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Enhancing the Quality of MOF Thin Films for Device
Integration Through Machine Learning: A Case Study on
HKUST-1 SURMOF Optimization

Lena Pilz, Meike Koenig, Matthias Schwotzer, Hartmut Gliemann, Christof Wöll,*
and Manuel Tsotsalas*

Metal–organic Frameworks (MOFs), especially as thin films, are increasingly
recognized for their potential in device integration, notably in sensors and
photo detectors. A critical factor in the performance of many MOF-based
devices is the quality of the MOF interfaces. Achieving MOF thin films with
smooth surfaces and low defect densities is essential. Given the extensive
parameter space governing MOF thin film deposition, the use of machine
learning (ML) methods to optimize deposition conditions is highly beneficial.
Combined with robotic fabrication, ML can more effectively explore this space
than traditional methods, simultaneously varying multiple parameters to
improve optimization efficiency. Importantly, ML can provide deeper insights
into the synthesis of MOF thin films, an essential area of research. This study
focuses on refining an HKUST-1 SURMOF (surface-mounted MOF) to achieve
minimal surface roughness and high crystallinity, including a quantitative
analysis of the importance of the various synthesis parameters. Using the
SyCoFinder ML technique, thin film surface quality is markedly enhanced in
just three generations created by a genetic algorithm, covering 30 distinct
parameter sets. This method greatly reduces the need for extensive
experimentation. Moreover, the results enhance the understanding of the vast
synthesis parameter space in HKUST-1 SURMOF growth and broaden the
applications of MOF thin films in electronic and optoelectronic devices.

1. Introduction

Metal–organic frameworks (MOFs) or Porous Coordination Poly-
mers are highly porous and crystalline materials introduced ≈ 25
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years ago by O. Yaghi and S. Kitagawa.[1–3]

These materials, comprise two main com-
ponents: metal ions or metal-oxo clus-
ters acting as nodes, and organic linker
molecules. The linkers are connected to the
inorganic sub-building units through co-
ordinative bonds. Nodes and linkers work
in tandem resulting in the unique prop-
erties of MOFs, their choice allowing for
precise control over the MOFs’ geomet-
ric and chemical properties, such as pore
size, aperture diameter, shape, reactivity
for post-synthetic modifications, and inter-
actions with other molecules (e.g., polar-
ity, affinity to guest molecules).[4–8] This
modular flexibility enables the optimization
of MOFs for specific applications. Tradi-
tionally, MOFs are synthesized via solvo-
thermal methods as powder bulk materi-
als, with typical applications in gas stor-
age, catalysis, and chemical sensing.[9]

However, bulk MOF materials, despite
being easily produced in high yields (such
as Basolith C300 from BASF), face sig-
nificant limitations in many applications.
A prominent example are optical appli-
cations, where the unwanted scattering

from randomly oriented MOF particles severely complicates
the integration of this multi-functional material into devices.[10]

To overcome these limitations, in 2007 Wöll and coworkers
introduced a layer-by-layer (lbl) method to fabricate surface-
anchored MOFs (SURMOFs).[11] SURMOFs can be grown on
any substrate in an oriented manner using various layer-by-
layer techniques, offering a new material platform for numerous
applications.[12–14]

The introduction of SURMOFs and other types of MOF thin
films provided the basis for integration into electronic devices,
especially in the area of sensor technology.[15] As researchers
strive to harness the unique attributes of SURMOFs, the chal-
lenges of establishing well-defined, sharp, and smooth interfaces
and fine-tuning material properties have become a focal point:
The integration of metal–organic frameworks for various appli-
cations into electronic devices has catalyzed the emergence of
an entirely new research domain over the past decade. Heinke
and coworkers publication in 2014 was a seminal work, explor-
ing the mass transfer and surface barriers encountered when
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incorporating guest molecules into MOFs, a crucial step toward
the utilization of MOFs in QCM devices.[16] More recently, Mo-
han et al. have made significant strides, showcasing the success-
ful integration of MOF luminescence and electrochemical sen-
sors in devices tailored for cancer biomarker detection.[17] Ohira
et al. contributed to the field with their 2015 paper on a novel
fiber optic sensor, employing a metal–organic framework coating
as the main innovation.[18] In a comprehensive review in 2017,
Stassen et al. delved into the multifaceted applications of MOFs
in electronics and chemical sensing, covering their use in dig-
ital circuits, field-effect transistors, and mass-sensitive sensors,
among other technologies.[19] The rapid progression in MOF-
based electronic device research is evident through the sheer vol-
ume of papers published annually, with frequent updates in re-
views, underscoring the substantial interest and impact in this
specialized application area of SURMOFs.[20–25] Another illustra-
tive example of the impact of SURMOF roughness on the physi-
cal properties of a thin film is demonstrated in the work of Zhi-
Gang Gu et al.[26] In their study, they showed that by selecting
specific experimental synthesis conditions, the roughness of a
SURMOF could be significantly reduced by employing ultrasoni-
cation, leading to a notable enhancement in the optical quality of
the MOF thin film. Also in cases where MOF-hetero-interfaces
are important, the quality of the interface between two differ-
ent MOF thin films can be crucial, e.g. in the case of photon
upconversion.[27]

Bridging these discussions, it becomes clear that while the in-
tegration of MOFs into electronic devices has made remarkable
strides, a persistent challenge remains in achieving smooth sur-
faces during their manufacturing. Traditional methods like spray
synthesis, spin-coating, and vapor assisted conversion (VAC) of-
ten fall short in this regard. The importance of smooth surfaces
cannot be overstated; they are crucial for maintaining structural
integrity and facilitating effective host-guest interactions, which
are key to the functionality of MOFs in various applications.

The initial hurdle for achieving a smooth SURMOF surface is
starting the growth of the first MOF layers on a functionalized
substrate. In the subsequent steps of the lbl process, the chal-
lenge lies in achieving smooth outer surfaces to fully harness
the distinctive attributes of MOF materials. A further overarching
challenge involves the optimization of desired properties within
the MOF system, such as achieving excellent crystallinity and low
defect densities.[28] There are examples where the defect densities
in SURMOFs are substantially smaller than in the corresponding
bulk materials.[29]

In view of the numerous parameters governing the lbl growth,
the corresponding parameter space is extensive, and optimizing
properties such as structural quality and surface roughness rep-
resents a time-consuming effort. Since the low-temperature lbl
growth is governed mostly by kinetic rather than thermodynamic
control, optimization of growth parameters is typically based on a
trial-and-error approach. Experience has demonstrated that often
simultaneous variation of multiple parameters is required, thus
requiring a departure from classical optimization techniques,
which involve altering one parameter at a time to analyze the re-
sulting effects. Previous studies have already demonstrated the
effectiveness of machine learning techniques as valuable tools
for optimizing and discovering functional materials in various
contexts.[30–32] Building on this foundation, this intricate scenario

calls for employing machine learning techniques to navigate this
complexity effectively, as illustrated in Figure 1, ultimately en-
abling the optimization of properties with minimal experimen-
tal effort.

In addition to achieving a particular property of a SURMOF,
the understanding of the system’s growth mechanism is equally
vital. Integrating ML methods in the SURMOF synthesis can
aid in unraveling these mechanisms, potentially revealing fun-
damental principles.

In this work, we utilized ML techniques to simultaneously en-
hance the crystallinity and reduce the surface routool, that ML
methods are well suited to steer the growth direction of HKUST-
1 MOF thin films in lbl deposition by optimizing various de-
position parameters.[34,35] Encouraged by the rather impressive
success of this previous work, we conducted an in-depth inves-
tigation focusing primarily on reducing the roughness of MOF
thin films - a critical attribute for several MOF-based applica-
tions, as described in the discussion above. Besides, we carried
out a comprehensive exploration of the growth mechanism, par-
ticularly examining the impact of specific parameters during the
early stages of the lbl process. This optimization required the si-
multaneous adjustment of seven different parameters, thus go-
ing substantially beyond the previous study where only five pa-
rameters were considered.

In general, ML methods require high-quality of experimen-
tal results, unwanted variations e.g., resulting from poor con-
trol of synthesis parameters can substantially affect the success
of the optimization. To ensure the reproducibility of synthesis
procedures, an industrial synthesis robot was employed.[26,34]

All syntheses were conducted in a glove box under inert condi-
tions. In all cases, a 40-cycle layer-by-layer deposition process was
employed.[36] The samples were then subjected to X-Ray diffrac-
tion (XRD) analysis to assess phase purity and crystallinity, and
to ellipsometry for a quantitative determination of surface rough-
ness. All data is made publicly available in the Chemotion repos-
itory, therefore supporting sustainable scientific research and fa-
cilitating future discoveries.[37]

As previously mentioned, the objective was not solely to at-
tain a smooth SURMOF surface but also to probe the influ-
ences in the growth mechanism. Consequently, seven parame-
ters were selected: the concentration of metal salt and organic
linker, the amount of modulator, ultrasonication, and spray clean-
ing duration, along with two additional variables set for the metal
salt and organic linker concentration during the first three syn-
thesis cycles. The underlying hypothesis posited that the con-
centrations of the metal salt, organic linker, or both during
the initial cycles, while establishing the boundary layer on the
substrate’s surface previously covered only by a self-assembled
monolayer (SAM), would be the pivotal factors influencing SUR-
MOF growth and for the eventual attainment of a smooth
surface.

The SyCoFinder operates through three sequential steps, start-
ing with the creation of its own training dataset from practical
experiments. This initial dataset then serves as the basis for the
subsequent optimization process, which utilizes a genetic algo-
rithm. A more detailed description of this process can be found
in the experimental section (See Machine Learning Method). As
third and last step of the SyCoFinder an evaluation of the cho-
sen variables and their respective importance can be carried out,
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Figure 1. Exemplary illustration of advancement when using machine learning methods and automated systems; On the left side a non-optimized rough
and defective MOF is symbolized and on the right side the machine learning optimized smooth and even MOF thin film is depicted.

potentially offering valuable insights into their impact on the de-
fined quality criteria.

In previous studies, this investigation concerning the influ-
ence of the chosen parameters has led to interesting insights in
the growth mechanism of HKUST-1, for instance revealing the
importance of water on the formation of a certain orientation and
the utilization of linker in excess to the metal salt.[34] Therefore,
with the ambition of investigating the impact of the initial cy-
cles on the surface smoothness, this final step was deemed espe-
cially important.

2. Results and Discussion

2.1. Evolution

The overarching aim was to create a high-quality HKUST-1-
SURMOF surface, characterized by low roughness and high crys-
tallinity. Seven synthesis parameters, detailed in Table 1, were se-
lected for variation. The ranges for variations were determined
from experimental constraints, including solubilities, solvent
consumption during spray cleaning, and inherent limitations
from prolonged ultrasonication. Additionally, results from pre-
vious work served as a guide for defining the range in the case of
the growth modulator.[38,39] It is important to note that, except for
the amounts of metal salts and linker, the potential for reaching
a zero value was always considered. Each solution had a volume

of 210 mL. The parameter sets for all generations containing the
actually applied values for each variable are to be found in Tables
S1– S3 (Supporting Information).

As previously mentioned, the metal and linker concentrations
during the first three cycles (metal salt 2 and linker 2) were op-
timized independently from the concentration during steps 4 to
40. Following immediately on these initial cycles, the metal and
linker solutions were adjusted for cycles 4 through 40 in every
experiment. Notably, the remaining variables were held constant
throughout their respective experiments, and a consistent 40-
cycle count was maintained across all experiments. The analysis
of all samples was subsequently conducted using X-Ray diffrac-
tion to determine the phase identity and crystallinity and ellip-
sometry to analyze the surface roughness. Phase identity is an
exclusion criterion, thus simply evaluating the formation of pure
HKUST-1 in principal. Crystallinity represents the quality of the
respective SURMOF in terms of XRD. The roughness however,
inherits both quality and exclusion criteria. The roughness it-
self is the quality indicator emerging from ellipsometry. When
performing evaluations in ellipsometry, a mathematical model
is developed and adjusted to match the measurement curve. For
comparability, essential for ML optimizations, two threshold val-
ues are set: the MSE (Mean Squared Error) (more detailed expla-
nation is to be found in Fitness) and a roughness-to-thickness
ratio cut-off. These thresholds serve as exclusion criteria in the
roughness assessment. Details on calculating each term are to be

Table 1. The seven parameters chosen to be varied and their according ranges.

Variable Range Applied on cycle number

Metal salt 0,02–6,00 mmol (0,1 - 28,6 mmol/L) 4-40

Linker 0,02–10,00 mmol (0,1 - 47,6 mmol/L) 4-40

Amount of water (modulator) 0,0–40,0 mL 1-40

Cleaning time via ultrasonication 0–100 s 1-40

Cleaning time via spray-unit 0–5 s 1-40

Metal salt 2 0,02–6,00 mmol (0,1 - 28,6 mmol/L) 1-3

Linker 2 0,02–10,00 mmol (0,1 - 47,6 mmol/L) 1-3
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Figure 2. Fitness value development of the machine learning optimiza-
tion over three generations following the color code: Diverse Set (green
squares), first genetic algorithm, (GA1) (blue triangles) and second ge-
netic algorithm (GA2) (brown dots) and average bars in the according col-
ors.

found in Fitness. The resulting fitness value ranging from zero
to one, then ranks the experiments according to Equation (1), al-
lowing the genetic algorithm to optimize.

fitness = fitness(phase identity) ∗ fitness(crystallinity)

∗ fitness(roughness) (1)

Figure 2 illustrates the progression of the overall fitness calcu-
lated for each experiment using Equation (1). Notably, with each
generation more experiments receive a fitness value, thus indicat-
ing that more experiments fulfill the required criteria, to receive
a fitness value.

To comprehend this development, it is instructive to exam-
ine the individual evaluation developments of crystallinity and
roughness terms contributing to the overall fitness calculation.
Initially, the low number of successful ratings in early evaluations
(Diverse Set) is attributed to stringent experiment exclusion crite-
ria. The fitness evaluation was initially designed to be very restric-
tive, thus limiting the acceptance of experiments for evaluation.
While all samples from the first generation showed acceptable
to excellent crystallinity (see Figure ?), many were disqualified
due to shortcomings in other criteria, particularly roughness de-
termined by ellipsometry. This rigorous approach was crucial to
ensure the production of reliable data. The methodology for in-
cluding or excluding experiments is delineated in Equation (6).
Furthermore, all values contributing to the final fitness value of
an experiment are to be found in the Supporting Information in
Tables S4– S6. Figure 3b displays the fitness of roughness for ex-
periments falling within the evaluation range, while Figure 3a
showcases their corresponding crystallinity fitness values. The
corresponding X-Ray diffractograms are also summarized in the
Supporting Information (See Figures S2– S7, Supporting Infor-
mation).

After three generations, the optimization yielded a parameter
set reaching an 81% fitness, corresponding to 92% crystallinity
and a roughness value of 6.52 nm (an 89% roughness fit). The

achievement of such a high fitness level with seven variables in
just ten experiments per generation is particularly remarkable
due to the exponential increase in complexity with each addi-
tional variable. In previous studies, with five variables, there were
effectively two variations per variable per generation, providing a
more manageable exploration scope.[31,34] However, incorporat-
ing seven variables intensifies the challenge, as the parameter
space grows exponentially, making each decision point more crit-
ical and the successful navigation through this vast space a no-
table accomplishment. This exponential growth means that every
new variable dramatically expands the potential combinations,
making it increasingly difficult to pinpoint the optimal settings
within the limited number of experiments.

The SEM picture in Figure 4a shows a successful sample from
the Diverse Set (08-DS), Figure 4b the best one in GA2 (09-GA2)
underlining its exceptional smoothness and therefore success of
the optimization.

Although the fitness difference between the best experiment
in the Diverse Set (76%) and the optimal GA2 experiment (81%)
might appear relatively modest, it is crucial to note the broader
objective: The best Diverse Set experiment (06-DS) resulted in a
lower roughness of 4.54 nm, surpassing the GA2’s best (09-GA2).
However, in this case, the MOF thin film was rather amorphous,
the intensity of the diffraction peaks was low. Therefore, this pa-
rameter set did not achieve the goal of simultaneously reaching
low roughness and high crystallinity. The best parameter set at-
tained a crystallinity of 91.6% alongside a roughness of 6.52 nm,
outperforming the diverse set’s best experiment which, despite
its superior roughness of 4.54 nm, only reached a crystallinity
of 83.2%. This highlights the success of balancing both goals in
the optimization process. The achievement of a smooth and crys-
talline SURMOF is noteworthy, especially considering the im-
mense parameter space created from seven variables. With only
10 experiments per generation, this allows for fewer than two
variations per variable in each generation. Consequently, the sig-
nificant improvement in thin film quality within just 30 experi-
ments is remarkable.

Moreover, to validate the hypothesis concerning the impact of
the initial three cycles on SURMOF growth and surface rough-
ness, more than three data points from the Diverse Set were
needed for a comprehensive assessment. This necessity for fur-
ther data points represented another reason to continue with the
optimization process rather than ending it prematurely after the
Diverse Set.

2.2. Evaluation of Relative Importance of Variables

An examination of Figure 5, depicting the relative importance
of variables, provides valuable insights in this endeavor. In this
final step, the SyCoFinder was provided with all data from the
optimization steps (GA1 and GA2) to assess the most significant
variables with respect to user-defined objectives. The plot show-
cases the relative importance of these variables, ranging from 0
to 1.

The pivotal factor in this assessment is the concentration of the
metal salt utilized in the first three cycles, followed closely by the
linker concentration in the first three cycles, substantiating the
hypothesis regarding their influence on the synthesis outcome.

Adv. Funct. Mater. 2024, 2404631 2404631 (4 of 9) © 2024 The Author(s). Advanced Functional Materials published by Wiley-VCH GmbH
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Figure 3. Color code for both figures: Diverse Set (green squares), first genetic algorithm (GA1) (blue triangles) and second genetic algorithm (GA2)
(brown dots). a) Fitness of crystallinity of all experiments, b) Fitness of roughness of all successful experiments.

Figure 4. SEM pictures of a) a sample from the Diverse Set, yielding 74% fitness and b) the best sample from the second genetic algorithm (GA2)
yielding a fitness of 81%, showing a very uniform and smooth film.

To gain deeper insight, Table 2 is considered, presenting all suc-
cessful parameter combinations of GA1 and GA2 arranged by
decreasing fitness. The original parameter sets can be found in
the Supporting Information in Tables S1– S3.

Figure 5. Relative importance of all experiments from GA1 and GA2 for
the selected variables (c-linker, c-metal, modulator, ultrasonication time,
spray cleaning time, c2-linker, c2-metal) on a scale of 0 to 1.

Considering the best three experiments, a clear trend is visi-
ble: The initial cycles show higher concentrations of both metal
salt and linker compared to the later cycles. This leads us to
the assumption that increased concentrations early in the pro-
cess help achieve a more complete coverage of the surface
with base layers, thereby reducing the likelihood of island for-
mation. By establishing a well-covered base framework in the
early cycles, the potential for a defect-free SURMOF struc-
ture is significantly enhanced, setting a primary structure that
guides the orderly growth of subsequent layers. At this stage,
molecular interactions and lattice formation are already un-
derway, allowing the crystal growth to proceed under less in-
tense conditions. Consequently, lower concentrations in later cy-
cles are generally sufficient, as the focus shifts from initiating
to maintaining and expanding the crystal structure. Yet, both
the initial cycles (1–3) and the later cycles (4–40), the concen-
tration of the linker is notably higher than the metal salt’s
concentration.

The third most important variable is the amount of modulator
in the system, aligning with existing knowledge that water signifi-
cantly influences the crystallization of SURMOF. However, water
also strongly influences the orientation of SURMOFs, which we
did not consider in the fitness function in this study.[34,38] Even
though water amounts on the upper limit of 30–40 mL seem
less favorable, further assumptions about its importance are
limited.

Adv. Funct. Mater. 2024, 2404631 2404631 (5 of 9) © 2024 The Author(s). Advanced Functional Materials published by Wiley-VCH GmbH
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Table 2. All successful parameter sets ordered by decreasing fitness.

Fitness Ultra-sonication
[s]

Modulator (Water)
[mL]

c (Linker)
[mmol L–1] Cycle 4–40

c (Metal)
[mmol L–1] Cycle 4–40

Spray-cleaning
[s]

c2 (Linker)
[mmol L--1] Cycle 1-3

c2 (Metal)
[mmol/L] Cycle 1-3

0,81 36 7,81 39,48 17,86 3 48,67 20,38

0,76 45 7,75 36,86 6,71 0 55,43 26,00

0,75 0 18,15 33,24 17,90 3 45,52 30,38

0,72 0 0 47,62 0,10 5 34,95 28,57

0,72 0 24,3 34,19 0,14 4 36,67 5,48

0,67 12 2,93 47,62 0,14 5 31,67 28,57

0,62 81 0 12,00 28,57 5 37,76 14,14

0,58 58 2,79 22,71 28,57 5 39,14 4,95

0,58 10 7,24 12,95 5,10 5 40,05 9,29

0,54 63 22,61 0,24 0,24 2 1,57 7,57

0,41 5 5,26 47,19 12,24 4 42,90 30,19

The variables for the cleaning methods employing ultrasonica-
tion and spray cleaning are located at comparatively low values,
which is substantiated by their values noted in Table 2 not really
depicting any notable trends.

It is challenging to draw definitive conclusions about the direct
impact of specific parameters on achieving low roughness and
high crystallinity, as clear trends are primarily visible in the top
three experiments only. Consequently, this evaluation of variable
importance and the conclusions derived should be viewed as logi-
cal deductions rather than concrete evidence. Nevertheless, these
findings serve as a solid basis for more detailed investigations,
providing valuable insights into the significant factors influenc-
ing the outcomes.

Additionally, based on this study, an existing functionality of
the SyCoFinder could prove useful in accelerating further op-
timizations in similar systems. When creating the Diverse Set,
variables can be weighted. Leveraging the insights from our vari-
able importance evaluation, strategic weighting can introduce a
beneficial bias, accelerating optimizations for systems with sim-
ilar chemistry to those studied.

However, the hypothesis concerning the substantial impact of
the first three cycles was exclusively related to the concentration
variables, being emphasized through the evaluation of the impor-
tance of variables. This observation underscores the significance
of meticulous control and optimization of these early cycles for
achieving the desired material properties. However, future stud-
ies could delve further into exploring the roles of other param-
eters during these initial cycles, such as variations in cleaning
methods, to determine their potential influence on the synthe-
sis outcome.

3. Conclusion

In this study, we employed a structured approach to analyze the
impact of distinct variables controlling the layer-by-layer synthe-
sis on the quality of MOF thin films, focusing on HKUST-1 SUR-
MOFs and particularly emphasizing the initial synthesis cycles.
Our investigation highlighted the critical importance of the first
three cycles, especially the concentrations of metal salt and linker.
We discovered that the parameters set in these early cycles play
a crucial role in determining the final characteristics of the de-

posited MOF thin films, especially in terms of crystallinity and
surface smoothness.

Our findings underscore the necessity of precise control and
optimization of these initial cycles, specifically in terms of con-
centration parameters, to obtain the desired material properties.
This detailed understanding paves the way to enhancing synthe-
sis processes in other SURMOF systems by applying these in-
sights.

A highlight of our research was identifying a highly effective
synthesis method, achieving an impressive 81% fitness level.
This method produced a material with exceptional crystallinity,
quantified at 91%, and a surface roughness of just 6.52 nm, trans-
lating to an 89% roughness fit. Remarkably, this was attained by
adjusting seven different parameters across only three ML gen-
erations. However, we recognize that further exploration could
potentially reveal even more optimal methods within the exten-
sive parameter space.

The results of this study not only contribute significantly to
the field of MOF thin films and their integration into devices
but also establish a foundation for future research. The method-
ologies and insights gleaned here will guide the optimization of
synthesis techniques to develop MOF thin films and heterolayers
with superior qualities, opening new avenues for the application
of MOFs in various technological domains.

4. Experimental Section
Materials: For the automated synthesis of HKUST-1 as a SURMOF

gold-coated silicon wafer pieces of 1 × 3 cm2 in area were used as a sub-
strate. The uncoated wafers were purchased from Siegert Wafer and pre-
cut on the reverse side by MaTecK to ensure consistent piece sizes.

For synthesis and cleaning steps ethanol (abs.) (AnalaR NORMAPUR)
was used as a solvent and purchased from VWR, copper-di-acetate was
purchased from ACROS ORGANICS and trimesic acid (benzene-1,3,5-
tricarboxylic acid) from Sigma–Aldrich.

Synthesis: Prior to the synthesis the gold-coated silicon wafer pieces
were immersed into a SAM-solution of 1, 4 mg 16-Mercaptohexadecanoic
acid in 25, 0 mL acetic acid (glacial) and 225 mL ethanol (abs.) for 72 h.

In the following, these pre-fuctionalized substrates were mounted into
a sample holder and inserted into the robotic set-up (See S1, Supporting
Information and Ref. [34]). Housed within a glovebox, the setup maintains
inert under reproducible synthesis conditions. The industrial six-axis robot
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from Stäubli then immerses the substrates subsequently into an ethanolic
solution of copper-di-acetate, followed by one or more cleaning steps in
pure ethanol, then into a linker solution of trimesic acid (BTC) in ethanol
and water as a modulator, again followed by one or more cleaning steps.
These cleaning steps were either simply dip-rinsing, meaning immersing
the substrate into another vessel containing ethanol or spray-cleaning,
where the substrates were rinsed from both sides with ethanol dispersed
from a nozzle with a certain pressure or ultra-sonic-cleaning where the
substrates were also immersed into a vessel containing ethanol but with
simultaneous ultrasonic treatment. This sequence represents one cycle.
The respective robotic sequences for each parameter-combination is to
be found in the Supporting Information (See “Possible Sequences” in S4,
Supporting Information). Each experiment is carried out for 40 cycles, with
certain concentrations of metal-salt and linker solution for the first three
cycles and different concentrations for the following 37 cycles.

The dwelling times in each vessel as well as the concentrations of linker
and metal-salt solutions and the corresponding combination of cleaning
steps depends on the parameter combination emerging from the machine
learning method. For example if the ultrasonication time was set to zero,
the ultrasonic cleaning step was replaced by dip-cleaning. A list of the pos-
sible combinations or robotic programs respectively as well as the param-
eter sets provided by the SyCoFinder were to be found in the Supporting
Information (see Tables S1– S3 as well as “Possible Sequences” 4, Sup-
porting Information).

Machine Learning Method: The optimization process for achieving
pure and highly crystalline HKUST-1 thin films with very low roughness
followed the procedure outlined by the SyCoFinder web application. The
SyCoFinder process commences with what was referred to as a “Diverse
Set,” where the initial dataset for the genetic algorithm to be trained on
was generated, rendering prior data unnecessary. During this step, the
variables were defined, their ranges established, and the number of exper-
iments determined. From this, the Diverse Set was created, comprising
ten sets of parameter combinations each representing one experiment.

Based on these parameter sets, the synthesis of HKUST-1-thin films
was conducted, and their characteristics were analyzed to determine their
fitness. The web application then utilized the same parameter sets, along
with their corresponding fitness values, to generate a new set of parameter
combinations for the subsequent generation. For this process, a genetic
algorithm was employed, which develops suggestions for more optimized
parameter sets based on evolutionary principles. Specifically, this involved
recombining parent parameter sets and applying a mutation factor to gen-
erate further optimized child parameter sets. For detailed information on
the exact procedure, the reader is referred to the work of Moosavi et al.[35]

This process of evolution through generations was repeated twice, result-
ing in a total of 30 experiments, until satisfactory results were achieved.

The optimization process employed a genetic algorithm after the initial
Diverse Set was established. This algorithm involved recombination and
mutation of the ranked parameter sets, with the ultimate goal of obtaining
smooth, pure and highly crystalline HKUST-1-thin films.

X-Ray Diffraction: All diffractograms were captured using a Bruker D8
Advance diffractometer in 𝜃−𝜃 geometry, ranging from 3 to 20 2𝜃°. The in-
strument was equipped with a LYNXEYE position-sensitive detector featur-
ing 192 active stripes. Additionally, an extended range from 2𝜃° = 37 to 40
was specifically recorded to detect the characteristic substrate gold diffrac-
tion peak, serving as a reference point. Each measurement was taken at a
2-s interval.

To ensure accuracy, each measurement underwent height error correc-
tion and background correction using the DIFFRAC.EVA software version
5.2.0.3 by Bruker AXS. The assessment of crystallinity utilized a predefined
routine by Bruker, while the phase identity was conducted by comparing
the diffractograms to a simulated HKUST-I powder diffractogram.

Ellipsometry: Spectroscopic ellipsometry measurements were con-
ducted using an M2000 instrument from J.A. Woollam Co. Inc., based in
Lincoln, NE, USA. The measurements were carried out at an angle of in-
cidence of 70° within the spectral range of 370–1000 nm under environ-
mental conditions. To analyze the experimental data of the SURMOF thin
film, a Cauchy-fit model was employed, utilizing the instrument’s software
CompleteEase (V5.19). This model included roughness as an additional

effective medium layer, consisting of a 50–50 mixture of the ambient with
the layer material. The optical characteristics of the gold-coated silicon
substrate were determined through a reference measurement of the un-
coated substrate performed prior to the synthesis.

Fitness: The fitness, represented as a value ranging from 0 to 1 and
serving as a metric to evaluate each experiment, was determined by

fitness = fitness(phase identity) ∗ fitness(crystallinity) ∗ fitness(roughness)(2)

Each of the multiplied terms refers to a different characterization tech-
nique, each referring to the average of measurements from two replicated
samples. phase identity as well as crystallinity emerge from X-Ray diffrac-
tion measurements, while the term for roughness emerges from ellipso-
metric measurements.

The fitness(phase identity) expresses a simple exclusion criterion by dif-
fering into two cases:

fitness(phase identity) =

{
1 if f1+f2

2
= 1

0 else
(3)

In the first scenario, the term fitness(phase identity) yielded a value of one
when the position of signals in the X-Ray diffractogram from the observed
sample aligns with those in a simulated counterpart. Conversely, in the
second scenario, this term resulted in a value of zero, indicating a lack of
correspondence, which may manifest as the absence of clear phases or the
complete absence of signals. The average value of the two diffractograms,
denoted as f1 and f2, which could each take on either the value 1 for a
positive match or 0 in the case of amorphous samples, was calculated
from two samples per experiment. This consistent practice of measuring
two samples serves as a means to ensure the reproducibility of the results.

As previously stated, the calculation of fitness(crystallinity) was con-
ducted using a built-in routine of the Bruker Software “Diffrac.eva”, which
evaluates crystallinity as a percentage value. This assessment involves the
following equations: the global area was defined as the integral under the
entire, uncorrected measurement curve, while the reduced area is the in-
tegral under the curve after excluding the amorphous proportion. An ex-
ample of this fitting process employing a built-in routine from Bruker is
provided in the Supporting Information (See Figure S9, Supporting Infor-
mation).

fitness(crystallinity) = 100 − % Amorphous (4)

Amorphous[%] = Global Area − Reduced Area
Global Area

∗ 100 (5)

The fitness(roughness) was derived from ellipsometric measurements,
where the primary objective was to match data generated from an opti-
cal model to closely align with the observed data. A visual example of this
fitting process is provided in the Supporting Information (See Figure S10,
Supporting Information). The parameters roughness (R) and thickness (T),
measured in nanometers (nm), were directly obtained from this analyti-
cal process. To prioritize low roughness relative to thickness, the ratio of
these two values was subtracted from one, thereby aligning lower rough-
ness values with a fitness(roughness) closer to one. This approach ensures
that roughness and thickness were proportionally related, acknowledging
their inherent correlation.

fitness(roughness) =
(

1 −
roughness
thickness

)
∗ mse ∗ R∕T-ratio

mse =

{
1 for MSE < 20
0 for MSE > 20

R∕T-ratio =

{
1 for R

T
∗ 100 < 60%

0 for R
T
∗ 100 > 60%

(6)
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To maintain consistency and comparability across all measurements, the
same analysis procedure was applied uniformly. However, this necessi-
tated the establishment of a threshold to discard unreliable results. One
such metric was the dimensionless Mean Squared Error (MSE), a measure
for the match between the generated and the measured data and provided
by the evaluation software during curve fitting. The higher this value, the
more the experimental surface differed from the ideal layer model assum-
ing sharp interfaces with minimal roughness. Based on experience from
previous studies, measurements with a MSE above 20 were deemed un-
reliable. Consequently, the conditional logic of the second term excluded
measurements with an MSE exceeding this threshold. Additionally, the
roughness-to-thickness ratio, based on empirical observations, was set
with a cut-off value of 60%. This threshold was designed to allow the ma-
chine learning algorithm to learn from sub-optimal results without being
misled by them.

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.
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