

9 th Thermal and Fluids Engineering Conference (TFEC) April 21-24, 2024
Partially Online Virtual and at Oregon State University, OR Conference 9th Thermal and Fluids Engineering Conference (TFEC)
April 21-24, 2024
Partially Online Virtual and at Oregon State University, OR Conference

Test section design for heat transfer measurements in a turbulent molten salt HITEC pipe flow

TFEC-2024-52474 (Presentation only)

TFEC-2024-52474 (Presentation only)

Björn Brenneis, Sebastian Ruck, Sara Perez Martin

KIT – The Research University in the Helmholtz Association

WWW.kit.edu Björn Brenneis, Sebastian Ruck, Sara Perez Martin

EU-DEMO Helium-cooled (HCPB) power plant

DEMOnstration fusion power plant $D_2 + T_3 \rightarrow He_4 + n + (17.6 \text{ MeV})$

Operates in pulsed mode (plasma current)

- **2h pulse time (** \sim **2 GW_{th})**
- \blacksquare ~10 min dwell time (~1-3% nominal power)
- Stable operating conditions needed at the steam turbine
- ◆ Intermediate Heat Transfer System

EU-DEMO Helium-cooled (HCPB) power plant

HELOKA-US

- **ELOKA-US
HElium LOop Karslruhe Upgrade Storage facility
Design characteristic (260 kW_{th}):
■ High pressure Helium loop: 300 520°C, 80 bar**
- **Design characteristic (260 kW_{th}):**
	- High pressure Helium loop: $300 520^{\circ}$ C, 80 bar
	- Molten salt (HITEC) loop with two tanks: $240 465^{\circ}$ C, 6 bar
	- Water cooling system: $160 220$ °C, 35 bar
- **Experimental research of the decoupling scheme**
	- \rightarrow Heat transfer measurements
	- \rightarrow Investigate a He-HITEC heat exchanger prototype
	- \rightarrow He compressor prototype

 B_{B} and (HITEC) loop with two tanks: 240 $-$ 465°C, 6 bar
poling system: 160 $-$ 220°C, 35 bar
anntal research of the decoupling scheme
ansfer measurements
ate a He-HITEC heat exchanger prototype
pressor prototype
t **►** Design a test section for heat transfer measurements

Test section - HITEC heat transfer measurements
■ Boundary conditions:

- Boundary conditions:
	- Mass flow: $\dot{m} = 0.9$ kg/s
	- linlet temperature: $T_i = 240 465$ °C
- **Design parameters:**
	- **Turbulent pipe flow with** $Re_{max} \ge 10000$ for the full temperature range
		- \rightarrow Pipe diameter: $d_i = 28.5$ mm
	- Bulk temperature increase of 10K
		- \rightarrow Total heat flux 14 kW
	- \blacksquare Heating wires within a copper block
		- **→ Uniform angular temperature distribution**
- **Analytic description of the heat transfer**
- rameters:

t pipe flow with $Re_{max} \ge 10000$ for the full temperature range

diameter: $d_i = 28.5$ mm

perature increase of 10K

I heat flux 14 kW

wires within a copper block

form angular temperature distribution

escripti ■ Numerical simulation of the flow inlet and heated segment

HITEC fluid properties

- Heat capacity: constant $c_p = 1560 \, \frac{J}{\text{k} \cdot \text{s} \cdot \text{K}}$ $kg·K$
- Kinematic viscosity v : Deviation of published values $<$ 25%
- **Thermal conductivity** λ **: Deviation of published values up to 311%**

6 June 7, 2024 Björn Brenneis - TFEC-2024-52474

Flow straightener boundary conditions

- **ANSYS Fluent meshing (poly-hexacore mesh)**
- **RANS simulation [ANSYS FLUENT 2022 R2]:** $k \omega SST$ model
- **Fluid properties of HITEC: constant at** $T = 305^{\circ}$ C
- l lnlet velocity: $u_{in} = 0.446$ m/s ($Re = 14480$)
- Variation of the flow straightener components A and B
	- Honeycomb / perforated plate
	- Amount (none, one or two)
- \rightarrow Evaluation of the axial velocity profile and swirl angle

Flow straightener simulation results **Traightener simulation results**

ements:

tion of the axial velocity profile to fully de

angle $\Theta < 2^{\circ}$
 $\tan(\Theta) = \left(\frac{u_t}{u}\right)$ $\left.\begin{array}{cc} u_t$ - tangential velocity
 u_t - axial velocity
 $\cos \theta = \frac{u_t}{\sin \theta}$
 $\cos \theta = \frac{u$

Requirements:

- **Deviation of the axial velocity profile to fully developed pipe flow** $\leq 5\%$
- Swirl angle $\Theta < 2^{\circ}$

 $\overline{u_t}$) $\quad u_t$ - tangential velocity $\mathfrak u$

- **Entrance length:**
	- Analytic: $L_{hvd}/D = 4.4 \cdot Re^{1/6} \approx 22$
	- Simulation: \sim 34D \rightarrow 10D

*Laws (1990)

8 June 7, 2024 Björn Brenneis - TFEC-2024-52474

Analytic description heat transfer

Review of Nusselt number correlations:
[Ghajar and Tam (1994); Hoffman and Cohen (1960); Kakac (1987)] **nalytic description heat transfer**

Review of Nusselt number correlations:

[Ghajar and Tam (1994); Hoffman and Cohen (1960); Kakac (1987)]
 • Gnielinski correlation (for 2300 $\leq Re \leq 5 \cdot 10^6$; 0.5 $\leq Pr \leq 2000$):
 nalytic description heat transfer

Review of Nusselt number correlations:

Ghajar and Tam (1994); Hoffman and Cohen (1960); Kakac (1987)]
 \rightarrow Gnielinski correlation (for 2300 $\leq Re \leq 5 \cdot 10^6$; 0.5 $\leq Pr \leq 2000$):
 Gnielinski correlation (for $2300 \leq Re \leq 5 \cdot 10^6$; $0.5 \leq Pr \leq 2000$): **alytic description heat transfer**

by every of Nusselt number correlations:

ajar and Tam (1994); Hoffman and Cohen (1960); Kakac (1987)]

Gnielinski correlation (for 2300 $\leq Re \leq 5 \cdot 10^6$; $0.5 \leq Pr \leq 2000$);
 $f_P = (0.$ **ansfer**

ations:

ations:

60); Kakac (1987)]
 $\leq 5 \cdot 10^6$; 0.5 $\leq Pr \leq 2000$):

1.64)⁻²
 $Re = \frac{u \cdot d_h}{v}$
 $(Pr^{2/3} - 1)$ $Pr = \frac{v \cdot \rho \cdot c_p}{\lambda}$
 $Pr^{2/3} = \frac{V \cdot \rho \cdot c_p}{\lambda}$
 $Tr_{bm}^{[C]}$ | Re_{max} | Pr | Nu_c | $T_{w1}^{[C$ $Pr \le 2000$):
 $Re = \frac{u \cdot d_h}{v}$
 $Pr = \frac{v \cdot \rho \cdot c_p}{\lambda}$ Pr ≤ 2000):
 $Re = \frac{u \cdot d_h}{v}$
 $Pr = \frac{v \cdot \rho \cdot c_p}{\lambda}$

ion heat transfer
\number correlation:
\nman and Cohen (1960); Kakac (1987)]
\nOn (for 2300
$$
\leq Re \leq 5 \cdot 10^6
$$
; $0.5 \leq Pr \leq 2000$):
\n
$$
f_P = (0.79 \cdot \ln(Re) - 1.64)^{-2}
$$
\n
$$
Nu_G = \frac{\frac{f_P}{B} \cdot (Re - 1000) \cdot Pr}{1 + 12.7 \cdot \sqrt{\frac{f_P}{8} \cdot (Pr^{2/3} - 1)}}
$$
\n
$$
Pr = \frac{v \cdot \rho \cdot c_P}{\lambda}
$$
\nof the Nusselt number
\nlation [Kakac (1987)]

Expected deviation of the Nusselt number ■ Up to 45% due to fluid property uncertainty

Heated length of $L = 1.24$ m necessary Reduce wall temperature $\rightarrow L = 2.48$ m

: Nusselt number correlations:						
m (1994); Hoffman and Cohen (1960); Kakac (1987)] ski correlation (for 2300 \leq Re \leq 5 \cdot 10 ⁶ ; 0.5 \leq Pr \leq 2000):						
$f_P = (0.79 \cdot \ln(Re) - 1.64)^{-2}$ $Nu_G = \frac{\frac{f_P}{8} \cdot (Re - 1000) \cdot Pr}{1 + 12.7 \cdot \sqrt{\frac{f_P}{8} \cdot (Pr^{2/3} - 1)}}$ $Re = \frac{u \cdot d_h}{v}$						
deviation of the Nusselt number to the correlation $[Ka kac (1987)]$	$T_{b,in}$ [°C]	Re_{max}	Pr	Nu_G	$\boxed{T_{w,1} \ [^{\circ}C]}$	$T_{w,2}$ [°C]
% due to fluid property uncertainty	260	10412	14.6	108.2	345.4	305.2
	300	14012	11.4	129.9	375.2	340.1
ngth of $L = 1.24$ m necessary	350	18820	9.1	155.9	418.1	386.6
	400	23797	8.0	182	464.7	434.9
wall temperature \blacktriangleright $L = 2.48$ m	450	28808	7.5	210	$500*$	484.5
					for 10K temperature increase	
Björn Brenneis - TFEC-2024-52474						KIT, INR

for 10K temperature increase

Heated segment boundary conditions

Heated segment simulation results

Increase of the wall temperature 10K Temperature difference $T_w - T_b < 40$ K • Matches the predicted wall temperature $\sum_{\frac{3}{2}142.5}$

- **Thermal entrance length:** $L_{th} = 0.64 \text{ m}$ ^{137.5}
	- Deviation <1% for the fully developed temperature profile and Nusselt number
- **If Mean Nusselt number** $Nu_m = 138$
 If Deviation to correlations 5% **Deviation to correlations 5%**

Summary

- Necessity of an Intermediate Heat Transfer System for DEMO
- Boundary conditions of a HITEC test section
	- Mass flow $\dot{m} = 0.9$ kg/s, lnlet temperature $T_i = 240 465$ °C

Design parameter:

- **Pipe diameter** $d_i = 28.5$ **mm** \rightarrow **Reynolds number range** $Re = 5000 28800$
- **Temperature increase 10K** \rightarrow **Heat flux** $\dot{Q} = 14 \text{ kW}$ \rightarrow **Heated length 2.48 m**
- **Flow straightener of two perforated plates**
- arameter:

meter $d_i = 28.5$ mm \Rightarrow Reynolds number range $Re = 5000 28800$

ature increase 10K \Rightarrow Heat flux $\dot{Q} = 14$ kW \Rightarrow Heated length 2.48 m

ghtener of two perforated plates

of the analytically and numerically ■ Deviation of the analytically and numerically calculated Nusselt number within 5% (constant fluid properties)
	- **Impact of the heat transfer uncertainties up to 45%**
	- **Experiments to measure the impact of wall to bulk temperature difference**