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Summary 

Wildfires are occurring with increasing frequency and intensity in European temperate eco-

systems. Severe fires can affect the health and safety of the population, emit large amounts 

of smoke and carbon dioxide, cause economic damage, and have negative impacts on bio-

diversity and carbon storage. Mitigating the adverse impacts of wildfires through preventive 

management and effective suppression strategies requires a thorough understanding of 

how ignitions and fire behaviour are related to the characteristics of the local vegetation 

that provides the fuel. The ignition and spread of a surface fire is influenced in particular by 

the availability, condition, and small-scale heterogeneity of live and dead fuels close to the 

ground, i.e. the surface fuels. Accurate and spatially explicit characterisation of surface fuels 

is therefore essential to determine flammability, calculate potential fire behaviour and esti-

mate fire effects across the landscape. Because fuel inventories in the field are laborious 

and time-consuming, remote sensing has been proposed as a means to collect fuel infor-

mation over large areas in a cost- and time-effective manner. However, the large spatial and 

temporal variability of fuels complicates the accurate mapping of fuels, especially in the 

case of surface fuels, which are often weakly perceptible from a remote sensing perspective. 

Therefore, fuel mapping efforts have mainly focused on broad fuel categories, such as fuel 

types, which have been defined to simplify the high complexity of fuels but inevitably result 

in a loss of information. Hence, there is a need to develop new and improve existing sur-

face fuel characterisation techniques capable of capturing fuel variability at fine scales, par-

ticularly for the application in previously less fire-prone and therefore in this regard under-

studied ecosystems such as temperate forests and dwarf shrub heaths. 

This thesis aims to investigate the potential of different methods based on proximal and 

remote sensing datasets to characterise surface fuels in European temperate forests and 

Atlantic dwarf shrub heaths, resolving both spatial and temporal fuel variation. It includes 

three separate studies.  

In the first study, a fine-grained classification of surface fuel types in central European for-

ests is presented, and a deep learning model is developed to identify these fuel types from 

forest photographs and multispectral satellite time series. By incorporating below-canopy 

observations from handheld camera devices, the approach aims to improve the discrimina-

tion of different understory and litter fuel types using simple geo-referenced RGB images. 

Different input data combinations and model output aggregation techniques are tested to 

further increase classification accuracies. The results show that both understory types and 

litter types can be reasonably well distinguished based on forest photographs, while includ-

ing multispectral satellite time series only improves litter classification. Further improve-

ments can be achieved by making predictions on multiple photographs of the same stand 

and filtering outputs based on the class prediction probability. The algorithm thus effec-

tively provides fuel information based on photographs, without the need for human visual 

interpretation and expert knowledge. 

The second study focuses on mapping fine-scale variability of surface fuel loads in central 

European forests using detailed airborne laserscanning and multispectral satellite data in a 

machine learning approach. A large set of structural and spectral predictors across different 

forest strata is used to develop random forest regression models for different surface fuel 

components. Surface fuel maps calculated from these models are used to predict potential 

fire behaviour in two forest stands under typical summer weather conditions. Additionally, 

a sensitivity analysis of the fire behaviour predictions to variations in the load of different 



 

III 

surface fuel components is carried out. The findings confirm that accurately quantifying 

surface fuels from remote sensing is difficult, even when detailed remote sensing data are 

available. Nevertheless, the analyses identify the predictors that are most suitable for pre-

dicting the different surface fuel components, thereby informing future mapping efforts. 

The inevitable uncertainties in fuel load estimates are likely to continue to have a major 

impact on fire behaviour predictions. 

In the third study, temporal dynamics of surface fuels in Atlantic dwarf shrub heaths are 

analysed based on multispectral satellite time series. By fitting harmonic models to the an-

nual cycle of various optical vegetation indices, seasonal changes in fuel state and hence 

flammability due to phenology are effectively captured. Changes in fuels due to wildfire 

disturbance and subsequent vegetation regeneration are assessed by analysing the recovery 

trajectories of the spectral indices, unveiling significant differences between indices and 

between life forms. A driver analysis of the calculated recovery times based on multiple 

linear regression shows that burn severity, land cover class, season, and winter snow cover 

are important variables influencing the estimated recovery rate. While spectral recovery 

times underestimate true vegetation recovery for slow growing life forms due to the lack of 

structural information, they still provide insight into post-disturbance fuel development in 

these open landscapes. In this way, they help to inform models that describe fuel dynamics 

and can be used to update fuel maps. 

The analyses in this thesis are an important step towards a more efficient and more precise 

description of surface fuels that is also more closely linked to ecological processes. They 

further advance the knowledge of fuels in European temperate ecosystems, a long-

neglected research topic. Future fuel characterisation and mapping efforts will benefit from 

the insights into the potential and limitations of the proximal and remote sensing datasets 

that have been thoroughly investigated for this purpose. Future studies should further ex-

plore synergies with other remote sensing products at different scales, leveraging the capa-

bilities offered by artificial intelligence methods for processing and fusing different types of 

data, and they should also strongly focus on the integration of temporal fuel dynamics by 

using process-based vegetation models to better describe fuels. In addition, there is a need 

to harmonise and extend fuel reference datasets, conduct field and laboratory experiments 

on fire behaviour, and collect observational data from real wildfires to address the upcom-

ing challenge of wildfire management in Europe’s temperate ecosystems. 
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Kurzfassung 

Feuer treten in den temperierten Ökosystemen Europas zunehmend häufiger und mit grö-

ßerer Intensität auf. Schwere Brände können die Gesundheit und Sicherheit der Bevölke-

rung gefährden, große Mengen Rauch und Kohlendioxid freisetzen, wirtschaftliche Schä-

den verursachen und negative Folgen für Biodiversität und Kohlenstoffspeicherung haben. 

Um negative Auswirkungen von Bränden durch vorbeugendes Management und wirksame 

Bekämpfungsstrategien zu reduzieren, ist es wichtig, die Zusammenhänge zwischen dem 

Brandverhalten und den Eigenschaften der Vegetation, die das Brennmaterial liefert, zu 

verstehen. Die Entzündung und Ausbreitung von Oberflächenfeuern wird durch Verfüg-

barkeit, Zustand und kleinräumige Heterogenität von Brennmaterialien in Bodennähe be-

einflusst. Eine genaue, räumlich eindeutige Charakterisierung dieser Brennmaterialien ist 

daher für die Bestimmung der Entflammbarkeit, die Berechnung des Feuerverhaltens und 

die Abschätzung der Auswirkungen von Bränden unerlässlich. Da die Inventarisierung von 

Brennmaterialien im Feld sehr zeitaufwändig ist, werden Fernerkundungsmethoden einge-

setzt, um Informationen über Brennmaterialien in größeren Gebieten kostengünstig und 

zeitsparend zu sammeln. Die große räumliche und zeitliche Variabilität der Brennmateria-

lien erschwert jedoch eine genaue Kartierung, besonders bei oberflächennahen Brennmate-

rialien, die aus Fernerkundungsperspektive oft nur schwach erkennbar sind. Daher kon-

zentrieren sich bisherige Kartierungsbemühungen meist auf weit gefasste Brennmaterialka-

tegorien, die definiert wurden, um die Komplexität von Brennmaterialien zu vereinfachen, 

was jedoch unweigerlich zu Informationsverlust führt. Daher ist es nötig, neue Methoden 

zur Charakterisierung von oberflächennahen Brennmaterialien zu entwickeln und beste-

hende Techniken zu verbessern, die in der Lage sind, feinskalige Brennmaterialvariabilität 

zu erfassen, insbesondere für die Anwendung in bisher weniger feuergefährdeten und da-

her wenig untersuchten Ökosystemen wie temperierten Wäldern und Zwergstrauchheiden. 

Ziel dieser Arbeit ist es, im Rahmen von drei Studien das Potenzial verschiedener Metho-

den auf der Grundlage von Nah- und Fernerkundungsdatensätzen zur Charakterisierung 

von oberflächennahen Brennmaterialien in mitteleuropäischen Wäldern und atlantischen 

Zwergstrauchheiden zu untersuchen, wobei sowohl räumliche als auch zeitliche Brenn-

stoffvariationen aufgelöst werden sollen. In der ersten Studie wird eine feinkörnige Klassi-

fikation von oberflächennahen Brennmaterialien in mitteleuropäischen Wäldern vorgestellt, 

und ein Deep Learning-Modell entwickelt, um diese Brennmaterialtypen anhand von Wald-

fotos und multispektralen Satellitenzeitreihen zu identifizieren. Das Einbeziehen von Ka-

meraaufnahmen unterhalb der Baumkrone soll die Unterscheidung zwischen verschiedenen 

Unterwuchs- und Streu-Brennmaterialtypen mittels einfacher georeferenzierter RGB-Bilder 

erleichtern. Um die Klassifikationsgenauigkeit zu verbessern, werden verschiedene Kombi-

nationen von Eingangsdaten und Techniken zur Aggregation der Modellausgaben getestet. 

Die Ergebnisse zeigen, dass sowohl Unterwuchs- als auch Streutypen auf der Grundlage 

von Waldfotos recht gut unterschieden werden können, während die Einbeziehung multi-

spektraler Satellitenzeitreihen nur die Streuklassifizierung verbessert. Weitere Verbesserun-

gen können erzielt werden, indem Vorhersagen für mehrere Fotos desselben Bestandes 

getroffen und basierend auf der Wahrscheinlichkeit der Klassenvorhersage gefiltert werden. 

Der Algorithmus liefert somit effektiv Brennmaterialinformationen basierend auf Fotos, 

ohne dass eine menschliche visuelle Interpretation oder Expertenwissen erforderlich ist. 

Die zweite Studie befasst sich mit der Kartierung der feinskaligen Variabilität der oberflä-

chennahen Brennmaterialmengen in mitteleuropäischen Wäldern unter Verwendung detail-
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lierter luftgestützter Laserscans und multispektraler Satellitendaten in einem maschinellen 

Lernverfahren. Basierend auf einem umfangreichen Satz struktureller und spektraler Prä-

diktoren zur Beschreibung verschiedener Waldstrata werden Regressionsmodelle für ver-

schiedene oberflächennahe Brennmaterialkomponenten entwickelt. Die mithilfe dieser 

Modelle berechneten Brennmaterialkarten werden zur Vorhersage des potenziellen Brand-

verhaltens in zwei Waldbeständen unter typischen sommerlichen Wetterbedingungen ver-

wendet. Zusätzlich wird die Sensitivität der Vorhersagen des Brandverhaltens in Bezug auf 

Variationen in der Menge der verschiedenen Brennmaterialkomponenten analysiert. Die 

Ergebnisse bestätigen, dass eine genaue Quantifizierung des oberflächennahen Brennmate-

rials mittels Fernerkundung schwierig ist, selbst wenn detaillierte Fernerkundungsdaten 

verfügbar sind. Dennoch zeigen die Analysen, welche Prädiktoren sich am besten für die 

Vorhersage der verschiedenen Brennmaterialkomponenten eignen, und liefern damit wich-

tige Informationen für zukünftige Kartierungsbemühungen. Die unvermeidlichen Unsi-

cherheiten bei der Schätzung der Brennmaterialmengen haben jedoch einen erheblichen 

Einfluss auf die Vorhersage des Brandverhaltens.  

In der dritten Studie werden zeitliche Dynamiken des oberflächennahen Brennmaterials in 

atlantischen Zwergstrauchheiden anhand von multispektralen Satellitenzeitreihen analysiert. 

Durch die Anpassung harmonischer Modelle an den Jahresgang verschiedener optischer 

Vegetationsindizes werden saisonale Schwankungen des Brennmaterialzustandes und damit 

der Entflammbarkeit aufgrund phänologischer Veränderungen effektiv erfasst. Verände-

rungen des Brennmaterials durch Störungen wie Brände und die anschließende Regenerati-

on der Vegetation werden durch eine Analyse der Erholungsverläufe der spektralen Indizes 

bewertet, wobei signifikante Unterschiede zwischen den verwendeten Indizes und zwi-

schen den untersuchten Lebensformen aufgedeckt werden. Eine Auswertung der potentiel-

len Einflussfaktoren auf die berechneten Erholungszeiten mittels multipler linearer Regres-

sion zeigt, dass Brandschwere, Landbedeckungsklasse, Jahreszeit und winterliche Schnee-

bedeckung wichtige Variablen sind, die die geschätzte Erholungsrate beeinflussen. Obwohl 

die spektralen Erholungszeiten die tatsächliche Erholung der Vegetation für langsam wach-

sende Lebensformen aufgrund fehlender struktureller Informationen unterschätzen, geben 

sie dennoch Aufschluss über die Entwicklung des Brennmaterials nach einer Störung. Auf 

diese Weise helfen sie bei der Erstellung von Modellen zur Beschreibung der Brennmateri-

aldynamik, welche zur Aktualisierung von Brennmaterialkarten verwendet werden können. 

Die in dieser Arbeit vorgestellten Analysen sind ein wichtiger Schritt hin zu einer effiziente-

ren, genaueren und stärker an ökologischen Prozessen orientierten Beschreibung oberflä-

chennaher Brennmaterialien. Sie erweitern das Wissen über Brennmaterialien in temperier-

ten europäischen Ökosystemen, welche in dieser Hinsicht bisher wenig erforscht wurden. 

Zukünftige Arbeiten zur Charakterisierung und Kartierung von Brennmaterialien werden 

von den Erkenntnissen über das Potenzial und die Grenzen der zu diesem Zweck einge-

hend untersuchten Nah- und Fernerkundungsdatensätze profitieren. Künftige Studien soll-

ten Synergien mit anderen Fernerkundungsprodukten auf verschiedenen räumlichen Skalen 

weiter untersuchen und dabei die Möglichkeiten von Methoden der künstlichen Intelligenz 

zur Verarbeitung und Zusammenführung verschiedener Datentypen nutzen, sich aber auch 

auf die Integration der zeitlichen Dynamik von Brennmaterialien konzentrieren, indem sie 

prozessbasierte Vegetationsmodelle verwenden. Zudem sollten Referenzdatensätze für 

Brennmaterialien erweitert, Feld- und Laborexperimente zum Brandverhalten durchgeführt 

und Beobachtungsdaten von realen Bränden gesammelt werden, um die künftige Heraus-

forderung des Feuermanagements in temperierten Ökosystemen Europas zu bewältigen. 
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Motivation 

Wildfires have long been a rare phenomenon in the temperate ecosystems of Europe, 

where wildfire activity has been largely confined to the Mediterranean region. The emer-

gence of severe fires in temperate regions of Europe in recent years yet provides clear evi-

dence that these areas, traditionally not considered fire-prone, are now increasingly at risk 

(San-Miguel-Ayanz et al., 2022). The simultaneous occurrence of large wildfires across Eu-

ropean ecosystems in exceptional drought years, such as 2018 and 2022, points to an 

emerging change in fire dynamics and increased fire impacts in Europe driven by global 

warming and land use change (Carnicer et al., 2022). In 2022, the European Forest Fire 

Information System (EFFIS) recorded the highest frequency and second largest extent of 

wildfires in central-western European countries since 2006 (EFFIS, 2023). Increased wild-

fire activity in temperate regions has the potential to seriously affect biodiversity and car-

bon storage in forests and peatlands (Kirkland et al., 2023), as well as posing threats to the 

health and safety of the population. These developments emphasise the urgent need to 

better understand fire behaviour, its drivers, and its impacts in previously less affected eco-

systems, in order to make informed decisions about how to create fire-resistant and resili-

ent landscapes. 

Despite the current trend towards increased fire risk in the temperate ecosystems of Eu-

rope, research on wildfires in these areas lags behind the research carried out in the tradi-

tionally more fire-prone Mediterranean or North American ecosystems by several decades. 

While the scarcity of observational data from wildfires or experimental burns in temperate 

regions of Europe makes it difficult to gain insight into ignition conditions and fire dynam-

ics based on real fires, modelling approaches can help shed light on potential fire behaviour 

and effects. These models rely on information about the quantity and properties of the 

combustible material present in the area, known as fuel. Therefore, a detailed characterisa-

tion of the local vegetation regarding its availability to act as fuel is required, but such in-

formation is largely lacking in temperate European ecosystems. Hence, the objective of this 

thesis is to expand the knowledge on vegetation fuels in these regions whilst developing 

new and improving existing methods to collect this information in an effective way using 

proximal and remote sensing.  
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 European temperate forests and heathlands 1

This work focuses on the temperate broadleaved and mixed forests of central Europe and 

the open landscapes of the Atlantic dwarf shrub heaths in western Europe. They are pres-

ently located in the zone of temperate oceanic climate and partly in the humid continental 

zone (Köppen climate classification Cfb and Dfb), with moderately warm to warm sum-

mers and mild to cold winters, depending on the continentality of the location. Precipita-

tion amount does not differ significantly between the seasons, except in years with extend-

ed summer droughts, which are occurring with increasing frequency (Hänsel et al., 2022). 

The seasonality in temperature and day length means that plants experience a period fa-

vourable for growth over spring, summer and parts of autumn, and a period of dormancy 

over the winter.  

The forests and heathlands of central-western Europe differ in several ways from the eco-

systems analysed in previous fuel and wildfire studies, e.g. from southern Europe or North 

America. Important aspects are differences in the local species composition, which are 

linked to physiological and morphological traits that result in different combustion behav-

iour, and differences in vegetation structure, which determines the distribution and conti-

nuity of fuel and therefore the spread of fire across the landscape. In addition, species may 

possess or lack protective or survival strategies to cope with the occurrence of fire. In the 

following, the specific characteristics of forests and heathlands in central-western Europe 

(comprising Austria, Belgium, France, Germany, Ireland, Liechtenstein, Luxembourg, 

Netherlands, Switzerland, and United Kingdom according to Forest Europe, 2020) are 

outlined.  

 Temperate broadleaved and mixed forests 1.1

 Vegetation development and composition 1.1.1

The temperate and relatively humid climatic conditions of central-western Europe are suit-

able for the growth of deciduous broadleaved tree species, such as European beech (Fagus 

sylvatica L.) or pedunculate oak (Quercus robur L.), which are equipped with corresponding 

traits like mesomorphic leaves (Leuschner & Ellenberg, 2017a). Consequently, large parts 

of central-western Europe are dominated by broadleaved forest. Coniferous forests, includ-

ing forests dominated by silver fir (Abies alba Mill.), occur naturally only at higher elevations 

or where specific edaphic and environmental conditions allow them to outcompete broad-

leaved species (Leuschner & Ellenberg, 2017a). However, today’s forest landscape in cen-

tral and western Europe has been created by humans over thousands of years through the 

use of forests for livestock feeding and grazing, through clearing activities to obtain land 

for agriculture and wood as fuel and building material, and through systematic forestry with 

a primarily economically oriented species selection (Puhe & Ulrich, 2001). The latter has 

led to plantings of fast-growing monocultures of Norway spruce (Picea abies (L.) H. Karst.) 

and Scots pine (Pinus sylvestris L.) in broadleaved forest habitats, such as in the North Ger-

man Plain or in the Harz. Species that are not native to Europe have also been introduced 

for timber production and now occupy a significant proportion of the forest area in the 

temperate regions of Europe, e.g. Douglas fir (Pseudotsuga menziesii (Mirb.) Franco) (Forest 

Europe, 2020). Despite the species-poor and often even-aged overstory in managed forests, 
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understory composition can be very variable, consisting of regeneration of conifer seed-

lings, broadleaved trees and shrubs, dwarf shrubs, herbs, and mosses (Leuschner & Ellen-

berg, 2017a). More recently, the formation of semi-natural mixed broadleaved forests has 

been promoted more intensively, which has led to a greater diversity of tree species and 

also to higher quantities of deadwood in European forests in the past years (Forest Europe, 

2020). In addition, these forests feature vegetation layers with trees in different stages of 

development, providing small-scale habitat heterogeneity for the forest floor vegetation and 

a wide range of forest species (Muys et al., 2022). According to Forest Europe (2020), 

mixed forests currently account for 24.1 % of the forest area in central-western Europe, 

while predominantly broadleaved forests occupy 45.9 %, and predominantly coniferous 

forests represent 30.0 %. Hence, the forest ecosystems in central-western Europe show a 

wide range of structural and compositional diversity depending on the degree of human 

intervention and forest management objectives, likely resulting in differences in potential 

fire behaviour.  

 Fire-adaptive traits of the vegetation 1.1.2

Although there is clear evidence of prehistoric and historic fire use in central-western Eu-

rope (Tinner et al., 2005), e.g. slash-and-burn agriculture in southwestern Germany during 

the Neolithic (Clark et al., 1989) and the persistence of similar practices in many European 

regions until the Second World War (Conedera et al., 2007), there is hardly any fire use in 

central-western European forests today. Wildfires in central-western European forest eco-

systems neither play a major role in the natural disturbance regime, contrary to Mediterra-

nean ecosystems or Northern European boreal forests. However, there are regions where 

periodic fires appear to be important in maintaining forests dominated by Scots pine 

(Adámek et al., 2015). Scots pine is considered the most fire-prone but at the same time 

most fire-resistant tree species in the European temperate zone (Adámek et al., 2016; 

Päätalo, 1998). The litter of Scots pine is highly flammable due to its high terpene content 

and leaf morphology (Ewald et al., 2023), and the comparably low canopy density allows 

the growth of a dense understory that can dry to low moisture levels (Hille et al., 2005; 

Tanskanen et al., 2006). Scots pine further exhibits several fire-adaptation traits, such as a 

thick and heat-insulating bark, a deep root system that is less susceptible to damage, a cam-

bium that can recover from fire damage, and the ability to regenerate successfully after low-

frequency fires (Fernandes et al., 2008; Zackrisson, 1977).  

Most other tree species of central-western European forests are not well adapted to fire. 

Norway spruce, for example, has a thin bark and a shallow root system, making it more 

vulnerable to fire damage and increasing the likelihood of post-fire mortality (Ryan & 

Reinhardt, 1988). In addition, due to its low hanging branches, fires are more easily trans-

ferred from the surface to the tree crown, bearing the potential for severe crown fires 

(Blauw et al., 2017; Päätalo, 1998). Norway spruce in particular is suffering from wide-

spread bark beetle outbreaks in European temperate forests in response to warming trends, 

increasing the amount of dead fuel and thus potentially intensifying wildfires in these for-

ests (Romeiro et al., 2022). Norway spruce is commonly classified as fire-intolerant or fire 

avoider species, as is silver fir (Tinner et al., 2013). In contrast, North American Douglas fir 

exhibits high fire resistance owing to its thick bark and deep roots (Moris et al., 2022; Spalt 

& Reifsnyder, 1962). Deciduous species that dominate European temperate forests are 

considered to be less fire-prone than coniferous species, and are also fire-sensitive (Bobek 

et al., 2019; Tinner et al., 2000). European beech lacks fire adaptive traits such as a thick 
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bark or resprouting capacity and can suffer from severe damage and stand-replacing effects 

even after low-intensity fires (Conedera et al., 2010). The presence of beech forests has 

been associated with little fire activity historically (Bobek et al., 2019), but more recently, 

large wildfires associated with summer heat waves have affected beech forests in the 

Southwestern Alps (Müller et al., 2020). However, studies by Ascoli et al. (2013) and Ma-

ringer et al. (2016) indicate that there is some resilience of beech in response to single fire 

events: mast seeding of surviving mature trees, triggered by warm summers, coinciding 

with suitable seedbed conditions created by the fire has been observed as a successful post-

fire recovery strategy in beech forests. Deciduous oak species such as pendunculate oak 

and sessile oak have shown varying fire resistance depending on the level of fire severity 

(Conedera et al., 2010; Tinner et al., 2000). Their thicker bark protects them from low-

intensity fires, but not from moderate or high-intensity fires, and their resprouting capabil-

ity has been shown to be rather weak (Conedera et al., 2010).  

 Vulnerability to wildfires 1.1.3

Due to the mostly poorly fire-adapted tree species in central-western Europe and their in-

creasing vulnerability to multiple climate-mediated stressors, these forests may experience 

strong impacts by wildfires of increasing frequency and severity (Tinner et al., 2005), which 

can also lead to alterations in species composition and key forest services. The weakened 

health of temperate forests has been shown in recent decades by increased defoliation, 

canopy dieback, and mortality (Millar & Stephenson, 2015). However, temperate forests are 

fundamental for carbon sequestration and provide a habitat for endangered species when 

managed appropriately. Large areas of central-western European forests (46.5 %) are pro-

tected for landscape and biodiversity conservation (Forest Europe, 2020). Carbon stocks in 

forest biomass are currently highest in central-western Europe (93.0 t/ha) compared to 

other European regions (Forest Europe, 2020), but this could change under increased wild-

fire activity (Millar & Stephenson, 2015). Forests provide numerous other ecosystem ser-

vices that benefit society and people. In central-western Europe, forested areas and human 

settlements are particularly closely interwoven, as demonstrated by the highest rural popu-

lation density (37.8 people per km) in Europe and the high distribution of Wildland-Urban 

Interface (WUI) areas (Forest Europe, 2020; Modugno et al., 2016). This means that many 

people directly profit from recreational opportunities and health effects of forests, but also 

that a considerable proportion of the population is exposed to smoke and air pollution and 

their safety is threatened in the case of wildfire (Costa et al., 2020). At the same time, hu-

man activities at the interface between populated or agricultural areas and the forest or 

within the forest are the most common source of ignitions (Adámek et al., 2018). These 

circumstances emphasise the sensitivity to and the distinctive nature of wildfires in the for-

ests of central-western Europe.  
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 Atlantic dwarf shrub heaths 1.2

 Vegetation development and composition 1.2.1

In oceanic north-west Europe, the creation of open wood-pastures in forested areas in the 

late Neolithic led to the expansion of dwarf shrub heaths and grassland during the Bronze 

Age (Puhe & Ulrich, 2001). This development was particularly rapid on poor soils, where 

practices such as sod cutting for crop fertilisation had led to considerable nutrient depletion 

(Leuschner & Ellenberg, 2017a). Dwarf shrub heaths can be found both on freely draining, 

sandy soils (dry heaths) and on peat soils (wet heaths). The establishment of heathland veg-

etation promotes the podsolisation of the already base-poor soils through its acidic litter 

and leads to the formation of raw humus. In areas with high rainfall and/or impeded drain-

age, such as the uplands of the north and west of the United Kingdom (UK), soils can re-

main waterlogged for longer periods, inhibiting decomposition and encouraging further 

accumulation of raw humus, which eventually turns into peat (W. G. Smith, 1902). The 

development of today’s heathlands back into woodland has been prevented over centuries 

by constant disturbance from grazing, periodic burning or other use, maintaining an open 

landscape composed of low shrubs, grasses, herbs, and bryophytes. Atlantic heathlands of 

north-western Europe can be found in parts of Belgium, Sweden, Denmark, the Nether-

lands, Norway, the UK, and Germany (Weir & Scasta, 2022). The typical heathland vegeta-

tion is dominated by members of the Ericaceae family, such as common heather (Calluna 

vulgaris (L.) Hull) and bilberry (Vaccinium myrtillus L.), but grassland species such as wavy 

hair-grass (Deschampsia flexuosa (L.) Trin.) and, in wet habitats, purple moor-grass (Molinia 

caerulea (L.) Moench), hare’s tail cottongrass (Eriophorum vaginatum L.) and bog mosses 

(Sphagnum spp.) also occur (Leuschner & Ellenberg, 2017b). Heathland habitats are closely 

associated with acid grasslands and blanket bogs in upland areas, and so they often co-exist 

in dynamic vegetation mosaics (Ausden, 2007).  

 Fire-adaptive traits of the vegetation 1.2.2

Due to the high conservation value of open heathland habitats, there is a wealth of litera-

ture on heathland ecology and the heather plant itself, including the relation to fire (Die-

mont et al., 2013; Gimingham, 1972; G. R. Miller & Miles, 1970; Schellenberg & Bergmei-

er, 2022). Common heather is a fire-adapted species, with the capacity to resprout rapidly 

after fires and increased seed germination in response to fires (Måren et al., 2010). Periodic 

fires therefore help to rejuvenate heathlands by enhancing new plant growth from seed or 

triggering a secondary life cycle through vegetative regeneration (Schellenberg & Bergmei-

er, 2022). Common heather is a highly flammable species due to its low moisture content 

(Davies, 2005) and emits considerable amounts of biogenic volatile organic compounds 

(VOC), mainly consisting of monoterpenes (Isidorov et al., 2022), which have been shown 

to strongly influence combustion dynamics (Ormeño et al., 2009). Furthermore, common 

heather forms rather dense and continuous fuel beds with high fuel loads, which can sup-

port intense fires (Plucinski et al., 2009; Weir & Scasta, 2022). Grasses and mosses associat-

ed with heathland habitats also provide easily combustible fuels depending on their mois-

ture status and can either thrive or decline in response to fire. Wavy hair-grass, for example, 

suffers from more deeply burning fires due to its shallow roots (Päätalo, 1998), while pur-

ple moor-grass has shown high growth rates and the ability to expand even after intense 
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fires (Brys et al., 2005). Similarly, invasive bracken (Pteridium aquilinum (L.) Kuhn) is able to 

survive and spread after fire due to the large number of underground buds on its rhizome 

(Marrs et al., 2000). It has also been observed that the abundance of acrocarpous mosses 

increases, while pleurocarpous mosses decrease following high-intensity fires (Grau-Andrés 

et al., 2019; Sedláková & Chytrỳ, 1999). Severe wildfires therefore have the potential to 

induce changes in the community composition and structure of heathlands. 

 Fire use and vulnerability to wildfires 1.2.3

In contrast to temperate forest ecosystems, fire management still plays an important role 

today in the heathlands of north-west Europe, particularly in the UK, where heather-

dominated landscapes in upland areas are often referred to as moorlands (Weir & Scasta, 

2022). Traditional heathland land use in north-west Europe mainly involved burning to 

promote the regrowth of young heather shoots for livestock grazing with a fire rotation of 

15-25 years, and burns were usually carried out in winter to avoid damage to soils and the 

seed bank (Weir & Scasta, 2022). Current heathland management practices involving fire in 

the UK are strongly associated with enhancing the population of red grouse, which is used 

for game shooting on privately owned shooting estates (Davies et al., 2016). Burning also 

still serves to improve the grazing conditions for sheep and deer, and helps to retain habitat 

functions and biodiversity (Davies et al., 2008). However, prescribed burning and its im-

pacts are still a controversial subject in the UK, particularly when it comes to burning on 

deep peat and associated effects on carbon dynamics (see Heinemeyer & Ashby, 2023). 

Owing to the increasing risk of wildfires across coastal heathlands, prescribed burning is 

also used to manage fuel loads to reduce the risk of severe wildfires (Weir & Scasta, 2022). 

Management fires are usually low-severity fires that consume surface vegetation and litter, 

but leave the soil organic layer intact (Davies, Smith, et al., 2010). Their use is usually regu-

lated in some form by good-practice burning codes, for example by restricting the size of 

burn areas and the legal burn period, which in upland areas of England lasts from 1 Octo-

ber to 15 April (Defra, 2007). In contrast to prescribed burns, wildfires in heathlands tend 

to occur when vegetation is dry and therefore highly flammable, which can result in the 

complete consumption of above-ground vegetation and substantial amounts of organic soil 

or peat (e.g. Maltby et al., 1990). High-intensity fires may lead to the mortality of dwarf 

shrubs by burning their rootstock and can also produce lethal temperatures for the seeds 

buried in the soil, thereby hindering successful regeneration of dwarf shrubs and facilitating 

colonisation by grasses (Ausden, 2007). This may ultimately lead to the decline of these 

valuable ecosystems, which are already subject to severe pressure from historical drainage, 

climate warming, and pollution (Weir & Scasta, 2022). Measures to restore areas severely 

damaged by wildfires require considerable investment and may not guarantee complete 

restoration (McMorrow, 2011). Given that UK moorlands are a globally significant carbon 

sink (Billett et al., 2010), large wildfires contribute to further climate feedbacks. As in tem-

perate forests, wildfires in moorlands can threaten live and livelihoods of the rural popula-

tion, and the amount of smoke released from burning peat may affect human health more 

seriously than is the case with forest fires.  
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 Wildfire regime 1.3

 Meteorological drivers 1.3.1

The temperate regions of Europe have long experienced limited exposure to wildfires. 

They are commonly classified as moisture-limited systems, where fuel moisture driven by 

weather conditions is the main factor limiting fire activity, as opposed to fuel-limited sys-

tems such as some shrublands, where the amount and connectivity of combustible biomass 

are the limiting factor for fire (Kelley et al., 2019; Krawchuk & Moritz, 2011). Therefore, 

changes in weather conditions that promote greater fuel dryness in temperate ecosystems 

make these highly productive systems more flammable (Duane et al., 2021; Krawchuk et 

al., 2009) and add to the lengthening of fire seasons (Jolly et al., 2015). An increased fre-

quency and severity of fire weather has been observed for various regions of the world in 

recent decades (Abatzoglou et al., 2019), and models also suggest a strong increase in fire 

weather across central-western Europe by the end of the 21st century under a high emis-

sions scenario (Figure 1.1) (Costa et al., 2020; de Rigo et al., 2017). More persistent, ex-

treme summer weather events in north-west Europe, such as heatwaves and droughts, have 

been linked to a slower and wavier flow of the North Atlantic polar jet stream, most likely 

resulting from a reduction in the temperature gradient between the Equator and the North 

Pole caused by global warming (Trouet et al., 2018). Associated with increasing fire weath-

er, fire probability is predicted to rise substantially in temperate biomes towards the end of 

the century (Moritz et al., 2012). For the period from 2000 to 2014, an increase in the 

burned area in temperate forests of 2.4 % per year has already been estimated as a result of 

changing controls on fire regimes (Duane et al., 2021), suggesting that global warming may 

cause further shifts in the fire regime of temperate ecosystems. 

 

 

Figure 1.1: Fire Weather Index (FWI) for Europe in the present and FWI change under two cli-
mate change scenarios (2 °C global warming and RCP8.5). Adapted from Figure 8 of de Rigo et al. 
(2017).  

 Current figures 1.3.2

Understanding of current and potential future fire regimes in central-western Europe re-

quires knowledge of the long-term patterns of fire frequency, intensity, and seasonality, as 
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well as fuel consumption, burned area size, and distribution (Keeley et al., 2011). However, 

statistics on the occurrence of wildfires in central-western European countries only cover a 

few decades, and the different national documentation systems vary in the fire attributes 

collected, the most common being fire cause and area burned (Müller et al., 2020; San-

Miguel-Ayanz et al., 2022). These records show that most wildfires are less than 1 ha in 

size, but also that there is a large inter-annual variability in the area burned (San-Miguel-

Ayanz et al., 2022). Small fires are difficult to detect with coarse-resolution satellite sensors 

such as MODIS or VIIRS, which are currently employed by the European Forest Fire In-

formation System (EFFIS) to monitor wildfires in Europe, as they can only resolve fires 

>30 ha (EFFIS, 2023). Still, EFFIS statistics provide insight into the occurrence of larger 

wildfires, indicating that frequency and extent of these fires in central and western Europe-

an countries have increased since monitoring began in 2006 (Figure 1.2). Still, consistent 

and detailed fire records across countries are lacking, and particularly data on fire behaviour 

are scarce (Fernandez-Anez et al., 2021). 

 

Figure 1.2: Country statistics available in EFFIS (2023) for central-western European countries 
(Austria, Belgium, Germany, Netherlands, Switzerland, United Kingdom). France is excluded, as 
the Mediterranean part of the country differs greatly in terms of vegetation composition and wild-
fire occurrence. 

Nevertheless, some of the few available observations on the wildfire regime in central-

western Europe are summarised in the following. The fire season can be largely restricted 

to the period from March to September (Venäläinen et al., 2014), and usually exhibits two 

peaks, specifically in early spring and late summer (Cardíl et al., 2023; Müller et al., 2020). 

Ignition sources are almost exclusively anthropogenic, with fires being started either 

through negligence or deliberately, and only 0.5 % of fires in central Europe in the period 

from 2006 to 2010 were of natural origin, i.e., ignited by lightning strikes (Ganteaume et al., 

2013). As forest areas are often highly fragmented and easily accessible (Forest Europe, 

2020), wildfires are detected and extinguished relatively rapidly, contributing to smaller fire 

sizes. However, research suggests that current fire suppression capabilities may not be suf-

ficient under changing fire-weather conditions (Carnicer et al., 2022). Generally, most wild-

fires under central-western European conditions burn as low-intensity surface fires, but 
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single fires burning at high intensities have also been observed (San-Miguel-Ayanz et al., 

2019, 2022), suggesting that there is a wide range in the potential fire behaviour. 

In areas of temperate forest, national statistics show that coniferous forests are generally 

affected by larger burned areas compared to deciduous forests (e.g. BLE, 2023). In boreal 

Scots pine forests with bilberry understory, experimental burns in wind speeds up to 

14 km/h typically had spread rates of less than 5 m/min, but in wind speeds of 29 km/h, 

fires propagated about 15 m/min (Schimmel & Granström, 1997). Fire spread was found 

to be slower in younger stands, where only a thin and compact layer of fine fuels had ac-

cumulated on the forest floor. Experimental fires in Scots pine forests with grass-

dominated understory of north-eastern Germany showed fire spread rates of 4 to 

10 m/min in wind speeds ranging from 4 to 10.5 km/h. Little is known about fire behav-

iour in other forest types, particularly deciduous forests. Satellite-based analyses of average 

fire spread rates in different land cover types across Atlantic north-west Europe revealed 

that wildfires spread fastest in coniferous forests (3.2 m/min) (Cardíl et al., 2023). General-

ly, reported spread rates were low to moderate, ranging between 1.3 and 2.3 m/min in 

grassland, bog, moor, and heathland, but these average values are likely to underestimate 

actual fire spread. Measured spread rates of experimental fires in Scottish heathland ranged 

from 0.5 to 12.6 m/min at wind speeds between 7 and 32 km/h, and fire behaviour was 

also strongly dependent on stand age (Davies et al., 2009). Experimental burns in heathland 

of north-eastern Germany  showed spread rates of about 4 to 6 m/min at wind speeds of 6 

to 13 km/h (Hille, 2006).  

However, it is difficult to draw conclusions from such data because each fire has its own 

set of conditions that need to be known precisely, and in particular experimental burns and 

wildfires cannot be easily compared.  This emphasises the need to better understand flam-

mability and fire behaviour in different vegetation types and structures in order to define 

preventive measures. As the current fire regime in central-western Europe is strongly influ-

enced by anthropogenic factors, it is additionally challenging to decipher the effect of natu-

ral drivers on fire behaviour and impacts.  
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 Fire-relevant vegetation fuel characteristics 2

 Fundamentals of fuels and fire behaviour 2.1

Fires require heat, fuel, and oxygen to ignite and burn. Plant biomass, which consists main-

ly of cellulose, hemicellulose and lignin in varying proportions, acts as fuel in wildfires 

(Resco De Dios, 2020). Before combustion starts, the fuel is heated by an ignition source, 

causing cell water to evaporate and organic compounds to volatilise. Ignition typically oc-

curs when the temperature of the volatiles reaches 450-500 °C, and the oxidation of these 

volatiles generates heat and light, i.e., flames (Keane, 2015). Fire spread across an area is 

determined by fuel properties, weather, and topography, which are therefore the drivers of 

fire behaviour at coarser scales (Moritz et al., 2005). While weather and topography are 

beyond human control, fuels can be modified. Therefore, knowledge on the relationship 

between fuels and fire behaviour is essential for managing fire risk.  

As fires act at different scales, the fuel characteristics governing fire behaviour can be as-

sessed at various scales, ranging from individual particles (leaf, grass blade), fuel compo-

nents (herbaceous fuels, woody fuels), fuel layers (ground, surface, canopy) to the entire 

fuelbed (assemblage of fuel components) (Keane, 2015). In this work, I additionally use the 

term ‘fuel type’ to refer to the dominant fuel in a given area. Fuels are highly variable in 

space due to the complex interaction of environmental factors influencing the amount and 

arrangement of the vegetation. They are also highly variable in time as vegetation is formed 

by dynamic ecological processes such as plant development, mortality, and succession, and 

fuels are further altered through biophysical processes such as deposition and decomposi-

tion (Prichard et al., 2023). The spatial and temporal heterogeneity of fuels is difficult to 

integrate with the estimation of fire behaviour over large areas needed for fuel management 

decisions (Keane et al., 2012). Therefore, the fuel properties selected to predict fire behav-

iour using operational fire behaviour models have been identified through empirical rela-

tionships and are often simplified, e.g. by representing an average across the particles of 

one fuel component in a given area (Keane, 2015). The fuel properties considered most 

important for fire behaviour estimation are presented in the following. The focus is placed 

on surface fuels, i.e. all fuels within 2 m above the ground surface, as these determine fire 

spread in most wildfires. In particular, low-intensity surface fires, which are common under 

central-western European conditions, are strongly influenced by fine-scale surface fuel het-

erogeneity (Prichard et al., 2022). Surface fuels comprise litter, lichens, mosses, herbaceous 

vegetation, shrubs, and dead woody material (Sandberg et al., 2001). In this work, all living 

woody species in the surface fuel layer are considered as shrub fuels, including tree regen-

eration, as seedlings and saplings are more abundant than true shrubs in the understory of 

central-western European forests.  
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 Fuel traits 2.2

Combustion properties of the vegetation depend on the physical, chemical, morphological, 

and ecophysiological characteristics (traits) of the individual species (Popović et al., 2021). 

Most of these fuel traits influence fire behaviour at the fuel particle scale by affecting igni-

tion, heat yield and heat transfer.  

 Fuel chemical composition 2.2.1

The chemical composition of a fuel determines its heat content, i.e. the heat yield per unit 

mass (kJ/kg) (Keane, 2015). Fuels with high mineral (inorganic) content, such as litter and 

duff, have a lower heat content than, for example, woody fuels (Keane et al., 2012; Philpot, 

1970), which is one reason why the former often burn at lower intensities and have a high-

er proportion of smouldering combustion (Keane, 2015; Varner et al., 2015). In contrast, 

secondary plant metabolites such as resins, oils, waxes, and VOC can increase the heat con-

tent of a fuel (Resco De Dios, 2020). Higher concentrations of such compounds are a typi-

cal feature of many coniferous species and have been associated with increased flammabil-

ity compared to deciduous species (Terrier et al., 2013). Pinus species in particular store a 

variety of VOCs, known as terpenes, in their leaves, which increase ignitability and heat 

release of fresh leaves and litter (Dewhirst et al., 2020; Ewald et al., 2023). The chemical 

composition of a fuel can also change over time. For example, Weikert et al. (1989) ob-

served that the mineral content of Norway spruce needles increases with age, while various 

species show reductions in leaf mineral content before leaf senescence an litter fall (Mail-

lard et al., 2015; Mak, 1982). It has also been observed that the emission of VOC varies 

over the growing season and additionally has a diurnal cycle in heather and other VOC-

emitting plant species, showing a positive correlation with temperature and often peaking 

in the summer months (Kesselmeier et al., 2002; Tiiva et al., 2017). The accumulation of 

emitted VOC near the ground surface, particularly in response to the heating effect of an 

already burning fire, may enhance flammability and intensify fires (Chetehouna et al., 2013). 

Generally, there is comparatively little variation in the heat content of different forest un-

derstory plants in central-western European forests, but highest heat contents have been 

measured for heather and juniper with 21-22 kJ/kg (Mißbach, 1982). Varying proportions 

of lignin, cellulose, and hemi-cellulose in different plant parts also affect combustion prop-

erties, as lignin is more stable thermally and therefore takes longer to combust than cellu-

lose and hemi-cellulose (Liodakis et al., 2002). Lignin content is higher in wood than in 

foliage (Resco De Dios, 2020), and differs between deciduous and coniferous foliage (N. A. 

Scott & Binkley, 1997), but the effects on flammability are currently not included in opera-

tional fire behaviour models.  

 Fuel morphology 2.2.2

Morphological characteristics of different fuel particles, such as size and shape, also play an 

important role in flammability (Engber & Varner, 2012; R. H. White & Zipperer, 2010). 

Dead woody fuel particles are often stratified by diameter, as this property strongly influ-

ences their rate of drying, and thus amongst others affects the time to ignition (Pyne, 1984). 

Particle geometry is also commonly expressed as surface-area-to-volume ratio (SAV in 

1/m) and is included as such in fire spread equations (Rothermel, 1972). SAV determines 
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the rate of response of a fuel particle to temperature and moisture variations (Brown, 1970) 

and also affects the packing ratio (m3/m3, i.e. dimensionless) of the fuelbed and hence the 

degree of aeration, thereby influencing various fire behaviour characteristics (Resco De 

Dios, 2020). SAV is high in graminoids, mosses, and other herbaceous species, and higher 

in leaf litter compared to needle litter (Schimmel & Granström, 1997), resulting in faster 

spread rates and shorter burning times (Grootemaat et al., 2017). However, the latter study 

suggests that leaf mass per area (LMA) (kg/m²) is more closely related to flammability than 

SAV, as it includes particle (tissue) density and influences the bulk density of the fuelbed 

(kg/m3), which also determines heat production and transfer. In close relation to these 

morphological metrics, leaf length has been shown to influence the flammability of litter-

beds by controlling density and ventilation of the litter layer, with longer leaves resulting in 

loosely packed and better aerated litterbeds (Schwilk & Caprio, 2011). Similarly, leaf curl 

influences the structure of the litterbed (Burton et al., 2021).  

Changes in fuel particle density, size, and shape, as well as in the chemical composition of 

litter and dead woody fuels, are driven by decomposition processes, i.e. leaching of solu-

bles, fragmentation, and microbial respiration (Resco De Dios, 2020). Live plant parts ex-

perience alterations in size and shape through processes such as growth, e.g. increases in 

leaf length at the beginning of the growing season or the thickening of conifer needles with 

age (Keane, 2015).  

Despite the importance of fuel particle morphology and chemical composition in the com-

bustion process, it has been argued that other factors, such as the morphology of whole 

plants and plant arrangement, are more relevant to the overall landscape flammability 

(Doran et al., 2004). This refers for example to branching patterns of plants, with shade-

tolerant species usually having their leaves more homogeneously distributed vertically than 

shade-intolerant species, thereby enabling fire spread from lower parts of their canopy to 

higher parts, as for example in some coniferous species (Brown, 1978; Päätalo, 1998). In 

addition to the multi-layered canopy of some conifers, they also tend to have more and 

thinner branches to sustain their leaves than deciduous species, and are therefore easier to 

burn (Johnson, 1996). 

 Fuel load 2.3

Fuel load, i.e. the amount of combustible biomass (dry weight) per area (kg/m2), is the 

most important fuel property used in fire management applications, including the calcula-

tion of fire intensity and emissions (Restaino, 2019). Fuel loads are usually quantified sepa-

rately for different fuel components such as litter, woody fuels, herbaceous fuels and shrub 

fuels, when used as input to operational fire behaviour models (Heinsch, 2019). Fuel load 

influences fire behaviour more at fuelbed scale, especially in connection with the horizontal 

and vertical distribution of the fuel, and also determines total heat release. 

 Surface fuel load variability 2.3.1

Spatial variation in fuel loads is determined by site conditions such as the availability of 

nutrients, water, and light, as well as by the local species composition. For example, under-

story cover and species richness in temperate forests vary across a stand depending on 

canopy closure, being higher in light conditions such as canopy gaps or at forest edges 

(Dormann et al., 2020), thereby affecting the loads of herbaceous and shrub vegetation. 
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However, research from North American ecosystems suggests that surface fuel loads in 

forested areas often poorly correlate with canopy properties, stand attributes, or other sur-

face fuel components, and exhibit significantly higher variability than canopy fuels (Brown, 

1986; Keane et al., 2012). The latter study also showed that finer surface fuel components, 

such as small twigs, vary on scales of meters to tens of meters, while larger fuel compo-

nents, such as logs, vary on scales of tens to hundreds of meters.  

In addition to the biophysical environment, variability in live surface fuels is driven on an-

nual to decadal time scales by the life cycle of plants through establishment, growth, phe-

nology, mortality, as well as recovery and successional patterns following disturbance 

(Prichard et al., 2023). For example, herbaceous vegetation may reach high loads in an early 

stage of development after disturbance and decrease afterwards (Brown, 1981). Hence, the 

effectiveness of individual regeneration strategies of the affected species plays an important 

role, as does the degree to which other environmental factors, e.g. soil conditions, are al-

tered by the disturbance (Pérez-Cabello et al., 2021). Additionally, plant anatomical charac-

teristics such as size, morphology and density as well as individual growth rates influence 

live fuel loads (Resco De Dios, 2020). For example, dwarf shrubs such as heather have 

denser foliage but slower growth rates than for example grasses (Sedláková & Chytrỳ, 

1999). 

Fuel loads may also change over the course of a season, as for example some annual plant 

species only appear at a specific time of the year (Leuschner & Ellenberg, 2017a). Dead 

fuels accumulate as a result of the deposition of plant material from living plants, with a 

seasonal peak in deciduous species, and in response to disturbances such as windthrow or 

insect outbreaks in forests. Loads are reduced by decomposition, with slower decay rates 

for large fuel particles, or through consumption, particularly of fine fuel particles, in the 

event of fire. As a result, surface fuelbeds are constantly changing (Restaino, 2019). How-

ever, studies mostly report average surface fuel loads at one point in time across a specific 

area.  

 Characteristic surface fuel loads 2.3.2

Fuel loads as high as 3.4 kg/m2 have been reported for heather-dominated fuelbeds in the 

UK (Weir & Scasta, 2022), while fuel loads of heathland in north-eastern Germany ranged 

from 0.9 to 1.5 kg/m2 (Hille, 2006). Both fuel loads and canopy heterogeneity have been 

shown to increase with the development stage of heather, leading to deeper air penetration 

into the canopy and more extreme fire behaviour in older stands (Davies et al., 2009). Total 

surface fuel loads sampled in a forest of north-western Germany were similar among 

stands dominated by either European beech, red oak or Scots pine (2.55 to 2.91 kg/m2), 

but the stands differed in the loads of individual fuel components, particularly in fine 

woody fuels and live fuels. Comparatively lower surface fuel loads were reported from 

pine-forests in north-eastern Germany with 0.5 to 1.5 kg/m2 (Hille, 2006). Surface fuel 

loads in mixed forests of silver fir, Norway spruce and European beech with sparse under-

story in the western Alps totalled 1.2 kg/m2 (Fréjaville et al., 2016). Still, there are no stud-

ies that provide continuous, spatially explicit information on surface fuels in central-

western European ecosystems at scales below the stand-level. Spatial arrangement and con-

tinuity of fuels yet play an important role for fire behaviour (Drury, 2019; Prichard et al., 

2023). Limited horizontal continuity of fuels or insufficient fuel loads may cause fire spread 

to cease under moderate weather conditions, while high quantity and connectivity of fuels 
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both horizontally and vertically can lead to the most intense fires, including crown fires 

(Agee & Skinner, 2005; Knapp & Keeley, 2006; C. Miller & Urban, 2000).   

 Fuel condition 2.4

The most dynamic property of fuels affecting fire behaviour is their moisture status. It is 

therefore also sometimes referred to as fuel state or fuel condition (DeBano et al., 1998). 

Fuel moisture content, i.e. the mass of water relative to the mass of dry material (%), de-

termines the amount of energy needed to initiate and sustain combustion (Kane & Prat-

Guitart, 2018). Before the fuel is heated to ignition temperature, a sufficient amount of 

water needs to be removed by volatilisation, otherwise the fuel will not ignite (Resco De 

Dios, 2020). High fuel moisture therefore retards combustion and also reduces the heat 

produced by the fire. It leads to a higher proportion of smouldering combustion and de-

creases the rate of fuel consumption (Keane, 2015). 

 Drivers of fuel moisture dynamics 2.4.1

Fuel moisture is closely related to the live/dead status of the fuel. While dead fuel moisture 

is strongly driven by atmospheric conditions and resulting water adsorption and desorption 

(evaporation) processes, live fuel moisture is mediated by ecophysiological processes (tran-

spiration) and soil water dynamics (Keane, 2015; Schunk et al., 2013). As most plants have 

the ability to control water loss by closing their stomata, the moisture content of live fuels 

is more stable and generally higher than that of dead fuels. Live fuel moisture content dif-

fers between coniferous and broadleaved species, with deciduous leaves having a moisture 

content of around 150-200 %, whereas conifer needles usually contain <100-150 % mois-

ture (Johnson, 1996; Keyes, 2006). This is another reason why the flammability of decidu-

ous forests is lower than that of coniferous forests (Girardin et al., 2013). In addition, 

broadleaved trees tend to form forests with more closed canopies, which have a sparser 

understory and a sheltering effect on local microclimate, resulting in slower drying of be-

low-canopy fuels after rain (Fréjaville et al., 2016). Fuel moisture also depends on the 

chemical composition of the fuel. Fuel particles with higher cellulose and hemi-cellulose 

content, such as leaves, can hold significantly more water than woody fuel particles, which 

have less cellulose but more lignin, due to the different molecular structure of these com-

pounds (Resco De Dios, 2020; Talhelm & Smith, 2018). Physical properties of fuel parti-

cles such as density and size further influence moisture dynamics, particularly of dead fuels. 

As described in Chapter 2.2.2, dead fuels are often stratified into different diameter classes. 

These are 1 hr (<0.6 cm), 10 hr (0.6-2.5 cm), 100 hr (2.5-7.5 cm) and 1000 hr (>7.5 cm), 

and refer to the time needed for a fuel particle to reduce the difference between its original 

and equilibrium moisture content by two thirds (by adsorption or desorption) under con-

stant temperature and humidity conditions (Fosberg, 1971). This equilibrium moisture con-

tent has been shown to be higher in leaf litter than in needle litter because of their different 

physical and chemical properties (Schunk et al., 2013).  

Fuel moisture not only changes in response to weather but is also strongly influenced by 

ecological processes. Plant phenology shifts fuels between live and dead components 

throughout the year, e.g. grasses cure at the end of the growing season, which has a sub-

stantial impact on flammability (Duff et al., 2019). Fuel moisture in living plants is highest 
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during the active growing phase, when new foliage and thin branches can reach moisture 

contents of up to 300 % (Pyne, 1984). Ageing of foliage in coniferous species is often asso-

ciated with lower fuel moisture contents (Keyes, 2006), and therefore moisture also varies 

between lower and upper parts, as well as inner and out parts of a conifer crown (Agee et 

al., 2002; Brown, 1978). Live fuel moisture in new conifer foliage has been shown to be 

more variable over the course of a season than in old foliage, with the lowest values usually 

reached in late summer, but several studies show that changes in dry matter content are a 

more important driver of these changes than water content (Jolly et al., 2014; Qi et al., 

2014). Decomposition processes in litter beds initially increase pore spaces, resulting in 

faster wetting and drying, but subsequently lead to higher compactness resulting in higher 

moisture retention (Plamondon et al., 1972 after Keane, 2015).  

 Critical moisture thresholds 2.4.2

It has been found that fire spread is usually not sustained when dead fuel moisture exceeds 

30 % (Burgan & Rothermel, 1984), but at moisture contents below 14 %, ignition probabil-

ity rises rapidly and extreme fire behaviour has been observed (Boer et al., 2017). In con-

trast, critical flammability thresholds in live fuels are around 70-100 % (Resco De Dios, 

2020). The role of live fuel moisture content in fire ignition and spread dynamics is not yet 

fully understood, but studies suggest that leaf chemistry and volatile emissions from live 

fuels partly explain why combustion is possible at higher moisture contents than in dead 

fuels (Darwish Ahmad et al., 2021; McAllister et al., 2012). In heathland and moorland are-

as, critical moisture thresholds of 35-59 % were observed, at which peat and litter began to 

ignite, while sustained ignition (i.e. fire spread) occurred at fuel moisture levels between 19 

and 55 % (Santana & Marrs, 2014).  This contrasts with experiments by Rein et al. (2008), 

who reported that Scottish peat samples ignited already at moisture contents below 125 % 

when a more intense ignition source was used, suggesting that peat ignition strongly de-

pends on the energy produced by the fire. Santana & Marrs (2014) confirmed previous 

observations by Davies & Legg (2011) that heather flammability depends on the propor-

tion of dead fuel and its fuel moisture content in the canopy, with the probability of suc-

cessful ignition rising with the amount of dead fuel, and the critical fuel moisture increasing 

from 19 to 35 % as the proportion of dead fuel increases. 



I Introduction 

18 

 Methods for characterising and mapping fuels 3

Knowledge of vegetation fuel characteristics and their spatio-temporal dynamics in a given 

area is obtained by fuel sampling. This chapter presents both field-based fuel sampling 

methods and fuel mapping efforts using remote sensing data. The latter are needed to ob-

tain fuel information over large areas and for the operationalisation of knowledge about 

fuels, especially for fire management applications that can support decision-making. The 

methods described in the following are used for measuring and mapping surface fuels.  

 Field-based methods 3.1

Field-based methods for characterising fuels involve different direct and indirect methods. 

Direct methods involve the measurement of fuel properties in situ or in the laboratory, 

while indirect methods quantify fuel characteristics based on other available data (Prichard 

et al., 2022). Because field campaigns are costly and time-consuming, they are usually con-

strained to limited spatial and temporal extents. Still, they are required as a fundamental 

source of data for creating and validating fuel maps. 

 Measuring fuel traits 3.1.1

Fuel properties such as SAV can be estimated from measurements of perimeter, cross-

sectional area, and length of the fuel particles (Brown, 1970). Another technique estimates 

SAV by immersion of fuel particles in water and requires knowledge of fuel particle density 

and measurements of fuel particle weight before and after immersion (Fernandes & Rego, 

1998). Particle density is determined by measuring oven-dry weight and particle volume by 

immersing the particle in liquid and measuring the volume or mass displacement of the 

liquid (Keane, 2015). Heat content is usually measured using oxygen bomb calorimetry 

(Rivera et al., 2012), but other techniques such as thermal analysis, ignition tests, and oxy-

gen consumption calorimetry are also commonly applied to assess flammability properties 

of fuels such as ignition time, total heat release, mass loss rate, and smoke development (R. 

H. White & Zipperer, 2010). Fuel moisture content is determined from weighting fuels 

before and after drying in an oven and dividing mass of lost water by dry fuel mass (Mat-

thews, 2013). Fuel moisture content is more difficult to measure in the field, and a few spe-

cies-specific and more or less sophisticated methods have been developed. For example, 

fuel moisture sensors measure electrical signals that are related to moisture content, such as 

resistance or capacitance, when pulsing an electric charge through a fuel particle (e.g. Chat-

to & Tolhurst, 1997), but the sensors also require accurate calibration of physico-chemical 

fuel properties (Kane & Prat-Guitart, 2018). Since gravimetric measurements are more 

reliable, dead fuel moisture is sometimes measured indirectly using wooden sticks of stand-

ardised size and weight that are repeatedly weighed to approximate 10 hr fuel moisture 

content, and these estimates are also used to derive the moisture of other fuel components 

using empirical relationships (J. D. Cohen, 1985). Other methods for estimating fuel mois-

ture include process-based models based on energy and water balance equations, which rely 

on weather inputs and fuel information to simulate fuel moisture, and some of these mod-

els are used operationally as part of fire danger rating systems (e.g. Nelson, 2000; Wotton et 
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al., 2009). Generally, for most applications, relatively rough assumptions are made about 

the various fuel traits, often representing an average over a fuel component.  

 Measuring fuel loads 3.1.2

Fuel loads are measured in the field, often using fixed-area plots, where fuel material is 

destructively sampled, then dried and weighed in the laboratory (Brown et al., 1982). Alter-

natively, the mass of fuel particles such as dead woody material is determined from meas-

urements of diameter and length, assuming a certain geometric shape and particle density 

(Woodall & Monleon, 2008). A common sampling strategy for woody fuels is the planar 

intersect technique, where fuel particles are counted by diameter class as they intersect a 

vertical sampling plane, and the counts are then converted to loads (Brown et al., 1982). 

Litter fuel load is sometimes estimated from depth measurements after litter bulk density 

has been determined from a subset of samples in the laboratory (Keane et al., 2012). As an 

alternative to destructive sampling, herb and shrub fuel loads are determined from field 

measurements of cover and height combined with species information (Lutes et al., 2006). 

As fuel inventories involving direct measurements are very time-consuming, several indi-

rect methods to estimate fuel loads have been developed. These include visual techniques 

such as the photoload method (Keane & Dickinson, 2007), where a series of downward-

looking photographs of synthetic fuelbeds with gradually increasing fuel loads are com-

pared with field conditions to estimate loads of fine woody debris, herbs, shrubs, and logs. 

Another comparative visual method is the photo series, where photographs of representa-

tive stands in a geographical region where fuel loads have been measured are compared 

with the observed conditions in the field, and the fuel loads of the best matching photo-

graph are assigned to the stand (Restaino, 2019). This is a popular and rapid technique ap-

plied in different geographical areas (Maxwell, 1980; Morfin-Rios et al., 2008; Ottmar et al., 

2004; Vihnanek et al., 2009), but inaccuracies in fuel load estimates and difficulties in re-

peating assignments between different observers have been reported (Sikkink & Keane, 

2008). However, load estimates using photo series are mostly sufficient for management 

decisions (Keane, 2015).  

 Mapping fuel classes 3.1.3

Irrespective of the individual advantages and disadvantages of the aforementioned methods 

for characterising fuels, it is difficult to capture the complex and highly variable nature of 

different surface fuel components. Therefore, fire management uses fuel description sys-

tems which simplify the quantification of fuel characteristics for different applications by 

classifying fuels into groups (Keane, 2013; Weise & Wright, 2014). These fuel classifica-

tions summarise fuel component properties and loads for different categories of vegetation 

based on fuel data collected in the field or based on different observed or expected fire 

behaviour (e.g. Albini, 1976; Lutes et al., 2009; J. H. Scott & Burgan, 2005). Fuel maps can 

then be created by recording fuel classes in the field or by linking the fuel classes to existing 

map categories, such as vegetation types (e.g. Reeves et al., 2006; Reinhardt, 1997). Howev-

er, there is often poor agreement between fuel information classified by vegetation catego-

ries and field-measured fuels characteristics due to their different scales of variation (Keane 

et al., 2012). Furthermore, when fuel classes are determined based on fire behaviour varia-

bles, fuel information is often adjusted to achieve observed fire behaviour with semi-
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empirical fire behaviour models and does not precisely describe the actual fuel situation 

(Finney, 2019). Therefore, this fuel information cannot be used in other applications, such 

as fire effects models (Weise & Wright, 2014). Another drawback is that the identification 

and mapping of such fuel classes strongly relies on expert knowledge to evaluate potential 

fire behaviour and therefore requires well-trained personnel (Keane, 2013). Still, mapping 

fuel classes through association to vegetation categories is the most common technique to 

create fuel maps because it is quick and inexpensive, and vegetation classification maps are 

usually readily available.  

 Measuring vegetation recovery 3.1.4

Temporal changes in vegetation fuels after disturbance can be assessed in permanent field 

plots, where measurements are conducted repeatedly for several years post-disturbance. 

Field methods for evaluating vegetation recovery involve measuring different structural 

and/or floristic characteristics in fixed-area plots or along transects (Szpakowski & Jensen, 

2019). The variables assessed include for example seedling germination, survival and 

growth, resprouting vigour, or more generally species composition, cover, condition, and 

other vegetation attributes (Gitas et al., 2012). Comparing these measurements with pre-

disturbance characteristics helps to quantify the immediate impact of the disturbance on 

the landscape, and their long-term monitoring allows assessing the ecosystem-specific re-

covery rates. These cannot be easily generalised, as the vegetation response to disturbance 

is influenced by a large number of factors, such as topographic parameters, soil characteris-

tics, climatic effects, and more (Gitas et al., 2012). Closely monitoring the recovery process 

is important for analysing ecosystem resilience and landscape dynamics (Pérez-Cabello et 

al., 2021), while it also helps to understand the temporal changes in fuels. Additionally, the 

information is useful to select and prioritise restoration activities and treatment sites, and 

provides the basis for future monitoring (Gitas et al., 2012). However, as such field cam-

paigns are labour-intensive and need to cover large time spans, they are not always feasible. 

 Remote sensing methods 3.2

Remote sensing data are useful for vegetation fuel characterisation across large areas and 

particularly in remote regions. They expand field sampling methods by providing a spatially 

explicit representation of the landscape, and observations can be obtained repeatedly and 

non-destructively. Remote sensing techniques allow to analyse the fuel situation time- and 

cost-effectively, and with some sensors in near real-time. Therefore, remote sensing data 

from both spaceborne and airborne passive and active sensors with different resolutions 

have been used to map fuel properties or fuel classification categories in various ecosys-

tems.  

 Passive sensors 3.2.1

Passive sensors measure the electromagnetic energy reflected from the Earth’s surface, 

which originates from radiation emitted by the Sun, and radiation naturally emitted by the 

Earth itself. Different surface materials have unique patterns of reflectance and absorption 

over various wavelength domains of the electromagnetic spectrum (Figure 3.1). The spec-

tral signature of plants mainly depends on leaf pigments (visible region, 400-700 nm), cell 
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structure (near-infrared, NIR, 700-1300 nm), and water content (shortwave infrared, SWIR, 

1300-2500 nm) (Huete, 2004). Additionally, the reflectance of vegetation canopies depends 

on vegetation cover, canopy architecture, and morphological characteristics of leaves and 

varies with phenological state. This allows different vegetation types and conditions to be 

distinguished, e.g., broadleaf and coniferous vegetation, grasses and trees, photosynthetical-

ly active (green tissues) and non-photosynthetically active vegetation (senescent foliage, 

litter, woody stems, dormant grass), or healthy and drought-stressed vegetation (Caturegli 

et al., 2020; Jia et al., 2006; Silván-Cárdenas et al., 2015; Verrelst et al., 2023). Reflectance 

values in different wavelength domains are often combined in mathematical formulations 

known as vegetation indices, which maximise the sensitivity to specific vegetation attributes 

while minimising the influence of confounding factors such as atmospheric and soil back-

ground effects. 

 

Figure 3.1: Reflectance spectra of different photosynthetic and non-photosynthetic vegetation 
types and soil from the ECOSTRESS spectral library (Baldridge et al., 2009; Meerdink et al., 2019).  

Multispectral data 

Spectral reflectance data have been frequently used to characterise and map vegetation 

fuels. Most often, mapping efforts focus on overstory fuels and categorical representations 

of fuel characteristics (Gale et al., 2021). For example, medium to coarse-resolution multi-

spectral data from spaceborne sensors such as those onboard the Landsat satellite fleet 

(30 m spatial resolution), the Moderate Resolution Imaging Spectroradiometer (MODIS) 

onboard the Terra and Aqua satellites (1 km), the Advanced Spaceborne Thermal Emission 

and Reflection Radiometer (ASTER) onboard Terra (15-90 m), and more recently the fin-

er-resolution sensors onboard the Sentinel-2 satellites (10-20 m) have been used in classifi-

cation approaches to map fuel types and fire behaviour fuel models based on spectral 

bands and vegetation indices (DeCastro et al., 2022; Falkowski et al., 2005; Lanorte & 

Lasaponara, 2008; Lasaponara & Lanorte, 2007b; Riaño et al., 2002; Van Wagtendonk & 

Root, 2003; B. A. Wilson et al., 1994). The researchers employed different pixel-based clas-

sification algorithms such as maximum likelihood (ML), support vector machine (SVM), 

neural network (NN), random forest (RF), as well as spectral mixture analysis (SMA), 

which uses spectral unmixing to derive the contribution of different ground cover 
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(endmembers) to the spectral signature of a pixel. However, such pixel-based approaches 

do not take into account spatial interactions with neighbouring pixels, which can lead to a 

salt-and-pepper appearance of the classification (Tompoulidou et al., 2016). Therefore, 

object-based image analysis (OBIA) that integrates contextual information by employing 

multi-scale image segmentation has been implemented to map fuel types and achieved en-

hanced classification accuracies (Alonso-Benito et al., 2012; Stefanidou et al., 2018, 2022; 

Tompoulidou et al., 2016). However, applying OBIA is challenging because of the need to 

identify the appropriate scale for image segmentation and to select suitable features for 

classification (Mallinis et al., 2008). 

Most recently, motivated by promising results in other classification tasks and vegetation 

mapping (Kattenborn et al., 2021), deep learning techniques such as convolutional neural 

network (CNN) have also been applied to map fuel types. CNN-based classification ap-

proaches can overcome the limitations of conventional machine learning techniques by 

automatically extracting and identifying relevant image features at different scales, allowing 

them to extract complex (spectral and spatial) patterns from raw images (X. X. Zhu et al., 

2017). Carbone et al. (2023) successfully used a 1D-CNN to discriminate between seven 

fuel types (broadleaf, conifer, shrub, grass, grass-shrub, timber-shrub, and timber-shrub-

grass) in a Sentinel-2 scene from Sardinia and refined them to the Scott & Burgan (2005) 

fuel models using ancillary above-ground biomass and climate maps. Pickell et al. (2021) 

used a shallow neural network with two hidden layers to classify fuel types of the Canadian 

Fire Behavior Prediction System from MODIS and Landsat imagery in British Columbia, 

and obtained moderate accuracies. Alipour et al. (2023) used a multi-layer neural network 

to classify Scott & Burgan (2005) fuel models from Landsat scenes for the state of Califor-

nia, combining the spectral information with biophysical data and high-resolution imagery. 

Overall accuracy ranged from 55 to 75 % and depended on the level of granularity of the 

fuel types included. Deep learning techniques have thus already shown potential to perform 

well on fuel classification tasks based on multispectral data. However, the potential of 2D-

CNNs that include spatial context has not been fully explored for fuel type classification. 

Such networks could also be useful in validating remotely sensed fuel type maps, which 

often require a laborious procedure involving expert knowledge and visual interpretation of 

photographs of the mapped forest stands (see Chapter 3.2.3). The ability of CNNs to ex-

tract vegetation attributes and identify plant species from simple RGB images has already 

been demonstrated (Goëau et al., 2013; Kattenborn et al., 2019), so it is likely that they also 

have potential for identifying fuel types from forest photographs. 

Compared to the large number of fuel studies that have focused on fuel classification from 

multispectral remote sensing data, fuel properties are rarely assessed as continuous varia-

bles that reflect their true heterogeneity. In particular, surface fuels in forested ecosystems 

have not been studied frequently because the view from remote sensing platforms is ob-

structed by the canopy. Fuel loads of dead woody fuel categories discretised into three or-

dinal classes have for example been mapped by Peterson et al. (2013) in Yosemite National 

Park using Landsat data and additional environmental data layers, however, with limited 

accuracies. Fuel conditions in the more open landscapes of the Brazilian Cerrado were de-

rived from Landsat 8 and Sentinel-2 data through partial unmixing and were then used to 

predict total fine surface fuel loads with good accuracy (Franke et al., 2018). However, es-

timates of total surface fuel load in pine stands in northwest Spain based on spectral bands 

and vegetation indices derived from Sentinel-2 were poor owing to the limited penetration 

of the forest canopy by the optical sensor (Arellano-Pérez et al., 2018). Still, results by He 



Methods for characterising and mapping fuels 

23 

et al. (2019) showed that the fractional cover of woody, herbaceous, and nonvascular com-

ponents in Alaskan tundra could be mapped with good accuracy at subpixel resolution us-

ing multi-step RF based on Landsat observations. D’Este et al. (2021) used Sentinel-2 data 

along with other remote sensing datasets to estimate fine dead fuel loads across different 

land cover classes in southern Italy, showing that while RF achieved better predictive per-

formance than SVM and multiple linear regression models, overall accuracies were limited. 

Also Ensley-Field et al. (2023) reported high uncertainty in the prediction of fine fuel loads 

based on herbaceous productivity derived from Landsat and MODIS data in the grasslands 

and shrublands of the Great Basin in the north-western United States.  

The highly diverse results of these previous studies suggest that the ability of multispectral 

remote sensing data to estimate surface fuel load and conditions depends much on the eco-

system and the specific fuel component under assessment, with overall higher potential in 

open landscapes compared to forested ecosystems due to the canopy obstruction problem. 

For surface fuel characterisation in the latter, Gale et al. (2021) note in their review that the 

usefulness of remote sensing data in general has yet to be adequately proven or disproven.  

Due to their repeated acquisition, multispectral satellite data have also been used to detect 

disturbance and monitor post-fire vegetation recovery across different ecosystems. Such 

satellite-based monitoring approaches can be useful to assess the temporal dynamics of 

vegetation in a cost- and time-effective way. While some studies use classification and/or 

SMA to discriminate different post-fire vegetation classes and fractional vegetation cover 

(Polychronaki et al., 2013; Solans Vila & Barbosa, 2010; Veraverbeke et al., 2012), most 

studies rely on time series of vegetation indices for the identification of disturbance events 

and monitoring vegetation growth by analysing spectral trajectories (Pérez-Cabello et al., 

2021). For example, forest disturbances in northern temperate forest of the United States 

have been detected by using multitemporal normalised difference moisture index (NDMI) 

and tasselled cap wetness derived from Landsat data (Jin & Sader, 2005). Results by 

Schroeder et al. (2011) confirm the utility of SWIR-based indices in mapping boreal forest 

disturbances at different timesteps after disturbance, and highlight the unreliability of NIR-

based indices such as normalised difference vegetation index (NDVI) that are primarily 

associated with green leaf area. Consequently, more recent studies on post-wildfire vegeta-

tion recovery in forest ecosystems also rely on SWIR-based indices such as normalised 

burn ratio (NBR) to track longer recovery timeframes (Hislop et al., 2018; J. White et al., 

2017).  

Contrastingly, in open landscapes, the use of NDVI to assess post-disturbance vegetation 

dynamics is very common due to the strong NIR reflectance of healthy vegetation (Lees et 

al., 2021; Potter, 2018; Sankey et al., 2013). A review by Szpakowski & Jensen (2019) re-

ported that NDVI was the most frequently used vegetation index in studies of post-fire 

vegetation recovery, despite its known limitations related among others to saturation issues. 

Also, monitoring of fuel seasonality is often based on phenological metrics extracted from 

NDVI time series, such as in the studies by De Angelis et al. (2012) and Bajocco et al. 

(2015), who used MODIS NDVI profiles to identify phenological clusters as proxies for 

potential fuel load and flammability in Sardinia (Bajocco et al., 2015; De Angelis et al., 

2012). However, a study by Villarreal et al. (2016) showed that NDVI was not ideal to 

monitor post-fire vegetation dynamics in semidesert grassland due to the presence of 

woody species with small leaf area that absorb less radiation in the red wavelengths com-

pared to grasses. Furthermore, vegetation dynamics during senescence periods were not 

adequately captured by NDVI. Studies in other dryland ecosystems suggested that combin-
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ing indices based on red-edge, mid-, and shortwave infrared bands is more effective in 

monitoring vegetation state and condition, especially when different life forms are present 

(Hill, 2013; Sesnie et al., 2018). Models predicting annual fine-fuel recovery after prescribed 

fire in semi-arid grasslands based on various spectral bands of Sentinel-2 imagery from the 

growing and dormant season performed reasonably well (Wells et al., 2021), suggesting that 

the data are generally suitable for monitoring fuel load changes. Also live fuel moisture 

content has been estimated in various ecosystems based on NIR and SWIR reflectance 

derived from multispectral sensors, using either empirical relationships or radiative transfer 

models (Argañaraz et al., 2016; García et al., 2020; Yebra et al., 2018; L. Zhu et al., 2021). 

However, these approaches mostly relied on rather coarse spatial and high temporal resolu-

tion data and showed difficulties in relating the moisture signal to different fuel compo-

nents or layers (Yebra et al., 2018).  

Despite the demonstrated potential of multispectral satellite data for vegetation monitoring,  

different methods might be appropriate depending on the ecosystem under examination, as 

the seasonal dynamics and vegetation response after disturbance are unique (Szpakowski & 

Jensen, 2019). Changes in fire risk due to phenological change and vegetation recovery 

after wildfires in temperate heathland ecosystems have not yet been thoroughly assessed 

from a multispectral satellite perspective, so the suitability of different spectral indices to 

monitor fuel changes in these mosaicked landscapes is unknown to date.  

Overall, multispectral satellite imagery has the advantage of global coverage and availability, 

is easily accessible at low or no cost, and provides multi-temporal spectral information. 

However, the spatial resolution is limited and the spectral signal often contains both the 

signature of canopy and surface materials. This makes it difficult to determine surface fuel 

characteristics in forested areas (Abdollahi & Yebra, 2023). Spectral data also have little 

ability to discriminate the vertical structure of fuels. Cloud cover can further limit the use 

of the data, posing challenges in the monitoring of fuel status and vegetation recovery 

based on time series. 

Hyperspectral data 

Hyperspectral data provide spectral information in a large number of narrow wavelength 

domains and thus allow a very detailed characterisation of surface materials. This includes 

the specific composition of different fuel types and the fuel status (Abdollahi & Yebra, 

2023). Studies using hyperspectral data from sensors mounted on satellites (e.g., Hyperion, 

PRISMA) and aircrafts (e.g., AVIRIS) have shown good results in discriminating a larger 

numbers of classes of different fuel types, primarily using SMA and classification tech-

niques (Jia et al., 2006; Keramitsoglou et al., 2008; Mallinis et al., 2014; Shaik et al., 2022; C. 

W. Smith et al., 2021). Hyperion imagery has also been used in mapping post-fire vegeta-

tion recovery of different forest species employing object-based classification (Mitri & Gi-

tas, 2010), while airborne hyperspectral imagery with high spatial resolution was useful for 

monitoring peatland restoration in the UK by estimating the coverage of different plant 

functional types using a regression approach (Cole et al., 2014a). However, the area cover-

age of hyperspectral sensors is smaller and the data cost is higher than with multispectral 

data. The high volume of data requires greater storage and computing capacities and a 

more complex pre-processing. Additionally, the high dimensionality of hyperspectral imag-

es can be challenging to handle in classification approaches (Abdollahi & Yebra, 2023). As 

with multispectral data, cloud cover can be a restriction, but substitute images are more 

difficult to obtain as the revisit time of the satellite platforms is longer.  
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Very high-resolution data 

Very high-resolution (VHR) imagery from satellites such as WorldView and QuickBird 

provides spectral information in fewer bands, but at high spatial resolution (<1-3 m). This 

allows to characterise small-scale variations in surface properties, which has been beneficial 

for fuel type mapping in Mediterranean landscapes (Alonso-Benito et al., 2016; Gitas et al., 

2006; Lasaponara & Lanorte, 2007a; Mallinis et al., 2008). Fuel mapping efforts based on 

VHR imagery achieved higher accuracies compared to approaches based on Landsat data, 

indicating that spatial resolution may be more important than spectral resolution (Mallinis 

et al., 2014; Sesnie et al., 2018). Fernández-Guisuraga et al. (2019) achieved good accuracies 

in assessing post-fire structure of pine seedlings and understory community using general-

ised linear models based on spectral indices and textural data derived from WorldView-2 

imagery and suggested this would not be possible using coarser resolution data. Vegetation 

indices derived from WorldView-3 data at annual intervals also helped assess post-fire re-

covery trajectories in semi-arid grasslands and open woodlands (McKenna et al., 2018). 

However, the spatial extent of VHR images is limited and their utility is impacted by image 

acquisition parameters as well as scene configuration (Mallinis et al., 2014). Monitoring 

changes in fuel status over time and across large areas can therefore be more difficult based 

on these data, and cloud cover can lead to substantial data gaps (McKenna et al., 2018). 

Similar to multi- and hyperspectral sensors, VHR sensors have limited ability to penetrate 

vegetation canopies to derive information on vertical fuel layers in forested ecosystems. 

Ultimately, image costs of commercially owned VHR satellites limit their use in the devel-

opment of new methods by research institutions. 

 Active sensors 3.2.2

Unlike passive remote sensing systems, active sensors have their own radiation source to 

emit pulses of electromagnetic energy that are reflected or backscattered by the illuminated 

target, so that the radiation returning to the sensor can be measured. By recording the time 

delay between transmission and reception and/or the strength of the returned signal, in-

formation about the distance to the target (and hence elevation of the target) as well as 

target properties (e.g., surface roughness) can be retrieved (Lillesand et al., 2008). As active 

sensors do not rely on the energy emitted by Sun and Earth, which mainly covers the elec-

tromagnetic spectrum between ultraviolet and thermal infrared, they can operate regardless 

of the time of day, and, depending on the wavelength used, they can also be weather inde-

pendent. While light detection and ranging (lidar) systems use laser light with wavelengths 

most commonly located in the near-infrared spectrum, radio detection and ranging (radar) 

uses microwave radiation with wavelengths typically between 3 and 30 cm (Agrawal & 

Khairnar, 2019).  

Lidar data 

Because lidar has the ability to penetrate vegetation in canopy gaps and thus allows to ob-

tain information on both the horizontal and vertical structure of the vegetation, airborne 

lidar (ALS) has been widely used in fuel mapping efforts. Discrete lidar systems provide 3D 

point clouds based on the distribution of signal returns, which have primarily been used to 

estimate canopy fuel attributes such as canopy cover, bulk density, canopy height, canopy 

base height, and canopy fuel load (Andersen et al., 2005; Botequim et al., 2019; Engelstad 

et al., 2019; González-Ferreiro et al., 2014). Unsurprisingly, lidar metrics outperformed 
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spectral imagery in estimating these canopy properties (Erdody & Moskal, 2010). Jaku-

bowksi et al. (2013) used lidar point densities in different height bins to map surface fuel 

types and fuel models in Sierra Nevada mixed conifer forests, but found that it was difficult 

to obtain accurate predictions based on the rather low-density lidar dataset (9 pulses/m² on 

average). Still, in a study by Mutlu et al. (2008), combining ALS data with even lower densi-

ty (2.6 points/m²) and QuickBird imagery improved fuel model classification accuracy by 

13 percentage points compared to using QuickBird imagery alone, indicating that comple-

menting spectral information with structural metrics is beneficial for surface fuel character-

isation. Also mapping of Prometheus fuel types in Mediterranean ecosystems was im-

proved by fusing low-density ALS data (<6 points/m²) with aerial imagery in Spain (García 

et al., 2011), and with WorldView-2 imagery in the Canary Islands (Alonso-Benito et al., 

2016), confirming the synergetic effect of lidar and optical data for fuel type mapping.  

However, continuous estimates of surface fuel characteristics using ALS data are also rare. 

One reason for this is that the density of lidar returns decreases because the lidar pulse 

weakens as it penetrates down through the canopy, leading to increasingly weaker results 

for fuels located nearer to the ground level (Jakubowksi et al., 2013). In their review, Szpa-

kowski & Jensen (2019) go so far as to state that lidar alone cannot measure surface fuels. 

Studies estimating understory metrics showed varying results: while understory density es-

timated from ALS density metrics reached only limited accuracy even at higher point densi-

ties (16.4 points/m2) (Campbell et al., 2018), understory cover was estimated from low-

density lidar (6.9 points/m²) with reasonable accuracy when filtering understory points by 

return intensity (Wing et al., 2012). Even better results were achieved when understory 

height, cover, and volume were estimated using additional energy-related metrics derived 

from full-waveform lidar (14 pulses/m²) (Crespo-Peremarch et al., 2018), suggesting that 

the full potential of ALS data had not been harnessed yet. In a study by Bright et al. (2017) 

ground-based fuels such as litter and dead wood, as well as total surface fuel loads, were 

predicted with low accuracies although the authors combined low-density lidar 

(2 pulses/m²) with Landsat time series. Contrastingly, surface fuel load estimates in dense 

coniferous forests in Greece based on height and intensity metrics derived from multispec-

tral lidar with high point density (83 points/m²) achieved good accuracies (Stefanidou et al., 

2020). The role of different lidar-derived metrics and lidar point density in estimating dif-

ferent surface fuel components is therefore not yet fully understood. Particularly in the 

heterogeneous mixed temperate forests of central Europe, the potential of spectral and 

structural remote sensing data to estimate surface fuel loads has not been explored.  

One limitation of airborne lidar data is that the area coverage is restricted and acquisition 

costs are still high, which makes repeated surveys to monitor fuel changes rather difficult. 

However, lidar systems mounted on uncrewed aerial vehicles (UAVs) or the generation of 

photogrammetric point clouds using Structure-from-Motion (SfM) from UAV images may 

provide a solution to obtain local-scale 3D models at smaller temporal intervals (Szpakow-

ski & Jensen, 2019). This may be particularly useful in the monitoring of vegetation recov-

ery. However, while photogrammetric systems offer interesting true-colour and multispec-

tral options, image-based point-clouds only capture the outer canopy envelope and do not 

penetrate to deeper layers (D. L. Peterson et al., 2022; J. C. White et al., 2013). Given that it 

is still an open question what resolution is required to obtain accurate surface fuel estimates 

with airborne lidar systems, and whether this is possible at all, airborne photogrammetric 

systems may not be too promising for surface fuel estimation in forest ecosystems either. 

Lidar systems mounted on satellite platforms such as GEDI (Global Ecosystem Dynamics 
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Investigation) provide information on vegetation structure at footprint level nearly globally, 

but do not offer continuous coverage and footprint size is larger than with airborne lidar 

(Dubayah et al., 2020). Nevertheless, a study in the Brazilian Cerrado suggests that there is 

some potential to estimate surface fuel loads from GEDI waveform metrics (Leite et al., 

2022). Terrestrial lidar overcomes the canopy obstruction problem and offers high resolu-

tion to characterise below-canopy fuels (e.g., Chen et al., 2017; Wallace et al., 2017), but 

costs are also high and area coverage is even more limited. Stereophotogrammetric ap-

proaches from smartphone systems may present an interesting low-cost alternative (e.g., 

Spits et al., 2017). Therefore, airborne lidar is still the most viable option to obtain spatially 

continuous information on the vertical structure of fuels at landscape-scale. 

Radar data 

Airborne and spaceborne imaging radar systems have the advantage of being weather inde-

pendent due to the long-wave radiation they use, which allows them to penetrate clouds 

and thus provide measurements at high temporal frequency. Radar antennas transmit mi-

crowave energy and measure the intensity of the radiation that is backscattered by a sur-

face. The backscatter signal from vegetation is sensitive to plant components that resonate 

with the radar wavelength due to their size, and to their moisture content, among other 

factors (Lillesand et al., 2008). Consequently, differences in the radar signal in response to 

differences in forest structural parameters, such as density, tree size, and hence the amount 

of biomass components, can also be related to canopy fuel characteristics (Saatchi et al., 

2007). In the latter study, canopy fuel load and foliage moisture content were retrieved 

from airborne polarimetric Synthetic Aperture Radar (SAR) measurements over Yellow-

stone National Park based on semi-empirical models with good accuracy. Wang et al. 

(2019) used spaceborne SAR data from the Sentinel-1A satellite to estimate forest fuel 

moisture content in Texas and achieved more accurate results compared to estimations 

based on optical Landsat 8 data. Combining Sentinel-1 microwave backscatter and optical 

reflectance data led to improved predictions for live fuel moisture content over the western 

United States compared to predictions on optical data alone (Rao et al., 2020), confirming 

the usefulness of the strong relationship between the microwave signal and vegetation wa-

ter content. The first global live fuel moisture content product is therefore also based on 

passive microwave data (Forkel et al., 2023). Still, coarse-scale estimates of live fuel mois-

ture content only provide an average moisture value of the canopy, neglecting the distinc-

tion between live and dead material (Resco De Dios, 2020). 

While canopy biomass components such as branch and foliage fuel loads have been suc-

cessfully estimated from polarimetric SAR backscatter data (e.g., Li et al., 2021; Zeng et al., 

2022), radar signals have been less frequently employed to characterise surface fuels. Huang 

et al. (2009) used airborne SAR backscatter values to estimate the quantity of standing and 

downed coarse woody debris in Yellowstone National Park, achieving only limited accuracy 

due to many confounding factors. D’Este et al. (2021) reported that airborne lidar variables 

were more important than Sentinel-2 and Sentinel-1 variables in estimating fine dead fuel 

loads in southern Italy, but suggested that radar sensors operating at longer wavelength 

bands might also be more useful. In-situ ground-penetrating radar allowed to successfully 

retrieve litter thicknesses of beech forest litter (Andre et al., 2015), indicating potential of 

future SAR missions operating at longer wavelengths such as the ESA Biomass mission. 

Chrysafis et al. (2023) used both Sentinel-2 and Sentinel-1 data together with topographic 

information for fuel type mapping in Greece, and found that the inclusion of SAR data 
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slightly increased classification accuracy. Millin-Chalabi (2016) found that burn scars and 

burn scar persistence in peat moorlands could be detected from SAR backscatter intensity 

and coherence data obtained with interferometric SAR techniques, especially under wet 

post-fire conditions. Drought conditions that lead to increased wildfire vulnerability in bo-

real peatlands could also be identified from seasonally decomposed Sentinel-1 backscatter 

(Millard et al., 2022). These previous studies show that radar backscatter is well suited to 

monitor the moisture state of vegetation, while the potential for surface fuel characterisa-

tion has not been fully explored. This may be due to the complexity of drivers and scatter-

ing mechanisms contributing to the radar signal, the limited understanding of the influence 

of different forest structural properties (Joshi et al., 2017), and the need to carefully select 

appropriate wavelengths and polarisations (Chrysafis et al., 2023; Huang et al., 2009). 

 European fuel maps 3.2.3

Two fuel maps for the whole of Europe have been published to date. The fuel map created 

by the European Forest Fire Information System (EFFIS, 2017) is based on the fire behav-

iour fuel models developed by Anderson (1982) for the United States. They assigned 10 of 

these 13 fuel models to vegetation complexes across Europe using land cover and vegeta-

tion maps (Figure 3.2 a). However, there has been no comprehensive evaluation of 

whether these fuel models represent actual fire behaviour in central-western European 

conditions. Moreover, the map distinguishes between a very limited number of different 

fuel models in central-western Europe, despite the large heterogeneity of the vegetation.  

A first fuel typology adapted to European environments has been developed in the 

FUELMAP project led by the Joint Research Centre (JRC, 2011). The 42 FUELMAP clas-

ses comprise forest, shrubland, grassland, and other surface fuel classes in different ecore-

gions. They have been mapped in the ArcFUEL project using existing European spatial 

datasets (land cover, forest type, ecoregion, tree cover, terrain) and multi-temporal remote 

sensing imagery; however, the methodology has only been tested and validated in Mediter-

ranean countries (Bonazountas et al., 2014; Toukiloglou et al., 2013).  

The first pan-European fuel map at 1 km spatial resolution has been produced by Arago-

neses et al. (2023), who developed a classification system that includes six main fuel types 

(forest, shrubland, grassland, cropland, wet and peat/semi-peat land, urban) and further 

distinguishes forest fuel types based on overstory and understory characteristics (overstory 

leaf type and cover, understory type and depth). These classes were mapped based on sev-

eral satellite-based land cover maps and bioclimatic modelling to calculate shrubland and 

grassland productivity, and fuelbed depth (Figure 3.2 b). The resulting map product was 

validated using LUCAS (Land Use and Coverage Area frame Survey) data, which provide 

information on land use and land cover together with landscape photographs at specific 

points across the EU (Eurostat, 2022), as well as Google Earth and Google Street View 

images. The validation was performed on 5,016 validation points and a 20 % subset was 

used for visual interpretation of the fuel types in the photographs, resulting in an overall 

accuracy of the map product of 80.9 %, while the accuracy of individual fuel types ranged 

from 20-100 %. In addition, based on expert knowledge, they assigned to each fuel type 

one of the Scott & Burgan (2005) fire behaviour fuel models to serve fire modelling pur-

poses. These maps are a first step towards characterising fuels across Europe, albeit with a 

fairly coarse resolution and limited granularity of fuel types. 
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Figure 3.2: European maps of (a) the fire behaviour fuel models by Anderson (1982) and (b) the 
FireEUrisk fuel types (Aragoneses, 2023). 
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 Research gap and thesis outline 4

In view of the increasing fire risk in the temperate ecosystems of Europe, detailed 

knowledge of vegetation fuels and fire behaviour is necessary in order to take precautionary 

measures and management decisions. Fuels as part of dynamic ecosystems are highly com-

plex in space and time, which makes their characterisation a challenging task (Skowronski 

& Gallagher, 2018). Particularly, current methods fo characterising surface fuels need im-

provement to enable a more efficient, accurate, and universal way of describing and map-

ping fuels (Fares et al., 2017).  

Geo-referenced fuel data are a key requirement for producing accurate fuel maps from 

other remotely sensed datasets. However, field inventories are laborious and costly, and 

some fuel inventory techniques have remained nearly unchanged for the past decades, de-

spite their low repeatability and high uncertainty (D. L. Peterson et al., 2022). Alternatives 

to small-scale plot-based destructive sampling for the estimation of fuel bed composition 

are needed (Skowronski & Gallagher, 2018), which facilitate easy replication and updating. 

For practical purposes, classification into fuel categories has proved useful, which therefore 

represent the most commonly mapped entities for fire management applications. Field 

reference data for such maps are often generated from photo series, which rely on visual 

interpretation by trained observers (see Chapters 3.1.2 and 3.2.3). Deep learning algorithms 

such as CNNs offer a more efficient and objective method to analyse and interpret visual 

data, which has already been demonstrated in other applications (Chapter 3.2.1). Therefore, 

in the first study of this thesis (Chapter 5), a new method for classifying surface fuel types 

from forest stand photographs using CNNs is proposed. This technique would allow a 

rapid and observer-independent identification of the dominant below-canopy fuel that in-

fluences surface fire behaviour due to its specific compositional and morphological charac-

teristics. Furthermore, the usefulness of integrating widely available multispectral remote 

sensing time series with the proximal image data in a deep learning framework is tested. 

Since existing fuel type classifications for Europe (see Chapter 3.2.3) are highly simplified 

and neglect the possible diverse composition of the surface fuel layer, a more fine-grained 

fuel type classification for surface fuels in central-western European forest types based on 

field surveys and expert knowledge is proposed along with the new methodology.  

Despite their usefulness for operational purposes, the simplistic representation of fuels in 

fuel classifications limits the transferability of fuel information to different applications (D. 

L. Peterson et al., 2022). Therefore, there is a consensus in the fire research community 

that fuel properties should rather be mapped as continuous variables (Fares et al., 2017; 

Keane, 2015; Prichard et al., 2023), particularly key properties such as fuel load. Spatially 

explicit fuel properties can be obtained from remote sensing data, but this has primarily 

been demonstrated for canopy fuel attributes (Gale et al., 2021). Wall-to-wall estimates of 

surface fuel loads at the landscape scale are not widely available and previous studies often 

reported limited accuracies, particularly in comparison to overstory fuels. Although the 

combination of passive and active remote sensing datasets has been shown to improve fuel 

type classification (Chapter 3.2.2; Skowronski & Gallagher, 2018), the role of remotely 

sensed spectral and structural information for surface fuel load mapping in forested areas is 

not clear. Additionally, previous research has focused on fuel mapping in Mediterranean 

and North American ecosystems (Abdollahi & Yebra, 2023), while studies in European 
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temperate forests are not available, and particularly all of the individual surface fuel com-

ponents have rarely been mapped. Therefore, in the second study of this thesis (Chapter 6), 

a multi-source remote sensing approach combining the currently best available multispec-

tral and airborne lidar datasets is used to assess their potential for surface fuel load map-

ping in European temperate forests. The work focuses on all surface fuel components 

needed for fire behaviour modelling with current operational fire spread models and anal-

yses the sensitivity of modelled fire behaviour to the remote sensing-based predictions of 

surface fuels.  

The largest knowledge gap in wildland fuel science relates to understanding fuel dynamics 

and incorporating fuel ecology into the creation of up-to-date fuel maps (Duff et al., 2017; 

Keane, 2015; Prichard et al., 2022). Therefore, understanding the life cycle of fuels and how 

it influences their availability to burn is essential (Prichard et al., 2022). For example, meth-

ods to reliably extract phenological metrics from remotely sensed time series are needed to 

explore the relationships between fuel state and fire occurrence, as this is also highly rele-

vant when considering climate change scenarios (Fares et al., 2017). Furthermore, monitor-

ing the vegetation recovery of burned areas is important to plan restoration activities, par-

ticularly in landscapes of special conservation value, and to understand the longer-term 

effect of the disturbance on fuels. Knowledge of fuel dynamics is especially important in 

ecosystems that are disturbed frequently by wildfire or active management (Prichard et al., 

2022), as for example the Atlantic dwarf shrub heaths. The usefulness of multispectral sat-

ellite data for monitoring vegetation changes is well known, but has rarely been applied in 

the context of fuel dynamics, especially in heavily cloud-affected areas in temperate ecosys-

tems. Therefore, the modelling of time series of vegetation indices derived from multispec-

tral satellite data is explored as a means to monitor both phenological and post-disturbance 

changes in fuels in Atlantic dwarf shrub heaths of the UK. The third study of this thesis 

(Chapter 7) presents this analysis and provides an estimate of the specific recovery rates of 

the life forms present, which can be used to update fuel maps.  

The three studies outlined above have been published as research articles in peer-reviewed 

scientific journals (Chapters 5 and 6) or have been submitted for publication (Chapter 7). 

To summarise, they seek to answer the following research questions: 

i. Are deep learning algorithms capable of classifying surface fuel types in central Eu-

ropean forests from forest stand photographs and multispectral satellite time series? 

(Chapter 5) 

ii. Do detailed multispectral satellite data and airborne laserscanning data allow to reli-

ably quantify surface fuel components for fire behaviour modelling in central Eu-

ropean forests? (Chapter 6) 

iii. Can time series of multispectral satellite data capture fuel dynamics driven by phe-

nology and post-wildfire recovery in western European dwarf shrub heaths?  

(Chapter 7) 
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Abstract 

With the increasing threat of wildfires globally, improving the availability of accurate, 

spatially explicit fuel type information is critical for fire behaviour predictions that 

can support fuel management decisions to mitigate fire hazards. For a later training 

of wall-to-wall fuel and finally fire risk maps using remote sensing, we propose a 

novel proximate sensing-based approach for classifying surface fuel types from in-

forest RGB photographs using convolutional neural networks (CNNs). We test dif-

ferent configurations of deep learning models that integrate photographs of the for-

est stand and the forest floor as well as time series of multispectral satellite data from 

Sentinel-2 using long short-term memory (LSTM), and compare their performance in 

classifying understory and litter fuel types of Central European forests. We also in-

vestigate how ensemble approaches based on majority voting can help to improve 

classification results. We found that understory fuel types were classified with highest 

accuracy after cross-validation (0.78) using a combination of horizontal stand photos 

and forest floor photos. This accuracy could be further improved by post-

classification decision fusion of model predictions on multiple photographs of a for-

est stand while additionally considering the model’s confidence in its predictions 

(0.85). Litter fuel types were classified with lower overall accuracy based on forest 

photographs (0.60), but using model ensemble predictions on both photographs and 

Sentinel-2 time series significantly improved the results (0.72). We found that the ac-

curacy of our models was mostly limited by naturally smooth transitions between the 

defined fuel type classes and the co-occurrence of multiple fuel types in a photo-

graph. This study shows that deep learning methods can provide an efficient means 

to assess fuel types from GNSS-located photos of forest stands as a basis for a later 

training and validation of wall-to-wall fuel and finally fire risk maps. The necessary 

data can be readily collected by forest managers or in citizen science initiatives.  
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 Introduction 5.1

Forests of Central Europe are becoming increasingly vulnerable to wildland fires as a con-

sequence of global warming (de Rigo et al., 2017; Forzieri et al., 2021). Higher tempera-

tures, more frequent and intense droughts in combination with other abiotic and biotic 

stressors affect the health of temperate forests and increase vegetation flammability (IPCC, 

2019; Millar & Stephenson, 2015; Spinoni et al., 2018). In the drought years 2018 and 2019, 

several Central European countries reported a higher number of fires and a few exception-

ally large burnt areas compared to the 10-year average from 2008 to 2017 (EFFIS, 2021), 

indicating a link between extreme droughts and enhanced wildfire activity. This is in ac-

cordance with future projections of climate-driven wildfire activity that predict higher fire 

probabilities in highly productive, previously flammability-limited regions due to longer fire 

weather seasons (Abatzoglou et al., 2019; Jolly et al., 2015). Model simulations suggest a 

lengthening of mid-latitude and boreal fire season by up to three months by the end of the 

21st century (Veira et al., 2016), leading to an expansion of fire-prone regions in Europe. 

Wildfires can pose a serious threat to environment and society, in addition to causing major 

damage to timber volume and loss of carbon stocks, if adaptation measures are not taken 

(Khabarov et al., 2016; Seidl et al., 2014). As fire behaviour is strongly determined by fuel 

characteristics, suitable management practices to reduce forest fire hazard require spatially 

explicit information about forest fuel availability, composition, and structure (Keane, 2013). 

The complex arrangement of fuels in a forest is often vertically stratified into canopy, sur-

face, and ground fuels. Surface fuels by definition comprise all biomass within two meters 

above the ground surface: senesced leaves, needles and other nonwoody discarded plant 

material (litter), fine and coarse woody debris from trees and shrubs (twigs, branches and 

logs), vascular plant biomass (grasses, herbs, forbs, shrubs and young trees) as well as li-

chens and mosses. These fuel components are each characterised by a specific particle size 

and shape, mineral and heat content, and are arranged with a certain compactness and con-

tinuity, thus showing distinct combustion properties (Countryman, 1964; Chuvieco et al., 

2003). Fuel composition and structure strongly vary across spatio-temporal scales due to 

different environmental conditions and management practices. For simplification, it is 

common among practitioners to summarise the fuel properties relevant for fire hazard es-

timation of a forest stand as “fuel types”, which are usually determined by the dominant 

fuel component in an area (Keane, 2015). A fuel type is assumed to “exhibit characteristic 

fire behaviour under defined burning conditions” (Merrill & Alexander, 1987), as manifest-

ed by ease of ignition, rate of spread, fireline intensity, and fuel consumption (Varner et al., 

2015). Commonly distinguished are i) herbaceous fuel types that form loosely packed 

fuelbeds that are easy to ignite and foster rapid fire spread, ii) shrub fuel types with diverse 

size and distribution of fuel particles which can burn at high intensities depending on spe-

cies composition and compactness, iii) litter fuel types that dry quickly and ignite easily, but 

burn at low intensities, and iv) woody fuel types dominated by dead woody fuel particles 

with different rates of drying depending on particle size, that can foster intense surface fires  

(Keane, 2015; Sandberg et al., 2001). The detailed numerical description of the physical 

properties of a fuel type is referred to as “fuel model” (Andrews & Queen, 2001) and is 

often used as a set of inputs to fire behaviour models (Andrews, 2014; Finney, 2006) to 

help forest managers predict potential fire behaviour and decide for effective fuel manage-

ment options.  
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Accurate spatial information on surface fuels is fundamental for appropriate forest and fire 

management strategies, but mapping surface fuel types remains a difficult task. Traditional 

mapping methods based on recordings of fuel situations in the field are very time consum-

ing and costly; nevertheless, such field surveys are still required as primary source of data 

and as ground reference for fuel type maps produced using other datasets, including those 

collected by remote sensing (Arroyo et al., 2008). Recording fuel types can be aided by the 

use of photographs of representative fuel types that can be matched by the observer in the 

field to the forest stand situation encountered to facilitate classification (Keane, 2015). Ex-

tensive photo series have been developed for fuelbeds across the USA (Vihnanek et al., 

2009; Wright et al., 2010), and also in other countries (Morfin-Rios et al., 2008; Ottmar et 

al., 2004). These even allow to estimate fuel component loadings, but the technique is 

prone to assignment errors and limited repeatability across observers has been reported 

(Keane, 2015; Sikkink & Keane, 2008). Fuel type maps are often generated using other land 

classifications such as vegetation maps by assigning fuel types to existing map categories 

(McKenzie et al., 2007); however, fuels are not always related to vegetation categories and 

map resolutions can be much coarser than the scale of fuel variation (Keane, 2015). Re-

mote sensing methods offer another means to create fuel type maps across large areas: 

multispectral and hyperspectral data from passive sensors like Landsat TM, ASTER, AVI-

RIS and Hyperion have been extensively used in classification approaches (Jia et al., 2006; 

Keramitsoglou et al., 2008; Lasaponara & Lanorte, 2007b; Riaño et al., 2002), many of 

them again relying on associations with vegetation categories. In terms of mapping surface 

fuel types, the main drawback of passive optical sensors is their incapability to penetrate 

the forest canopy. Active sensors like lidar systems partly overcome the problem and have 

been successfully used to extract information about vertical fuel structure (Botequim et al., 

2019; Erdody & Moskal, 2010; Riaño, 2003), often in combined approaches with multi-

spectral data (Chirici et al., 2013; Domingo et al., 2020; García et al., 2011; Mutlu et al., 

2008). However, acquisition costs still limit the availability of lidar data across large areas. 

Moreover, lidar data hardly provide information about the type of fuel encountered be-

neath the tree crown, which is yet essential to fire behaviour predictions.  

Field photographs obtained within forest stands capture the relevant information about 

surface fuel types and are often used by fuel researchers as ancillary information to deter-

mine ground truth and validate fuel type maps (Alonso-Benito et al., 2016; Botequim et al., 

2019; García et al., 2011; Mutlu et al., 2008). However, visual interpretation of photos car-

ried out by humans is time-consuming and subjective, whereas automated interpretation of 

images by deep neural networks can significantly reduce the time required for this task and 

also increase the repeatability of the interpretation. Such deep learning-based models allow 

to operationalise expert knowledge and make this knowledge available to interested parties 

as for example demonstrated in several projects providing deep learning models in applica-

tions to automatically identify plants and animals, e.g., Pl@ntNet or BirdNET (Goëau et 

al., 2013; Kahl et al., 2021). 

In this study, we apply convolutional neural networks (CNNs), a class of deep learning 

models that are particularly suited for analysing image data. CNNs process images through 

multiple layers of convolutional filters, thereby extracting contextual 2D spatial features of 

varying levels of abstraction, allowing the models to effectively learn features relevant to a 

specific task in an end-to-end training directly from the data. They have been applied with 

great success in computer vision tasks such as image classification (Krizhevsky et al., 2017; 

Sladojevic et al., 2016), object detection (X. Chen et al., 2014; Tompson et al., 2015), and 
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semantic segmentation (L.-C. Chen et al., 2018; Long et al., 2015), but have only recently 

been explored in ecology and vegetation science (see reviews by Christin et al., 2019 and 

Kattenborn et al., 2021). Vegetation properties such as species information and plant traits 

have been successfully extracted from plant photographs (Schiller et al., 2021; Wäldchen & 

Mäder, 2018), while highly accurate vegetation mapping has been achieved on different 

types of remote sensing data (Guirado et al., 2020; Langford et al., 2019; Schiefer et al., 

2020). Most studies applying CNNs to field photographs are found in agriculture, e.g., for 

identification of crop types (Ringland et al., 2019; S. Wang et al., 2020) or the detection of 

weed infestations (J. Gao et al., 2020), as well as in land use or land cover classifications 

(Cao et al., 2018; G. Xu et al., 2017), while rather few studies from the field of forest ecolo-

gy exist: these have attempted, for example, to detect the regrowth of woody vegetation 

(Bayr & Puschmann, 2019), classify tree species and estimate stock volume by segmenta-

tion (J. Liu et al., 2019), monitor plant phenology stages (Correia et al., 2020) or estimate 

defoliation of forest trees from ground-level images (Kälin et al., 2019). Despite the in-

creasing use of deep learning models in ecological research, few studies currently aim to 

understand the behaviour of a network and, thus, increase the interpretability and trustwor-

thiness of the predictions; although this would also help to better evaluate the potential and 

limitations of deep learning models for these applications. Moreover, it has rarely been 

assessed how ground-based imagery can be coupled with remote sensing data to harness 

multiple data sources to make more reliable predictions for a task. In the context of fuel 

research in forest ecosystems, the ubiquitous availability of multispectral satellite data with 

high spatiotemporal resolution provided by the Sentinel-2 satellites provides an excellent 

opportunity to test whether time series of Sentinel-2 data can complement field-level in-

formation derived from forest photographs to predict surface fuel types in Central Europe-

an forests. Since multi-temporal satellite data have proven useful to classify tree species and 

crops based on their different phenological cycles using varieties of recurrent neural net-

works (RNN) such as Long Short-Term Memory (LSTM) (Campos-Taberner et al., 2020; 

Xi et al., 2021; Zhong et al., 2019), they also hold the potential to differentiate between fuel 

types, which are influenced by dominating tree species and stand density. In this work, we 

present a new approach for classifying surface fuel types using RGB imagery from within a 

forest stand in combination with Sentinel-2 time series in a deep learning framework. We 

specifically address the following research questions: 

 

i) How accurately can we classify surface fuel types from different types of within 

stand forest photographs using CNNs?  

ii) Does the integration of Sentinel-2 satellite time series with LSTM improve clas-

sification results and does it have the potential to be used as a stand-alone 

methodology? 

iii) Do ensemble approaches help to improve the results? 

iv) Which image regions of forest photographs and which spectral and temporal 

features from Sentinel-2 time series are important for classifying surface fuel 

types? 
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 Methods 5.2

 Study area 5.2.1

We collected surface fuel data from 278 plots in temperate forests in Germany from May 

to October in 2020 and 2021, focusing on two main study areas. One is located in south-

western Germany, encompassing lowland pine-dominated (Pinus sylvestris L.) mixed forests 

on sandy soils of the upper Rhine plain (Figure 5.1-1), submontane mixed forests with 

beech (Fagus sylvatica L.), oak (Quercus petraea Liebl.), and Douglas fir (Pseudotsuga menziesii 

(Mirb.) Franco) in the hilly landscape of the Kraichgau (Figure 5.1-2), submontane beech, 

spruce (Picea abies (L.) H. Karst.), and silver fir (Abies alba Mill.) forests in the northern 

Black Forest (Figure 5.1-3), and dry submontane pine forests on sandstones of the Pala-

tine Forest (Figure 5.1-4). The other study area is located in the state of Brandenburg in 

north-eastern Germany and consists of lowland pine forests on very dry sandy soils 

(Figure 5.1-5), which are the most fire-affected forest sites in Germany. We thus covered 

the six main overstory tree species in Central Europe, but also included less frequently oc-

curring Larix decidua Mill., Quercus rubra L., Carpinus betulus L., and Robinia pseudoacacia L. 

stands. We attempted to cover different age classes and stand structures, ranging from very 

young stands consisting only of regenerated trees with heights of less than 5 m, to stands 

with larger trees and closed canopies, to old stands with low tree density and more open 

canopies.  

 

Figure 5.1: Study areas for fuel type sampling in south-western and north-eastern German: 1) up-
per Rhine valley 2) Kraichgau 3) northern Black Forest 4) Palatine Forest 5) Brandenburg. 
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 Field measurements 5.2.2

We recorded overstory tree species and cover, understory tree/shrub cover and average 

height, herb cover and height, moss and litter cover on 278 circular plots with a radius of 

7.5 m (176.6 m²). We also recorded the litter type and the presence of fine woody fuels. In 

179 of the plots, we sampled all surface fuel components (seedlings, shrubs, herbaceous 

species, dead woody fuels, litter) following an established protocol of the USDA Forest 

Service (Woodall & Monleon, 2008), to later calculate fuel loadings for each component. 

Details of the sampling procedure and data preparation can be found in Appendix A. Be-

fore sampling, we systematically photographed all plots. Twelve horizontal photos were 

taken from a circle with 10 m radius, facing the center of the plot, with a spacing of 30° 

between the photos. We also photographed the transects along which dead woody fuels 

were measured (see Appendix A), from four directions at 90° to each other, obtaining 12 

forest floor photos per plot.  

 Fuel type classification 5.2.3

Unsupervised k-means clustering was performed on the fuel loading data to identify the 

most important clusters in the data. The data were then presented along with the photo-

graphs to two fuel experts, who related fuel and species information to effects on fire be-

haviour. The final fuel type classification and respective thresholds to separate between 

classes were based on field data and expert opinion. Understory and litter type were con-

sidered most decisive to fire behaviour and were thus used as sub-classification systems to 

constitute a fuel type.   

Seven understory fuel types with expected different effects on fire behaviour were identi-

fied (Figure 5.2): 1) Broadleaved tree or shrub understory (hereafter referred to as shrub-

broadleaf) mainly encountered as regeneration of Fagus sylvatica, Carpinus betulus, and Prunus 

serotina, with large leaves that have high surface area-to-volume (SAV) ratio and water con-

tent, and the largest share of biomass allocated in stem and coarse branch wood. 2) Needle-

leaved trees in the understory (shrub-needle) from regeneration of Abies alba, Picea abies, 

Pseudotsuga menziesii or Pinus sylvestris, that have leaves with smaller SAV ratio, higher lignin 

and terpenoid content (Bohlmann & Keeling, 2008; D. A. Perry et al., 1987; N. A. Scott & 

Binkley, 1997), and generally more biomass allocated in fine plant parts. 3) Herbaceous 

non-grassy species (forb) with high water content (we also included low-growing Rubus fruti-

cosus agg. in this group due to its high moisture), which have a lower fire hazard than 4) 

grass species (grass) such as Brachypodium sylvaticum (Huds.) Beauv. or Deschampsia flexuosa (L.) 

Trin., especially after curing of the latter at the end of the season, 5) dwarf shrubs (dwarf 

shrub), in particular Calluna vulgaris (L.) Hull and Vaccinium myrtillus L., which can burn well 

even when green, and 6) thick, continuous moss layers (moss) of species such as Polytrichum 

formosum Hedw. or Pleurozium schreberi (Brid.) Mitt. that can dry to very low moisture con-

tents and provide significant fuel loadings. Cover of at least 50 % (within 2 m above the 

ground) of the respective understory type was considered necessary to achieve significant 

loading and continuity that would impact fire spread and was therefore chosen as threshold 

for the class assignment. If none of the aforementioned understory types was present with 

sufficient cover, the plots were assigned to the 7) litter (litter) fuel complex.   
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Figure 5.2: Different understory fuel types. From top left to bottom right: Two examples of shrub-
broadleaf (a-b), two examples of shrub-needle (c-d), then one example each of forb (e), grass (f), 
dwarf-shrub (g), moss (h), and litter (i). 

The litter fuel types relevant to fire behaviour were distinguished based on leaf morphology 

of the litter, assuming that its relation with the compactness of the litter layer strongly in-

fluences the availability of oxygen in the combustion process. We therefore distinguished 

between broadleaf (bl), short-needle (sn), and long-needle (ln) litter (Figure 5.3). We also 

assumed that the different chemical composition, especially of broadleaf and coniferous 

litter (Philpot, 1970; N. A. Scott & Binkley, 1997), affects the combustion properties. As 

mixtures between these litter types are very common in Central European forests, we also 

included the mixed classes broadleaf-short-needle (bl-sn) and broadleaf-long-needle (bl-ln), 

assuming altered combustion properties compared to stands with pure litter types. In our 

study areas, we rarely encountered a mix of long-needle and short-needle litter and there-

fore assigned these plots to the dominating litter type. We found very high loads of fine 

woody debris in some short-needle stands, which could strongly alter the intensity of a fire, 

and therefore defined a separate litter type (sn-fwd). A simplified litter classification with 

only four different litter types, achieved by combining the classes bl-ln with bl-sn and sn with 

sn-fwd, was also tested. Table 5.1 provides an overview of the fuel type classifications and 

the number of plots surveyed for each class.  
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Table 5.1: Overview of the number (N) of recorded plots in each fuel type classification. 

understory  

fuel type 

N plots  litter 

fuel type 

N plots  simplified litter 

fuel type 

N plots 

shrub-broadleaf 39  bl 73  bl 73 

shrub-needle 33  bl-ln 45  ln 44 

forb 34  bl-sn 37  sn 79 

grass 32  ln 44  mixed 82 

moss 28  sn 61    

dwarf-shrub 19  sn-fwd 18    

litter 93       

 Image data preprocessing 5.2.4

Our dataset consisted of 3336 horizontal forest stand photos (12 per plot) and the same 

amount of forest floor photos, each 4000 × 3000 pixels in size. Single missing or damaged 

photos were replaced by duplicating a randomly selected photo from the same plot to en-

sure equal sample size for each plot. Horizontal photos were resized to 512 × 512 pixels 

before feeding them into the model and pixel values were normalised to the interval (0, 1) 

to allow faster convergence of the model. During model training, on-the-fly data augmenta-

tion was performed, i.e. slight transformations were applied to the photos to increase the 

variation in the dataset during each epoch of training. These transformations included small 

image rotations, horizontal and vertical shifts, random horizontal flips, and brightness 

changes within a range of values that was previously identified to produce realistic results. 

Forest floor photos were processed differently to avoid a loss of details when resizing the 

images to smaller sizes processible by the model: We randomly cropped nine small image 

patches (224 × 224 pixels) from the forest floor photos and reassembled them to a 3 × 3 

mosaic with a size of 672 × 672 pixels (Figure 5.3). Strong illumination variations within 

an image due to shadow effects were reduced by applying contrast limited adaptive histo-

gram equalization (CLAHE) (Pizer et al., 1987) to each image before cropping. Similar to 

the horizontal photos, pixel values of the mosaics were normalised to the interval (0, 1). 

During training, forest floor mosaics were randomly rotated by 90° degrees, but received 

no further transformations. 

 

Figure 5.3: Examples of forest floor mosaics for a) broadleaf (bl), b) short-needle (sn), c) long-
needle (ln), and d) short-needle fine woody debris (sn-fwd) litter. 
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 Satellite data preprocessing 5.2.5

We constructed time series of multispectral Sentinel-2 satellite data from the Level-2A sur-

face reflectance product using Google Colab as Python interface to Google Earth Engine 

(GEE). Therefore, we selected all available scenes with less than 70 % cloud cover above 

our study areas in the 3-year period from July 2018 to June 2021. We used the Sentinel-2 

cloud probability product and near-infrared reflectance to mask out cloud and cloud shad-

ow pixels in the individual scenes. We then extracted pixel reflectance from 10 spectral 

bands with 10 to 20 m spatial resolution (visible, red-edge, near-infrared, shortwave-

infrared bands) at our field plot locations. In addition to the spectral bands, we calculated 

the normalised difference vegetation index (NDVI) as an indicator of photosynthetic activ-

ity / vegetation greenness for each observation. To obtain a time series dataset equal in size 

to our photo dataset (3336 samples, 12 per plot) and increase the variability among time 

series of one plot, we binned the Sentinel-2 observations into 14-day intervals and random-

ly selected one observation from each 14-day interval to construct 12 slightly different time 

series for each of the 11 features per plot, with 72 time steps in each feature. Due to the 

cloud masking procedure, we obtained varying amounts of valid data points in the time 

series depending on the plot location. We linearly interpolated missing observations and 

smoothed the time series using a Savitzky-Golay filter (Savitzky & Golay, 1964). The final 

input to the LSTM model was a 72 × 11 matrix (time steps × features) for each sample. 

 CNN architecture 5.2.6

We tested different CNN architectures typically used for image classification tasks, includ-

ing VGG, Inception, and EfficientNet. We achieved the best results using VGG-16 (Simonyan 

& Zisserman, 2015) with weights pre-trained on the ImageNet dataset as backbone. VGG-

16 uses 5 blocks of consecutive 2D convolutions with a filter size of 3 × 3 and Rectified 

Linear Unit (ReLU) activation. Each block is followed by a max-pooling layer with stride 2 

that reduces the resolution of the layers, allowing the transition from lower-level to higher-

level image feature extraction. To reduce the number of trainable parameters in the model, 

we froze the layers in the first two convolutional blocks, i.e. their weights were not updated 

during training, so that low-level image features such as edge detectors were directly adopt-

ed from the pre-trained model. The convolutional layers deeper in the model were re-

trained on our dataset to allow the model to learn the higher-level concepts specific to our 

problem. The outputs from the VGG-16 backbone were then summarised in a global aver-

age-pooling layer and processed through a classifier model consisting of two fully connect-

ed layers and a final classifier with softmax activation, computing the class probabilities for 

the litter and understory fuel types, respectively. To limit overfitting and improve the mod-

el’s ability to generalise, a 50 % dropout layer and L2 weight regularization with the regular-

ization rate set to 0.01 were used. A multi-input model was constructed using two VGG-16 

branches, which were concatenated before the final classifier model, to process horizontal 

and forest floor photos in parallel. A summary of the architecture of the CNN model is 

provided in Figure 5.4. 
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Figure 5.4: Architecture of the CNN model based on VGG-16 for the classification into litter and 
understory fuel types. The model accepts either horizontal or forest floor photos as inputs. These 
are processed through five blocks of convolutional layers with increasing number of filters, while 
their resolution is decreased through pooling operations. The last fully-connected layer in the classi-
fier model consists of six neurons in litter classification and seven neurons in understory classifica-
tion which give the probability values for a photo belonging to the respective classes. 

 LSTM architecture 5.2.7

We used a long short-term memory network (LSTM) to classify litter and understory fuel 

types based on the time series extracted from Sentinel-2 acquisitions. LSTM can learn long-

term dependencies in sequences of data without suffering from the vanishing gradient 

problem that can occur when training normal recurrent neural networks (RNN) 

(Hochreiter & Schmidhuber, 1997). This is achieved by enforcing a constant error flow 

through the network by regulating the information flow through LSTM units called cells. 

The memory content of a cell (cell state c) is controlled and protected by three sigmoid gate 

units (σ): the forget, input, and output gates. The forget gate takes the output of the previ-

ous cell (ht-1) and the current input (xt) and decides which part of the memory content of 

the cell (ct-1) will be thrown away. The input gate similarly uses the inflowing information to 

decide which parts of the memory will be updated, and a tanh layer gives weights to the 

respective values to be added to the current state. The new cell state (ct) is then passed 

through another tanh layer (to scale the values between -1 and 1) and finally through the 

output gate, which decides what part of the cell state will be passed on to other cells (out-

put values ht). In this way the cells effectively discriminate between currently useful and 

irrelevant memory contents while ensuring constant error backpropagation to bridge even 

extended time intervals. As an extension of normal LSTMs, bidirectional LSTMs look at a 

time series from both forward and backward directions, allowing them to learn temporal 

dependencies using information from past and future time steps (Schuster & Paliwal, 1997). 

We used three bidirectional LSTM layers with 100 hidden units and 20 % dropout each to 

process the time series of the 10 spectral bands and NDVI from Sentinel-2, followed by a 

fully-connected layer and a final softmax layer to compute the class probabilities for the 

desired outputs. A summary of the architecture of the LSTM model is provided in Figure 

5.5. 
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Figure 5.5: Architecture of the LSTM model (left) and structure of a LSTM cell (right). The LSTM 
model accepts the 11 time series (features) derived from Sentinel-2 images, with 72 time steps in 
each series. The time series data is processed through three bidirectional LSTM layers, each of 
which contains a LSTM cell as repeating module that passes the (filtered) information from each 
time step in forward and backward direction and outputs a vector of length 100 (hidden state vec-
tor). Based on this output, the time series are assigned to different understory and litter fuel types. 

 Model training 5.2.8

The dataset was split into a training/validation set and an independent test set using strati-

fied 10-fold cross validation. The test set thus contained 336 samples (photos / time series) 

from plots that the model had never seen during training, and it had the same distribution 

of classes as the full dataset. The training/validation set was split in a ratio of 80/20, result-

ing in 2400 samples for training and 600 for validation. Litter and understory fuel types 

were converted to one-hot encoded target variables before being fed into the network. The 

network was trained for a maximum of 50 epochs with a batch size of 32, i.e. 32 samples of 

the training dataset were shown to the network before the parameters were updated, while 

the entire training dataset was shown to the network a maximum of 50 times. To account 

for the imbalanced distribution of classes in our dataset, class weights were calculated by 

inversely relating occurrences per class to the total number of samples and used in training 

to weight up underrepresented classes. We tested five different combinations of input data 

with our models (Table 5.2): Two CNNs were trained with only horizontal forest photos 

or only forest floor photos, respectively. Another CNN was trained with both horizontal 

and forest floor photos in two parallel VGG-16 branches. The LSTM model was trained 

with the Sentinel-2 time series, and a combined CNN-LSTM model was trained with all 

three data sources simultaneously in three parallel branches. The individual branches of the 

multi-input models were concatenated before the final classifier to arrive at a single joint 

prediction. For the CNN models and the multi-input models, we used the robust Adam 

optimizer with a learning rate of 0.0001 as optimization algorithm. The LSTM was opti-

mised using RMSprop with a learning rate of 0.0001 and momentum set to 0.8., as deter-

mined by a hyperparameter grid search. The loss function to be minimised was categorical 

cross-entropy for all outputs. The learning rate was reduced during training when validation 

loss stopped improving for two epochs and training was stopped early if the loss did not 

improve for four epochs.  
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Table 5.2: Overview of the 5 model configurations tested. 

 

Model development and training were implemented in Python version 3.8 (van Rossum & 

Drake, 2009) using the Keras library (Chollet, 2015) as interface to the TensorFlow 

backend. For model training, we used 4 NVIDIA Tesla V100 GPUs provided by the 

bwUniCluster 2.0 within the Baden-Württemberg High Performance Computing (bwHPC) 

framework. 

 Model evaluation 5.2.9

Model performance was evaluated by calculating overall accuracy (1), class-wise precision 

(2), recall (3), f1-score (4) (harmonic mean of precision and recall), as well as Cohen’s kap-

pa (5) for predictions on the independent test sets that were generated using stratified 10-

fold cross validation. All photos in the test set were considered as independent samples in 

these calculations. Confusion matrices were computed to gain further insights into which 

classes are difficult to separate using the models. Class prediction probabilities output by 

the final softmax layer of the best-performing model were examined for their informative 

value about the confidence of the model predictions. Python libraries Pandas (McKinney, 

2010) and Scikit-learn (Pedregosa et al., 2011) were used for all computations.  

 

accuracy =  
true positives + true negatives

true positives + true negatives + false positives + false negatives
 

(1) 

precision = 
true positives

true positives + false positives
 

(2) 

recall = 
true positives

true positives + false negatives
 

(3) 

f1-score = 2 ×  
precision × recall

precision + recall
 

(4) 

Cohen's kappa = 
observed agreement - expected agreement

1 - expected agreement
 

(5) 

 

input forest floor 

photos 

horizontal 

forest photos 

Sentinel-2 

time series 

forest floor photos, 

horizontal photos  

forest floor photos, 

horizontal photos, and  

Sentinel-2 time series 

model  

architecture 

single-input 

CNN 

single-input 

CNN 

LSTM multi-input CNN 

with two VGG-16 

branches 

multi-input CNN-

LSTM model with 

two VGG-16 branch-

es and one LSTM 

branch 

output  litter fuel type: 

simplified litter fuel type: 

understory fuel type:                        

bl, bl-ln, bl-sn, ln, sn, sn-fwd 

bl, ln, mixed, sn  

dwarf-shrub, grass, forb, litter, shrub-broadleaf, shrub-needle 
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 Ensemble approaches 5.2.10

Due to our data structure with 12 different photos acquired from one plot (forest stand), 

we had the opportunity to test the effect of decision fusion methods to improve final clas-

sification results. Two different approaches based on majority voting were tested: First, we 

aggregated the predictions from the same model on multiple photographs of the same for-

est stand and determined the final class label based on the most frequently predicted class. 

When two classes appeared to have the same number of votes, the final class was randomly 

chosen from the two. We additionally tested the effect of considering only the most certain 

model predictions by setting a threshold for the minimum required probability of the pre-

dicted class (tested values were 80 % and 90 %). Second, we aggregated the predictions 

from the single-input models that used the three different available data sources forest 

floor photos, horizontal photos, and Sentinel-2 time series individually. Final class assign-

ment was similarly based on majority voting from the ensemble of model predictions, and 

prediction probabilities were taken into account as described above. 

 Assessment of model explainability 5.2.11

Feature importance via random permutation in LSTM model 

We assessed the relative importance of different spectral bands and different acquisition 

times to the classification of understory and litter fuel types by using feature permutations: 

We randomly permuted the reflectance values of one band across all samples in the test set, 

applied the trained LSTM model to the modified data and recorded the change in accuracy 

compared to the baseline performance of the model on the unperturbed test set. Likewise, 

we permuted the reflectance values of all bands from each acquisition month across all 

samples in the test set and recorded the change in classification accuracy. Hence, the im-

portance of each feature (band or month) was calculated as the decrease in classification 

accuracy of model predictions when the feature was permuted, normalised with respect to 

the most important feature. 

Importance of image regions via Grad-CAM in CNN model 

We used Gradient-weighted Class Activation Mapping (Grad-CAM) (Selvaraju et al., 2017) 

to visualise the image regions that were important for the classification decision of the 

CNN model. Grad-CAM computes the gradient of the score (raw output before the soft-

max) for any class with respect to the activations of the feature maps produced by a convo-

lutional layer to derive the weight for each feature map. A weighted combination of feature 

maps is computed and followed by a ReLU operation to emphasise only pixels that have a 

positive influence on the class of interest. The output is a coarse localization map, which is 

upsampled to the resolution of the input image to highlight the pixels that were important 

for the class decision. We computed Grad-CAM heatmaps for randomly selected, correctly 

predicted images of each class based on the activations of the last two convolutional layers 

of our model.  
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 Results 5.3

 Model training 5.3.1

All models converged within 50 epochs of training or earlier for both outputs (Figure 5.6 

and Figure 5.7). Multi-input models and the LSTM model generally showed slower con-

vergence compared to the single-input CNN models. Except for the LSTM model, slight 

overfitting to the training data was observed for all models especially in litter classification 

and when using forest floor photos, despite the regularization techniques applied. When 

classifying understory, a single CNN-model trained on horizontal photos got stuck in a 

local minimum at an early epoch and remained at near-zero accuracy throughout training. 

Training and validation loss stabilised for all models after about 20 epochs.  

 

Figure 5.6: Averaged evolvement of training and validation accuracy and loss across 10 cross-
validation runs for litter classification models. 

 

Figure 5.7: Averaged evolvement of training and validation accuracy and loss across 10 cross-
validation runs for understory classification models. The curves for the CNN trained on horizontal 
photos are strongly distorted by a model stuck in a local minimum during training. 
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 Accuracy assessment 5.3.2

Average classification accuracy differed only marginally among the models using different 

input data, except for a lower understory classification accuracy (0.41) of the LSTM model 

using Sentinel-2 data only (Figure 5.8). Highest accuracy for understory classification was 

achieved using the combined CNN model with horizontal and forest floor photos as input 

(OA=0.78, f1-score=0.76).  

For the full litter classification with six litter types, different input data yielded very similar 

results, but the models using multiple data sources had lower variance compared to the 

single-input models (Figure 5.8). Highest accuracy was obtained using forest floor photos 

(OA=0.60, f1-score=0.55). Simplifying the litter classification to only four different classes 

resulted in increased overall accuracy. Highest accuracy was achieved using the combina-

tion of horizontal and forest floor photos (OA=0.70, f1-score=0.70). In contrast to the 

understory classification, the LSTM based on Sentinel-2 data performed only slightly worse 

than the CNN models in litter classification, yet with high variability especially for the sim-

plified litter fuel types (Figure 5.8). Integrating Sentinel-2 data with the forest photos into 

a multi-input model improved overall classification accuracy only marginally for both un-

derstory and litter fuel types. 

  

Figure 5.8: Test accuracy (left) and f1-score (right) after cross-validation for different input data 
for original (six classes) and simplified litter fuel types (four classes), and understory fuel types (sev-
en classes). 

Confusion matrices (Figure 5.9) show that pure litter types bl, ln, and sn were highly distin-

guishable based on either forest photos or Sentinel-2 time series, whereas mixed litter clas-

ses were difficult to separate from each other and the pure litter types included in the mix-

tures. Class-wise precision, recall and f1-scores can be found in Table A1 in Appendix A. 

In understory classification, dwarf-shrub was classified correctly in almost all predictions 

based on forest photos. The other understory types were also identified well based on for-

est photos and in combination with Sentinel-2 time series, with a few confusions between 

grass and forb, and between the classes shrub-needle, moss, and litter. 
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Figure 5.9: Confusion matrices for litter classification (left column: six classes, middle column: 
four classes) and understory classification (right column). The matrices were averaged across all 10 
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cross-validation folds and normalised so that each row (predicted classes) sums to 100 for easier 
comparison across the imbalanced dataset. Note that training of a CNN on horizontal photos in 
one fold did not succeed and the model predicted all instances into the moss class. 

 Assessment of prediction probabilities 5.3.3

Correctly classified photos generally received a higher class assignment probability score 

than misclassified photos, indicating the model’s confidence for a correct class prediction 

(Figure 5.10). Mean prediction probability was 95 % for correct understory predictions, 

whereas incorrect predictions had a mean probability of 80 %. Class-wise prediction prob-

abilities were partly in line with the results from accuracy assessment, showing that classes 

with high f1-scores such as dwarf-shrub were more confidently predicted (99 % for true la-

bels) than classes that were confused more frequently such as forb (93 % for true labels). 

For the classification of litter fuel types, prediction probabilities were generally lower, with 

an average of 88 % for correct and 79 % for incorrect predictions. Probability distributions 

in litter classification highlight the model’s uncertainty with respect to mixed litter types 

and sn-fwd, suggesting difficulties in finding appropriate decision boundaries for the class 

assignment.  

 

Figure 5.10: Violin plots showing the distribution of prediction probabilities for understory fuel 
types (left) and litter fuel types (right) from the multi-input CNN trained on horizontal and forest 
floor photos. Blue: true predictions, orange: false predictions. 

 Effect of ensemble approaches on classification results 5.3.4

Post-classification aggregation procedures provided a means to improve final classification 

results. While understory classification improved up to an accuracy of 0.85 (baseline 0.78), 

litter classification improved up to an accuracy of 0.72 (baseline 0.60). Our analysis showed 

that understory fuel type classification was best improved using majority voting from mul-

tiple photographs of the same stand and additionally using only the most certain predic-

tions (Figure 5.11). Ensemble predictions based on the predictions from three single-input 



Classifying surface fuel types 

51 

models (two CNNs and LSTM) failed to improve classification results in case of understo-

ry (Table 5.3) when uncertain predictions were not omitted, due to the low accuracy of the 

Sentinel-2 predictions. In contrast, the ensemble prediction of litter types (Table 5.3) clear-

ly outperformed the prediction resulting from majority voting based on multiple photo-

graphs (Figure 5.11).  

  

Figure 5.11: Average classification accuracy depending on different numbers of photos used to 
determine class assignment for a forest stand by majority voting for understory fuel types (left) and 
litter fuel types (right, original classification with six litter types). 

Table 5.3: Average classification accuracy for model ensemble predictions with and without filter-
ing based on prediction probability. 

 understory   litter  

 overall  

accuracy 

no. of predicted 

instances 

 overall 

accuracy 

no. of predicted 

instances 

all predictions 0.72 3336  0.65 3336 

predictions >80 % probability 0.78 3175  0.70 2897 

predictions >90 % probability 0.81 2982  0.72 2530 

      

 Feature importance in LSTM model 5.3.5

Time series of Sentinel-2’s shortwave infrared band (SWIR, B11) were most important in 

litter classification, followed by a narrow near infrared band (narrow NIR, B8A) and the 

second SWIR band (B12) (Figure 5.12). Patterns changed for the simplified litter classes, 

where the blue band (B2), NDVI, and SWIR (B11) were most important. Little importance 

in litter classification was given to the red band (B4), vegetation red-edge bands (B5-7), and 

NIR band (B8). Understory classification relied on vegetation red-edge (B8A), SWIR 

bands, and NDVI. Summer acquisitions were more important in all classification tasks than 

winter acquisitions. Litter classification strongly relied on the months July and August, 

while the most important dates for understory classification were slightly earlier in the year, 

in May and June. 
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Figure 5.12: Normalised relative feature importance calculated from decreases in overall classifica-
tion accuracy when reflectance values of a Sentinel-2 band (left) or acquisition month (right) were 
randomly permuted. 

 Importance of image regions in CNN model 5.3.6

In many cases, the most salient image regions in understory classification coincide with the 

occurrence of (or parts of) the particular understory fuel type in the image, especially in 

forest floor photos (Figure 5.13 a). Colour and texture appear to be important for the dis-

tinction of relevant from irrelevant image content (see for example dwarf shrub, forb, litter). 

However, sometimes only small regions are highlighted even though the fuel type covers 

large parts of the image (Figure 5.13 b), for example grass, forb, shrub-broadleaf), or even the 

fuel type is not highlighted at all, but another image feature is (e.g., grass blade instead of 

moss). In most horizontal photos of dwarf-shrub, grass, and litter fuel types (Figure 5.13 c), the 

bottom parts of the image are correctly identified as the relevant regions the model has to 

look for. The salient image regions in photos of forb fuel types seem to follow no clear pat-

terns, while for moss either forest floor regions or stems are highlighted. In case of shrub-

broadleaf and shrub-needle, mostly foreground image features such as branches and leaves 

seem to be relevant. For litter and shrub-needle, however, also stems in the image background 

can be a decisive feature (note the clear demarcation from the forest floor or foreground 

vegetation).  
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Figure 5.13: Most salient image regions (coloured in red) in the last convolutional layers of the 
CNN models for understory fuel type classification. Columns a) and b) show forest floor photos in 
the original (left) and overlaid with Grad-CAM heatmap (right); column c) shows horizontal photos 
overlaid with a Grad-CAM heatmap. 
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 Discussion 5.4

 Potential of forest photographs to classify surface fuel types 5.4.1

Our results showed that forest photographs are suitable to classify litter fuel types with 

moderate overall accuracy (60 %) and understory fuel types with fairly high accuracy (78 %) 

using CNNs. The small differences in performance using horizontal stand photos com-

pared to forest floor photos indicate that both can be used for surface fuel type classifica-

tion, depending on which of the two is available, and combining both can stabilise results 

and improve accuracy in case of understory fuel type classifications.  

Litter fuel types 

The good discrimination between the three basic types of short-needle, long-needle, and 

broadleaf litter by our models show that CNNs are able to extract the necessary infor-

mation that is relevant to estimate surface fire spread for the included forest types based on 

photographs. However, our results revealed that it is difficult to correctly identify mixtures 

of different litter types: The challenge lies in the almost continuous transition from litter 

accumulations consisting of only one type of litter to few mixed-in leaves of, e.g., broadleaf 

litter, to more balanced mixtures between different litter types, where all components are 

assumed to have an effect on fire behaviour. Leaves of broadleaf litter in particular have a 

disproportionate influence on the appearance of a photograph compared to their actual 

abundance, leading to misclassifications also by human observers. This explains the fre-

quent confusions of mixed types bl-ln and bl-sn with bl. However, the influence of mixtures 

of different litter types on the combustion process, and thus the level of detail required for 

litter characterization, remains to be investigated. 

Learning critical features for litter discrimination, particularly from forest floor photos, is 

difficult also when the litter layer itself is not visible due to continuous understory vegeta-

tion. Although there are some relationships of litter types with understory vegetation, e.g., a 

continuous moss or herbaceous layer is rarely encountered underneath broadleaved trees in 

our target region Central Europe, we cannot be sure whether a model learns these patterns. 

It can be argued that in such cases litter is also less relevant for fire behaviour than the un-

derstory fuel type; however, there are situations where both are important, for example a 

pine forest with grass understory will burn more intense than an oak forest with grass un-

derstory due to the greater heat release from long-needle pine litter (Hough, 1969). Never-

theless, litter classification based on forest floor photos is expected to improve when ex-

cluding photos where the litter layer itself is not visible, whereas correct classifications 

based on horizontal photos may be still possible based on indirect relationships, e.g., to 

stems and crown morphologies of different tree species. 

Understory fuel types 

Understory fuel types were easier to distinguish based on forest photographs than litter fuel 

types. One reason for this might be that understory can be readily identified in an image 

and can have a unique appearance, such as in the case of dwarf-shrub. Since dwarf-shrub is the 

potentially most fire-prone understory fuel type included in this study (severe fires can oc-

cur in Calluna vulgaris habitats, e.g., Davies, Smith, et al., 2010), its reliable detection by the 

CNN allows for the successful identification of high-risk forest areas. Fires can also spread 

rapidly through cured grass fuel types; here a better discrimination from the moister forb fuel 
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types would be required, which is likely to be feasible with more training data. In other 

cases correct class attribution was more difficult because different understory fuel types 

appeared within the same photograph, e.g., moss and shrub-needle. This type of misclassifica-

tion also occurred in the study by Xu et al. (2017), where a single land cover label was used 

for each photo. In the context of our study, the “confusion” of classes by the model merely 

reflects real-world conditions, if both fuel types contribute significantly to the fuel com-

plex, and raises the question of whether a separation is actually meaningful in this case; or 

whether classification by presence/absence for different fuel types is more appropriate. 

However, a meaningful threshold for the minimum abundance of a fuel type to be effective 

in the context of fire behaviour needs to be defined. Area-based thresholds like a minimum 

cover as in our study are commonly used in fuel type classifications (e.g., Arroyo et al., 

2008), but these may be easier to detect from an aerial than a horizontal perspective. This is 

where photo interpretation (CNN-based or by humans) reaches its limits: multiple branch-

es in the foreground of an image or a photograph taken from a path where there is suffi-

cient light for understory vegetation to grow, will result in the visual impression of high 

understory cover, but this is not necessarily representative of the forest stand behind. 

Therefore, standardised requirements for photo acquisitions are needed to ensure repre-

sentativeness. Avoiding acquisitions close to occluding objects, however, can also result in 

subjective and potentially biased sampling. Until other well-established means are available 

to assess in-forest understory vegetation from a more nadir perspective, variation in the 

“footprint” of a photograph with understory density and height needs to be taken into 

account. One way to overcome this problem in the future may be under-canopy drone 

acquisitions, which have recently been introduced (Krisanski et al., 2020; Kuželka & 

Surový, 2018). 

Comparison with other studies 

We found no studies that have used forest photographs in a similar task before. Several 

studies have used CNNs to classify road view images in an agricultural context. For exam-

ple, Ringland et al. (2019) characterised food production along roads in Thailand by using 

Google Street View (GSV) panoramas and achieved an overall accuracy of 83.3 % for sev-

en different plant species. Yan & Ryu (2021) similarly employed GSV imagery to generate 

ground truth data for crop type mapping in the Central Valley in California, with an accu-

racy of 92 % for seven different crop types. Both studies used a considerably larger dataset 

than ours, with more than 2,000 images per class in the first study, and 500 to 1,000 images 

per class in the second study. Xu et al. (2017) used CNN-based feature extraction from 

30,000 geo-tagged field photos in a multinomial logistic regression model to classify 19 land 

cover types, and achieved an accuracy of 48.4 % for top-1 prediction and 76.3 % for top-3 

prediction (true class matches one of the three most probable predicted classes). Few stud-

ies focused on categorization problems using ground-taken imagery in a more ecological 

context. Habitat classification is one of such tasks and has been addressed by extracting 

visual features and contextual information from ground photographs, feeding them into a 

random forest classifier and adding information about geographical closeness of the geo-

referenced images (Torres & Qiu, 2016). Reported accuracy metrics range from f1-scores 

of about 0.2 for heathland to 0.7 for woodland and scrub habitats. Understory density has 

been estimated from understory images by distinguishing between vegetation-covered and 

background pixels using logistic regression on spectral variables (Campbell et al., 2018) or 

CNN-based segmentation (Abrams et al., 2019). However, these studies require that an 
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artificial background is used during data collection to separate understory from background 

areas in the photographs. 

Although the aforementioned studies differ substantially from our work in terms of re-

search context, specific aims and employed learning algorithms, we assume that model re-

sults strongly rely on the dataset size available for the task, on data cleaning procedures and 

on the human effort involved in the correct annotation of the training data. The highly 

complex and heterogeneous data from natural environments further complicate the correct 

interpretation of images, even for human surveyors. Reducing this complexity by categoris-

ing data allows more effective characterization and comparison, but class boundaries need 

to be set artificially and yet often remain fuzzy, making it difficult to clearly identify and 

separate classes. We consider this the most important limitation of our approach and it has 

remained largely unexplored how CNNs deal with such complexity outside of simple ob-

ject recognition. We will discuss this further in Chapter 5.4.4. 

 Effect of integrating Sentinel-2 time series and utility as stand-alone meth-5.4.2

odology 

Our results indicate that Sentinel-2 time series alone are of limited use for surface fuel type 

classifications: While they were similarly useful as forest photographs for classifying litter 

fuel types, they were of little value for distinguishing understory fuel types. Integrating 

them with the forest photographs in a multi-input model did not notably improve classifi-

cation results for both litter and understory. 

Litter fuel types 

Sentinel-2 predictions of litter fuel types rely on the spectral reflectance of the pixel(s) cov-

ering the field plots, which is dominated by overstory tree species (see also Chapter 5.4.4). 

While tree species classification has been performed with good accuracies on multi-

temporal Sentinel-2 data (Grabska et al., 2019; Persson et al., 2018), our study showed that 

predicting litter fuel types based on tree species information alone is difficult: small under-

story trees and shrubs can contribute significantly to the litter layer, and especially broadleaf 

litter from neighbouring stands can be blown into a stand. Data that was recorded during 

field work showed that litter fuel types cannot be perfectly predicted based on the basal 

areas of the tree species present using a random forest classifier (OA=0.68). This may ex-

plain why the litter fuel type classifications from Sentinel-2 time series achieved only mod-

erate accuracy (OA=0.59). 

Understory fuel types 

Understory characterization, especially species classification, based on remote sensing data 

is a challenging task, as shown by the few attempts that have been made so far (Hall et al., 

2000; Korpela et al., 2008; Landry et al., 2020). The fact that Sentinel-2 time series are in-

sufficient to distinguish understory fuel types is due to multiple reasons: first, the same fuel 

type may occur in the understory (e.g., litter or grass) under completely different tree species 

in the overstory; and even in case of open stands, the spectral signal from the understory is 

superimposed by overstory reflectance, resulting in a complex mixture of reflectance values 

contributing to the final pixel reflectance (Kobayashi et al., 2018; Singh & Gray, 2020). 

Second, it is not clear whether the spectral signal from small understory trees, e.g., regener-

ation of beech, differs significantly from a closed-canopy of mature beech trees, which 
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could explain confusions between shrub-broadleaf and litter understory fuel types. In such 

cases, integrating information on vertical forest structure derived from active remote sens-

ing systems such as lidar would help to distinguish between overstory and understory vege-

tation. Including Sentinel-2 data can lead to small improvements in case of understory fuel 

types such as moss that are related with a certain type of overstory (mostly coniferous); yet 

effects are too small to justify the additional effort.  

 Improving classification results by ensemble approaches 5.4.3

Ensemble approaches helped notably to improve base model predictions. Our results 

showed that a forest stand can be characterised more reliably using multiple photographs 

from different perspectives and additionally using only the most certain predictions.  

Our findings also showed that aggregating the predictions of several single-input models is 

more useful than using a multi-input model from the start, if all inputs have similar predic-

tive power, such as in the case of litter classification. This could also be due to the greater 

difficulty in finding optimal hyperparameters for a complex model with multiple inputs, 

e.g., with respect to the best optimization algorithm, which may be different for the CNN 

and the LSTM branch of a model. In this sense it is recommended to optimise the smaller 

and less computationally demanding single-input models and then aggregate their predic-

tions. However, there is still room for experimentation with different fusion schemes, as 

the increasing availability of multiple, heterogeneous datasets with different scales and di-

mensions for a given task has recently driven advances in deep multimodal learning (see 

review by Bayoudh et al., 2021). 

Using prediction probabilities as additional filter criterion further improves the results from 

decision fusion approaches, but always needs to be weighed against the associated discard-

ing of data. At the same time, it can be worth to have a closer look at the more ‘unsure’ 

predictions: often the prediction probabilities contain much additional information, such as 

when a forest stand is actually better represented by a mixture of different fuel types than 

by a single one (Figure 5.14). In any case, providing the prediction probabilities along with 

the predictions helps in assessing the reliability of the prediction.  

 

Figure 5.14: Predicted probabilities in understory fuel type classification based on horizontal pho-
tos. a) grass 0.59, shrub-broadleaf 0.23, and forb 0.18. b) litter 0.63 and shrub-needle 0.34. c) litter 0.44, moss 
0.56. 
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 Assessment of model explainability 5.4.4

Feature importance in LSTM model 

Our results on variable importance of Sentinel-2 bands for classifying litter fuel types in the 

LSTM model (SWIR, blue band, see Figure A1 in Appendix A, and NDVI) are consistent 

with previous studies that have classified tree species using multi-temporal Sentinel-2 data: 

Immitzer et al. (2016) similarly identified the SWIR band (related to leaf water content) and 

the blue band (absorbed by chlorophyll) as the two most important bands for tree species 

mapping in Germany, while the study of Persson et al. (2018) also ranked the red-edge 

bands very high for tree species classification in Sweden. The latter were found to be insig-

nificant in our study, which could be related to the high correlation between these bands. 

Grabska et al. (2019) confirmed the importance of SWIR bands, red-edge bands, blue and 

red bands for the discrimination of tree species in the Polish Carpathians, while  Ottosen et 

al. (2020) found that similar features (blue, green, red-edge, SWIR bands) were also most 

suited to map tree cover in Europe based on Sentinel-2 images, indicating that these bands 

are generally useful for mapping and differentiating canopy characteristics. Understory dis-

crimination in our study relied somewhat more on NIR and SWIR bands, but a detailed 

discussion is omitted due to the rather low accuracy of the classification. The aforemen-

tioned studies mostly agreed that late spring and early summer acquisitions were most help-

ful for tree species discrimination, while our study revealed that midsummer acquisitions 

were more suitable for litter fuel type classifications; potentially due to fully developed tree 

canopies at this time of the year. Understory, however, is better identified earlier in the 

year, when phenological variations of the undergrowth may be more pronounced and bet-

ter sensed through a less dense canopy. The choice of spectral variables in this study was 

guided by the aforementioned studies that attempted to map tree species and tree cover. 

However, other spectral indices have been found to be more sensitive to vegetation struc-

ture, such as the tasseled cap indices (especially the wetness feature) or the Normalised 

Difference Moisture Index (NDMI) (W. B. Cohen & Spies, 1992; Jin & Sader, 2005). 

Therefore, we trained another LSTM model on Sentinel-2 time series, adding tasselled cap 

wetness, tasselled cap greenness, and NDMI, but did not observe any improvement in clas-

sification results (see Figure A2 in Appendix A).  

Importance of image regions in CNN model 

Due to the great heterogeneity of the input data in this study, it is challenging to assess 

what information from an image the CNN uses for its classification decision. Although it 

seems that the model generally responds to the parts of a photograph that also appear rele-

vant to a human observer, there are still many cases where an (for the human observer) 

irrelevant image region drives the model towards the correct class decision. The concepts 

the model learns may be entirely different from what we expect in the first place; for ex-

ample, we cannot be sure whether the decision for a moss or litter fuel type in a horizontal 

photo is actually driven by the texture and colour of these two types, or whether the model 

is responding to coarse deadwood on the forest floor that is barely visible in photos of 

other understory fuel types. Since Grad-CAM heatmaps as well as other feature attribution 

algorithms are specific to the input image, displayed material will always reflect only a (po-

tentially human-biased) minimal portion of the data, making it difficult to find generalizable 

rules. Visualising the features the model responds to by generating synthetic images that 

maximise the activations of a particular convolutional filter reveals that the model mainly 
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learns small-scale geometric features, even in late convolutional layers (Figure A3 in Ap-

pendix A). Although one might suspect that some of them resemble the shapes of leaves, 

small twigs or the texture of moss; such interpretations should be taken with caution (Kat-

tenborn et al., 2021). Filter activations showed that maximally activated filters are very simi-

lar for photos of different fuel types, since all contain plant parts, but in slightly different 

compositions.  

 Outlook 5.4.5

We have taken a first step towards the application of deep learning methods to classify 

surface fuel types for fire behaviour and fire risk assessment from forest photographs and 

satellite time series. As with all deep learning problems, the availability of labelled training 

data is a bottleneck. To improve the capabilities of the model and to apply it to a larger 

geographical area, the dataset should be further expanded using (crowd-sourced) photos 

annotated by trained individuals. In our study, we identified the most common surface fuel 

types in temperate forests of Central Europe; however, the targeted fuel type classification 

scheme could be arbitrarily detailed, provided a large enough data set. For the validation of 

fuel type maps across larger areas, the challenge will be to obtain sufficient imagery also 

from remote locations and ensure quality in terms of geolocation accuracy. Incorporating 

point cloud data from ALS, TLS or drones, if available, could further improve or even re-

fine fuel type classification, and also forest inventory data or biophysical factors could be 

included. The model itself could be improved by leveraging a more efficient architecture 

that requires less parameters, which would speed up training and inference times. Testing 

alternative approaches such as segmentation of, for example, understory vegetation on 

forest photographs is laborious, but could help the model to learn the relevant features and 

not be distracted by artefacts. Another exciting area of research would be to explore 

whether it is also possible to move away from classifications and retrieve quantitative in-

formation such as estimates of fuel loadings from a photograph. In addition, many other 

interesting use cases for forest photos are conceivable, just to mention forest health and 

biodiversity assessments, which have been already examined from photographs using other 

methodical approaches (e.g., Gyllin & Grahn, 2015; Murray et al., 2018). 

In terms of practical applications, GNSS-located photos of forest stands obtained by local 

forest managers or through citizen science can be used not only to validate and improve 

fuel type maps, but also to provide forest practitioners and firefighters with immediate in-

formation about potential fire behaviour at their location, for example via a cloud-based 

smartphone application: The extracted fuel type information could be used to approximate 

the available burnable biomass and to derive relevant physical properties that determine the 

combustion process in order to calculate fire behaviour in a forest stand, e.g., under differ-

ent moisture scenarios. Knowledge from fire experts could also be incorporated to help 

practitioners decide, for example, whether understory vegetation needs to be removed to 

reduce fire hazard in critical areas, or to understand the extent to which moist green vegeta-

tion can even serve as fire barrier. This would greatly advance knowledge exchange on fuel-

related forest fire risk, particularly in temperate forests of Central Europe, which have been 

poorly studied in this regard to date. 
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 Conclusion 5.5

In this work, we investigated the usefulness of deep neural networks (CNNs and LSTM) to 

classify surface fuel types of Central European forests based on within-stand photographs 

and Sentinel-2 time series. Our results demonstrated that understory fuel types can be clas-

sified with good accuracy from a combination of horizontal stand photos and forest floor 

photos using CNNs. Litter fuel types were classified with moderate accuracy from both 

types of photographs. The main limitation of the approach was the occurrence of multiple 

fuel types within the same photograph, leading to confusions especially in litter classifica-

tion. Our study further showed that Sentinel-2 time series alone are insufficient for under-

story classification, but that they have potential for litter fuel type classifications both as 

additional predictor in ensemble approaches and as stand-alone methodology when photo-

graphs of a forest stand are not available. The decisive spectral features were reflectance 

differences associated with canopy characteristics, manifested primarily in NDVI, SWIR, 

and blue bands during summer. From a practical perspective, our research showed that a 

forest stand can be better characterised the more photos are available, especially concerning 

understory fuel types. For litter fuel types, it has proven useful to make predictions on mul-

tiple types of data separately, i.e., photographs and satellite time series, and combine the 

predictions of all models by majority voting. Class prediction probabilities were found to 

be a useful filter criterion for the most reliable predictions and provided insights into the 

complexity of fuel type composition in a forest stand. While our study has demonstrated 

that artificial intelligence can help with classification problems in complex natural environ-

ments, it has also shown that the model’s capabilities are limited by fuzzy class boundaries, 

as humans are; and although influential image regions in CNNs often contain features that 

appear relevant to the observer (i.e., the respective fuel), we are unable to fully comprehend 

the model's decisions. Translating the task into a regression problem to quantify individual 

fuel components could help deal with natural gradients, but would also require extensive 

collection of reference data. Nonetheless, results from this study indicate that automatic 

processing of within-stand photographs by CNNs has the potential to facilitate validation 

of fuel type maps and provide forest practitioners with the information needed to mitigate 

fire hazard. We hope that our work can contribute to opening a new field of research for 

deep learning-based applications to characterise forest fuels for fire behaviour and risk as-

sessment in light of the increasing threat of wildfires, even in temperate forests, under a 

changing climate.  
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Abstract  

Surface fuel information is an essential input for models of fire behaviour and fire ef-

fects. However, spatially explicit, continuous information on surface fuel loads and 

fuelbed depth is scarce because the collection of field data is laborious, while suitable 

methods for deriving estimates from remote sensing data are still at an early stage of 

development. Fine-scale surface fuel mapping using both passive and active remote 

sensing has not yet been carried out in Central European forest types, and it remains 

unexplored how prediction uncertainties of different fuel components affect mod-

elled fire behaviour. This study combines very detailed airborne lidar and multispec-

tral satellite data to extract metrics describing forest structure and composition in 

two forested areas in south-western Germany. These metrics were used to predict 

field-sampled surface fuel components using random forest regression. Accuracies of 

continuous fuel load predictions were compared to accuracies that could be achieved 

if only forest type-specific average fuels were assigned. Results revealed that models 

based on remotely sensed metrics explain part of the variance in litter and fine dead 

woody fuels (R²=0.27-0.41), but not in coarser dead woody fuels. Estimates for herb 

and shrub fuels were fairly accurate (R²=0.55-0.64) but limited for the more fire-

relevant fine fraction of shrub fuels (R²=0.39). Fuelbed depth was moderately well 

predicted based on remote sensing data (R²=0.44). Lidar-derived metrics were par-

ticularly useful for predicting understory fuels and fuelbed depth. Litter and fine 

woody fuel predictions were linked to canopy characteristics captured with both lidar 

and multispectral data and similarly accurate estimates could be obtained using aver-

age values based on forest type. We used the fine-scale surface fuel maps derived 

from remote sensing to predict potential surface fire behaviour in the study area and 

analysed the sensitivity of modelled fire behaviour to errors in the predicted loads of 

different surface fuel components: fire behaviour was most sensitive to errors in litter 

and especially shrub fuel loads, hence estimates of these components need to be im-

proved. Overall, this study showed that statistical relationships between remotely 

sensed metrics describing forest composition and structure and surface fuels have 

some potential for estimating fuel loads in Central European forest types and should 

be further developed to provide starting points for realistic fire behaviour models. 
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 Introduction  6.1

Fire risk in temperate forests of Central Europe has long been of minor concern to many 

countries. However, recently the danger of catastrophic fire events in these formerly low-

risk areas has risen as result of climate change (de Rigo et al., 2017). The year 2022 has 

shown that the trend of increased wildfire activity associated with prolonged droughts in 

Central Europe continues, with the number of fires and areas burned exceeding long-term 

averages (EFFIS, 2023). Weather conditions favouring wildfire ignition and spread are pro-

jected to become more frequent (IPCC, 2021), making the occurrence of catastrophic fires 

worldwide 1.31 to 1.57 times more likely by the end of the century (UNEP, 2022). While 

fires are an integral part of the natural disturbance regime in some ecosystems (Battisti et 

al., 2016), uncontrolled wildfires can have serious social, economic, and environmental 

impacts, such as loss of wildlife habitats, disease from toxic smoke, destruction of infra-

structure and property, and feedbacks to climate change through greenhouse gas emissions 

(UNEP, 2022). To mitigate adverse effects of wildfires under global warming, it is im-

portant to better understand fire behaviour especially in ecosystems where this has not 

been studied extensively. The latter include temperate forests of Central Europe. One im-

portant aspect to investigate is how fire behaviour and fire effects are related to forest 

stand properties such as the amount and distribution of combustible organic material, i.e. 

fuel.  

Spatially explicit fuel information is used for simulations of fire spread, intensity and severi-

ty (Finney, 2006; Tymstra et al., 2010), planning of management activities such as fuel re-

duction treatments (Furlaud et al., 2018; Moghaddas et al., 2010), and strategic planning of 

fire suppression efforts (Page et al., 2013; Plucinski, 2019). It is also needed to estimate 

emissions of greenhouse gases and particulate matter from burned areas (Ottmar, 2014; 

Weise & Wright, 2014). Several concepts have been developed to describe fuels and their 

characteristics, often with focus on specific applications like fire behaviour prediction (Bur-

gan & Rothermel, 1984; Cruz & Fernandes, 2008) or fire effects and emission modelling 

(Prichard et al., 2007; Reinhardt, 1997). However, one fuel variable that is used in almost all 

fire management applications is fuel load, i.e. biomass per unit area (Keane, 2015). Fuel 

load is commonly specified for each fuel component of a fuelbed: surface fuelbeds (<2 m) 

are composed of litter, shrubs, and herbs as well as down woody material stratified into 

different particle diameter classes based on their rate of drying (Fosberg et al., 1970). Sur-

face fuel loads vary at very fine spatial scales (metres to submetres) (Keane, 2015) and drive 

local fire behaviour: The heterogeneous distribution of dense woody fuels has for example 

been linked to variations in fire intensity (Loudermilk et al., 2012), which has implications 

for tree mortality, post-fire plant diversity, and other long-term ecosystem effects (Dell et 

al., 2017; Mitchell et al., 2009). Understory vegetation such as grasses, forbs, and shrubs 

form loosely packed fuelbeds and thus have a strong influence on fire dynamics (Keane, 

2015), which can be important to consider when developing effective firefighting tactics. 

An important variable in this context is fuelbed depth (average height of the surface fuels), 

which together with fuel load determines the bulk density of the fuelbed. In forest stands 

without understory and without coarse deadwood, the fuelbed depth is equal to the litter 

depth. Litter provides a continuous, easily ignitable fuel source in almost all forest stands, 

capable of supporting the contagious spread of surface fires. As most fires burn through 

surface fuels (Albini, 1984), fine-scale maps of surface fuel loads and fuelbed depth are 

useful for assessing spatial patterns in fire behaviour characteristics and fire effects. High-
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resolution surface fuel maps are particularly important when fires are generally small in size 

and crown fires do not play a major role, as is the case for most forest fires in Central Eu-

rope (San-Miguel-Ayanz et al., 2021).  

Remote sensing approaches offer the potential to efficiently create and update continuous 

fuel maps across large areas. However, as pointed out by Gale et al. (2021), the focus in 

current fuel remote sensing literature is on estimating overstory fuel variables (Andersen et 

al., 2005; Botequim et al., 2019; García et al., 2012; González-Ferreiro et al., 2014; Riaño, 

2003), while studies on surface fuel variables are underrepresented. This may be due to the 

difficulty of estimating fuel properties beneath canopies using airborne or spaceborne sen-

sors. Gale et al. (2021) also noticed a tendency towards discrete mapping of surface fuels as 

fuel types or fuel models instead of mapping continuous fuel variables (Chirici et al., 2013; 

Domingo et al., 2020; García et al., 2011; Marino et al., 2016; Mutlu et al., 2008; Seielstad & 

Queen, 2003). Such classifications into fuel types or fuel models summarise the fuel infor-

mation needed for specific modelling purposes in broad categories (Lutes et al., 2009), 

which are usually assigned to an entire stand, disregarding the more complex and fine-scale 

distribution of fuels in the forest (Loudermilk et al., 2022). Categorising fuel information, 

e.g. by averaging field-measured loads and associating them with a forest type, may be use-

ful for rapid fuel assessments, but fuel loads and fuelbed depth are inherently continuous 

variables (Keane, 2015). Accurate quantification of continuous variables is challenging due 

to the high spatial and temporal variability of surface fuels, which can also differ for the 

individual fuel components (Keane, 2015). Studies predicting different components of sur-

face fuels using passive and active remote sensing technologies report strongly varying 

model performances depending on study area, sensor used and scale of the investigation as 

well as the inclusion of auxiliary variables (Table 6.1). Hence, the utility of remote sensing 

for fine-scale mapping of surface fuel loads in previously unexplored ecosystems remains 

an open question. A comparison between the accuracy of continuous fuel estimates and 

average values associated with forest types may be helpful in future decisions on how to 

efficiently map fuel components in these forest types. In addition, there are no studies that 

have investigated the extent to which errors in remotely sensed surface fuel estimates affect 

fire models based on them. 

Table 6.1: Overview of studies estimating surface fuel loads with remote sensing data. 

 sensor  
(spatial  
resolution) 

fuel  
component 

study area explained 
variance 

method independent 
variables 

Brandis and 
Jacobson 
(2003) 

Landsat TM 
(30 m) 

litter and 
fine fuel load 

eucalypt 
forest, wood-
land, shrub-
land, Australia 

- classification 
techniques 

vegetation type, 
vegetation indices, 
fire history data, 
biomass turnover 
rates 

Jin and 
Chen (2012) 

Landsat (30 
m), Quick-
Bird (2m) 

litter, 1 hr, 
10 hr, 100 
hr, 1000 hr 
loads  

larch-
dominated 
boreal forest, 
China 

5-57 % linear regression 
 

spectral bands, 
stand-
characteristics 

Reich et al. 
(2004) 

Landsat TM 
(30 m) 

litter, duff, 1 
hr, 10 hr, 
100 hr, 1000 
hr 

Black Hills 
National 
Forest, South 
Dakota 

34-45 % 
55-72 % 

multiple regres-
sion analysis, 
binary regres-
sion trees 

spectral bands, 
topography, forest 
class  

 

Duff et al. 
(2013) 

Landsat 5, 
remotely 
sensed bio-

litter, elevat-
ed fuels 
(shrubs, 

eucalyptus 
woodland, 
Australia 

30-51 % generalised 
additive models 

NDVI, topogra-
phy, climate, soil 
properties, fire 
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physical data 
(50 m) 

herbs), bark 
fuel 

history 

Peterson et 
al. (2013) 

Landsat TM 1 hr live 
fuels, 1 hr, 
10 hr, 100 hr 
fuels; discre-
tised into 
three classes 

chaparral 
shrublands to 
subalpine 
forests, Yo-
semite Na-
tional Park, 
California 

- random forest spectral bands, 
vegetation indices, 
topography, cli-
mate, soil proper-
ties, fire history 

Arellano-
Pérez et al. 
(2018) 

Sentinel-2 
(10-20 m) 

total surface 
fuel load 

even-aged 
pine stands, 
North western 
Spain 

12 % random forest, 
multivariate 
adaptive regres-
sion splines 

spectral bands and 
vegetation indices 

Franke et al. 
(2018) 

Landsat 8, 
Sentinel-2 

total surface 
fine fuel load  

Cerrado, 
Brazil 

86 % mixture tuned 
matched filter-
ing 

Non-
photosynthetic dry 
vegetation and soil 
fractions per pixel 

Skowronski 
et al. (2007) 

ALS (pulse 
spacing 0.125 
m) 

presence of 
ladder fuels  

Pinelands, 
New Jersey 

- - vertical height 
bins of lidar re-
turns 

Jakubowksi 
et al. (2013) 

ALS (9 
pts/m²), 
multispectral 
imagery (1 m) 

 
 

total surface 
fuel load, 
1000 hr load, 
understory 
shrub cover 
and height 

mixed-conifer 
forest,  
Nevada 

32-48 % 
59-62 % 

support vector 
machines, linear 
and additive 
regression  

spectral values, 
topography, lidar 
metrics 

Hudak et al. 
(2016) 

ALS 
(6.9 pts/m²) 

total surface 
fuel load 

longleaf pine 
forest, Florida 

32-44 % multiple linear 
regression 

lidar metrics 

Wallace et 
al. (2017) 

TLS (0.018 ° 
between 
points), 
image derived 
point-clouds 

surface 
vegetation 
biomass up 
to 25 cm 

eucalypt 
forest, Aus-
tralia 

74 % linear regression TLS derived and 
point-cloud de-
rived vegetation 
volume 

Li et al. 
(2021) 

TLS (>1 
pt/cm3) 

herb and 
shrub layer 
biomass 

temperate 
forests, north-
eastern China 

69-72 % linear and 
nonlinear re-
gression 

TLS-derived 
understory height, 
cover and vegeta-
tion volume 

Chen et al. 
(2017) 

TLS, ALS 
(footprint: 
0.26 m) 

 

total surface 
fuel load 

eucalypt 
forest, 
Australia 

89 % multiple regres-
sion analysis 

terrain features, 
forest structural 
characteristics, fire 
disturbance, fuel 
and burn types 

Alonso-
Rego et al. 
(2021) 

ALS (0.5 
pts/m²), TLS 
(130 pts/m²) 

litter and 
duff, under-
story load, 
down woody 
debris load 

even-aged 
pine stands, 
NW Spain 

35-49 % multivariate 
adaptive regres-
sion splines 

TLS and ALS 
metrics 

Bright et al. 
(2017) 

ALS (2 
pts/m²), 
Landsat time 
series (30 m) 

 

litter, duff, 1 
hr, 10 hr, 
100 hr, 1000 
hr loads  

coniferous 
montane 
forest, Colo-
rado 

24-32 % random forest 
 

lidar height and 
density metrics, 
LandTrendr 
variables, topog-
raphy 

Stefanidou 
et al. (2020) 

multispectral 
ALS, (83 
pts/m²) 

litter, grass 
and forbs, 1 
hr, 10 hr, 
total surface 
fuel load 

Abies borisii, 
hybrid fir, 
dense conifer-
ous forest, 
Greece 

59-71 % multiple linear 
regression 
analysis 

lidar height and 
intensity metrics 

 

Multispectral remote sensing data have been used to classify vegetation types and extract 

stand characteristics, which are then used to estimate surface fuel loads with empirically 

derived relationships (Brandis & Jacobson, 2003; Jin & Chen, 2012). However, surface fuel 

loads are not always correlated with forest stand attributes (Keane et al., 2012) and can vary 
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considerably within a vegetation type (Keane, 2015). Other studies have integrated multi-

spectral information with other remotely sensed biophysical variables and fire history data 

to explain surface fuel load variation (Duff et al., 2013; S. H. Peterson et al., 2013; Reich et 

al., 2004). Topography, climate variables and time since last fire were found to be im-

portant predictors of fuel load variation in these study areas encompassing rather complex 

terrain with multiple vegetation types and/or frequent fire disturbance. Comparatively little 

variation in surface fuel load could be explained by spectral information and vegetation 

indices alone at more homogeneous sites (Arellano-Pérez et al., 2018), while satellite-

derived fractions of vegetation cover were useful to explain surface fuel load variation 

across diverse Cerrado vegetation types (Franke et al., 2018). These results indicate that 

multispectral remote sensing data from passive sensors such as Landsat and Sentinel-2 can 

explain a certain fraction of surface fuel load variability, as they carry information related to 

vegetation density and species composition, which are likely to drive understory presence 

and the type and amount of litter. 

However, fine-scale variation of surface fuel components is not adequately captured with 

these data; hence active remote sensing systems like airborne lidar (ALS), which are able to 

partly penetrate canopies and collect information about vertical forest structure and the 

forest floor, may be useful in the direct mapping of laying trunks, shrubs or even the pres-

ence of herbs and grasses. Accordingly, ALS has been used in several studies to estimate 

components of surface fuels based on statistical relationships with height, density, and in-

tensity metrics of the reflected laser pulses (Hudak et al., 2016; Jakubowksi et al., 2013; 

Skowronski et al., 2007); however, so far with only moderate reliability for predictions of 

ground-based fuels. One reason for this might have been limited point densities which lead 

to comparably sparse information on understory vegetation and forest floor roughness, 

particularly if rather dense overstory vegetation is present, which is the case in most Central 

European forests. As an alternative, terrestrial laser scanning (TLS) and photogrammetric 

approaches allow to collect dense point clouds for more accurate surface fuel estimations 

(Y. Chen et al., 2017; S. Li et al., 2021; Wallace et al., 2017). However, these techniques are 

less suitable for mapping fuels across large areas, although they provide detailed infor-

mation about below-canopy structure that can support models based on ALS data (Alonso-

Rego et al., 2021).  

Fusion of ALS with multispectral data can provide both direct and indirect measurements 

of surface fuels and may thus lead to more accurate mapping both within and across differ-

ent forest types. Studies combining ALS with multispectral information have found moder-

ate improvements in predicting surface fuel load variation in coniferous forests (Bright et 

al., 2017; Stefanidou et al., 2020). However, it remains unclear whether a combination of 

multispectral satellite and airborne lidar data is suitable to map surface fuel load and 

fuelbed depth variation in temperate mixed broadleaf and conifer forests characterised by 

high structural heterogeneity at fine spatial scales. The focus of this study is on mixed 

stands of deciduous beech and oak as well as pine and Douglas fir in lowland to colline 

regions. The relationship between overstory composition and surface fuel loads needs to be 

better understood for these forests in order to assess whether simplistic associations of 

surface fuel loads with broader vegetation categories such as forest types are justified to 

predict variability in potential fire behaviour and can be used as an alternative to fine-scaled 

remote sensing maps. At last, given the frequently reported inaccuracies in surface fuel 

estimation, it is critical to understand the sensitivity of current fire behaviour models to 

such inaccuracies.  
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Therefore, the aim of this work is to 

i) explore the ability to predict surface fuel loads and fuelbed depth in heteroge-

neous mixed forests of Central Europe using freely available high-resolution 

Sentinel-2 data (10-20 m) combined with high-density ALS data 

(>72 points/m²)   

ii) improve our understanding of remote sensing-based predictions of surface 

fuels by analysing a large set of features as proxies for vegetation structure and 

composition across vertical forest strata and investigate whether average fuel 

loads based on forest types can be used in practice 

iii) assess the influence of errors in surface fuel load estimates on modelled fire be-

haviour by performing a sensitivity analysis. 

 Methods 6.2

 Overview 6.2.1

The main steps of the analysis are summarised in Figure 6.1. First, we preprocessed the 

field measurements of surface fuel loads as well as litter and fuelbed depth in our study area 

(Chapter 6.2.2 and 6.2.3). We obtained average surface fuel loads for the main four forest 

types of our study area. We then processed the high density lidar and multispectral datasets 

by using a combination of different techniques and obtained a large number of potential 

predictors of surface fuels (Chapter 6.2.4 and 6.2.5). After feature selection (Chapter 6.2.6), 

we trained random forest models to predict surface fuel loads based on the selected re-

motely sensed predictors (Chapter 6.2.7) and compared the errors of the method with the 

errors of using average surface fuel loads per forest type (Chapter 6.2.8). Furthermore, we 

investigated the importance of different predictors to better understand the relationship 

between surface fuels and forest composition and structure (Chapter 6.2.9). Then, we pre-

dicted surface fuel maps for our study area (Chapter 6.2.10) and modelled the potential fire 

behaviour (Chapter 6.2.11). Finally, we performed a sensitivity analysis to assess the influ-

ence of the predicted fuel components on modelled fire behaviour (Chapter 6.2.12). 

 

Figure 6.1: Overview of the data used and analyses carried out in this study. 
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 Study area 6.2.2

Field data were collected in two study areas of temperate mixed forest in south-western 

Germany. The Hardtwald forest (19.6 km²) is located in the flat upper Rhine valley 

(49.037 N, 8.416 E) at 120 m a.s.l., and the Bretten municipal forest (10.5 km²) in the 

Kraichgau hills (49.006 N, 8.699 E) at 180 to 300 m a.s.l. (Figure 6.2). The two study areas 

are characterised by temperate climate with mean annual temperatures of 11.4 °C (Hard-

twald) and 10.2 °C (Bretten) in the reference period from 1991–2020 (DWD Climate Data 

Center, 2023), with monthly mean temperatures varying between 1.1 and 21.5 °C at the 

Hardtwald site, and between 0.2 and 19.8 °C in Bretten. Mean annual precipitation amounts 

to 746 mm in Hardtwald and 792 mm in Bretten.  

 

 

Figure 6.2: Overview of the two study areas ‘Hardtwald’ (left) and ‘Bretten’ (right). White crosses 
indicate the center locations of the field plots. Background image is a Sentinel-2 scene from May 
2020 obtained from USGS Earth Explorer (U.S. Geological Survey, 2023). 

The examined forest stands are diverse in age and structure (Table 6.2), encompassing 

dense, young planted stands of Scots pine (Pinus sylvestris L.) as well as older, pine-

dominated stands with an understory of black cherry (Prunus serotina Ehrh.) or European 

beech (Fagus sylvatica L.). They further include mature beech stands with closed canopies 

and areas dominated by natural regeneration of beech. There are old, open stands of sessile 

oak (Quercus petraea Liebl.), as well as row-wise plantations of sessile oak and red oak (Quer-

cus rubra L.), and finally young and mature stands of Douglas fir (Pseudotsuga menziesii (Mirb.) 

Franco), the latter either pure or mixed with beech. Other, less frequently occurring species 

include hornbeam (Carpinus betulus L.), European larch (Larix decidua Mill.), Norway spruce 

(Picea abies (L.) H. Karst), pendunculate oak (Quercus robur L.), silver fir (Abies Alba Mill.), 

and poplar (Populus spp.). The area share of the main forest types is 69 % pine, 12 % oak, 

7 % beech, 3 % Douglas fir, and 9 % other in the Hardtwald (ForstBW, 2023), and 44 % 

beech, 27 % Douglas fir, 13 % pine, 9 % oak, and 7 % other in the Bretten forest (ForstBW, 

2019). 
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Table 6.2: Area share of the four main forest types in each study area, as well as the area share of 
different age classes within each forest type. Data extracted from ForstBW (2019) and ForstBW 
(2023). 

forest type study area % study area 
occupied 

% forest type area occupied 

age <40 age 40-80 age 80-120 age >120 

pine Hardtwald 69 7 32 26 35 

 Bretten 13 0 34 66 0 

beech Hardtwald 9 6 56 35 3 

 Bretten 44 7 23 39 31 

oak Hardtwald 12 5 95 0 0 

 Bretten 9 18 28 46 8 

Douglas fir Hardtwald 3 3 86 10 0 

 Bretten 27 12 48 40 0 

 

Although precipitation in the region is generally evenly distributed throughout the year, an 

increase in heat days and prolonged droughts during the summer months has been ob-

served in recent years (DWD Climate Data Center, 2023), leading to increased drought 

stress and damage to various tree species, especially on the sandy soils of the Rhine valley. 

So far, there have been no major forest fires in the study area (and no recordings by EFFIS 

(2023) between 2018 and 2023), but in the hot and dry August of 2022 there were several 

smaller fires (0.1 to 5 ha) in the Hardtwald, presumably caused by arson (ka-news, 2022). 

Given the expected increase in fire risk in the future, an understanding of the fuel situation 

in these forests and its relationship to fire behaviour is needed to better prepare for manag-

ing such fires. 

 Field data 6.2.3

Surface fuels were inventoried from May to September 2020 and 2021 in 119 circular field 

plots (radius=7.5 m, area=176.6 m²) distributed in a stratified random sampling across the 

study areas. Information on dominating canopy tree species, as available from stand maps 

based on forest inventories that are part of the German Forsteinrichtung (ForstBW, 2019, 

2023), was used for stratification. The measured surface fuel components in each field plot 

include all dead and live fuels within 2 m above the ground: litter, dead woody fuels sepa-

rated into 1 hr, 10 hr, 100 hr, and 1000 hr fuels, live herbaceous fuels (hereafter referred to 

as herb fuels), mosses, and live woody fuels (young trees and shrubs, hereafter referred to 

as shrub fuels). Fuel loads were obtained for all surface fuel components following the pro-

tocol by Woodall and Monleon (2008) As most operational fire behaviour models are 

based on the Rothermel equation (Rothermel, 1972), which assumes that only the fine bi-

omass of the shrubs (plant parts <6 mm in diameter, i.e. foliage and fine twigs) within 2 m 

above the forest floor contributes to surface fire spread, we calculated both total shrub 

woody biomass and shrub fine biomass within this 2 m height-layer to describe the shrub 

fuels. Details of the field measurements and data preparation are given in Appendix B. In 

addition to the fuel loads, we measured litter depth and the height of herbaceous and shrub 

layers and calculated the depth of the fuelbed by weighting the different fuel heights based 

on their contribution to total surface fuel load (Burgan & Rothermel, 1984). Species and 

diameter at breast height (DBH) of all trees in the plots were recorded, and the dominant 

overstory tree species in each plot was determined from the basal areas of the occurring 

tree species. This information was used to define the forest type (Table 6.3). 
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Table 6.3: Overview of the number of field plots in different forest types and per class of mean 
DBH and tree count. 

 all mean DBH <=20 cm 
(tree count >15) 

20 cm< mean DBH <=40 cm 
(5< tree count <=15) 

mean DBH >40 cm 
(tree count <=5) 

beech 25 5 (11) 14 (11) 6 (3) 

oak 25 10 (7) 11 (14) 4 (4) 

pine 29 6 (7) 19 (13) 4 (9) 

Douglas 
fir 

29 3 (15) 8 (10) 18 (4) 

other 11 0 (5) 7 (6) 4 (0) 

 

The field dataset was checked for outliers in the individual fuel components. In four fuel 

components, we removed 1-2 plots with loads far above the remaining data (>5 times the 

standard deviation away from the mean of the data), which were not representative for the 

study area. 

 Lidar data 6.2.4

Lidar data of the study area were acquired in July 2019 using a Riegl LMS-VQ780i scanner 

on board a Cessna C207 aircraft. The flight was operated at an altitude of 650 m with a 

flight line overlap of 76 %. The lidar system acquired data at a pulse repetition rate of 

1000 kHz with a scanning angle of ±30° from nadir. The signal was recorded as full wave-

forms with a footprint diameter of 0.16 m and then transformed into discrete points with 

an average spacing of 0.28 m, resulting in a point density of >16 points/m² in a single 

flight line and a point density of >72 points/m² with overlap in the final dataset. There was 

a time lag between the lidar acquisition (2019) and the field measurements (2020 and 2021), 

but no major disturbances (fire, windthrow or disease) occurred in the study area in the 

meantime. 

A digital terrain model (DTM) at 0.5 m spatial resolution was calculated from the lidar 

point cloud using a surface estimation method based on active contours that matches an 

elastic surface to the assumed terrain points (lowest point in each cell of a raster area) by 

minimising an energy function (Elmqvist et al., 2001). The DTM was then subtracted from 

the raw point cloud to obtain a normalised point cloud. DTM calculation and subtraction 

were performed in TreesVis (Weinacker et al., 2004). From the normalised point cloud, all 

points falling into a field plot were extracted using FUSION (McGaughey, 2022). For each 

plot, a large number of metrics were calculated to comprehensively describe the arrange-

ment of reflected pulses across vertical forest stand layers (herb layer from 0 to 0.5 m, 

shrub layer from 0.5 to 5 m and canopy from 5 m to top) and thus characterise vegetation 

structure at the plot-level (Table 6.4). In each stand layer, metrics computation was carried 

ut separately for several vertical strata. Sometimes the upper and lower heights of the verti-

cal stratum deviate from the definition of the stand layer, e.g. in case of the herb layer. For 

this layer we found that the height of grasses and forbs often exceeded 0.5 m. Thus, we 

attributed features up to 1 m to the herb group. Also, some features require a neighbour-

hood of points outside the stratum for their calculation, in which case the lower height 

does not start at 0 m.  

The lidar metrics were grouped into five predictor groups: 1) geometric features as pro-

posed by Weinmann et al. (2015) were used to describe the local 3D shape of the point 

cloud within a neighbourhood radius of 0.5 and 1 m. We assumed that these features might 

help to distinguish for example vertically oriented objects like stems from more volumi-
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nous objects like shrubs. Nine geometric features based on the eigenvalues and eigenvec-

tors of the 3D structure tensor were calculated. 2) density features such as the number of 

points in a vertical stratum, either normalised by the total number of points in the vertical 

column or the number of points within and below the stratum. Such features been used 

extensively to describe vegetation cover and density in a given layer (Campbell et al., 2018; 

Ewald et al., 2014) and have been shown to correlate with fuel load (Bright et al., 2017; 

Skowronski et al., 2007). 3) intensity information of the lidar returns has been used success-

fully to filter live (higher intensity returns) and dead tree biomass (lower intensity returns) 

(Kim et al., 2009) or distinguish live understory components from coarse woody debris 

(Wing et al., 2012) and could therefore yield information about the presence of different 

surface fuel components. We did not apply intensity normalisation to our data because 

elevation differences in our study area were small and only minor improvements were ex-

pected according to previous studies (Korpela et al., 2010; You et al., 2017). 4) height met-

rics were computed to characterise the distribution of returns along the vertical profile of 

the forest, which has proven useful in previous fuel studies (Bright et al., 2017; Jakubowksi 

et al., 2013; Stefanidou et al., 2020) and 5) voxel metrics derived from voxelisation of the 

point cloud into 0.5 m cubic voxels were used to capture horizontal variation of point den-

sities within a vertical stratum (e.g. leaf area density as described in (Carrasco et al., 2019) to 

account for potential effects of fuel continuity on fuel loads. Density, intensity, height and 

voxel metrics were computed in Python 3.8 (van Rossum & Drake, 2009), geometric fea-

tures were calculated with the Python package ‘jakteristics’ (Caron & Messal, 2020).  

 Multispectral satellite data 6.2.5

We obtained five cloud-free (<10 % cloud cover) Sentinel-2 scenes as surface reflectance 

products from five acquisition dates in 2020 (2020-04-04, 2020-05-19, 2020-07-23, 2020-

09-21, 2020-11-30). We extracted area-weighted means of the reflectance in the 10 and 

20 m bands (bands 2, 3, 4, 5, 6, 7, 8, 8A, 11, 12) from the pixels covering our field plots 

and additionally calculated a set of spectral indices and biophysical canopy traits using 

ESA’s Sentinel-2 processing toolbox SNAP and Python 3.8 to enhance specific vegetation 

characteristics. These included leaf area index (LAI), fractional vegetation cover (FCOV-

ER), fraction of absorbed photosynthetically active radiation (FAPAR) (Weiss & Baret, 

2016), normalised difference vegetation index (NDVI) (Tucker, 1979), enhanced vegetation 

index (EVI) (H. Q. Liu & Huete, 1995), normalised difference moisture index using both 

SWIR bands 11 and 12 (NDMI, NDMI_2) (Hardisky et al., 1983), soil adjusted vegetation 

index (SAVI) (Huete, 1988), as well as tasseled cap wetness and greenness (TCW, TCG) 

(Kauth & Thomas, 1976). A total of 480 lidar metrics and 100 features derived from Senti-

nel-2 data were calculated, resulting in 580 potential predictors of surface fuel loads, litter, 

and fuelbed depth (Table 6.4) 
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 Feature selection 6.2.6

From the 580 calculated features, a pre-selection was made for modelling each surface fuel 

component. For this purpose, lidar and multispectral predictors were grouped according to 

their type (geometry, density, intensity, height, voxel, spectral bands, indices) and the forest 

stand layer for which they were calculated (herb, shrub, canopy; or all stand layers together 

in the case of height metrics, spectral bands and indices). This resulted in 15 different 

groups of predictors (see columns in Figure 6.3 in Results section), e.g. one group would 

contain only geometric predictors within the herb layer. A pre-selection of two features 

from each group was conducted to remove redundancy and multicollinearity among pre-

dictors by choosing the ones with the highest Spearman correlation with the modelled tar-

get and a correlation coefficient <0.7 between the two features. The set of 30 pre-selected 

features was further reduced by using the automated “Variable Selection Using Random 

Forests” (VSURF) algorithm (Genuer et al., 2015) in R (v4.2.2, R Core Team, 2022) to 

obtain a subset optimised for predicting the respective fuel component.  

 Random forest modelling 6.2.7

Random forest (RF) regression was chosen to explain the variability in loads of different 

surface fuel components across the study area, as the method generally reaches good per-

formance on datasets with a large number of predictors that may have non-linear relation-

ships with the response variable (Breiman, 2001; Strobl et al., 2009). Furthermore, it does 

not make any formal distributional assumptions about the response variables, which is use-

ful in case of the right-skewed fuel load data, and allows to estimate the importance of dif-

ferent predictor variables. For each fuel component, we trained an RF model on the pre-

dictor subset obtained from VSURF using all available samples, and performed a grid 

search on hyperparameters to optimise the out-of-bag (oob) score of the model and thus 

reduce overfitting. A new model was trained with the best-scoring hyperparameters and 

validated using leave-one-out cross-validation (LOOCV). Model performance was evaluat-

ed using the coefficient of determination (R²), root mean squared error (RMSE), relative 

RMSE (rRMSE) and RMSE normalised with the data range (nRMSE) between random 

forest predictions and observed fuel load values of the validation data. Our limited sample 

size of n=117-118 (depending on the fuel component and outliers removed) did not allow 

an additional hold-out test set; however, RF oob score and cross-validation results showed 

high agreement and were thus considered reliable estimates of model performance. In addi-

tion to the RF model trained on the predictor subset obtained from all predictor types after 

applying VSURF, we modelled surface fuel loads based on individual predictor types to 

assess their respective predictive power. For this, we used the pre-selected features from 

each vertical forest stratum that belonged to the same predictor type, and repeated the 

VSURF and model training procedure on the new variable subset.  

 Comparison of remote sensing-based estimates and average fuel loads 6.2.8

We compared the errors of remote sensing-based continuous fuel load estimates with er-

rors of average fuel loads for different forest types (defined by the dominant overstory tree 

species). In this approach, the fuel loads in a field plot were estimated based on the fuel 

loads in all other plots of the same forest type. The average of the other plots’ fuel loads 
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was taken (separately for each fuel component) and assigned to the plot under considera-

tion, similar to a leave-one-out procedure. RMSE between the forest type-based average 

values and the observed fuel loads was compared to the RMSE of the RF model based on 

remote sensing data. Furthermore, we tested for differences in surface fuel loads between 

forest types defined by dominant tree species using a non-parametric Kruskal-Wallis test 

(Kruskal & Wallis, 1952) followed by Dunn’s test (Dunn, 1964) as post hoc non-parametric 

test. 

 Predictor importance and interpretation 6.2.9

To assess the relevance of the selected variables for predicting the different fuel compo-

nents, we calculated the permutation feature importance for each feature (Breiman, 2001). 

This importance metric reveals how much the model relies on a feature by breaking the 

relationship between feature and target through random permutation of the feature 

(Molnar, 2022). Additionally, to better understand the relationships between features and 

modelled target, we computed the accumulated local effect (ALE) of each feature (Apley & 

Zhu, 2020). ALE gives the relative effect of changing the feature on the prediction within a 

small interval of the feature. ALE plots are better suited than partial dependence plots to 

assess the influence of a feature on the prediction when features are correlated (Molnar, 

2022). The latter applied to some extent to our dataset even after removing highly correlat-

ed features. ALE plots were produced using the python package ‘ALEpython’ (Jumelle et 

al., 2020), which allows to create many Monte Carlo replicas by randomly drawing samples 

from the data and computing ALE on them, thus reflecting its potential variability.  

 Surface fuel maps 6.2.10

To obtain fuel load maps at a spatial resolution reflecting the size of our field plots, we 

resampled the Sentinel-2 data to a pixel size of 14 m using bilinear interpolation, binned the 

lidar point cloud into 14 m grid cells, and calculated all features relevant for the predictions 

for each grid cell. We predicted fuel load maps for the entire study area using the RF mod-

els trained on all samples. Fuelbed depth was predicted using separate RF models to ensure 

meaningful values that matched the spatial patterns of predicted surface fuels. These mod-

els were trained based on field-measured loads of the different fuel components. Maps of 

fuelbed depth were then predicted with these models using the fuel loads from the predic-

tion maps for the individual fuel components created in the preceding step. 

 Modelling potential surface fire behaviour 6.2.11

We used spatial predictions of surface fuel loads and fuelbed depth to estimate potential 

surface fire behaviour in the forest stands of our study area based on the quasi-empirical 

Rothermel model (Rothermel, 1972). In the underlying basic model, the rate of spread (𝑅 

in m min-1) of a surface fire through a fuelbed (up to 2 m above the forest floor) is the ratio 

between the heat flux received (heat source) and the energy required to preheat and ignite 

the unburned fuel (heat sink) ahead of the fire (Andrews, 2018): 
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R=  
heat source

heat sink
= 

IR  ξ(1+ ϕ
w

+ ϕ
s
)

ρ
b 

ε Q
ig

 (1) 

Equation (1) accounts for the effects of wind and slope (ϕ
w

, ϕ
s
) on the proportion of heat 

transferred to the fuel (propagating flux ratio ξ) from the energy release at the fire front 

(reaction intensity IR  in kJ/(m2 s)). The heat required to ignite the fuel depends on the bulk 

density of the fuel (ρ
b 

in kg/m3, calculated from load and depth), the proportion of fuel 

heated to ignition temperature before combustion starts (effective heating number 𝜀), and 

the heat of preignition (Q
ig

 in kJ/kg), which is a function of fuel moisture, specific heat of 

the fuel, and assumed ignition temperature (Andrews, 2018; Sandberg et al., 2007). The 

basic model includes only a single size class of dead fuel, but since surface fuelbeds are a 

mixture of live and dead fuels of various size classes, the final model includes weighting 

factors based on the surface area of the fuel in each size class (giving more weight to the 

finer fuels). Other fire behaviour characteristics commonly modelled are fireline intensity 

(IB in kJ/(m s)) as product of reaction intensity (IR ), reaction time (tr in min), and rate of 

spread (R), and flame length (FB in m) as a function of reaction intensity, both proposed by  

Byram (1959): 

IB=IR tr R/60 (2) 

FB=0.45 IB
0.46 (3) 

  

We used an implementation of the Rothermel equation and related models in R (package 

‘firebehavioR’, Ziegler et al., 2019). All required parameters except fuel loads and fuelbed 

depth were held constant across the study area and set to the values shown in Table B2 

(Appendix B). Due to the low performance of our models for the prediction of coarser 

dead fuels, 10 hr and 100 hr loads were set to the median of all measured values (1.65 and 

2.39 t/ha, respectively). Open wind speed was set to 15 km/h and fuel moisture values 

were based on Scott & Burgan’s (2005) very low fuel moisture scenario D1L1 to reflect 

severe drought conditions. Fire behaviour characteristics modelled were rate of spread, 

fireline intensity and flame length. 

 Sensitivity analysis 6.2.12

We analysed the sensitivity of the Rothermel model to variations in the different surface 

fuel components to assess the impact that inaccuracies in fuel load estimation can have on 

predicted fire behaviour. To this end, we trained a random forest model using the remotely 

sensed loads of the fine surface fuel components (litter, dead 1 hr, live herbaceous, and live 

fine shrub fuels) across the study area as predictors of the fire behaviour characteristics 

calculated with the Rothermel model, thus ensuring realistic combinations of the different 

fuel components for each instance. We treated each pixel in the study area as an individual 

sample, since potential fire behaviour is modelled independently of the neighbouring cells. 

In this way, the random forest model learns the internal relationships and the weighting of 

the individual fuel components in the Rothermel model and can provide information on 

which fuel component most strongly influences the predictions. The effect of fuel load 

variations on predicted fire behaviour characteristics as learned by the random forest model 

was assessed and visualised using ALE (see Chapter 6.2.9).  
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 Results 6.3

 Feature selection 6.3.1

Spearman correlations between field-measured surface fuel components and remotely 

sensed predictors (Figure 6.3) revealed strongest correlations of lidar-derived metrics with 

understory fuels such as shrubs and herbs, and also fuelbed depth. The most useful lidar 

metrics for predicting shrub loads were found among geometric, density, and voxel fea-

tures in the corresponding forest stratum. Herb load correlated most strongly with geomet-

ric, density, and intensity features within the herb layer, but multispectral satellite data also 

provided information on loads of herbaceous vegetation and mosses. Among the dead 

woody fuels, only the smallest particle size class (1 hr fuels) showed a notable correlation 

with multispectral predictors. All coarser dead fuels were not significantly correlated with 

the predictors, making them difficult to predict using a regression approach. Correlations 

of litter load and litter depth with the predictors were similarly weak as for dead 1 hr fuels, 

but were more pronounced for multispectral predictors. After running VSURF on the cor-

relation-based pre-selected feature set (Table B.3 in Appendix B), subsets with three to 

eight variables were obtained for predicting the surface fuel components. The VSURF-

selected features for each surface fuel component are listed in order of their permutation 

feature importance in Table 6.5. 

 

Figure 6.3: Highest Spearman correlations of the predictors in each group (defined by forest stra-
tum and predictor type) with the fuel components. Circles are scaled such that the diameters reflect 
the correlation coefficient, while the column width corresponds to a correlation coefficient of 1. 
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Table 6.5: VSURF-selected predictors for the different surface fuel components (omitting 10-
1000 hr fuels due to the poor model performance), sorted by their permutation feature importance 
(first feature has highest importance). 

fuel component predictors 

litter load 10th percentile of lidar heights 

 
blue reflectance in summer 

 
NDVI in summer 

litter depth NDVI in early spring 

 
10th percentile of lidar heights 

 
FAPAR in autumn 

 
standard deviation of leaf area density between 1 and 2 m 

fuelbed depth mean omnivariance between 0.5 and 5 m (neighbourhood radius = 1 m) 

 
relative point density between 0.5 and 2 m 

 
mean return intensity in the herb layer 

 
relative point density between 0.5 and 1 m 

dead 1 hr load green reflectance in early spring 

 
NDWI in early spring 

 
SWIR reflectance (2190 nm) in autumn 

 
mean planarity between 10 and 15 m (neighbourhood radius = 0.5 m) 

 
number of returns in the uppermost meter of the canopy relative to vertical column 

 
number of returns in the 5 uppermost meter of the canopy relative to vertical column 

herb+moss load NIR reflectance (842 nm) in autumn 

 
EVI in autumn 

 
number of returns between 0.1 and 0.5 m relative to vertical column 

 
coefficient of variation of return intensity in the uppermost meter of the canopy 

 
mean linearity between 0.25 and 0.5 m (neighbourhood radius = 0.5 m) 

 
skewness of return intensity in the herb layer 

herb load coefficient of variation of return intensity in the uppermost meter of the canopy 

 
skewness of return intensity in the herb layer 

 
number of returns between 0.25 and 0.5 m relative to vertical column 

 
EVI in autumn 

 
NIR reflectance (842 nm) in autumn 

 
10th percentile of lidar heights 

shrub woody load relative point density between 0.5 and 5 m 

 
number of non-empty voxels between 2 and 3 m 

 
mean linearity between 4 and 5 m (neighbourhood radius = 1 m) 

 
mean anisotropy between 0.5 and 5 m (neighbourhood radius = 1 m) 

 
mean linearity between 10 and 15 m(neighbourhood radius = 0.5 m) 

 
skewness of return intensity between 0.5 and 5 m 

shrub fine load mean eigenentropy between 1 and 2 m (neighbourhood radius = 1 m) 

 
relative point density between 1 and 2 m 

 
mean linearity between 3 and 4 m (neighbourhood radius = 1 m) 

 
visible and NIR reflectance (783 nm) in winter 

 
mean omnivariance between 0.5 and 1 m (neighbourhood radius = 1 m) 

 
coefficient of variation of return intensity between 0.5 and 5 m 

 
mean return intensity in the herb layer 

 
skewness of lidar heights 

 

 Random forest modelling 6.3.2

Random forest models best explained variation in shrub woody load (R²=0.64, Figure 

6.4 e), while explained variation in shrub fine load was notably lower (R²=0.39, Figure 

6.4 f). Herb load variation was moderately well explained (R²=0.55-0.56, Figure 6.4 c-d), 

while model performance for litter and dead 1 hr loads was rather low (R²=0.27 and 

R²=0.41, Figure 6.4 a-b). RMSE was highest for litter loads (2.57 t/ha), followed by shrub 

woody loads (2.08 t/ha), while the other fuel components had errors between 0.30 and 
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0.49 t/ha. The nRMSE was around 15 % for all fuel components, but rRMSE was highest 

for shrub and herb loads (84.2 % to 126.7 %) due to the many plots with very small fuel 

loads in these components (Figure 6.4 c-f). As expected from the weak correlations be-

tween the remotely sensed predictors and the coarser dead fuel loads (10, 100, and 1000 hr 

fuels, Figure 6.3), the RF models explained very little variation (R²=0.02-0.12) and are not 

shown here. These fuel components are not included in the further analysis (the 1000 hr 

fuels are also not considered in Rothermel’s fire spread model). Litter and fuelbed depth 

were modelled with rather low accuracies based on remotely sensed predictors (R²=0.40-

0.44, Figure 6.4 g-h), but fuelbed depth was reasonably well modelled using loads of the 

different fuel components (R²=0.72, Figure 6.4 i). 

 

Figure 6.4: Scatterplots showing observed (y) and predicted (x) surface fuel loads, litter and 
fuelbed depth from random forest regression and the model evaluation scores. Blue solid lines 
show the estimated regression line between predicted and observed values together with the 95 % 
confidence band, the red dashed line is the 1:1 line. Plots h) and i) both show results for fuelbed 
depth, h) shows the predictions based on remote sensing metrics and i) the predictions based on 
fuel loads. 

We tested mixed effect random forests and included forest type as a random effect in the 

model; however, this did not improve the overall results. We also tested a multi-output 

regression with random forest to predict all surface fuels using a single model, as depend-

encies between the fuel components are present, albeit weak, but this approach did not 

improve the results either. 
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 Results for individual predictor types 6.3.3

Model performance based on individual predictor types (Table 6.6) reflected the observed 

patterns of correlation strength (Figure 6.3). Results show that modelling surface fuel 

components benefits from the synergetic use of different predictor types, as models based 

on variables from all predictor types (described in Table 6.4) consistently performed best. 

esults also reveal that stand attributes such as height are insufficient for modelling surface 

fuel loads and that all other lidar-derived features are mostly relevant for predicting under-

story fuels rather than litter fuels. Litter loads are generally the most difficult to model, 

while models for litter depth are slightly better. Both litter and dead 1 hr fuels benefit from 

combining lidar and spectral predictors, whereas shrub loads and fuelbed depth are not 

well predicted from spectral features and rely more on lidar features alone. Herb biomass is 

slightly better predicted from all lidar features than from spectral predictors, but estimates 

are improved by combining both. Interestingly, previously unexplored variables such as 

geometric features have the potential to adequately describe point clouds for fuel mapping, 

as models based on them sometimes even outperform models based on density features.  

Table 6.6: R² and RMSE of models based on predictors of different types. Modelling was omitted 
if the number of VSURF selected predictors was <2. The best metrics per fuel component are 
shown in bold. 

  geo-
metry 

den-
sity 

voxel  inten-
sity 

height all 
lidar 

spec-
tral 

all predic-
tor types 

litter load R² 0.12 0.12 0.03 0.03 - 0.13 0.15 0.27 
 RMSE (t/ha) 2.84 2.82 3.06 3.03 - 2.87 2.80 2.57 
dead 1 hr R² 0.23 0.25 0.12 0.09 0.09 0.35 0.36 0.41 
 load RMSE (t/ha) 0.49 0.48 0.52 0.53 0.54 0.44 0.44 0.42 
herb+moss  R² 0.47 0.38 0.30 0.27 0.14 0.53 0.41 0.56 
 load RMSE (t/ha) 0.39 0.43 0.45 0.47 0.50 0.38 0.42 0.36 
herb load R² 0.34 0.33 0.33 0.30 0.14 0.48 0.31 0.55 
 RMSE (t/ha) 0.37 0.37 0.37 0.38 0.43 0.33 0.38 0.30 
shrub fine  R² 0.32 0.25 0.25 0.18 - 0.33 0.13 0.39 
 load RMSE (t/ha) 0.53 0.55 0.55 0.57 - 0.51 0.59 0.49 
shrub woody  R² 0.53 0.54 0.36 0.33 0.01 0.64 0.13 0.64 
 load RMSE (t/ha) 2.38 2.33 2.79 2.83 3.43 2.08 3.24 2.08 
litter depth R² 0.22 0.16 0.05 0.08 - 0.30 0.25 0.40 
 RMSE (cm) 1.09 1.14 1.20 1.18 - 1.02 1.07 0.94 
fuelbed  R² 0.42 0.34 0.31 0.26 0.20 0.45 0.07 0.44 
 depth RMSE (m) 0.17 0.18 0.18 0.19 0.20 0.16 0.22 0.16 

 

 Predictor importance and interpretation 6.3.4

ALE plots are presented and explained for the feature with highest permutation im-

portance (Table 6.5). Litter loads are predicted using spectral features and the 10th percen-

tile of lidar heights (Figure 6.5 a), which describes the height below which 10 % of returns 

fall: the higher it is, the more returns are found in elevated stand layers, i.e. the canopy, and 

the lower this value is, the more returns are found near the ground. In the latter case, re-

turns are most likely produced by understory, the presence of which indicates more light 

penetration and thus a less dense canopy that produces less litter. Litter depth is predicted 

using similar features and decreases most with higher NDVI in early spring (Figure 6.5 b): 

NDVI at this time of the year is higher in the younger pine and in the Douglas fir stands of 
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our study area, where understory herbs are developing, and lower in the deciduous beech 

stands, where highest litter layers accumulate. Fuelbed depth is predicted using lidar fea-

tures only and increases most with the mean local omnivariance in the shrub layer (0.5 to 

5 m) (Figure 6.5 c): higher omnivariance corresponds to a more inhomogeneous spread of 

points over a 3D volume (Waldhauser et al., 2014), indicating the presence of objects with 

high roughness, such as shrubs or small trees with voluminous structure. Dead 1 hr loads 

are predicted by spectral rather than lidar features: Reflectance in the green band in early 

spring is negatively related to predicted loads of dead 1 hr fuels (Figure 6.5 d) and lowest 

reflectance is found in Douglas fir stands, which, due to their crown structure with a high 

proportion of fine twigs, produce the largest amount of fine dead fuel. The most important 

features for predicting herb load including mosses are also spectral ones: Predicted loads 

are higher when reflectance in the NIR band (842 nm) in autumn is lower (Figure 6.5 e), 

which is the case for the coniferous species in the study area. When mosses are excluded 

from herb biomass, lidar features become more important, but the model still relies on a 

canopy trait as most important predictor: as the coefficient of variation of lidar return in-

tensity in the uppermost canopy layer increases, modelled herb loads increase (Figure 

6.5 f). Higher variation in intensity values could be related to the more discontinuous can-

opy of coniferous trees and less dense canopies in general (e.g. oaks compared to beech), 

favouring the interaction of the laser beam with different types of surfaces (leaves, exposed 

branches) of different reflectivity (Fassnacht et al., 2016; Kim et al., 2009). Shrub loads are 

modelled using lidar features only: While shrub woody loads increase with mean point den-

sity in the layer between 0.5 and 5 m (Figure 6.5 g), the model for fire-relevant shrub fine 

load is more sensitive to returns between 1 and 2 m (Figure 6.5 h), which corresponds to 

the requirement to stay within 2 m above the forest floor. The higher the eigenentropy of 

the point cloud in this layer, i.e. the higher the disorder of points, the more fine shrub ma-

terial is predicted. 

 

Figure 6.5: ALE plots for the most important predictor of each surface fuel component. Effects 
are centered at zero, which means that an ALE of zero is simply the average prediction and devia-
tions from zero indicate that the prediction is lower/higher than the average prediction by that 
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value. Blue thin lines show the Monte Carlo replicas. Quantiles of the predictor are plotted on the 
upper axis (percentage values). 

 Comparison of remote sensing-based estimates and average fuel loads 6.3.5

Comparison between errors of the remote sensing-based fuel load estimates and errors of 

the average fuel load estimates based on the four main forest types (Table 6.7) shows that 

canopy-related fuels such as litter and dead 1 hr fuels can be predicted with comparable 

accuracy by forest type alone. In our study area, litter loads were significantly higher in 

beech stands than oak, Douglas fir and pine stands, while dead 1 hr loads were significantly 

higher in Douglas fir stands compared to pine, beech and oak stands (Figure 6.6). Under-

story vegetation was predicted with lower RMSE using the remote sensing-based models 

compared to forest type-based predictions. Maximum error reduction (40 %) using the RF 

model based on remote sensing data was achieved for shrub woody load (Table 6.7). In 

our study area, differences in herb load (both with and without moss) and shrub load be-

tween forest types were small. Significant differences were only found in herb load between 

Douglas fir and beech stands and in shrub woody load between Douglas fir and beech or 

pine stands. Shrub fine biomass was significantly higher only in pine stands compared to 

Douglas fir stands (Figure 6.6).  

Table 6.7: Comparison of RMSE of fuel loads between random forest models based on remotely 
sensed metrics and predictions based on average values per forest type. 

 RMSE of RF 
model (t/ha) 

RMSE of average 
fuel loads (t/ha) 

error reduction when 
using RF models (%) 

litter  2.57  2.83 9 
dead 1 hr 0.42  0.45 7 
herb+moss 0.36  0.50 28 
herb  0.30  0.44 32 
shrub fine  0.49  0.65 25 
shrub woody  2.08  3.49 40 

 

 

 

Figure 6.6: Loads of surface fuels for the four main forest types. Three outlier points of litter loads 
are beyond the y-axis range shown.  



II Research papers 

82 

 Surface fuel maps 6.3.6

Maps are shown for fuel components that have the greatest influence on surface fire be-

haviour, i.e., the fine dead and live fuels (Figure 6.7). Litter load ranges from 2.8 to 

9.9 t/ha in the study areas, with higher mean and variance (6.4 ± 1.3 t/ha) in Bretten com-

pared to Hardtwald (5.2 ± 0.9 t/ha). Dead 1 hr load varies between 0.5 and 2.0 t/ha and is 

again slightly higher and more variable in Bretten (1.0 ± 0.3 t/ha) than in Hardtwald (0.9 ± 

0.2 t/ha). Herb load ranges from 0 to 1.8 t/ha with similar mean and variance (0.4 ± 

0.3 t/ha) in both study areas. Fine shrub load ranges between 0 and 2.0 t/ha and is lower 

on average in Bretten (0.4 t/ha) than in Hardtwald (0.5 t/ha), but equally variable (± 

0.3 t/ha). 

 

Figure 6.7: Predicted fuel load maps on hillshades of the study areas Hardtwald (upper panels) and 
Bretten (lower panels). 

 Potential surface fire behaviour  6.3.7

Surface fires are predicted to have low intensity in large parts of the study area (mean fire-

line intensity = 228 kW/m) under the given parametrisation of physical fuel properties, 

moisture and wind speed (Figure 6.8). The highest fireline intensity (1269 kW/m) can be 

found in a part of the eastern Bretten forest, where predicted flame length and spread rate 

also show maximum values (2.1 m and 5.4 m/min, respectively). Mean potential flame 

length for the study areas is 0.9 m, and mean rate of spread is 1.6 m/min. All three fire 

behaviour characteristics show similar patterns across the study areas and suggest a high 

correlation with the underlying fuel load patterns.   
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Figure 6.8: Potential surface fire behaviour in the study areas as characterised by fireline intensity 
(left), flame length (middle) and rate of spread (right), and violinplots for the three characteristics 
per study area. Fire behaviour was calculated assuming 15 km/h open wind speed and extremely 
low fuel moisture (scenario D1L1, see Scott and Burgan, 2005). 

 Sensitivity analysis 6.3.8

Examining the effects of individual fuel components on modelled fire behaviour character-

istics using a random forest model (R²=0.92-0.96 on independent test set, Figure B1 in 

Appendix B) reveals that shrub load has by far the highest influence on the modelled out-

put, despite the small range of values in the study area, as indicated by the steepness of the 

ALE curve (Figure 6.9). All fire behaviour characteristics become more severe with in-

creasing shrub load, while dead 1 hr fuels and herb fuels seem to have a negligible effect. 

Increasing litter load also leads to higher modelled intensities and flame lengths, while the 

effect on spread rate is minor. Errors in shrub and litter load predictions thus have the 

greatest impact on modelled potential fire behaviour and underestimated loads in particular 

can lead to severly underestimated fire behaviour. Figure B2 (Appendix B) shows how 

modelled fire behaviour in the study areas changes when loads of fine shrub and litter fuels 

are both increased by their model RMSE (0.49 t/ha and 2.57 t/ha, respectively, and fuelbed 

depth adjusted accordingly).  
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Figure 6.9: ALE of surface fuel loads on the fire behaviour characteristics in the study area. 

 Discussion 6.4

 Potential and limitation of surface fuel load predictions using remote sens-6.4.1

ing 

Our results show that random forest regression models based on lidar and multispectral 

variables describing forest composition and structure are able to predict loads of surface 

fuel components in heterogenous mixed forests of Central Europe with moderate to low 

accuracy. 

Litter and fine woody fuels 

Consistent with previous studies from different ecosystems (e.g. Alonso-Rego et al., 2021; 

Bright et al., 2017; Jakubowksi et al., 2013), ground-based fuels such as litter and deadwood 

were the most difficult to estimate accurately from remote sensing data. We found that the 

variability in litter and dead 1 hr loads was mostly explained by remotely sensed predictors 

capturing canopy properties, rather than by lidar reflections near the ground itself, and that 

the accuracy of the predictions was generally low. A possible reason for this is that litter 

and fine woody fuels (dead 1 hr) can vary at centimeter scales depending on the micro-

topography of the forest floor, the presence of herbaceous plants and mosses, or fallen 

branches under which especially dead needles and fine twigs accumulate. This heterogenei-

ty may not be adequately represented in the field data, and additionally airborne lidar data 

were probably not fully capable of capturing this variation, both of which add uncertainty. 

Previous studies have shown that even with terrestrial laser scanning it is not possible to 

obtain information on litter or 1 hr fuel loads with sufficient accuracy (Arkin et al., 2023). 

Our results indicate that the captured variability in litter and fine woody fuels is mostly 

explained by differences in litter and fine fuel production between different tree species 

and canopy densities, which are reflected in the multispectral data. However, the low ob-

served accuracies suggest that litter and 1 hr fuel loads are determined by additional factors 

that cannot be captured with the remote sensing data used. For example, litter loads are 

closely linked to decomposition rates, which depend not only on litter chemistry but also 

on temperature and humidity, soil conditions and microbial activity (Krishna & Mohan, 

2017) and are therefore related to the general site conditions. As fuel sampling was per-

formed from May to October in two consecutive years, different stages of litter decompo-

sition may have added further variability to the data. We also sometimes found leaf litter 

from neighbouring trees blown into our field plots. The comparable error when using aver-
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age fuel loads based on forest types suggests that detailed remote sensing data provide only 

little added value in predicting litter and 1 hr fuel loads. This is in line with the finding of 

Alonso-Rego et al. (2021), who report as little as 10 % variance explained in litter and duff 

loads of pure even-aged pine stands based on ALS metrics, and those of Bright et al. 

(2017), who explain 16 % (24 %) of variation in litter and duff loads using ALS only (in 

combination with disturbance-related metrics derived from Landsat time series), and 21 % 

(28 %) in 1–100 hr fuels in a study area with multiple coniferous species. However, it is 

contrasting the findings of Stefanidou et al. (2020), who explain 69 % of variation in litter 

loads and 59 % in dead 1 hr loads using multispectral lidar in a study area with pure fir 

overstory and suggest that lidar is interacting with the litter fuels in a direct manner. One 

reason for the rather low accuracies in our study may be the structurally and compositional-

ly complex forest stands, making it difficult to disentangle the different drivers (e.g. tree 

species, age, and stand or canopy density) of measured fine fuel loads at the forest floor, 

unless these relationships are studied based on a substantially larger dataset. Our study sug-

gests that in such cases, multispectral remote sensing data that allow reliable classification 

of forest types can be considered the most efficient option for predicting litter and fine 

woody fuel components through association with average loads that need to be determined 

for a forest type and site, even though this method has limited accuracy. The forest type-

specific fuel loads could be refined by either coupling them with a biophysical model pre-

dicting rates of fine fuel accumulation and decomposition throughout the year (e.g., Hanan 

et al., 2022), or an empirically derived model that links seasonal variations in fine fuel loads 

to remotely sensed phenological variations in trees (e.g., Zeilhofer et al., 2012). 

Coarse woody fuels 

For the coarser dead fuels, we could not develop a model that was able to explain the varia-

tion in loads. While Jakubowksi et al. (2013) similarly reported little correlation between 

ALS metrics and 1000 hr fuels, Bright et al. (2017) explained 30 % variance in 1000 hr 

loads based on ALS metrics only and 32 % in combination with Landsat-derived disturb-

ance metrics, and Alonso-Rego et al. (2021) reported 41 % variance explained in combined 

woody debris load using ALS. Combined estimates were not made in our study, and the 

weak results for the individual woody fuel components can be explained by the variability 

and many zeros in the observed loads in our study area, especially for the coarsest particle 

size class of the 1000 hr fuels, for which the calculated loads depend strongly on the geom-

etry of the lying stems (diameter and length). Furthermore, the occurrence of these fuel 

particles is highly heterogeneous both within a field plot and in the entire forest stand. The 

field plot size thus influences the fuel variability captured, and additionally determines the 

sensitivity to registration errors between field plots and lidar or satellite data (especially 

when only few pixels overlap with the field plots, as in our case). Due to the heterogeneous 

distribution of downed wood, detecting logs in high-resolution optical imagery (preferably 

acquired from below canopies) or lidar point clouds and then determining the volume of 

the individual logs, as has been done successfully by e.g. Lopes Queiroz et al. (2020) and 

Jarron et al. (2021), would be better suited to approximate loads. Accurate localisations of 

lying logs may actually be more useful for fine-scale fire behaviour analyses and for as-

sessing the accessibility of forest areas for firefighting, but fuel models for spatial fire appli-

cations still include area-based loads for coarse fuels. However, a manual examination of 

our lidar point cloud suggested that in heterogeneous stands with understory presence, 

even large logs are difficult to resolve and lidar penetration to the ground is sometimes 

significantly reduced depending on canopy density. Also 10 hr (0.63-2.54 cm diameter) and 
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100 hr (2.55-7.62 cm diameter) fuel loads are difficult to map, which is not surprising given 

the relatively large footprint of several centimetres in airborne lidar acquisitions. But even 

with terrestrial lidar, it is difficult to quantify loads of 10 hr and 100 hr fuels (Arkin et al., 

2023). Lastly, the amount of coarse dead fuels is less predictable by tree species composi-

tion than litter and dead 1 hr fuels: their occurrence is more random as it depends on forest 

management activities such as logging and pruning or natural disturbance such as wind-

throw and falling branches after strong winds or heavy snowfall. Mortality can also be in-

fluenced by different soil conditions, which affect a tree's susceptibility to drought. In our 

case, the time lag between lidar acquisition and field measurements might have further af-

fected the prediction, as interventions such as removal of deadwood or accumulation of 

branches after strong winds might not have been recorded in one of the datasets. Remote 

sensing can help identify major disturbance events and detect trees that may become dead-

wood sources after insect infestation or drought (Brodrick & Asner, 2017; Kislov et al., 

2021), but accurate quantification of accumulating woody debris at the forest floor remains 

challenging and especially management effects will be difficult to account for as long as no 

direct and timely detection of deadwood is possible.  

Herb and moss fuels 

Understory fuel load in the herb layer was moderately well predicted using our RF models. 

Prediction of moss and herb fuels relied mostly on multispectral features (Table 6.5), as 

their occurrence in our study area is strongly biased towards conifer stands, which contrast 

strongly with broadleaved stands in the spectral domain. As expected, information on can-

opy characteristics was helpful in predicting herbaceous fuel loads, because canopy compo-

sition and density control the amount of light reaching the forest floor. Tree cover alone, as 

reflected in the lidar metrics and also estimated in the field, was not as strongly correlated 

with herbaceous fuel loads as the multispectral features. However, structural information 

from below the canopy obtained from lidar data was also useful and gained importance 

when herbaceous biomass was predicted independently of mosses. The variance explained 

with our herb load model was similar to what is reported in a study predicting herbaceous 

cover from airborne lidar in temperate forests (Latifi et al., 2017), but despite the high 

point density of our dataset, we could not reach the performance of models based on TLS-

derived metrics (S. Li et al., 2021; Wallace et al., 2017). As biomass does not only depend 

on cover, but also on plant height and bulk density and thus on the type of understory veg-

etation or more specifically the species present (Bolte, 2006), these metrics need to be esti-

mated precisely, which is unlikely to be achieved based on ALS. But even if the vegetation 

volume of the herb layer cannot be derived as accurately as from TLS point clouds, ALS-

derived cover (and height) estimates may still allow to approximate biomass if species in-

formation is available. Such information could be derived from existing knowledge of her-

baceous plant communities that develop under specific site conditions, and should take 

into account seasonal variations in their composition and condition (e.g., spring flowering 

and senescence). Our data showed that there was a slightly decreasing trend in measured 

herbaceous biomass over the year (Spearman’s r = -0.42), which is important to consider 

for dynamic fuel estimates. Despite limitations, models based on remotely sensed structural 

and spectral metrics can improve the prediction of herbaceous loads compared to predic-

tions based on forest types alone. 
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Shrub fuels 

Shrub fuel load predictions relied almost exclusively on lidar metrics and provided reason-

able accuracy for shrub woody loads, but poorer results for the more fire model-relevant 

fine biomass. Shrub load is species-dependent like herb load and additionally determined 

by wood density (Annighöfer et al., 2016), and therefore not perfectly correlated with cover 

and/or height extracted at plot-level. While shrub cover has been well predicted from air-

borne lidar point clouds (Wing et al., 2012), difficulties in estimating shrub height from 

lidar have been reported when different shrub species are present (Alonso-Rego et al., 

2021). Having included geometric features as descriptors of point cloud shape in our study 

may not have been sufficient to account for the effects of different growth forms on bio-

mass. However, these features may still offer potential for improving approaches to under-

story species segmentation (e.g., D. Wang, 2020) as basis for developing species-specific 

biomass models from point cloud data. Additionally, geometric features have been success-

fully applied in leaf-wood classifications of forest point clouds (Krishna Moorthy et al., 

2020) and could serve to separate the fire model-relevant fine shrub load in this way. We 

also acknowledge that our reference shrub load data are subject to considerable uncertainty: 

their accuracy is limited by the availability of accurate allometric equations for calculating 

biomass from diameter at stem base (DAB), and by the accuracy of the biomass partition-

ing into different plant compartments used to estimate fine biomass in our study (see Ap-

pendix B). It is also well known that growth morphology of understory trees and shrubs, 

even of the same species, changes with light conditions: In our study area, despite having 

the same DAB, young beech trees in particular either had long stems with branches and 

leaves located further from the ground or remained rather small depending on light availa-

bility. This has an important impact on the biomass available near the ground that can burn 

in a surface fire. In addition, in a few cases there were still branches of mature trees in the 

surface fuel layer, but these were not included in the measurement of shrub fuels. The only 

way to avoid this uncertainty is to collect all the shrub material within the fire relevant layer 

and sort it by particle size, which is often not feasible due to time and personnel con-

straints. Alternatively, existing approaches to characterise shrubs from dense point clouds 

acquired with terrestrial laser scanning (e.g. Hudak et al., 2020; S. Li et al., 2021) could be 

used to calibrate better models for shrub woody and fine biomass. Overall, the inclusion of 

detailed structural information derived from airborne lidar was more relevant for the pre-

diction of shrub fuel loads than for any other fuel component, and this approach should be 

favoured over assigning average fuel loads based on forest types. The same is true for the 

closely related fuelbed depth if it is not estimated from the fuel loads themselves. 

 Surface fuel maps and potential surface fire behaviour 6.4.2

Despite the limited performance of the remote sensing-based models, the generated fuel 

load maps show clear patterns that match field observations of the respective fuel compo-

nents and can thus inform forest managers and firefighters about the fuel situation at a fine 

scale. Modelled potential fire behaviour remains unvalidated due to lack of reference data 

from real fires in the study area. However, our results were broadly consistent with the 

findings of Heisig et al. (2022), who reported similar surface fuel load ranges in a study area 

dominated by Scots pine, European beech and red oak in north-western Germany, and 

modelled fire behaviour under different environmental conditions. They used constant fuel 

loads depending on forest type and found the spatial patterns of fire behaviour to be close-
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ly linked to those of the surface fuel models. Under the same moisture scenario and a wind 

speed half of ours, they simulated a mean spread rate of 2.6 m/min and flame length of 

2.5 m, which is about twice as high as our values. Considering the known difficulty of pre-

dicting realistic fire behaviour based on actual fuel loads (Burgan, 1987), we conclude that 

the absolute values should be treated with caution. Nevertheless, we assessed how errors in 

fuel load estimates affect predicted fire behaviour through the mechanistic relationships in 

the Rothermel model and found that errors in shrub load have the strongest effect, fol-

lowed by litter load. This is most likely due to the effect of the presence of shrubs on 

fuelbed depth, which strongly impacts bulk density of the fuelbed and thus changes the 

estimated rate of spread and associated fire characteristics. We also noted that the assump-

tion of the Rothermel model that fuel particles are homogeneously distributed over the 

fuelbed was not fulfilled in our study: bulk density decreased from the bottom of the litter 

layer to the top of the fuelbed, but this was not reflected in the averaged fuelbed depth and 

bulk density, which probably led to underestimated fire spread rates (Cruz & Fernandes, 

2008). The remarkable effect of litter load on fireline intensity and flame length is due to its 

influence on reaction intensity, which is a function of net fuel load (Andrews, 2018), of 

which litter is the largest component in this study. As the two most influential fuel compo-

nents were at the same time associated with the highest prediction error in our models, we 

recommend that future research on surface fuels in temperate forests should focus on im-

proving estimates of litter and shrub fuel loads, as well as fuelbed depth. 

 Conclusion 6.5

Statistical relationships between remotely sensed metrics describing forest composition and 

structure and surface fuels have some potential for estimating fuel loads in Central Europe-

an forest types. Still, we confirm previous studies in other ecosystems that establishing ro-

bust relationships is challenging. Random forest regression based on multiple spectral and 

structural characteristics derived from airborne lidar and multispectral satellite data showed 

that a combination of different metric types is most useful for fuel load estimation. It also 

revealed that previously unexplored metrics such as geometric features calculated from 

lidar point clouds may be an interesting alternative to the more commonly used density-

related metrics. Multispectral information is most useful for estimating canopy-related fuels 

such as litter and dead 1 hr fuels, but can also be linked to other relevant stand properties, 

such as the presence of mosses under certain tree species. Multispectral information in 

combination with lidar helps to estimate herb fuels, while shrub fuels can be estimated with 

lidar alone, and results can probably be improved by developing adequate biomass models 

from selected metrics. Dead woody fuels are difficult to relate to metrics aggregated at field 

plot level and may be better captured with object-based approaches on TLS or photo-

grammetric data. The data-driven regression approach and feature-selection process em-

ployed in this study are efficient; however, the application of more sophisticated (point 

cloud) processing methods targeting the individual fuel components and their spatial scale 

of variation may help to improve the estimates. For dynamic fuel load estimates, ecological 

processes and knowledge of management and disturbance events must also be included. 

Extending the method to larger areas is limited by the availability of high-resolution air-

borne lidar data, but spaceborne lidar data from instruments such as GEDI and space-

borne radar data could be a possible substitute that needs further research. In general, re-

mote sensing-based fuel load predictions were more accurate than average fuel loads based 
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on forest type. However, the latter can be sufficient for fuel components that are relatively 

constant underneath a certain tree species at a certain site, e.g. litter and dead 1 hr fuels. 

Understory fuels and fuelbed depth, in contrast, should be estimated at finer scales, prefer-

ably using structural information derived from lidar. This is important given their strong 

influence on fire dynamics, which is also reflected in the high sensitivity of fire behaviour 

models to variations in understory, particularly shrub fuel loads.  
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 Assessing fuel dynamics 7
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Abstract 

Vegetation fuel dynamics in upland moorlands of the United Kingdom (UK) are im-

portant in determining landscape susceptibility to wildfire. Temporal changes in fuel 

availability and condition occur as a result of phenology, land management activities 

or unplanned disturbances such as wildfires. Understanding the annual cycle of dif-

ferent vegetation types and their recovery after disturbance is therefore essential to 

assess wildfire risks and impacts. Monitoring fuel dynamics at the landscape level can 

be accomplished using time series of remote sensing data. 

In this study, we examined the ability of optical remote sensing time series from Sen-

tinel-2 (2017-2023) to capture phenology and vegetation recovery in four important 

upland land cover classes (acid grassland, heather, heather grassland, and bog). We 

used harmonic modelling of time series of vegetation indices (VIs) to characterise 

phenological changes in key fuel properties such as moisture, live and senescent bi-

omass, and to identify periods of potentially high vegetation flammability. We also 

investigated the immediate and long-term effects of wildfires on remotely sensed 

vegetation characteristics by quantifying VI change and spectral recovery times. 

Therefore, we developed an efficient workflow to estimate spectral recovery in highly 

cloud-influenced time series and compared the remotely sensed estimates with field 

measurements. Finally, we assessed the influence of various environmental factors on 

spectral recovery times using multiple linear regression.  

We found that the period of highest potential vegetation flammability spans from 

mid-February to early May in acid grassland, while it extends into early June in 

heather and heather grassland, and into late June in bog. Changes in remotely sensed 

fuel properties were more pronounced after summer fires compared to spring fires, 

with the largest spectral changes observed in moisture-related VIs. Spectral recovery 

of graminoid-dominated land cover was rapid, taking less than one year, and aligned 

well with field observations. Spectral recovery of dwarf shrub-dominated areas was 

slower, requiring up to three years, broadly consistent with measurements of vegeta-

tion cover on burned areas but not with height. Spectral recovery times were primari-

ly explained by land cover class, burn severity, season, and winter snow cover 

(R²=0.66). Field data confirmed the influence of pre-fire stand age on heather recov-

ery and underscored the strong influence of grasses on the spectral signal. These re-

sults enhance our understanding of fuel dynamics in upland moorlands using satel-

lite-based monitoring of vegetation flammability and post-fire recovery. The findings 

can be used to inform wildfire risk assessments and management plans. 
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 Introduction 7.1

The UK upland moorlands are recognised as a unique landscape of significant importance, 

containing Sites of Special Scientific Interest (SSSI) (Galbraith & Stroud, 2022), and fulfil 

diverse ecosystem functions. They provide a habitat for wildlife, including rare and endan-

gered species (Van der Wal et al., 2011), sequester significant amounts of carbon (2302 Mt) 

(Billett et al., 2010), and are a source of drinking water for 43.1 % of the UK population (J. 

Xu et al., 2018). Moreover, they provide grazing for livestock and a place for recreational 

activities, and thus have both cultural and economic value (Van der Wal et al., 2011). As 

semi-natural ecosystems, the moorlands have been maintained for centuries by grazing and 

burning. The most well-known land management practice is rotational burning of common 

heather (Calluna vulgaris (L.) Hull, hereafter Calluna) to create a mosaic of stands of varying 

age for red grouse (Kirkpatrick, 2013). 

However, past land-use practices such as intensive agricultural drainage and peat cutting, 

atmospheric deposition of industrial pollutants, as well as climate change have degraded the 

moorlands (Shepherd et al., 2013). Wildfires also pose a significant threat, especially during 

periods of dry weather and high winds (Albertson et al., 2009). Severe wildfires cause dam-

age to the ecosystem and release large amounts of carbon into the atmosphere through the 

combustion of aboveground biomass (Clay & Worrall, 2011), and, in particular, when burn-

ing into the peat soil (Maltby et al., 1990).  

Fighting wildfires, especially in remote areas, is difficult and costly. During episodes with 

multiple ignitions and low fuel moisture, resource allocation becomes a major challenge for 

the Fire and Rescue Services (McMorrow, 2011). Additionally, the frequency of weather 

conditions favouring high wildfire activity are projected to double under 2 °C of global 

warming (M. C. Perry et al., 2022), exacerbating the risk of larger uncontrolled fires. Be-

tween 2009 and 2021, 2,495 wildfires were recorded in the English uplands, predominantly 

in mountainous, heath, bog and semi-natural grassland areas, burning the largest land area 

of all wildfires in England (43,000 ha, 54.1 %) (Forestry Commission, 2023). In addition to 

increasing fire danger from meteorological conditions, especially in summer (Arnell et al., 

2021), future fire regime depends on ignitions and the availability of vegetation fuel. Rec-

ords of wildfire incidents show that wildfires primarily occur in spring or summer, when 

plant material is in a flammable state due to winter desiccation or low moisture content 

during hot and dry summer periods (Albertson et al., 2010).  

The amount of fuel available for combustion depends on the plant species and the accu-

mulation of live and dead biomass through growth and mortality. Fuel dynamics in upland 

plant communities are naturally driven by the life cycle of Calluna, which consists of four 

phases: pioneer, building, mature, and degeneration (Gimingham, 1972). These growth 

stages are associated with changes in plant structure and vitality (Schellenberg & Bergmeier, 

2022), as well as important fuel characteristics such as the relative abundance of live and 

dead fuels, and of fine and coarser woody fuels within the Calluna canopy (Davies et al., 

2009; Taylor et al., 2022).  

Layered onto the life cycle stage, Calluna also has an annual phenological cycle. It comprises 

spring growth, a flowering phase lasting through August and September, and leaf senes-

cence over late summer and autumn (Mac Arthur & Malthus, 2012). The presence of other 

deciduous species in Calluna-dominated habitats, such as purple moor-grass Molinia caerulea 

(L.) Moench (hereafter Molinia), and fern Pteridium aquilinum (L.) Kuhn (hereafter bracken), 

contributes to a strong seasonal dynamic in fuel quantity and condition. During the grow-
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ing season, green biomass is produced, which then undergoes autumnal senescence and 

eventually forms a pool of dead plant material (Taylor et al., 2022).  

Whether plant material is in a flammable state depends primarily on its fuel moisture con-

tent (FMC). The FMC of dead plant material is strongly driven by atmospheric conditions, 

and very dry conditions are quickly reached through evaporation when humidity is low 

(<50 %), e.g. during high-pressure situations (M. C. Perry et al., 2022). Live vegetation is 

less responsive to weather changes, and FMC is more closely related to the plant’s physio-

logical state and soil moisture. With the seasonal transition from living to cured foliage in 

deciduous species, FMC can vary considerably throughout the year, from 30 % in the cured 

state to 250 % during green-up (Burgan, 1979). Laboratory experiments with Molinia have 

shown a high probability of ignition and almost complete consumption at less than 65 % 

FMC (Taylor et al., 2022). Daily measurements of live FMC in Calluna carried out by Da-

vies (2005) during autumn and spring in the Scottish Highlands showed that it was com-

paratively low (65-100 %) and a substantial decline was observed in early spring (<45 %). 

The probability of ignition in Calluna has also been shown to depend on the amount of 

dead fuel in the canopy and its FMC (Santana & Marrs, 2014). 

As fuel quantity and condition of the pre-fire vegetation are important drivers of fire be-

haviour, they directly influence the impact of the fire on the landscape. High fuel biomass 

in very dry condition leads to intense fires, causing severe ecosystem damage.  Assessing 

the short-term and long-term effects of wildfires helps decide if and where costly restora-

tion activities are needed. Also, understanding post-fire vegetation recovery is important 

for planning how long an area will be unavailable for livestock grazing and when manage-

ment actions may be required again (Kirkpatrick, 2013).  

Previous studies have shown that vegetation recovery after burning in heather moorlands 

depends on various factors, including fire severity (Davies, Smith, et al., 2010; Grau-Andrés 

et al., 2019): Low-severity fires can facilitate rapid resprouting of Calluna shoots from stem 

bases, but this ability declines as plants age. High-severity fires can damage stem bases, in 

which case regeneration depends on seeds (Legg et al., 1992). However, prolonged expo-

sure of the ground to elevated temperatures destroys seed banks, resulting in slow and in-

complete recovery (Maltby et al., 1990). Under such circumstances, burned areas may be 

particularly vulnerable to invasion by other graminoids, bryophytes and herbs (Grau-

Andrés et al., 2019; Velle & Vandvik, 2014). For instance, perennial Molinia grass, with its 

large and deep root system, can withstand intense fires and produces a large amount of 

seeds. Growth and seed production have been shown to increase after fire, resulting in high 

biomass production and litter accumulation (Brys et al., 2005).  

While on-the-ground assessments are indispensable to understand how wildfire alters the 

landscape, satellite remote sensing provides a cost- and time-effective way to obtain infor-

mation on pre-fire vegetation status and post-fire development, especially in areas with 

limited accessibility. Time series from optical sensors, e.g., Landsat, MODIS, AVHRR and 

Sentinel-2, have been successfully used to observe vegetation dynamics in response to wild-

fires or managed burns in shrub- and grassland ecosystems (Lees et al., 2021; Potter, 2018; 

Sankey et al., 2013; Villarreal et al., 2016). These studies have largely focused on Normal-

ised Difference Vegetation Index (NDVI) to track the reemergence of vegetation green-

ness and phenological variation. However, NDVI is sensitive to soil background in sparse 

vegetation and suffers from saturation problems in dense vegetation, limiting its effective-

ness in monitoring vegetation status (Z. Wang et al., 2022). Accounting for the influence of 

soil background by using the Soil-Adjusted Vegetation Index (SAVI) has proven to be 
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more effective in discriminating burn areas in heathland environments (Schepers et al., 

2014). However, greenness is not the only important variable in characterising vegetation, 

especially from a wildfire perspective, where plant senescence and moisture status are cru-

cial factors. Limited research has been conducted on the potential of satellite data to char-

acterise phenology and post-wildfire vegetation recovery in moorland habitats.  

Al-Moustafa et al. (2012) showed that vegetation indices combining near-infrared (NIR) 

and shortwave infrared (SWIR) reflectance derived from airborne hyperspectral imagery 

strongly correlate with live FMC in Calluna plots at a moorland site. Similarly, Badi (2019) 

found a strong positive relationship between the Normalised Difference Water Index 

(NDWI) (B. Gao, 1996) calculated for multi-temporal Sentinel-2 and Landsat imagery and 

measured Calluna FMC. This spectral index, which is sensitive to plant water content, is 

also referred to as Normalised Difference Moisture Index (NDMI) (E. H. Wilson & Sader, 

2002).  

Senescent biomass is less frequently assessed in remote sensing studies, including those in 

upland moorland vegetation. However, Metzger et al. (2017) found that estimates of bio-

mass and the green ratio in a temperate grassland fen based on NDVI were poor due to the 

presence of standing senescent biomass. Guerini Filho (2020) estimated senescent plant 

biomass in the grasslands of the Brazilian Pampa from Sentinel-2 data, using among others 

the Plant Senescence Reflectance Index (PSRI), with moderately accurate results. PSRI 

calculated from field spectroscopy has been shown to indicate phenological change in up-

land vegetation species and was useful for discriminating between plant functional types 

(Cole et al., 2014b). However, PSRI based on spectroradiometer measurements had limited 

correlation with leaf pigment content of Calluna (Nichol & Grace, 2010), leaving the ap-

plicability of the index for monitoring plant senescence across moorland land cover classes 

using satellite data for investigation. 

Lees et al. (2021) assessed vegetation regeneration in UK moorland areas after low-severity 

management fires using NDVI time series, but suggested a comparison with other indices 

and field assessments of vegetation recovery would be beneficial. Millin-Chalabi (2016) 

used pre- and post-fire Synthetic Aperture Radar (SAR) signals to characterise wildfire burn 

scars and assess their persistence in peat moorlands. The study showed that increased SAR 

backscatter of burned areas can persist for more than six months post-fire and indicate 

incomplete vegetation recovery. However, the pre- and post-burn conditions and the effect 

of wildfires of varying severity on the optical remote sensing signal of different upland land 

cover classes have not been investigated. This is due to the challenges posed by frequent 

cloud cover in upland environments particularly in the UK. 

Therefore, in this study, we applied a multi-index approach based on time series of Senti-

nel-2 data to capture key fuel characteristics of UK upland vegetation and provide a more 

comprehensive understanding of both phenology-driven fuel dynamics and vegetation re-

covery after wildfire. We utilised optical vegetation indices (VIs), which have proven useful 

in previous studies, to highlight specific vegetation properties. We focused on SAVI as a 

proxy for live/green vegetation cover, PSRI for dead/senescent vegetation cover, and 

NDMI as proxy for FMC. Additionally, we included the commonly used indices NDVI 

and Normalised Burn Ratio (NBR) in our analysis. The NBR has become a standard index 

to assess burn severity across different ecosystems (e.g. Boelman et al., 2011; Schepers et 

al., 2014). Our study aimed to evaluate the potential of optical remote sensing to character-

ise fuel dynamics in upland land cover classes and enhance our understanding of wildfire 

impacts on the landscape by addressing the following research questions: 
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i) What is the remotely sensed phenology of key fuel properties of UK upland land 

cover classes, and how is it related to records of wildfire occurrence? 

ii) To what extent do remotely sensed fuel properties change, and what is the 

timeframe for their recovery following a wildfire?  

iii) How do remote sensing observations align with field measurements of vegetation 

recovery? 

iv) How are remotely sensed vegetation recovery times influenced by environmental 

factors? 

 Methods 7.2

This study focuses on the moorlands of the South Pennines in northern England, encom-

passing the Peak District National Park (PDNP) and Marsden Moor. The PDNP covers an 

area of 1,438 km², ranging in altitude from 12 to 636 m. While the northern part and the 

eastern and western margins are characterised by moorland and gritstone formations of the 

Dark Peak, limestone plateaus and gorges dominate the White Peak in the central and 

southern parts (PDNPA, 2013). The land cover classes of the Dark Peak are mainly 

heather moorland, bog, and acid grassland, whereas the White Peak is characterised by cal-

careous and improved grassland, and woodland (Figure 7.1). Wildfires recorded in the 

PDNP over the past decades have been concentrated in the Dark Peak (Moors for the Fu-

ture, 2023). Therefore, acid grassland, heather, heather grassland, and bog are the focus of 

this study. The UK Centre for Ecology and Hydrology (UKCEH) Land Cover Map 

(LCM2021) (Marston et al., 2022) defines these land cover classes as follows: acid grass-

lands can have a variable composition of grasses, rushes, herbs, and sedges, but are often 

dominated by Molinia. Heather land cover is distinguished from heather grassland by a cov-

er of more than 25 % Calluna. Bogs include areas of ericaceous, herbaceous, and moss spe-

cies on deep peat soils (>0.5 m).  

 Datasets 7.2.1

Satellite data 

We obtained time series of Sentinel-2 surface reflectance (harmonised Level-2A collection) 

with a spatial resolution of 10 m from Google Earth Engine (GEE). All scenes from 2017-

04-01 to 2023-09-20 that covered the study area and had a maximum cloud cover of 50 % 

were included. Clouds were masked based on the Sentinel-2 cloud probability product us-

ing a threshold of 40 % probability for masking. Cloud shadows were removed based on 

NIR reflectance, while snow and ice were masked based on the scene classification band 

(SCL) of the Sentinel-2 product. For each of the masked scenes, we calculated the VIs 

listed in Figure 7.1 using the eemont package (Montero, 2021). All processing was done 

via the GEE Python API in Google Colab.  
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Figure 7.1: South Pennines study area showing the land cover classes and wildfire areas considered 
in this study. 

Table 7.1: Sentinel-2 VIs used in this study. Bands were renamed as follows: B8:NIR, B9:NIR2, 
B11: SWIR1, B12:SWIR2, B6:RedEdge2. 

index proxy for equation reference 

NDVI vegetation greenness, live bio-
mass 

NIR-Red

NIR+Red
  

Rouse et al. (1974) 
 

SAVI vegetation greenness, live bio-
mass, accounts for soil effects 

NIR-Red

NIR+Red+L
 (1+L),  L=0.5 

Huete (1988) 

NDMI FMC NIR-SWIR1

NIR+SWIR1
 

Wilson and Sader (2002) 

PSRI vegetation senescence,  
dead biomass 

Red-Blue

RedEdge2
 

Merzlyak et al. (1999) 

NBR vegetation structure, 
intact vegetation biomass 

NIR2-SWIR2

NIR2+SWIR2
 

Coffelt and Livingston 
(2002) 

 

Wildfire data 

Records of wildfire incidents in the PDNP were downloaded from the local wildfire re-

cording system managed by the Moors for the Future Partnership (Moors for the Future, 

2023). The database contains polygons that delineate wildfire perimeters based on field 

observations of burned areas, as well as additional information such as fire start and end 

dates. We cross-checked the polygons from the wildfire log with wildfires recorded in the 

European Forest Fire Information System (EFFIS) (San-Miguel-Ayanz et al., 2012) to en-

sure no large wildfires were missed. We obtained 45 wildfire polygons covering a five-year 
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period from 2018-01-01 to 2022-12-31. For each fire, we visually inspected the closest 

cloud-free pre- and post-fire RGB and NBR images from Sentinel-2. As a measure of fire 

severity, we calculated the differenced NBR (dNBR) for each wildfire area by subtracting 

post-fire from pre-fire NBR of the previously selected images. We removed wildfires with a 

dNBR<0.1 from the dataset, as we expected a very weak signal in the remote sensing indi-

ces from these low-severity fires. We also removed fires that were obviously management 

burns, as indicated by the many small burn strips in the satellite imagery. Ultimately, we 

obtained a dataset of 38 wildfire polygons with different severities and burned areas in the 

four land cover classes (Figure 7.2). 

 

Figure 7.2: (a) Burn severity of individual wildfires and (b) burned area in different land cover 
classes per year. 

Field data 

We collected data on post-fire vegetation recovery in 14 wildfire areas in the South Pen-

nines during a field campaign 3-14 July 2023. Long-term vegetation recovery is ideally as-

sessed over several years, but adopting a space-for-time approach is a common strategy in 

ecology (e.g. Harper, 2020; Thomaz et al., 2012). We also used this approach, acknowledg-

ing that the results must be interpreted cautiously, as the burn conditions of the individual 

wildfires were different. We visited two to three wildfire areas from each year between 

2018 and 2023 and measured vegetation cover and height in two to six plots per area, and 

in 15 plots in the large Tameside wildfire area (also Saddleworth Moor fire, e.g. Graham et 

al., 2020) (Table C1, Appendix C). The locations of the 10×10 m plots were selected to 

encompass landscape heterogeneity. We used an adapted version of the FIREMON point 

intercept method (Lutes et al., 2006) to sample vegetation cover, condition, and height. The 

sampling was conducted along three parallel 10 m transects positioned at 0, 5, and 10 m 

along the plot baseline. At 50 cm intervals, we documented the presence of the following 

plant species or functional groups: grass, rush, moss, heather, bell heather, bilberry, crow-

berry, bracken. We noted the condition of the plants, categorising them as live, 

dead/senescent or charred. Additionally, we measured vegetation height at 2 m intervals.  

This data was used to calculate average cover per plant type and condition, as well as aver-

age vegetation height at different times post-fire. Due to limited resources and landscape 

heterogeneity, we did not establish control plots in unburnt areas. Information on post-fire 

vegetation condition, cover, and height on burned areas was used for comparison with 

remote sensing estimates of vegetation recovery. However, a direct validation of the recov-

ery estimates per wildfire area was not possible because the field data only covered one 

point in time per area, and the vegetation composition of individual wildfire areas varied 
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considerably even within the same classified land cover.  

In addition to assessing long-term vegetation recovery, we captured the immediate post-fire 

response at one site (Standedge) burned on 3 May 2023 by visiting the area repeatedly on 4 

May, 7 June, and 3 July 2023. We collected vegetation data on three fixed plots inside the 

wildfire area and two plots outside the area. Measurements were carried out as described 

earlier, except that the sampling interval was 1 m along each transect.  

 Phenology analysis 7.2.2

Estimation of baseline phenology for the South Pennines 

To establish a baseline phenology of vegetation fuel properties as captured by remotely 

sensed VIs, we randomly sampled 500 satellite image pixels per land cover class across the 

South Pennines. These samples were collected from every available Sentinel-2 scene, ex-

cluding known wildfire areas. Due to frequent cloud cover in the study area, the number of 

valid pixels per scene varied significantly. Therefore, we chose to keep only 30 pixels per 

land cover class and discard time steps with less than 30 valid pixels. We computed the 

bivariate kernel density of the 30 pixel values per time step using a Gaussian kernel density 

estimation following the ‘npphen’ approach (Chávez et al., 2023) to display the frequency 

distribution of the VI values along the time series. Next, we calculated the mean over the 

30 pixels per time step to obtain the average time series for each VI and land cover class. 

We removed any remaining outliers in the time series caused by undetected clouds/haze by 

applying a Hampel filter (Pearson et al., 2016). Outliers at the time series ends that could 

not be detected using the Hampel filter were removed using fixed thresholds for each spec-

tral index that were determined after careful investigation of the data: NDVI<0.4, SA-

VI<0.1, NDMI>0.5 , PSRI<-0.05, NBR>0.7. We modelled the outlier-filtered time-series 

of each VI using a harmonic model consisting of a series of sine and cosine terms defined 

in Equation 1 (cf. e.g. Z. Zhu & Woodcock, 2014): 

y
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intra-annual variation of the signal at different frequencies ω=2π 365.25⁄ . The time series 

model was fitted using the Levenberg-Marquardt least squares optimisation implemented in 

the Python package ‘lmfit’ (Newville et al., 2014). From the modelled time series, we ex-

tracted several phenological characteristics such as mean, amplitude, maxima, minima, day 

of the year of minima and maxima, as well as model performance metrics. 

Identification of periods of high vegetation flammability 

We identified periods of high vegetation flammability from the baseline phenology of indi-

vidual wildfire areas. We hypothesised that a combination of low FMC and a high propor-

tion of dead plant material, as indicated by low NDMI and high PSRI values, would result 

in higher probability of successful ignition. We thus identified the overlapping periods of 

lowest NDMI and highest PSRI values in the annual time series by extracting the intersec-

tion points of the two VIs around their global minimum (NDMI) and maximum (PSRI). 

We compared the identified flammability periods with the actual wildfire occurrence dates. 
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 Wildfire effects and recovery 7.2.3

Estimation of wildfire impact on VIs 

We assessed the immediate impact of wildfires on VIs obtained from Sentinel-2 by calcu-

lating the change magnitude and change angle for key indices, namely SAVI, NDMI, and 

PSRI. These indices serve as primary indicators of fuel properties: green biomass, fuel 

moisture, and senescent biomass. Calculations were performed separately for each land 

cover class and for the meteorological spring (MAM) and summer (JJA) seasons. We calcu-

lated change magnitude as the Euclidean distance between the pre- and post-fire spectral 

data points of a land cover class and season in a 3-dimensional Cartesian space whose axes 

correspond to SAVI, NDMI, and PSRI. Change angle was determined from the angle be-

tween the two vectors drawn from the origin to the pre- and post-fire spectral data points 

according to the Spectral Angle Mapper (SAM) algorithm (Kruse et al., 1993). SAM is a 

common measure of the similarity between two spectral vectors, with a smaller angle indi-

cating greater similarity. Finally, we obtained a combined estimate of the impact of wildfires 

on VIs by normalising both change magnitude and change angle to the range [0, 1] and 

then averaging the two. 

Estimation of spectral recovery rates  

We estimated recovery rates of the different VIs after wildfire. Therefore, we extracted the 

average VI time series for each land cover class within a wildfire polygon. We did not filter 

these time series for outliers, as potential outliers could also represent the signal from the 

fire. The pre-fire time series was modelled using the model from Equation (1) and then 

extrapolated to the post-fire period. In cases where the pre-fire period had less than two 

years of valid acquisitions and was difficult to model, we extracted the VI time series for 

the same land cover class within a 1 km buffer zone of the wildfire polygon as a substitute 

to obtain the model parameters. We subtracted the modelled and extrapolated time series 

from the actual time series of the wildfire area to obtain the residuals. To determine the 

time of spectral recovery, we repeatedly compared the distribution of the residuals in the 

post-fire period to the distribution of the pre-fire residuals. For this purpose, we used mov-

ing windows of four different sizes (n=3, 5, 10, 20), each shifted by one observation from 

the first post-fire satellite image to the present. We continued this process until the post-

fire residuals within the window were no longer significantly different from the pre-fire 

residuals, as tested by Welch’s test (α=0.05). If no significant difference could be found for 

three consecutive time steps, the area was declared as spectrally recovered. We used differ-

ent window sizes to make the approach more robust to the effects of outliers, data gaps, 

and different recovery rates. As a visual analysis of the residuals showed that the recovery 

time tended to be underestimated, we obtained the final recovery time of each VI as the 

maximum recovery time across the four window sizes. However, for acid grassland we 

used a window size of five for the final recovery time, as spectral recovery was fast and 

overestimated with larger windows. As a single estimate of the VI-derived recovery rate per 

wildfire event and land cover class, we used the maximum of SAVI, NDMI and NBR re-

covery. We did not include PSRI in final recovery estimation because it was the index with 

the weakest model fit and highest scatter, which sometimes led to unrealistic recovery esti-

mates. Instead, we used NBR, as it is sensitive to vegetation structure and therefore ex-

pected to provide a robust estimate of the long-term vegetation recovery (e.g. Pickell et al., 

2016). 
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Analysis of drivers of spectral recovery rates 

We investigated the effects of various environmental variables and wildfire-related factors 

(Table 7.2) on recovery rates using multiple linear regression models. We extracted topo-

graphic information from the OS Terrain 5 DTM product (Ordnance Survey, 2023). We 

obtained meteorological data from the collection of gridded and monthly aggregated land 

surface observations over the UK at 1 km resolution (Met Office et al., 2023) and summa-

rised them for different pre- and post-fire periods. Since recovery rates varied across land 

cover classes within a wildfire area, we treated each land cover class of a burned area as an 

individual sample when calculating correlation coefficients and building regression models. 

The sample size was n=74. We used Ordinary Least Squares (OLS) and tested different 

combinations of the variables most strongly correlated with recovery rate. We visually in-

spected the model residuals for normality and homoscedasticity. The final model to explain 

recovery was selected based on R² and the Akaike’s Information Criterion (AIC). 

Table 7.2: Variables used to explain spectral recovery rates. 

 variables assumed influence on 

topography elevation 
slope-aspect interaction 
northness 
eastness 

local microclimate  
fire dynamics, fire severity, soil condi-
tions 

wildfire  fire severity (dNBR) 
size 

regeneration capacity 
distance to seed sources 

 season phenological stage, weather conditions 

vegetation land cover class specific flammability, regeneration 
capacity 

weather  precipitation 
temperature 
wind speed 
sunshine duration 
days of  ground frost 
days of  snow cover 

soil moisture, erosion 
growth activity 
exposure, erosion, seed dispersal 
seed germination, growth 
soil conditions 
soil conditions  

 Results 7.3

 Baseline phenology for the South Pennines 7.3.1

The phenology analysis revealed similar patterns between the land cover classes. As ex-

pected, the remotely sensed cover of green vegetation is lowest over winter and spring 

(Figure 7.3), although NDVI and SAVI indicate a different day of year (DOY) for the 

location of the minimum (DOY 355-103). The lowest FMC reflected in low NDMI values 

is reached around the end of March/beginning of April (DOY 89-106). The latter period is 

also characterised by highest plant senescence (PSRI). NBR patterns closely follow NDMI 

as both rely on NIR and SWIR reflectance. The extracted phenological characteristics of 

each land cover class are listed in Table C2 (Appendix C). While the seasonal patterns are 

similar, acid grassland and heather grassland exhibit larger amplitudes in the variation of 

green and senescent biomass (ASAVI/NDVI=0.14, APSRI=0.08) than heather and bog (ASA-

VI/NDVI=0.10, APSRI=0.06). Grass-dominated land cover classes also generally have higher 
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FMC (mean NDMI=0.18) than heather-dominated land cover (mean NDMI=0.12). Wild-

fire occurrences accumulate in spring when plant senescence is high and FMC is low in all 

land cover classes. This period also has the highest density of valid data points (available 

clear-sky observations), indicating more cloud-free days, which may be related to the domi-

nance of high-pressure systems that can promote fuel dryness (M. C. Perry et al., 2022). 

Single wildfire events occurring in summer partly coincide with prolonged periods of ex-

ceptionally dry conditions, as indicated by lower-than-average NDMI observations in the 

summer of 2018 . 
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Figure 7.3: Phenological patterns of the VIs in the four land cover classes. Black dots show the 
mean values of the VIs in the South Pennines over the five years of observation, while the green 
dashed lines represent the modelled time series. Vertical red lines indicate wildfire start dates. Dark-
er shades of blue indicate a higher bivariate density of observations (in time and across sample pix-
els). 
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 Spring flammability window and pre-fire fuel conditions  7.3.2

In all land cover classes, the period of higher vegetation flammability starts in mid-February 

(Figure 7.4). It ends in early May in acid grassland, and lasts until early June in heather and 

heather grassland. Bog has the largest flammability window, extending into mid to late 

June. These periods encompass 71 % of the recorded wildfires in acid grassland, 73 % in 

heather, 90 % in heather grassland, and 81 % in bog. The start and end days for each land 

cover class are provided in Table C3 (Appendix C). 

 

Figure 7.4: Flammability window of each land cover class. Red lines at the top of each plot indi-
cate the occurrence of wildfires. 

When comparing the remotely sensed fuel conditions in areas affected by wildfires in 

spring and summer to the average phenology in the South Pennines for the respective sea-

son (Figure 7.5), a notable finding emerges: particularly in spring, the areas impacted by 

wildfire showed remarkably low NDMI values compared to the average phenology. Fur-

thermore, they had a significantly higher proportion of senescent (PSRI) relative to live 

vegetation cover (SAVI) just before the outbreak of the fire, especially in acid grassland and 

heather grassland. In summer, fuel conditions are generally less variable and characterised 

by less senescent cover than in spring. However, atypical conditions in wildfire-affected 

areas were only observed for one fire event in bog and heather (lower NDMI), which oc-

curred in the summer of 2018 and represents the exceptionally large Tameside wildfire 

(circled cross in Figure 7.5). 
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Figure 7.5: Ternary plots showing the occurrence frequency of typical proportions of SAVI, PSRI, 
and NDMI during spring and summer in the South Pennines’ land cover classes derived from their 
baseline phenology (coloured filling). Red crosses show the conditions shortly before a wildfire 
outbreak. Note that the axes do not display the actual VI values, but their proportion (all three VIs 
sum to 1). Circled cross represents the Tameside wildfire in 2018. 

 Wildfire effects on VIs 7.3.3

The immediate impact of wildfires on fuel properties, as determined from remotely sensed 

VIs, was more pronounced in summer compared to spring. This is evident in the greater 

magnitude and angle of change observed between pre- and post-fire data of SAVI, PSRI, 

and NDMI across all land cover classes (Table 7.3, Figure 7.6). SAVI and NDMI showed 

a strong decrease after summer fires (both -0.27), indicating a substantial reduction in live 

green biomass, whilst there was a less pronounced decrease in spring (-0.09 and -0.13), 

where they had lower pre-fire levels. PSRI changed slightly, showing on average a small 

reduction after spring fires (-0.07) and a small increase after summer fires (+0.07). Overall, 

wildfire effects on VIs differed only slightly between the different land cover classes, com-

pared to the large variability in effects between fires (Table C4, Appendix C).  

Table 7.3: Mean change magnitude and change angle and their standard deviations. Values for 
heather grassland are not shown due to only one wildfire occurrence. 

  
magnitude angle 

acid grassland spring 0.27±0.11 42.1°±22.3° 

 
summer 0.47±0.22 62.5°±32.8° 

bog spring 0.17±0.06 25.1°±11.9° 

 
summer 0.45±0.27 65.6°±32.1° 

heather spring 0.25±0.12 42.2°±21.3° 

 
summer 0.49±0.34 66.5°±42.6° 

heather grassland spring 0.22±0.09 32.3°±17.5° 
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Figure 7.6: Vectors representing average pre- and post-fire VIs for each land cover class separated 
by season. Since there was only one fire in heather grassland in summer, the vectors are not dis-
played here. 

 Spectral recovery of VIs 7.3.4

The average spectral recovery time varied across land cover classes. Acid grassland consist-

ently had the shortest recovery times, with mean values for the different VIs ranging from 

67-131 days. Heather grassland followed with recovery times spanning 155-255 days. In 

bog areas, recovery estimates were more variable: PSRI recovered the fastest in approxi-

mately 203 days, while NDMI had a slower recovery time of 515 days. NDVI and SAVI 

also produced different results for the mean spectral recovery time in bog areas, with values 

of 236 and 492 days, respectively. Average heather recovery rates remained relatively con-

sistent across all VIs, ranging from 437-527 days, except for PSRI, which showed a faster 

recovery time of 254 days (as shown in Figure 7.7 and Figure 7.8). Notably, the variability 

in recovery rates was higher in heather and bog areas compared to acid grassland and 

heather grassland, particularly between individual wildfire events. 

 

Figure 7.7: Recovery times of the VIs for different land cover classes. Mean values are shown as 
white squares. 
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Figure 7.8: Example of the different recovery trajectories of the VIs for two wildfire events in 
heather (West of Didsbury intake) and bog (Kirklees) that occurred in spring 2020. Red vertical line 
denotes fire occurrence. Dashed green vertical line denotes point of spectral recovery. 

Most wildfire areas in the South Pennines showed relatively minor changes (‘low impact’) 

in spectral VIs and tended to recover spectrally in less than two years (Figure 7.9, quadrant 

I). Large spectral changes (‘high impact’) and rapid recovery, often within one year, were 

observed particularly in acid grasslands (quadrant II). In contrast, large spectral changes 

coupled with slower recovery, exceeding two years, were primarily observed in heather and 

bog (quadrant III). Similarly, smaller spectral changes and slower recovery were prevalent 

in these two land cover classes (quadrant IV). A significant positive correlation between 

spectral change and recovery time was observed only for heather land cover (Spearman’s 

r=0.50, p-value=0.02). 
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Figure 7.9: Mean recovery time of the VIs for each wildfire area versus the spectral change (com-
bined measure of change magnitude and change angle). 

 Field-measured vegetation recovery 7.3.5

While we describe the field data as a true chronosequence for ease of reading, it is im-

portant to emphasise that it is a pseudo-time series created from space-for-time sampling. 

Vegetation cover in the sampled wildfire areas averaged approximately 69 % in the first 

year after the fire (Figure 7.10 a), with subsequent years showing further recovery. Vegeta-

tion heights also increased over time, but differed greatly between wildfire areas of the 

same year, i.e., different sites (Figure 7.10 b). We therefore differentiated our plots accord-

ing to the dominance of either graminoids or dwarf shrubs.  

The graminoid-dominated plots had on average 96 % vegetation cover in the first year after 

the fire (Figure 7.10 c), which aligns with the observed VI recovery times of less than one 

year in grassland land cover classes (Figure 7.7). In the first year following fire, we record-

ed the highest grass heights (Figure 7.10 d). While vegetation cover remained high in sub-

sequent years, heights decreased to a lower level.  

In the dwarf shrub-dominated land cover classes, average vegetation cover and height were 

initially low in the first year after the fire (48 % and 12 cm, respectively). Vegetation cover 

increased to about 69 % in the second year and 85 % by the third year post-fire, while veg-

etation heights remained low for the first three years and reached heights comparable to 

those in graminoid-dominated areas only in the fourth to fifth year after fire. 

The development of live vegetation cover (Figure 7.10 e) roughly followed the pattern of 

total vegetation cover, but the proportion of dead vegetation was higher in graminoid-

dominated plots than in dwarf shrub-dominated plots, especially from the second year 

post-fire (Figure 7.10 f).  
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Figure 7.10: Vegetation cover fractions and heights in wildfire areas across the South Pennines in 
different years post-fire (0 corresponds to wildfire areas from 2023, 5 to areas from 2018). a) and b) 
show data from all burned areas, c) to f) show means and standard deviations of the data catego-
rised by dominant functional group. 

An assessment of vegetation recovery immediately following the Standedge wildfire shows 

that vegetation recovers rapidly in such grass-dominated areas (Figure 7.11). Within only 

one month post-fire, live vegetation cover in the burned area was not significantly different 

from the unburned area, where spring growth had just started. The (visible) cover of 

charred vegetation in the burned area also decreased rapidly. The cover of senescent plant 

material was initially high in the unburned area, but visually decreased as new grass shoots 

emerged. Hence, two months after the fire, burned and unburned areas had similar meas-

ured cover of dead vegetation. Vegetation height in the burned area was comparable to the 

unburned area two months after the fire. Figure C1 (Appendix C) provides photographic 

evidence of the burned area’s recovery. 

 

 

Figure 7.11: Average vegetation cover fractions (a-c) and heights (d) inside (burn) and outside 
(non-burn) the Standedge wildfire area (burned on 03/05/23). The last measurement of vegetation 
height in the non-burn plots differed from the previous ones, either because of management (e.g. 
grazing), different measurement teams, or the effect of precipitation causing the grass to bend. 
Measurements from the same date were carried out consistently. Vertical lines represent the stand-
ard deviation. 
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 Drivers of spectral recovery 7.3.6

To explain spectral recovery times we selected a model that achieved an adjusted R² of 0.58 

and used land cover class and season as categorical variables, along with the continuous 

variables burn severity and days with snow cover (Table 7.4). When each of the four vari-

ables was excluded from the model, we found that land cover class had the strongest influ-

ence (reduced adj. R²=0.32), followed by burn severity (0.46), days with snow cover (0.53), 

and season (0.56). Recovery times increased with burn severity. In comparison to the refer-

ence category acid grassland, bog and heather were estimated to have recovery times more 

than one year longer, while heather grassland had recovery times less than one year longer. 

Summer fires recovered approximately six months faster than spring fires. Recovery times 

were further estimated to increase with more days of snow cover in winter. When interac-

tions between land cover class, season, and burn severity were included in the model 

(Table 7.5), the adjusted R² increased to 0.66. This model revealed that burn severity in 

acid grassland had no significant effect on recovery times, in contrast to bog and heather. 

Generally, the correlations between recovery time and other environmental variables were 

low, with significant values (α=0.05) for elevation (Pearson’s r=0.35), temperature, and 

sunshine duration in the year post-fire (r=-0.30 and -0.31), wind in the year post-fire 

(r=0.31), and days with groundfrost in winter (r=0.32). However, none of these variables 

were significant factors in the selected regression model.  

Table 7.4: Coefficients in the selected regression model to explain spectral recovery times. 

 coef std err P>|t| 

Intercept -292 84 0.001 
Land cover – Bog  463 85 0.000 
Land cover – Heather 418 72 0.000 
Land cover – Heather grassland 276 94 0.005 
Season – Summer  -213 101 0.038 
Burn severity 1101 247 0.000 
Snow cover days 11 4 0.004 

 

Table 7.5: Coefficients in the regression model with interactions between variables. 

 coef std err P>|t| 

Intercept 17 74  0.815 
Acid grassland : burn severity : spring -169 315 0.594 
Bog : burn severity : spring 1405 344 0.000 
Heather : burn severity : spring 1489 266 0.000 
Heather grassland : burn severity : spring 1036 412 0.015 
Acid grassland : burn severity : summer 297 208 0.157 
Bog : burn severity : summer 1362 248 0.000 
Heather : burn severity : summer 727 209 0.001 
Heather grassland : burn severity : summer 452 428 0.294 
Snow cover days 12 4 0.000 
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 Discussion 7.4

 Baseline phenology and flammability window 7.4.1

Phenological patterns of key fuel characteristics are captured by remotely sensed VIs as 

they show expected fuel conditions (low moisture, high plant senescence) at times of in-

creased wildfire activity. Modelling the time series effectively illustrates the typical annual 

progression with acceptable accuracy for most VIs (R²=0.59-0.87) except PSRI (R²=0.40-

0.60). However, extended gaps in the time series resulting from frequent cloud cover, par-

ticularly in winter, introduce uncertainty to the modelled second peak in NDMI/NBR and 

the second trough in PSRI in January. Gaps in this section of the dataset are perhaps less 

problematic as this period tends to have lower wildfire activity, though it is an important 

period during which fuel can desiccate (Hancock, 2008). Spectral measurements by Cole et 

al. (2014b) between April and September in the PDNP also showed clear seasonal patterns 

in reflectance for both dwarf shrubs and graminoids, with the largest amplitudes confirmed 

in graminoid species. The higher stability of the SAVI time series compared to NDVI in 

our study suggests that SAVI is a more reliable proxy for greenness, particularly for land 

cover classes with bare ground exposure. The VIs also capture specific fuel properties of 

the land cover classes, such as the low FMC of Calluna and its pronounced drop in early 

spring (Davies, Legg, et al., 2010), consistent with previous studies that successfully related 

FMC in upland vegetation to spectral indices such as NDWI or Moisture Stress Index 

(MSI) (Al-Moustafa et al., 2012; Badi, 2019). 

NDMI and PSRI further allow the identification of periods when vegetation is in a condi-

tion that is critical for burning and could be used as a complement to meteorological fire 

danger indicators such as the Met Office Fire Severity Index (MOFSI) (Met Office, 2005). 

However, it is important to note that wildfires are not limited to the period estimated by 

the VIs. Particularly in acid grassland, the flammability window calculated from VIs covers 

a short period, as the optical signal changes rapidly with the onset of spring green-up. 

However, the senescent biomass accumulated during winter persists as a flammable layer 

beneath the green grass shoots that dominate the spectral signal. This potentially contrib-

utes to the lower percentage of fires captured by the flammability window in acid grassland. 

These observations align with the finding of Cole et al. (2014b) that separability between 

graminoids and dwarf shrubs using PSRI was best in April and declined rapidly thereafter. 

The longer flammability window observed for heather and heather grassland can be ex-

plained by the long winter dormancy of Calluna, which can last until late May or early June 

(Kwolek & Woolhouse, 1982). This period of dormancy is associated with low FMC and 

strong root resistance to water uptake (Bannister, 1964). FMC measurements in Calluna by 

Al-Moustafa et al. (2012) showed that FMC was still below 70 % in May but increased to 

more than 100 % in July. The longest flammability window was calculated for bog areas, 

despite their typically wet or waterlogged nature. However, the bogs in the South Pennines 

have historically experienced severe degradation, with lowered water tables transforming 

many sites into dry heath on peat (PDNPA, 2021). This could explain the similar pheno-

logical pattern of bog and heather, with bog sites showing even lower FMC levels in spring 

and summer, highlighting their vulnerability to severe wildfire events.  

While spring wildfires have predominantly impacted areas with a high proportion of senes-

cent plant material, identifying flammable conditions in summer using VIs has been more 

challenging. This may be due to the fact that wildfire danger in summer primarily results 
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from high temperatures and atmospheric drought, which leads to plant water loss but does 

not cause immediate mortality (Anderegg et al., 2013). Water stress can be observed to 

some extent in the NDMI, and other indices such as the MSI could be included, but mete-

orological indices may be better suited to identify critical periods over the summer. 

 Wildfire effects on VIs 7.4.2

Larger differences between pre- and post-fire SAVI, PSRI, and NDMI observations during 

the summer months indicate a higher burn severity associated with summer fires. However, 

these disparities could also be influenced by the higher pre-fire values of SAVI and NDMI 

in summer compared to spring. Removal and charring of plants generally result in a reduc-

tion of these VIs through a decrease in reflectance in the NIR range and unchanged or 

even increased reflectance in the SWIR range, as the absorption of the latter by leaf water is 

reduced (Fassnacht et al., 2021). The largest change was found in NDMI, and other studies 

also reported that the largest wildfire-induced decrease was in wetness indices such as 

NDMI and NBR (Serra-Burriel et al., 2021). Differences in PSRI, which is sensitive to the 

carotenoid/chlorophyll ratio (Sims & Gamon, 2002), showed subtle changes and reflected 

distinct behaviours between spring and summer. In spring, the abundant senescent plant 

material is lost from the site and partly transformed into charcoal (Clay & Worrall, 2011), 

leading to a reduction in carotenoid reflectance. In contrast, during summer, the carotenoid 

to chlorophyll ratio is typically low, and the combustion of green plants therefore affects 

chlorophyll pigments more than carotenoids.  

 Spectral recovery of VIs 7.4.3

Acid grassland 

VIs demonstrated high consistency in the rapid spectral recovery of acid grasslands, often 

within a year or even just two or three months. The main challenge in capturing this rapid 

recovery with remotely sensed VIs was data gaps in the satellite time series interrupting the 

short-lived signal. NDVI recovery was faster than SAVI for most grassland areas (by 32 

days on average), indicating a lack of sensitivity of the index to different cover conditions 

as previously reported (X. Gao et al., 2000). The VI-estimated recovery times align well 

with the field observations of vegetation recovery at the Standedge wildfire area, where live 

vegetation cover was restored within a few weeks post-fire. Grass shoots also rapidly 

reached heights comparable to the surrounding unburned area, suggesting temporarily im-

proved nutrient availability in the burned area (San Emeterio et al., 2016). Consequently, 

the land may be returned to pasture fairly quickly, and improvements in forage quality have 

also been reported for some species (Gimingham, 1972). Since the rate of fuel load accu-

mulation is high in grass-dominated land cover classes, fuel availability for new wildfires is 

only temporarily reduced, although field data indicate that the proportion of dead biomass 

takes longer to reach pre-fire levels (around two years post-fire). However, accurately quan-

tifying dead biomass fraction using satellite data is challenging due to the top view of the 

vegetation canopy. A study in subalpine grassland, where post-fire regeneration was gener-

ally slower than in our study, predicted that the return of the litter component could take 

several years (Wahren et al., 2001). Acid grassland wildfires exhibited a wide range of spec-

tral changes in the VIs, but burn severity did not significantly impact their recovery times. 

The data indicate that acid grasslands recover faster spectrally after spring than summer 



Assessing fuel dynamics 

111 

fires, likely because areas burned in spring still have the entire growing season ahead. Fol-

lowing summer fires, plant growth is limited until the end of the growing season, which is 

why full spectral recovery can only be achieved in the following year (Figure 7.9). 

Heather 

For heather land cover, estimated spectral recovery times varied significantly among wild-

fire areas, ranging from less than six months to approximately three years. The NBR recov-

ery time was generally the longest, surpassing SAVI by approximately 90 days. This sug-

gests that SWIR-based indices may be more effective at capturing heather recovery due to 

their higher sensitivity to vegetation structure. Conversely, the PSRI recovery times were 

the shortest, indicating that the noisy signal of the index is unsuitable for capturing the 

(assumed long-term) return of dead material within the heather canopy.  

Our model showed a significant effect of burn severity on recovery times in heather land 

cover, which has been reported in previous studies (Lees et al., 2021). This is typically at-

tributed to the level of fuel consumption and ground heating affecting the regenerative 

capacity of Calluna (Gilbert, 2008; Grau-Andrés et al., 2019). Interestingly, recovery time 

increased more with burn severity in spring compared to summer. One possible explana-

tion is that seed germination and plant development are delayed after severe spring fires 

because seeds are more likely to be exposed to drought conditions. Experiments by Birkeli 

et al. (2023) revealed that reduced water availability increases the time to germination and 

reduces the germination percentage of Calluna seeds, and also affects development in the 

seedling stage. Furthermore, post-fire development has been shown to depend on pre-fire 

stand age, with the ability to regenerate vegetatively strongly diminished in older stands, 

resulting in slower recovery (Davies, Smith, et al., 2010; Kayll & Gimingham, 1965). Since 

we lacked information on the age of the Calluna stands in our study area, we were unable to 

include this in the model. However, during our field campaign, we recorded the growth 

phase of Calluna on the wildfire scars and in the surrounding unburned areas, and found a 

similar pattern (Figure 7.12 a). When the unburned Calluna was in the mature-degenerate 

or degenerate phase, regeneration on the burned area primarily consisted of plants still in 

the pioneer phase, even on the oldest wildfire areas (from 2018). In contrast, stands burned 

in an earlier growth phase reached the building phase more rapidly (Figure 7.12 b). This 

aligns with the observations of Schellenberg & Bergmeier (2022), who noted that younger 

Calluna stands burned in the mature stage resprout vigorously and grow rapidly, reaching an 

early-mature stage after only three to four years under favourable conditions.  
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Figure 7.12: (a) Calluna growth phase on burned areas in relation to the pre-fire stand age. (b) Re-
generated Calluna in the building phase in 2023 on an area burned in April 2021, pre-fire Calluna 
was in the mature phase. 

Generally, the VI-estimated recovery times for heather land cover underestimate the actual 

recovery time. Our field data suggest that cover in dwarf shrub-dominated areas is reconsti-

tuted faster than height, the latter taking four to five years and longer. Underestimates of 

recovery times may be due to the limited recovery time series available for some of the 

more recently burned areas. Additionally, VI-estimated recovery times of less than one year 

for heather land cover may indicate either a misclassification in the LCM2021 or that the 

immediate post-fire signal is strongly dominated by other plant species, such as graminoids, 

herbs, and mosses. The LCM2021, as well as field observations of some rapidly recovering 

wildfire areas, suggest that these areas predominantly featured small Calluna patches before 

the fire, surrounded by graminoid-dominated acid grassland or bog vegetation (Figure 

7.13 a). Where Calluna regeneration depends on seedling establishment, the rapid spread of 

pioneer species immediately after wildfire may hinder the germination of the light-sensitive 

Calluna seeds, possibly leading to a reduction in Calluna cover, as observed at other sites 

(Brys et al., 2005; Velle & Vandvik, 2014). However, if seedlings have established success-

fully, Calluna may regain dominance at a later stage of succession due to its superior com-

petitiveness for light (Sedláková & Chytrỳ, 1999). Areas where Calluna is restricted to small-

er patches and the potential for grass invasion from surrounding areas is high (potentially 

heather grasslands) could therefore be a target for post-wildfire management.  

Our model also indicates that prolonged winter snow cover delays the recovery of burned 

areas.  This could be attributed to lower seedling survival in winter when cold temperatures 

freeze the ground, leading to desiccation and browning of foliage (Legg et al., 1992), alt-

hough a thick snow layer should prevent this. Extended periods of snow cover have also 

been known to be followed by plant damage caused by molds in early spring (Watson et al., 

1966). They could also simply indicate sites with less favourable microclimates, such as 

those found at higher altitudes (Figure 7.13 b) or on north-facing slopes. In these areas, 

lower temperatures, high winds, or less sunlight limit plant growth, as suggested by this and 

other studies (Lees et al., 2021; Nilsen et al., 2005; Velle & Vandvik, 2014). Remaining un-

explained variance in the recovery time may be attributed to differences in post-fire sub-

strate conditions (Davies, Smith, et al., 2010).  
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Figure 7.13: (a) Graminoid invasion of burned heather patch. (b) Slow recovery on a higher alti-
tude site burned in 2018, showing the transition between burned (left) and unburned (right) area. 

Heather grassland and bog 

We do not provide a separate discussion for heather grasslands, as they can be considered 

to hold an intermediary status between the previously discussed land cover classes from a 

remote sensing perspective. We hypothesise that the strong influence of grasses on the 

spectral signal likely contributes to relatively short estimated recovery times.  

For bog, recovery estimates were similarly variable as for heather, ranging from a few 

months to up to five years. Our field campaign revealed that bog areas encompassed both 

pure graminoid and Calluna-dominated habitats, as the land cover class is defined by a soil 

characteristic (>0.5 m peat), which explains the large variability in recovery rates. The dis-

crepancy between NDVI and SAVI recovery suggests that soil background has a strong 

influence in bog areas, as darker soils in particular lead to higher NDVI values for incom-

plete canopies (X. Gao et al., 2000). We therefore recommend using SAVI instead. The 

NDMI exhibited the longest recovery time among all VIs, suggesting that wildfires can 

have a substantial impact on the moisture regime in moorlands. Studies have shown that 

pyrolysed peat soils are characterised by increased hydraulic conductivity and decreased soil 

moisture (Akmet’eva et al., 2014; Astiani et al., 2020), which may affect water uptake by 

regenerating plants. 

 Limitations and outlook 7.4.4

Our study focused solely on optical remote sensing data, as we aimed to investigate these 

data comprehensively. While they provide insight into important fuel properties, they offer 

limited information on the physical structure of the vegetation and therefore cannot fully 

capture vegetation recovery to pre-fire levels. In addition, the time series feature large gaps 

due to frequent cloud cover in the study area. Therefore, future studies should include 

complementary information from sensors that are independent of atmospheric conditions 

and more sensitive to vegetation structure, such as SAR. The backscatter signal from 

spaceborne SAR has already been successfully used to retrieve information on Calluna 

height (Schmidt et al., 2018) and to monitor post-fire vegetation recovery in Arctic tundra 

(Zhou et al., 2019). Previous work on using the SAR intensity and InSAR coherence signal 

to detect burn scars in peat moorlands in the PDNP could be developed further to under-
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stand vegetation recovery in these landscapes (Millin-Chalabi et al., 2013). Canopy height 

and Calluna growth phase can also be determined from photogrammetric point clouds de-

rived from high-resolution UAV imagery (Mead & Arthur, 2020; Neumann et al., 2020). 

Access to this information would facilitate more accurate assessments of when biomass 

(i.e., fuel load) is fully restored in burned areas. However, estimating the litter component 

remains difficult even with other sensors. Our study centered on the spectral recovery of 

remote sensing signals and the recovery of vegetation cover and height in the field, with 

particular emphasis on fuel availability and condition. This should not be mistaken for the 

ecological recovery of an area, which requires more complex criteria such as assessments of 

biodiversity, structural diversity, and ecosystem functionality. 

 Conclusion 7.5

This study demonstrated the utility of optical VIs such as SAVI, NDMI, and PSRI for 

characterising the phenology of important fuel properties in UK upland land cover classes 

and identifying periods of peak vegetation flammability. Analysis of pre- and post-fire sig-

nals allowed a better understanding of wildfire-induced changes in the VIs and their recov-

ery patterns in different land cover classes. Bog and heather exhibited the longest spectral 

recovery times, heather grassland was intermediate, and acid grassland recovered most rap-

idly. Our results underscore the importance of distinguishing between different functional 

groups when estimating vegetation recovery from remote sensing data across large areas, 

particularly between dwarf shrubs and graminoids. In addition to land cover class, recovery 

times were affected by burn severity, season, and winter snow cover. The comparison with 

field data from wildfire areas showed that optical data tend to underestimate the time re-

quired for recovery to pre-fire conditions, especially for habitats dominated by slower-

growing dwarf shrubs. Future studies could supplement the optical data with SAR imagery 

or point cloud data, which provide additional information on vegetation structure, to im-

prove recovery estimates. Our results advance the knowledge of phenology-driven fuel 

dynamics in moorlands and help to interpret satellite-based analysis of vegetation recovery. 

They serve as an important foundation for the development of satellite-based monitoring 

of fire risk and post-fire vegetation recovery, which can ultimately inform both precaution-

ary measures and management priorities. 
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 Synthesis 8

Accurately characterising and mapping surface fuels in the increasingly fire-prone, but to 

date insufficiently studied temperate ecosystems of Europe is a key requirement to support 

fire risk assessment and fire behaviour modelling as a basis for management decisions. A 

comprehensive assessment of new and existing approaches based on proximal and remote 

sensing data is needed to understand their usefulness for surface fuel characterisation in 

heterogeneous temperate forests and dynamic dwarf shrub heaths. The main insights of 

this thesis in this regard are summarised below. 

 Main findings 8.1

 Proximal image data 8.1.1

A new deep learning-based method for identifying surface fuel types in central European 

forests based on proximal image data, i.e. forest photographs, was presented in this thesis 

(Chapter 5). The algorithm performed well in the classification task, despite the rather small 

dataset that had been collected for its development. The work showed that both horizontal 

forest stand photographs and forest floor photographs can be used to classify fuel types, 

and combining both leads to more stable results. While the initial results for CNN-based 

fuel type classification from forest photographs were promising, the accuracy of the algo-

rithm needs to be improved before it can be used operationally. The study showed that 

majority voting based on multiple photographs from the same forest stand are one means 

to improve understory classification. Litter classification showed improvement when ma-

jority voting was applied to the predictions of multiple single-input models, which process 

one type of input data at a time, rather than using a multi-input model. Both classifications 

improved when predictions were filtered according to the class prediction probability.  

Still, classification accuracies were limited particularly for litter fuel types due to the contin-

uous transition between different litter fuelbed compositions. Also in understory classifica-

tion, the presence of different fuel types in an image hampered the identification of a spe-

cific class. In such cases, however, it is also difficult for human observers to adhere to strict 

class boundaries. This underscores the general limitation of the classification approach and 

opens new lines of enquiry into whether the presence or even abundance of different fuel 

types can be quantified from photographs.  

Overall, the work showed that proximal sensing can be a useful means to derive infor-

mation on fuelbed composition in central European forests. It also proved that the ap-

proach enables discriminating a more fine-grained surface fuel classification than is possible 

with spaceborne or airborne remote sensing data, particularly because different understory 

species with their respective fuel traits can be identified. The approach effectively over-

comes the canopy obstruction problem faced by many other remote sensing techniques. 

This opens new opportunities to extend and refine existing fuel classifications also in other 

ecosystems. The extent to which the surface fuel types identified in central European for-

ests are associated with different fire behaviour still needs to be investigated using experi-

mental approaches, but this does not affect the proposed methodology. 

As shown in other deep learning applications, classification accuracies are likely to increase 
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as more training data become available. Expanding the dataset is therefore one of the most 

important ways of further improving the results. Applying the algorithm to labelled data 

from existing databases, such as the LUCAS photographs (see Chapter 3.2.3), would help 

to assess its performance on independent datasets. In the long term, the algorithm will 

make it possible to collect information on fuelbed composition in any region by using geo-

referenced imagery that is being uploaded in increasing volumes to various online plat-

forms. It could then serve as an alternative approach to validate fuel type maps generated 

based on other remote sensing datasets when geo-referenced imagery from within forest 

stands is available. However, as with the established method of photo series, the area repre-

sented by a photograph can be variable and also depends on the viewing direction. There-

fore, precise matching of fuel type maps with geo-referenced photographs is difficult. More 

research is needed to determine the effect this would have on validation results.  

As another use case, the algorithm could be implemented in a smartphone application for 

foresters and the general public that allows the collection of forest photographs and auto-

matically relates the identified fuel type to potential fire behaviour. This could be a means 

of communicating knowledge about fuels and fire behaviour to the population.  

 Multispectral satellite data 8.1.2

Multispectral data from the Sentinel-2 satellites were employed in all three studies of this 

thesis, as they are easily and freely accessible for any place on Earth and have a high tem-

poral and spatial resolution.  

However, the data were of limited usefulness in the classificaton of surface fuel types in 

central European forests (Chapter 5). Integrating Sentinel-2 time series in the proposed 

deep learning approach based on forest photographs did not provide much added value for 

the prediction of understory and litter fuel types. When using the multispectral data as 

stand-alone methodology for fuel type classification, results showed that distinguishing 

understory fuel types was not possible based on these data. This confirms that understory 

characteristics are difficult to retrieve and underscores the importance of incorporating 

below-canopy observations (proximal data) for accurate fuelbed characterisation. However, 

classification of litter fuel types based on multispectral data alone was similarly accurate as 

predictions based on forest photographs. The higher importance of summer observations 

compared to winter observations for litter classification revealed that the algorithms relies 

more on canopy characteristics than on direct sensing of the litter layer under leaf-off con-

ditions, showing that spaceborne multispectral data can inform indirectly about litterbed 

properties.  

This was also observed in the quantification of surface fuels (Chapter 6), where Sentinel-2 

data were used in combination with airborne laserscanning data. The results showed that 

multispectral satellite data were most useful for quantifying litter and fine woody fuels, 

which are related to canopy characteristics. The latter fuel components are more homoge-

neously distributed than other fuel components, and can thus be associated with forest 

types. Hence, multispectral satellite data can be used to make predictions on average cano-

py-related fine dead fuel loads depending on dominating tree species. Multispectral satellite 

data also helped to improve estimates of herbaceous fuel load through the link between 

certain tree species and the presence of mosses, and more generally between canopy densi-

ty and herbaceous vegetation cover. However, multispectral satellite data provided little 

information about shrub fuel loads and coarse dead wood.  

Time series of vegetation indices (VIs) derived from Sentinel-2 data were well suited for 
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monitoring seasonal changes in fuel condition in the Atlantic heathlands of western Europe 

(Chapter 7). As the time series were strongly disturbed by clouds, data gaps had to be 

bridged by harmonic modelling of the time series. This allowed for the derivation of a 

baseline phenology of the vegetation types present. The selected VIs effectively captured 

the annual dynamics of important fuel properties such as fuel greenness, senescence, and 

moisture. PSRI as proxy for the abundance of senescent plant material, and NDMI as 

proxy for fuel moisture content were well suited suited to identify periods of potentially 

increased vegetation flammability and thus determine the main phenological ‘fire season’. 

In some cases, they also allowed to detect exceptional fire weather conditions (longer 

drought periods) during other times of the year through deviations of the NDMI observa-

tions from the baseline. While the VIs can serve to warn of periods of increased fire risk, 

they provide an average estimate across the fuel complex that is dominated by the canopy, 

and cannot resolve the condition of different fuel components needed for fine-scale fire 

behaviour analysis. This is also unlikely to be feasible from spaceborne measurements. 

The magnitude of change in the selected VIs following wildfires was not suitable as an in-

dicator of fire severity and post-fire recovery times, because the spectral change depended 

strongly on the seasonal pre-fire vegetation condition. Pre-fire vegetation status could be 

included in the future to normalise the estimate of change.  

Similar to forest ecosystems, VIs incorporating SWIR reflectance such as NDMI and NBR 

were most robust in estimating vegetation recovery. However, spectral recovery times still 

underestimated field-assessed recovery times, particularly for life forms with low growth 

rates, due to the lack of remotely sensed information on structural recovery. Nevertheless, 

they provided insight into post-fire vegetation development in the different life forms asso-

ciated with heathland environments after wildfires of varying severity.  

The proposed methodological approach to monitor fuel dynamics can yet not be easily 

transferred to forest ecosystems. Especially the flammability of surface fuels in forest eco-

systems cannot be directly sensed with spaceborne multispectral data, as the analyses in 

Chapter 5 and 6 have shown that information on surface fuels can only be obtained to a 

limited extent and only indirectly via canopy properties. It may be possible to establish such 

an indirect link between the condition of the overstory and surface fuel condition, but 

complicating effects such as competition for water resources between species and shelter-

ing effects of the canopy on microclimatic conditions near the forest floor exist. Seasonal 

transfer of biomass between live and dead pools is partly directly linked to the defoliation 

of overstory trees, which can be detected using multispectral data. Senescence of understo-

ry vegetation is yet more difficult to capture. Monitoring surface fuel dynamics in temper-

ate forests may thus be more challenging than in open landscapes and require greater reli-

ance on ecological modelling approaches. 

 Airborne laserscanning data 8.1.3

High-density airborne laserscanning data were included in this work to estimate surface 

fuels loads in temperate forests (Chapter 6). In agreement with previous studies in other 

ecosystems, the precision of fuel component predictions decreased towards the forest 

floor, with best results for shrub woody fuels and weakest results for coarse woody debris. 

The work showed that even with high-density ALS data it is difficult to estimate ground-

based fuels such as dead wood and litter, including in stands with low canopy density, em-

phasising the need for alternative approaches. Lidar metrics derived for the canopy were 

most important in estimating loads for fine dead fuels such as litter and dead 1 hr fuels, 
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indicating that there was little information in the direct interaction of the laser beam with 

the forest floor. Trade-offs between canopy closure and penetration depth, as well as the 

presence of understory under low-density canopies, limited direct sensing of the forest 

floor. Also footprint size was likely to be a limiting factor in the characterisation of fine 

dead fuels. Coarse woody fuel loads could not be estimated from ALS data with the ap-

proach used either, but there may be greater potential for approaches based on multispec-

tral ALS and object-based segmentation.  

Still, while airborne laserscanning data with high point densities were of limited usefulness 

in characterising ground-based fuels, they showed potential for understory fuel characteri-

sation. Shrub woody fuel load was reasonably well predictable based on ALS data, howev-

er, the fine fraction of shrub fuels relevant to surface fire spread could not be quantified 

reliably. This had a significant impact on modelled fire behaviour in central European for-

ests using the Rothermel surface fire spread model, indicating the urgent need to develop 

more accurate models for estimating shrub fine fuels. Herbaceous fuel loads were estimat-

ed with moderate accuracy from ALS by incorporating metrics based on both canopy and 

near-surface returns. The analyses showed that different metric types were useful for un-

derstory fuel load estimation, including density, geometric, and intensity features. In the 

future, these should be used in understory segmentation and leaf-wood classification of 

ALS point clouds before fuel loads are derived. Additionally, incorporating species-specific 

information was identified as likely means to improve estimates of both herbaceous and 

shrub fuel loads using allometric equations based on ALS-derived metrics. Species identifi-

cation could be achieved using below-canopy observations to identify different understory 

types for example by further developing the approach presented in Chapter 5.   

 Summary 8.2

The aim of this work was to contribute to the advancement of remote sensing based tech-

niques for surface fuel characterisation and to increase the knowledge of fuels in temperate 

ecosystems of Europe. 

The proposed method of CNN-based fuel type identification using in-forest RGB imagery 

improves the characterisation of important surface fuelbed traits. The approach has the 

potential to replace the long-standing method of fuel classification based on photo series, 

which is highly subjective and difficult to replicate between different observers. It is there-

fore an important contribution to advancing fuel characterisation techniques by utilising 

easily accessible and low-cost images that can be acquired with simple devices such as 

smartphones cameras, and leveraging the visual processing capabilities of artificial intelli-

gence (AI) methods. Furthermore, it demonstrates that deep learning approaches can be 

successfully applied in wildland fuel science and have potential for further development 

beyond fuel type classification. In particular, AI-based methods open up new ways for in-

tegrating a wide range of sensor modalities for a more precise fuel characterisation. 

The study also provided a more detailed classification of surface fuel types in central Euro-

pean forests, which had previously been lacking. Still, the level of detail required in surface 

fuel type classification for practical purposes needs to be determined, e.g. through combus-

tion experiments that enable relating the identified fuel types to observed fire behaviour. 

This work further showed that accurate quantification of different surface fuel components 

in forests remains challenging even with detailed multispectral satellite and ALS observa-

tions, especially for ground-based fuels. The combination of spectral and structural predic-
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tors generally led to improved estimates of most surface fuel components compared to 

using one data type alone, underlining the synergistic effect of multimodal datasets for sur-

face fuel characterisation, which should be further explored.  

The research underlined the difficulties in obtaining accurate fuel load estimates from re-

mote sensing, also due the different spatial scales at which different fuel components vary. 

This demands a more flexible and scalable approach to surface fuel characterisation that 

incorporates different datasets, methodological approaches, and spatial scales depending on 

the target component and the requirements of the application, and should also translate to 

an adaptation of field sampling methods.  

Despite the limited accuracies, this is the first time a spatially explicit representation of this 

key fuel property (fuel load) has been obtained in central European forests, providing a 

higher level of detail than conventional fuel classification maps. Fuel load maps give a bet-

ter overview of the spatial distribution of surface fuels in forest stands and are thus relevant 

to forest managers and firefighters. In addition, they can help improve estimates of forest 

aboveground biomass and refine emission estimates from burning forest stands. 

Furthermore, this thesis showed that dynamic changes in surface fuels due to phenology 

and post-fire recovery processes in open landscapes such as heathlands can be assessed to 

some extent using multispectral satellite time series. While changes in the potential flam-

mability of surface fuels over the course of the year can be tracked using optical indices, 

long-term vegetation recovery is more difficult to assess accurately based on multispectral 

data alone. The most reliable results were obtained using SWIR-related indices and for are-

as dominated by fast-growing life forms such as grasses, whereas areas dominated by slow-

er growing life forms such as dwarf shrubs require the integration of structural information. 

Analysing the potential environmental drivers of spectral recovery times contributed to a 

better understanding of the recovery process after wildfire, which can be incorporated in 

models describing fuel dynamics that can be used to update fuel maps. On the basis of the 

regression models presented, it is already possible to make rough predictions as to when a 

site can be expected to return to a similar state to before the wildfire. This will help to pre-

dict future fire risk and prepare suitable management plans. Overall, surface fuel dynamics 

in open landscapes can possibly be sufficiently well characterised based on multispectral 

and ancillary structural data, but monitoring surface fuel dynamics in forest ecosystems 

likely poses additional challenges.

 Outlook 8.3

Overall, the approaches presented in this thesis can only capture part of the high spatial 

and temporal complexity of fuels, which also varies depending on the ecosystem and scale. 

However, timely and precise fuel information is needed particularly for the recently ad-

vanced physics-based fire behaviour models, such as FIRETEC (R. Linn et al., 2002) and 

WFDS (Mell et al., 2007), which rely on computational fluid dynamics (CFD) and require 

fine-scale, three-dimensional (3D) fuel inputs (e.g., Parsons et al., 2011). CFD models are 

specifically useful to understand the underlying mechanisms of fire propagation through 

heterogeneous fuels, however, running these models is computationally expensive. More 

recently, real-time simulation tools that include fire-atmosphere coupling for prescribed fire 

planning have been developed, which also require 3D fuel inputs (R. R. Linn et al., 2020). 

Still, less resource-intensive semi-empirical models such as FlamMap (Finney, 2006) may be 

the first choice for landscape-scale fire behaviour calculations and operational purposes. 
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Hence, accurate fuel representations at the landscape scale are also needed, and are further 

relevant for emission calculations by models such as CONSUME (Prichard et al., 2007) 

and FOFEM (Reinhardt, 1997).  

Recently, besides emphasising the need for continuous mapping of fuel properties, fire 

scientists have asked for new frameworks to characterise 3D fuels for CFD models and 

establish linkages between different spatial scales (D. L. Peterson et al., 2022; Prichard et 

al., 2023). As proximal and remote sensing data from different sensors are becoming avail-

able in increasing volumes and at low cost, combining these is a promising way to achieve a 

more precise characterisation of surface fuels that can suit different applications and mod-

elling scales. Multi-modal datasets have already shown promise in surface fuel characterisa-

tion, as has been demonstrated in Chapter 5 and 6. The new processing capabilities offered 

by AI-based methods, which require little preprocessing of data and automatically extract 

and select useful features, can be handy to fuse different datasets for fuel characterisation. 

In this Outlook, I aim to extend on previous proposals for future surface fuel characterisa-

tion by presenting my own view on what remote sensing datasets and methods could be 

helpful to capture surface fuel variability and impacting ecological processes at the relevant 

scales. Figure 8.1 provides an overview of the proposed framework to achieve a multi-

source, multi-scale, and multi-temporal characterisation of surface fuels in temperate for-

ests and dwarf shrub heaths, and beyond. 

 Future surface fuel characterisation 8.3.1

At the local scale, gridded 3D information on fuels is required to run CFD models. There-

fore, a voxel-based representation of fuels is needed, with each voxel being associated with 

information about the amount of fuel contained within the voxel (fuel load), its physico-

chemical properties (fuel traits), and its condition (fuel moisture). The voxel size deter-

mines the resolution of the fuelbed. Detailed 3D point clouds of the forest understory veg-

etation and coarse deadwood should be collected by terrestrial laserscanning (TLS), ideally 

integrated with an imaging sensor that captures colour information (RGB values), or alter-

natively a separate external camera. While the point cloud is used to determine the presence 

of fuel in each voxel, e.g., by relating the return density per voxel to the occupied volume, 

the colour information is necessary to visually interpret the data and recognise different 

plant parts and their properties, such as their live/dead status. This could be realised by 

deep learning-based semantic segmentation of the 3D point cloud (see e.g. Zhang et al. 

(2023) for a recent discussion of different methods). The segmented plant parts could be 

associated with information on SAV, heat content, and particle density for the identified 

species from a trait database. Particle density and estimated volume occupied could be 

combined to retrieve fuel load. Moisture content of the plant parts is calculated based on 

weather data for dead fuels depending on their identified size, while the moisture of live 

fuels is determined by classification as leaf or wood and associated with respective species-

specific moisture content under consideration of weather-induced drought stress.  

For the litter layer and fine dead fuels, a slightly different approach might be necessary. 

Litter depth could be identified from a ground-penetrating radar system, which may also 

allow to retrieve the moisture content of the litter layer. RGB imagery could be used to 

identify litter types and the presence of fine woody fuels using CNNs, which could be as-

sociated with typical bulk density values of the litter layer (allowing to calculate litter fuel 

load) and physico-chemical properties for the species present. 



III Synthesis 

122 

 

Figure 8.1: Proposed framework for surface fuel characterisation covering different spatial and 
temporal scales by using a variety of proximal and remote sensing datasets. Line types indicate the 
type of data suggested to be used to capture a surface fuel property or ecological process, while 
coloured fills indicate suitable platforms/locations of the respective data collecting sensor. As the 
ecological processes that influence temporal fuel variation also cover different spatial scales, no 
colours are used to indicate that different sensor platforms may be suitable. Data types printed in 
bold have been examined in this thesis. 
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In forest ecosystems, these sensors are ideally mounted on a ground vehicle that moves 

through the forest while collecting data. For the denser and more homogeneously vegetat-

ed dwarf shrub heaths, it might be more practical to use a UAV platform and collect the 

data from a top view. Difficulties in estimating the litter layer could be overcome by relat-

ing the litter production to different growth stages of the dwarf shrubs identified from the 

collected VHR imagery (see for example Neumann et al., 2020) or to the productivity of 

the graminoids under the given site conditions, while also including site-specific decompo-

sition rates.  

At the landscape scale, fuel information is provided in 2D raster layers for each fuel com-

ponent, which can be combined into raster stacks, with each cell containing information on 

average fuel load, traits, and moisture within the grid cell. The resolution of the raster grid 

is coarser than that of the 3D representation and the spatial coverage is greater. The fuel 

information can be used to analyse fire behaviour and fire effects at the landscape scale, 

where topography and weather gain importance over fine-scale fuel heterogeneity. Still, a 

continuous representation of the fuel properties is being sought, as it has more informative 

value for different applications and enables better scalability between the 2D and 3D ap-

proach. High-density airborne laserscanning (ALS) data, preferably operating at different 

wavelengths (e.g., NIR, SWIR, green), is subject to a stepwise segmentation approach, that 

first separates different forest strata (e.g., Ferraz et al., 2012). Then, the intensity infor-

mation of the different channels and geometric features are used to distinguish between 

dead and living fuels, and leaves and wood (e.g., Krishna Moorthy et al., 2020). From the 

segmented point cloud, the shrub total and fine biomass are estimated. Herb fuel loads are 

also estimated from the ALS point cloud, but multispectral satellite data is included as addi-

tional predictor capturing canopy characteristics (as has been shown to be beneficial in 

Chapter 6). When only low-density and/or single-channel ALS data are available, cover and 

height of the herbaceous and shrub layer are estimated from the point cloud, and loads are 

calculated by using allometric equations for the main species present, identified from point-

captured below-canopy photographs using CNNs (see Chapter 5) and then extrapolated to 

the whole area. The species information from below-canopy observations is also needed to 

assign the average physico-chemical properties. Herb and shrub fuel moisture are empiri-

cally tied to the canopy multispectral or radar signal, and species-specific differences are 

incorporated using empirical data. Concerning the litter layer, average loads are assigned 

according to the dominating tree species (see Chapter 6) and site conditions. Litter traits 

are assigned based on canopy properties identified from multispectral satellite data and 

refined using forest floor photographs where available (Chapter 5). Litter moisture is de-

termined from weather data and litter type-specific drying/wetting curves (e.g. Schunk et 

al., 2013). Coarse deadwood in forest ecosystems can either be identified in the multispec-

tral ALS dataset, or a rough area-based estimate is made depending on stand age, species, 

and management. Inaccuracies in this fuel component are less relevant for fire behaviour 

estimates, but can affect fire effects models. Deadwood traits and moisture are assigned 

based on overstory species (multispectral data), stem size (from ALS or stand age), and 

weather data. 

For the vertically less complex dwarf shrub heaths, it may be sufficient to create photo-

grammetric point clouds from UAV observations instead of acquiring more costly lidar 

data. The resulting canopy height model can be used together with VHR or hyperspectral 

imagery where the different life forms (mainly graminoids and dwarf shrubs) are segmented 

to calculate their respective loads based on allometric equations incorporating cover and 
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height. Fuel traits are assigned according to the dominating life form in the grid cell, taking 

into account different growth stages in the case of dwarf shrubs, which have been identi-

fied in the imagery. Moisture values are assigned as an average across the canopy based on 

optical or radar data, calibrated for the respective life form. Similar to the 3D approach, 

average litter loads are assigned based on the balance of deposition and decomposition 

determined empirically or through ecological modelling for the identified life forms and 

environmental conditions. Litter traits are also assigned based on the dominating life form, 

and growth stage if applicable, while litter moisture is modelled depending on weather data.  

Links between small-scale 3D and larger-scale 2D representations can be established. 2D 

rasters of fuels may be obtained from 3D voxels by averaging/summarising the attributes 

of all voxels that fall within a raster grid cell and contain the fuel component of interest. 

Additionally, detailed TLS models of understory fuels can be coupled with ALS or even 

spaceborne lidar measurements. Similarly, UAV observations of fuel situations can be 

linked to multispectral satellite observations, thus helping to improve mapping efforts at 

larger scales. Synthetic TLS and ALS fuelbeds could be used to train models that can pre-

dict a plausible representation in the case that one of the two datasets is missing in an area. 

Furthermore, they could be used to build up a large database of possible fuelbeds, for ex-

ample with the help of forest growth simulators that allow to create realistic forest stands 

of varying structure and composition, and also include different types of forest manage-

ment (e.g., Henniger et al., 2023). Deep learning algorithms could then predict the best 

matching 3D fuelbed for a stand from simple forest photographs (extending the work in 

Chapter 5), rapidly providing the basis for fire behaviour modelling in any location. 

Temporal dynamics in fuels as a result of ecological processes also need to be included in 

future fuel characterisation frameworks. Seasonal changes in the flammability of open land-

scapes such as dwarf shrub heaths can be monitored using optical satellite time series data 

(see Chapter 7), which allow to determine the timing of phenological events such as the 

onset of spring green-up or autumnal senescence. However, in forest ecosystems, below-

canopy observations, e.g. from phenocams, should complement satellite-based observa-

tions, which can only inform the timing of leaf shedding from overstory trees. Still, both 

empirical and process-based ecological models are needed to quantify the effects of such 

phenological events on fuel loads, traits, and condition. In particular, processes such as 

decomposition and associated changes in fuel characteristics cannot be resolved with re-

mote sensing data and require ecological modelling. Seasonal growth of fast-growing life 

forms can be monitored using multispectral data, but more importantly structural infor-

mation from repeated lidar acquisitions or photogrammetric point clouds is needed. On 

time scales of multiple years, processes such as disturbance and mortality as well as subse-

quent recovery and succession become relevant. The occurrence of disturbance events is 

readily detectable with radar and multispectral satellite data acquired at high temporal reso-

lution, and these data can also be used to monitor vegetation recovery (see Chapter 7). De-

tecting changes in species composition through succession, and the resulting effects on fuel 

loads and traits, may require higher spectral and spatial resolution, provided for example by 

VHR and hyperspectral imagery. However, it is inefficient to monitor such processes close-

ly at every possible site, so generalisations based on ecological models are essential and 

require further research.  
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 Additional research needs 8.3.2

The individual methods and remote sensing datasets proposed above for fuel characterisa-

tion need to be thoroughly tested and validated. Importantly, methods to combine the in-

dividual datasets and evaluation techniques within a joint framework should be explored. 

Future research should therefore focus primarily on methods for processing data of differ-

ent structure and approaches to data fusion. 

Future research will also need to address the collection of reference data, including the 

adaptation of field sampling protocols. 3D fuel sampling approaches have already been 

proposed (Hawley et al., 2018; Rowell et al., 2020) and will not be further discussed here. 

Extensive reference datasets are particularly urgently needed in the understudied but highly 

vulnerable ecosystems of central-western Europe. Standardised fuel sampling should there-

fore become part of national forest inventories. More data are also required to develop 

accurate allometric equations for a number of important species, including their partition-

ing of biomass into different plant compartments. Furthermore, databases of geo-

referenced and time-stamped forest photographs should be set up and extended with the 

help of citizen scientists. This would help to further improve and expand deep learning-

based approaches to fuel characterisation. Lidar datasets should be made freely available 

within and across borders, and a library of synthetic fuelbeds should be established.  

Finally, laboratory experiments at varying scales and with different species, as well as exper-

imental burns in the field, are needed to better understand fire behaviour in central Euro-

pean fuelbeds. In order to be able to validate fire modelling results with data from real 

fires, standardised protocols for collecting data on fire behaviour characteristics during real 

wildfires should be established, ideally including the collection of optical and thermal data 

from UAV platforms. 

Continuing the research on fuels and fire behaviour in temperate ecosystems is essential to 

respond appropriately to the increasing risk of wildfires. Better characterisation of complex 

fuelbeds, both at fine scales and over large areas, is a fundamental step towards a better 

understanding of fire dynamics and effects based on modelling approaches. Shifts in vege-

tation composition, productivity, arrangement, and condition associated with climate 

change will continue to alter fuelbed properties and need to be monitored precisely. This 

will provide the foundation for preparing for changes in the pattern, intensity, severity, and 

frequency of future wildfires in European temperate regions.  
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A – Appendix of Chapter 5 

Description of fuel sampling and field data preparation: 

We sampled all surface fuel components in 179 circular plots with a radius of 7.5 m (176.6 

m²): We recorded all understory trees and shrubs with DBH <7 cm by counting the num-

ber of individuals per species in classes of different root collar diameter (RCD). We record-

ed cover and average height of each herbaceous species and moss type with cover >1 %.  

Dead woody fuels were tallied in four different size classes related to their rate of drying (1 

hr, 10 hr, 100 hr and 1000 hr fuels) along three 7.5 m transects in azimuths of 30°, 150° 

and 270° from the plot center following the sampling protocol of the Forest Inventory and 

Analysis (FIA) program of the USDA Forest Service (Woodall & Monleon, 2008). Litter 

samples were collected at the end of each transect from 0.18 m × 0.18 m microplots. We 

visually estimated cover and measured the average height (depth) of the shrub, herb and 

litter layers. The species, their diameter at breast height (DBH) and canopy cover of over-

story trees were also recorded.  

Understory shrub and tree counts were used in species-specific allometric equations based 

on RCD to compute biomass (Annighöfer et al., 2016). If equations were not available for 

a species, we estimated biomass based on equations for species with similar wood density 

and preferably similar growth form. We estimated herb and moss biomass from growth 

form-specific equations incorporating height and cover (PhytoCalc model, Bolte, 2006). 

Biomass of dead woody fuels was estimated from field counts using species-specific density 

values for coarse (1000 hr) fuels and an average bulk density value for smaller fuel particles. 

Correction factors for decayed material and sloped terrain were included (Woodall & Mon-

leon, 2008). Litter samples were dried for 72 hours at 60 °C and then weighted to obtain 

dry matter biomass. All biomass values were related to the respective sampling area to ob-

tain the loading, i.e. biomass per unit area, for each fuel component.  
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Figure A1: Averaged time series of Sentinel-2 bands 11 (SWIR, upper panel) and 2 (blue, lower 
panel) by litter fuel type. Shaded areas show standard deviations. 

 

Figure A2: Test accuracy of Sentinel-only classification after 10-fold cross-validation for the origi-
nal Sentinel-2 dataset (10 spectral bands + NDVI) and the original dataset plus three additional 
spectral indices (tasselled cap wetness, tasselled cap greenness and NDMI). 
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Figure A3: Examples of synthetic images that maximize activations of frequently activated filters in 
litter classification. 
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B – Appendix of Chapter 6 

Description of field measurements and data preparation 

Surface fuel components (dead woody fuels, litter, live herbaceous and shrub fuels) were 

sampled in 119 circular field plots with a radius of 7.5 m (176.6 m²). Dead woody fuels 

were recorded along three transects of 7.5 m length starting at the plot center and laid out 

in azimuths of 30°, 150° and 270°. All woody fuels that intersected the transect were tallied 

following Woodall & Monleon (2008). Counts were recorded separately for each of four 

diameter classes, as the size of the fuel particle determines how quickly they dry out (1 hr, 

10 hr, 100 hr and 1000 hr fuels). At the end of each transect, a small frame of 0.18 m x 0.18 

m was placed and all litter particles within the frame were collected to the top of the duff 

layer. All herbaceous species and mosses with cover >1 % were recorded with their relative 

cover on the plot area and their average height. For the shrub fuels, all understory trees and 

shrubs with DBH <7 cm were counted in classes of different stem diameter at base (DAB), 

and the species was recorded. Finally, the cover of the tree, shrub, herb and litter layer was 

estimated visually and the average height/depth of shrub, herb and litter layer was meas-

ured. Tree species in each plot were recorded and the diameter at breast height (DBH) of 

each individual measured. 

The fuel load of the dead woody fuel particles was estimated from the tallies, using species-

specific wood density values for the coarsest particle size class and an average bulk density 

value for smaller fuel particles. We accounted for different stages of decay in the 1000 hr 

fuels and tallies along sloped terrain by applying correction factors (Woodall & Monleon, 

2008). Litter loads were obtained after drying the samples for 72 hours at 60 °C, measuring 

dry weight and averaging the three samples per plot. Herbaceous fuel load was estimated 

from height and cover measurements by using growth form-specific equations (PhytoCalc 

model, Bolte, 2006). Shrub woody fuel load was calculated from species-specific allometric 

equations based on DAB for each of the recorded species (Annighöfer et al., 2016). For 

species where own allometric equations were lacking, the equation of a species with similar 

wood density and a similar growth form was used. The fine shrub load (plant parts with 

diameter <6 mm) within 2 m of the ground was estimated based on shrub woody biomass 

by using the relative contribution of different plant compartments to total biomass in dif-

ferent species as a function of diameter at base (DAB) following Pajtík et al. (2011). For 

young broadleaved trees with DAB >5 cm, we set the fine biomass to zero, as we observed 

that in most cases none of the fine plant parts fell below the 2 m limit, while for DAB be-

tween 3 and 5 cm we assumed that half of the fine biomass was still within the 2 m limit. In 

the coniferous species, we reduced the fine biomass to half only when DAB exceeded 5 

cm. 
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Table B1: Equations for the geometric features calculated from the lidar point cloud in this study. 

Anisotropy =
λ1 - λ3

λ1
 

 

Planarity =
λ2 - λ3

λ1
 

Eigenentropy = - ∑ λi · ln(λi)

3

i=1

  

 

Sphericity =
λ3

λ1
 

 

Omnivariance =  (λ1 · λ2 · λ3)
1/3

 

 
Verticality = 1 - 

λ3

λ1 + λ2 + λ3
 

 

Sum = λ1 + λ2 + λ3 

 
Surface Variation =

λ3

λ1 + λ2 + λ3
 

Linearity =
λ1 - λ2

λ1
 

 

 

with eigenvalues λ1, λ2 and λ3 derived from the covariance matrix of all points within a certain 

neighbourhood area (of radius r) centered around a point. Calculated for each point inside a vertical 

stratum and aggregated on plot-level by calculating the mean over the vertical stratum. 

Table B2: Physical fuel properties and environmental parameters used in the Rothermel model for 
surface fire behaviour modelling in the study area. 

parameter fuel component value unit source 

surface area to volume 
(SAV) ratio 

litter 6000 m²/m³ 
within the range reported by Asco-
li et al. (2015) and Cruz & Fer-
nandes (2008)  

1hr 1600 m²/m³ Scott & Burgan (2005) 

10hr 358 m²/m³ Scott & Burgan (2005) 

100hr 98 m²/m³ Scott & Burgan (2005) 

live herb 11500 m²/m³ Schimmel & Granström (1997) 

live fine shrubs 5000 m²/m³ 
within the range reported by Asco-
li et al. (2015) and Cruz & Fer-
nandes (2008) 

fuel moisture 

litter 3 % Scott & Burgan (2005) 

1hr 3 % Scott & Burgan (2005) 

10hr 4 % Scott & Burgan (2005) 

100hr 5 % Scott & Burgan (2005) 

live herb 30 % Scott & Burgan (2005) 

live fine shrubs 60 % Scott & Burgan (2005) 

extinction moisture all 30 % Scott & Burgan (2005) 

heat content all 18622 J/g Andrews (2009) 

terrain slope - 0 % 
set to zero to isolate effect of 
surface fuel loads 

open wind speed - 15 km/h 
DWD Climate Data Center, July 
maximum 

wind adjustment factor - 0.2 - Andrews (2012)  for sheltered fuel 
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Figure B1: Fire behaviour characteristics modelled using random forest regression on fuel loads (y-
axis) vs. reference fire behaviour characteristics calculated using the Rothermel surface fire spread 
model (x-axis). 
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Figure B2: Absolut change in the three fire behaviour characteristics after adding the RMSE of 
litter and shrub load predictions to every pixel in the study area (extreme scenario). 
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C – Appendix of Chapter 7 

Table C1: Overview of wildfire areas visited during the field campaign. Centroid coordinates of the 
wildfire areas are projected to the British National Grid (EPSG:27700). 

wildfire area burn 
year 

land cover type size 
(ha) 

number of 
sampling plots 

centroid coor-
dinates (m)  

Dovestone 2018 acid grassland, bog 42 5 402435, 403195 
Tameside 2018 heather grassland, 

heather, bog 
1010 15 400970, 401261 

Roaches 2018 heather 64 6 400492, 363202 
Saddleworth 
North 

2019 bog, acid grassland 441 5 401468, 411702 

High Peak 2019 heather 23 4 403164, 399110 
Kirklees 2020 bog 158 3 406449, 410225 
West of Didsbury 
intake 

2020 heather 1 3 403518, 398539 

South of Mount 
Road 

2021 acid grassland, bog 283 6 403811, 409322 

Tintwistle Low 
Moor 

2021 heather 2 3 402922, 398194 

Middle of Tintwis-
tle Low Moor 

2021 heather 2 3 402617, 398402 

Slathwaite Moor 2022 bog 83 3 403717, 413471 
North of Didsbury 
intake 

2022 heather 6 4 403811, 398869 

Standedge 2023 bog 116 3 (+2 outside) 401668, 410461 
Harrow Hill 2023 acid grassland, bog 24 2 406001, 410259 

 

Table C2: Phenological characteristics of each VI in each land cover type derived from modelling 
VI time series with a harmonic modell. Model performance metrics are also shown. 

 index mean maximum DOY of 
max. 

minimum DOY of 
min. 

amplitude R² RMSE 

heather NDVI 0.65 0.73 186 0.55 103 0.09 0.67 0.04 
SAVI 0.33 0.44 193 0.24 355 0.10 0.87 0.03 
NDMI 0.13 0.22 217 -0.02 102 0.12 0.74 0.05 
PSRI 0.07 0.13 82 0.02 217 0.05 0.40 0.04 
NBR 0.40 0.50 213 0.25 105 0.13 0.75 0.05 

acid 
grassland 

NDVI 0.63 0.76 189 0.52 84 0.12 0.79 0.04 
SAVI 0.40 0.54 185 0.28 364 0.13 0.80 0.04 
NDMI 0.19 0.26 195 0.06 89 0.10 0.59 0.05 
PSRI 0.08 0.16 78 0.02 221 0.07 0.53 0.04 
NBR 0.44 0.54 197 0.30 88 0.12 0.64 0.06 

bog NDVI 0.60 0.69 197 0.48 100 0.11 0.80 0.04 
SAVI 0.32 0.43 195 0.25 359 0.09 0.85 0.03 
NDMI 0.11 0.21 351 -0.03 106 0.12 0.72 0.05 
PSRI 0.09 0.18 89 0.03 362 0.07 0.54 0.04 
NBR 0.37 0.46 346 0.22 105 0.12 0.76 0.05 

heather 
grassland 

NDVI 0.60 0.77 200 0.46 92 0.15 0.86 0.04 
SAVI 0.36 0.53 195 0.22 360 0.16 0.87 0.04 
NDMI 0.16 0.27 204 0.02 98 0.13 0.73 0.05 
PSRI 0.09 0.18 87 0.01 213 0.09 0.60 0.04 
NBR 0.41 0.55 206 0.25 96 0.15 0.76 0.05 



C – Appendix of Chapter 7 

 

165 

Table C3: Day of year (DOY) of the beginning and end of the spring flammability window in dif-
ferent land cover classes and proportion of actual fires that fell within the calculated period. 

  DOY 
start 

DOY 
end 

length  
(days) 

% fires  
within 

N fires 
total 

acid grassland 48 123 75 71 24 

heather 47 152 105 73 25 
heather grassland 41 148 107 90 11 
bog 39 170 131 81 14 

Table C4: Mean pre-fire VIs and mean differences between pre- and post-fire VIs, plus standard 
deviations. Values for heather grassland are not shown due to only one wildfire occurrence. 

  pre SAVI pre NDMI pre PSRI dSAVI dNDMI dPSRI 

acid grassland spring 0.20±0.05 -0.04±0.09 0.28±0.10 -0.07±0.08 -0.15±0.16 -0.06±0.12 

 summer 0.46±0.09 0.17±0.10 0.07±0.02 -0.28±0.12 -0.31±0.20 0.06±0.05 

bog spring 0.22±0.07 -0.07±0.06 0.26±0.08 -0.07±0.07 -0.10±0.08 -0.05±0.07 

 summer 0.38±0.08 0.05±0.08 0.10±0.02 -0.25±0.22 -0.25±0.29 0.07±0.21 

heather spring 0.26±0.04 -0.03±0.11 0.17±0.07 -0.12±0.06 -0.19±0.14 0.00±0.06 

 summer 0.47±0.14 0.14±0.10 0.06±0.03 -0.29±0.19 -0.26±0.33 0.08±0.13 

heather grassland spring 0.20±0.04 -0.09±0.06 0.30±0.06 -0.09±0.05 -0.06±0.16 -0.11±0.09 

 

 

   

 

Figure C1: Standedge wildfire area burned on 03/05/2023. Photos were taken on 04/05/06 (upper 
left), 07/06/2023 (upper right), and 03/07/2023 (lower left). 
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