

9th Thermal and Fluids Engineering Conference (TFEC) April 21-24, 2024 Partially Online Virtual and at Oregon State University, OR Conference

Test section design for heat transfer measurements in a turbulent molten salt HITEC pipe flow

TFEC-2024-52474 (Presentation only)

Björn Brenneis, Sebastian Ruck, Sara Perez Martin

KIT - The Research University in the Helmholtz Association

www.kit.edu

EU-DEMO Helium-cooled (HCPB) power plant

- DEMOnstration fusion power plant $D_2 + T_3 \rightarrow He_4 + n + (17.6 \text{ MeV})$
- Operates in pulsed mode (plasma current)
 - 2h pulse time ($\sim 2 \text{ GW}_{\text{th}}$)
 - ~10 min dwell time (~1-3% nominal power)
- Stable operating conditions needed at the steam turbine
- Intermediate Heat Transfer System

EU-DEMO Helium-cooled (HCPB) power plant

3 June 7, 2024

HELOKA-US

- HElium LOop Karslruhe Upgrade Storage facility
- Design characteristic (260 kW_{th}):
 - High pressure Helium loop: 300 520°C, 80 bar
 - Molten salt (HITEC) loop with two tanks: 240 465°C, 6 bar
 - Water cooling system: 160 220°C, 35 bar
- Experimental research of the decoupling scheme
 - Heat transfer measurements
 - Investigate a He-HITEC heat exchanger prototype
 - He compressor prototype

Design a test section for heat transfer measurements

Test section - HITEC heat transfer measurements

- Boundary conditions:
 - Mass flow: $\dot{m} = 0.9 \text{ kg/s}$
 - Inlet temperature: $T_i = 240 465^{\circ}$ C
- Design parameters:
 - Turbulent pipe flow with $Re_{max} \ge 10000$ for the full temperature range
 - ▶ Pipe diameter: $d_i = 28.5 \text{ mm}$
 - Bulk temperature increase of 10K
 - ➡ Total heat flux 14 kW
 - Heating wires within a copper block
 - Uniform angular temperature distribution
- Analytic description of the heat transfer
- Numerical simulation of the flow inlet and heated segment

HITEC fluid properties

- Heat capacity: constant $c_p = 1560 \frac{J}{kg \cdot K}$
- Kinematic viscosity ν : Deviation of published values < 25%
- Thermal conductivity λ : Deviation of published values up to 311%

Flow straightener boundary conditions

- ANSYS Fluent meshing (poly-hexacore mesh)
- **RANS simulation** [ANSYS FLUENT 2022 R2]: $k \omega$ SST model
- Fluid properties of HITEC: constant at $T = 305^{\circ}$ C
- Inlet velocity: $u_{in} = 0.446 \text{ m/s} (Re = 14480)$
- Variation of the flow straightener components A and B
 - Honeycomb / perforated plate
 - Amount (none, one or two)
- Evaluation of the axial velocity profile and swirl angle

Flow straightener simulation results

Requirements:

- Deviation of the axial velocity profile to fully developed pipe flow < 5%</p>
- Swirl angle $\Theta < 2^{\circ}$

 $\tan(\Theta) = \left(\frac{u_t}{u}\right) \quad \begin{array}{l} u_t - \text{tangential velocity} \\ u - \text{axial velocity} \end{array}$

- Entrance length:
 - Analytic: $L_{hyd}/D = 4.4 \cdot Re^{1/6} \approx 22$
 - **Simulation:** $\sim 34D \Rightarrow 10D$

18D	Deviation vel. profile	Swirl angle	
None	5%	> 3°	
2 Honeycombs	< 4%	< 0.1°	
2 Perforated plates*	< 1%	< 0.5°	
•			

*Laws (1990)

8 June 7, 2024

Björn Brenneis - TFEC-2024-52474

KIT, INR

Analytic description heat transfer

 Review of Nusselt number correlations: [Ghajar and Tam (1994); Hoffman and Cohen (1960); Kakac (1987)]
 ➡ Gnielinski correlation (for 2300 ≤ Re ≤ 5 · 10⁶; 0.5 ≤ Pr ≤ 2000):

$$f_{P} = (0.79 \cdot \ln(Re) - 1.64)^{-2} \qquad Re = \frac{u \cdot d_{h}}{v}$$

$$Nu_{G} = \frac{\frac{f_{P}}{8} \cdot (Re - 1000) \cdot Pr}{1 + 12.7 \cdot \sqrt{\frac{f_{P}}{8}} \cdot (Pr^{2/3} - 1)} \qquad Pr = \frac{v \cdot \rho}{\lambda}$$

Expected deviation of the Nusselt number
 5% due to the correlation [Kakac (1987)]

Up to 45% due to fluid property uncertainty

Heated length of L = 1.24 m necessary
 Reduce wall temperature

 L = 2.48 m

<i>T_{b,in}</i> [°C]	Re _{max}	Pr	Nu _G	<i>T_{w,1}</i> [° <i>C</i>]	<i>T</i> _{w,2} [° <i>C</i>]
260	10412	14.6	108.2	345.4	305.2
300	14012	11.4	129.9	375.2	340.1
350	18820	9.1	155.9	418.1	386.6
400	23797	8.0	182	464.7	434.9
450	28808	7.5	210	500*	484.5

 c_p

for 10K temperature increase

Heated segment boundary conditions

Structured mesh [ICEM CFD 19.2] • $30 \cdot 10^6$ cells, cell size at the wall: $y^+ < 1$ **RANS simulation** [ANSYS FLUENT 2022 R2]: $k - \omega$ SST model • Fluid properties of HITEC: constant at $T = 305^{\circ}C$ Inlet velocity: $u_{in} = 0.7599 \text{ m/s}$ (*Re* = 14480) Inlet Temperature: $T_{b.in} = 300^{\circ}$ C • Temperature increase of $\Delta T_h = 10 \text{K}$ $L_{H} = 2480 \text{ mm}$ Variation of the thermal boundary condition $d_{Cu,a} = 120 \text{ mm}$ $d_{Cu,i} = 33.7 \text{ mm}$ 1400 mm 700 mm 14 kW at the copper surface $T_{b,in}$ $d_i = 28.5 \text{ mm}$ ṁ Ideal constant heat flux Ideal constant wall temperature $\dot{Q} = 14 \text{ kW}$ 10 June 7, 2024 Biörn Brenneis - TFEC-2024-52474 KIT. INR

Heated segment simulation results

Increase of the wall temperature 10K
 Temperature difference T_w - T_b < 40K
 Matches the predicted wall temperature

- Thermal entrance length: $L_{th} = 0.64 \text{ m}$
 - Deviation <1% for the fully developed temperature profile and Nusselt number
- Mean Nusselt number Nu_m = 138
 Deviation to correlations 5%

Summary

- Necessity of an Intermediate Heat Transfer System for DEMO
- Boundary conditions of a HITEC test section
 - Mass flow $\dot{m} = 0.9 \text{ kg/s}$, Inlet temperature $T_i = 240 465^{\circ}\text{C}$

Design parameter:

- Pipe diameter $d_i = 28.5 \text{ mm} \Rightarrow$ Reynolds number range Re = 5000 28800
- Temperature increase 10K \Rightarrow Heat flux $\dot{Q} = 14 \text{ kW} \Rightarrow$ Heated length 2.48 m
- Flow straightener of two perforated plates
- Deviation of the analytically and numerically calculated Nusselt number within 5% (constant fluid properties)
 - Impact of the heat transfer uncertainties up to 45%
 - Experiments to measure the impact of wall to bulk temperature difference