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Abstract. How can we quantify uncertainty if our favorite computational tool---be it a numerical,
statistical, or machine learning approach, or just any computer model---provides single-
valued output only? In this article, we introduce the Easy Uncertainty Quantification
(EasyUQ) technique, which transforms real-valued model output into calibrated statisti-
cal distributions, based solely on training data of model output--outcome pairs, without
any need to access model input. In its basic form, EasyUQ is a special case of the re-
cently introduced isotonic distributional regression (IDR) technique that leverages the
pool-adjacent-violators algorithm for nonparametric isotonic regression. EasyUQ yields
discrete predictive distributions that are calibrated and optimal in finite samples, subject
to stochastic monotonicity. The workflow is fully automated, without any need for tuning.
The Smooth EasyUQ approach supplements IDR with kernel smoothing, to yield continu-
ous predictive distributions that preserve key properties of the basic form, including both
stochastic monotonicity with respect to the original model output and asymptotic consis-
tency. For the selection of kernel parameters, we introduce multiple one-fit grid search, a
computationally much less demanding approximation to leave-one-out cross-validation. We
use simulation examples and forecast data from weather prediction to illustrate the tech-
niques. In a study of benchmark problems from machine learning, we show how EasyUQ
and Smooth EasyUQ can be integrated into the workflow of neural network learning and
hyperparameter tuning, and we find EasyUQ to be competitive with conformal prediction
as well as more elaborate input-based approaches.
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1. Introduction. In an editorial that remains topical and relevant [71], SIAM
President Nick Trefethen noted the following a decade ago:

An answer that used to be a single number may now be a statistical dis-
tribution.

Indeed, with the increasing reliance of real-world decisions on the output of computer
models---which might be numerical or statistical, parametric or nonparametric, simple
or complex---and the advent of uncertainty quantification as a scientific field of its own,
there is a growing consensus in the computational sciences community that decisions
ought to be informed by full predictive distributions rather than single-valued model
output. For recent perspectives on these issues and uncertainty quantification in
general, we refer the reader to topical monographs [24, 68, 70] and review articles
[1, 5, 26, 60].

How can we quantify uncertainty if the computational model at hand provides
single-valued output only? With Nick Trefethen's comment in mind, we address the
following problem: Given single-valued, univariate model output, how can we gener-
ate a prediction interval or, more generally, a probabilistic forecast in the form of a
full statistical distribution? In this work, we introduce the Easy Uncertainty Quan-
tification (EasyUQ) technique that serves this task, based solely on a training archive
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EASY UNCERTAINTY QUANTIFICATION 93

of model output--outcome pairs. The single-valued, univariate model output can be
of any type---e.g., it might stem from a physics-based numerical model, might arise
from a purely statistical or machine learning model, or might be based on human ex-
pertise. In a nutshell, EasyUQ applies the recently introduced isotonic distributional
regression (IDR) [35] approach to generate discrete, calibrated predictive distribu-
tions, conditional on the model output at hand. The name stems from the threefold
reasons that EasyUQ operates on the final model output only without any need for
access to the original model input; that the method honors a natural assumption of
isotonicity, namely, that higher values of the model output entail predictive distri-
butions that are larger in stochastic order; and that the basic version of EasyUQ
does not involve any tuning parameters and thus does not require user intervention.
The more elaborate Smooth EasyUQ approach introduced in this paper subjects the
EasyUQ distribution to kernel smoothing, to yield predictive probability densities
that preserve key properties of the basic approach. Prediction intervals are readily
extracted; e.g., the equal-tailed 90\% interval forecast is framed by the quantiles at
level 0.05 and 0.95 of the predictive distribution.

As the EasyUQ approach requires training data, it addresses general ``weather-
like"" tasks [5, p. 441], which are characterized by frequent repetition of the task---
e.g., hourly, daily, monthly, at numerous spatial locations, or for a range of customers
or patients---in concert with short-to-moderate lead times of the forecasts, thus en-
abling the development of a sizable archive of forecast--outcome pairs. EasyUQ makes
the best possible use of single-valued model output in the sense of empirical score
minimization on the training data, subject to the natural constraint of isotonicity.
Specifically, the larger the model output, the larger the predictive distribution, in the
technical sense of the familiar stochastic order [65], i.e., the respective cumulative
distribution functions (CDFs) do not intersect and their graphs move to the right
as the model output increases. Subject to the isotonicity constraint, the EasyUQ
distributions are optimal with respect to a large class of loss functions that includes
the popular continuous ranked probability score (CRPS) [28, 47], all proper scoring
rules for binary events, and all proper scoring rules for quantile forecasts, among oth-
ers [35, Thm. 2]. For prediction, the EasyUQ and Smooth EasyUQ distributions are
interpolated to the value of the model output at hand, while respecting isotonicity.

Figure 1 illustrates the EasyUQ approach on WeatherBench [57], a benchmark
dataset for weather prediction that serves as a running example in this paper. Panel
(a) shows single-valued forecasts of upper air temperature from the HRES numerical
weather prediction model run by the European Centre for Medium-Range Weather
Forecasts (ECMWF) [49] along with the associated observed temperatures in February
2017. The training data for EasyUQ, which converts the single-valued HRES model
output into conditional predictive distributions, comprise the forecast--outcome pairs
from 2010 through 2016, as illustrated in the scatter plot in panel (c). Panel (d) shows
the EasyUQ predictive distributions for February 2017, which derive from the single-
valued HRES forecasts in panel (a) and can be compared to the computationally much
more expensive ECMWF ensemble forecasts in panel (b). To facilitate the comparison,
panel (c) includes inset diagrams with the ECMWF ensemble and EasyUQ predictive
CDFs for two particular days. Panels (e) and (f) show EasyUQ predictive CDFs
and Smooth EasyUQ predictive densities when the HRES model output equals 263,
268, and 273 degrees Kelvin, respectively. The isotonicity property of the EasyUQ
distributions is reflected by the nonintersecting CDFs. The boxes in panels (b) and
(d) range from the 25th to the 75th percentile of the distribution and generate 50\%
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94 E.-M. WALZ, A. HENZI, J. ZIEGEL, AND T. GNEITING

Fig. 1 EasyUQ illustrated on WeatherBench data. Time series of three days ahead (a) single-
valued HRES model forecasts, (b) state-of-the-art ECMWF ensemble forecasts, and (d) basic
EasyUQ predictive distributions based on the single-valued HRES forecast along with asso-
ciated outcomes of upper air temperature in February 2017 at a grid point over Poland, in
degrees Kelvin. The boxplots show the quantiles at levels 0.05, 0.25, 0.50, 0.75, and 0.95 of
the predictive distributions. (c) Scatterplot of HRES model output and associated outcomes
in 2010 through 2016, which serve as training data. The inset diagrams show the ECMWF
and EasyUQ predictive CDFs for (A) 9 February 2017 and (B) 15 February 2017, respec-
tively. (e) Basic and Smooth EasyUQ predictive CDFs and (f) Smooth EasyUQ predictive
densities at selected values of the single-valued HRES forecast. For further details, see sec-
tion 2.3.

prediction intervals, whereas the whiskers range from the 5th to the 95th percentile
and form 90\% intervals.

The remainder of the paper is organized as follows. Section 2 provides comprehen-
sive descriptions of IDR and the basic EasyUQ method and gives details, background
information, and a comparison to conformal prediction [72, 75] for both the Weather-
Bench temperature forecast challenge and a precipitation forecast example. In section
3, we introduce the Smooth EasyUQ technique, show that it retains the isotonocity
property of the basic method, and discuss statistical large-sample consistency. For
the selection of kernel parameters, we introduce multiple one-fit grid search, a compu-
tationally much less demanding approximate version of cross-validation. In section 4,
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EASY UNCERTAINTY QUANTIFICATION 95

we demonstrate that EasyUQ can be integrated into the workflow of neural network
learning and hyperparameter tuning, and we use benchmark problems to compare
its predictive performance to state-of-the-art techniques from machine learning and
conformal prediction. The paper closes with remarks in section 5, where we return to
the discussion of input-based vs. output-based uncertainty quantification.

While the basic version of EasyUQ arises as a special case of the extant IDR tech-
nique [35], we take the particular perspective of the conversion of single-valued model
output into predictive distributions. Original contributions in this paper include the
development of the Smooth EasyUQ method (sections 3.1 and 3.2), a detailed com-
parison to conformal prediction in case studies (sections 2.3, 2.4, and 3.3) and from
computational and methodological perspectives (sections 3.4 and 5), and the integra-
tion and benchmarking of EasyUQ and Smooth EasyUQ for neural networks (section
4). In Appendix A, we prove the consistency of smoothed CDFs in general settings,
which supports the usage of Smooth EasyUQ but is a result of broader and indepen-
dent interest.

2. Basic EasyUQ. We begin the section with a prelude on the evaluation of
predictions in the form of full statistical distributions. Then we describe the IDR and
EasyUQ techniques, and we illustrate EasyUQ on the WeatherBench data from [57]
and on precipitation forecasts [35]. Generally, EasyUQ depends on the availability of
training data of the form

(xi, yi), i = 1, . . . , n,(2.1)

where xi \in \BbbR is the single-valued model output and yi \in \BbbR is the respective real-
world outcome for i = 1, . . . , n. For subsequent discussion, we note the contrast to
more elaborate, input-based ways of uncertainty quantification that require access
to the features or covariates from which the model output xi is generated. In the
WeatherBench example from Figure 1, we have training data comprising twice daily
HRES forecasts and the associated observed temperatures in 2010 through 2016 as
illustrated in panel (c), where n = 5,114, but we do not have access to the excessively
high-dimensional input to the HRES model. In practice, one needs to find a predictive
distribution given the value x of the model output at hand, which may or may not be
among the training values x1 \leq \cdot \cdot \cdot \leq xn, and some form of interpolation is needed,
while retaining isotonicity. In panel (e) of Figure 1 we illustrate predictive CDFs
when x equals equals 263, 268, and 273 degrees Kelvin, respectively.

Extensions of this setting to situations where single-valued output from multiple
computational models is available can be handled within the IDR framework, as we
discuss below. If model output and real-world outcome are vector-valued---e.g., when
temperature is predicted at multiple sites simultaneously---EasyUQ can be applied
to each component independently, and the EasyUQ distributions for the components
can be merged by exploiting dependence structures in the training data, based on
empirical copula techniques such as the Schaake shuffle [61].

2.1. Evaluating Predictive Distributions. A widely accepted principle in the
generation of predictive distributions is that sharpness ought to be maximized subject
to calibration [25]. Maximizing sharpness requires forecasters to provide informative,
concentrated predictive distributions, and calibration posits that probabilities derived
from these distributions conform with actual observed frequencies. This is in line with
and generalizes the classical goal of prediction intervals being as narrow as possible
while attaining nominal coverage.
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96 E.-M. WALZ, A. HENZI, J. ZIEGEL, AND T. GNEITING

A key tool for evaluating and comparing predictive distributions under this prin-
ciple is that of proper scoring rules [28, 47], which are functions S(P, y) mapping a
predictive distribution P and the outcome y to a numerical score such that

\BbbE Y\sim P [S(P, Y )] \leq \BbbE Y\sim P [S(Q,Y )]

for all distributions P,Q in a given class \scrP . Here \BbbE Y\sim P [\cdot ] denotes the expected value
of the quantity in parentheses when Y follows the distribution P . From a decision-
theoretic point of view, proper scoring rules encourage truthful forecasting, since
forecasters minimize their expected score if they issue predictive distributions that
correspond to their true beliefs.

Arguably the most widely used proper scoring rules are the continuous ranked
probability score (CRPS),

CRPS(F, y) =

\int \infty 

 - \infty 
(F (z) - 1\{ z \geq y\} )2 dz,(2.2)

which can be applied to cumulative distribution functions (CDFs) F on the real line
for which the corresponding distribution has finite first moment, and the logarithmic
score for a predictive CDF F with density f ,

LogS(F, y) =  - log(f(y)).(2.3)

The popularity of the CRPS is due to the facts that it allows arbitrary types of pre-
dictive distributions (discrete, continuous, mixed discrete-continuous), is reported in
the same unit as the outcome, and reduces to the absolute error AE(x, y) = | x - y| if
F assigns probability one to a point x \in \BbbR . The LogS is (save for a change of sign) the
ubiquitous loss function in maximum likelihood estimation. Closed form expressions
for the CRPS and LogS are available for the most commonly used parametric distri-
butions and have been implemented in software packages [38]. In practice, forecast
methods are compared in terms of their average score over a collection (Fj , yj) for
j = 1, . . . , n,

\=S =
1

n

n\sum 
j=1

S(Fj , yj),

and the method achieving the lowest average score is considered superior.

2.2. Basic EasyUQ: Leveraging the Isotonic Distributional Regression (IDR)
Technique. In this section, it will be instructive to think of the quantities involved
as random variables, which we emphasize by using the upper case in the notation.
If model output X serves to predict a future quantity Y , then one typically assumes
that Y tends to attain higher values as X increases; in fact, the isotonicity assumption
can be regarded as a natural requirement for X to be a useful forecast for Y . Isotonic
distributional regression (IDR) is a recently introduced, nonparametric method for
estimating the conditional distributions of a real-valued outcome Y given a covariate
or feature vector X from a partially ordered space under general assumptions of
isotonicity [35]. EasyUQ leverages the basic special case of IDR where X is the
single-valued model output at hand. We review the construction and the most relevant
properties of IDR for uncertainty quantification; for detailed formulations and proofs
we refer the reader to the original paper [35].

© 2024 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d 

06
/1

2/
24

 to
 1

41
.5

2.
24

8.
2 

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
C

C
B

Y
 li

ce
ns

e 



EASY UNCERTAINTY QUANTIFICATION 97

Formally, EasyUQ assumes that the conditional distributions of the outcome Y
given the model output X, which we identify with the CDFs Fx(y) = \BbbP (Y \leq y | 
X = x), are increasing in stochastic order [65] in x, i.e., Fx(y) \geq Fx\prime (y) for all y \in \BbbR 
if x \leq x\prime , or equivalently qx(\alpha ) \leq qx\prime (\alpha ) for all \alpha \in (0, 1), where qx(\alpha ) = F - 1

x (\alpha )
is the conditional lower \alpha -quantile. In plain words, the probability of the outcome
Y exceeding any threshold y increases with the model output x. Isotonicity in this
sense is a natural assumption that one expects to hold, to a reasonable degree of
approximation, in many types of applications. An important exception arises for
location-scale families. Specifically, the arguments in the proof of Proposition 1 in
Gneiting and Vogel [30] imply that isotonicity is violated when the true predictive
distributions come from a location-scale family with varying scale.1 However, the
practical impact of this result is limited, due to the fact that in typical practice
the scale parameter varies only mildly [29] and violations remain minor. Crucially,
estimators that enforce isotonicity tend to be superior to estimators that do not, even
when the key assumption is violated, provided the deviation from isotonicity remains
modest. For an illustration in a simulation setting, see the nonisotonic scenario (25) in
Table 1 of Henzi, Ziegel, and Gneiting [35], where IDR retains acceptable performance
relative to its competitors, despite the key assumption being violated. For a rigorous
result, Theorem 7 of El Barmi and Mukerjee [20] demonstrates that, in the special
case of discrete model output, EasyUQ has smaller large sample estimation error than
nonisotonic alternatives even under mild violations of the isotonicity assumption.

EasyUQ assumes isotonicity with respect to the usual stochastic order. In situ-
ations where this assumption is severely violated, it may be worthwhile to consider
isotonicity with respect to a weaker requirement for distributions to be ordered. An
analogous method to IDR under increasing concave and convex stochastic ordering
constraints has been introduced by [32]. An extension of EasyUQ in this direction is
left for future work.

To estimate conditional CDFs under the given stochastic order constraints from
training data of the form (2.1), we define

( \^Fx1
(y), . . . , \^Fxn

(y))\prime = arg min
\theta \in \BbbR n : \theta i\geq \theta j if xi\leq xj

n\sum 
i=1

(\theta i  - 1\{ yi \leq y\} )2(2.4)

at y \in \BbbR . If x1 < \cdot \cdot \cdot < xn, then by classical results about isotonic regression,

\^Fxj (y) = min
k=1,...,j

max
l=j,...,n

1

l  - k + 1

l\sum 
i=k

1\{ yi \leq y\} , j = 1, . . . , n.(2.5)

At any single threshold y, the computation can be performed efficiently in \scrO (n log(n))
complexity with the well-known pool-adjacent-violators (PAV) algorithm. Since the
loss function in (2.4) is constant for y in between the unique values \~y1 < \cdot \cdot \cdot < \~yk
of y1, . . . , yn, it suffices to compute (2.5) at the unique values, for which efficient
recursive algorithms are available [34]. An estimate \^Fx for the conditional CDF at
model output x \in (xi, xi+1) is obtained by pointwise linear interpolation in x. For
x \leq x1 and x \geq xn, we use \^Fx1 and \^Fxn , respectively. The EasyUQ conditional CDFs

1For example, if F1 = \scrL (Y | X = x1) = \scrN (\mu 1, \sigma 2
1) and F2 = \scrL (Y | X = x2) = \scrN (\mu 2, \sigma 2

2), where
x1 \not = x2 and \sigma 1 \not = \sigma 2, then F1 and F2 are incomparable in stochastic order, whence isotonicity is
violated. However, if \sigma 1 and \sigma 2 are close to each other, the CDFs of F1 and F2 cross in the far (left
or right) tail only [30, proof of Proposition 1], so violations remain minor.
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98 E.-M. WALZ, A. HENZI, J. ZIEGEL, AND T. GNEITING

are step functions that correspond to discrete predictive distributions with mass at (a
subset of) the unique values \~y1 < \cdot \cdot \cdot < \~yk only.

The IDR approach has desirable properties that make it suitable for uncertainty
quantification. By (2.4), the EasyUQ CDFs depend on the order of x1, . . . , xn, but not
on their values, and hence the solution is invariant under strictly monotone transfor-
mations of the model output, except for interpolation choices when x \not \in \{ x1, . . . , xn\} .
Furthermore, the EasyUQ distributions are in-sample calibrated [35, Thm. 2]. Im-
portantly, a comparison of the loss function in (2.4) and the definition of the CRPS
in (2.2) reveals that EasyUQ minimizes the CRPS over all conditional distributions
satisfying the stochastic order constraints. Furthermore, the EasyUQ solution is uni-
versal, in the sense that it is simultaneously in-sample optimal with respect to com-
prehensive classes of proper scoring rules in terms of conditional CDFs or conditional
quantiles, such as, e.g., weighted forms of the CRPS with the Lebesgue measure in
(2.2) replaced by a general measure [35, Thm. 2]. Other approaches to estimating
conditional CDFs, e.g., based on parametric models, nearest neighbors, or kernel re-
gression, do not share the universality property, and estimates change depending on
the loss function at hand.

In Figure 1 we illustrate EasyUQ predictive CDFs in the empirical WeatherBench
example. Simulation examples, to which we turn now, have the advantage that the
true conditional CDFs are available, so we can compare with them. Figure 2 illustrates
the construction of the discrete EasyUQ predictive distributions step by step, based
on a training archive of the form (2.1) with n = 500 simulated from a bivariate
distribution, where the model output X is uniform on (0, 10) and the outcome Y
satisfies

Y | X \sim Gamma(shape =
\surd 
X, scale = min\{ max\{ X, 2\} , 8\} ).(2.6)

EasyUQ converts the single-valued model output X into conditional predictive CDFs
close to the right-skewed true ones. Indeed, IDR and, hence, EasyUQ are asymptot-
ically consistent: As the training archive size n grows, the estimated EasyUQ CDFs
converge to the true conditional CDFs [20, 35, 50]. Of particular relevance to EasyUQ
is the following recent result [33, Thm. 5.1]: If x1, . . . , xn themselves are not fixed but
are predictions from a statistical model that is estimated on the same training data,
then IDR is a consistent estimator of the true conditional distributions, subject to
mild regularity conditions.

The basic EasyUQ method extends readily to vector-valued model output. If
x1, . . . , xn are vectors in a space with a partial order \preceq , then the same approach (2.4)
applies with the usual inequality \leq replaced by the partial order \preceq . This allows more
flexibility in the sense that distributions Fx and Fx\prime are allowed to be incomparable
in stochastic order if x and x\prime are incomparable in the partial order. A prominent
example concerns ensemble weather forecasts [27, 44, 52], where a numerical model
is run several times under distinct conditions, and the partial order \preceq that underlies
IDR can be tailored to this setting [35].

To summarize, the basic EasyUQ method provides a data driven, theoretically
principled, and fully automated approach to uncertainty quantification that is devoid
of any need for implementation choices. Based on training data, EasyUQ converts
single-valued model output into calibrated predictive distributions that reflect the
uncertainty in the model output and training data, as opposed to tuning intense
methods, where uncertainty quantification might reflect implementation decisions and
user choices. The EasyUQ predictive solution is invariant under strictly monotone
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Fig. 2 Computation of EasyUQ predictive distributions from a training archive of n = 500 model
output--outcome pairs simulated according to (2.6). (a) The minimizer \^Fx(y) of (2.5) at
y = 7, interpolated linearly in x. The jiggled dots show the indicators 1\{ yi \leq y\} . (b)

EasyUQ conditional CDFs \^Fx (step functions) and the respective true conditional CDFs
(smooth curves) at selected values of x. The vertical line at y = 7 highlights the values
marked in the top panel. (c) Training data (xi, yi) for i = 1, . . . , n, and conditional quantile

curves \^qx(p) resulting from inversion of the EasyUQ CDFs \^Fx. The lowest and highest
quantile curves (levels 0.05 and 0.95) together delineate equal-tailed 90\% prediction intervals.

transformations of the model output, it is in-sample calibrated, it is in-sample optimal
with respect to comprehensive classes of loss functions, and subject to mild conditions
it is asymptotically consistent for both output from deterministic models and output
from statistical or machine learning models, even when the model is learned on the
same data.2

2By Theorem 2 of Henzi, Ziegel, and Gneiting [35], the fitted EasyUQ distributions are threshold
calibrated, i.e., the predicted nonexceedance probabilities equal their empirical counterparts in the
training data. Furthermore, the fitted distributions are empirical score minimizers under a large
class of proper scoring rules. For discussion of the regularity conditions for asymptotic consistency,
we refer the reader to Appendix A in this paper, section 5 in [33], and section 2.4 in [35].
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100 E.-M. WALZ, A. HENZI, J. ZIEGEL, AND T. GNEITING

2.3. Illustration on WeatherBench Challenge. In a notable development,
WeatherBench [57] introduces a benchmark dataset for the comparison of purely data
driven and numerical weather prediction (NWP) model based approaches to weather
forecasting. Following up on the illustration in Figure 1, where we consider a grid
point at (latitude, longitude) values of (53.4375, 16.875), we now provide background
information and quantitative results at grid points worldwide.

Our experiments are based on the setup in WeatherBench and consider forecasts of
upper air temperature at a vertical level of 850 hPa pressure. The forecasts are issued
twice daily at 00 and 12 Coordinated Universal Time (UTC) at lead times of three and
five days ahead. The single-valued HRES forecast is from the high-resolution model
operated by the European Centre for Medium-Range Weather Forecasts (ECMWF),
which represents the physics and chemistry of the atmosphere and is generally consid-
ered to be the leading global NWP model. To reduce the amount of data, Weather-
Bench regrids the HRES model output and the respective outcomes, which originally
are on a 0.25 degree latitude--longitude grid (72\times 144), to coarser resolution (32\times 64)
via bilinear interpolation. The CNN forecast is also single-valued; it is purely data
driven and based on a convolutional neural network (CNN), with trained weights be-
ing available in WeatherBench. The single-valued Climatology forecast is the best
performing baseline model from WeatherBench; it is obtained as the arithmetic mean
of the observed upper air temperature in the training data, stratified by 52 calender
weeks.

Conformal prediction (CP) [72, 75] is an increasingly popular, general technique
for the construction of predictive distributions from single-valued model output. For a
comparison with EasyUQ, we employ CP in the form of the Studentized least squares
prediction machine (LSPM) [72, Algorithm 7.2] with the single-valued model output as
sole covariate. We consider CP to be a key competitor as it is an output-based method
that shares desirable properties of EasyUQ. Specifically, the LSPM supplements a least
squares based point prediction of the outcome with a conformal predictive system for
uncertainty quantification. Based on training data (xi, yi), where i = 1, . . . , n  - 1,
Algorithm 7.2 returns a fuzzy predictive distribution [72, eq. (7.7)] that is defined in
terms of quantities C1, . . . , Cn - 1. Comparative evaluation requires a crisp predictive
distribution for which we use the empirical distribution of C1, . . . , Cn - 1, which adheres
to the bounds imposed by the fuzzy distribution.3 For moderate to large training sets
and x the value of the model output at hand, Ci typically is very close to \^y+ yi  - \^yi,
where \^y and \^yi are least squares point predictions based on x and xi, respectively [72,
sect. 7.3.4].

Finally, we consider the state-of-the-art approach to uncertainty quantification
in weather prediction, namely, ensemble forecasts [27, 44, 52], which are input-based
methods. Specifically, we use the world leading ECMWF Integrated Forecast Sys-
tem (IFS; see https://www.ecmwf.int/en/forecasts), which comprises 51 NWP runs,
namely, a control run and 50 perturbed members [49]. The control run is based on
the best estimate of the initial state of the atmosphere, and the perturbed members
start from slightly different states that represent uncertainty. Even a single NWP

3Here and in section 3.4, we adopt the convention in Vovk, Gammerman, and Shafer [72, sect. 7.2]
and assume that the size of the training set is n  - 1, rather than n, to allow for direct references
to material therein. The respective crisp CDF is given by F (y) = i/n for y \in (C(i), C(i+1)) and
i = 0, 1, . . . , n  - 1, and F (y) = i\prime \prime /n for y = C(i) and i = 1, . . . , n  - 1, where C(0) =  - \infty , C(1) \leq 
\cdot \cdot \cdot \leq C(n - 1) are the order statistics of C1, . . . , Cn - 1, C(n) = \infty , and i\prime \prime = max\{ j : C(j) = C(i)\} .
For related discussion and alternative choices of a crisp CDF that is compatible with the fuzzy CDF,
see section 2 of Bostr\"om, Johansson, and L\"ofstr\"om [7] and section 5 of Vovk et al. [74].
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Table 1 Predictive performance in terms of mean CRPS for WeatherBench forecasts of upper air
temperature at lead times of three and five days, in degrees Kelvin. The evaluation period
comprises calendar years 2017 and 2018. CP and EasyUQ generate predictive CDFs that
are fitted at each grid point individually, based on training data from 2010 through 2016.
Forecasts are issued twice daily, and scores are averaged over 32 \times 64 grid points, for a
total of 2,990,080 forecast cases.

Forecast CRPS

Type Method Three Days Five Days

Single-valued Climatology 2.904 2.904

CNN 2.365 2.782

HRES 0.998 1.543

Distributional CP on Climatology 2.055 2.055

CP on CNN 1.673 1.955

CP on HRES 0.731 1.123

Distributional EasyUQ on Climatology 2.038 2.038

EasyUQ on CNN 1.671 1.949

EasyUQ on HRES 0.736 1.122

Distributional ECMWF Ensemble 0.696 0.998

model run, such as the HRES run, is computationally very expensive, and computing
power is the limiting factor to improving model resolution. Despite having coarser
resolution, an ensemble typically requires 10 to 15 times more computing power than
a single run [3]. In contrast, the implementation of the output-based CP and EasyUQ
methods is fast, with hardly any resources needed beyond a single NWP model run.

To compare CP and EasyUQ predictive CDFs to the respective single-valued
forecasts, we use the CRPS from (2.2) and recall that for single-valued forecasts
the mean CRPS reduces to the mean absolute error (MAE). As evaluation period,
we take calendar years 2017 and 2018; for estimating the CP and EasyUQ predictive
distributions, we use training data from calendar years 2010 through 2016 and proceed
grid point by grid point. The corresponding results are provided in Table 1. Not
surprisingly, the ECMWF ensemble forecast has the lowest mean CRPS. However,
CP and EasyUQ based on the HRES model output result in promising CRPS values,
even though the methods require considerably less computing time and resources.

The CP and EasyUQ predictive distributions show nearly identical predictive
performance. To understand this behavior, we note that in the case of temperature,
Gaussian predictive distributions with fixed variance are typically very adequate (see,
e.g., [29, Table 3]). In this light, key requirements of CP in the form of the LSPM
(namely, fixed spread and fixed shape of the predictive distributions) and EasyUQ
(namely, isotonicity) are reasonably met. While EasyUQ generates predictive distri-
butions that vary in spread and shape, the variations remain modest (Figure 1(c)--(f)),
and the CP distributions, which essentially are translates of each other, are competi-
tive.

The subsequent case study turns to a weather variable that is not covered by
the WeatherBench challenge, but which serves to illuminate and highlight differences
between the CP and EasyUQ techniques.

2.4. Illustration on Precipitation Forecasts. Precipitation accumulation is gen-
erally considered the ``most difficult weather variable to forecast"" [19]. Indeed, the
uncertainty quantification for deterministic forecasts of precipitation is more challeng-
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102 E.-M. WALZ, A. HENZI, J. ZIEGEL, AND T. GNEITING

ing than for temperature, since precipitation accumulation follows a mixture distri-
bution with a point mass at zero---for no precipitation---and a continuous part on the
positive real numbers. Applying CP without corrections is bound to transfer mass to
negative values of precipitation accumulation. Taking advantage of knowledge about
the outcome distribution, a natural remedy is to censor at zero and use the CDF

G(y) =

\Biggl\{ 
0, y < 0,

F (y), y \geq 0,

in lieu of F .4 In contrast, the EasyUQ predictive distributions reflect the nonnega-
tivity of the outcomes in the training data, without any need for adaptation.

We now investigate the performance of CP and EasyUQ within the experimental
setup from Henzi, Ziegel, and Gneiting [35], taking forecasts and observations of
24-hour accumulated precipitation from 6 January 2007 through 1 January 2017 at
Frankfurt Airport, Germany. Just as in the WeatherBench example, we consider a
weekly climatology, the HRES forecast, and the 51 member NWP ensemble from
ECMWF. The weekly climatology is computed over the period 2007 to 2014, which
is the same period that is used for CP and EasyUQ training. The evaluation period
comprises calendar years 2015 and 2016. Table 2 shows the mean CRPS over the
evaluation period for the various types of forecasts at lead times from one to five
days. Evidently, the climatological forecasts, along with their scores, do not depend
on the lead time. In contrast to the WeatherBench temperature example, EasyUQ
outperforms CP for both Climatology and the HRES model output, and at all lead
times. While censoring improves the distributional forecasts from CP, the performance
gap to EasyUQ remains pronounced. EasyUQ on the HRES model output even
outperforms the raw ECMWF ensemble at lead times of one and two days.5

Figure 3 provides a graphical comparison of CP on HRES, Censored CP on HRES,
EasyUQ on HRES, and ECMWF ensemble forecasts at small (x = 0.38), moderate
(x = 3.40), and large (x = 11.93) values of the HRES model output x. We see that
the CP predictive distributions are essentially translates of each other, with mass
potentially being transferred to negative values of precipitation accumulation, and
censoring shifting any such mass to zero. In contrast, the ECMWF ensemble and
EasyUQ distributions do not have mass at negative values, and they vary in shape

4In our experiments, we train without consideration of censoring, and we censor at zero ex post.
For a nonnegative outcome, such a procedure guarantees improvement in the technical sense that
CRPS(G, y) \leq CRPS(F, y) for all y \geq 0. Alternatively, one might take censoring into account during
training. However, methods of this latter type are more complex to implement, and improvements
in CRPS cannot be guaranteed out-of-sample.

5This is largely due to the fact that gridded ensemble predictions are compared against station
observations. To counter these effects, the ensemble forecast itself can be subjected to statistical
postprocessing, i.e., the application of statistical methods to correct for biases and dispersion errors
[29, 55]. Parametric methods based on distributional regression [48, 62] model the distribution of
precipitation accumulation with censored logistic or censored generalized extreme value distributions.
An alternative approach is taken in Bayesian model averaging [67], which posits separate parametric
forms for the probability of zero precipitation and the density at positive amounts. Evidently,
discrete-continuous mixture distributions considerably complicate model building and estimation,
and great efforts are made to find suitable parametric families for specific weather variables. For a
detailed performance comparison on the data on hand, see Figure 5 of Henzi, Ziegel, and Gneiting
[35], whose study also includes versions of IDR with multivariate covariates derived from the full
ECMWF ensemble and suitable partial orders on them, an option alluded to at the end of section
2.2. These yield improvements compared to both the raw ensemble forecast and EasyUQ on HRES,
at the price of higher conceptual complexity, higher computational costs, and the need for access to
the full ensemble, rather than single-valued HRES model output.
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EASY UNCERTAINTY QUANTIFICATION 103

Table 2 Predictive performance in terms of mean CRPS for forecasts of daily precipitation accu-
mulation at Frankfurt Airport at lead times from one to five days, in millimeters. CP and
EasyUQ generate predictive CDFs based on training data from 2007 through 2014. The
evaluation period comprises calendar years 2015 and 2016.

Forecast CRPS

Type Method 1 Day 2 Days 3 Days 4 Days 5 Days

Single-valued Climatology 2.187 2.187 2.187 2.187 2.187

HRES 1.125 1.294 1.412 1.478 1.686

Distributional CP on Climatology 1.382 1.382 1.382 1.382 1.382

CP on HRES 0.886 0.966 1.063 1.081 1.129

Censored CP on Climatology 1.324 1.324 1.324 1.324 1.324

Censored CP on HRES 0.850 0.925 1.031 1.050 1.100

Distributional EasyUQ on Climatology 1.242 1.242 1.242 1.242 1.242

EasyUQ on HRES 0.732 0.803 0.876 0.945 1.001

Distributional ECMWF Ensemble 0.752 0.847 0.856 0.918 0.981

Fig. 3 One-day ahead forecasts of daily precipitation accumulation at Frankfurt Airport valid 23
January 2015 (left, HRES model output x equal to 0.38, as indicated by the blue cross), 14
January 2015 (middle, x = 3.40), and 21 February 2016 (right, x = 11.93), in millimeters.
The predictive distributions for CP on HRES, Censored CP on HRES, EasyUQ on HRES,
and ECMWF ensemble techniques are shown. The observed precipitation accumulation was
at y = 0, y = 2, and y = 17 millimeters, respectively.

and scale. However, while the ECMWF ensemble tends to show forecast distributions
that are too narrow, as is frequently observed in practice [27] and illustrated by
the right-hand example, the EasyUQ distributions, which are based on the single-
valued HRES forecast only, show what appears to be adequate spread. Remarkably,
and unlike any other method that we are aware of, EasyUQ achieves this desirable
performance in its very basic form, without any need for implementation decisions,
parameter tuning, or other forms of adaptation and intervention.

3. Smooth EasyUQ. EasyUQ provides discrete predictive distributions with
positive probability mass at the outcomes from the training archive. For genuinely
discrete outcomes, the variable of interest attains a small number of unique values
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104 E.-M. WALZ, A. HENZI, J. ZIEGEL, AND T. GNEITING

only, which is a desirable property. For genuinely continuous variables, it is preferable
to use continuous predictive distributions. We now describe the Smooth EasyUQ
technique, which turns the discrete basic EasyUQ CDFs into continuous Smooth
EasyUQ CDFs with Lebesgue densities, while preserving isotonicity. To achieve this,
Smooth EasyUQ applies kernel smoothing, which requires implementation choices,
unlike basic EasyUQ which does not require any tuning. However, we provide default
options.

3.1. Smooth EasyUQ: Kernel Smoothing under Isotonicity Preservation. Our
goal is to transform the discrete basic EasyUQ CDFs \^Fx from (2.5) into smooth pre-
dictive CDFs \v Fx that admit Lebesgue densities \v fx without abandoning the order
relations honored by the basic technique. To this end, we define the Smooth EasyUQ
CDF as

\v Fx(y) =

\int \infty 

 - \infty 
\^Fx(t)Kh(y  - t) dt,(3.1)

where Kh(u) = (1/h)\kappa (u/h) for a smooth probability density function or kernel \kappa ,
such as a standardized Gaussian or Student-t density, with bandwidth h > 0. While
the convolution approach in (3.1) is perfectly general for the smoothing of CDFs,
we henceforth focus the presentation on EasyUQ. The choice of the kernel and the
bandwidth are critical, and we tend to their selection in the next section, where we
introduce multiple one-fit grid search as a computationally efficient alternative to
cross-validation.

For now, recall that \^Fx(y) from (2.5) is a step function with possible jumps at
the unique values \~y1 < \cdot \cdot \cdot < \~yk of the outcomes y1, . . . , yn in the training set. Hence,
we can write (3.1) as

\v Fx(y) =
k\sum 

j=1

\^Fx(\~yj)

\int \~yj+1

\~yj

Kh(y  - t) dt,

where \~yk+1 = \infty . To compute the density \v fx = \v F \prime 
x, we set \~y0 =  - \infty , note that \^Fx

assigns mass wj(x) = \^Fx(\~yj) - \^Fx(\~yj - 1) to \~yj , and find that

\v fx(y) =
k\sum 

j=1

\^Fx(\~yj) [Kh(y  - \~yj) - Kh(y  - \~yj+1)] =
k\sum 

j=1

wj(x)Kh(y  - \~yj).(3.2)

In other words, the Smooth EasyUQ density \v fx from (3.2) arises as a kernel smoothing
of the discrete probability measure that corresponds to \^Fx and assigns weight wj(x)
to \~yj . Consequently, \v fx is a probability density function, \v Fx is a proper CDF, and,
notably, Smooth EasyUQ preserves the stochastic ordering of the basic EasyUQ esti-
mates. In Figure 4 we illustrate the interpretation of the Smooth EasyUQ density as
a kernel smoothing of the EasyUQ point masses wj(x) on the WeatherBench example.

Subject to mild regularity conditions, the asymptotic consistency of EasyUQ car-
ries over to Smooth EasyUQ. To demonstrate this, we prove a general consistency
theorem for estimates of conditional CDFs in Appendix A. Here, we sketch how the
result applies in the special case of Smooth EasyUQ. Specifically, let \v Fx;n denote the

Smooth EasyUQ estimator from (3.1), where the basic estimate \^Fx is trained on a
sample of size n from a population with true conditional CDFs Fx that are H\"older
continuous with constants \alpha \in (0, 1] and L > 0. Suppose that the function Kh in (3.1)
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Fig. 4 Smooth EasyUQ predictive density (3.2) in the WeatherBench example from Figure 1(f)
at HRES model output x equal to 268 degrees Kelvin. The vertical bars show the weights
w1(x), . . . , wk(x) that the discrete EasyUQ distribution \^Fx assigns to the unique values \~y1 <
\cdot \cdot \cdot < \~yk of the outcomes in the training set, where k = 76.

uses a kernel \kappa with a finite absolute moment c\kappa ,\alpha of order \alpha , and allow the bandwidth
hn > 0 to vary with the sample size. Crucially, we assume that the sup-error of the
basic estimate \^Fx at sample size n is upper bounded by \varepsilon n in the asymptotic sense
specified by (A.2); a choice of \varepsilon n \sim (log(n)/n)1/3 applies to EasyUQ if on an interval
(a, b) the covariate values x1, . . . , xn are sufficiently dense and the conditional CDFs
are Lipschitz continuous in x. Then Theorem A.3 implies that, for some sequence of
\delta n > 0 converging to zero,

lim
n\rightarrow \infty 

\BbbP 

\Biggl( 
sup

y\in \BbbR , x\in (a+\delta n,b - \delta n)

\bigm| \bigm| \v Fx;n(y) - Fx(y)
\bigm| \bigm| \geq \varepsilon n + Lc\kappa ,\alpha h

\alpha 
n

\Biggr) 
= 0.(3.3)

If h\alpha 
n = \scrO (\varepsilon n), the Smooth EasyUQ CDFs converge with the same rate as the basic

EasyUQ CDFs. For details, proofs, and discussion, see Appendix A. In a nutshell,
smoothness conditions on the true conditional CDFs are essential and unproblematic,
as one should not be replacing the basic version of EasyUQ by Smooth EasyUQ in
practice, unless the subject matter indicates an absolutely continuous distribution of
the outcome. For instance, in the precipitation forecasting example from section 2.4,
basic EasyUQ outperforms Smooth EasyUQ and a censored version of it at all lead
times; cf. Tables 2 and 4.

3.2. Choice of Kernel and Bandwidth: Multiple One-Fit Grid Search. In order
to compute the Smooth EasyUQ density \v fx from (3.2), one needs to choose a kernel
\kappa and a bandwidth h > 0 to yield a mixture of translates of the density Kh(u) =
(1/h)\kappa (u/h). While there is a rich literature on bandwidth selection for kernel density
estimation and kernel regression (see, e.g., [39, 66]), caution is needed when applying
established approaches to Smooth EasyUQ, due to the fact that smoothing is applied
to estimated conditional CDFs rather than raw data.

Furthermore, while the extant literature focuses on bandwidth selection for a fixed
kernel, approaches of this type are restrictive for our purposes. The Smooth EasyUQ
density from (3.2) inherits the tail behavior of the kernel \kappa , and so the properties of
the kernel are of critical importance to the quality of the uncertainty quantification
in the tails of the conditional distributions. To allow for distinct tail behavior, we use
the Student-t family and set K\nu ,h(u) = (1/h)\kappa \nu (u/h), where

\kappa \nu (y) =
\Gamma ((\nu + 1)/2)

(\pi \nu )1/2 \Gamma (\nu /2)

\biggl( 
1 +

y2

\nu 

\biggr)  - (\nu +1)/2

(3.4)
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106 E.-M. WALZ, A. HENZI, J. ZIEGEL, AND T. GNEITING

is a standardized Student-t probability density function with \nu > 0 degrees of freedom.
It is well known that the Student-t distribution has a finite first moment if \nu > 1 and a
finite variance if \nu > 2. In the limit as \nu \rightarrow \infty , we find that \kappa \nu (y) \rightarrow \kappa \infty (y) uniformly
in y, where \kappa \infty (y) = (2\pi ) - 1/2 exp( - y2/2) is the standard Gaussian density function,
so the ubiquitous Gaussian kernel emerges as a limit case in (3.4).

Turning to the choice of the tail parameter \nu \in (0,\infty ] and the bandwidth h > 0,
we begin by discussing the latter. A popular approach for bandwidth selection, in
both kernel regression and kernel density estimation, is leave-one-out cross-validation.
Here the target criterion in terms of the bandwidth is

CV(h) =
1

n

n\sum 
i=1

S( \v Fxi, - i,h, yi),(3.5)

where S is a proper scoring rule and \v Fxi, - i,h is the Smooth EasyUQ CDF with co-
variate xi and bandwidth h, estimated with all data from (2.1) except for the ith
instance. The optimization of the target criterion (3.5) uses either the CRPS as loss
function S, as is (implicitly) suggested for the estimation of conditional CDFs and
quantile functions (see, e.g., [8, p. 801] and [45, p. 58]) and yielding a target that is
asymptotically equivalent to the integrated mean squared error [35, sect. S4], or the
LogS, as is proposed for ensemble smoothing [10]. We take the latter as the default
choice, since the LogS is much more sensitive to the choice of the bandwidth h than
the more robust CRPS.

However, there are a number of caveats. Empirical data are typically discrete to
some extent and might contain ties in the response variable, such as in the setting of
Figure 4, where there are only m = 76 unique values among the outcomes y1, . . . , yn,
even though \v fx is estimated from a training archive of size n = 5,114. In such cases,
the optimal cross-validation bandwidth under the LogS may degenerate to h = 0, a
problem that is also known in density estimation [66, pp. 51--55], in the estimation
of Student-t regression models [21] and, in related form, in performance evaluation
for forecast contests [40, 54]. Another issue is that leave-one-out cross-validation is
computationally expensive, as for each value of h it requires the computation of n
distinct IDR solutions. While a potential remedy is to remove a higher percentage
of observations in each cross-validation step, we use a considerably faster approach,
which we term one-fit grid search, that addresses both issues simultaneously.

One-fit grid search avoids repeated fits of IDR and computes EasyUQ only once,
namely, on the full sample from (2.1). Specifically, given any fixed kernel \kappa , one-fit
grid search finds the optimal bandwidth h in terms of the target criterion

OF(h) =
1

n

n\sum 
i=1

S( \=Fxi, - i,h, yi),(3.6)

where \=Fxi, - i,h removes the unique value \~yj = yi from the support of \v Fxi
in (3.1) by

setting wj(x) in (3.2) to zero and rescaling the remaining weights. We choose the
LogS as the default option for the loss function S in the one-fit criterion (3.6), and
we use Brent's algorithm [9] for optimization. Effectively, one-fit grid search is a fast
approximation to cross-validation, and when n is small, leave-one-out cross-validation
and the original criterion in (3.5) can be used instead, of course. To choose a Student-t
kernel, we repeat the procedure, i.e., we consider values of \nu \in \{ 2, 3, 4, 5, 10, 20,\infty \} 
in (3.4), with \nu = \infty yielding the Gaussian limit, apply one-fit grid search for each of
these values to find the respective optimal bandwidth h, and select the combination
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EASY UNCERTAINTY QUANTIFICATION 107

Table 3 Predictive performance in terms of mean LogS and mean CRPS for WeatherBench density
forecasts of upper air temperature at lead times of three and five days, in degrees Kelvin.
The evaluation period comprises calendar years 2017 and 2018. The Single Gaussian,
Smooth CP, and Smooth EasyUQ methods are trained at each grid point individually,
based on data from 2010 through 2016. Forecasts are issued twice daily, and scores are
averaged over 32\times 64 grid points, for a total of 2,990,080 forecast cases.

Density Forecast LogS CRPS

Days Ahead Three Five Three Five

Single Gaussian on Climatology 2.578 2.578 2.060 2.060

Single Gaussian on CNN 2.413 2.553 1.696 1.983

Single Gaussian on HRES 1.694 2.073 0.748 1.153

Smooth CP on Climatology 2.562 2.562 2.059 2.059

Smooth CP on CNN 2.384 2.519 1.672 1.952

Smooth CP on HRES 1.627 2.007 0.732 1.123

Smooth EasyUQ on Climatology 2.540 2.540 2.043 2.043

Smooth EasyUQ on CNN 2.375 2.509 1.667 1.945

Smooth EasyUQ on HRES 1.640 2.006 0.736 1.122

Smoothed ECMWF Ensemble 1.503 1.824 0.685 0.990

of \nu and h for which the target criterion (3.6) is smallest overall. While being highly
effective in our experience, multiple one-fit grid search is a crude approach, and we
encourage further development.

3.3. Illustration on Temperature and Precipitation Forecast Examples. For
an initial illustration, we return to the WeatherBench challenge and the Smooth
EasyUQ densities in Figures 1(f) and 4, where n = 5,114 and m = 76, and multiple
one-fit grid search with respect to the LogS yields parameter values \nu = \infty and
h = 0.60 in the kernel density (3.4). Considering the 32 \times 64 = 2,048 grid points
in WeatherBench and predictions three days ahead, the value of \nu selected the most
frequently for Smooth EasyUQ on the HRES model output, namely, 619 times, is
\nu = 10, with a median choice of h = 0.49. For Smooth EasyUQ on Climatology
and CNN, \nu = \infty was most frequently selected, namely, 1,391 and 1,361 times with
median choices of h = 0.85 and h = 1.04, respectively.

A very simple and frequently used reference method for converting single-valued
model output into a predictive density is the Single Gaussian technique [17]. It issues
a Gaussian distribution with mean equal to the single-valued model output and a con-
stant variance that is optimal with respect to the mean LogS on a training set, which
here we take to be the same as for EasyUQ. Evidently, both Smooth EasyUQ and the
Single Gaussian technique could be trained in terms of the CRPS as well. We also
compare to the Smooth CP technique, which converts the discrete CP distributions
to densities as described in the next section.

In Table 3, we evaluate Smooth EasyUQ, Smooth CP, and Single Gaussian density
temperature forecasts in the WeatherBench setting. For evaluation, we use both the
CRPS and the LogS. Throughout, Smooth EasyUQ and Smooth CP outperform the
Single Gaussian method, though they do not match the performance of the smoothed
ECMWF ensemble forecast, which we construct as follows. Let \~z1 < \cdot \cdot \cdot < \~zk be the
unique values of the ensemble members z1, . . . , zl of an ensemble forecast of size l.
The smoothed ensemble CDF is then of the form (3.1) with mass wj =

1
l

\sum l
i=1 1(zi =
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108 E.-M. WALZ, A. HENZI, J. ZIEGEL, AND T. GNEITING

Table 4 Predictive performance in terms of mean CRPS for density forecasts of daily precipitation
accumulation at Frankfurt Airport at lead times from one to five days, in millimeters. CP
and EasyUQ generate predictive CDFs based on training data from 2007 through 2014.
The evaluation period comprises calendar years 2015 and 2016.

Density Forecast 1 Day 2 Days 3 Days 4 Days 5 Days

Single Gaussian on HRES 1.244 1.380 1.547 1.577 1.724

Censored Single Gaussian on HRES 1.013 1.145 1.266 1.276 1.401

Smooth CP on HRES 0.886 0.971 1.064 1.087 1.132

Censored Smooth CP on HRES 0.849 0.928 1.028 1.052 1.098

Smooth EasyUQ on HRES 0.760 0.828 0.901 0.968 1.033

Censored Smooth EasyUQ on HRES 0.745 0.817 0.893 0.960 1.016

Smoothed ECMWF Ensemble 0.762 0.855 0.863 0.924 0.986

Censored Smoothed ECMWF Ensemble 0.750 0.850 0.860 0.921 0.984

\~zj) for j = 1, . . . , k. Interestingly, this is the same as Br\"ocker--Smith smoothing of
ensemble forecasts [10, relations (19)--(21)] with parameters a = 1 and r1 = r2 = s2 =
0 being fixed. However, while Br\"ocker and Smith use a Gaussian kernel and optimize
the bandwidth parameter only, we take a more flexible approach and consider values
of \nu \in \{ 2, 3, 4, 5, 10, 20,\infty \} for a Student-t kernel to find the optimal \nu and bandwidth
h in terms of the LogS. Across the 2,048 grid points, the most frequent choice is \nu = 5,
namely, 743 times, with a median bandwidth value of h = 0.50.

While smoothing is warranted for temperature forecasts, it is problematic for
forecasts of precipitation accumulation due to the nonnegativity of the outcome and
the point mass at zero. Indeed, due to the kernel smoothing, the Smooth EasyUQ and
smoothed ECMWF ensemble densities have mass on the negative halfaxis, unlike the
discrete (basic) EasyUQ and (raw) ECMWF distributions, which are concentrated on
the nonnegative halfaxis. Nonetheless, Table 4 compares the predictive performance
of Single Gaussian, Smooth CP, Smooth EasyUQ, and smoothed ECMWF ensemble
forecasts in the setting of section 2.4, in both the original and the censored variants.
The results mirror the findings in Table 2 in that censoring yields improvement and
EasyUQ outperforms CP, whereas CP outperforms the Single Gaussian technique.

3.4. Computational Considerations. We add a brief discussion of the compu-
tational complexity of output-based methods for uncertainty quantification. For this
comparison, we utilize the setting of Algorithm 7.2 in Vovk, Gammerman, and Shafer
[72], which requires predictive distributions for m new values of x based on a training
set of size n - 1 with instances (x1, y1), . . . , (xn - 1, yn - 1). We report upper estimates
of the computational complexity for the Single Gaussian technique, CP, and EasyUQ,
considering both training (i.e., initial operations on the training data only) and in-
ference (i.e., operations to be repeated for each new value). For the simplistic Single
Gaussian technique, training requires \scrO (n) operations and inference is straightfor-
ward.

For EasyUQ, the main effort lies in training, where the complexity is upper
bounded by \scrO (n2) operations [34]. Training the EasyUQ CDFs only on a fixed grid
of ordinates guarantees a cost reduction to \scrO (n log n) operations, and Henzi, Ziegel,
and Gneiting [35] describe approaches based on subset aggregation that reduce the
computational burden for estimation. That said, the numerical experiments in our
paper use the standard implementation throughout, without exception. For inference,
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EASY UNCERTAINTY QUANTIFICATION 109

each new value of x requires the determination of its position within the unique val-
ues across x1, . . . , xn - 1, followed by interpolation of the trained EasyUQ CDFs at the
predecessor and successor values, at up to \scrO (mn) operations.

For CP in the form of the Studentized LSPM [72, Alg. 7.2] essentially no training
is required, but inference incurs \scrO (mn2) operations. Residual-based approximations
to CP, which are instances of split conformal predictive systems [72, sect. 7.3.4], [73],
are much faster, shift the bulk of the cost to training at \scrO (n) operations, and yield
nearly identical predictive performance to CP in our experience, except when training
sets are small.

For both CP and EasyUQ, we have implemented smoothing in ways that avoid
cross-validation and honor the aforementioned bounds. Smooth EasyUQ uses one-
fit grid search as developed in this paper. To generate the Smooth CP densities,
we use kernel smoothing with a Gaussian kernel and bandwidth chosen according to
Silverman's rule of thumb [66], applied to the quantities C1, . . . , Cn - 1 that arise for
each new instance separately.

In the aforementioned experiments, we generally found the computational cost of
EasyUQ to be nested in between the costs of CP and residual-based approximations
to CP.6 Compared to the enormous effort of running the HRES model or even the
input-based ECMWF ensemble method, which require the operational use of super-
computers, run times and computational costs for the output-based Single Gaussian,
CP, and EasyUQ techniques are negligible.

4. EasyUQ and Neural Networks. Neural networks and deep learning tech-
niques have enabled unprecedented progress in predictive science. However, as they
``can struggle to produce accurate uncertainties estimates . . . there is active research
directed toward this end"" [2, p. 67], which has intensified in recent years [1, 14, 18,
22, 37, 41, 42, 46, 75]. We now discuss how EasyUQ and Smooth EasyUQ can be
used to yield accurate uncertainty statements from neural networks. Evidently, our
methods apply in the ways described thus far, where single-valued model output is
treated as given and fixed, with subsequent uncertainty quantification via EasyUQ or
Smooth EasyUQ being a completely separate add-on, as illustrated using our temper-
ature and precipitation examples. In the context of neural networks, this means that
the network parameters are optimized to yield single-valued output, and only then is
EasyUQ applied. We now describe a more elaborate approach where we integrate our
methods within the typical workflow of neural network training and evaluation.

4.1. Integrating EasyUQ into the Workflow of Neural Network Learning and
Hyperparameter Optimization. Neural networks and associated methods for un-
certainty quantification are developed and evaluated in well-designed workflows that
involve multiple splits of the available data into training, validation, and test sets.
For each split, the training set is used to learn basic neural network parameters, the

6To provide intuition into computation times, we report mean run times for the Single Gaussian
technique, CP, and EasyUQ applied to the HRES forecast in the setting of Table 2, where the training
set is of size 2,896 and the evaluation set of size 721. The mean run time averaged over the five lead
times is 0.005 seconds for the Single Gaussian technique, 0.45 seconds for CP, and 0.085 seconds for
EasyUQ. We note that the computing time for CP on a CPU is 33.64 seconds, but can be reduced to
0.45 seconds on a GPU. Evidently, the comparison faces the usual challenges, given that execution
times depend on factors including but not limited to hardware architecture, disk speed, memory
availability, and the programming language and compiler used. Specific to the situation at hand,
we use code in Python, R, and C++, run some functions on a GPU and others on a CPU, and it
is unlikely that every one of our implementations, which typically are based on packages, has been
coded in the most efficient way.
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Algorithm 4.1 Integration of Smooth EasyUQ into the workflow of neural network
training and hyperparameter tuning. The procedure returns the mean score of the
Smooth EasyUQ predictions across data splits.

1: for split in mysplit do
2: separate data into training set, validation set, and test set
3: for hyperpar in myhyperpar do
4: learn neural network with hyperpar on training set
5: use neural network output to fit basic EasyUQ on training set
6: use moderated grid search to select EasyUQ parameters \nu and h
7: save selected (\nu , h) and mean score on validation set
8: end for
9: select best hyperpar and associated (\nu , h), based on smallest mean score

10: relearn network with best hyperpar on combined training and validation sets
11: use relearned neural network output to refit basic EasyUQ on combined

training and validation sets
12: use Smooth EasyUQ based on refitted EasyUQ with best (\nu , h) for predictions

on test set
13: save scores on test set
14: end for
15: return mean score across splits

validation set is used to tune hyperparameters, and the test set is used for out-of-
sample evaluation. Scores are then averaged over the tests sets across the splits, and
methods with low mean score are preferred.

Algorithm 4.1 describes how Smooth EasyUQ can be implemented within this
typical workflow of neural network learning and hyperparameter tuning. In a nutshell,
we treat the kernel parameters for Smooth EasyUQ, namely, the Student-t parameter
\nu and the bandwidth h, as supplemental hyperparameters, and we optimize over both
the neural network hyperparameters and the kernel parameters. As the evaluation
occurs out-of-sample, the issues associated with the choice of the kernel parameters
discussed in section 3.2 are mitigated, unless a dataset is genuinely discrete, in which
case even out-of-sample estimates of the bandwidth h can degenerate to zero, thereby
indicating that smoothing is ill-advised. To handle even such ill-advised cases, we use a
procedure that we call moderated grid search [76]. Specifically, we first check whether
using \nu = 2 or a Gaussian kernel results in a degeneration of the optimal bandwidth
h to zero, and if so, we use the latter with bandwidth chosen according to Silverman's
rule of thumb [66]. Otherwise, we consider values of \nu \in \{ 2, 3, 4, 5, 10, 20,\infty \} in (3.4),
with \nu = \infty yielding the Gaussian limit. For each value of \nu , we use Brent's method
[9] to optimize the log score with respect to the bandwidth h on the validation set
and choose the optimal combination of \nu and h. Once network hyperparameters
and kernel parameters have been determined, we relearn the neural network on the
combined training and validation sets using the optimized hyperparameters and apply
EasyUQ on the relearned single-valued neural network output. Finally, we apply
Smooth EasyUQ based on the relearned EasyUQ solution and the selected kernel
parameters to yield density forecasts on the test set.

While optimization could be performed with respect to the CRPS, the LogS,
or any other suitable proper scoring rule, we follow the machine learning literature,
where benchmarking is typically done in terms of the LogS. The CRPS serves as
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EASY UNCERTAINTY QUANTIFICATION 111

Table 5 Characteristics of datasets and predictive performance for competing methods of uncer-
tainty quantification in regression problems, in terms of the mean logarithmic score (LogS)
in a popular benchmark setting from machine learning [18, 22, 36, 42]. For each dataset, we
show size, number of unique outcomes, and dimension of the input (covariate or feature)
space. Italics indicate discrete datasets where the number of unique outcomes is small.
For each method, we report the mean LogS from the reference stated, with further details
provided in section 4.2. For each of the lower three blocks of comparable methods, the best
(lowest) mean score is set in green. Two scores are numerically infinite; missing scores
are marked NA.

Method / Dataset Boston Concrete Energy Kin8nm Naval Power Protein Wine Yacht Year

Size 506 1,030 768 8,192 11,934 9,568 45,730 1,599 308 515,345

Unique Outcomes 229 845 586 8,191 51 4,836 15,903 6 258 89

Dimension Input Space 13 8 8 8 16 4 9 11 6 90

Distributional Forest [18] 2.67 3.38 1.53  - 0.40  - 4.84 2.68 2.59 1.05 2.94 NA

GAMLSS [18] 2.73 3.24 1.24  - 0.26  - 5.56 2.86 3.00 0.97 0.80 NA

GP Regression [18] 2.37 3.03 0.66  - 1.11  - 4.98 2.81 2.89 0.95 0.10 NA

NGBoost [18] 2.43 3.04 0.60  - 0.49  - 5.34 2.79 2.81 0.91 0.20 3.43

40 Deep Ensembles [42] 2.41 3.06 1.38  - 1.20  - 5.36 2.79 2.83 0.94 1.18 3.35

40 Laplace [76] 2.65 3.14 1.27  - 1.00 NA 2.87 2.90 0.97 1.97 3.61

40 Single Gaussian [76] 2.78 3.20 1.14  - 1.03  - 5.37 2.83 2.93 0.98 2.11 3.61

40 Smooth CP [76] 2.89 3.14 1.20  - 1.00  - 5.52 2.85 2.88 0.97 1.88 NA

40 Smooth EasyUQ [76] 2.83 3.04 0.79  - 1.05  - 6.51 2.77 2.48 0.48 1.36 3.24

400 MC Dropout [22] 2.46 3.04 1.99  - 0.95  - 3.80 2.80 2.89 0.93 1.55 3.59

400 Laplace [76] 2.61 3.07 0.80  - 1.11 NA 2.83 2.87 1.04 1.18 3.61

400 Single Gaussian [76] 3.41 3.32 0.85  - 1.09  - 6.32 2.81 2.87 1.38 2.04 3.61

400 Smooth CP [76] 2.87 3.05 0.83  - 1.09  - 6.65 2.78 2.84 1.01 1.03 NA

400 Smooth EasyUQ [76] 2.46 2.94 0.55  - 1.13  - 7.51 2.75 2.41 1.07 0.85 3.24

2L MC Dropout [22] 2.34 2.82 1.48  - 1.10  - 4.32 2.67 2.70 0.90 1.37 NA

2L Laplace [76] 2.57 2.98 0.56  - 1.13 NA 2.76 2.81 1.22 1.24 3.60

2L Single Gaussian [76] \infty 3.78 0.74  - 0.96  - 7.19 2.76 2.77 10.51 \infty 3.61

2L Smooth CP [76] 2.66 2.94 0.63  - 1.18  - 7.33 2.70 2.67 1.01 0.74 NA

2L Smooth EasyUQ [76] 2.49 2.71 0.36  - 1.21  - 8.20 2.67 2.30 0.95 0.50 3.23

an attractive alternative, much in line with recent developments in neural network
training, where optimization is performed with respect to the CRPS [16, 58]. Its use
becomes essential in simplified versions of Algorithm 4.1 that work with basic EasyUQ
rather than Smooth EasyUQ.

4.2. Application in Benchmark Settings from Machine Learning. As noted,
our intent is to compare Smooth EasyUQ in the integrated version of Algorithm 4.1 to
extant, state-of-the-art methods for uncertainty quantification from the statistical and
machine learning literatures. The comparison is made on ten datasets for regression
tasks using the experimental setup proposed and developed by Hern\'andez-Lobato and
Adams [36], Gal and Ghahramani [22], Lakshminarayanan, Pritzel, and Blundell [42],
and Duan et al. [18]. Characteristics of the ten datasets are summarized in Table 5,
including the size of the datasets, the number of unique outcomes, and the dimension
of the input space for the regression problem.

Each dataset is randomly split 20 times into training (72\%), validation (18\%), and
test (10\%) sets. However, for the larger datasets, Protein and Year, the train-test split
is repeated only five times and a single time, respectively. After finding the optimal set
of (hyper)parameters, methods are retrained on the combined training and validation
sets (90\%) and the resulting predictions are evaluated on the held-out test set (10\%).
We use the same splits as in the extant literature in the implementation from https:
//github.com/yaringal/DropoutUncertaintyExps, and the final score is obtained by
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computing the average score over the splits.
Following the literature, we consider four techniques for the direct generation

of conditional predictive distributions that do not use neural networks, namely, a
semiparametric variant of the distributional forest technique [18, 63], generalized ad-
ditive models for location, scale, and shape (GAMLSS) [69], Gaussian process (GP)
regression [56], and natural gradient boosting (NGBoost) [18]. We adopt the ex-
act implementation choices of [18] for these techniques, which in some cases involve
smoothing. Except for NGBoost, scores for the Year dataset are unavailable (NA), in
part, because methods fail to be computationally feasible for a dataset of this size.

The remaining methods considered in Table 5 are based on neural networks, and
we adopt the network architectures proposed by Hern\'andez-Lobato and Adams [36]
and Gal and Ghahramani [22]. Specifically, we use the ReLU nonlinearity and either
a single or two hidden layers, containing 50 hidden units for the smaller datasets,
and 100 hidden units for the larger Protein and Year datasets. To tune the network
hyperparameters, namely, the regularization parameter \lambda and the batch size, we use
grid search. Thus, the nested hyperparameter selection in the Smooth EasyUQ Al-
gorithm 4.1 finds a best combination of \lambda , the batch size, \nu , and h by optimizing
the mean LogS. Our intent is to compare EasyUQ and Smooth EasyUQ to state-of-
the-art methods for uncertainty quantification from machine learning, namely, Monte
Carlo (MC) Dropout [22] and Deep Ensembles [42], which perform uncertainty quan-
tification directly within the workflow of neural network fitting. Furthermore, these
methods are input-based, i.e., they require access to, and operate on, the original co-
variate or feature vector. As seen in the table, the dimensionality of the input space
in the benchmark problems varies between 4 and 90.

In contrast, EasyUQ, CP, and the Single Gaussian technique operate on the basis
of the final model output only and so can be applied without the original, potentially
high-dimensional covariate or feature vector being available. For CP we adapt our
previously described implementation with further refined splits into training (57.6\%),
calibration (14.4\%), validation (18\%), and test (10\%) sets. Smooth CP uses the
respective variant of Algorithm 4.1. An intermediary role between input-based and
output-based methods is assumed by the recently developed Laplace approach [37,
59], which leverages scalable Laplace approximations based on weights of the trained
network. For our numerical experiments we use the laplace software library for
PyTorch [15].

A critical implementation decision in the intended comparisons is the number of
training epochs in learning the neural network. While the original setup specifies 40
training epochs [36], MC Dropout uses 400 or, in the 2-layer configuration, 4,000 iter-
ations [22]. Therefore, to enable proper comparison, we apply the competing methods
in three distinct neural network configurations, namely, a single-layer network with 40
training epochs (prefix 40 in Tables 5 and 6), a single-layer network with 400 training
epochs (prefix 400), and a 2-layer architecture with 4,000 training epochs (prefix 2L).
In Tables 5 and 6, key comparisons between techniques for uncertainty quantification
are then within the respective three groups of methods for which the neural network
configurations used are identical.

4.3. Comparison of Predictive Performance. We assess the predictive perfor-
mance of EasyUQ, Smooth EasyUQ, and other methods for probabilistic forecasting
and uncertainty quantification by comparing the mean LogS in Table 5. We use the
LogS from (2.3) in negative orientation, so smaller values correspond to better per-
formance. Evidently, the use of the LogS, which is customary in machine learning,
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EASY UNCERTAINTY QUANTIFICATION 113

Table 6 Predictive performance for competing methods of uncertainty quantification in regression
problems in terms of the mean CRPS in a popular benchmark setting from machine learning
[18, 22, 36, 42]. For each dataset, we show size, number of unique outcomes, and dimension
of the input (covariate or feature) space. Italics indicate discrete datasets where the number
of unique outcomes is small. For Kin8mn and Naval the mean CRPS has been multiplied
by factors of 10 and 1,000, respectively. For each block of comparable methods, the best
(lowest) mean score is set in green. For details, see section 4.2.

Method / Dataset Boston Concrete Energy Kin8nm Naval Power Protein Wine Yacht Year

Size 506 1,030 768 8,192 11,934 9,568 45,730 1,599 308 515,345

Unique Outcomes 229 845 586 8,191 51 4,836 15,903 6 258 89

Dimension Input Space 13 8 8 8 16 4 9 11 6 90

40 Deep Ensembles 1.59 3.04 0.78 0.48 0.41 2.23 2.40 0.34 0.45 4.35

40 Laplace 1.71 3.02 0.45 0.49 NA 2.46 2.46 0.35 0.80 4.72

40 Single Gaussian 1.72 3.03 0.41 0.48 0.66 2.24 2.48 0.35 0.83 4.72

40 CP 1.73 3.04 0.45 0.49 0.58 2.24 2.47 0.36 0.90 NA

40 Smooth CP 1.74 3.05 0.45 0.49 0.58 2.24 2.47 0.36 0.91 NA

40 EasyUQ 1.69 2.94 0.34 0.48 0.54 2.21 2.22 0.31 0.66 4.35

40 Smooth EasyUQ 1.64 2.89 0.33 0.48 0.55 2.20 2.20 0.32 0.64 4.34

400 MC Dropout 1.56 2.79 0.37 0.48 1.22 2.21 2.40 0.35 0.57 4.73

400 Laplace 1.66 2.67 0.29 0.44 NA 2.17 2.36 0.37 0.41 4.73

400 Single Gaussian 1.61 2.72 0.29 0.44 0.27 2.17 2.36 0.38 0.41 4.73

400 CP 1.70 2.77 0.30 0.45 0.20 2.16 2.38 0.37 0.42 NA

400 Smooth CP 1.71 2.77 0.30 0.45 0.20 2.16 2.38 0.37 0.43 NA

400 EasyUQ 1.75 2.72 0.26 0.44 0.12 2.16 2.10 0.35 0.39 4.33

400 Smooth EasyUQ 1.60 2.61 0.25 0.44 0.13 2.15 2.09 0.37 0.35 4.33

2L MC Dropout 1.45 2.19 0.33 0.41 1.07 1.92 1.95 0.33 0.47 4.63

2L Laplace 1.64 2.29 0.22 0.44 NA 2.01 2.15 0.42 0.41 4.65

2L Single Gaussian 1.89 2.27 0.25 0.41 0.11 2.03 2.04 0.45 0.25 4.69

2L CP 1.70 2.47 0.24 0.42 0.11 2.02 2.02 0.38 0.36 NA

2L Smooth CP 1.71 2.48 0.24 0.42 0.11 2.03 2.02 0.38 0.36 NA

2L EasyUQ 2.07 2.40 0.24 0.42 0.03 1.98 1.83 0.42 0.30 4.30

2L Smooth EasyUQ 1.66 2.14 0.21 0.40 0.04 1.97 1.82 0.40 0.27 4.31

prevents comparisons to the basic versions of EasyUQ and CP, to which we turn in
Table 6.

A first insight from Table 5 is that, in general, the methods in the second, third,
and fourth blocks, which are based on neural networks, perform better relative to
the direct methods not based on neural networks in the first block (from top to bot-
tom). Thus, we focus attention on the comparison of distinct methods for uncertainty
quantification in neural networks, namely, Deep Ensembles [42] or MC dropout [22],
the Laplace approach [59], the Single Gaussian technique, Smooth CP, and Smooth
EasyUQ. The 2-layer architecture generally improves results compared to using a sin-
gle layer for the neural network. Smooth EasyUQ dominates the Single Gaussian and
Smooth CP techniques and generally yields lower mean LogS than Deep Ensembles,
MC Dropout, or the Laplace approach. In 24 of the 3 \times 10 = 30 fivefold compar-
isons across the bottom three blocks, Smooth EasyUQ achieves or shares the top
score. For eight of the ten datasets considered, the best performance across all 19
methods considered, including both neural network--based approaches and techniques
not based on neural networks, is achieved or shared by Smooth EasyUQ under the
2-layer network architecture. While this is not an exhaustive evaluation and no single
method dominates universally, we note that Smooth EasyUQ is highly competitive
with state-of-the-art techniques for uncertainty quantification from machine learning.

To allow comparison with the basic form of EasyUQ, which generates discrete
predictive distributions, we use Table 6 and the mean CRPS from (2.2) to assess
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114 E.-M. WALZ, A. HENZI, J. ZIEGEL, AND T. GNEITING

predictive performance. Each of the three blocks in the table allows for a seven-way
comparison among either Deep Ensembles or MC Dropout, the Laplace approach,
the Single Gaussian technique, conformal prediction in its basic (CP) and smoothed
(Smooth CP) forms, the basic version of EasyUQ, and Smooth EasyUQ. As noted,
the Naval, Wine, and Year datasets are distinctly discrete, with 51, 6, and 89 unique
outcomes, respectively. For data of this type, predictive distributions ought to be
discrete. Accordingly, there are no benefits of using Smooth EasyUQ for these datasets
compared to using basic EasyUQ, which adapts readily to discrete outcomes. In six
of the 3 \times 3 = 9 sevenfold comparisons for the discrete datasets, the basic version
of EasyUQ achieves the lowest mean score. Across the remaining seven datasets
and for all three network configurations, smoothing is beneficial and Smooth EasyUQ
outperforms the basic version of EasyUQ. In 15 of the 3\times 7 = 21 sevenfold comparisons
on these datasets, Smooth EasyUQ achieves or shares the top score. All but one of
the binary comparisons between Smooth CP and Smooth EasyUQ, all but two of
the comparisons between the Single Gaussian technique and Smooth EasyUQ, all but
one of the comparisons between the Laplace method and Smooth EasyUQ, and all
but eight of the comparisons between Deep Ensembles or MC Dropout and Smooth
EasyUQ are in favor of the latter.

5. Discussion. In this paper we have proposed EasyUQ and Smooth EasyUQ as
general methods for the conversion of single-valued computational model output into
calibrated predictive distributions, based on a training set of model output--outcome
pairs and a natural assumption of isotonicity. Contrary to recent comments in review
articles that lament an ``absence of theory"" [1, p. 244] for data-driven approaches
to uncertainty quantification, the basic version of EasyUQ enjoys strong theoretical
support, in sharing the optimality and consistency properties of the general isotonic
distributional regression (IDR) [35] method. The basic EasyUQ approach is fully
automated, does not require any implementation choices, and the generated predictive
distributions are discrete. The more elaborate Smooth EasyUQ approach developed in
this paper generates predictive distributions with Lebesgue densities based on a kernel
smoothing of the original IDR distributions, while preserving the key properties of the
basic approach. Code for the implementation of IDR in Python [53] and replication
material for this article are openly available [76].

The method is general, handling both discrete outcomes, with the basic technique
being tailored to this setting, and continuous outcomes, for which Smooth EasyUQ
is the method of choice. It applies whenever single-valued model output is to be
converted into a predictive distribution, covering both the case of point forecasts, as
in the WeatherBench example, and computational model output in all facets, such as
in the machine learning example, where EasyUQ and Smooth EasyUQ convert single-
valued neural network output into predictive distributions. Percentiles extracted from
the predictive distributions can be used to generate prediction intervals.

The proposed term EasyUQ stems from various desirable properties. First, the
basic version of EasyUQ does not involve tuning parameters or require user interven-
tion. Second, EasyUQ operates on the natural, easily interpretable and communicable
assumption that larger values of the computational model output yield predictive dis-
tributions that are stochastically larger. Third, EasyUQ is an output-based technique,
i.e., it merely requires training data in the form of model output--outcome pairs (xi, yi)
as in (2.1), without any need to access the potentially high-dimensional covariate or
feature vector zi, which serves as input to the computational model that generates xi.
This property is shared with the widely used single Gaussian technique and related
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EASY UNCERTAINTY QUANTIFICATION 115

methods such as the early geostatistical output perturbation (GOP) [23] approach and
the quantile regression averaging (QRA) [51] method for the generation of prediction
intervals.

The term conformal prediction [46, 75, 72] refers to a family of output-based
methods that yield predictive distributions and prediction intervals that enjoy attrac-
tive out-of-sample coverage guarantees, but often mean that the shape and scale of
the predictive distributions do not vary with the model output. In simple problems,
where predictive distributions that are essentially translates of each other are appro-
priate, both CP and EasyUQ perform well and typically yield very similar predictive
performance, as illustrated by the temperature example in section 2.3. The flexibility
of EasyUQ, which allows for predictive distributions that vary in shape and/or scale,
subject to the isotonicity condition, materializes in more challenging problems, where
predictive distributions that are translates of each other fail. While EasyUQ adapts
to such settings without any need for user intervention, CP might suffer consider-
able loss in predictive performance, even if adapted manually, as exemplified in the
precipitation example in section 2.4.

While adaptive variants of CP are available, their predictive performance in
both simulated and real-data settings has been mixed compared to standard vari-
ants [75]. Recently, Bostr\"om, Johansson, and L\"ofstr\"om [7] investigated Mondrian
(i.e., covariate-conditional) CP as a flexible alternative, in which conformal predictive
distributions are built on separate categories formed by binning covariates (in our
case, the model output). This requires additional implementation decisions, namely,
on the choice of the bins. Bostr\"om, Johansson, and L\"ofstr\"om [7] take five bins with
equal numbers of training instances, which improves predictive performance in their
experiments. From a methodological point of view, in situations where the isotonicity
assumption of IDR is met, the binning approach of Mondrian CP can be understood
as an approximation to EasyUQ. EasyUQ finds optimal binnings without manual
intervention [35, Thm. 2], and training borrows strength from the entirety of the
training data, whereas Mondrian CP diminishes the training sample by splitting it,
which introduces a trade-off between training data size and adaptivity. A limitation of
EasyUQ is that estimates under isotonicity constraints tend to be inconsistent at the
boundary of the covariate domain [31], which raises the danger of disproportionately
decreased spread of EasyUQ distributions at extreme values of the model output. In
settings where this is of concern, a potential remedy is to resort to Mondrian CP at
extreme values while reaping the benefits of EasyUQ at moderate values of the model
output. We leave further methodological development in these directions to future
work.

In contrast to CP and EasyUQ, input-based methods such as MC Dropout [22],
Deep Ensembles [42], the techniques proposed by Camporeale and Car\`e [11] and
Chung et al. [14], and the reference methods considered by Duan et al. [18] require
access to the covariate or feature vector zi. Input-based methods are much more
flexible than output-based methods and thus have higher potential in principle, as
evidenced by the success of ensemble methods in numerical weather prediction [3, 27].
However, they tend to be more computationally intense than output-based methods,
and as the machine learning example in our paper shows, they may not outperform the
latter. Generally, sophisticated input-based methods for uncertainty quantification
might realize their potential when applied to substantively informed, highly complex
computational models, as in the case of numerical weather prediction, where predictive
uncertainty varies. Output-based approaches to uncertainty quantification typically
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are less complex and thus easier to implement and might nonetheless yield competitive
predictive performance when applied to output from data-driven models, such as the
neural network models in the benchmark setting from machine learning.

We end the paper with speculations about the usage of EasyUQ and Smooth
EasyUQ in weather prediction. The current approach to forecasts at lead times of
hours to weeks rests on ensembles of physics-based numerical models [3, 27], but it
is being challenged by the advent of purely data-driven models based on ever more
sophisticated neural networks [19, 64]. Published only recently, the WeatherBench
comparison [57] showed a huge performance gap between forecasts from physics-based
numerical models and neural network--based, purely data-driven forecasts, with the
latter being clearly inferior, as exemplified in our Tables 1 and 3. Fast breaking devel-
opments suggest that the situation may have reversed since then, with purely data-
driven approaches now outperforming physics-based forecasts of univariate weather
quantities [4, 6, 13, 43]. There is a caveat, though, as under the new, data-driven
paradigm, spatiotemporal and intervariable dependence structures might be misrep-
resented due to the lack of physical constraints in the model and a need for hierar-
chical temporal aggregation in the generation of weather scenarios [6, 19]. However,
the resulting neural network based forecasts can be subjected to EasyUQ and Smooth
EasyUQ, and samples from the resulting predictive distributions can be merged by
empirical copula techniques such as ensemble copula coupling (ECC) [61] to adopt and
transfer spatiotemporal and intervariable dependence structures in physics-based en-
semble forecasts. Hybrid approaches of this type might combine and extract the best
from both traditional physics-based and emerging data-driven approaches to weather
prediction and may turn out to be superior to both.

Appendix A. Consistency of Smoothed Conditional CDF Estimates. In this
appendix, we prove the uniform asymptotic consistency of smoothed estimators of
conditional CDFs under mild conditions. We operate in a very general setting in
which the smoothed estimate

\v Fx;n(y) =

\int \infty 

 - \infty 
\^Fx;n(t)Khn

(y  - t) dt(A.1)

arises from a basic estimate \^Fx;n that uses a sample of the form (2.1) of size n. We
do not make further assumptions on the form or origin of the basic estimate, though
in (3.3) we specialize to EasyUQ. As in the main text, we let Kh(u) = (1/h)\kappa (u/h)
for a smooth probability density \kappa , such as a Gaussian or a Student-t density, but we
now allow for the possibility that the bandwidth hn > 0 varies with the sample size.

In formulating the subsequent consistency result, we only require that the basic
estimates \^Fx;n be asymptotically consistent and that the true conditional CDFs Fx(y)
be smooth in y, and we put mild assumptions on \kappa . IDR and its special case EasyUQ
indeed are asymptotically consistent under reasonable assumptions. Specifically, let
(Xni, Yni) \in \scrX \times \BbbR for i = 1, . . . , n be a triangular array of covariates and real-valued
observations, which are independent across i for any fixed n = 1, 2, . . . and have the
same distribution as a pair (X,Y ) with conditional CDFs Fx(y) = \BbbP (Y \leq y | X = x).
Let \^Fx;n be the IDR CDF computed from this sample with an arbitrary admissible
interpolation method for x \not \in \{ Xn1, . . . , Xnn\} . Here, \scrX is some subset of \BbbR d that is
equipped with a partial order \preceq . The key assumption is that the conditional CDFs Fx

are nondecreasing in stochastic order, i.e., x \preceq x\prime implies that Fx(y) \geq Fx\prime (y) for all
y \in \BbbR . For continuous covariates, one furthermore needs to assume that the covariate
values become sufficiently dense in \scrX as n increases, and that a uniform continuity
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EASY UNCERTAINTY QUANTIFICATION 117

assumption on the conditional CDFs holds; cf. the references discussed below. Then
the following assumption on uniform consistency is satisfied.

Assumption A.1. There exists a sequence (\varepsilon n)n=1,2,... such that, for all x in
some set \scrX n \subseteq \scrX , we have

lim
n\rightarrow \infty 

\BbbP 
\biggl( 

sup
y\in \BbbR , x\in \scrX n

| \^Fx;n(y) - Fx(y)| \geq \varepsilon n

\biggr) 
= 0.(A.2)

The sequence of sets (\scrX n)n=1,2,... in the above assumption usually consists of all
points in \scrX whose distance from the boundary of \scrX is not less than \delta n > 0, where \delta n is
a sequence that converges to zero. Multivariate covariates are treated in Henzi, Ziegel,
and Gneiting [35], who demonstrate Assumption A.1 with \varepsilon n = \varepsilon > 0 for any constant
\varepsilon > 0 and \delta n = \delta for any constant \delta > 0. The case \scrX = (a, b) \subset \BbbR with the usual
total order corresponds to the typical setting for EasyUQ and is treated by M\"osching
and D\"umbgen [50], who show that one can choose \varepsilon n of order (log(n)/n)\alpha /(2\alpha +1)

if the conditional CDFs are H\"older continuous in x with index \alpha \in (0, 1]. In this
case, the sets \scrX n are of the form (a + \delta n, b  - \delta n) with \delta n converging to zero at rate
(log(n)/n)1/(2\alpha +1). The case of ordinal covariates in a finite set was investigated by El
Barmi and Mukerjee [20], and it can be shown that one can choose \varepsilon n = (log(n)/n)1/2

and consistency holds for all values of x. While the authors do not explicitly state this
convergence rate, it follows from the last displayed equation prior to their Theorem
1, according to which the maximal error (in sup-norm) of the IDR CDFs is less than
or equal to the error of the empirical CDFs stratified by the covariate. The sup-norm
error of the empirical CDFs can be bounded by (log(n)/n)1/2 (by the Dvoretzky--
Kiefer--Wolfowitz inequality, log(n) could be replaced by any other sequence diverging
to \infty ), so the rate stated above applies.

A situation of particular applied relevance arises for distributional single index
models (DIMs) [33], which can be interpreted as a special case of EasyUQ. Specif-
ically, let (Zni, Yni) \in \scrZ \times \BbbR for i = 1, . . . , n, where n is a positive integer, be a
triangular array of covariates and observations, which are independent across i for
any fixed n and have the same distribution as some pair (Z, Y ). Suppose that there
is a function \theta : \scrZ \rightarrow \BbbR , called the index function, such that the conditional CDFs
Fx(y) = \BbbP (Y \leq y | \theta (Z) = x) are stochastically ordered in x. For each sample size n,

the index function is estimated by \^\theta n. Denote by \^Fx;n the IDR CDF computed from

the pseudo-observations (\^\theta n(Zn1), Yn1), . . . , (\^\theta n(Znn), Ynn) with an arbitrary admis-

sible interpolation method for x \not \in \{ \^\theta n(Zn1), . . . , \^\theta n(Znn)\} . If the index function is
estimated consistently at a sufficiently fast rate and the pseudocovariates \theta (Zi) be-
come sufficiently dense in some interval \scrX \subset \BbbR , then Assumption A.1 is satisfied with
a rate \varepsilon n of (log(n)/n)1/6 and \scrX of the form (a+ \delta n, b - \delta n) for \delta n = (log(n)/n)1/6.

The second assumption is a natural condition on the true conditional CDFs Fx,
without which one would not want to smooth in the first place.

Assumption A.2. There exist constants L > 0 and \alpha \in (0, 1] such that for all
x \in \scrX and u, v \in \BbbR ,

| Fx(u) - Fx(v)| \leq L | u - v| \alpha .

In particular, Assumption A.2 is satisfied with \alpha = 1 if the conditional distribu-
tions admit Lebesgue densities that are uniformly bounded.
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Theorem A.3. Suppose that Assumptions A.1 and A.2 hold, and assume that
c\kappa ,\alpha =

\int \infty 
 - \infty | s| \alpha \kappa (s) ds is finite. Then

lim
n\rightarrow \infty 

\BbbP 
\biggl( 

sup
y\in \BbbR , x\in \scrX n

| \v Fx;n(y) - Fx(y)| \geq \varepsilon n + Lc\kappa ,\alpha h
\alpha 
n

\biggr) 
= 0.(A.3)

An immediate consequence is that if h\alpha 
n = \scrO (\varepsilon n), then the smoothed estimate

\v Fx;n admits the same convergence rate as the basic estimate \^Fx;n.

Proof of Theorem A.3. The error of \v Fn;x is upper bounded as

| \v Fx;n(y) - Fx(y)| =
\bigm| \bigm| \bigm| \bigm| \int \infty 

 - \infty 
[ \^Fx;n(t) - Fx(t) + Fx(t) - Fx(y)]Khn

(y  - t) dt

\bigm| \bigm| \bigm| \bigm| 
\leq \~\varepsilon n(x) +

\int \infty 

 - \infty 
| Fx(y  - hns) - Fx(y)| \kappa (s) ds,

where \~\varepsilon n(x) = supz\in \BbbR | \^Fn;x(z)  - Fx(z)| , as we see by making the change of variable
s = (y  - t)/hn. By Assumption A.2 we obtain that

\int \infty 

 - \infty 
| Fx(y  - hns) - Fx(y)| \kappa (s) ds \leq Lc\kappa ,\alpha h

\alpha 
n.

Hence

| \v Fn;x(y) - Fx(y)| \leq \~\varepsilon n(x) + Lc\kappa ,\alpha h
\alpha 
n,

and the claim now follows from Assumption A.1.

We emphasize that Assumption A.1 is a high-level condition that is not specific to
IDR, DIMs, or EasyUQ. Theorem A.3 implies that any sequence of conditional CDF
estimates ( \^Fx;n) that is consistent in the sense of Assumption A.1 can be smoothed
consistently via (A.1), either with a fixed kernel \kappa or with a kernel \kappa selected from a
suitably limited class of candidate functions. This is a result of independent interest
that goes well beyond the classical setting of smoothing an empirical distribution. To
give an example, the approach can be applied to smoothing conditional CDF estima-
tors under weaker stochastic dominance constraints [32], where Theorem A.3 directly
yields consistency of the smoothed estimator. Another method where smoothing
might be beneficial is the distributional random forest technique [12, 63], which, like
IDR, generates discrete estimators of conditional CDFs. However, the conclusions
from Theorem A.3 do not apply directly in this case, since only pointwise but not
uniform consistency has been proven for these estimators [12, Cor. 5].
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