second usage model. This is because although we do not perform the context

evaluation process, all requests are still successfully authorized and none are dropped. The

lack of evaluating context results in better performance time than the time achieved in DUM1.
In the last usage model, DUM5, we want to evaluate scenarios where developers want to

manage which paths of context are traversed and whether the resulting performance impact can

be measured. For this purpose, in the usage model device authentication and trust calculation

are set to true from the start which should result in not executing those paths. The scenario

simulates an interaction similar to the one from DUM1 where every request is accepted but

device and trust are not checked. Therefore we should expect that the response time achieved

is less than the one from DUM1 but still above the DUM and above the usage model where

requests are dropped, DUM2. From the CDF, shown in Figure 8.18c, we observe a worst

execution time of around 14.000 seconds. This time is less than the time from DUM1 where

full path traversal is performed and above the time of DUM2 since we do not drop requests.

100

8 Evaluation

(a) PolicyAuthorized - true

(b) PolicyAuthorized, Device AuthenitcationProbability - true

(c) PolicyAuthorized, User AuthenitcationProbability - true

Figure 8.14: DUM3 with different values for PolicyAuthorized and authentication probabilities

101

8 Evaluation

(a) PolicyAuthorized - true, AuthenitcationProbabilities - BoolPMF 50 50

(b) PolicyAuthorized - true, AuthenitcationProbabilities - BoolPMF 99 1

Figure 8.15: DUM3 with different values for PolicyAuthorized and authentication probabilities

102

8 Evaluation

(a) UM1

(b) UM2

Figure 8.16: Response time at the different points in execution time for UM1 and UM2

103

8 Evaluation

(a) DUM no ZTA

(b) DUM1 with ZTA

(c) DUM2 with ZTA

Figure 8.17: CDFs of DUM no ZTA and DUM1 and DUM2 with ZTA

104

8 Evaluation

(a) DUM3 with ZTA

(b) DUM4 with ZTA

(c) DUM5 with ZTA

Figure 8.18: CDFs of DUM3, DUM4 and DUM5 with ZTA

105

8 Evaluation

Realistic Usage Model

After we have analysed the performance impact on the derived usage models we will run

simulations again but this time using variations of the realistic usage model. Like in the previ-

ous subsection, we first run a simulation on the Media Store model without ZTA, RUM, to

obtain response time metrics which we can compare to our ZTA model. From the execution of

the initial Media Store model with the realistic scenario we observe that the system achieves a

worst execution time above 80.000 seconds, as shown in Figure 8.21a. We now run the simu-

lation for our ZTA model and use the realistic usage model with the different configurations

presented in Subsection 8.2.5.

As discussed, requests in RUM1 traverses the full execution path for each request and we

expect a higher response time due to the impact of the ZTA components. The CDF of the usage

model, shown in Figure 8.21b, shows that the system yields a worst execution time of 90.000

which exceeds the achieved time in RUM. This means that the performance impact of the ZTA

components can be detected.

In RUM2 where a request might be dropped, we observe a decrease in the wort response

time achieved by the system. As shown in Figure 8.21c the time reaches at most 80.000 seconds

which is lower than the time from RUM. We can interpret that this result is achieved because of

the dropped requests which free up resources earlier and allow the system to handle accepted

requests faster. From the histograms of the CPU utilization of the Application Server, shown in

Figure 8.19, we observe that indeed the resource utilization is less for the model with ZTA.

In RUM3 again, the results of the simulation yield a lower response time, as shown in

Figure 8.22a, similar to the discussed situation in paragraph 8.3.3 of DUM3. However, this time

the difference is less significant than the difference achieved by the derived usage model. Since

here the probability of denying a request is higher due to the authentication probabilities it is

possible that there are more free resources than in the other usage scenarios. However, we

already know from the derived usage model analysis that tuning authentication probabilities

may not provide trustworthy results.

In RUM4, where all requests are approved but context evaluation is skipped we observe in

the results shown in Figure 8.22b that the worst response time is better than the time of RUM1
due to no context evaluation and still above the RUM due to the performance impact of the

ZTA components. However, the worst response time is not significantly higher.

Observing again the ZTA model and the initial Media Store model we notice that there is a

great difference in the units used to define resource demands. For the ZTA components, we

have selected a default resource demand for all components which is 1000 units. On the other

hand, resource demand units defined in the Media Store are of higher values such as 248240

units or 7943680 units and even higher. This could be the reason why the performance impact

introduced by the ZTA components is not so significant. What we can do to test this is to

increase the resource demands required by the ZTA components to a value taken from the

possible resource demands of the Media Store components. In Figure 8.20 we display the result

of the simulation of RUM4 on a ZTA model with resource demands of every ZTA component

increased to 7943680. We immediately see from the CDF that the worst response time has

now increased to above 85.000 units which proves that if resource demands are of the same

range as the Media Store demands then an even more accurate performance impact can be

detected. This usage model evaluation also proved that when integrating ZTA components in

106

8 Evaluation

(a) RUM no ZTA

(b) RUM2 with ZTA

Figure 8.19: Histogram of CPU resource demand of Application server of Default Model and

ZTA models with realistic UMs default and 2

107

8 Evaluation

Figure 8.20: RUM4 with ZTA and increased resource demands

an existing system a unit normalization needs to be performed to make sure that the resource

utilization and response time of ZTA components are not too great or too low in the context

of the system where it is integrated. However, since we currently do not have an existing

ZTA system for which we can measure execution time, we cannot determine whether a PE,
for example, performs faster or slower than a Media Access component and hence annotate it

with higher or lower resource demand units than those of the Media Access component.

Lastly, in the execution of RUM5, where we test the selection of execution paths traversed

by eliminating device authentication and trust calculation, we see that the worst execution

time almost reaches the one achieved in realistic usage model 1. However, it is still lower since

we are skipping execution paths. When we traced the executed calls by the simulation, calls to

the device authenticator and trust calculator were indeed missing from the execution.

Final Discussion on G3

To sum up, with the performed simulations on models with and without ZTA components

we are able to answer the question Q3.1 if the model allows analysing performance impact

introduced by the ZTA. We saw in the derived usage scenario as well as in the realistic that

when ZTA components are included in the model there is an increase in the worst execution

time achieved by the system. The probability of a request requiring more time increases when

every request traverses each of the execution paths in a ZTA model compared to the no ZTA

model. Additionally, when executing usage models which activate different execution paths in

a ZTA system we again observe an increase or a decrease in the worst response time. Therefore

the model allows the detection of the performance impact of different ZTA architectures when

compared to non-ZTA models. The next question we asked, Q3.2, is about whether we can
detect performance impact in different ZTA configurations and usages. From the simulations

of different usage model configurations, we observed different behaviours of the model with

different response times due to dropped requests or skipped execution paths. We observed

executed calls in the different scenarios and saw that the model allows for tuning different

execution scenarios with the help of the ZTA variables we introduced in the model. However,

along the way, we discovered also flaws in the model. The tuning of authentication probabilities

108

8 Evaluation

seems to be unstable for the moment and yields simulation results which are not trustworthy.

Additionally, we determined that the resource demands of the ZTA components cannot be

generalized. If we measure and define general resource demand units for the ZTA components,

when we create a model of a system with ZTA from scratch we can adjust the system’s compo-

nent demands to match the general ones of the ZTA components. However, if we integrate

the ZTA components as we did for our evaluation, then normalization of the units should be

performed in order to avoid units of the ZTA being too low or too great when compared to the

units of the underlying system.

8.3.4 Discussion on Security Analysis

In the last goal of the evaluation, we want to examine the ability of our model to detect the

proposed security violations in Section 7.4. To do this we execute Data Flow Analysis on five

scenarios with and without issues and calculate the precision and recall, defined in Section 8.1,

of the analysis.

In S0 we did not make changes to the model so issues would emerge. The execution of the

analysis returned an empty list of violations since no violations were identified.

In the next scenario S1, where we tested the detection of unauthorized access, the analysis

returned a result which contained a single identified issue of type Unauthorized Access due to
the introduced data flow which skips the policy evaluation process. The analysis detected that

a label of a lower level reached the resource and the label which signalled that the request was

handled by a PolicyEngine was missing. Furthermore, as expected, no issue was identified for

the data flow which goes through the PolicyEngine since there the Evaluated.evaluated label

identified that this request was correctly handled by a PolicyEngine.
In S2 where we evaluate the detection of LPP violations, the analysis identified one issue.

Data with a label of Authorized.Level3 has reached the resource which is labelled with Autho-
rized.Level1. The analysis correctly identified that more permissions were given to a request

than required. Additionally, no unauthorized access issue was raised due to mismatched Au-
tohrized labels. The analysis correctly identifies that level 3 access is authorized in the context

of accessing a level 1 resource.

In S3 we tested if incomplete authentication can be identified in our model. At the protected

node arrived data with a single authentication label UserAuthneitcated.SecondFactor. Therefore,
the analysis returned a list containing a single issue of type Unauthenticated Access.
Lastly, in scenario S4 we introduced the issues of missing device authentication and trust

calculation. The result of the analysis provided a list which contained two issues. One was of

type Device Unauthenticated Access and the other issue was of type Untrusted Access. Hence,
the analysis correctly identified both of the introduced issues.

Now that we have performed the analysis and identified the issues we can calculate the

results for these metrics. In table Table 8.5 we summarize the introduced versus identified

security issues in scenarios 0 to 4. For each of the scenarios, the number of identified issues

which were not introduced in the respective scenario is 0. Therefore the FP for each scenario is

0 and the sum of FP across all scenarios is again 0. The sum of all correctly identified issues

across all scenarios is 0 + 1 + 1 + 1 + 2 = 5. Therefore, the TP value is 5. Following the definition

of precision presented in Section 8.1, we get the following equation: Therefore we get the

following equation
𝑇𝑃

𝑇𝑃+𝐹𝑃 = 5

5+0 = 5

5
= 1.0. We achieve a precision of 1.0 for the security

109

8 Evaluation

(a) RUM no ZTA

(b) RUM1 with ZTA

(c) RUM2 with ZTA

Figure 8.21: CDFs of Default Model and ZTA models with RUMs 1-2

110

8 Evaluation

(a) RUM3 with ZTA

(b) RUM4 with ZTA

(c) RUM5 with ZTA

Figure 8.22: CDFs of ZTA models with realistic UMs 3-5

111

8 Evaluation

Introduced Identified

S0 0 0

S1 1 1

S2 1 1

S3 1 1

S4 2 2

Table 8.5: Introduced and Identified issues in scenarios 0 to 4

analysis. Since our analysis has not failed to identify an introduced issue, our value for FN is 0.

For the recall, we get the following equation
𝑇𝑃

𝑇𝑃+𝐹𝑁 = 5

5+0 = 5

5
= 1.0 . Hence, we achieved a

recall of value 1.0

Following the evaluation of the security analysis, we observe that our model allows us to

detect the proposed security violations. Moreover, it does so by achieving a precision and

a recall of 1.0. This means that the security analysis performed on our model is capable of

detecting the proposed ZTA security violations with high credibility. Although we were unable

to perform the planned security analysis on the initial Media Store with ZTAmodel, as discussed

in Section 8.5, the partial analysis was designed to be as close as possible to the initial one.

Hence, we believe that our results will hold if the same scenarios are evaluated using the initial

model.

8.4 Threats to Validity

We address the validity of our evaluation in the following section. Since our evaluation includes

parts where we use a case study to evaluate our contribution, we can classify the validity

aspects as done by Runeson et al. [45]. According to the authors, validity can be classified to

Construct, Internal, External and Reliability.

Construct Validity
In Construct Validity we discuss whether the goals we set for our evaluation are relevant to the

contribution of the thesis as well as the questions we ask and the metrics we choose for them

are suitable.

One of our objectives of the work is concerned with creating a ZTA model which captures

all of the concepts of such architecture. Therefore we choose to evaluate the completeness of

the model. Defining completeness is a problem of relativity. For example, our project might be

complete in the context of ZTA but it might be incomplete in the context of Authentication

Systems. To remove this bias we have limited the completeness of our model to identified

elements from literature in the course of the project. In the applicability evaluation, we have

chosen a discussion to answer Q2.1. However, this discussion is based on representations of

ZTA models from the literature. Additionally, a question may arise whether the property of

generality is suitable for evaluating applicability. One of our contributions is the development of

a model which can be applied in different ZTA cases. Návrat and Filkorn [36] define generality

as a quality of being able to capture multiple concepts and represent varying cases. Therefore,

we believe that generality describes appropriately the aspect of applicability in the context of

our contribution.

112

8 Evaluation

The performance analyses observe differences in execution time and resource utilization.

These are the currently supported metrics by Palladio and were used to demonstrate the

performance impacts of different Media Store configurations in [43].

For the security evaluation, we use precision and recall. The metrics have already been used

to evaluate the accuracy of models and analysis using the Data Flow Analysis in [46, 7].

Internal Validity
In Internal Validity validity we discuss whether there are hidden factors that affect the evaluation
of the impact of one factor on another factor.

We encounter such a case when evaluating the performance impact of our ZTA components.

We evaluate there how the ZTA components impact the execution time and resource utilization

of a system. However, the overall execution time may also be impacted by probabilities

introduced in the initial case study. However, we engage this threat by providing an additional

usage model that triggers a constant behaviour of the initial case study components.

When evaluating the detection of security violations an unwanted factor which impacts the

evaluation of the questions is the compatibility of performance and security models in Palladio.

Problems in the compatibility forced us to apply changes to the ZTA model of the case study in

order to execute the evaluation. However, we mimicked the incompatible complex elements

from the performance model as closely as possible using simpler components. We did not make

any changes to the core concepts of the security or performance model.

External Validity
In the aspect of External Validity, we analyze the relevance of our evaluation and its results to

cases outside of the work.

Generalizing findings of the evaluation outside of the scope of the project is difficult when

using a case study for the evaluation. This is the case in this thesis. However, we mitigate this

threat by using two case studies in the course of the project. One of the case studies is designed

for the project whereas the second one we use is a well-known case study which has already

been used in the evaluation of modelling projects [28, 32, 43]. We add real-world context to our

case study by extending it according to the UK NCSC [57] guide and evaluate it using the CISA

maturity model [11]. In addition, we perform an evaluation of the generality of the model. We

use our work to model multiple suggested ZTA from the literature.

We recognize a threat to the external validity in the security evaluation. We performed

an evaluation for each violation with just a single scenario. Additionally, the scenarios were

derived from themselves.

Reliability
Reliability represents the ability of future researchers to be able to reproduce the evaluation

and obtain the same results. In our evaluation setup, we have provided a step-by-step guide

to preparing the model for the experiments. Additionally, we have described how our usage

models and scenarios are constructed. Threats to reliability may arise from our discussion

evaluations since future researchers might not reproduce the same interpretations. However,

we cannot address these issues. We publish our model and implementation with all of the

evaluation scenarios [41] to eliminate further threats regarding Reliability.

113

8 Evaluation

8.5 Assumptions and Limitations

In our evaluation, we first encountered limitations in the aspect of available systems to model.

During the selection of a suitable system to model we were able to find two implementations of

ZTAs. However, both of the implementations proved to be unsuitable. One of the systems was

an open source project which has discontinued. Although we had access to the implemented

components and were able to set up a PEP and a PE, we were not able to test the system. Its

further use required the use of a dedicated mobile application for multi-factor application

which is no longer present on the market. Attempts to replace the application with alternative

apps from the application market we unsuccessful. The second system we found was still

functioning and had a trial test version. However, its components were black-box and we

had no access to the underlying architecture. The system was performing its task on remote

company-owned servers. This type of component deployment does not allow us to measure

resource utilization in order to derive resource demands for our model. Additionally, the lack

of open source available ZTA system led us to make assumptions about the resource demands

of the ZTA components.

The next limitations came from the implementation of the Data Flow Analysis. At the

time of creating the security model and writing the thesis, the Data Flow Analysis has been

simultaneously updated. Additionally, the fact that Data Flow Analysis has not been combined

until now with complex performance models, was a prerequisite for possible incompatibilities.

These expectations proved to be true. During the execution of the Data Flows Analysis on the

model presented in Subsection 8.2.2 we detected errors connected to processing composite

components, SEFF internal actions and variable specifications which had both performance

and confidentiality variable characterisations. More serious issues emerged in compatibility

with more complex branching actions and the unavailability of component variables defined in

the assembly in the evaluation of the nodes’ behaviour expressions. We were able to cope with

composite components by replacing them with their building blocks. Processing of internal

actions and performance variable characterisations were patched successfully by the team

providing the Data Flow Analysis implementation. However, the last two identified issues with

branching actions and component variables introduced a limitation to the security evaluation.

This required us to apply changes to the model in order to assess the developed security model.

The changes in the authenticating behaviour would prevent us from testing the generality of the

initially specified behaviour definition. However, the detection of the security violation is not

obstructed. Overall, we believe that the applied changes did not change the core functionality

of the model and the results should hold once the issues have been resolved and evaluation is

carried on on the initially proposed Media Store with ZTA.

8.6 Data Availability

We publish all of our data in the project’s repository [41]. The repository includes all of the

models described in this thesis. It includes also the implementation of the ZTA security analysis.

We also provide there all of the usage models used for this evaluation.

114

9 Conclusion

In the following chapter, we conclude the thesis by summarizing the contributions of the work.

In addition, we present what questions and activities remain open for future research projects.

9.1 Conclusion

In this master thesis, we analyzed ZTAs and mainly how they can be modelled so we can

perform security and performance analyses at design time. We examined how we can do

this using the Palladio Component Model. We determined if it was possible to represent

ZTA concepts and processes using only the already implemented elements of the Palladio

Component Model and if the component model requires any extensions. We also tried to create

the ZTA model as general as possible so it can be used off-the-shelf in future projects. For

the security analysis, we used Data Flow analysis which traces data labels through all of the

possible system execution paths. Additionally, it was well known that in Palladio security

and performance analyses can be performed separately. However, in this thesis, we tested the

possibility of combining both security and performance annotations in a single model.

In the main part of the work we analyzed ZTA specifications such as the NIST standard

document, Google’s Beyondcorp and CCA’s SDP specification. From these standards, we were

able to extract core activities and processes which happen in a ZTA. We identified logical

components which are responsible for those roles and should be present in an architecture

to cover Zero Trust principles. We also outlined additional components and systems which

could further improve the maturity of a system in the context of Zero Trust. As a result of this

activity, we obtained a ZTA meta-model.

In the next part of the main body, we used Palladio to create a ZTA model. We created

a repository where we defined interfaces to describe identified roles and included all of the

core logical components of ZTA and their variations to cover all of the possible differences

suggested in the literature. As mentioned before, we created all of these components in a way

that they encapsulate and generalize their differences presented in the standard documents. This

increases the applicability of our model in different projects and requires developers to make

fewer changes to their underlying models in order to adapt our components to their models.

However, there were still differences which were not possible to represent in a general manner.

For this, we introduced extension points in our components and made them customizable.

With our components, we modelled templates for the SDP and Beyondcorp ZTA approaches.

However, since we did not have access to an implemented ZTA, we could not measure and

estimate resource demands to include them in our performance model. We also applied our

model to the JPlag case study defined in this thesis.

Next, we defined a model for Data Flow Analysis. First, we defined what were the possible

security violations which can happen in a ZTA and how we can test for them. We developed

115

9 Conclusion

the required, by the Data Flow Analysis, labels and node behaviours and defined them in the

ZTA Palladio model. We developed a reusable Java implementation of the Data Flow Analysis

of a ZTA and defined an extensible reporting pattern for the analysis.

For the evaluation, we tested how many of the identified in the research ZTA concepts we

were able to represent in our Palladio model and what changes would Palladio need to be able

to represent ZTAs. We also tested the applicability of the model by modelling different ZTA

models from the literature. We were not able to obtain a system which has ZTA components

and try and model it in Palladio using the elements from the ZTA repository. This is why

we used the Media Store case study which has been used in the past to demonstrate the

modelling power of Palladio. We extended the Media Store model with a ZTA following a ZTA

integration guide and evaluated the resulting model according to the CISA maturity model. We

also designed multiple usage scenarios to evaluate different behaviours of the ZTA. We then

compared the achieved response times and resource utilization of the no ZTA and the ZTA

model of the Media Store and we were able to detect the performance impact introduced by the

new components. For the security evaluation, we designed scenarios in which we introduced

security violations. Then we tested and calculated the precision and recall of the Data Flow

Analysis in those scenarios with our security model. However, due to limitations presented in

the Data Flow Analysis, we were forced to apply changes to the initial Media Store model so

it could be compatible with the Data Flow Analysis. As a result of this, we determined that

the performance and security models of a system in Palladio are still not fully compatible. To

sum up, we successfully created a performance and a security model of ZTA using only the

present elements of Palladio and Data Flow Analysis. Zero Trust proves to be a growing topic

in security and companies will be looking to integrate a ZTA into their systems. To evade the

costly effects of false designs such as high implementation effort and financial losses, companies

would prefer to first test out different ZTA approaches at design time. Using our created ZTA

repositories, they can integrate the ZTA concepts in their design models and observe what

performance changes would appear as well as detect security violations. Furthermore, with this

project, we make also a step towards combining security and performance analyses in Palladio

in a single model, as until now both of the analyses were performed on separate models.

9.2 Future work

Although we have been able to model ZTA as a Palladio model there still remain some open

topics for future work. As we have mentioned multiple times in this thesis we did not have the

option to evaluate a real system with ZTA components in order to estimate realistic resource

demands. From this statement points of future work arise. The first one is the implementation

of the modelled here ZTA components. For each of these components, it can be researched what

technologies and algorithms can be used to implement them and then actually implement them

to observe resource utilization and response times. For example, a PE component is present not

only in ZTA but also in XACML architectures. As we discussed in the sectionwhere wemodelled

the PE there are different algorithms for loading and evaluating policies. These algorithms

can be implemented and then used to estimate the resource demands of a PE. The second

point of future work is the examination of existing solutions for the auxiliary components

which we modelled in the project. For components such as authentication components or SIEM

116

9 Conclusion

systems, there are currently solutions on the market. However, these technologies require

their own topic. For example, authentication approaches can vary in factors, and technologies

enforced. We cannot examine all of the possible systems in order to derive general resource

demands for Palladio. Therefore, different implementations of such systems can be researched

and used to estimate resource demands which can then be applied to the developed in this

thesis components.

Additionally, we recognize the possibilities of further refining the created model to represent

even more concepts of ZTAs. For example, continuous authentication can be added to the model.

This can be done by examining the option to include additional branches in the SEFF diagrams

at different points in the execution path with probabilistic behaviour which triggers calls to

an authentication component. Another improvement which would increase the variability

of the model is the modelling of dynamic policy providers which communicate with context

providers to update policies.

Lastly, we were not able to evaluate the initial Media Store model with ZTA which contained

complex branching actions due to limitations from the Data Flow Analysis implementation.

When the compatibility of both the security and performancemodels is increased, the evaluation

should be reproduced this time with the unmodified Media Store ZTA assembly model.

117

Bibliography

[1] Annamalai Alagappan, Sampath Kumar Venkatachary, and Leo John Baptist Andrews.

“Augmenting zero trust network architecture to enhance security in virtual power plants”.

In: Energy Reports 8 (2022), pp. 1309–1320.

[2] Igor Anastasov and Danco Davcev. “SIEM implementation for global and distributed

environments”. In: 2014World Congress on Computer Applications and Information Systems
(WCCAIS). IEEE. 2014, pp. 1–6.

[3] Marie Baezner and Patrice Robin. Stuxnet. Tech. rep. ETH Zurich, 2017.

[4] Mohammadreza Hazhirpasand Barkadehi et al. “Authentication systems: A literature

review and classification”. In: Telematics and Informatics 35.5 (2018), pp. 1491–1511.

[5] ErphanABhuiyan et al. “Towards next generation virtual power plant: Technology review

and frameworks”. In: Renewable and Sustainable Energy Reviews 150 (2021), p. 111358.

[6] Barry W Boehm, Robert K Mcclean, and DB Urfrig. “Some experience with automated

aids to the design of large-scale reliable software”. In: Proceedings of the international
conference on Reliable software. 1975, pp. 105–113.

[7] Nicolas Boltz et al. “Handling environmental uncertainty in design time access control

analysis”. In: 2022 48th Euromicro Conference on Software Engineering and Advanced
Applications (SEAA). IEEE. 2022, pp. 382–389.

[8] Defense Use Case. “Analysis of the cyber attack on the Ukrainian power grid”. In:

Electricity Information Sharing and Analysis Center (E-ISAC) 388.1-29 (2016), p. 3.

[9] Baozhan Chen et al. “A security awareness and protection system for 5G smart healthcare

based on zero-trust architecture”. In: IEEE Internet of Things Journal 8.13 (2020), pp. 10248–
10263.

[10] Xu Chen et al. “Zero trust architecture for 6G security”. In: arXiv preprint arXiv:2203.07716
(2022).

[11] CISA Zero Trust Maturity Model. url: https://www.cisa.gov/sites/default/files/
2023-04/zero_trust_maturity_model_v2_508.pdf.

[12] Vittorio Cortellessa et al. “An architectural framework for analyzing tradeoffs between

software security and performance”. In: Architecting Critical Systems: First International
Symposium, ISARCS 2010, Prague, Czech Republic, June 23-25, 2010 Proceedings. Springer.
2010, pp. 1–18.

[13] CSA. “Software-Defined Perimeter (SDP) Specification v2.0”. In: (). url: https : / /

cloudsecurityalliance.org/artifacts/software-defined-perimeter-zero-trust-

specification-v2/.

118

https://www.cisa.gov/sites/default/files/2023-04/zero_trust_maturity_model_v2_508.pdf
https://www.cisa.gov/sites/default/files/2023-04/zero_trust_maturity_model_v2_508.pdf
https://cloudsecurityalliance.org/artifacts/software-defined-perimeter-zero-trust-specification-v2/
https://cloudsecurityalliance.org/artifacts/software-defined-perimeter-zero-trust-specification-v2/
https://cloudsecurityalliance.org/artifacts/software-defined-perimeter-zero-trust-specification-v2/

Bibliography

[14] Carlos Da Silva, Welkson Medeiros, and Silvio Sampaio. “PEP4Django-a policy enforce-

ment point for python web applications”. In: (2019).

[15] Casimer DeCusatis et al. “Implementing zero trust cloud networks with transport access

control and first packet authentication”. In: 2016 IEEE International Conference on Smart
Cloud (SmartCloud). IEEE. 2016, pp. 5–10.

[16] Fan Deng et al. “An efficient policy evaluation engine for XACML policy management”.

In: Information Sciences 547 (2021), pp. 1105–1121.

[17] Documentation of Confidentiality Modeling and Analysis in Palladio. url: https : / /
fluidtrust.github.io/tutorial-ecsa2021-tooldoc/index.html.

[18] “Evolving Zero Trust How real-world deployments and attacks are shaping the future of

Zero Trust strategies”. In: ().

[19] Eduardo Buglioni Fernandez and Andrei Brazhuk. “A critical analysis of zero trust

architecture (Zta)”. In: Available at SSRN 4210104 (2022).

[20] Goal-Question-Metric Evaluation Approach. url: https://sdq.kastel.kit.edu/wiki/
Goal_Question_Metric.

[21] Gustavo González-Granadillo, Susana González-Zarzosa, and Rodrigo Diaz. “Security

information and event management (SIEM): analysis, trends, and usage in critical infras-

tructures”. In: Sensors 21.14 (2021), p. 4759.

[22] “Homeoffice und mobiles Arbeiten”. In: (). url: https://de.statista.com/statistik/

studie/id/86464/dokument/homeoffice-und-mobiles-arbeiten/.

[23] “Internet of Things – Market data analysis and forecasts”. In: (). url: https://de.

statista.com/statistik/studie/id/109209/dokument/internet-der-dinge-market-

outlook-report/.

[24] JPlag - Detecting Software Plagiarism. url: https://github.com/jplag/JPlag.

[25] JPlage Report Viewer. url: https://jplag.github.io/JPlag/.

[26] Boo Geum Jung et al. “ZTA-based Federated Policy Control Paradigm for Enterprise

Wireless Network Infrastructure”. In: 2022 27th Asia Pacific Conference on Communications
(APCC). IEEE. 2022, pp. 1–5.

[27] Jaroslav Kadlec, David Jaros, and Radek Kuchta. “Implementation of an Advanced Au-

thentication Method within Microsoft Active Directory Network Services”. In: 2010 6th
International Conference on Wireless and Mobile Communications. IEEE. 2010, pp. 453–456.

[28] Heiko Klare et al. “Enabling consistency in view-based system development—the vitruvius

approach”. In: Journal of Systems and Software 171 (2021), p. 110815.

[29] Romain Laborde et al. “An adaptive xacmlv3 policy enforcement point”. In: 2014 IEEE
38th International Computer Software and Applications Conference Workshops. IEEE. 2014,
pp. 620–625.

[30] Romain Laborde et al. “Pep= point to enhance particularly”. In: 2008 IEEE Workshop on
Policies for Distributed Systems and Networks. IEEE. 2008, pp. 93–96.

119

https://fluidtrust.github.io/tutorial-ecsa2021-tooldoc/index.html
https://fluidtrust.github.io/tutorial-ecsa2021-tooldoc/index.html
https://sdq.kastel.kit.edu/wiki/Goal_Question_Metric
https://sdq.kastel.kit.edu/wiki/Goal_Question_Metric
https://de.statista.com/statistik/studie/id/86464/dokument/homeoffice-und-mobiles-arbeiten/
https://de.statista.com/statistik/studie/id/86464/dokument/homeoffice-und-mobiles-arbeiten/
https://de.statista.com/statistik/studie/id/109209/dokument/internet-der-dinge-market-outlook-report/
https://de.statista.com/statistik/studie/id/109209/dokument/internet-der-dinge-market-outlook-report/
https://de.statista.com/statistik/studie/id/109209/dokument/internet-der-dinge-market-outlook-report/
https://github.com/jplag/JPlag
https://jplag.github.io/JPlag/

Bibliography

[31] Brian Lee et al. “Situational awareness based risk-adapatable access control in enterprise

networks”. In: arXiv preprint arXiv:1710.09696 (2017).

[32] Sebastian Lehrig and Thomas Zolynski. “Performance prototyping with protocom in a

virtualised environment: A case study”. In: Proceedings to Palladio Days (2011), pp. 17–18.

[33] MaxMind GeoIP Documentation. url: https://dev.maxmind.com/geoip.

[34] Microsoft Zero Trust Maturity Model. url: https://download.microsoft.com/download/
f/9/2/f92129bc-0d6e-4b8e-a47b-288432bae68e/Zero_Trust_Vision_Paper_Final%

2010.28.pdf.

[35] George Moustris, Costas Tzafestas, and Konstantinos Konstantinidis. “A long distance

telesurgical demonstration on robotic surgery phantoms over 5G”. In: International
Journal of Computer Assisted Radiology and Surgery (2023), pp. 1–11.

[36] Pavol Návrat and Roman Filkorn. “A note on the role of abstraction and generality in

software development”. In: Journal of Computer Science 1.1 (2005), pp. 98–102.

[37] Barclay Osborn et al. “Beyondcorp: Design to deployment at google”. In: (2016).

[38] Palladio Example Models. url: https://github.com/PalladioSimulator/Palladio-
Example-Models.

[39] Biplob Paul and Muzaffar Rao. “Zero-Trust Model for Smart Manufacturing Industry”. In:

Applied Sciences 13.1 (2023), p. 221.

[40] David MW Powers. “Evaluation: from precision, recall and F-measure to ROC, informed-

ness, markedness and correlation”. In: arXiv preprint arXiv:2010.16061 (2020).

[41] Project repository. url: https://gitlab.kit.edu/kit/kastel/sdq/stud/abschlussarbeiten/
masterarbeiten/evgenicholakov.

[42] Keyvan Ramezanpour and Jithin Jagannath. “Intelligent zero trust architecture for 5G/6G

networks: Principles, challenges, and the role of machine learning in the context of

O-RAN”. In: Computer Networks (2022), p. 109358.

[43] Ralf H Reussner et al. Modeling and simulating software architectures: The Palladio ap-
proach. MIT Press, 2016.

[44] Hossein Mohammadi Rouzbahani, Hadis Karimipour, and Lei Lei. “A review on virtual

power plant for energy management”. In: Sustainable energy technologies and assessments
47 (2021), p. 101370.

[45] Per Runeson et al. Case study research in software engineering: Guidelines and examples.
John Wiley & Sons, 2012.

[46] Stephan Seifermann et al. “Detecting violations of access control and information flow

policies in data flow diagrams”. In: Journal of Systems and Software 184 (2022), p. 111138.

[47] Vibhu Saujanya Sharma and Kishor S Trivedi. “Quantifying software performance, relia-

bility and security: An architecture-based approach”. In: Journal of Systems and Software
80.4 (2007), pp. 493–509.

[48] VA Stafford. “Zero trust architecture”. In: NIST Special Publication 800 (2020), p. 207.

120

https://dev.maxmind.com/geoip
https://download.microsoft.com/download/f/9/2/f92129bc-0d6e-4b8e-a47b-288432bae68e/Zero_Trust_Vision_Paper_Final%2010.28.pdf
https://download.microsoft.com/download/f/9/2/f92129bc-0d6e-4b8e-a47b-288432bae68e/Zero_Trust_Vision_Paper_Final%2010.28.pdf
https://download.microsoft.com/download/f/9/2/f92129bc-0d6e-4b8e-a47b-288432bae68e/Zero_Trust_Vision_Paper_Final%2010.28.pdf
https://github.com/PalladioSimulator/Palladio-Example-Models
https://github.com/PalladioSimulator/Palladio-Example-Models
https://gitlab.kit.edu/kit/kastel/sdq/stud/abschlussarbeiten/masterarbeiten/evgenicholakov
https://gitlab.kit.edu/kit/kastel/sdq/stud/abschlussarbeiten/masterarbeiten/evgenicholakov

Bibliography

[49] Songpon Teerakanok, Tetsutaro Uehara, and Atsuo Inomata. “Migrating to zero trust

architecture: Reviews and challenges”. In: Security and Communication Networks 2021
(2021), pp. 1–10.

[50] Wei Tian et al. “Telerobotic spinal surgery based on 5G network: the first 12 cases”. In:

Neurospine 17.1 (2020), p. 114.

[51] Fatih Turkmen and Bruno Crispo. “Performance evaluation of XACML PDP implemen-

tations”. In: Proceedings of the 2008 ACM workshop on Secure web services. 2008, pp. 37–
44.

[52] Dan Tyler and Thiago Viana. “Trust no one? a framework for assisting healthcare

organisations in transitioning to a zero-trust network architecture”. In: Applied Sciences
11.16 (2021), p. 7499.

[53] Romans Vanickis et al. “Access control policy enforcement for zero-trust-networking”.

In: 2018 29th Irish Signals and Systems Conference (ISSC). IEEE. 2018, pp. 1–6.

[54] Manfred Vielberth and Günther Pernul. “A security information and event management

pattern”. In: (2018).

[55] Rory Ward and Betsy Beyer. “Beyondcorp: A new approach to enterprise security”. In:

(2014).

[56] Eric Yuan, Naeem Esfahani, and Sam Malek. “A systematic survey of self-protecting

software systems”. In: ACM Transactions on Autonomous and Adaptive Systems (TAAS)
8.4 (2014), pp. 1–41.

[57] Zero trust architecture design principles. url: https://www.ncsc.gov.uk/collection/
zero-trust-architecture.

121

https://www.ncsc.gov.uk/collection/zero-trust-architecture
https://www.ncsc.gov.uk/collection/zero-trust-architecture

	Abstract
	Introduction
	Motivation
	Objective
	Structure of the Thesis

	Foundations
	Zero Trust Architecture
	NIST Zero Trust Architecture
	Microsoft Zero Trust Architecture

	UK NCSC Zero Trust Architecture Design Principles
	CISA ZTA Maturity Model
	Palladio
	Analysis

	Related Work
	Modelling for Performance and Security Analysis
	Modelling Zero Trust Architectures

	Running example: JPlag
	JPlag
	JPlag Scenario
	JPlag System without ZTA

	ZTA Meta-Model
	ZTA Request Evaluation Process
	ZTA Tasks
	Logical Components
	ZTA Meta-model

	Modelling with Palladio
	Composite Data Types
	Interfaces
	Basic Components
	Policy Enforcement Point
	Policy Engine
	Policy Administrator

	Context Providers
	Authentication
	Device Authentication
	Store
	Logging of Events and Data
	Trust Algorithm
	Context Evaluator

	Modelling Templates
	SDP Model
	Beyondcorp Model

	Applying ZTAs on the Running Example
	JPlag with ZTA
	JPlag with SDP
	JPlag with BeyondCorp
	Discussion on applying ZTA Elements

	Data Flow Analysis Model
	Concept
	Authorization
	Authentication

	Data Dictionary
	Nodes Behaviour
	PolicyEngine Behaviour
	Authenticator Behaviour
	DeviceAuthenticator and TrustAlgorithm

	Violations
	Multiple Authorization Labels
	Unauthorized Access
	Least Privilege Principle
	Unauthenitcated Access
	Device Unauthenticated Access, Untrusted Access

	Generalising ZTA security analysis
	Defining a Java Enum
	Violation Data Class
	ZTAReport Data Class
	ZTAReporter

	Applying Security Annotations to JPlag Models

	Evaluation
	Evaluation Design
	Design for Evaluating Model Completeness
	Design for Evaluating Model Applicability
	Design for Evaluating Performance Inference
	Design for Evaluating Security Violations Detection

	Evaluation Setup
	Media Store
	Integrating ZTA into the Media Store
	Resource Environment
	Allocation
	Usage model
	ZTA Maturity Evaluation
	Setups for Data Flow Analysis
	Discussion

	Evaluation Results
	Discussion on Model Completeness
	Discussion on Model Applicability
	Discussion on Performance Analysis
	Discussion on Security Analysis

	Threats to Validity
	Assumptions and Limitations
	Data Availability

	Conclusion
	Conclusion
	Future work

	Bibliography

