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A B S T R A C T

Engineering components must meet increasing technological demands in ever shorter devel-
opment cycles. To face these challenges, a holistic approach is essential that allows for the
concurrent development of part design, material system and manufacturing process. Current
approaches employ numerical simulations, which quickly becomes computation-intensive, es-
pecially for iterative optimization. Data-driven machine learning methods can be used to replace
time- and resource-intensive numerical simulations. In particular, MeshGraphNets (MGNs) have
shown promising results. They enable fast and accurate predictions on unseen mesh geometries
while being fully differentiable for optimization. However, these models rely on large amounts
of expensive training data, such as numerical simulations. Physics-informed neural networks
(PINNs) offer an opportunity to train neural networks with partial differential equations instead
of labeled data, but have not yet been extended to handle time-dependent simulations of
arbitrary meshes. This work introduces PI-MGNs, a hybrid approach that combines PINNs and
MGNs to quickly and accurately solve non-stationary and nonlinear partial differential equations
(PDEs) on arbitrary meshes. The method is exemplified for thermal process simulations of
unseen parts with inhomogeneous material distribution. Further results show that the model
scales well to large and complex meshes after being trained exclusively on small, generic
meshes.

1. Introduction

As technology advances and requirements grow, the process of developing technical systems becomes increasingly complex. This
is further complicated by shorter development times and a increasing shortage of resources. In particular, components, materials
and manufacturing processes must be developed jointly to achieve the technical demands. In order to handle this challenge in a
reasonable amount of time, engineers tend towards computer-aided engineering (CAE). Most notably, physics-based simulations
have become indispensable in the development of complex technical systems.

Simulations are in general built up on partial differential equations (PDEs) that describe the considered technical system. Solving
PDEs generally requires numerical approximation methods because analytical solutions are not tractable for arbitrary geometries.
Therefore, numerical methods such as the finite element method (FEM) [1], the finite volume method (FVM) [2] or the finite
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difference method (FDM) [3] are frequently applied [4]. These simulations can take hours or even days for complex systems and
sufficiently realistic solutions. In practice, the computation time even multiplies for parametric studies or iterative optimization [5].

To overcome this limitation, surrogate models can be applied. Surrogates are numerically efficient approximations of the ‘‘input–
utput’’-relation of an expensive simulation. They are constructed based on a set of a-priori sampled observations. Recently,
achine learning (ML) methods have gained attention as surrogate models, because they enable huge speed-ups while being fully
ifferentiable and achieving good accuracy. This allows for replacing numerical solvers with ML-based surrogate models, but their
eliability and applicability to unseen scenarios, i.e., scenarios that were not accessible during model training, is highly dependent
n the model architecture. Many existing models are trained on a specific part and cannot consider new arbitrary part designs,
.g. [6,7]. However, this contradicts many use cases because the part design and its manufacturing process strongly influences the
art’s function and consequently its quality. This makes it crucial for a learned surrogate model to generalize to arbitrary unseen
eometries of complex material systems for changing process conditions. Some approaches seek to replace geometry parameters
ith pixels- or voxels and analyze them with convolutional neural networks (CNNs) [5,8,9]. This substantially boosts the space of
rocessable geometries but requires to transform input and output to conform to regular grids, which restricts their applicability.
n classical numerics, so-called ‘meshes’ have proven a universal and machine-readable description of geometries/computational
omain. Thus, new approaches have been developed, e.g. by graph neural networks (GNNs) [10,11] or transformers [12], to tackle
his issue and naturally handle simulation data based on arbitrary meshes.

In addition to handling part geometries, neural PDE solver can also be distinguished in terms of time. For example, models
an be categorized into next-step models and time-dependent neural operator methods [13]. Next-step models predict the solution
teratively, using the solutions of previous time steps as input. Some next-step models output the solution directly [10,13,14], while
thers, such as NeuralODEs, model the time derivative continuously and use numerical solvers to predict the next time step [15,16].
n contrast, time-dependent neural operators learn to predict a solution given the initial condition and its time step. This allows for
ast approximation of a solution at future time steps with only one model call [17,18], while limiting the applicability of the model
or out-of-distribution time steps. Similar to classical explicit time integration, next-step models can be applied at any starting point
nd for any simulation duration, making them a flexible option for engineering tasks. However, next-step models depend on their
revious output and thus struggle with error accumulation. To overcome this limitation, several strategies have been deployed, such
s training noise injection [10,14] or temporal bundling [13].

While mesh-based ML-techniques show great potential to model arbitrary geometries, their current applications are still data-
riven, and as such, they require vast amounts of training data. Here, physics-informed training is quickly becoming a popular
lternative [19–21]. Instead of learning the system dynamics from (sufficiently many) supplied samples, physics-informed training
eeks to train a model directly on the governing physical equations – usually cast as PDEs. The obtained surrogate models generalize
ell to unseen PDE parameters [19–21]. However, early studies on physics-informed neural networks (PINNs) [18] use feed-forward
eural networks and consider the position on the part as an additional network input, which however restricts the model to learn part
esign-dependent solutions. To alleviate this limitation, several works have transferred the physics-informed training idea to model
rchitectures that perform better on unseen arbitrary part designs, e.g. based on CNNs [22–24], PointNets [25] and GNNs [26,27].
ashefi et al. [25] developed a physics-informed training of PointNets based on automatic differentiation and for stationary problems,
uch as incompressible flows and thermal fields, which was able to handle unseen arbitrary geometries. Gao et al. [22] trains CNNs
ith FDM on 2D irregular domains by mapping the physical to a regular domain. However, solving complex geometries with the
DM is challenging, because, e.g., the required domain transformation to regular domains proves to be tedious [4]. Therefore,
ther numerical methods, such as the FEM, are usually used for complex engineering parts [4]. Many simulation models have been
eveloped and successfully validated with the FEM. This makes the integration of the FEM into physics-informed training promising
nd necessary for simulating many real-world problems. Li et al. [27] propose a hybrid approach of a data-driven loss and an
sogeometric analysis-based physics-informed loss to train GNN-submodels for local approximation, which are input to a purely
ata-driven GNNs assembly model. Gao et al. [26] train Chebyshev GNNs [28] with an FEM-based loss function to solve stationary
orward and inverse problems. However, the physics-informed training of neural PDE solvers, such as MeshGraphNets (MGNs),

requires non-stationary loss formulations, e.g., based on non-stationary FEM PDEs, to obtain a loss value for each time step. In
addition, the GNNs are only trained on a single given geometry and have not been evaluated on new meshes.

The present work introduces physics-informed MeshGraphNets (PI-MGNs), a physics-informed framework for training MGNs
to reliably simulate non-stationary physics of unseen arbitrary part designs, material property fields and process conditions.
MeshGraphNets are incorporated into the well-known and widely used FEM to surpass existing PINN variants. Unlike prior work,
this work trains MGNs with non-stationary and nonlinear FEM PDEs, which omits time-consuming data generation and even
improves generalization and accuracy. Further enhancements are achieved by extending MGNs with additional methods such as
time bundling [13] and global features [29].

To evaluate the PI-MGNs, the effectiveness of the proposed approach is demonstrated for three different time-dependent
experiments with varying task complexity and learning difficulty. The present work initially compares PI-MGNs with data-driven
MGNs [10] and physics-informed graph neural Galerkin networks (PI-GGNs) [26] and evaluates their improvements over the existing
baselines. The subsequent evaluation illustrates the improvement of the trained PI-MGNs models over the baselines in predicting
non-stationary physics on large unseen parts without retraining. In addition, an ablation study of the MGNs architecture reveals the
2

contribution of the selected components to achieve reliable performance across all considered tasks.
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2. Methodology

2.1. Simulating non-stationary physics

Non-stationary physical phenomena of complex physical systems are usually modeled by time-dependent and generally nonlinear
DEs. Simulating the physics consists of solving these PDEs to obtain the time evolution of the physical quantities of the system.
he underlying PDEs differ from application to application, e.g. depending on the physical system and the research objectives. This
ork considers parabolic PDEs, described by

𝜕𝑇
𝜕𝑡

= 𝛼∇2𝑇 + 𝑞(𝑇 ), ∀𝐱 ∈ 𝛺 (1)

where 𝑇 = 𝑇 (𝐱, 𝑡) denotes a scalar and time-dependent field of a physical quantity, such as the part temperature in this work,
𝛼 = 𝛼(𝐱, 𝑡) the diffusivity of the material, e.g. the thermal diffusivity, and 𝑞(𝑇 ) an in general nonlinear source term.

An initial–boundary value problem additionally includes boundary conditions on the boundary 𝜕𝛺, e.g. Dirichlet boundary
conditions 𝑇 = 𝑇 , ∀𝐱 ∈ 𝛤 ⊂ 𝜕𝛺 or Neumann boundary conditions ∇𝑇 ⋅ 𝐧 = ℎ , ∀𝐱 ∈ 𝜕𝛺 = 𝜕𝛺 ⧵ 𝛤 , where 𝐧 denotes the
normal vector on the Neumann boundary 𝜕𝛺 , and an initial condition 𝑇 (𝐱, 𝑡 = 0) = 𝑇 0. The solution 𝑇 of the initial–boundary
value problem can be calculated with the FEM, which will be briefly revisited with the pertinent equations as necessary to outline
the concept of PI-MGNs in the following.

2.2. The finite element method

In the FEM, the weak formulation of the PDEs is considered, which can be obtained by multiplying the strong PDE of Eq. (1)
with a test function 𝜑 ∈ 𝐻1

0 and integration by parts [1] as

∫𝛺
𝜕𝑇
𝜕𝑡

𝜑 + 𝛼∇𝑇 ⋅ ∇𝜑 − 𝑞(𝑇 )𝜑 d𝑉 − ∫𝜕𝛺

𝛼ℎ𝜑 d𝐴 = 0. (2)

More generally, the left side of the equation can be summarized as a functional 𝛷, which yields

𝛷
( 𝜕𝑇
𝜕𝑡

, 𝑇 , 𝜑
)

= 0. (3)

Here, 𝐻1
0 denotes a Sobolev space in which the test function 𝜑 = 0 on the Dirichlet boundary 𝛤 and the test function 𝜑 as well

as its first weak derivative are square integrable [1]. The Galerkin FEM uses the same basis functions 𝜙𝑣(𝐱), e.g. piecewise linear
polynomials in this work, to approximate the solution 𝑇 (𝐱, 𝑡) =

∑𝑁𝜑
𝑣=1 𝑇𝑣(𝑡)𝜙𝑣(𝐱) and the test function 𝜑(𝐱) =

∑𝑁𝜑
𝑣=1 𝜙𝑣(𝐱), i.e.,

𝑁𝜑
∑

𝑣=1
𝛷
(

𝜕𝑇𝑣
𝜕𝑡

, 𝑇𝑣, 𝜙𝑣, 𝜙𝑚

)

= 0, ∀𝑚 = 1,… , 𝑁𝜑.

Then, the weak form is discretized in time. This work uses an implicit Euler method with a constant time step 𝛥𝑡 as
𝑁𝜑
∑

𝑣=1
𝛷
(

𝜕𝑇𝑣
𝜕𝑡

, 𝑇𝑣, 𝜙𝑣, 𝜙𝑚

)

≈
𝑁𝜑
∑

𝑣=1
𝛷
(

(𝑇 𝑛+1
𝑣 − 𝑇 𝑛

𝑣 )∕𝛥𝑡, 𝑇
𝑛+1
𝑣 , 𝜙𝑣, 𝜙𝑚

)

≈
𝑁𝜑
∑

𝑣=1
𝛷
(

𝑇 𝑛+1
𝑣 , 𝑇 𝑛

𝑣 , 𝜙𝑣, 𝜙𝑚
)

,

esulting in 𝑁𝑡 equations for the solution 𝑇 𝑛
𝑣 ∈ {𝑇 0

𝑣 ,… , 𝑇𝑁𝑡
𝑣 } and the time steps 𝑡𝑛 ∈ {𝑡0,… , 𝑡𝑁𝑡} with 𝑛 = 0,… , 𝑁𝑡. Subsequently,

the integrals of the functional 𝛷 over the domain 𝛺 are separated into a sum of element integrals
𝑁e
∑

𝑒=1

𝑁𝜑
∑

𝑣=1
𝛷𝑒

(

𝑇 𝑛+1
𝑣 , 𝑇 𝑛

𝑣 , 𝜙𝑣, 𝜙𝑚
)

= 0, ∀𝑚 = 1,… , 𝑁𝜑 (4)

and the element integrals of the element functionals 𝛷𝑒 are approximated as a second-order accurate quadrature in this work.
Finally, the discretized solution 𝑇 𝑛+1

𝑣 can be obtained by starting with the initial condition 𝑇 0
𝑣 and iteratively solving Eq. (4) for

the next time step 𝑇 𝑛+1
𝑣 for all time steps 𝑡𝑛 ∈ {𝑡0,… , 𝑡𝑁𝑡}. The applied backward Euler time discretization provides stability for

large time steps [1]. This is necessary for fast simulations of stiff PDEs, where the solution changes strongly at different time scales
and explicit methods are in consequence only stable for small time steps [1]. However, solving for one time step of nonlinear PDEs
with an implicit numerical solver requires multiple inner solver iterations, which can be very time-consuming [1]. Consequently,
stiff and nonlinear PDEs are particularly difficult to solve numerically and would benefit in particular from a more efficient solution
approach.

Applying a given Dirichlet boundary condition simplifies the problem by pre-determining the coefficients 𝑇 𝑛+1
𝑣,𝛤 ⊂ 𝑇 𝑛+1

𝑣 associated
with the basis functions 𝜙𝑣(𝐱) that are 1 at the Dirichlet boundary 𝑥 ∈ 𝛤 . This simplification reduces the number of unknown
coefficients from 𝑁𝜑 to 𝑁𝜑, . To prevent an overdetermined system of PDEs, Eq. (4) is solved only for the 𝑚 = 1,… , 𝑁𝜑, test
functions 𝜙𝑚, ∈ {𝜙𝑚(𝐱) ∶ 𝜙𝑚(𝐱) ≠ 1,∀𝐱 ∈ 𝛤 }, which are not 1 on the Dirichlet boundary 𝛤 . Then, it is sufficient to predict the

𝑛+1 𝑛+1
3

solution 𝑇𝑣, ⊂ 𝑇𝑣 of the nodes that are not on the Dirichlet boundary 𝛤 . Finally, the solution is obtained by enforcing the
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Fig. 1. Overview of the PI-MGN architecture. For a given graph , the MGNs encode its node features 𝐗 , edge features 𝐗 , and global features 𝐠 using a
separate MLP for each feature. The encoded graph is updated by multiple message passing steps in the MPN-processor. Each of the 𝐿 message passing steps
calculates updates for each individual node feature 𝐱𝑙𝑣, edge feature 𝐱𝑙𝜀, and global feature 𝐠𝐥. In general, a node, edge, and global CNN outputs a decoded graph
out. However, this work only decodes the node features, as edge and global predictions are not considered.

solution on the Dirichlet boundary as 𝑇 𝑛+1
𝑣 = 𝑇 𝑛+1

𝑣, + 𝑇 𝑛+1
𝑣,𝛤 , where the Dirichlet solution 𝑇 𝑛+1

𝑣,𝛤 is non-zero on the nodes of the
Dirichlet boundary 𝛤 and the non-Dirichlet solution 𝑇 𝑛+1

𝑣, is non-zero on the remaining domain 𝛺 ⧵ 𝛤 . A detailed description of the
non-stationary FEM can be found in the literature [1].

2.3. MeshGraphNets

The solving process of the FEM can be accelerated by learned ML simulators. Here, an MGN based on a message passing
network (MPN) with global features is applied (cf. Fig. 1).

The MPN processes graphs  = ( ,  ,𝐗 ,𝐗 , 𝐠) by updating the node features 𝐗 and edge features 𝐗 of all nodes 𝑣 ∈  and
edges 𝜀 ∈  , as well as the global features 𝐠 in 𝐿 consecutive message passing steps. The 𝑙th message passing step for updating the
node feature 𝐱𝑙𝑣, edge feature 𝐱𝑙𝜀 and global feature 𝐠𝑙 is defined as

𝐱𝑙+1𝜀 = 𝑓 𝑙
 (𝐱

𝑙
𝑣, 𝐱

𝑙
𝑢, 𝐱

𝑙
𝜀, 𝐠

𝑙), with 𝜀 = (𝑢, 𝑣) ∈  and 𝑢, 𝑣 ∈  ,
𝐱𝑙+1𝑣 = 𝑓 𝑙

 (𝐱
𝑙
𝑣,

⨁

𝜀=(𝑣,𝑢)∈
𝐱𝑙+1𝜀 , 𝐠𝑙), and

𝐠𝑙+1 = 𝑓 𝑙
𝐠(
⨁

𝑣∈
𝐱𝑙+1𝑣 ,

⨁

𝜀∈
𝐱𝑙+1𝜀 , 𝐠𝑙).

(5)

The nonlinear learned functions 𝑓 𝑙
. are usually implemented as MLPs, and ⨁ denotes a permutation-invariant aggregation, such

as a sum, mean or max operator [10,29,30].
The MPN outputs learned quantities 𝑥𝐿𝑣 per node. These values are then combined with 1D CNNs to reduce error accumulation

by predicting a solution over multiple time steps, which is known as temporal bundling [13]. In particular, each time step 𝑡𝑛 of
a problem 𝑝 induces a directed graph 𝑛 with self-loops that contains PDE-specific node features 𝐗𝑛

 , edge features 𝐗𝑛
 and global

features 𝐠𝑛. The nodes 𝑣𝑛 of the graph 𝑛 correspond to mesh nodes at time step 𝑡𝑛 and the edges 𝜀𝑛 to the edges of the mesh.
To predict the temporal bundle 𝑇̃ 𝑛+𝑛̃

𝑣 of solutions for the next 𝑛̃ = 1,… , 𝑁TB time steps, the features of the graph are encoded by
individual MLPs, and then subsequently processed by the MPN and the CNN decoder. The resulting bundle can be used to assemble
the next graph 𝑛+𝑁TB to be processed by the MGN. This procedure is repeated until the desired time step 𝑡𝑁𝑡 is reached. This
methodology can be applied to batched graphs 𝑛b to better utilize accelerated hardware.

In this work, a one-hot vector 𝑛t [10] is added to the graph as a node feature, which encodes the node type, categorized into
Dirichlet nodes, Neumann nodes and inner nodes. The relative distance vector between the nodes of the edge 𝐱𝑣𝑢 = 𝐱𝑣 − 𝐱𝑢 as well
as the Euclidean distance |𝐱𝑣𝑢| are added as edge features. In addition, the difference of the solution 𝑇𝑣𝑢 = 𝑇 𝑛

𝑣 − 𝑇 𝑛
𝑢 , more precisely

the approximation 𝑇̃𝑣𝑢 = 𝑇̃ 𝑛
𝑣 − 𝑇̃ 𝑛

𝑢 at the current time step 𝑡𝑛 between the nodes of an edge 𝜀 = (𝑢, 𝑣) are added. Additional node,
edge or global features may be added individually in the specific experiments. An overview is given in the Appendix in Table A.4.

2.4. Physics-informed MeshGraphNets

MGNs as described in Section 2.3 are commonly trained in a data-driven fashion to learn to solve Eq. (4) for unseen tasks, e.g
new part designs. This training paradigm requires simulation data that is created using numerical solvers for multiple training tasks,
which often proves time- and resource-intensive. Therefore, the present work trains MGNs with a physics-informed approach that
builds on the FEM formulation of Section 2.2, learning to predict the non-stationary physics for unseen part designs, materials and
process settings.
4
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Fig. 2. Overview of the PI-MGN training. Given a solution 𝑇 𝑛
𝑣 and additional properties of the time step 𝑡𝑛, a graph 𝐺𝑛 is assembled and passed to the PI-MGNs,

which output a graph 𝐺𝑛
out (cf. Fig. 1). This graph contains the approximations 𝑇̃ 𝑛+𝑛̃

𝑣 of the next time steps 𝑡𝑛+𝑛̃, where 𝑛̃ = 1,… , 𝑁TB. Using the FEM, an element-
and test function-wise error is calculated and summed up to a test function-wise error. Finally, the loss is calculated as the MSE of all errors to update the
PI-MGN using backpropagation.

FEM-based loss. A correct solution of Eq. (4) yields zero on the left side of the equation for all 𝑁𝜑, equations, and a non-zero value
otherwise. Similar to the FEM error formulation for static PDEs in [26], this discretized equation can be used to define an error for
a time step of the non-stationary PDEs. Given a solution of the current time step 𝑇 𝑛

𝑣 , the left side of Eq. (4) can be interpreted as
an error function for the approximation 𝑇̃ 𝑛+1

𝑣 of the MGN at the time step 𝑛 + 1. For the 𝑚th test function, the error 𝜖𝑛+1FEM,𝑚 is thus
given as

𝜖𝑛+1FEM,𝑚 =
𝑁e
∑

𝑒=1

𝑁𝜑
∑

𝑣=1
𝛷𝑒

(

𝑇̃ 𝑛+1
𝑣 , 𝑇 𝑛

𝑣 , 𝜙𝑣, 𝜙𝑚
)

, ∀𝑚 = 1,… , 𝑁𝜑, . (6)

Naively evaluating this formulation requires the calculation of an element functional 𝛷𝑒 in 𝑁e elements for all 𝑁𝜑, test functions at
each time step 𝑛, which is quite expensive. However, the complexity of the calculation can be simplified. The piecewise polynomial
test functions 𝜙𝑚 in an element integral of the element functional 𝛷𝑒 are only non-zero for the elements they are connected to and,
consequently, the element integral is only non-zero for these test functions. This simplification allows for splitting up the calculation
of the error per test function 𝜖𝑛+1FEM,𝑚 in two steps. First, an element-wise error 𝜖𝑛+1FEM,𝑒𝑚 is calculated for each of the test functions 𝜙𝑚,
which are non-zero in the element, otherwise the error is set to zero. Formally, this amounts to,

𝜖𝑛+1FEM,𝑒𝑚 =

⎧

⎪

⎨

⎪

⎩

𝑁𝜑
∑

𝑣=1
𝛷𝑒

(

𝑇̃ 𝑛+1
𝑣 , 𝑇 𝑛

𝑣 , 𝜙𝑣,𝜙𝑚
)

, 𝜙𝑚 ≠ 0

0, 𝜙𝑚 = 0

(7)

for all 𝑚 = 1,… , 𝑁𝜑, and 𝑒 = 1,… , 𝑁e.
The total error 𝜖𝑛+1FEM,𝑚 of the 𝑁𝜑, test functions at the time step 𝑛 yields

𝜖𝑛+1FEM,𝑚 =
𝑁e
∑

𝑒=1
𝜖𝑛+1FEM,𝑒𝑚 , ∀𝑚 = 1,… , 𝑁𝜑, . (8)

Finally, the loss is defined as the mean squared error (MSE) of this error

𝑛
FEM = 1

𝑁TB𝑁𝜑,

𝑁TB
∑

𝑛̃=1

𝑁𝜑,
∑

𝑚=1

(

𝜖𝑛+𝑛̃FEM,𝑚

)2
, (9)

for all time steps 𝑛̃ = 1,… , 𝑁TB of the temporal bundle, which enables a physics-informed training of the MGN.

PI-MGNs training. The physics-informed training is divided into multiple epochs, with each epoch containing several optimization
loops with multiple optimization steps. One optimization step (cf. Fig. 2) consists of: The PI-MGN processes a graph 𝑛 and outputs
the solution 𝑇̃ 𝑛+𝑛̃

𝑣 for the next temporal bundle, containing the solutions of the next 𝑛̃ = 1,… , 𝑁TB time steps. The element-wise errors
for the 𝑁TB time steps are evaluated in parallel with Eq. (7), using the initial solution 𝑇 (𝑛)

𝑣 and the approximations 𝑇̃ 𝑛+𝑛̃
𝑣 . Then, the

error 𝜖𝑛+1FEM,𝑚 per test function is calculated with Eq. (8). For each of the 𝑁TB time steps, 𝑁𝜑, errors are obtained, resulting in a total
amount of 𝑁 𝑁 errors for the 𝑁 𝑁 approximations of the PI-MGNs. The FEM loss 𝑛 for the graph input 𝑛 is calculated
5

TB 𝜑, TB 𝜑, FEM
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w
1

Fig. 3. Schematic overview of the experiments. Figure (a) shows an example of the L-shaped domain of a 2D linear heat diffusion experiment and Figure (b)
the initialization of an convex polygon with 7 random points of the nonlinear experiment. Figure (c) depicts a hollow cylinder of the 3D experiment with a
heating boundary condition inside the cylinder (red arrows) and an adiabatic boundary condition at the outer surface (red coils).

as the MSE of 𝑁TB𝑁𝜑, all errors. Finally, the loss 𝑛
FEM is used to update the PI-MGN parameters using backpropagation through

the FEM equations and a gradient-based optimizer [31].
One optimization loop starts with the initial condition at 𝑡0 of a problem and assembles a graph 0 to update the PI-MGN. After

this step, the time step 𝑡𝑁TB can be initialized to perform another optimization step. This procedure is repeated until the last time
step 𝑡𝑁T is reached. Then, the optimization loop processes the next problem. The epoch is finished when the optimization loop has
been repeated for all considered training problems 𝑝. The full training procedure consists of a given number of epochs.

It is important to note that the method is fully applicable to nonlinear equations without restrictions. The loss can also be
calculated directly and in parallel for multiple time steps without the need for inner solving iterations. Additionally, since the FEM
naturally integrates the Neumann boundary conditions into the PDEs and the Dirichlet boundary conditions are strictly enforced in
this work, the initial–boundary-value problem has only to be solved for Eq. (9). This directly avoids competing training losses and
the resulting training difficulties [32].

Noise injection in physics-informed training. As the output of an MGN at the time step 𝑛 contains errors and is used to construct
the next input graph 𝑛+𝑁TB , next-step models struggle with error accumulation. Noise injection proves to be an effective strategy
for MGN [10] to reduce this error accumulation. The basic idea is to add an artificial error to the input graph during training so
that the MGN must detect and minimize the error. Here, noise injection is introduced for physics-informed training. Gaussian noise
𝜖 ∼  (0, 𝐈𝜎) is added to the exact PI-MGN prediction 𝑇̃ 𝑛

𝑣 to construct the input graphs during training, i.e., the graphs contain the
noisy prediction 𝑇̃ 𝑛

𝑣 + 𝜖𝑣 instead of the exact prediction 𝑇̃ 𝑛
𝑣 . However, the noiseless approximation 𝑇̃ 𝑛−1

𝑣 is still inserted into Eq. (9),
forcing the PI-MGN to learn to output the correct solution that minimizes Eq. (9), while seeing a noisy, i.e., slightly incorrect, input
graph. As in [10], the noise is only added during training and not at inference.

3. Experiments

3.1. Training on small meshes

The PI-MGNs are evaluated on three different experiments (cf. Fig. 3), where the models face different numerical and learning
challenges:

• Firstly, a 2D linear heat diffusion task on randomly varying L-shaped domains is considered. The model learns to handle unseen
meshed geometries and different process conditions in the form of random inhomogeneous initial conditions.

• The second experiment contains a PDE with a nonlinear, time- and material-dependent heat source and considers random 2D
convex polygons with random inhomogeneous PDE parameter distributions. In particular, the model has to learn the influence
of random arbitrary material fields on the solution of a nonlinear PDE.

• Finally, the method is applied to various 3D hollow cylinder meshes with mixed boundary conditions, that are heated over
time due to a Neumann boundary condition.

Appendix A describes the three experiments in more detail.

Training. In the following, a problem 𝑝 contains a concrete specification of the experiments. In particular, it includes the specification
of all material parameters, such as the diffusivity 𝛼, the nonlinear source term 𝑞(𝑇 ) in Eq. (1), a geometry 𝛺, the initial condition
𝑇 0, the Dirichlet 𝑇 , ∀𝐱 ∈ 𝛤 and Neumann boundary conditions ℎ , ∀𝐱 ∈ 𝜕𝛺 . All experiments consider a total number of 100
randomly generated problems. 75 of these problems are randomly selected for training, while the other 25 are excluded from the
model training and used for testing. The random parameters for training and testing are drawn from the same uniform distributions,
which are specified in the tables of Appendix A. Training is conducted over 5 random seeds. Each training consists of 500 epochs

ith mini-batches consisting of 2 graphs. Adam [31] is utilized as the optimizer with an exponential decay of the learning rate from
6

e−3 to 1e−5. The gradient norm is clipped to 1.
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PI-MGN. The input vector of node features 𝐗 , edge features 𝐗 , and global features 𝐠, respectively, is linearly encoded to a latent
ector. All latent dimensions are 128. The MPNs of the PI-MGNs (cf. Fig. 1) consist of 𝐿 = 12 message passing steps. Each MLP of the
PNs consists of 2 layers and uses a rectified linear unit (ReLU) activation function between layers and a layer norm [33] at the end.
he latent output vector of the MPN-processor is decoded by a CNN to a vector of length 20, containing the solution approximation
f the next 20 time steps. The setup of the CNN follows previous work [13], consisting of 2 layers with 1 input channel, 8 hidden
hannels and 1 output channel, a kernel stride of 15 and 10, and a stride of 4 and 1, respectively.

imulation and evaluation. All problems are evaluated for a total amount of 100 time steps, starting from 𝑡0 = 0 s and progress until
𝑁𝑡 = 1 s is reached with a fixed time step 𝛥𝑡 = 0.01 s. For evaluation, FEM-solutions from the open-source package scikit-fem [34]
erve as a ground truth reference. The FEM-solutions solve the same equations and time steps as the PI-MGNs for comparability.
hese FEM-solutions are in no way used for PI-MGN training. They only serve as ground truth to assess the quality of PI-MGN
olutions after training. A normalized 𝐿2 error

𝜖𝐿2 ,norm =

(

∑𝑁𝑡
𝑛=1

∑𝑁𝜑
𝑣=1

|

|

𝑇̃ 𝑛
𝑣 − 𝑇 𝑛

𝑣
|

|

2
)1∕2

(

∑𝑁𝑡
𝑛=1

∑𝑁𝜑
𝑣=1

|

|

𝑇 𝑛
𝑣
|

|

2
)1∕2

(10)

is used to measure the deviation of the PI-MGN prediction from the ground truth. For visualizing error distributions, a relative
metric

𝜖𝑛rel =
𝑇̃ 𝑛
𝑣 − 𝑇 𝑛

𝑣
max
𝑣,𝑛

(𝑇 𝑛
𝑣 ) − min

𝑣,𝑛
(𝑇 𝑛

𝑣 )
(11)

s applied.

aselines. The PI-MGNs are compared to data-driven MeshGraphNets (DD-MGNs) [10] and to PI-GGNs from [26], which train graph
hebyshev convolutional neural network (GCCN) with the FEM for solving forward and inverse stationary problems of a single
eometry.

For the DD-MGNs baseline, the ground truth FEM data 𝑇 𝑛
𝑣 is integrated into the training process, which amounts to 75 simulations

er experiment and per repetition for training and 25 for testing. Therefore, the loss function in Eq. (9) is replaced by a data-based
SE loss

𝑛
data = 1

𝑁TB𝑁𝜑,

𝑁TB
∑

𝑛̃=1

𝑁𝜑,
∑

𝑣=1

|

|

𝑇̃ 𝑛+𝑛̃
𝑣 − 𝑇 𝑛+𝑛̃

𝑣
|

|

2 . (12)

nalogous to the physics-informed loss 𝑛
FEM, the data loss measures the deviation of all 𝑁TB approximations of the MGN for

n input graph 𝑛 at the time step 𝑛. Since the ground truth is now available during training, the noisy ground truth difference
𝑇 𝑛
𝑣 + 𝜖𝑣) − (𝑇 𝑛

𝑢 + 𝜖𝑢) is added as an edge feature instead of the noisy approximation difference (𝑇̃ 𝑛
𝑣 + 𝜖𝑣) − (𝑇̃ 𝑛

𝑢 + 𝜖𝑢), as in [10].
part from these two changes, everything remains the same for comparability, which includes all integrated extensions such as

ime bundling and global features. Hence, the DD-MGN and PI-MGN approaches differ only in their training and work identically
uring inference.

For the physics-informed baseline PI-GGN, the model is integrated into the PI-MGNs framework. Therefore, the GCCN of [26]
eplaces the MPN of this work and the absolute positions and the solution are added as node features as in [26], because the GCCN
annot consider edge features. The input size of the model is set to the experiment-specific numbers of node features and the output
ize to the time-bundling size 𝑁TB = 20. All other components of the GCCN remain the same as in [26], while all setups, such as
he training setup, are consistent with the PI-MGN setup.

.2. Generalization to large unseen meshes

In addition, the present work examines the ability of PI-MGNs to generalize to large, unseen meshes – that is, meshes with a
ignificantly larger number of mesh elements than the meshes considered in training. The pre-trained PI-MGNs and baseline models
re applied on four unseen large mesh problems. The first two problems investigate the performance of the trained PI-MGNs to
redict the 2D linear heat diffusion for large corrugated sheets consisting of 10 and 100 components, respectively. Subsequently, the
odels of the 2D nonlinear heating are applied on a large grid structure. The last problem considers the PI-MGNs of the 3D heatup
ith mixed boundary conditions applied on a long 3D hollow cylinder. Appendix A.4 contains a detailed description of the large
esh problems.

.3. Additional experiments

blation studies. Ablation studies investigate the effectiveness of the individual components of the PI-MGN architecture. In
articular, the time bundling CNN decoder is compared to an MLP decoder and the sensitivity of the accuracy with respect to
he time bundling size 𝑁TB is investigated. Further, the relative positional encoding is compared to an absolute positional encoding
nd the effectiveness of the global features and the training noise is investigated. Finally, the best-performing variants from the
blation study will be applied to the large mesh experiments to evaluate their generalization ability to generalize to large parts.
7
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Fig. 4. Comparison of the PI-MGN approximation to the FEM solution at the last time step 𝑡 = 1 s for an unseen problem of the 2D linear experiment of
Section 3.1. Fig. 4 (a) shows the randomly sampled initial condition on a new L-shaped mesh geometry. The relative error of the PI-MGN in Fig. 4 (b) measures
the deviation of the PI-MGN approximation in Fig. 4 (c) from the ground truth in Fig. 4 (d).

Speed comparison. To evaluate the computational efficiency of the PI-MGN, the wall-clock time is compared for the 2D nonlinear
and inhomogeneous heating experiments, as those are the most challenging for the FEM due to the nonlinearity. Additionally, the
calculation time of the physics-informed loss Eq. (9) and the data-driven loss Eq. (12) as well as the computation time for updating
the PI-MGN and the DD-MGN are compared.

Combined physics-informed and data-driven training. The proposed physics-informed training approach enables data-free training of
MGNs, but can naturally be combined with data-driven training. Hybrid MGNs are analyzed that are updated during training with
both the data-driven loss Eq. (12) for some of the 75 training problems and with the physics-informed Eq. (9) for the remaining
problems.

4. Results

4.1. Training on small meshes

Qualitative comparison to the FEM. For a qualitative comparison of the accuracy and capability of the trained models, the solutions
provided by PI-MGN are compared visually to the ground truth FEM on unseen part designs, material distributions, and process
settings in Figs. 4 to 6. The results indicate that PI-MGN can produce accurate predictions that are visually similar to FEM solutions.

More precisely, Fig. 4 (a) shows a challenging example of the 2D linear heat diffusion experiment of Section 3.1, which contains
a random initial condition with 4 hot spots on an unseen part design. It can be seen that the PI-MGN has learned to accurately
predict the final solution at the last time step 𝑡 = 1 s. Fig. 4 (b) depicts the relative error 𝜖rel.

Fig. 5 shows a nonlinear heating problem from Section 3.1 with a challenging material distribution on a randomly selected seed
to demonstrate that the PI-MGNs learn the influence of nonlinear material fields. Fig. 5 (a) shows the unseen material distribution
𝑉f on the unseen part. Fig. 5 (d) depicts the ground truth solution, showing that spots with low values of the material property
result in a locally stronger heating. Fig. 5 (c) demonstrate that the PI-MGN precisely reproduces these solution. Fig. 5 (b) depicts
the relative error between both simulations, showing that comparatively high deviations mostly appear close to the boundary.

Finally, the qualitative performance of the PI-MGN is compared to the FEM for an unseen and randomly selected instance of
the 3D heating task with mixed boundary conditions of Section 3.1. Fig. 6 (a) shows the approximation of the PI-MGN, Fig. 6 (b)
the ground truth and Fig. 6 (c) the relative error at the last time step 𝑡 = 1 s of the simulation. A quarter of the unseen 3D hollow
cylinders is cut off for visualization, providing a view of the solution inside the cylinder. As before, the PI-MGN and FEM solutions
are in good agreement. Only a slight underestimation of the PI-MGN is visible.

The results show that the PI-MGN can handle non-stationary and nonlinear PDEs in 2D and 3D, enabling visibly precise prediction
for the unseen part designs, inhomogeneous material fields under new process conditions.
8
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Fig. 5. The PI-MGN solution is compared to the FEM for an nonlinear problem of the experiment of Section 3.1 after 𝑡 = 0.1 s. The geometry and material
distribution (cf. Fig. 5 (a)) of the part was unseen during training. Fig. 5 (c) and Fig. 5 (d) show the approximation of the PI-MGN respectively the solution of
the FEM. Fig. 5 (d) depicts the relative error between both solutions.

Fig. 6. The 3D experiment of Section 3.1 with mixed boundary conditions. Fig. 6 (a) shows the solution of the PI-MGN at the last time step 𝑡 = 1 s and Fig. 6
(b) the ground truth FEM solution. Fig. 6 (c) depicts the relative error of Fig. 6 (a) compared to Fig. 6 (b). A quarter of the 3D hollow cylinders is cut off for
visualization in Fig. 6 (a), (b) and (c).

Comparison to baseline models. Fig. 7 shows the performance of the PI-MGNs relative to the baselines DD-MGNs and PI-GGNs for
all three experiments: The 2D linear heat diffusion (‘2DL’), the 2D nonlinear heating (‘2DNL’) and the 3D heating with mixed
boundary conditions (‘3DMB’). The mean 𝜇𝐿2 ,norm and the standard deviation 𝜎𝐿2 ,norm of the normalized 𝐿2 error 𝜖𝐿2 ,norm over five
training repetitions is displayed for each method, calculated for 25 unseen test problems. The comparability of absolute values
between experiments is limited as all values are normalized by their reference solution. For example, the mean temperature in the
2D nonlinear experiment is about 100 ◦C, while it is 0 ◦C in the others. The exact values are listed in Table B.7 in Appendix B.1,
and are multiplied by 1e+3 in the table for readability.

The PI-MGN outperforms the DD-MGN in two out of three experiments. The mean error 𝜇𝐿2 ,norm of the data-driven training is
almost 50% higher for the 2D linear heatup experiment and approximately doubles for the 2D nonlinear and inhomogeneous heating.
In contrast, the mean error of PI-MGNs is only slightly higher than that of DD-MGNs for the 3D heatup task. Here, the standard
deviations overlap. Furthermore, the standard deviation 𝜎𝐿2 ,norm of the data-driven approach is larger in all three tasks, with an
increase of up to 200%. For this 3D experiment, the physics does not vary as much across problems as in the other experiments,
potentially explaining the similar performance across methods. However, training on similar problems may decrease generalization
to out-of-distribution problems. This is demonstrated in Section 4.2, where accuracy decreases for an adapted geometry.

The baseline PI-GGN model based on GCCN performs significantly worse for the 2D experiments, compared to the proposed
PI-MGN and the DD-MGN baseline. For the 2D linear problem, the error is even more than an order of magnitude higher. In
addition, the accuracy of the model is highly uncertain, which makes the training unreliable. The performance in the 3D mixed
boundary task is slightly decreased, but still comparable. As for the DD-MGNs, it will be demonstrated in Section 4.2 that the
trained models generalize worse to large meshes. This shows that the proposed MGN architecture plays an important role in the
9
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Fig. 7. Comparison of the PI-MGNs to DD-MGNs and to the physics-informed baseline PI-GGN. Fig. 7 shows the mean 𝜇𝐿2 ,norm (bar) and the standard deviation
𝜎𝐿2 ,norm (black line on bar) of the normalized 𝐿2 error 𝜖𝐿2 ,norm, calculated for five training repetitions per model and experiment. Each bar group contains the
esults of the PI-MGNs, DD-MGNs and PI-GGNs for one of the three experiments of Section 3.1.

eneralization capabilities and reliability of PI-MGNs, allowing the approach to perform well on non-stationary problems of unseen
rbitrary meshes, material distributions and process conditions.

Overall, the proposed PI-MGN alleviates the expensive data creation process required for DD-MGNs while showing improved
ccuracy and consistency on different tasks. Further, the performance of the PI-MGN increases up to an order of magnitude, compared
o the physics-informed baseline PI-GGN.

.2. Generalization to large unseen meshes

ualitative comparison to the FEM. The pre-trained models from Section 4.1 are applied to predict the time evolution on two large
esh experiments from Section 3.2 without any retraining or modification. The results are compared qualitatively to the FEM. Fig. 8

a) shows the initial condition for a randomly selected model of the 5 trained models. Even though the corrugated sheet mesh differs
reatly from the L-shapes seen during training, the PI-MGN accurately predicts (cf. Fig. 8 (b)) the solution at the last time step when
ompared to the solution of the FEM in Fig. 8 (c). Fig. 8 (d) depicts the relative error between the PI-MGN and the FEM, showing
hat the PI-MGN tends to overestimate the solution. The highest error occurs at a point with high temperatures and temperature
radients, which are significantly larger than those observed during training.

The material distribution of the grid structure is depicted in Fig. 9 (a). The solution of the randomly chosen PI-MGN in Fig. 9
c) is in good agreement with the FEM solution of Fig. 9 (d). As before, the local temperature increases depend on the surrounding
aterial distribution and are especially prominent at the crossings of the grid structure. The PI-MGN provide accurate predictions

nd resolves fine local temperature changes. Interestingly, this is in contrast to classical PINNs, which have been reported to have
spectral bias towards learning low frequencies and may not be able to resolve such fine temperature changes [35,36]. Fig. 9 (b)

hows that the PI-MGN tends to overestimate the temperature at the bars and to underestimate it at the crossings.

omparison to baseline models. Fig. 10 compares the PI-MGN, DD-MGN and PI-GGN accuracy on the four large mesh experiments:
wo 2D linear heat diffusion experiments with corrugated sheet parts, one considering a part with 10 repeating components (‘2DL-

10’) and the other considering a part with 100 repeating components (‘2DL-100’), one 2D nonlinear and inhomogeneous heating
experiment with the grid structure (‘2DNL-L’) and one 3D heating experiment with mixed boundary conditions and the long hollow
cylinder (‘3DMB-L’). As before, the models from Section 4.1 are re-used without any further training or modification. Fig. 10 shows
the mean 𝜇𝐿2 ,norm and standard deviation 𝜎𝐿2 ,norm of the normalized 𝐿2 error across the 5 repetitions. Table B.7 lists the exact
values (multiplied by 1e+3 for readability) in Appendix B.2.

The DD-MGNs show comparable performance for the 2D linear heat diffusion task of the corrugated sheet mesh with 10
omponents. The mean error 𝜇𝐿2 ,norm is slightly higher and the standard deviation 𝜎𝐿2 ,norm lower. For the other three problems,
he PI-MGNs outperform the DD-MGNs. Hence, the physics-informed training of MGNs not only saves on expensive data creation
ut also improves generalization to larger meshes. A reason for that could be that the physics-informed training has to explore the
olution during training, because no ground truth is known. The solution approaches the ground truth during training, but always
luctuates due to the model inaccuracy. Therefore, the model must predict a slightly different solution with respect to the imprecise
utput of the previous time step, which can help to stabilize the model rollout.

.3. Additional experiments

blation studies. The ablation studies conducted in Appendix B.3 demonstrate the effectiveness of each component of the PI-MGN
rchitecture in the small mesh experiments and its ability to generalize to larger, unseen meshes. For the training on small meshes,
he PI-MGN shows the highest reliability in predicting accurate results across all experiments. Time bundling and global features are
mportant components to achieve this reliability. Replacing the relative positional encoding with absolute positions as well as noise
ree training prove to be competitive alternatives. However, the results on the large meshes suggest that PI-MGN require relative
ncoding and robustness to noise to efficiently generalize beyond their training distribution.
10
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Fig. 8. 2D linear heat diffusion experiment of Section 3.2 on a large mesh consisting of 10 components. The part geometry and the random initial condition of
Fig. 8 (a) was not part of the training. Fig. 8 (c) shows the solution of a PI-MGN, which was trained on the small meshes of Section 3.1. The deviation from
the ground truth FEM solution (cf. Fig. 8 (c)) is depicted in Fig. 8 (d). For visualization purposes, the image is not to scale.

Fig. 9. A trained PI-MGN predicts the solution of the nonlinear experiment of Section 3.2 on an large grid mesh. These PI-MGN is only trained on small polygon
meshes. The large part contains an inhomogeneous material distribution, which is depicted in Fig. 9 (a). Fig. 9 (c) shows the approximation of the PI-MGN,
Fig. 9 (d) the ground truth and (b) the relative error the PI-MGN solution.

Speed comparison. Fig. 11 compares the computation time of the PI-MGNs to the FEM for the 2D nonlinear and inhomogeneous
heating. The results of the PI-MGNs are calculated on a GPU (NVIDIA® GeForce® RTX 2080) and on a CPU (Intel® Xeon® CPU
E5-2680 v4 @ 2.40 GHz), while the FEM results are only calculated on the CPU.

The PI-MGNs require on average only about 0.3 s on the GPU and 0.9 s on the CPU for the small meshes compared to approximately
50 s with the FEM on the same CPU. For the large mesh grid, the PI-MGNs output the solution in about 4 s on the GPU and in about
33.8 s on the CPU while the FEM solver requires 45min on the CPU.
11
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Fig. 10. Performance of the PI-MGNs on the large mesh experiments of Section 3.2 compared to DD-MGNs and to PI-GGNs. The mean 𝜇𝐿2 ,norm and the standard
deviation 𝜎𝐿2 ,norm of the normalized 𝐿2 error 𝜖𝐿2 ,norm is calculated for five training repetitions per model and experiment. For each large mesh experiment, Fig. 10
displays the mean 𝜇𝐿2 ,norm (bar) and the standard deviation 𝜎𝐿2 ,norm (black line on bar) of the three models.

Fig. 11. Speed comparison of the PI-MGNs to the FEM on the 2D nonlinear and inhomogeneous heating for the small meshes (‘2DNL’) and large meshes
(‘2DNL-L’). Fig. 11 compares the computation time of the PI-MGN on a GPU (‘PI-MGN-G’) to its computation time on a CPU (‘PI-MGN-C ’) and to the FEM on a
CPU (‘FEM-C ’). The GPU results are calculated on an NVIDIA® GeForce® RTX 2080 and the CPU results on an Intel® Xeon® CPU E5-2680 v4 @ 2.40 GHz.

Appendix B.3 compares and analyzes the average computation time for the physics-informed loss and the data-driven loss for
75 of the small mesh experiments. Additionally, the average time of a training step with the PI-MGNs and DD-MGNs is considered.
Overall, the calculation of the FEM loss is, as expected, more expensive than the data error. However, it is still very fast with 1–2 ms,
so that the additional effort of a training step with PI-MGNs is only 13 to 30 % more than with the DD-MGNs. This additional training
cost is negligible when compared to the effort of creating the DD-MGNs training data with the FEM.

Combined physics-informed and data-driven training. The combined physics-informed and data-driven training is analyzed in Ap-
pendix B.3 for the small mesh experiments of Section 3.1. The results for these hybrid models is consistent with those of Section 4.1.
The PI-MGNs still perform best on the 2D experiments, and hybrid variants with a high proportion of physics-informed problems
outperform the other models. The opposite is true for the 3D mixed BC experiment, where the models with a predominance of data
are slightly more accurate. However, aside from one case, the PI-MGNs and hybrid models have a lower standard deviation than
the DD-MGNs in all three experiments, illustrating the increased reliability of the physics-informed training.

To sum up, the PI-MGNs trained on small meshes enable the most accurate and reliable predictions on large meshes over all
considered learned models, while achieving speedups of several orders of magnitude compared to the FEM.

5. Conclusion and outlook

This work introduces physics-informed MeshGraphNets (PI-MGNs) for fast, accurate and reliable finite element method (FEM)
simulations of non-stationary problems on arbitrary mesh-geometries, material distributions and process conditions. PI-MGNs
efficiently combine physics-informed neural networks (PINNs) and MeshGraphNets (MGNs) to overcome the time-intensive and
cumbersome data creation process required for data-driven MeshGraphNets (DD-MGNs) while improving accuracy and generalization
compared to existing PINNs. During training, the FEM equations are discretized and evaluated per mesh element, allowing
computations of the physics-informed loss for multiple time steps and nonlinear problems directly and in parallel. The state of
the art MGNs [10] are extended with additional methods such as time-bundling and global graph features, all of which empirically
improve performance.

The PI-MGNs predict accurate solutions in good agreement with numerical FEM solvers for unseen arbitrary parts with
inhomogeneous materials under changed process conditions. For a 2D heat diffusion problem, the PI-MGNs precisely predict the
thermal cool down of unseen parts under random initialized temperature distributions. Further, the PI-MGNs learn to account for
12
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random material distributions in a part when predicting a nonlinear 2D heat release process. Finally, the approach accurately predicts
the heating for 3D parts with mixed boundary conditions as a result of heat flow at the boundary.

The introduced physics-informed training of the MGNs is compared to a data-driven training approach and to a physics-informed
eural FEM solver. Even though PI-MGNs require no simulation data during training, they perform on par with or better than the
ata-driven variant in terms of accuracy on all experiments. This advantage of the physics-based training is even more significant
hen generalizing to larger parts during evaluation. In contrast to the data-driven training, the PI-MGNs reliably predict accurate

imulations on large unseen meshes when trained only on small and generic meshes. The existing physics-informed neural FEM
olvers in literature use architectures and parameterizations that are shown to perform worse in all experiments for both small
nd large meshes, highlighting the importance of the proposed PI-MGNs. An ablation study reveals the individual importance of
everal components of the MGNs, such as time bundling and global features. Additional experiments demonstrate the speed-up of
he PI-MGNs compared to classical FEM and the low computational cost of the physics-informed approach. Experiments on small
eshes suggest that a combined physics-informed and data-driven training of MGNs yields overall more accurate and reliable models

han data-driven training. However, purely physics-informed training still performs best for the 2D experiments.
Overall, the PI-MGNs prove to be a reliable and accurate solver for the non-stationary and nonlinear FEM with strong generaliza-

ion to unseen processes with new meshes consisting of inhomogeneous materials. In addition, the PI-MGNs are significantly faster
nd fully differentiable, making them a promising option for inverse design optimization. Here, the MGNs could also be extended to
Bayesian formulation to respect the model uncertainty during optimization. This work considers the Galerkin FEM with piecewise

inear polynomials, but could be augmented for handling higher order polynomials or be transferred to other FEM formulations,
.g., the discontinuous FEM, by developing appropriate graph representations and message passing schemes. Finally, PI-MGNs could
e applied to speed-up simulations with other challenging nonlinearities, such as contact or large deformation simulations.
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ppendix A. Experiments

.1. Experiment 1: 2D linear heat diffusion

The first experiment (cf. Fig. 3 (a)) considers a heat diffusion problem on a 2D L-Shaped domain, setting the source term 𝑞(𝑇 ) = 0
n Eq. (1) and the thermal diffusivity 𝛼 to a constant value. The initial condition is described by a sum of 𝑁ic Gaussians

𝑇 0(𝐱) =
𝑁ic
∑

𝑖=0
𝑎𝑖 exp

(

−

(

(𝑥 − 𝑥0,𝑖)2

2𝜎𝑥,𝑖
+

(𝑦 − 𝑦0,𝑖)2

2𝜎𝑦,𝑖

))

.

he factors 𝑎𝑖 and the standard deviations 𝜎𝑥,𝑖, 𝜎𝑦,𝑖 are randomly selected from uniform distributions. The mean positions 𝑥0,𝑖, 𝑦0,𝑖 ∈
𝛺 ∪ 𝜕𝛺 are randomly selected node positions. The initial temperature on the boundary is fixed during the whole simulation,
i.e., 𝑇 = 𝑇 0(𝐱), ∀𝐱 ∈ 𝛤 . Therefore, the problem contains no Neumann boundary condition, i.e. 𝜕𝛺 = {}.

The 2D L-shaped domain is defined as the difference of two rectangles. The large one has length 𝐿 and height 𝐻 and the small
rectangle the length 𝐿s = 𝑎L𝐿 and the height 𝐻s = 𝑎H𝐻 , where 𝐿, 𝐻 , 𝑎L and 𝑎H are selected randomly, cf. Fig. 3 (a). The small
rectangle is randomly placed at one of the corners of the large domain and subtracted from the large rectangle to yield the final
L-shaped domain. A total amount of 100 L-shaped domains are created and remain the same for all five seeds. However, mesh
selection and initial conditions are still randomized over seeds for training and testing. The exact definitions of the constants and
the distributions of the randomly selected values are listed in Table A.1.
13
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Table A.1
Constants and randomly defined values of Experiment 1, the 2D linear heat diffusion experiment.
Property Symbol Value Unit

Initial–boundary value problem
Source term 𝑞 0 K∕s
Thermal diffusivity 𝛼 5e−2 m2∕s
Number of Gaussians 𝑁ic 10 –
Summand weight 𝑎𝑖 ∼  (0.5, 1) °C
Standard deviation 𝑥-direction 𝜎𝑥,𝑖 ∼  (1∕12, 1∕6) m2

Standard deviation 𝑦-direction 𝜎𝑦,𝑖 ∼  (1∕12, 1∕6) m2

Geometry – L-shape
Length 𝐿 ∼  (0.5, 1) m
Height 𝐻 ∼  (0.5, 1) m
Length factor 𝑎L ∼  (1∕3, 2∕3) –
Height factor 𝑎H ∼  (1∕3, 2∕3) –

A.2. Experiment 2: 2D nonlinear and inhomogeneous heating

This experiment (cf. Fig. 3 (b)) contains a nonlinear source term

𝑞(𝑇 ) = 𝑞(𝑇 , 𝑡, 𝐱) = 𝑞0(𝐱) exp
(

−𝐶𝑇 𝑡∕𝑡0
)

𝐶𝑇 (A.1)

in Eq. (1), where 𝐶 = 8∕𝑇0, 𝑡0, 𝑇0 and 𝑞0 are constants and the heat factor 𝑞0(𝐱) = 𝑞0(1 − 𝑉f(𝐱)) depends on an inhomogeneous
aterial property 𝑉f

𝑉f(𝐱) = 𝑉f,0 +
𝑁𝑓
∑

𝑖=1
𝑎𝑖 sin

(

𝑘𝑥,𝑖𝑥 + 𝑑𝑥,𝑖
)

sin
(

𝑘𝑦,𝑖𝑦 + 𝑑𝑦,𝑖
)

.

These material distributions are remotely inspired by inhomogeneities which may occur in press forming processes of short fiber
einforced composites. The material field contains 𝑁𝑓 functions, each depending on a product of sine waves in 𝑥 and 𝑦-direction.

The factor 𝑎𝑖, the wavenumbers 𝑘𝑥,𝑖 and 𝑘𝑦,𝑖 as well as function shifts 𝑑𝑥,𝑖, 𝑑𝑦,𝑖 are randomly chosen from uniform distributions, while
f,0 is a constant. Additionally, the diffusion coefficient

𝛼 = 𝛼(𝐱) = 1∕
(

𝑉f(𝐱)∕𝛼f + (1 − 𝑉f(𝐱))∕𝛼m
)

(A.2)

also depends on the inhomogeneous material distribution 𝑉f(𝐱) as well as on the constants 𝛼f and 𝛼m. The temperature at the initial
condition 𝑇 0 and at the whole boundary 𝑇 is set to 𝑇 0 = 𝑇 = 𝑇0. The considered domains are convex polygons. These are constructed
by uniformly sampling 7 points 𝑥P and 𝑦P in the 2D domain 𝛺 = (0, 𝐿) × (0,𝐻), cf. Fig. 3 (b). Subsequently, the convex hull of the
set of the seven points is chosen as the domain, yielding a convex polygon with 3 to 7 boundary points. Table A.2 lists the values
of the constants and distributions of the random quantities.

The polygons and material distributions 𝑉f(𝐱) of the 100 problems are randomly selected in a pre-processing step and fixed for
all training seeds. The problem selection of the 75 training and 25 testing problems is randomized across the five seeds. As the heat
source 𝑞(𝑇 , 𝑡, 𝐱) depends on time and temperature, the temperature 𝑇 or rather the noisy temperature approximation 𝑇̃ + 𝜖 is added
s a node feature. The time is added as both, a global and a node feature. In addition, the material property, evaluated at the nodes,
s added as a node feature.

To obtain a ground truth solution for this nonlinear equation from a numerical solver, the equation is linearized and solved in
n inner loop for each time step for a total number of 100 inner iteration or until the solution is converged, depending on what
appens first.

.3. Experiment 3: 3D heating with mixed boundary conditions

In the following, the PDE of Appendix A.1 is considered without a heat source 𝑞(𝑇 ) = 0 for a 3D hollow cylinder mesh with
ixed boundary conditions (cf. Fig. 3 (c)).

The hollow cylinder has the length 𝐿, the outer radius 𝑅o and the inner radius 𝑅i = 𝑎i𝑅o, where 𝐿, 𝑅o and the fracture 𝑎i are
andomly selected values. At the beginning, the temperature is 𝑇 0 = 𝑇0 across the domain. The temperature at the left and right
ylinder boundary 𝛤l,r = {𝐱 = (𝑥, 𝑦) ∈ 𝜕𝛺 ∶ 𝑥 = 0, 𝐿} is also fixed to 𝑇̄ = 𝑇0. A constant Neumann boundary condition is defined
t the boundary surface at the inner side of the cylinder, i.e. at 𝜕𝛺i = {𝐱 = (𝑥, 𝑦) ∈ 𝜕𝛺 ∶ 𝑦 = 𝑅i} as 𝛼ℎ = ℎ0. At the outer side
f the cylinder 𝜕𝛺o = {𝐱 = (𝑥, 𝑦) ∈ 𝜕𝛺 ∶ 𝑦 = 𝑅o} an adiabatic Neumann boundary condition 𝛼ℎ = 0 is considered. The thermal

diffusivity 𝛼 is constant.
The initial learning rate is changed to 1e−4, but still decays to 1e−5. The 100 meshes of the 3D hollow cylinders are the same for

all five training seeds, but the part selection for the training and testing remains random for the individual seeds. The inner heat ℎ0
of the Neumann boundary condition is added as an additional node feature. The exact constants and the randomly selected value
definitions are given in Table A.3.

Table A.4 provides an overview of the node, edge and global features used in the experiments as well as the output values of
the PI-MGNs.
14



Computer Methods in Applied Mechanics and Engineering 429 (2024) 117102T. Würth et al.

w
r
o
p
a

t
a
(

w
c

d

Table A.2
Constants and randomly defined values of Experiment 2, the 2D nonlinear and inhomogeneous
experiment.
Property Symbol Value Unit

Initial–boundary value problem
Reference time 𝑡0 1 s
Reference temperature 𝑇0 100 °C
Scaling factor 𝑞0 20 K∕s
Number of functions 𝑁𝑓 10 –
Summand weight 𝑎𝑖 ∼  (0, 1∕20) –
Wavenumber 𝑥-direction 𝑘𝑥,𝑖 ∼  (0, 8𝜋) 1∕m
Wavenumber 𝑦-direction 𝑘𝑦,𝑖 ∼  (0, 8𝜋) 1∕m
Wave shift 𝑥-direction 𝑑𝑥,𝑖 ∼  (0, 2𝜋) –
Wave shift 𝑦-direction 𝑑𝑦,𝑖 ∼  (0, 2𝜋) –
Median material property 𝑉f,0 0.5 –
Thermal diffusivity fiber 𝛼f 0.1 m2∕s
Thermal diffusivity matrix 𝛼m 0.01 m2∕s
Geometry – Convex polygon
Geometry length 𝐿 1 m
Geometry height 𝐻 1 m

Table A.3
Constants and randomly defined values of Experiment 3, the 3D heating experiment with mixed
boundary conditions.
Property Symbol Value Unit

Initial–boundary value problem
Source term 𝑞 0 K∕s
Reference temperature 𝑇0 0 °C
Thermal diffusivity 𝛼 1 m2∕s
Inner heat constant ℎ0 1 mK∕s
Geometry – Hollow cylinder
Length 𝐿 ∼  (4, 5) m
Outer radius 𝑅o ∼  (0.8, 1) m
Fracture radius 𝑎i ∼  (0.6, 0.8) m

Table A.4
Input and output features used in each experiment, including node, edge, and global input features, as well as
the output features on the nodes.
Experiment Node Edge Global Outputs

2D Linear 𝑛t 𝐱𝑣𝑢, |𝐱𝑣𝑢|, 𝑇𝑣𝑢 – 𝑇
2D Nonlinear 𝑛t, 𝑡, 𝑇 , 𝑉f 𝐱𝑣𝑢, |𝐱𝑣𝑢|, 𝑇𝑣𝑢 𝑡 𝑇
3D mixed BCs 𝑛t, ℎ0 𝐱𝑣𝑢, |𝐱𝑣𝑢|, 𝑇𝑣𝑢 – 𝑇

A.4. Large mesh problems of the experiments

For the first two problems, the models have to predict the 2D linear heat diffusion of Appendix A.1 for large corrugated sheets,
hich consist of repeating components of length 𝐿 and thickness 𝐷. The first problem considers a mesh consisting of 𝑁c1 = 10

epeating components with 10 840 total mesh elements and the second of 𝑁c2 = 100 components with 107 592 elements. The number
f Gaussians for the initial condition is increased to 𝑁ic = 1000. As a result, the density of the Gaussians in the initial state in the two
arts varies by a factor of 10. These evaluation problems are multiple magnitudes larger larger than anything seen during training,
s the training process for all methods uses meshes with 155 to 524 elements (cf. Table A.6) and 𝑁ic = 10 Gaussians.

The third problem considers the 2D nonlinear heating of Appendix A.2 for a grid structure. The grid part is a large rectangle with
he length and height 𝐿 and contains 𝑁h = 100 rectangle holes equally distributed along the length and height direction and with
distance of 𝑑h. The mesh of the grid contains 23 296 elements, while the training meshes contain between 148 and 1122 elements

cf. Table A.6).
The last problem considers the 3D heatup with mixed boundary conditions of Appendix A.3 for a long 3D hollow cylinder,

hose length 𝐿 is 40–50 times larger than that of the training meshes, while the outer radius 𝑅o and the inner radius multiplier 𝑎i
orrespond to the mean value of the training meshes. The other settings remain the same as in Appendix A.3.

The added constants and distributions of the randomly selected values for these experiments are listed in Table A.5. Table A.6
15
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Table A.5
Constants and randomly defined values of the large mesh experiments.
Property Symbol Value Unit

Experiment 1: 2D Linear
Initial–boundary value problem
Number of Gaussians 𝑁ic 1000 –
Geometry – Corrugated sheet
Component length 𝐿 3 m
Component thickness 𝐷 0.5 m
Number of components part 1 𝑁c1 10 –
Number of components part 2 𝑁c2 100 –

Experiment 2: 2D Nonlinear
Geometry – Large rectangle
Length/Height 𝐿 4 m
Number of holes 𝑁h 100 –
Distance holes 𝑑h 0.175 m

Experiment 3: 3D mixed BCs
Geometry – Long hollow cylinder
Length 𝐿 200 m
Outer radius 𝑅o 0.9 m
Fracture radius 𝑎i 0.7 m

Table A.6
Number of elements, nodes, and edges of the meshes considered in this work.
Experiment Elements Nodes Edges

Experiment 1: 2D Linear
L-shapes 155 - 524 98 - 295 252 - 818
Corrugated sheet 1 10 840 6020 16 859
Corrugated sheet 2 107 592 59 706 167 297
Experiment 2: 2D Nonlinear
Convex polygons 148 - 1122 98 - 606 245 - 1727
Large rectangle 23 296 12 949 36 344
Experiment 2: 3D mixed BCs
Hollow cylinders 583 - 784 209 - 281 1003 - 1346
Long Hollow cylinder 10 277 3420 17 117

Table B.7
Comparison of the PI-MGNs to DD-MGNs and to the physics-informed
baseline PI-GGN. The table displays the mean 𝜇𝐿2 ,norm and the standard
deviation 𝜎𝐿2 ,norm of the normalized 𝐿2 error 𝜖𝐿2 ,norm over five training
repetitions for each method and experiment, calculated for 25 test
problems. The format of the results is 𝜇𝐿2 ,norm ± 𝜎𝐿2 ,norm and the results
are multiplied by 1e+3 for readability. The best performing results are
highlighted.
Methods 2D Linear 2D Nonlinear 3D mixed BCs

PI-MGN 17.19 ± 1.13 0.73 ± 0.15 86.07 ± 2.97
DD-MGN 25.37 ± 1.97 1.66 ± 0.47 81.90 ± 6.97
PI-GGN 223.00 ± 93.66 5.67 ± 7.78 116.11 ± 11.13

Appendix B. Results

B.1. Training on small meshes

Table B.7 displays the results of the small mesh experiments. Section 4.1 analyzes these results and Fig. 7 visualizes them.

.2. Generalization to large unseen meshes

The exact values of the large mesh experiments results are listed in Table B.8. The results are visually compared in Fig. 10 and
iscussed in Section 4.2, respectively.

.3. Additional experiments

blation studies. The contribution and effectiveness of individual components of the proposed PI-MGN architecture is investigated in
n ablation study. In each ablation, a component of the architecture is removed and, if necessary, replaced by a suitable alternative.
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Table B.8
Comparison of the PI-MGNs to the DD-MGNs and PI-GGNs for the experiments on large
meshes. The mean 𝜇𝐿2 ,norm and the standard deviation 𝜎𝐿2 ,norm of the normalized 𝐿2 error
𝜖𝐿2 ,norm are calculated for five training repetitions per model and experiment. The tables
displays the values in the format 𝜇𝐿2 ,norm ± 𝜎𝐿2 ,norm multiplied by 1e+3 and the best methods
are highlighted.
Methods 2DL-10 2DL-100 2DNL-L 3DMB-L

PI-MGN 45.42 ± 12.97 41.06 ± 6.32 5.93 ± 1.12 138.13 ± 33.55
DD-MGN 46.74 ± 3.23 64.13 ± 17.94 8.47 ± 1.20 265.81 ± 86.49
PI-GGN 258.85 ± 12.22 974.42 ± 805.28 8.10 ± 4.24 2386.90 ± 684.33

Table B.9
Ablation study of the PI-MGNs for five training repetitions per method and
experiment, considering 25 test problems. The table displays 𝜇𝐿2 ,norm ±
𝜎𝐿2 ,norm, where 𝜇𝐿2 ,norm is the mean and 𝜎𝐿2 ,norm the standard deviation
of the normalized 𝐿2 error 𝜖𝐿2 ,norm, each multiplied by 1e+3. The top-
performing methods are highlighted: blue for the best, green for the
second-best, and yellow for the third-best.
Methods 2D Linear 2D Nonlinear 3D mixed BCs

PI-MGN 17.19 ± 1.13 0.73 ± 0.15 86.07 ± 2.97
abs. pos. 17.73 ± 0.96 0.97 ± 0.13 47.57 ± 18.37
w/o noise 16.08 ± 15.53 0.86 ± 0.16 88.53 ± 6.57
w/o global 16.37 ± 0.72 0.68 ± 0.05 162.71 ± 8.65
MLP decoder 173.52 ± 143.60 0.86 ± 0.15 85.13 ± 4.38
TBS-10 75.89 ± 125.50 0.77 ± 0.08 90.94 ± 9.73
TBS-50 21.80 ± 3.93 1.74 ± 0.06 88.37 ± 7.10

Ablation studies - training on small meshes. The first ablation uses absolute positions as node features instead of a relative positional
encoding at the edges of the input graph of the PI-MGN (‘abs. pos.’). Next, the training noise is left out, instead using unmodified
predictions as input for the next MGN step (‘w/o noise’). Then, global features are removed in Eq. (5) of the PI-MGN (‘w/o global’)
and the CNN decoder of the model is replaced by an MLP decoder (‘MLP decoder ’). The last two ablations use different time bundling
sizes 𝑁TB, in particular 𝑁TB = 10 and 𝑁TB = 50 (‘TBS-10’ and ‘TBS-50’, respectively) instead of 𝑁TB = 20. These ablations investigate
how accuracy changes when the number of model calls is doubled or approximately halved in the experiments.

Table B.9 shows the results for PI-MGNs and all ablations. The table contains the mean 𝜇𝐿2 ,norm and standard deviation 𝜎𝐿2 ,norm
of the error 𝜖𝐿2 ,norm over five training repetitions for 25 unseen problems per experiment. The errors are multiplied by 1e+3 for
readability.

Only the proposed PI-MGNs architecture perform well in all experiments and consistently score within the top three models
in terms of mean error 𝜇𝐿2 ,norm. The absolute position encoding shows comparable performance in two of the three experiments
and even outperforms the PI-MGNs in the 3D experiment of Appendix A.3. However, the relative positional encoding is a more
solid representation for generalization to geometries, which will be shown in Section 4.2. Removing the training noise leads to
increased standard deviations in two of the three experiments, while the mean error remains comparable. Without global features,
the prediction error slightly decreases for the 2D experiments, but almost doubles in the 3D case. The same applies for the MLP
decoder ablation MLP decoder and the two time bundling size ablations TBS-10 and TBS-50. All of them perform similarly to the
PI-MGN in two of the experiments, but significantly worse in the third. These components of the architecture might not be necessary
in all cases, but prove to be crucial for the reliability of the model. It is important to note that accuracy tends to decrease with fewer
model calls (TBS-50), even though less error accumulation should increase accuracy. This phenomenon may be attributed to poorer
generalization.

Ablation studies - generalization to large unseen meshes. Since training without noise and absolute position encoding showed the most
competitive performance, these two ablations are compared to the proposed PI-MGNs architecture for generalization to large unseen
meshes. Table B.10 contains the results of the proposed PI-MGN architecture, the PI-MGN with absolute positional encoding (‘abs.
pos.’) and the noise-free variant (‘w/o noise’). Therefore, the pre-trained models from the small mesh ablations are applied on the
four large mesh experiments. The values of Table B.10 are the mean 𝜇𝐿2 ,norm and standard deviation 𝜎𝐿2 ,norm of the normalized 𝐿2
error across the 5 repetitions . Both metrics are scaled by 1e+3.

The PI-MGNs have the lowest error in 3 out of 4 problems. Only the noise free training slightly outperforms the PI-MGNs for
the 2D linear heat diffusion problem of the corrugated sheet with 100 components, but clearly struggles to solve the long 3D hollow
cylinder problem. The absolute positional encoding only performs well on the nonlinear task with the large grid structure and fails
to provide accurate predictions in the other three problems. Remarkably, the noise-free training and absolute positional encoding
ablations show decreased performance for the seemingly small change of the 3D problem setup, which considers only a longer
17
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Table B.10
Comparison of the PI-MGNs to the best performing variants of the small mesh ablations for
the experiments on large meshes. The mean 𝜇𝐿2 ,norm and the standard deviation 𝜎𝐿2 ,norm of
the normalized 𝐿2 error 𝜖𝐿2 ,norm is calculated for five training repetitions per model and
experiment. The tables displays the values in the format 𝜇𝐿2 ,norm ± 𝜎𝐿2 ,norm multiplied by
1e+3. The best methods are highlighted.
Methods 2DL-10 2DL-100 2DNL-L 3DMB-L

PI-MGN 45.42 ± 12.97 41.06 ± 6.32 5.93 ± 1.12 138.13 ± 33.55
abs. pos. 183.83 ± 82.99 285.54 ± 78.13 6.33 ± 1.43 766.06 ± 116.25
w/o noise 48.53 ± 26.34 34.00 ± 1.82 6.85 ± 0.81 240.78 ± 141.71

Table B.11
Mean calculation time (in ms) per graph of the physics-informed FEM and the data loss, as well
as of a training step with the PI-MGN and the DD-MGN. The results are calculated on the same
GPU (NVIDIA® GeForce® RTX 2080). .

Methods 2D Linear 2D Nonlinear 3D mixed BCs

Loss calculation
Physics-informed 1.51 ± 0.09 2.08 ± 0.19 1.674 ± 0.24
Data-driven 0.28 ± 0.03 0.31 ± 0.02 0.30 ± 0.03
Training step
PI-MGN 14.29 ± 0.70 17.53 ± 1.34 17.29 ± 1.70
DD-MGN 10.97 ± 1.11 13.42 ± 0.52 15.14 ± 0.78

Table B.12
Comparison of PI-MGNs and DD-MGNs with a combined model PI/DD-MGN. The
split of the combined approach is denoted as physics-informed/data-driven. For
example, a split of 75 problems into 50 physics-informed and 25 data-driven
training problems is denoted as 50/25. The table presents the mean 𝜇𝐿2 ,norm
and the standard deviation 𝜎𝐿2 ,norm of the normalized 𝐿2 error 𝜖𝐿2 ,norm for each
model and experiment, based on five repetitions (𝜇𝐿2 ,norm ± 𝜎𝐿2 ,norm). The values
are scaled by a factor of 1e+3 and the best results are highlighted.
Methods Splits 2D Linear 2D Nonlinear 3D mixed BCs

PI-MGN 75/0 17.19 ± 1.13 0.73 ± 0.15 86.07 ± 2.97
PI/DD-MGN 50/25 18.79 ± 2.03 1.08 ± 0.46 86.35 ± 5.77
PI/DD-MGN 38/37 20.35 ± 1.49 1.53 ± 0.27 85.32 ± 4.81
PI/DD-MGN 25/50 19.28 ± 1.66 1.71 ± 0.15 81.75 ± 4.04
DD-MGN 0/75 25.37 ± 1.97 1.66 ± 0.47 81.90 ± 6.97

Notes on the PI-MGNs architecture. Larger time bundling sizes 𝑁TB were useful during model development because of the shorter
training time, despite the fact that the accuracy decreases. For smaller step batch sizes, noise proved to be important. More message
passing steps, wider MLPs, and more training problems have been shown to yield minor improvements. However, this significantly
increases the training effort. Reducing the size of these settings resulted in a decrease in accuracy and an increase in standard
deviation.

Speed comparison. Table B.11 compares the mean calculation time (in ms) of one forward pass of the physics-informed FEM-loss
to the data-driven loss. Additionally, the average time for a training step of the PI-MGN and DD-MGN is evaluated, which includes
loading a graph onto the device, the forward pass, the backward pass, and the update of the model. All results are averaged over
75 problems per experiment using the same GPU (NVIDIA® GeForce® RTX 2080).

As expected, the data error is calculated faster than the FEM error, because the latter additionally requires calculating the
element-wise error of Eq. (7) and aggregating of the total error of Eq. (8) of the test functions before calculating the loss. However,
the computation of the FEM error with about 1–2 ms is still inexpensive compared to a training step, which takes about an order
of magnitude longer. The difference between the data-driven training step and the physics-informed training step is therefore much
smaller with only about 13 to 30 % additional effort. The fast calculation time will pay off particularly for large components by
saving the expensive data creation. The proposed physics-informed training, which locally calculates a total error Eq. (8) for each
test function in parallel, is expected to scale linearly with the number of test functions. It is also worth noting that the nonlinear
case does not differ significantly from the linear experiments due to the proposed calculation method.

Combined physics-informed and data-driven training. Table B.12 compares the PI-MGNs and DD-MGNs to a hybrid training scheme that
interpolates between the two. The 75 training problems of each of the three small mesh experiments are partitioned into data-driven
and physics-informed problems. The same model is then trained using both types of problems and their respective losses. For each
experiment, three different splits (physics-informed/data-driven) are considered: (50/25), (38/37), and (25/50). Table B.12 shows
the mean 𝜇𝐿2 ,norm and standard deviation 𝜎𝐿2 ,norm of the normalized 𝐿2 error across 5 repetitions. All values are scaled by 1e+3 for
18
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In the 2D experiments, the PI-MGNs still perform best in terms of both the mean 𝜇𝐿2 ,norm and the standard deviation 𝜎𝐿2 ,norm. The
results show a slight trend that the performance increases as the amount of physics-informed samples increases. The 3D experiment
also demonstrates a similar trend, but in reverse, as the DD-MGNs exhibit a lower mean error. However, replacing 25 data points
with physics-informed training samples slightly reduced the mean error 𝜇𝐿2 ,norm and significantly reduced the standard deviation
𝜎𝐿2 ,norm. Overall, the inclusion of physics-informed problems reduces the standard deviation in most cases, demonstrating increased
eliability.
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