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A promising approach to quantify reaction rate parameters is to formulate and solve inverse problems by 
minimizing the deviation between simulation and measurement. One major challenge may become the non-

uniqueness of the recovered parameters due to the ill-posed problem formulation, which requires sophisticated 
approaches such as regularization. This study investigates the feasibility of using spatially distributed reference 
data, i.e., concentration distributions of reactive flows, which could be obtained by magnetic resonance imaging 
(MRI), instead of isolated points or integral values to recover reaction rate parameters. We propose a combined 
framework of computational fluid dynamics (CFD) and gradient-based optimization methods, which minimizes 
the difference between the simulated concentration distribution and a given data set by automatic iterative 
parameter adjustments. The forward problem is formulated as a coupled system of reaction-advection-diffusion 
equations (RADE), which is solved by the lattice Boltzmann method (LBM). Therefore, a system of non-linear 
partial differential equations (PDE) acts as optimization constraints, limiting the possible outcomes of the 
inverse problem. A benchmark test case using a CFD simulation as reference data confirms the validity of the 
presented method by successfully identifying up to three a priori set reaction parameters reversely. With it, 
initial relative errors could be reduced from around 150% to 10−3% in 13 optimization steps corresponding to 37 
simulations. Even after reducing the accessible reference data from 2D concentration distributions to 1D outflow 
concentration distribution or by adding noise signals onto the reference data with a signal-to-noise ratio (SNR) 
of 5, our framework successfully recovered the parameters with a relative error of ≈ 1%. Both, the chosen LBM 
and optimization algorithms are implemented in the open-source library OpenLB.
1. Introduction

Chemical reactions are omnipresent due to their indispensable role 
in various industrial processes across numerous applications. Even 
minute improvements in the reaction process or reactor design can 
have significant economic and ecological impacts. Generally, achiev-

ing this requires properly fitted/adapted models and knowledge of their 
reaction-specific parameters. Although the basic principles such as the 
reaction mechanism are often well known, finding appropriate values 
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that describe the process at practical conditions remains a challenging 
task [1]. In many cases, for example heterogeneous reactions that take 
place in a fixed-bed reactor, the overall/macroscopic reaction rate is 
strongly influenced by the prevailing transport processes [2]. Then, de-

tailed information on the transport phenomena is additionally required 
to optimize the chemical reaction process.

The reaction rate law contains several parameters, e.g., the reac-

tion constant and reaction orders of the involved species. To determine 
those parameters for a single chemical reaction, one usually conduct 
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numerous experiments and measurements at ideal conditions which 
usually differs from the actual process conditions [1]. In addition to 
that, any changes in the underlying transport phenomena of the reac-

tants might also significantly impact the final conversion rate without 
actually influencing the microscopic rate parameters. Quantifying both 
microscopic rate parameters as well as parameters describing the trans-

port phenomena is a tedious, challenging, and expensive task involving 
several experiments as well as requiring expert knowledge [1].

A promising approach for parameter identification is to formulate an 
inverse problem and solve it by utilizing methods of optimization [3]. 
The methodology is applied in several fields of engineering, e.g., in 
identifying material parameters [4–6], in biomedical engineering [7,8], 
as well as in identifying reaction parameters [9–13]. In the inverse 
problem, the reaction rate parameters are obtained from the reference 
data, e.g., experimentally measured data, by minimizing the difference 
between the experimental and simulated results. Since the numerical 
model producing the simulation results is fully parameterized, the sim-

ulation sufficiently close to the experimental data directly yields the 
desired reaction rate law parameters.

Reactive flow problems are modeled by conservation equations such 
as Navier-Stokes equations or reaction-advection-diffusion equations 
(RADE) for each reaction species coupled with the reaction rate law, 
which leads to systems of partial differential equations (PDE). The lat-

tice Boltzmann method (LBM) has proven to be a very effective and 
highly stable method for modeling fluid flow in various applications, 
e.g., biomedical problems [14,15], turbulent flows [16–19], and trans-

port phenomena governed by advection and diffusion such as reactive 
flows [20–25]. Its great scalability due to mainly local operations makes 
the LBM attractive for expensive numerical investigations [26,27].

Inverse problems involving reactive flows contain conservation

equations as constraint functions of the optimization problem. As solv-

ing this problem with one-shot methods as introduced in [28] is not 
possible, an iterative scheme becomes necessary requiring to solve the 
system of conservation equations multiple times. Heuristic optimization 
methods have advantages such as their global character of search, no 
computation of gradients, and easy implementation [11]. However, ap-

plying heuristic approaches to solve inverse problems would involve 
performing ≈ (10000) simulations which is currently too expensive. 
Gradient-based optimization methods such as, e.g., steepest descent, 
Newton or quasi-Newton methods like L-BFGS [29], only converge to-

wards an local optimum but they require much fewer optimization 
steps to converge compared to heuristic approaches. A convex prob-

lem formulation is required to ensure that the found optimum is the 
global optimum in case such gradient-based methods are used, which 
is generally very difficult or even impossible for complex systems to 
show. Furthermore, inverse problems, e.g., parameter identification of 
reaction rate laws with noisy measurement data as input, are gener-

ally ill-posed [9,13,30,31]. That is, when the simulation is compared 
against integral measurements only, such as the averaged product con-

centration, minimizing the difference between simulation and mea-

surement does generally not have only one unique solution. Thus, the 
non-uniqueness regarding the possible solutions to the inverse problem 
makes it a challenging task to reliably identify reaction rate parame-

ters. To counteract this problem, Kügler et al. [9] applied regularization 
methods by adding penalty terms in the minimizing objective function. 
Opara et al. [31] utilized combinations of concave loss functions for the 
objective function with regularization techniques.

Through the rise of more sophisticated measurement techniques 
such as magnetic resonance imaging (MRI), non-invasive measurements 
of spatially distributed chemical reactions are now available [32]. The 
great synergy between CFD and MRI as well as the suitability of spa-

tially distributed measurement data, e.g., obtained by MRI, to solve 
inverse problems is successfully demonstrated in previous studies by 
Klemens et al. [33–36]. Therein, inverse problems are solved for domain 
identification and a method for noise reduction of MRI flow measure-

ments is presented [33]. In other applications, the utilization of spatially 
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distributed data in inverse problems also yields good results [6,37]. 
Inspired by those studies, a promising approach to solve the param-

eter identification problem in reactive flows could be the utilization 
of spatially distributed data sets instead of averaged or scalar values 
as used in other publications attempting to identify reaction rate pa-

rameters [13,31,9,30,10]. That is, the optimization problem minimizes 
the error between a spatially distributed reference concentration field 
and a CFD simulation of the corresponding reactive flow computed on 
every grid node of the simulation domain. This restricts the possible 
outcomes of the optimization problem to those which are solutions of 
the approximated conservation equations. Huang et al. [38] utilized in 
their work temperature and concentration distributions measured on 
surfaces in order to estimate the heat and mass production rate distri-

butions in chemically reacting fluids. Therein, they used a 1D model for 
the transport process, whereas, in the presented work, a CFD simulation 
is performed, delivering resolved 2D/3D concentration distributions of 
the reacting flow. The flow simulation with the identified reaction rate 
parameters automatically contains the minimized difference to mea-

surement data being a preferred outcome of most numerical studies. 
Using spatial distributions of the reactant concentrations might be a 
promising approach to reduce the number of possible solutions to the 
parameter identification problem counteracting the non-uniqueness of 
the optimization result.

Therefore, this study aims to investigate the feasibility of spatially 
distributed data for identifying reaction rate parameters in reactive 
flows. A parameter identification framework is presented, combining 
L-BFGS with the LBM as a highly scalable discretization scheme of the 
underlying conservation equations to solve the inverse problem effi-

ciently. For the gradient computations, the forward mode of algorithmic 
differentiation (AD) and finite difference stencils are used. A benchmark 
test case validates the presented method for a quasi-2D homogeneous 
reaction in a bulk flow where a CFD simulation with a priori known 
reaction rate parameters is used as the reference concentration field. 
The parameter identification framework finds the rate parameters from 
the simulated reference concentration fields, which are then compared 
with the initially set parameters. With the benchmark case, we focus 
our investigations on the accuracy of the recovered parameters, the ro-

bustness of the optimization problem, and, briefly, the performance of 
the parameter identification framework. Striving to apply the presented 
method to real measurement data in future works, we will test the 
reduction of the included reference data, i.e., only using the outflow 
product distribution and investigate uncertainty in form of artificial 
noise signals imposed onto the reference concentration distributions im-

itating MRI measurements. To the best of the author’s knowledge, this 
is the first attempt to use spatially distributed concentration data to 
identify reaction rate parameters in terms of solving inverse problems 
by using CFD simulations and gradient-based optimization methods. All 
presented methods and conducted studies are implemented in the open-

source library OpenLB [39,40].

This paper is structured as follows: In Sec. 2, the general optimiza-

tion problem is formulated for the parameter identification problem in 
reactive flows. This is followed by Sec. 3, where the presented solution 
strategy is explained in order to solve the parameter identification prob-

lem. Then, Sec. 4 introduces the reactive flow problem on which the 
presented method is applied as the benchmark problem to validate the 
parameter identification method. Five cases investigate the presented 
method regarding the mentioned aspects. Finally, Sec. 5 provides a con-

cise summary of the highlights of the present work.

2. Parameter identification in homogeneous reactive flows

This chapter is dedicated to the formulation of the general constraint 
optimization problem we aim to solve to identify reaction rate parame-

ters from given reference concentration distributions, e.g., obtained by 
measurements. First, Sec. 2.1 contains the formulation of the optimiza-

tion problem. Then, Sec. 2.2 specifies the constraint function considered 
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Fig. 1. Inside the dashed domain Ω∗ , reference data is assumed to be available, 
e.g., obtained by MRI measurements. The optimization problem minimizes the 
deviation between the simulated concentration distribution c and reference con-

centration distribution c∗ inside Ω∗ to identify the reaction rate parameters.

during optimization. The provided problem formulation here is inde-

pendent of the applied discretization scheme. The chosen discretization 
strategy to solve the optimization problem in the presented work is 
specified in Sec. 3.

2.1. Formulation of the optimization problem

Our general approach to parameter identification is to find a set 
of model parameters such that the corresponding simulated reaction 
species concentration distributions are sufficiently close to the corre-

sponding reference concentration distributions, e.g., obtained by mea-

surements. We assume that our numerical model captures the same 
physics as the reference concentration distributions to ensure that the 
recovered model parameters correspond to those we aim to identify. 
The current study considers only stationary reactive flow problems such 
that the deviation between fully converged simulation and reference 
distributions is minimized. As we aim to apply the presented method to 
concentration distributions measured by MRI in the future, the choice 
to consider stationary flow fields can be beneficial as MRI generally re-

quires a long measurement duration and faces difficulties in capturing 
rapid changes in the flow and resulting concentration field. Fig. 1 il-

lustrates the presented approach where spatially distributed reference 
results are utilized to solve the inverse problem of identifying reac-

tion rate parameters. The outer domain indicated by the black solid 
line contains the fluid domain, where a CFD simulation computes con-

centration distributions, referred to as the numerical domain Ω ⊆ ℝ𝑑 , 
with 𝑑 ≥ 1 denoting the spatial dimension. Note that Ω is not refer-

ring to the discretized numerical domain Ω△𝑥 ⊆ Ω (further specified 
in Sec. 3). The area in the figure indicated by the dashed lines depicts 
the reference domain Ω∗ ⊆Ω where reference data on the concentration 
distributions are available, e.g., the area containing the obtained mea-

surement data. In practice, the spatial positions of grid points in the 
CFD simulation x ∈ Ω△𝑥 and the positions x∗ ∈ Ω∗, where reference 
data of the concentration is available, are generally disjoint. Then, the 
simulated concentration distribution is interpolated onto x∗ to evaluate 
the deviation between simulation and reference. This way of projection 
is preferred as, in general, higher resolutions can be achieved in CFD 
simulations, and therefore, fewer interpolation errors are expected. For 
a reactive flow with the species 𝜓 ∈ Ψ = {𝜓1, 𝜓2, ..., 𝜓𝑑Ψ} with 𝑑Ψ ∈ ℕ
representing the number of reactants, the reference concentration dis-

tribution of the reactant 𝜓 is given as 𝑐∗
𝜓
∶ Ω∗ → ℝ, (x∗) ↦ 𝑐∗

𝜓
(x∗). As 

its counterpart, we obtain the concentration distribution of the sta-

tionary solution from the CFD simulation, namely 𝑐𝜓 ∶ Ω△𝑥 × ℝ𝑑𝛼 →
ℝ, (x, 𝜶) ↦ 𝑐𝜓 (x, 𝜶), also referred to as the state. The controls 𝜶 ∈ ℝ𝑑𝛼
with 𝑑𝛼 ∈ ℕ denoting the dimension of the control vector 𝜶, consist of

the yet unknown reaction rate parameters, which are model parameters 
controlling the interaction of the reactants by the chemical reaction. 
Hereafter, c = (𝑐𝜓 )𝜓 ∈ℝ𝑑Ψ and c∗ = (𝑐∗

𝜓
)𝜓 ∈ℝ𝑑Ψ denote vectors of the 

reactants concentration distributions of the simulation and reference 
data set, respectively. The optimization problem minimizes for each re-
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actant species 𝜓 the deviation between 𝑐∗
𝜓

and the simulated stationary 
concentration field 𝑐𝜓 by applying changes regarding the reaction rate 
parameters 𝜶. Thus, the goal of the optimization problem is to find 
the reaction parameters 𝜶 where the resulting simulated concentration 
fields c have the minimal difference to the reference concentration dis-

tributions c∗. Due to the assumption that our numerical model captures 
the same physics as in the reference data, the reaction rate parame-

ters are inversely identified from the spatially distributed concentration 
fields c∗. Thus, the inverse problem we aim to solve can be formulated 
as the following constrained optimization problem:

Find 𝜶 and resulting concentration fields c such as:

min
𝜶
𝐽 (c,𝜶) =

∑
𝜓∈Ψ

(‖𝑐𝜓 − 𝑐∗
𝜓
‖𝐿2(Ω∗)‖𝑐∗

𝜓
‖𝐿2(Ω∗)

)2

, (1)

while fulfilling constraints G(c, 𝜶) = 0.

The objective 𝐽 ∶ ℝ𝑑Ψ ×ℝ𝑑𝛼 → ℝ+
0 is minimized regarding the controls 

𝜶 where 𝐽 is the sum of the squared relative errors between simulation 
and reference fields 𝑐𝜓 and 𝑐∗

𝜓
for each reaction species 𝜓 computed by 

the 𝐿2-norm in Ω∗. In Sec. 3, the explicit formulation of (1) regarding 
the 𝐿2-norm is given as this section aims to formulate the general opti-

mization problem. While minimizing the objective function, constraints 
G = 0 must be satisfied for each tuple of control variables 𝜶 and result-

ing state c. The choice of the constraint function is problem specific, 
whereas the following section specifies the applied constraint function 
in the presented work.

2.2. Constraint functions: coupled system of RADEs

Let us first assume that the reaction rate parameters 𝜶 are known. 
Our work considers a homogeneous chemical reaction in a bulk flow, 
where the set of reacting species Ψ is transported by a carrier fluid 
via convection and diffusion. In general, such flow phenomena can be 
described by the RADE, given for the reactant 𝜓 as

𝜕𝑡𝑐𝜓 +∇x ⋅ (𝑐𝜓 u) = ∇x ⋅ (𝐷𝜓 ∇x 𝑐𝜓 ) +𝑅𝜓 (c) in 𝐼 ×Ω, (2)

where 𝐼 ∈ ℝ+
0 is the time space, 𝑐𝜓 ∶ 𝐼 × Ω → ℝ, (𝑡, x) ↦ 𝑐𝜓 (𝑡, x) the 

concentration distribution at time 𝑡 ∈ 𝐼 and on the location x ∈ Ω, u ∈
ℝ𝑑 the convective velocity, and 𝐷𝜓 > 0 the scalar diffusivity constant. 
The chemical reaction couples the RADEs, modeling the local increase 
and decrease of the concentration in the distributions c by the source 
term 𝑅𝜓 ∶ℝ𝑑Ψ →ℝ, given as

𝑅𝜓 (c) =
∑
𝑟∈𝑅
𝜈𝑟,𝜓 𝑣𝑟(c), (3)

where 𝑟 ∈ 𝑅 corresponds to the 𝑟th reaction of in total of 𝑅 ⊆ ℕ reac-

tions, the scalar 𝜈𝑟,𝜓 > 0 is the stochiometric constant, and 𝑣𝑟 ∶ℝ𝑑Ψ →ℝ
the reaction rate. By applying the commonly used power law model for 
calculating the reaction rate, it reads

𝑣𝑟(c) = 𝑘𝑟
∏
𝜓∈𝑃

𝑐
𝑚𝑟,𝜓
𝜓 , (4)

where 𝑘𝑟 > 0 is the reaction constant of the reaction 𝑟, 𝑃 ⊆ Ψ are the 
reaction components participating on the 𝑟th reaction, and 𝑚𝑟,𝜓 ≥ 0 ∈ℝ
is the reaction order of the species 𝜓 .

Returning to the parameter identification problem in (1), we first 
assume that the reactive flow problem from which the reference data 
c∗ is obtained can be described by the equations (2), (3), and (4). Now, 
the reaction rate parameters are unknown, e.g., for a generic single 
chemical reaction of the equation 𝐴 + 𝐵 → 𝐶 with Ψ = {𝐴, 𝐵, 𝐶}, we 
want to identify the reaction constant and the reaction orders. That 
is, the control vector is given as 𝜶 = (𝑘, 𝑚𝐴, 𝑚𝐵)T with 𝑑𝛼 = 3 and the 
reaction rate law in (4) can be explicitly written as
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𝑣(c,𝜶) = 𝑘𝑐𝑚𝐴
𝐴
𝑐
𝑚𝐵
𝐵
, (5)

where the reaction rate 𝑣 ∶ ℝ𝑑Ψ × ℝ𝑑𝛼 → ℝ now also depends on the 
controls. The optimization problem varies the parameters 𝜶 ∈ ℝ𝑑𝛼 to 
minimize the objective function (1). By omitting the time dependency 
due to the stationary assumption and by inserting (5) into (3) and then 
in (2), the simulated concentration field also depends on the controls 
as in (1), i.e., 𝑐𝜓 ∶ Ω × ℝ𝑑𝛼 → ℝ, (x, 𝜶) ↦ 𝑐𝜓 (x, 𝜶). In our simulations, 
the coupled system of RADEs of (2) is solved numerically. Therefore, 
we consider only approximated solutions of the transport equations for 
the optimization problem, which is equal to fulfill the stationary RADEs 
as constraints G = 0 with G = (𝐺𝜓 )𝜓 ∈ℝ𝑑Ψ . For the constraint function 
𝐺𝜓 ∶ ℝ𝑑Ψ × ℝ𝑑𝛼 → ℝ for each reactant 𝜓 , the RADEs are further sim-

plified by assuming a uniform convective velocity field and isotropic 
diffusion, given as

𝐺𝜓 (c,𝜶) = u ⋅∇𝑐𝜓 −𝐷𝜓Δ𝑐𝜓 −𝑅𝜓 (c,𝜶), (6)

where u ∈ ℝ𝑑 is the homogeneous convective velocity, 𝐷𝜓 > 0 the 
scalar homogeneous diffusion constant of the species 𝜓 , and 𝑅𝜓 ∶
ℝ𝑑Ψ ×ℝ𝑑𝛼 →ℝ, (c, 𝜶) ↦𝑅𝜓 (c, 𝜶) the reactive source term obtained by 
inserting (5) in (3).

3. Solution strategy for the parameter identification problem

This section outlines the applied discretization schemes in order 
to solve the formulated parameter identification problem in Sec. 2. 
To enable efficient identification of the reaction rate parameters, the 
quasi-Newton method L-BFGS [41,42], a fast converging gradient-based 
optimization method, and the LBM, an efficient discretization scheme 
to solve the coupled system of RADEs, are combined. First, in Sec. 3.1, 
the LBM scheme discretizing the constraint functions of Sec. 2.2 is 
described. Then in Sec. 3.2, the utilized optimization algorithm is pre-

sented, which classifies itself into the category of first-discretize-then-

optimize approaches as described in [28].

3.1. LBM for solving the coupled system of RADEs

The system of constraint equations in (6) is solved numerically us-

ing the LBM with the multi-distribution function approach [43]. The 
discrete numerical domain Ω△𝑥 ⊆ Ω is a homogeneous grid with the 
grid spacing △𝑥 ∈ ℝ. On each grid node x ∈ Ω△𝑥 the lattice Boltz-

mann equation for each species 𝜓 is solved:

𝑔𝑖,𝜓 (x + 𝝃𝑖△ 𝑡, 𝑡+△𝑡)

= 𝑔𝑖,𝜓 (x, 𝑡) +△𝑡(𝑞𝐶
𝑖,𝜓

(x, 𝑡) + 𝑞𝑆
𝑖,𝜓

(x, 𝑡,𝜶)) in Ω△𝑥 × 𝐼△𝑡, (7)

where 𝐼△𝑡 ∈ 𝐼 is the discrete time space with time steps △𝑡 ∈ℝ, (x, 𝑡)
is defined in Ω△𝑥 × 𝐼△𝑡, and 𝑔𝑖,𝜓 ∶ Ω△𝑥 × 𝐼△𝑡→ℝ is the discrete par-

ticle distribution function (PDF). For the particle velocities 𝝃𝑖 ∈ℝ𝑑 , the 
𝐷3𝑄7 model from [14,44,45] is used, where the index 𝑖 ∈ {0, 1, 2, ..., 6}
denotes the discrete velocity directions. The used stencil with the dis-

crete velocity directions is shown in Fig. 2. The used discrete velocity 
vectors 𝝃𝑖 are given in [45]. In (7), 𝑞𝐶

𝑖,𝜓
∶ Ω△𝑥 × 𝐼△𝑡 → ℝ denotes the 

BGK collision operator [46], which models the linear relaxation of the 
PDFs towards their approximate thermodynamic equilibrium, given as

𝑞𝐶
𝑖,𝜓

(x, 𝑡) =
𝑔
𝑒𝑞

𝑖,𝜓
(x, 𝑡) − 𝑔𝑖,𝜓 (x, 𝑡)

𝜏𝜓
, (8)

where 𝜏𝜓 > 0 is the relaxation time. The linear equilibrium distribution 
𝑔
𝑒𝑞

𝑖,𝜓
∶ Ω△𝑥 × 𝐼△𝑡→ℝ is written as

𝑔
𝑒𝑞

𝑖,𝜓
(x, 𝑡) =𝑤𝑖𝑐𝜓 (x, 𝑡)

(
1 +

(𝝃𝑖 ⋅ u)
𝑐2
𝑠

)
, (9)

where 𝑤𝑖 ∈ ℝ+
0 are weighting terms as given in [45] and 𝑐𝑠 ∈ ℝ+

0 is a 
lattice constant, given as
252
Fig. 2. Discrete velocity model 𝐷3𝑄7.

𝑐𝑠 =
1
2
△𝑥

△𝑡
(10)

for the 𝐷3𝑄7 model from [45], where △𝑥 and △𝑡 are chosen as unity 
in the dimensionless form. The chemical reaction is modeled by the 
source term 𝑞𝑆

𝑖,𝜓
∶ Ω△𝑥×𝐼△𝑡×ℝ𝑑𝛼 →ℝ incorporated into (9) as in [47,

48], given by

𝑞𝑆
𝑖,𝜓

(x, 𝑡,𝜶) =𝑤𝑖
(
1 − 1

2𝜏𝜓

)
𝑅𝜓 (c̃,𝜶), (11)

where c̃ = (𝑐𝜓 )𝜓 ∈ ℝ𝑑Ψ with 𝑐𝜓 ∶ Ω△𝑥 × 𝐼△𝑡 → ℝ being the zeroth 
order of the statistic moment, reading

𝑐𝜓 (x, 𝑡) =
6∑
𝑖=0
𝑔𝑖,𝜓 (x, 𝑡). (12)

By updating the PDFs at every time step using (7), the macroscopic 
concentration field 𝑐𝜓 ∶ Ω△𝑥 × 𝐼△𝑡 × ℝ𝑑𝛼 → ℝ for each species 𝜓 is 
computed by

𝑐𝜓 (x, 𝑡,𝜶) = 𝑐𝜓 + △𝑡

2
𝑅𝜓 (c̃,𝜶), (13)

where a correction of the statistic moment is required due to the source 
term [47,48]. After reaching the steady state, the time dependency of 𝑐𝜓
in (13) can be omitted. In this work, diffusive scaling (△𝑡 ∼△𝑥2 → 0)
is applied to achieve convergence orders up to two as we do not solve 
an implicit equation in (13) as in [48]. The macroscopic diffusivity 𝐷𝜓
of each component and the relaxation time are connected via

𝐷𝜓 = 𝑐2
𝑠

(
𝜏𝜓 − △𝑡

2

)
. (14)

3.2. Gradient-based optimization algorithm

Now that we outlined how the coupled system of RADEs is solved, 
only the utilized optimization algorithm is missing. In order to solve the 
optimization problem in (1) numerically, an iterative gradient-based 
optimization algorithm is used. Algorithm 1 shows the steps performed 
by the implemented parameter identification framework. First, provid-

ing an initial guess regarding the reaction parameters 𝜶0 is required. 
Then in step 1, the control parameters 𝜶 are set for the LBM sim-

ulation to compute the concentration distributions c𝑛 by solving the 
coupled system of RADEs, where 𝑛 ∈ ℕ+

0 corresponds to the 𝑛th iter-

ation step. That is, (7) is solved in each grid node in the numerical 
domain and for each time step until a steady state is reached. The con-

centration distributions c𝑛 are obtained for the current 𝜶𝑛 by node-wise 
and species-wise evaluation of (13). In the next step, the concentra-

tion distributions are used to compute the objective function 𝐽𝑛 in (1), 
i.e., the relative error between the simulation c𝑛 and reference concen-

tration fields c∗ is calculated. For 𝑁∗ ∈ ℕ+
0 discrete positions x∗

𝑖
∈ Ω∗

with 𝑖 ∈ 𝑁∗ of available reference data points, the 𝐿2-norm in (1) is 
computed as
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Algorithm 1 Optimization algorithm to solve parameter identification 
problem.

Step 0: Choose initial guess of the controls 𝜶0 (iteration step n = 0)
Step 1: Compute concentration field c𝑛 by running simulation with the 
parameters 𝜶𝑛
Step 2: Compute objective 𝐽𝑛 , i.e., relative error to the reference concen-

tration fields c∗
If 𝐽𝑛 < 𝜖 (alternatively ||𝜕𝐽𝑛∕𝜕𝜶𝑛||2 < 𝜖, with || ⋅ ||2 the Euclidean 
norm), then stop

Else, continue

Step 3: Compute derivatives 𝜕𝐽𝑛∕𝜕𝜶𝑛 to compute descent direction d𝑛

If step-size 𝑠𝑛 is valid, update controls via 𝜶𝑛+1 = 𝜶𝑛+△𝜶𝑛 and (17), 
then go to Step 1
Else, adjust step-size 𝑠𝑛 (this step involves function or derivative com-

putation, i.e., a CFD simulation)

|| ⋅ ||𝐿2(Ω∗) =

√√√√ 1
𝑁∗

𝑁∗∑
𝑖=1

(⋅(x∗
𝑖
))2 . (15)

Inserting (15) in (1), the objective function in the iteration step 𝑛 ex-

plicitly yields

𝐽𝑛(c𝑛,𝜶𝑛) =
∑
𝜓∈Ψ

∑𝑁∗

𝑖=1(𝑐
𝑛
𝜓
(x∗
𝑖
,𝜶𝑛) − 𝑐∗

𝜓
(x∗
𝑖
))2∑𝑁∗

𝑖=1(𝑐∗𝜓 (x
∗
𝑖
))2

, (16)

where the simulated concentration distribution 𝑐𝑛
𝜓

is interpolated onto 
the positions x∗ to evaluate the deviation regarding the reference con-

centration. The algorithm terminates when the value of the objective 
function in (16) is lower than a user-specified threshold 𝜖 > 0. If this is 
not the case, the sensitivities of the objective function regarding the con-

trols 𝜕𝐽𝑛∕𝜕𝜶𝑛 ∈ ℝ𝑑𝛼 are computed either via forward finite difference 
quotients (FDQ) with a step size of half the machine precision (10−8) 
or via the forward mode of algorithmic differentiation (AD) as applied 
in former studies [3,49]. The interested reader, regarding AD in gen-

eral or the internal implementation of AD in OpenLB used in this work, 
is referred to the concise introduction by Griewank and Walther [50]

or the work of Jeßberger et al. [49], respectively. As an alternative ter-

minating condition, the Euclidean norm of the sensitivities is computed 
to check whether its magnitude is sufficiently low. The change in the 
controls △𝜶𝑛 ∈ℝ is given as

△𝜶𝑛 = 𝑠𝑛d𝑛, (17)

where 𝑠𝑛 ∈ ℝ+
0 is the step size and d𝑛 ∈ ℝ𝑑𝛼 the descent direction 

of the current iteration step 𝑛. Armijo and Wolfe rules are applied 
to find appropriate step sizes 𝑠𝑛 balancing stability and convergence 
speed [41,42]. Therein, the appropriate step size is found by applying 
iterative changes, i.e., an additional inner loop performs several func-

tion or gradient evaluations containing CFD simulations. When both 
rules are satisfied for a computed step size △𝜶𝑛, the performed simula-

tion with 𝜶𝑛+1 = 𝜶𝑛 + △𝜶𝑛 is counted as a valid optimization step. 
L-BFGS [29] computes the descent direction d𝑛 using the objective 
derivatives obtained by either FDQ or AD. After updating the control 
variables, the algorithm returns to step 1, repeating the steps until sat-

isfying the termination condition.

4. Validation

To investigate the feasibility of the presented method and to validate 
the results, a benchmark test case is constructed. The concentration dis-

tributions obtained by a CFD simulation with a priori known reaction 
rate parameters are used to compute the reference concentration fields 
c∗. Then, these reference fields are fed into the parameter identification 
framework recovering the reference reaction rate parameters. Fig. 3

schematically illustrates the parameter identification framework and 
the validation process where some measurement data is replaced by a 
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reference CFD simulation. Having the goal in mind to apply this method 
to real measurement data, various scenarios for the reference data are 
investigated, such as modifying the reference concentration distribution 
by statistical noise. All presented methods introduced in this study are 
implemented with the open-source software library OpenLB [39,40].

As a side note, we also conduct studies using the method of steepest 
descent instead of L-BFGS. However, the results only varied in terms 
of convergence speed, i.e., the L-BFGS required less optimization steps 
compared to steepest descent. Thus, the following work only presents 
the results produced by L-BFGS.

4.1. Benchmark case: bulk reaction between two parallel plates

A quasi-2D bulk flow between two opposing plates is considered 
where reaction species 𝐴 and 𝐵 diffuse from the bottom and top plate 
surfaces, respectively, as shown in Fig. 4. The two species are trans-

ported from left to right via a homogeneous velocity field. The ver-

tical distance between the plates is given by the height 𝐻 = 0.16m
and the plate length as 𝐿 = 1.6m, yielding a geometrical ratio of 
𝐻∕𝐿 = 0.1. The benchmark case models the homogeneous chemical 
reaction 𝐴 +𝐵→ 𝐶 in the bulk. The homogeneous velocity field u trans-

ports the reaction species in the flow direction, and the source term 𝑅𝜓
of (4) creates species 𝐶 via chemical reaction depending on the local 
concentrations 𝑐𝐴 and 𝑐𝐵 . The diffusivity of all species in the carrier 
fluid is set equal, thus all diffusion constants collapse to a single vari-

able 𝐷. The Péclet number of the current flow problem is defined as

Pe =
𝑢𝑥𝐻

𝐷
, (18)

for all reaction species, where 𝑢𝑥 is the flow velocity in 𝑥-direction.

The reference simulation is performed with the LBM scheme pre-

sented in Sec. 3. The grid resolution for the reference solution is cho-

sen as 𝐻 × 𝐿 × 𝑍 = 40 × 400 × 1 cells, leading to a grid step size of 
△𝑥 = 0.004 m with a temporal step size of △𝑡 = 1.6 × 10−5 s. The sim-

ulation domain consists of 𝑁𝜓 = 16 × 103 grid points for each species 
𝜓 . The spatial position in flow direction 𝑥 is defined as 0 ≥ 𝑥 ≥ 𝐿 and 
its normal direction 𝑦 as 0 ≥ 𝑦 ≥𝐻 . Periodic boundary conditions are 
applied in the depth direction 𝑧 in 0 ≥ 𝑧 ≥𝑍 with a grid resolution of 
one grid cell for the depth 𝑍 ∈ ℝ. At the remaining four boundaries 
Γin, Γout , Γtop, Γbottom ⊆Ω, Dirichlet and Neumann-type boundary con-

ditions are applied as depicted in 4. At the inflow Γin with (𝑥 = 0, 𝑦, 𝑧), 
the inflow concentration 𝑐𝜓,in is set to zero for all species 𝜓 . At the 
outflow Γout with (𝑥 = 𝐿, 𝑦, 𝑧), the free-stream condition is applied, 
i.e., 𝜕𝑐𝜓,out∕𝜕𝑥 = 0. The following boundary conditions are applied at 
the top plate Γtop with (𝑥, 𝑦 = 𝐻, 𝑧) and bottom plate Γbottom with 
(𝑥, 𝑦 = 0, 𝑧) for each reaction species 𝜓 :

Γtop ∶ 𝜓 =
⎧⎪⎨⎪⎩
𝐴,

𝜕𝑐𝐴

𝜕𝑦
= 0,

𝐵, 𝑐𝐵 = 𝑐wall,
𝐶,

𝜕𝑐𝐶

𝜕𝑦
= 0,

and

Γbottom ∶ 𝜓 =
⎧⎪⎨⎪⎩
𝐴, 𝑐𝐴 = 𝑐wall,
𝐵,

𝜕𝑐𝐵

𝜕𝑦
= 0,

𝐶,
𝜕𝑐𝐶

𝜕𝑦
= 0.

(19)

In the current LBM model, all Dirichlet-type boundary conditions are 
applied via the moment-based boundary condition as in [51] and for the 
Neumann-type zero gradient boundary condition, the identical schemes 
as in [14,49] are used. The convective flow velocity is prescribed as u =
(0.05 × 10−3, 0.0, 0.0)T m/s and the Péclet number as Pe = 108 leading 
to a diffusivity of 𝐷 = 7.407 × 10−8 m2/s. For reaction rate parameters, 
the reaction constant is set to 𝑘∗ = 1.2 × 10−6(kg/m3)1−(𝑚

∗
𝐴
+𝑚∗

𝐵
)∕s, the 

reaction order of species A to 𝑚∗
𝐴
= 1.3, the reaction order of species 

B to 𝑚∗
𝐵
= 1.1. Hereafter, these parameters are referred to as reference 

parameters 𝜶∗ ∈ℝ3, given as
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Fig. 3. Parameter identification framework in OpenLB. The concentration field of a CFD simulation with prior known reaction rate parameters is used for the 
reference concentration field to validate the identification process.

Fig. 4. Reactive flow problem considered in the benchmark case: Two opposing plates with fixed surface concentration where the species are transported via 
homogeneous convection field and diffusion. The applied boundary conditions are depicted in the schematic view of the flow problem.

Fig. 5. Reference concentration distributions 𝑐∗
𝜓

for all species 𝐴, 𝐵, and 𝐶 (from top to down) obtained for the reference parameter set 𝜶∗ of (20).
𝜶∗ = (𝑘∗,𝑚∗
𝐴
,𝑚∗
𝐵
)T = (1.2 × 10−6,1.3,1.1)T. (20)

Simulating with 𝜶∗ until reaching a steady state gives the refer-

ence concentration field c∗ for each reaction species 𝜓 , presented in 
Fig. 5.

A grid independence study is conducted to ensure grid convergence 
of the simulated flow problem. The grid spacing △𝑥 is varied such that 
the total number of grid cells 𝜓 doubles in each increasing refinement 
level. Fig. 6 shows the investigated experimental order of convergence 
(EOC) regarding the product concentration 𝑐𝐶 averaged over the whole 
domain Ω. In the current simulation, three reaction species are trans-
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ported via three RADEs, which are all solved on the same numerical 
grid but involving three times solving (7). That is, the total number of 
cells updated each time step is given as 𝑁 =

∑
𝑖∈𝑑Ψ 𝑁𝜓 , which is the 

sum of the grid cells over the number of solved RADEs. Since no an-

alytic solution is available for this flow problem, the difference of the 
averaged product concentration between the simulation with the reso-

lution with 𝑁 f inest = 6129120 and a simulation with the grid resolution 
𝑁 with 𝑁 <𝑁 f inest total number of cells is computed as

𝐸𝑟𝑟
𝑐𝑁
𝐶,Ω

= (𝑐𝑁
𝐶,Ω − 𝑐𝑁 f inest

𝐶,Ω )2, (21)
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Fig. 6. EOC is studied for the presented reactive flow simulation as shown in 
Fig. 5. The difference of the average product concentration 𝑐𝑁

𝐶,Ω over Ω to its 
value of the simulation at the highest resolution 𝑐𝑁 f inest

𝐶,Ω with 𝑁 f inest = 6129120
is computed via (21) and plotted over the grid spacing △𝑥 in millimeters.

where 𝑐𝐶,Ω denotes the averaged product concentration over Ω, the up-

per index 𝑁 the current resolution, and 𝑁 f inest the highest resolution. 
The decrease of the computed error in (21) approaches the second or-

der with increasing grid resolution as demonstrated in Fig. 6. That is, 
for the species 𝐴 at the left lower corner (𝑥 = 0, 𝑦 = 0, 𝑧) and the species 
𝐵 at the upper left corner (𝑥 = 0, 𝑦 =𝐻, 𝑧), the zero inflow concentra-

tion collides with the non-zero concentration prescribed at the wall by 
Dirichlet-type boundary conditions causing errors independent of the 
grid resolution. However, by increasing the overall resolution of the 
simulation, the influences of that disturbance diminish compared to the 
overall flow, explaining why the error approaches a second-order func-

tion with respect to △𝑥 for high resolution.

4.2. Identification of reaction rate parameters

The reaction rate parameters are identified for the bulk reaction 
benchmark case. If not explicitly stated differently, the algorithm termi-

nates when the gradient magnitude of the objective function decreases 
below the threshold of 𝜖 = 10−8. Here, the objective gradient is pre-

ferred over the actual value of the objective function for the terminating 
condition since, in most cases, the objective value at the local minima 
is not known a priori. AD is implemented via operator overloading in 
C++ and is already tested in previous studies such as in [3,49]. The 
simulation performed in the parameter identification process is con-

ducted on the identical numerical grid as of the reference simulation, 
i.e., Ω△𝑥 = Ω∗, with a total number of 𝑁 =

∑
𝜓∈Ψ𝑁𝜓 = 48 × 103 cells 

updated for all three species. The bulk reaction benchmark case is inves-

tigated for five different configurations (case A to case E, see Fig. 7) of 
the reference concentration distribution. In the first configuration (case 
A), the objective function in (16) is computed only using the concentra-

tion field of species 𝐴. Hereafter, if not explicitly stated differently, only 
the concentration field 𝑐∗

𝐴
is used as the reference field to recover the 

parameters in all conducted cases. Then, case A is investigated regard-

ing the dimension of the control vector 𝑑𝛼 , grid dependency, influences 
of the chosen algorithm to compute the gradients, and different refer-

ence parameters 𝜶∗. In case B, only the concentration in the cells one 
layer in front of the outflow is considered for the reference data set. By 
this, the reference data contains only the 1D concentration distribution 
at the outflow. Furthermore, different initial guesses 𝜶0 are chosen to 
investigate the robustness of the identification process for this case with 
reduced data sets. To demonstrate the importance of using spatially dis-

tributed data for solving the inverse problem, case C tries to identify 
the reference parameters by only comparing the outlet product concen-

tration between simulation and reference simulation. Case D aims to 
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imitate MRI measurement data by inducing noise signals onto the refer-

ence concentration field, adding uncertainty to the data. Finally, case E 
investigates the influences of having lower grid resolutions for the ref-

erence simulation introducing new sources of errors, i.e., discretization 
and interpolation errors.

4.2.1. Case A: whole concentration distribution of one species

In case A, the whole concentration field of species A is used as the 
reference field, whereby the objective sensitivities are computed by AD. 
First, the influence of the number of simultaneously identified param-

eters, i.e., the dimension 𝑑𝛼 of the control vector 𝜶, on the parameter 
identification process is investigated. The Figs. 8a-8c presents the re-

sults for the one-dimensional case (𝑑𝛼 = 1) where the control vector 
consists of the reaction constant 𝜶 = (𝑘)T. The initial guess of the reac-

tion constant 𝛼0 = 0.1 ×10−6(kg/m3)1−(𝑚𝐴+𝑚𝐵 )∕s contains an initial rel-

ative error of 91% to its reference value. Fig. 8a shows the development 
of the control variable 𝛼𝑛 over the performed number of simulations. 
The solid line with the corresponding color indicates the reference pa-

rameter, which is recovered by the presented method. Fig. 8b plots the 
relative error regarding the parameters Δ𝛼𝑛

𝑖,rel and Fig. 8c the absolute 
value of the relative error of the averaged outflow product concentra-

tion Δ𝑐𝑛rel, given as

Δ𝛼𝑛
𝑖,rel =

𝛼∗
𝑖
− 𝛼𝑛

𝑖

𝛼∗
𝑖

and Δ𝑐𝑛rel =
𝑐∗
𝐶,out − 𝑐

𝑛
𝐶,out

𝑐∗
𝐶,out

, (22)

respectively. The plots depict the convergence of the control param-

eter towards its reference value in 20 simulations corresponding to 
5 optimization steps. Our method reduces the initial relative error 
from 91% to 10−6% regarding the control parameter as well as for 
the averaged outflow concentration. As we increase the number of 
control parameters from one to two, the algorithm still converges to-

wards their corresponding reference values, as we see in Fig. 8d-8f. 
Here the reaction constant and the reaction order of the species A 
are recovered simultaneously, starting with the initial guess given as 
𝜶0 = (𝑘0, 𝑚0

𝐴
)T = (0.1 × 10−6, 0.8)T. The accuracy by additionally recov-

ering the reaction order of species A drops slightly to a final relative 
error of 10−5%. The number of required simulations increases to 26 
with 8 optimization steps. Similar results are obtained by further in-

creasing the dimension of the control vector by including the reaction 
order of species B demonstrated in Fig. 8g-8i. Even for three parame-

ters with the initial guess of 𝜶0 = (𝑘0, 𝑚0
𝐴
, 𝑚0
𝐵
)T = (0.1 × 10−6, 0.8, 0.8)T, 

the control parameters converge towards their corresponding reference 
parameters. For all plots in Fig. 8, the number of required simulations 
increases, while the accuracy of the found parameters and the resulting 
product concentration decrease as the dimension of the control vector 
increases. However, for 𝑑𝛼 = 3, the accuracy of the found parameters 
is still in a high range of 10−3% while necessitating only 37 simula-

tions corresponding to 13 optimization steps as demonstrated in Fig. 8h. 
Furthermore, case A with 𝑑𝛼 = 3 is investigated for different reference 
parameters, given as:

𝜶∗
𝐼
=
⎛⎜⎜⎝
1.2 × 10−6

1.3
1.1

⎞⎟⎟⎠ , 𝜶∗
𝐼𝐼

=
⎛⎜⎜⎝
2.2 × 10−6

2.3
2.1

⎞⎟⎟⎠ , 𝜶∗
𝐼𝐼𝐼

=
⎛⎜⎜⎝
3.2 × 10−6

3.3
3.1

⎞⎟⎟⎠ .
(23)

The results in Fig. 9 demonstrate the successful recovery of the reaction 
rate parameters by using the reference parameters given in (23). The 
optimization algorithm effectively minimizes the magnitude of the vec-

tor containing the relative errors Δ𝛼𝑛rel computed by the Euclidean norm || ⋅ ||2 as well as the relative error in average product concentration at 
the outflow Δ𝑐𝑛rel.

Next, the influence of the grid resolution on the parameter identi-

fication process is investigated. Fig. 10a presents the development of 
the relative error regarding the found reaction parameters for the total 
number of grid cells of 𝑁 = 48 ×103, 96 ×103, and 192 ×103 cells for dif-
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Fig. 7. Overview of investigated cases (A to E) with various configurations of the reference concentration field, here illustrated for 𝑐∗
𝐴

.

Fig. 8. Case A: Recovery of the reaction rate parameters from including only the reference concentration 𝑐∗
𝐴

. The dimension 𝑑𝛼 of the control vector is increased 
from one up to three parameters recovered in a single optimization problem (row-wise, from top to bottom). The values of the control vector, the relative error 
of the controls to its reference values, and the relative error of the averaged product outflow concentration are plotted over the performed number of simulations 
(column-wise from left to right). The ticks depict the actual values of the controls at a performed simulation. Note the change in the 𝑥-axis over the rows and the 
scaling of the reaction constant to the same order as the reaction orders for better visualization.
256
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Fig. 9. Case A: The reference parameters 𝜶∗ are varied to test the optimization problem with various rate law formulations regarding the control variables. For all 
tested reference parameters in (23), the presented method successfully identifies the reference reaction rate parameters.

Fig. 10. Case A: Influence of the grid resolution on the parameter identification. AD is used here for the gradient computation.
ferent control dimensions. Note that here the resolution of the reference 
simulation and the simulations during the optimization is scaled accord-

ingly, whereby the case where they vary is studied in case E (Sec. 4.2.5). 
For 𝑑𝛼 = 1 and 𝑑𝛼 = 2, there are no visible differences in the optimiza-

tion steps as well as in the final relative error in the found reaction 
parameters. For 𝑑𝛼 = 3, there is a slight difference at the highest grid 
resolution, which is likely due to a round-off error leading to the outlier 
behavior. However, the results in Fig. 10a indicate grid independence 
regarding the investigated optimization problem.

Finally, the influence of the different algorithms to compute the ob-

jective gradient is investigated together with the scaling performance 
of the presented algorithm. The implemented framework is executed 
on eight message-passing interface (MPI) processes on an AMD Ryzen 
Threadripper 2990WX 32-Core Processor. Fig. 11a illustrates the total 
necessitated running time 𝑡total in minutes to solve the inverse prob-

lem regarding the dimension of the control vector and grid resolution. 
Fig. 11b presents the development of the relative error regarding the 
control variables for AD and FDQ. It is notable that for three control 
parameters using the FDQ requires almost twice as many simulations 
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compared to AD but half the total running time to solve the inverse 
problem. The reason for this is that AD changes the LB data struc-

ture from a performance-optimized structure-of-arrays (SoA) [27] to a 
structure-of-arrays-of-structures (SoAoS) while FDQ leaves the core data 
structure unchanged. The SoAoS emerges for AD due to the usage of 
a custom, control-parameter-dependent structure as the foundational 
arithmetic type of the entire simulation. Fig. 12a compares the scal-

ing behavior in terms of throughput in mega lattice updates per second 
(MLUPs) between using FDQ (blue) and AD (red). Different scaling be-

havior regarding the dimension of the control variable and the grid 
resolution is observed. For the grid resolution of 𝑁 = 96 × 103 cells, 
the MLUPs are nearly constant for FDQ, while using AD, there is a 
visible dependency of the number of computed derivatives and the per-

formance as shown in Fig. 12b. It has to be noted that the maximum 
resolution of 192 × 103 cells is comparably small and below the scope 
of scaling optimizations in OpenLB, which commonly target higher res-

olutions up to billions of cells. While small problem sizes provide a 
possible advantage due to better cache utilization, this is best utilized 
in combination with vectorized (SIMD) execution which is currently not 
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Fig. 11. Case A: Comparison of the two applied algorithms to compute the objective sensitivities, i.e., AD and FDQ, regarding the optimization problem and required 
total running time.

Fig. 12. Case A: Scaling behavior compared for the both implemented gradient algorithms, FDQ and AD.
Table 1

The highest achieved accuracy regarding the re-

covered reaction rate constant using AD and FDQ 
by setting the termination condition 𝜖 in Algo-

rithm 1 to machine precision, i.e., 𝜖 = 10−16.

Gradient computation Relative error control

AD 4.422 × 10−14
FDQ 4.167 × 10−9

supported for AD and was not enabled for FDQ to ensure a fair compar-

ison. Future performance-focused work should split the foundational 
AD type into a plain SoA structure to enable vectorization in addition 
to using automatic code generation specifically targeted at the critical 
AD collision kernels. Although there are currently significant perfor-

mance drawbacks in using AD, its main advantage lies in the accuracy 
of the computed gradients compared to FDQ. Since AD does not suf-

fer from cancellation due to round-off errors, as in the case of FDQ, AD 
allows more accurate computations of the objective gradients. Table 1

compares the highest achieved accuracy of the recovered reaction rate 
parameters for case A with 𝑑𝛼 = 1 by setting the terminating condition 
𝜖 equal to machine precision.
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While the FDQ could only reach relative errors of roughly the step size 
chosen for the difference stencil, AD gets almost machine-precision ac-

curate results. For 𝜖 = 10−8, no significant influence on the result of the 
optimization problem is observable, as shown in Fig. 11b. However, in 
the following, AD is preferred over FDQ to compute the objective gra-

dients as performance is not the main focus in those cases.

4.2.2. Case B: outflow concentration distribution of one species

This case reduces the number of accessible grid points of the refer-

ence simulation to only those positioned one layer next to the outflow 
region for the inverse problem. This corresponds to a reduction of 
99.75% regarding the accessible information about the reference con-

centration field compared to the previous case. The presented method 
still recovers the control parameters for the identical initial guesses 
as given in (20), see Fig. 13. The final relative error, in this case, is 
in the same order as in case A, as shown in Fig. 13a. Regarding the 
number of required simulations, there are slightly more simulations in-

volved for 𝑑𝛼 = 3. Several initial guesses are tested to investigate the 
robustness of the optimization problem. Table 2 lists six different ini-

tial guesses picked from an interval, where the reference parameters 
could be recovered successfully. Fig. 14 confirms the convergence of 
the parameters towards the reference parameters as the relative error 
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Fig. 13. Case B: In this case, only the reference concentration distribution at the outflow is used to recover the reaction rate parameters. Even after this reduction, 
all three reaction rate parameters could be identified from the reference data.

Fig. 14. Case B: Development of the relative error regarding the controls for the picked initial values in Table 2 where again only the reference concentration 
distribution at the outflow is used to recover the reference parameters.
Table 2

List of six different initial guesses 𝜶0 (𝐼 to 𝑉 𝐼) picked 
from an interval, where the presented method suc-

cessfully recovered the reference parameters. The val-

ues for the reaction constant 𝑘0 , reaction order 𝑚0
𝐴

of species 𝐴, and reaction order 𝑚0
𝐵

of species 𝐵 are 
listed below. The corresponding value ||Δ𝜶0

rel||2 is 
computed as a measure for the distance of the initial 
guess from the reference parameters 𝜶∗ by (22).

𝜶0 𝑘0 𝑚0
𝐴

𝑚0
𝐵

||Δ𝜶0
rel||2

𝜶0
𝐼

1.0 × 10−11 0.7 0.7 1.16

𝜶0
𝐼𝐼

1.0 × 10−6 1.0 1.0 0.30

𝜶0
𝐼𝐼𝐼

1.5 × 10−6 1.5 1.5 0.47

𝜶0
𝐼𝑉

2.0 × 10−6 2.0 2.0 1.18

𝜶0
𝑉

2.5 × 10−6 2.5 2.5 1.91

𝜶0
𝑉 𝐼

3.0 × 10−6 3.0 2.8 2.52

regarding the controls is successfully reduced. Choosing combinations 
of lower values regarding reaction constant/orders than in 𝜶0

𝐼
or higher 

values than in 𝜶0
𝑉 𝐼

leads to divergence of the simulation, and therefore, 
the optimization problem is not able to recover the reference parame-

ters. The results of the current case demonstrate that even reducing the 
spatial dimension of the reference data from 2D to 1D data still suffice 
to recover reaction rate parameters reliably in the presented benchmark 
problem.
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4.2.3. Case C: averaged outflow concentration

In this case, we purposely omit the use of spatially distributed data 
for the inverse problem to investigate whenever ambiguity problems 
are occurring. Following the previous case, the reference data is further 
reduced to the averaged concentration at the outflow. This requires a 
different formulation of the objective function, giving for species 𝐴:

𝐽caseC(c𝑛,𝜶𝑛) =
(
𝑐∗
𝐴,out − 𝑐

𝑛
𝐴,out (𝜶

𝑛)
)2
, (24)

where 𝑐𝐴,out indicates the average concentration of species 𝐴 on a sin-

gle grid layer at the outflow. Fig. 15a shows the relative error of the 
control parameters for using (24) as the objective function using only 
the averaged concentration of species A. For more than one control pa-

rameter (𝑑𝛼 > 1), the optimization problem is unable to find a unique 
solution regarding the reaction rate parameters. By adjusting the objec-

tive function depending on the number of control parameters as

𝐽caseC(c𝑛,𝜶𝑛, 𝑑𝛼)

=

⎧⎪⎪⎨⎪⎪⎩
𝑑𝛼 = 1,

(
𝑐∗
𝐴,out − 𝑐

𝑛
𝐴,out

)2
,

𝑑𝛼 = 2,
(
𝑐∗
𝐴,out − 𝑐

𝑛
𝐴,out

)2
+
(
𝑐∗
𝐵,out − 𝑐

𝑛
𝐵,out

)2
,

𝑑𝛼 = 3,
(
𝑐∗
𝐴,out − 𝑐

𝑛
𝐴,out

)2
+
(
𝑐∗
𝐵,out − 𝑐

𝑛
𝐵,out

)2
+
(
𝑐∗
𝐶,out − 𝑐

𝑛
𝐶,out

)2
,

(25)

the control parameters converge towards the reference parameters as 
demonstrated in Fig. 15b. The number of performed simulations in-
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Fig. 15. Case C: Using Averaged Outflow concentrations for the parameter identification problem. Here the optimization problem faces ambiguity problems when 
the objective function in (24) is used.

Fig. 16. Case D: Inducing statistical noise onto the reference solution, compared for different noise intensities (𝑑𝛼 = 1).
creases compared to the previous two cases by increasing the number of 
simultaneously recovered parameters. However, adapting the objective 
function for more complex inverse problems involving more reaction 
rate parameters is not trivial and could require sophisticated approaches 
such as regularization to solve ambiguity problems. This case showcases 
once again, how recovering kinetic parameters from punctual/integral 
measurements is an difficult and error-prone task.

4.2.4. Case D: uncertain reference data through applying noise signals

Measurements generally contain noise signals, which motivates us 
to study the case where Gaussian-distributed noise signals are induced 
onto the reference concentration field with zero mean and a standard 
deviation 𝜎 ∈ ℝ. The signal-to-noise ratio (SNR) quantifies the noise 
signal intensity, defined here as

SNR =
𝑐𝜓,Ω△𝑥

𝜎
, (26)

where 𝑐𝜓,Ω is the averaged concentration of a species over the whole 
numerical domain Ω before inducing noise signals. After computing the 
reference concentration field, the noise signal is applied grid-wise onto 
the reference data with the SNR, given by (26).

Fig. 16 illustrates the results for various SNRs for recovering one sin-

gle reaction rate parameter, the reaction constant. This case required to 
include the reference concentration fields of all species 𝜓 to reliably 
recover the reference parameters as in (16). In Fig. 16a, the reaction 
constant is recovered from the noisy reference data. The development 
of the relative error regarding the controls shows that decreasing SNR 
260
results in an increase of the remaining relative error regarding the rate 
parameters. Fig. 16b illustrates the development of the minimized ob-

jective function over the performed simulations. Since the objective 
function in (16) gives the relative error between the reference solution 
and the current simulation, 𝐽 (c(𝜶∗), 𝜶∗) is equal to the error caused 
by the superposition of the noise signal onto the reference solution. 
This value of the relative error is indicated by solid lines in Fig. 16 for 
each tested noise intensity. The objective function aligns perfectly with 
the solid lines when the optimization algorithm terminates, indicating 
that the optimization algorithm successfully finds the minimal possible 
value of the objective function. Thus, the noise signal sets a lower limit 
regarding the objective function depending on the noise amplitude. By 
reaching that limit, the noise signal “blurs” the exact position of the lo-

cal minima, leaving the gradient-based algorithm unable to get closer to 
the reference values. The optimization algorithm partially compensates 
for the induced error through noise signals by the control variables, i.e., 
the accuracy of the identified reaction rate parameters drops depending 
on the SNR. However, starting from a relative error of around 100% to 
the reference values, the parameter estimation framework reduces that 
error down to a magnitude lower than < 1% for an SNR of 5.

Fig. 17 presents the results obtained for 𝑑𝛼 = 3. Again, the reaction 
rate parameters can be recovered. Similar tendencies can be observed 
here, although the number of simulations increases compared to cases 
where no noise signals are induced. If prior estimations of 𝐽 (𝜶∗) are 
available, the termination condition 𝜖 can be adjusted to reduce the 
number of simulations after reaching the lower threshold indicated by 
the solid lines in Fig. 17.
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Fig. 17. Case D: Inducing uncertainty on the reference solution, compared for different noise intensities (𝑑𝛼 = 3).
Fig. 18. Case E: The resolution of the reference simulation 𝑁∗ is varied, 
whereby the resolution in the simulations during optimization 𝑁 is fixed to 
𝑁 = 96 × 103 . The relative error regarding the reaction constant (𝑑𝛼 = 1) is 
compared for various resolutions of 𝑁∗ <𝑁 .

4.2.5. Case E: lower resolution in the reference simulation

In the final case, only the resolution of the reference simulation 𝑁∗

is varied such that the resolution is lower than in those simulations 
performed during the optimization procedure, i.e., 𝑁∗ < 𝑁 . For the 
simulations during parameter estimation, the total resolution is set to 
the fixed number of 𝑁 = 96 × 103 cells. Further, reference concentra-

tion fields of all species are used in this case as in (16). The simulated 
concentration field c is interpolated onto the grid points of the refer-

ence simulation x∗ to compute the objective function in (16). Fig. 18

shows the final relative error regarding the recovered reaction constant 
(𝑑𝛼 = 1) for the tested reference simulation resolutions 𝑁∗. Here the 
decrease of the relative error can be observed for reducing the gap 
between the resolutions 𝑁 and 𝑁∗. That is, the error between two 
successive simulations with decreasing grid spacing decreases as Fig. 6

ensures the grid convergence of the simulated flow problem. There-

fore, by approaching 𝑁 and 𝑁∗ the discretization error as well as the 
interpolation error to compare c with c∗ decrease and thus, the param-

eters can be recovered more accurately. Generally, we can not expect 
the objective function to become exactly zero for any set of reaction 
parameters, i.e., the reference and simulation distribution being iden-

tical. This can be due to various error sources, e.g., uncertainty in the 
measurement data, errors in the gradient computation, discretization, 
interpolation, and round-off errors, where their influence on the pa-

rameter identification is partially demonstrated in case D and E. The 
optimization problem compensates these error sources by adjusting the 
control parameters, which leads in an accuracy drop of the recovered 
parameters, see the results presented in Fig. 18 in comparison the re-

sults of case A. Note, that despite the poor resolution, the accuracy of 
the recovered parameters in Fig. 18 is still in an acceptable range, where 
the relative error is of the order (1%).
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5. Conclusion

In this study, we investigated the feasibility of spatially distributed 
data for identifying reaction rate parameters in reactive flows using 
gradient-based PDE constrained optimization. Instead of solving the in-

verse problem by comparing reference data with simulated data at a 
single point or spatially averaged values, we minimized the error be-

tween a given reference and the simulated concentration field. The 
method was investigated for a generic homogeneous bulk reaction 
where a reference simulation with a priori known reaction rate parame-

ters validated the implemented framework. Different configurations of 
the reference simulations were used to recover the reaction rate param-

eters while the presented method was analyzed regarding the accuracy 
of the parameters, the robustness of the approach, performance, and 
applicability on reduced or uncertain (noisy) reference data. The con-

clusions of this work are summarized below:

• Efficient, robust, and accurate identification of simultaneous iden-

tification of multiple parameters (Sec. 4.2.1 / Sec. 4.2.2)

• Reduction of the amount of accessible reference data; 1D data 
can be sufficient to recover parameters from a 2D flow field 
(Sec. 4.2.2 / Sec. 4.2.3)

• Applicability on uncertain (noisy) reference data; reduction of an 
initial relative error regarding the parameters from 100% down to 
1% for a SNR of 5 (Sec. 4.2.4)

• Grid independence regarding optimization problem in the pre-

sented benchmark case (Sec. 4.2.1)

• Errors between reference and simulation, e.g., discretization error, 
noise signal, or interpolation error, are partially compensated by 
the identified parameters (Sec. 4.2.4 / Sec. 4.2.5)

This study presents a reliable and efficient method to identify reaction 
rate parameters from uncertain concentration distributions for the eval-

uated benchmark case involving a reactive flow. The next natural step 
would be the use of real MRI measurements, which involves remain-

ing questions about the treatment of unknown boundary conditions, 
modeling errors due to simplified assumptions on the chosen reaction 
model, or other unavoidable errors due to the comparison between mea-

surement and simulation to name a few. Despite those challenges, the 
remarkable advantages of the presented approach from the application-

side perspective would be:

• Tests under ideal conditions will no longer have to be carried out 
to determine kinetic parameters

• The measurements can be made in the technical reactor using the 
original catalysts. (Of course, the latter must then be represented 
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tion of the presented method on real measurement data in future works.
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