KIT | KIT-Bibliothek | Impressum | Datenschutz

Investigating Data Distribution Variability Across Devices in Federated Learning: Comparative Analysis of Algorithm Performance

Duda, Leonhard 1; Alibabaei, Khadijeh ORCID iD icon 1; Berberi, Lisana ORCID iD icon 1; Kozlov, Valentin ORCID iD icon 1; Streit, Achim ORCID iD icon 1
1 Scientific Computing Center (SCC), Karlsruher Institut für Technologie (KIT)

Abstract:

Federated Learning (FL) enables distributed training on multiple devices, enhancing privacy and conserving resources by sharing model updates instead of data. Using NVFlare, we distributed the training of a CNN for brain tumor detection, keeping sensitive data local. We evaluated different FL algorithms (FedAvg, FedOpt, FedProx, Scaffold) and found that complex algorithms like Scaffold perform better among heterogeneous data distributions.


Volltext §
DOI: 10.5445/IR/1000171684
Veröffentlicht am 17.06.2024
Cover der Publikation
Zugehörige Institution(en) am KIT Scientific Computing Center (SCC)
Publikationstyp Poster
Publikationsdatum 12.06.2024
Sprache Englisch
Identifikator KITopen-ID: 1000171684
HGF-Programm 46.21.02 (POF IV, LK 01) Cross-Domain ATMLs and Research Groups
Veranstaltung Helmholtz Artificial Intelligence Conference (Helmholtz AI 2024), Düsseldorf, Deutschland, 12.06.2024 – 14.06.2024
Projektinformation AI4EOSC (EU, EU 9. RP, 101058593)
Schlagwörter Federated Learning
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page