

KIT Contribution to Phase I: High-Fidelity Pin-by-Pin Burnup Analysis of the VVER-1000 Core Using SERPENT2/SUBCHANFLOW *Nuri Beydogan*

Karlsruhe Institute of Technology, Institute for Neutron Physics and Reactor Technology Hermann-von Helmholtz Platz 1, D-76344 Eggenstein-Leopoldshafen

Institute for Neutron Physics and Reactor Technology

KIT - The Research University in the Helmholtz Association

www.kit.edu

Outline

- Objectives
- > Tools
- > Benchmark on reactivity compensation of boron dilution by stepwise insertion of control rod cluster into the VVER-1000 core
- Static Simulation of the Rostov-2 VVER-1000 Core
 - > Neutronic pin-by-pin model for SERPENT2
 - > Thermal hydraulic subchannel level model for SUBCHANFLOW
- Validation of SERPENT2/SUBCHANFLOW Depletion Capability Using Rostov-2 VVER-1000 Core Data
 - > Burnup History for the Depletion Simulation
 - > SERPENT2/SUBCHANFLOW Critical Boron Concentration Simulation
 - Discussion of Results
 - > Results for the Transient Experiment Starting Time at 36.37 days
- Conclusion and Outlook

- Provide a <u>reference solution</u> for Rostov-2 Benchmark* Phase I with high-fidelity pin-by-pin and subchannel level using SERPENT2/SUBCHANFLOW**
 - Development of the detailed model for the begin-of-cycle (BOC) Rostov-2 VVER-1000 fresh-core.

Objectives

- Validation of depletion capability of SERPENT2/SUBCHANFLOW using data of Rostov-2 Benchmark
- Provide a detailed information about state of the depleted core at the <u>beginning of transient</u> <u>case.</u>

* M. Avramova, K. Ivanov, K. Velkov, S. Nikonov, P. Gordienko, B. Shumskiy and O. Kavun, "Benchmark on reactivity compensation of boron dilution by stepwise insertion of control rod cluster into the VVER-1000 core, Specifications and Support Data, Version 1.6," OECD/NEA. NEA/EGMPEBV/DOC(2021), Paris, 2021.

^{**} Diego Ernesto Ferraro. 2021. Monte Carlo-based multi-physics analysis for transients in Light Water Reactors. PhD thesis, Karlsruhe Institute of Technologie (KIT), Karlsruhe, GERMANY

Tools

The internal master-slave SERPENT2/SUBCHANFLOW coupling

- Main aspects:
 - SERPENT2 Version 2.1.32 and SUBCHANFLOW Version 3.7.1.
 - Codes are integrated in a single tool.
 - Interchange of fields internally by memory.
 - Coupled flow control managed by master code SERPENT2.
 - SERPENT2 applies burnup schemes.
 - SCF calculates steady state.

Burnup calculations flow

Options in the developed master-slave coupling

• ENDF/B-VII neutron libraries were utilized for SERPENT2 simulations.

Benchmark on reactivity compensation of boron dilution by stepwise insertion of control rod cluster into the VVER-1000 core Description of Rostov-2 VVER-1000 Core

Fuel-loading map of the reactor core of Rostov Unit 2, Cycle 1

INR-RPD Group

6th Rostov-2 VVER-1000 Multi-Physics Transient Benchmark Workshop, Lucca, Italy, May 20, 2024

Static Simulation of the Rostov-2 VVER-1000 Core Neutronic pin-by-pin model for SERPENT2

6th Rostov-2 VVER-1000 Multi-Physics Transient Benchmark Workshop, Lucca, Italy, May 20, 2024

6th Rostov-2 VVER-1000 Multi-Physics Transient Benchmark Workshop, Lucca, Italy, May 20, 2024

Validation of SERPENT2/SUBCHANFLOW Depletion Capability Using Rostov-2 VVER-1000 Core Data **Burnup History for the Depletion Simulation**

Data of the total core burnup simulation calculation, \geq performed by BIPR-8, is presented in the table. (Table was adopted from benchmark document v1.6)

Depletion steps	T _{eff} , eff. day	T _{in} , ⁰C	CR10, %	P, MW,	C _{BA} , g/kg
1	0.00	280.00	80.00	3	6.97
2	10.00	282.80	80.00	1200.00	5.10
3	10.05	283.50	80.00	1500.00	4.93
4	15.00	283.50	80.00	1500.00	4.88
5	17.50	283.50	80.00	1500.00	4.85
6	20.00	283.50	80.00	1500.00	4.82
7	20.05	285.20	90.00	2250.00	4.51
8	30.00	285.20	90.00	2250.00	4.43
-	40.00	285.20	90.00	2250.00	4.33
	[Boron dilution transient experiment			

Operation History for The First Cycle

INR-RPD Group

6th Rostov-2 VVER-1000 Multi-Physics Transient Benchmark Workshop, Lucca, Italy, May 20, 2024

starting time is at 36.37 days.

Validation of SERPENT2/SUBCHANFLOW Depletion Capability Using Rostov-2 VVER-1000 Core Data Burnup History for the Depletion Simulation

- 9 time steps (0, 10 10.05, 15, 17.5, 20, 20.05, 30, <u>36.37</u>, 40) during 40 effective days
 - Benchmark code (BIPR8) results for the comparisons
 - Intermediate step for the transient experiment start time at 36.37 days
- Control Rod position: CR group 1-9 are out and only CR group 10 position (from core bottom) is changing.
- Total circuits mass flow rate for nominal conditions (100% total flow)=84000 m³/h
 - Core mass flow rate (97% of the total mass circuit flow)= 81480 m³/h
- Equilibrium Xenon

Operation History for The First Cycle

Boron dilution transient experiment starting time is at 36.37 days.

Validation of SERPENT2/SUBCHANFLOW Depletion Capability Using Rostov-2 VVER-1000 Core Data SERPENT2/SUBCHANFLOW Critical Boron Concentration Simulation

> SERPENT2

INR-RPD Group

- Active cycle and inactive cycle: 500 and 200, respectively and Particle number: 1,000,000
- 100 additional inactive cycle to run for the convergence of the iteration
- tft temperature card and ifc files card options for the multi-physics calculations and interface
- 30 interface nodes to exchange feedback with SCF
- div card for sub dividing 15 axial depletion zones of the active core
- rfw and rfr write and read cards for the change simulation parameters for each burnup step continue the simulations
- <u>Without</u> DD (domain decomposition) mode

> SI • •	JBCHANFLOW VVER-specific thermophysical properties in SCF was used. Axially 30 nodes, radially 10 nodes for fuel and 2 nodes for clad Doppler temperature predicted as in benchmark formulation.	> S	imulation Architecture <u>8 OpenMPI node</u> and <u>152 OpenMP in each</u> <u>node</u> task for the coupled simulation on HoreKa HPC Large queue (KIT/SCC). Conv. criteria: rho= 30 pcm Coolant Dens.= 0.001 g/cm3, Fuel Temperature= 10 K, Coolant Temperature= 2.5 K

Validation of SERPENT2/SUBCHANFLOW Depletion Capability Using Rostov-2 VVER-1000 Core Data Discussion of Results (1/5)

Validation of SERPENT2/SUBCHANFLOW Depletion Capability Using Rostov-2 VVER-1000 Core Data **Discussion of Results (2/5)**

Depletion step 7: P=2250 MW Effective day=20.05 C_{BA}=4.55 g/kg CRG10=90% withdrawn \geq

highest power

the sub-channel location which has the hottest coolant exit temperature

Validation of SERPENT2/SUBCHANFLOW Depletion Capability Using Rostov-2 VVER-1000 Core Data Discussion of Results (3/5)

1.35

Comparison between benchmark BIPR-8 code (deterministic) and SSS2/SCF results

163.500

Maximum difference is up to \sim 3%.

INR-RPD Group

Radial view of FA level power peaking factor

Validation of SERPENT2/SUBCHANFLOW Depletion Capability Using Rostov-2 VVER-1000 Core Data Discussion of Results (4/5)

Comparison between benchmark BIPR-8 code (deterministic) and SSS2/SCF results

Validation of SERPENT2/SUBCHANFLOW Depletion Capability Using Rostov-2 VVER-1000 Core Data Discussion of Results (5/5)

Comparison between benchmark BIPR-8 code (deterministic) and SSS2/SCF results

Validation of SERPENT2/SUBCHANFLOW Depletion Capability Using Rostov-2 VVER-1000 Core Data Results for the Transient Experiment Starting Time at 36.37 days (1/3)

Intermediate Depletion step: P=2250 MW Effective day= 36.37 days C_{BA}=4.29 g/kg CRG10=90% withdrawn

Validation of SERPENT2/SUBCHANFLOW Depletion Capability Using Rostov-2 VVER-1000 Core Data Results for the Transient Experiment Starting Time at 36.37 days (2/3)

Intermediate Depletion step: Thermal-Hydraulic results

INR-RPD Group

6th Rostov-2 VVER-1000 Multi-Physics Transient Benchmark Workshop, Lucca, Italy, May 20, 2024

Validation of SERPENT2/SUBCHANFLOW Depletion Capability Using Rostov-2 VVER-1000 Core Data Results for the Transient Experiment Starting Time at 36.37 days (3/3)

Intermediate Depletion step: Thermal-Hydraulic results

Conclusion and Outlook

> Master-slave SSS2/SCF coupling works **fine** and **stable** for the <u>depletion</u> simulations.

- Totally 762,840 depletion zones and ~2.7 TB Memory.
- ~250 hours simulation time (~10 days) for all BU steps to get a converged solutions.
- ~275,000 CPU-hours were consumed during simulations.
- SSS2/SCF Burnup value is equal to 0.797 MWd/kgU while BIPR-8 total core burnup value is equal to 1.60 MWd/kgU at <u>40 days</u>.
 - Burnup values at <u>36.37 days</u>
 - SSS2/SCF (simulated with data obtained from benchmark table): 0.689 MWd/kgU
 - PARCS/PATHS (simulated with measured data obtained from KI presentation): **0.683** MWd/kgU
- > Finally, this work aligns with the emerging multi-physics coupling trends in nuclear engineering
 - provides more precise predictions of pin and subchannel level safety parameters within reactor cores
 - addresses the specific challenges and requirements faced in adopting advanced computational methods.

PARCS 3D core models were developed and are being improved for nodal bases depletion and transient simulation analysis.

INR-RPD Group 6th Rostov-2 VVER-1000 Multi-Physics Transient Benchmark Workshop, Lucca, Italy, May 20, 2024

Thank you for your attention!

INR-RPD Group

6th Rostov-2 VVER-1000 Multi-Physics Transient Benchmark Workshop, Lucca, Italy, May 20, 2024

20/20