
Motivation 

Abstract: The fast and accurate localization of heat loss areas to increase energy efficiency can be improved by automating the detection of thermographic anomalies through UAV-based 

thermal imaging combined with Deep Learning (DL). However, there are still challenges such as data sharing, resource constraints and privacy concerns in urban environments. Federated 

Learning (FL) offers a solution by enabling privacy-preserving model training on decentralized devices, making it suitable for resource-constrained applications. Using NVFlare and the 

U-NET segmentation model, we investigate Federated Learning (FL) for thermal hot spot detection based on urban features. The FL clients are selected based on the geographic location 

of the image and help district heating network operators detect leakages in underground pipelines via false alarm removal. 
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Challenges

➢ Data limitation: Sharing data from different cities 
and organizations can be beneficial. But this 
method poses several challenges, such as:
○ Data sharing and resource constraints
○ Data Privacy concern 
○ Communication overhead

➢ Annotation is time consuming

Federated Learning

➢ A privacy-preserving machine learning 
paradigm introduced to address these challenges.

➢ Facilitates multiple peers to collaboratively learn a 
common prediction model by exchanging model 
weights while keeping the sensitive data on the local 
devices.
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Example of thermal urban feature segmentation (I): 
combined RGB (top left) and TIR (top right) inputs, 

manual segmentation mask (bottom left), and U-Net 
model prediction (bottom right). Source [3]

TUFSeg Application
➢ Dual Camera is used to collect data: RGB + Thermal
➢ UAV-based: 90° pitch, high overlap
➢ Night-time flights in Karlsruhe (KA) & Munich (MU) (DE)
➢ 634 train, 159 test images
➢ Multi-class  semantic segmentation

○ U-Net ResNet-152 backbone 
○ Segmentation_models toolbox using Tensorflow and 

Keras 
➢ Evaluation: precision, weighted precision (W Precision), IoU, 

weighted  IoU (WIoU), weighted F1-score 
➢ Model was trained for 35 epochs 
➢  batch size of 8

➢ The MLflow instance provided by AI4EOSC [7] Project was 

used.

Federated Learning Methods

➢ Federated Learning Categories based on architecture:
○ Centralized Federated Learning (CFL): server coordinates 

the training
○ Decentralized Federated Learning (DCFL): the 

communication is peer to peer. 
○ FL WorkFlows:

■ Scatter & Gather (CFL): Global model parameters 
are distributed to client devices for local training; 
updated parameters are then aggregated. 

■ Cyclic Learning (DCFL & CFL):  The server selects a 
subset of clients. Training is done following a 
predetermined sequential order set by the server.

■ Swarm Learning (DCFL): Decentralized subset of FL 
where orchestration and aggregation is performed 
by the clients

➢ The HPC from KIT (Horeka) was used to do simulations
➢ Clients were selected based on the geographic location of 

the image (KA, MU).
➢ NVIDIA FLARE (NVFlare) framework was used:

○ Open source ML/DL framework-agnostic.
○ FL via Client API: few code changes from DL to FL version

➢ The results were simulated for two clients, KA and MU.
➢ Baseline here refers to the model trained using the entire 

dataset without FL.
➢ To ensure comparability with  Centralised Learning (CL): 

○ The model was trained for 4 rounds and 9 epochs. 
○ The experiment used the same hyperparameter 

configuration as the baseline model.
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Equipment used for image 
acquisition. Source [3]
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Workflow IOU W IOU F1-score W 
Precision

Precision Accurac
y

Scatter & 
Gather

0.38 0.91 0.94 0.95 0.54 0.95

Swarm 0.39 0.90 0.94 0.95 0.52 0.95

Cyclic 
(DCFL)

0.41 0.89 0.93 0.94 0.55 0.93

Baseline 
(CL) 

0.43 0.91 0.94 0.95 0.62 0.95
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➢ FL workflows achieved performance comparable to the baseline model.

○ IoU values, while slightly lower, remained competitive across all workflows.

○ F1-scores closely aligned with baseline model results.

○ W Precision and Precision scores maintained consistency with the baseline, indicating 
similar accuracy levels.

○ Accuracy metrics demonstrated comparable performance between the FL workflow and the 
baseline model.

➢ Scatter & Gather exhibited similar learning performance to Swarm.

➢ Swarm and Scatter & Gather should be compared in terms of speed, communication overhead 
by moving from simulation to real-world

 deployment.

Model Performance Across All Datasets 

Model Performance Across Locations

➢ FL methods shows comparable 
performance across all locations 
compared to the baseline.

➢ Despite the KA dataset being nearly four 
times smaller than the MU dataset, 
training both FL and baseline on all 
datasets improves the model's 
performance on KA.

➢ Swarm Learning matches baseline 
performance on KA (smaller dataset).

➢ Cyclic Learning performs comparably to 
baseline on MU (larger dataset).

➢ Transition from Simulation to Real World: 

○ Start the server on the AI4EOSC platform and deploy clients on various systems with 

varying latency.

○ Considerations

■ Security and Privacy: Ensure robust measures to protect data.

■ Consistent Environment for All Clients: Use Docker to maintain uniform 

environments across clients.

➢ Aggregation Algorithms: Implement and compare various aggregation algorithms to optimize 

the FL model for efficiency and accuracy.

➢  Scalability and Robustness: 

○ Compare simulation results with real-world deployment in terms of speed, overhead, 

and accuracy.

○ Evaluate FL system performance under varying conditions, including network latency, 

device heterogeneity, and data quality.

Thermal Urban Feature Segmentation

(TUFSeg) 

➢ Identifying leakages in underground district heating 
networks by finding false alarms from common 
thermal urban features to sort out

Application Motivation: 

➢ Usage: Identifying thermal anomalies (hot spots) in 
urban environments to improve the efficiency of 
energy-related systems.
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