
X =1.00

X =0.01
perf

lossSD
Software Design and Quality

Elicitation and Classification of Security
Requirements for EVerest

Master Thesis of

Debora Maria Marettek

At the KIT Department of Informatics

KASTEL – Institute of Information Security and Dependability

First examiner: Prof. Dr.-Ing. Anne Koziolek

Second examiner: Prof. Dr. Ralf Reussner

First advisor: M.Sc. Sophie Corallo

Second advisor: Dr.-Ing. Tobias Hey

13. November 2023 – 13. May 2024

Karlsruher Institut für Technologie

Fakultät für Informatik

Postfach 6980

76128 Karlsruhe

Abstract

Incomplete and unverified requirements can lead tomisunderstandings andmisconceptions.

Specifically in security, violated requirements can be indicators for potential vulnerabilities.

To avoid vulnerabilities, security reuqirements are linked to their implementations. For

further verification, security analyses can be used to check whether a software design

fulfills its required properties. Therefore, specific attributes of requirements have to be

identified and linked to the design. In this thesis, security requirements for the open-source

software EVerest are elicited. EVerest provides a full stack environment for electric vehicle

charging stations. For the elicitation, a two-step approach is used. First, a questionnaire is

developed that elicits coarse-grained requirements of the security categories confidentiality,

integrity, availability, and authentication. Afterwards, four EVerest software developers

are interviewed to refine the coarse-grained requirements to 93 design-level security

requirements. Prompt engineering and fine-tuning are used to classify design elements

and extract their respective mentions from the retrieved requirements. GPT’s quality for

the design element classification and extraction of their mentions is determined in three

evaluation scenarios both for individual elements and per requirement. First, it is examined

how well GPT classifies the elements in the requirements. Then, GPT’s ability to extract

their mentions in the requirements is determined. Finally, it is examined how well GPT

extracts the mention of the design element in the requirement in case the design element

is correctly classified. The results indicate that regarding multi-class design element

classification in requirements works well in prompt engineering and fine-tuning (F1-score:

0.67-0.73). However, regarding the extraction of design elements, fine-tuning (F1-score:

0.7) surpasses prompt engineering (F1-score: 0.52). If both tasks are combined, fine-tuning

(F1-score: 0.87) also outperforms prompt engineering (F1-score: 0.61). However, in prompt

engineering, GPT seems to be inappropriate to classify all design elements or extract

all mentions per requirement, while the results in fine-tuning for the design element

classification (F1-score: 0.18-0.2) and the mention extraction (F1-score: 0.15-0.18) are

acceptable for a multi-label classification.

i

Zusammenfassung

Unvollständige und nicht überprüfte Anforderungen können zu Missverständnissen und

falschen Vorstellungen führen. Gerade im Sicherheitsbereich können verletzte Anforde-

rungen Hinweise auf potenzielle Schwachstellen sein. Um Schwachstellen zu vermeiden,

werden Sicherheitsanforderungen an deren Implementierung geknüpft. Zur weiteren Veri-

fizierung kann mithilfe von Sicherheitsanalysen überprüft werden, ob ein Softwaredesign

seine geforderten Eigenschaften erfüllt. Daher müssen spezifische Anforderungsattribu-

te identifiziert und mit dem Design verknüpft werden. In dieser Arbeit werden Sicher-

heitsanforderungen für die Open-Source-Software EVerest erhoben. EVerest bietet eine

Full-Stack-Umgebung für Ladestationen für Elektrofahrzeuge. Für die Erhebung wird ein

zweistufiger Ansatz verwendet. Zunächst wird ein Fragebogen entwickelt, der grobkör-

nige Anforderungen der Sicherheitskategorien Vertraulichkeit, Integrität, Verfügbarkeit

und Authentifizierung erhebt. Anschließend werden vier Softwareentwickler von EVerest

interviewt, um die grobkörnigen Anforderungen auf 93 Sicherheitsanforderungen auf

Designebene zu verfeinern. Mithilfe von Prompt Engineering und Fine-tuning werden

Designelemente klassifiziert und ihre jeweiligen Erwähnungen aus den erhobenen An-

forderungen extrahiert. Die Qualität von GPT für die Klassifizierung und Extraktion von

Designelementen wird in drei Bewertungsszenarien sowohl für einzelne Elemente als

auch pro Anforderung ermittelt. Zunächst wird untersucht, wie gut GPT die Elemente in

den Anforderungen klassifiziert. Anschließend wird die Fähigkeit von GPT bestimmt, die

Erwähnungen von Designelementen in den Anforderungen zu extrahieren. Abschließend

wird untersucht, wie gut GPT die Erwähnung des Designelements in der Anforderung

extrahiert, wenn das Designelement korrekt klassifiziert ist. Die Ergebnisse deuten darauf

hin, dass die Mehr-Klassen-Klassifizierung von Designelementen in Anforderungen sowohl

bei Prompt Engineering als auch bei Fine-tuning gut funktioniert (F1-Score: 0,67-0,73). In

Bezug auf die Extraktion von Designelementen übertrifft Fine-tuning (F1-Score: 0,7) jedoch

Prompt Engineering (F1-Score: 0,52). Wenn beide Aufgaben kombiniert werden, übertrifft

Fine-tuning (F1-Score: 0,87) ebenfalls Prompt Engineering (F1-Score: 0,61). Im Prompt En-

gineering scheint GPT jedoch ungeeignet zu sein, um alle Designelemente zu klassifizieren

oder alle Erwähnungen pro Anforderung zu extrahieren, während die Ergebnisse im Fine-

tuning für die Klassifizierung der Designelemente (F1-Score: 0,18-0,2) und die Extraktion

der Erwähnungen (F1-Score: 0,15-0,18) akzeptabel für eine Mehr-Label-Klassifizierung

sind.

iii

Contents

Abstract i

Zusammenfassung iii

1. Introduction 1

2. Foundations 3
2.1. Requirements Elicitation . 3

2.1.1. Questionnaires . 3

2.1.2. Interviews . 4

2.2. LimeSurvey . 4

2.3. Palladio Component Model . 4

2.4. EVerest . 5

2.5. Security Metamodel SecLan . 5

2.6. Natural Language Processing . 6

2.7. Large Language Models . 7

2.7.1. Prompt Engineering . 8

2.7.2. Fine-tuning . 8

2.8. Metrics . 8

3. Related Work 11
3.1. Elicitation of Requirements . 11

3.2. Information Extraction . 12

4. EVerest Software Architecture Derivation 15
4.1. Architecture and Components . 15

4.2. EVerest Architecture Model . 17

5. Security Requirements Elicitation 19
5.1. Elicitation Techniques . 19

5.2. Questionnaire Design . 20

5.3. Pilot Study Questionnaire . 23

5.4. Questionnaire Conduction . 25

5.5. Interview Design . 26

5.6. Pilot Study Interviews . 28

5.7. Interviews Conduction . 29

5.8. Threats to Validity . 31

v

Contents

6. Security Requirements Classification 33
6.1. Architecture . 33

6.2. Classification Techniques . 35

6.3. Evaluation . 37

6.3.1. Element Type Classification . 38

6.3.2. Phrase Extraction . 39

6.3.3. Phrase Extraction regarding the Element Type 40

6.3.4. Dataset and Gold Standard Creation 41

6.3.5. Results of Evaluations . 43

6.4. Discussion and Threats to Validity . 51

7. Conclusion and Future Work 57

Bibliography 59

A. Appendix 67
A.1. Questionnaire . 67

A.2. Pilot study . 75

A.3. Interview Protocol . 79

A.4. EVerest Full Component Model . 80

A.5. Evaluation Results . 89

vi

List of Figures

2.1. Example Components with Provided/Required Interface 5

2.2. SecLan system model [57] . 6

2.3. Exemplary syntax tree of “I prefer a morning flight” 7

4.1. Simplified view of the layers of EVerest with their modules 16

6.1. Rough overview of the architecture . 35

6.2. Evaluation of the element type classification: Comparison of fine-tuning

(FT) and prompt engineering (PE) for all element types for all three runs 45

6.3. Evaluation of the phrase extraction regarding the element type: Compari-

son of fine-tuning (FT) and prompt engineering (PE) for all element types

for all three runs . 51

6.4. Evaluation of the element type classification: F1-score variations in the

cross-validations for the element type activity for Promptidentify_all without

system mode . 54

A.1. Welcome screen of the survey . 67

vii

List of Tables

6.1. Number of elements per element type 43

6.2. Evaluation of element type classification: Macro micro averages over all

element types, Prompt engineering uses GPT version 4, Fine-tuning uses

GPT version 3.5 turbo, n=517 . 46

6.3. Evaluation of the element type classification per requirement: Macro av-

erages of precision, recall, F1-score, Prompt engineering uses GPT version

4, Fine-tuning uses GPT version 3.5 turbo, n=93 47

6.4. Evaluation of the phrase extraction: Macro averages of precision, recall,

and F1-score, Prompt engineering uses GPT version 4, Fine-tuning uses

GPT version 3.5 turbo, n=517 . 48

6.5. Evaluation of the phrase extraction per requirement: Macro averages of

precision, recall, F1-score, Prompt engineering uses GPT version 4, Fine-

tuning uses GPT version 3.5 turbo, n=93 49

6.6. Evaluation of the phrase extraction regarding the element type: Macro

micro averages over all element types, Prompt engineering uses GPT

version 4, Fine-tuning uses GPT version 3.5 turbo 52

6.7. Evaluation of the phrase extraction regarding the element type per re-

quirement: Macro averages of precision, recall, and F1-score, Prompt

engineering uses GPT version 4, Fine-tuning uses GPT version 3.5 turbo 53

A.1. Evaluation of the element type classification: Macro averages for all ele-

ment types for Promptidentify_all, n=517 89

A.2. Evaluation of the element type classification: Macro averages for all ele-

ment types for Promptclassify_all, n=517 90

A.3. Evaluation of the element type extraction regarding the element type:

Macro averages for all element types for Promptidentify_all with their re-

spective sample sizes . 91

A.4. Evaluation of the element type extraction regarding the element type:

Macro averages for all element types for Promptclassify_all with their re-

spective sample sizes . 92

ix

1. Introduction

There are multiple stages in the process of requirements engineering. First, the require-

ments engineer elicits the requirements for the system to be built from all relevant stake-

holders. In this step, their needs and expectations of the system to be built are discovered

[74]. Then, the requirements are documented to persist them, so that stakeholders can

discuss them and agree to a version that should be implemented [58]. Usually, natural

language is used to guarantee that all stakeholders understand the requirements. An impor-

tant task in software engineering is the verification of the requirements [34]. Requirements

are verified to check whether they are fulfilled within the implemented system [35]. This

is particularly important to ensure that clients are satisfied with the software. However,

only existing requirements can be verified. Therefore, the elicitation of requirements is

also important for the verification.

Poor and incomplete requirements elicitation can lead to unsatisfied stakeholder expec-

tations. This can even result in project failure [74], as mistakes during the requirements

phase are much more costly than if they occur later in the development process [67].

Specifically, concerning the security of the software, it is important to distinguish possible

threats and vulnerabilities early in the process to derive adequate security requirements. If

a security incident happens because of missing requirements, this can lead to possible loss

of money or reputation [67]. An example of that is CardSystems Solutions, a credit card
processing company, which had a severe security issue in 2005 [14]. The problem was that

they did not require the separation of historical and account data in their security planning.

Thereby, historical data was stored along with account data and the attackers were able

to compromise the information of 40 million credit cards. At first, it was assumed that

CardSystems Solutions would be charged with a heavy fine of several million dollars [29].

This was not the case as the company was already financially ruined. Instead, CardSystems
Solutions was obliged to have regular security checks carried out by independent third

parties [9]. It is therefore noticeable, that requirements elicitation is essential. The engineer

has to ask the right questions to all relevant stakeholders and needs therefore enough

domain knowledge [56].

Even though requirements are elicited completely, they must be verified. This step is often

supported by traceability approaches that link requirements to other software artefacts,

e.g., the architecture model. This can include, for example, the search for different element

types in the requirement so that they can later be mapped to architectural elements. A

trace link can then be established between the requirement and the architecture [27].

The conceptual model SecLan[57] provides an overview of elements used in security

specifications on software artifacts. A classification of the requirements into its element

1

1. Introduction

types can be a first step towards requirements verification. Carrying out a classification

manually is error-prone and time-consuming [73]. Several works performed classifications

based on machine learning algorithms e.g., decision tree and support vector machine

(SVM) [40, 31, 65]. To train models with machine learning, large datasets are necessary.

However, especially in security, data is often highly confidential and not publicly available.

In contrast to SVMs, large language models (LLMs), like GPT, are already trained on huge

datasets and are ready for use.

For this work, the software project EVerest was selected to elicit and classify security

requirements. EVerest is an open-source software for electric vehicle (EV) charging

stations [70]. Currently, the EV sector is booming, and the number of people driving

electric vehicles continues to increase [53]. With this trend, there are also many risks

and potential threats that have to be taken into account, e.g., acquiring sensitive user

data. Therefore, security is an important issue in the EV sector [59]. The aim of this

thesis is to elicit the security requirements of EVerest. Furthermore, it is investigated

how well architectural elements, mentioned in these requirements, can be identified. The

classification and extraction tasks are carried out by a large language model that applies

natural language processing techniques. GPT is currently one of the largest LLMs available

and thus presumably a very powerful model, and is therefore used in this thesis. First, a

classification of security-related architectural elements is done. As a taxonomy, elements of

the SecLan[57] model are used. Second, the mentions of these elements in the requirements

should be extracted to ease the later identification and tracing of these elements. This

leads to the following research questions:

1. What are the security requirements of EVerest?

2. How well can GPT map the security requirements of EVerest to system model

elements of SecLan?

a) How well does GPT classify SecLan’s element types in the requirements?

b) How well does GPT extract the indicative phrases in the requirements?

c) How well does GPT extract indicative phrases in dependence of its requirement

element types?

The foundations for this thesis are in Chapter 2. Chapter 3 provides the related work

in elicitation of requirements as well as information extraction that is needed for the

classification. EVerests architecture and components are introduced in Chapter 4. Chapter 5

describes the process of the security requirements elicitation for EVerest, including the

design and conduction of a questionnaire and interviews. Their results are presented in

this chapter as well. In Chapter 6, the classification approach of this work is described and

evaluated. Moreover, the evaluation results of prompt engineering and fine-tuning are

presented and compared. Finally, Chapter 7 concludes and summarizes the findings of this

thesis.

2

2. Foundations

This chapter provides an overview of the foundations of this thesis. First, techniques

for requirements elicitation such as questionnaires and interviews are examined as they

are applied in this work. Then, the tool LimeSurvey and the concepts of the Palladio

Component Model, which are used in this thesis, are presented. Section 2.4 introduces

the software EVerest, by which the security requirements are elicited. The classification

of the requirements is based on the model elements of SecLan’s[57] system model which

is described in Section 2.5. Moreover, foundations for natural language processing are

introduced as the elicited security requirements are in natural language. Furthermore,

large language models (LLMs) are described, and two options for how to use them for

specific tasks. LLMs can be used to classify text with prompt engineering and fine-tuning.

Finally, metrics that are used for the evaluation of the LLM are introduced in Section 2.8.

2.1. Requirements Elicitation

Requirements elicitation is the first step of the software development process [51]. It

involves identifying stakeholders, their needs, and requirements [74]. The requirements

engineer should have solid domain knowledge and communication skills to gather cor-

rect, complete, and unambiguous information from the stakeholders [4]. Traditionally,

questionnaires, and interviews are often used [74]. However, there is no requirements

elicitation technique that guarantees to find all requirements. So the best choice is to use

multiple techniques.

2.1.1. Questionnaires

Questionnaires are a method to efficiently collect qualitative data. They can be conducted

anonymously, so participants can be honest and open [48]. At the beginning of a ques-

tionnaire, there should be an introduction that also states the aim of the survey [7, 48].

Dependent on the purpose of the questionnaire, different kinds of questions can be used,

e.g., open and closed questions [77]. In open questions, people are asked to formulate

free-text responses, whereas in closed questions predefined answer options are given.

Questions should be formulated clearly, well-defined, and precise to avoid misunderstand-

ings [74]. Furthermore, it is important to conduct a pilot test for the questionnaire to

ensure that the participants understand the questions, and if not, to be able to reformulate

them if necessary. The terminology of the domain should be understood by the participant

3

2. Foundations

and the questionnaire designer [77]. The designer needs to have enough domain knowl-

edge to prepare the questionnaire [16]. Thus, especially for novices, the reuse of existing

questionnaires is recommended to ensure the validity and reliability of the questionnaire

[48].

2.1.2. Interviews

There are three types of interviews, namely the structured, the unstructured, and the semi-

structured interview [77]. In structured interviews, the questions are predefined and only

a few additional questions for clarification are asked. This does not allow the participant

to share new ideas freely [74]. Unstructured interviews are similar to discussions on a

specified theme. They hold the risk of neglecting topics and focusing too much on details

in some areas [77]. The semi-structured interview is a combination of the other two

types. Both predefined and unplanned questions are asked in semi-structured interviews.

This method can help uncover problems that were not known to the interviewer [74].

Independent of the type of interview, there are several things that need to be considered for

its conduction. First, a shared terminology of the domain is important. Then, the interview

should begin with a good opening so that the participant feels comfortable. Questions

in the right order and a summary of the findings at the end to confirm understanding

mark a good interview [4]. Finally, the interviewer should be open-minded and should not

approach the interview with preconceived ideas about possible requirements to prevent

the participant from becoming biased [36].

2.2. LimeSurvey

LimeSurvey is a free, open source software application for creating surveys [46]. Anyone

can host a server to conduct their own surveys and control the environment. Furthermore,

LimeSurvey provides a lot of features for the creation of questionnaires, such as dynamic

text field appearance and random order of question groups [46]. Participants are guided

through the survey and can easily fill forms and questionnaires. For this thesis, a local

hosted LimeSurvey was used.

2.3. Palladio Component Model

The Palladio component model (PCM) is a metamodel and a modelling language that is

implemented in the Eclipse Modeling Framework (EMF). It is developed to specify software

architectures. The software Palladio uses the PCM to predict the performance of a software

application early in the development process based on its architecture. Design decisions

can then be made based on these results [43]. The Palladio component model follows

the principles of component based software engineering (CBSE). Components require

4

2.4. EVerest

and provide interfaces [43]. An example can be seen in Figure 2.1. ComponentA provides

Interface1, whereas ComponentB requires it. This means, that ComponentA offers a service

through Interface1, so that other components such as ComponentB are able to use it. The

fact that ComponentB requires Interface1 indicates that it needs the services of the interface
to work.

<<BasicComponent>>
ComponentB

<<BasicComponent>>
ComponentA

<<Interface>>
Interface1

<<Requires>><<Provides>>

Figure 2.1.: Example Components with Provided/Required Interface

2.4. EVerest

EVerest is a software that provides an open-source full-stack implementation for electric

vehicle (EV) charging stations. It is a framework that offers the option to choose between

different modules or implement a newmodule to configure the respective charging scenario.

EVerest was founded by the company PIONIX and is a project of the Linux Foundation

Energy. EVerest aims to facilitate the development of EV charging and increase efficiency

by using the advantages of open-source [70]. Stakeholders of EVerest are, among others,

companies and collaborators that use the software or are interested in using EVerest, as

well as developers of PIONIX. EVerest’s GitHub consists of several repositories, including

EVerest, everest-framework, everest-core, libocpp, and libevse-security. The EVerest repository
contains the documentation and information about contributing, the code of conduct,

and how to join the community [25]. Everest-framework is responsible for starting and

managing the modules and their dependencies [19]. The libocpp repository contains an

implementation of the open charge point protocol (OCPP) standard for version 1.6 and

2.0.1 [21]. Security related operations such as certificate signing requests can be found

in the libevse-security repository [20]. The everest-core repository includes all available

modules for charging scenarios [18].

2.5. Security Metamodel SecLan

SecLan is a conceptual model of security specifications on software artifacts [57]. In

this thesis, SecLan is used for the classification of security requirements. SecLan aims at

creating a relationship between system elements, which are analyzed by security checks,

and security domain specific languages (DSLs), which annotate the element types. Its

5

2. Foundations

EntityData

Activity

Control Flow

Information Flow

Connection

State

Node

Component

holds

performs

processes

triggers

participatescauses

communicates destination

transmits

hasrepresents

has

has

aggregates

runs on

Figure 2.2.: SecLan system model [57]

intention is to improve the understanding of how secure design and implementation are

related and to justify the existing relationships. SecLan consists of four parts, the security
model, the security domain specific language description, the security analyzer description,
and the system model. The security model includes common concepts in software security

such as a security objective or a threat. The security domain specific language description
provides security-related elements that should be considered in a security check. The

security analyzer description offers insights about the security checks. The system model
includes security-relevant system elements that are investigated by the security check. In

this thesis, the elements of the SecLan system model are used to classify the requirements.

The system model contains nine different types of model elements that are related to each

other and can be seen in Figure 2.2. Data contains information and can, for example,

represent a state. State is defined as the state of an activity or entity. Entities hold data.
They can have a state or perform an activity. An entity can be a physical actor, a software

object, or an external system. A component aggregates one or multiple entitites with a

specified aim and it can be deployed on a node. Nodes are physical devices that can have

connections to other nodes. A connection can transmit data via an information flow. The
latter communicates data between entities or activities. An activity processes data, can
communicate with other activities, and has a state. They are orchestrated and executed in

an order that is defined in a control flow [57].

2.6. Natural Language Processing

Natural language processing (NLP) refers to a set of techniques for the automatic processing

of natural language [11]. Usually, pre-processing of a text is required to prepare it for

6

2.7. Large Language Models

S

VP

NP

Nom

Noun

flight

Noun

morning

Det

a

Verb

prefer

NP

Pronoun

I

Figure 2.3.: Exemplary syntax tree of “I prefer a morning flight”

syntactic or semantic analysis. Common techniques include tokenization, and part-of-

speech (POS) tagging [64]. Tokenization divides the text into tokens such as meaningful

words, but also punctuation, symbols, and characters. Then, part-of-speech tagging can be

carried out based on the tokenized text. This involves assigning a grammatical category to

each word in the text such as noun, verb, adjective, or adverb. The POS tags of the PENN

Treebank are typically used for this purpose. The syntax analysis looks for patterns in a

sentence, such as a noun or verb phrase. For that purpose, a syntax tree is created that

uses POS tagging. A noun phrase (NP) contains a noun and its corresponding modifiers

such as adjectives, articles, and pronouns before or after the noun. The verb phrase (VP)

consists of a main verb with additional auxiliary verbs [44]. An example of a syntax tree

of the sentence “I prefer a morning flight” can be seen in Figure 2.3. Syntax trees form a

significant intermediate step for information extraction [41]. Information extraction is

an important task in natural language processing [62]. Its objective is the extraction of

structured text from unstructured plain text [69]. This filters out interesting knowledge

from plain text. There are various information extraction tasks such as named entity

recognition, relation extraction, event extraction, and aspect-based sentiment analysis to

enable different target results of information extraction [30].

2.7. Large Language Models

Language Models (LM) are a general term for models processing and learning natural

language. LMs that are pretrained with massive amounts of data are so-called large

language models (LLM) [28]. They excel at solving natural language processing tasks.

The currently most promising LLMs are all transformer-based, but differ in their internal

structure. There are encoder-only LLMs like BERT (Bidirectional Encoder Representations

from Transformers), encoder-decoder LLMs like T5, and decoder-only LLMs like GPT

(Generative Pre-trained Transformer) [32]. The GPT series are LLMs created by the

company OpenAI. The latest version, GPT 4, was released in March 2023. It considerably

7

2. Foundations

outperforms earlier versions like GPT 3.5 turbo on existing benchmarks [54]. GPT 4 was

trained on a large dataset taken from the internet. As its predecessors, GPT 4 also suffers

from halluzinations, meaning it asserts facts that are not true. Moreover, GPT’s responses

are non-deterministic. This means that if the same request is sent to GPT twice, a slightly

different response is returned. Interaction with GPT can be carried out via the OpenAI

API. Different approaches to use GPT are prompt engineering and fine-tuning.

2.7.1. Prompt Engineering

In prompt engineering, a prompt is created that indicates what GPT should do. The prompt

is continuously refined to optimize the performance of the specific task [10]. The quality

of the prompt determines the quality of the generated output of the LLM [71]. There are

different prompt engineering tasks, including zero-shot, few-shot, and chain-of-thought

prompting. In zero-shot prompting, only the instruction with no training data is provided

to the LLM [2]. Contrary to zero-shot prompting, some training examples are given in

few-shot prompting to guide the model in the output creation [8]. In chain-of-thought

prompting, the LLM is asked to perform a task step-by-step. This should help the LLM

to achieve better results, as a complex task is split into multiple simpler tasks [76]. An

advantage of prompt engineering is that there is no need for labeled data which is often

not available [47]. In addition, no training of the LLM is required. On the other hand,

the designed prompt must be precise so that GPT understands the instructions correctly.

Otherwise, the output of the LLM will be of poor quality [71].

2.7.2. Fine-tuning

Fine-tuning is a technique to adapt LLMs to a specific task based on a dataset. All or some of

the model parameters are updated via gradients from training samples. Another option is

to add additional model parameters and train on them [47]. With fine-tuning, performance

improvements can be achieved for a specific task [32]. Disadvantages include the risk

of overfitting, non-robust learning on small datasets, and the possibility of catastrophic

forgetting. That means, the LLM forgets things it was able to do before the fine-tuning

[47]. Another drawback of fine-tuning is that the efficiency depends on the size of the

training data [32].

2.8. Metrics

In this thesis, the metrics precision, recall, and F1-score are used. For the calculation of

these metrics, different measures are necessary. They are calculated based on the measures

of true positives (TP), false positives (FP), and false negatives (FN).

8

2.8. Metrics

Precision Precision measures the proportion of entries that are correctly classified as

positive out of the total number of entries predicted as positive.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(2.1)

Recall Recall measures the share of the correctly positive predicted values compared to

all correctly classified results, the positives and the negatives.

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(2.2)

F1-score The F1-score is the harmonic mean and a trade-off between precision and recall.

𝐹1-𝑆𝑐𝑜𝑟𝑒 = 2 · 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 · 𝑟𝑒𝑐𝑎𝑙𝑙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙 (2.3)

There are different additional metrics to calculate the average of the previous calculated

values. In this thesis, the micro, macro, and weighted averages for precision, recall, and

F1-score are calculated. For the micro average, the example of precision is given, but the

formulas for recall and F1-score follow the same pattern. Macro and weighted average are

kept abstract with a placeholder for the respective metric.

Micro Average The micro average adds up the true positives, false positives, and false

negatives for each case and calculates the metric (c.f. Eq. (2.1), Eq. (2.2), Eq. (2.3)) as

usual. It is preferably used when there is an imbalance between the classes in the

dataset. As an example, the formula for precision is given. It sums the true positives

and false positives of all classes and calculates the precision using Equation (2.1).

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛micro =

∑
𝑇𝑃 i

𝑇𝑃 + 𝐹𝑃
(2.4)

Macro Average The macro average sums the metric of all classes and divides them by the

number of classes n. It is used if all classes are to be weighted equally.

𝑀𝑒𝑡𝑟𝑖𝑐macro =

∑
𝑀𝑒𝑡𝑟𝑖𝑐 i

𝑛
(2.5)

Weighted Average The weighted average takes into account the possibly unequal sizes of

evaluation sets.

𝑀𝑒𝑡𝑟𝑖𝑐weighted =
∑︁

𝑀𝑒𝑡𝑟𝑖𝑐 i ·
𝐸𝑣𝑎𝑙𝑆𝑖𝑧𝑒

𝑇𝑜𝑡𝑎𝑙𝑆𝑖𝑧𝑒
(2.6)

9

3. Related Work

This chapter gives an overview of the related work in the categories of requirements

elicitation as well as information extraction. First, some works are summarized that

describe current techniques for requirements elicitation such as interviews or question-

naires. For the classification task of this thesis, information needs to be extracted from the

requirements. Therefore, several works that evaluate information extraction tasks and

their approaches are regarded as well, in particular, approaches using machine-learning

techniques and LLMs.

3.1. Elicitation of Requirements

Requirements elicitation involves the identification of stakeholders, their needs and re-

quirements (c.f. Section 2.1). Different techniques, such as interviews, questionnaires,

but also misuse cases, and security use cases can be used. Many works investigate the

elicitation of requirements [15, 74, 77]. In particular, Yousuf and Asger [74] give a good

summary of the existing techniques such as document analysis, questionnaires, inter-

views, as well as observation, and group techniques like brainstorming or prototyping.

They point out that using multiple techniques is important to gain good coverage for

the requirements. The authors list the respective advantages and disadvantages of the

techniques so that the disadvantages of one technique can be neutralized by using a second

technique for requirements elicitation. However, they do not provide a concrete list of

good combinations for requirements elicitation.

Furthermore, Zowghi and Coulin [77] describe the requirements elicitation process. This

includes, among others, developing an understanding of the domain and selecting the

appropriate elicitation methods. They list different techniques for requirements elicitation,

including interviews, questionnaires, and domain analysis, as well as group work, brain-

storming, observation, and prototyping. They briefly describe each of the techniques and

explain when it is best to use them. Based on their practical experience and their evaluation

of the literature, the authors provide information on which techniques should be used

additionally or alternatively. Domain analyses, for example, can be carried out in addition

to interviews, while group work is an alternative to interviews. The authors present 20

techniques, but select only eight of them to indicate whether to use them in addition

to each other or alternatively. Like Yousuf and Asger [74], Zowghi and Coulin come to

the conclusion, that the use of several different techniques for requirements elicitation is

important for a good result due to the different characteristics of the techniques.

11

3. Related Work

There also exist elicitation techniques that are developed specifically for security require-

ments elicitation. Sindre and Opdahl [63] developed misuse cases. Misuse cases describe

undesirable behavior and specify interaction sequences that prevent the successful ex-

ecution of a use case. They can be presented as a diagram or in text form. The textual

representation of a misuse case specifies, among others, a security threat, the correspond-

ing interaction sequences, assumptions, and potential misusers. Sindre and Opdahl define

the term of a misuser as someone who launches a misuse case. An example of a misuser

and a misuse case is an outside fraudster who aims at stealing credit card information

from an e-store. They describe five steps that are executed iteratively to elicit security

requirements with misuse cases. First, critical assets have to be identified. Second, security

aims must be defined for each critical asset. Third, potential security threats to the goals

have to be identified. Fourth, the risks posed by the potential threats must be identified

and analyzed. Finally, in the fifth step, the security requirements are formulated, if possible

with the help of a taxonomy. In their discussion, Sindre and Opdahl come to the conclusion

that misuse cases help to deal with security early on in the development process. As misuse

cases can be easily understood, they can help in communicating with the stakeholders.

However, Sindre and Opdahl also admit that misuse cases are not equally suitable for

all threats. Furthermore, it is not always possible to identify a misuser or a sequence of

actions. Even though misuse cases seem to be helpful in general, they differ too much

from usual security requirements as misuse cases aim to identify security threats and not

requirements. Moreover, for the security requirements in this thesis, natural language is

used, so diagrams are unsuitable.

Firesmith [23] extends Sindre and Opdahl’s approach with security use cases. Security use

cases specify security requirements. They are designed as tables containing fields for the

security threat, user and misuser interactions, as well as system requirements, interactions,

and actions. Furthermore, pre- and postconditions are also specified in the security use

case. Misuse cases drive security use cases. In addition, Firesmith discusses the differences

between misuse cases and security use cases, e.g., the former is used by the security team

and the latter is used by the requirements team. He argues that misuse cases can help to

identify security threats but they do not directly contain security requirements. Firesmith

offers exemplary security use cases for access control, integrity, and privacy that have

been kept abstract for good reusability. Then, he provides guidelines for developing own

security use cases in case the exemplary security use cases do not fit. In contrast to misuse

cases, security use cases include system requirements for security. Security use cases are a

special subtype of how requirements can be expressed. Accordingly, this is not always

100% transferable and also restricts the format. It is therefore not used in this thesis.

3.2. Information Extraction

Information extraction (IE) is concerned with extracting interesting information from

unstructured plain text. Recognizing and extracting phrases from natural language texts

has been actively researched in recent decades. Various approaches have been tested,

12

3.2. Information Extraction

recently, large language models have also been used for information extraction. In 2012,

Mendes et al. [49] developed DBpedia Spotlight, a system for concept tagging that can

recognize different types of phrases. Mendes et al. test different approaches for recognizing

the phrases, e.g. a simple string comparison with the lexicon database where each phrase

in the text that has an entry in the database is recognized. This approach generates a lot

of false positives because of ambiguous words, e.g., the function word up also gets a tag,

because of the movie Up from Pixar. Next, Mendes et al. try different combinations for

noun phrase recognition and finish by combining named entity recognition (NER) with

noun phrases. They test their various phrase extraction techniques with different models,

e.g., from the OpenNLP project and the LingPipe Exact Dictionary-Based Chunker, and

find out that the NER with noun phrase recognition has the best recall with 68.3% but also

generates a lot of false positives. The recall is especially relevant in this case as subsequent

steps are based on the input from phrase extraction but precision is also relevant. Although

the authors classify different elements, this thesis attempts to achieve better evaluation

results by using a different approach with the utilization of a large language model.

Sainz et al. [61] pursue a different approach for information extraction by fine-tuning the

Code-Llama model with annotation guidelines that were written by experts. The resulting

model GoLLIE (Guideline-following Large Language Model for IE) performs also well on

unseen IE tasks. Sainz et al. use a code-based Python representation to specify the input

and output of the model. In their approach, labels, e.g., person, are represented as Python

classes, and the corresponding docstring contains the label definition. Python comments

include the possible annotation candidates. The model without the guidelines is taken as

a baseline to compare against. To build a robust model that is more generalizable, noise

is introduced during training. Furthermore, only datasets of the two domains, news and
biomedical, are used for training. The model is trained on five different IE tasks, among

others named entity recognition and relation extraction. The evaluation is performed on

the training datasets whereby datasets with new domains such as science, and wikipedia are
also added. Sainz et al. find out that the baseline and GoLLIE have similar results. This is

due to the implicit learning of the label definitions by the provided data. GoLLIE performs

significantly better than other state-of-the-art methods, on average, the state-of-the-art

methods achieve an F1-score of 42,6% whereas GoLLIE obtains 60%. The performance on

unseen labels decreases slightly, but not as much as other works. The error analysis shows

that there are conflicts between fine and coarse-grained label categories. Moreover, it is

difficult if the annotations in the used datasets do not match the guideline definitions. The

authors conclude that guidelines with clear definitions are essential for receiving good

results. In this thesis, fine-tuning is also applied but on a different model, namely on GPT

3.5 turbo. The input structure for this model is usually a text in natural language and not

a code representation. Therefore, this thesis will follow a different approach concerning

the input and output representations.

Another approach by Han et al. [30] evaluate ChatGPT on 14 different IE sub-tasks to

evaluate how well ChatGPT extracts information. Among others, the IE tasks event

detection as well as flat and nested entity recognition are tested on 17 different datasets.

Flat entity recognition identifies each entity as a separate entity whereas in nested entity

recognition, an entity can include other sub-entities. The authors do not clearly mention

13

3. Related Work

which version of ChatGPT they are using. For each task, they provide at least four datasets.

Han et al. perform zero-shot, few-shot, and chain-of-thought prompting and evaluate

ChatGPT’s performance, robustness, and error types. They handcraft five different prompts

for the zero-shot scenario and reuse the best prompt for the few-shot and chain-of-thought

scenarios. In the few-shot scenario, they provide five examples along with the prompt. The

explanation prompt for the chain-of-thought scenario is created with the help of ChatGPT

and added to the best zero-shot prompt. The evaluation results show that ChatGPTs

performance is far below the state-of-the-art and that the chain-of-thought scenario is

not much better than zero-shot prompting. This is illustrated by the F1-score for the flat

NER scenario, which is 94.6% for state-of-the-art models, while ChatGPT only reaches

65.13% for the common CoNLL03 dataset. Han et al. discover that ChatGPT outputs longer

phrases than what was annotated. Therefore, they propose a softmatching algorithm that

calculates the similarity of the head and tail of a phrase, that must be above a certain

threshold. This means the phrase no longer has to completely match the annotated one.

The new evaluation results show an improvement but are still behind the state-of-the-art.

This approach is questionable and it is unclear how well the results can be relied upon as

the metric was adjusted after the evaluation. Therefore, in this thesis, a different approach

is used.

Zhang et al. [75] also perform evaluations on GPT 3.5 turbo with zero-shot prompting to

retrieve requirement related information out of different datasets. Contrary to Han et al.,

Zhang et al. focus on requirements retrieval tasks and therefore choose two general and

two specialized datasets for the evaluation. The general datasets include app reviews and

app descriptions whereas the specialized datasets contain user stories, and non-functional

software requirements specifications (SRS). The authors evaluate different tasks such as

multi-class and multi-label classification, as well as term and feature extraction. In a

multi-label classification, several labels can be correct for one instance at the same time,

whereas with multi-class only one of several classes can be correct. The prompts are

handcrafted by multiple persons. Then, GPT results are parsed, and compared against

the baselines from the studies of the selected datasets. These show that the GPT results

have a higher recall and lower precision than the baseline. Moreover, the specialized

datasets obtain better results than the general ones because of less noise in the dataset.

The authors conclude that GPT shows promising potential in recognizing and classifying

requirements. Contrary to the first three works that work with natural language text,

Zhang et al. consider requirements, even non-functional requirements, but not only those

that are security-related. This thesis extracts different elements from requirements, while

all the previously mentioned works extract, among others, named entities, events, or

requirements information.

14

4. EVerest Software Architecture
Derivation

EVerest provides a framework for electric vehicle charging stations [19]. It is used as a

case study in this thesis. To get a deeper understanding of EVerest, it is described with its

different modules and functionalities. EVerest cannot be assigned to a clear architectural

scheme. It includes various aspects of different schemes, e.g., a partially layered architec-

ture and also microservice approaches. The modules are mainly arranged in layers and

communicate via MQTT, a publish and subscribe pattern [52]. In terms of deployment,

there is one manager process that orchestrates the other processes and their execution.

The EVerest implementation adheres to the standards OCPP and ISO 15118. OCPP is

a manufacturer-independent open charge point protocol. ISO 15118 contains protocols

on multiple layers, indicated by dashes, which specify the bidirectional communication

between vehicle and grid. EVerest comprises several repositories, including everest-core,
which contains all available modules for charging scenarios. EVerest’s core can be divided

into different layers. These layers are, among others, the hardware layer, the protocol

layer for communication between the vehicle and the charging station, the authentication

layer, and the application layer with OCPP. Other layers include the EvseManager that

controls a charge point, and the energy management.

4.1. Architecture and Components

A simplified view of EVerest’s architecture including its modules can be seen in Figure 4.1.

The hardware layer consists of several drivers for hardware. DPM1000PowerSupply provides

a power supply for DC charging, including, among others, limits for the power, current,

and voltage. The YetiDriver offers a power meter that measures the energy, voltage,

current, and power, as well as board support for AC charging. The layer also includes other

hardware modules such as MicroMegaWatt, a charger for both AC and DC charging from

PIONIX, and other power meter modules. The SerialCommHub enables the communication

with attached serial devices. It can be used, e.g., by the GenericPowermeter for serial power

meter hardware. These drivers are used by the EvseManager to be able to charge a vehicle

and measure the amount of charged energy.

Furthermore, the EvseManager uses the protocols of the protocol layer that provides

multiple charging protocols. EvseV2G and PyJosev implement the charging protocols

DIN SPEC 70121 and ISO 15118-2, both of which support DC charging. In addition, ISO

15

4. EVerest Software Architecture Derivation

Figure 4.1.: Simplified view of the layers of EVerest with their modules

15118-2 offers AC charging as well. The module EvseSlac provides an implementation

of ISO 15118-3, which is responsible for the data link negotiation. It works with signal

level attenuation characterization (SLAC) and ensures the physical connection between

the electric vehicle (EV) and the charging station. The EV sends an ethernet broadcast

message, and each receiving electric vehicle supply equipment (EVSE) calculates the signal

strength and sends it back to the EV. The charging station with the highest signal strength

is identified as the connected EVSE [12]. The EV joins its logical network, and encrypted

information on the higher layers can now be exchanged [26]. The communication in

ISO 15118 can be secured with TLS where the charging station and the electric vehicle

exchange stored certificates. These are stored in the EvseSecurity module.

A main component of EVerest is the EvseManager that controls an EVSE. It has a connector

ID and can manage multiple physical chargers if they are not used simultaneously [1]. The

EvseManager needs a board support module for AC charging, whereas the power supply

for DC charging is optional. Furthermore, the EvseManager controls the charging process

and keeps track of its state and how much energy has been charged so far. Modules in the

upper layers call the EvseManager, e.g., the authentication module.

The authentication layer contains the TokenProvider and TokenValidator as well as the

Authentication module. Both TokenProvider and TokenValidator are required for the

Authentication module to function. It receives the token from the TokenProvider and

sends it to the TokenValidator that validates it. An example of a token provider is the

PN532TokenProvider module that reads an RFID or NFC card and publishes the token via

16

4.2. EVerest Architecture Model

MQTT. The TokenValidator, e.g., an electric mobility service provider where the RFID

card is registered, can check if the token is valid. If yes, and one connector is available

or already plugged in, the Authentication module assigns the token to the EvseManager

of that connector and calls it to start the transaction. The Authentication module also

stops the transaction, e.g., if an RFID card is swiped for the second time. Furthermore,

it manages the reservations of connectors. The PersistentStore and Store modules are

located in the session layer. They provide key-value stores for OCPP 2.0.1.

The API lies on top of the authentication and session layers. It provides an interface that is

currently not used in the everest-core. The module regularly publishes variables for each

connected EvseManager, e.g., for the current charging session. Optional, OCPP variables

can be published if an OCPP module is provided to the API. To obtain these values, the API

subscribes to variables of the EvseManager and the OCPP module.

The energy management consists of an EnergyNode, an EnergyManager, and the JSTibber

module. An EnergyNode provides an energy grid and requires a module that consumes the

energy. It represents a current fuse. For the energy prices, it subscribes to the JSTibber

module that retrieves data from the Tibber Price Energy Forecast API. The EnergyManager

offers load balancing and optimization for more sophisticated energy management when

using multiple EvseManagers. Currently, its interface is not yet in use in the everest-core.

The application layer contains OCPP modules which support two different OCPP versions,

as well as the Systemmodule. OCPP is responsible for the backend communication between

the charging station and the charging station management system [72]. Information, e.g.,

about the charge point state or firmware updates is transmitted. There are two versions

implemented in EVerest, version 1.6 and 2.0.1. The latter is still under development. In

contrast to OCPP 2.0.1, OCPP 1.6 supports several formats. OCPP 2.0.1 supports ISO 15118

Plug & Charge. It was also improved concerning the security and smart charging support.

Both versions can be used as token providers and validators in EVerest. They both require

the System module that is responsible for logging updates, firmware updates, and setting

the system time. OCPP also requires the EvseSecurity module.

4.2. EVerest Architecture Model

The architecture of EVerest was derived to get a deeper understanding of the system and

to prepare for the creation of trace links between the requirements and the architecture.

All EVerest modules that are involved in the charging process were derived. For the

creation of an architecture model, EVerest’s documentation and code were studied. The

documentation of EVerest is available online [70]. Furthermore, videos on YouTube helped

to gain a deeper understanding of EVerest [17]. The information obtained was checked for

validity as mentioned by Yousuf and Asger [74]. For this purpose, an employee of PIONIX

was asked about the actuality of the data. PCM is chosen for the representation of the

architecture. The component model was created based on the state of the GitHub repository

17

4. EVerest Software Architecture Derivation

of the 4th of December 2023.
1
In EVerest, each module has a manifest.yaml file where

the provided and required interfaces are specified. The connections of the modules to

interfaces were derived from these files. A module in EVerest corresponds to a component

in PCM. Therefore, the term component is used in the following. The component model

for EVerest was created in the Palladio Bench. To structure the component model, it was

organized in the layers described in Section 4.1. The rules that were applied to the creation

of the component model are:

1. Remove simulation components, as only the production environment is relevant.

2. Remove unused interfaces and components.

3. Remove components that are only used for setting up EVerest.

4. Remove examples, debugging, and deprecated components.

5. Remove dummy components and rename those that are the only ones that implement

a used interface. These only exist to simplify the creation of own components.

6. Add explaining names to drivers for hardware boards.

Since EVerest only provides a framework that is designed for further customization, there

are individual components, such as the API and the EnergyManager, that are not connected

to others. In addition, there are connections between components and interfaces that are

not shown in the complete component diagram, as the components only optionally require

these interfaces. This relationship cannot be mapped in Palladio. The connections for

which an interface is optionally required by only one component are shown, whereas the

others are deleted, starting at the lower layers. OCPP versions 1.6 and 2.0.1 both optionally

require the OCPPDataTransfer interface. That relationship is displayed in both cases as it

would be confusing if only one component needs that interface and the other does not. The

complete component model contains 24 components with 20 interfaces (c.f. Appendix A.4).

For comprehensibility, some labels and unused properties are hidden.

1
https://github.com/EVerest/everest-core/commit/5be1ef7d24f5eff6230ce5d8fc3078ae2b175def

18

5. Security Requirements Elicitation

Security requirements of the open-source software EVerest are elicited to answer the

first research question of this thesis. To ensure a good coverage of the requirements and

collect both coarse-grained and fine-grained requirements, different methods are chosen

[74, 77]. As stated by Yousuf and Asger [74], the analysis of documents is a good start

for requirements elicitation to gain a better understanding of the software project before

meeting stakeholders. Therefore, the documentation of EVerest was studied before the

requirements elicitation. The EVerest architecture modell has emerged from the study

of the domain (c.f. Chapter 4). The elicitation process is split into two parts. At the

beginning, requirements are collected by conducting a pilot-tested questionnaire where

the granularity level is not predefined. The questionnaire is sent to stakeholders of EVerest,

e.g., companies that work with EVerest or software developers of EVerest, via a mailinglist.

More fine-grained requirements are necessary for the classification task addressed in

the second research question. Therefore, in a second step, the usually coarse-grained

requirements from the questionnaire are further refined in interviews with software

developers of EVerest. This chapter first describes several elicitation techniques with

their advantages and disadvantages in Section 5.1. Then, the design of the questionnaire

developed in this thesis is presented in Section 5.2. Section 5.3 contains the pilot study of the

questionnaire and resulting adaptions. In Section 5.4, the conduction of the questionnaire

and an overview of its results are provided. After that, Section 5.5 describes the interview

design and Section 5.6 provides the pilot study of the interviews. In Section 5.7, the

conduction of the interviews and the resulting dataset are described. Finally, the threats to

validity for this chapter are discussed in Section 5.8.

5.1. Elicitation Techniques

Common techniques for requirements elicitation are questionnaires and interviews as

well as group works and observation [77]. Questionnaires are a cost-effective way to get

responses from multiple stakeholders [74]. Moreover, a questionnaire can be conducted

anonymously, which can lead to more open and honest answers [48]. However, a limitation

to this method may be a low response rate [48, 68]. In addition, there is no option for

further inquiry if there are any misunderstandings or ambiguities regarding the wording

of the questions. The disadvantages of questionnaires correspond to the advantages of

interviews. Further clarification is possible and depending on the type of interview, new

topics may be discussed that were not previously known to the interviewer. Interviews

are time-consuming. Due to time and cost limitations, it is usually only feasible to collect

19

5. Security Requirements Elicitation

information from a small number of people [74]. Instead of interviews, group work can be

carried out [77]. Groupwork is amoderated collaborativemeetingwhere stakeholder needs

are considered and requirements are discussed. For this technique to work, all participants

must feel comfortable talking openly. It is less time-consuming than conducting interviews

with the same amount of people, but it is hard to find willing participants and a common

appointment [74]. Another technique for requirements elicitation is observation. It is a

method without direct interaction where the analyst observes the user as he performs

current processes [77]. This is a time-consuming approach, and users sometimes change

their behavior if they know they are being watched [74]. An advantage of observation

is that the analyst gets an impression of how the user behaves in the target domain and

how he performs current activities [77]. Observation cannot be realized in the context

of this work. For example, an analyst would have to observe a hacker attacking an

electric charging station in order to derive adequate security requirements. Group work

is suitable, but not feasible due to working and thus busy stakeholders. It is highly

unlikely that a joint appointment could be found as different stakeholders have regular

meetings that could overlap. In this thesis, a two-step approach is chosen to elicit security

requirements of EVerest. First, a questionnaire elicits requirements from stakeholders of

EVerest on different granularity levels. This is not too time-consuming for the stakeholders

and provides initial requirements from multiple participants. The granularity level of

the requirements cannot be ensured in questionnaires. Therefore, individual interviews

are conducted with developers of EVerest to further refine the usually coarse-grained

requirements. The goal of this two-step process is to get detailed security requirements

on the design level that can be mapped to SecLan’s system model elements.

5.2. Questionnaire Design

An existing validated questionnaire should preferably be used [48, 68]. This saves time and

resources for the researcher as she does not have to develop a questionnaire on her own

[7, 48]. However, for the elicitation of security requirements, no appropriate questionnaire

could be found. Only a questionnaire could be retrieved that was used to evaluate a

technique for identifying and prioritizing requirements [45]. It has different objectives,

involves a different software project and was thereby not transferable. Therefore, a new

questionnaire was developed.

When designing a questionnaire, several guidelines should be followed regarding the

question length, their wording, the question type, the order of questions, the questionnaire

length, and the presentation [48]. Boynton and Greenhalgh [7] state as a guideline that

questions should be short with a maximum of 12 words, so that it is easier for the partic-

ipants to understand the questions. Concerning the wording of questions, Oppenheim

[55] provides guidelines, e.g., to ask no double-barrelled or double-negative questions

and use simple words. There are two types of questions, closed and open questions (c.f.

Section 2.1.1). Closed questions are easier and faster to analyze [68]. However, the for-

mat of open questions should be preferred if the aim is to get a deeper and qualitatively

20

5.2. Questionnaire Design

higher level of information. Stakeholders can answer in their own words and might give

responses that the questionnaire designer has not considered [68]. The presentation of the

questionnaire should stay clear and not appear too overloaded in order to offer the partici-

pants a good presentation. Contact information should be provided in the questionnaire

and a possibility to get access to the results of the study [48]. Furthermore, a consistent

format of the questionnaire helps the participants to work through it [68]. There are also

recommendations to increase the response rate of the questionnaire. Oppenheim [55]

suggests using logos of sponsors. Moreover, Marshall [48] advises starting with simple

questions as well as keeping the questionnaire short enough so that many stakeholders

participate. Walker [68] states that a questionnaire should not take more than 30 minutes

to complete. These guidelines were kept in mind when designing the questionnaire.

The questionnaire aims to elicit security requirements so that as many security categories

with different objectives as possible are covered. Typical categories are confidentiality,

integrity, and availability [13]. In addition, Firesmith [22] lists 12 different kinds of security

requirements, e.g., integrity, authentication, and privacy. For each category, he gives

examples as well as guidelines on how to specify the requirements. In this thesis, the

categories should cover as much as possible, and at the same time be few, as the space in the

questionnaire is limited. Miller [50] names several non-functional requirement categories

and provides aspects to each category. The security-related categories are access security,

integrity, and availability. After an investigation of the security categories and aspects,

access security was split into the more well-known security categories of confidentiality

and authentication & access control. Finally, the four security categories confidentiality,

integrity, availability, and authentication & access control were chosen as they cover the

range of security requirements fairly well.

The initial questionnaire is described in the following. It consists of seven sections, com-

prising an introduction, a general part, the four security categories availability, integrity,

confidentiality, and authentication & access control, and a section for other security re-

quirements. The welcome screen of the questionnaire mentions its aim, the elicitation

of security requirements for EVerest. Furthermore, contact information as well as the

duration of the questionnaire are provided. The author of this thesis tested it out and

found that filling out the questionnaire takes 10 to 15 minutes if security requirements for

all categories are written down. As stated above, logos on the front page can be helpful

regarding the response rate. In the case of this questionnaire, there are no sponsors, but

the logos of the university conducting the questionnaire, the KIT, and the project to which

the questionnaire relates, EVerest, are added to the front page of the questionnaire, also for

reasons of clearness for the participants. A note on the anonymity of the questionnaire is

placed on the welcome screen as no personal data is needed for the elicitation of security

requirements.

The next section first explains the structure of the questionnaire. Then, the participant

is encouraged to write down as many requirements as possible. It is explained that new

text fields are dynamically displayed when a text field is filled in. Up to 10 text fields can

appear. The section provides a definition of the term “requirement” and an exemplary

security requirement [22]. Furthermore, characteristics of requirements and the resulting

21

5. Security Requirements Elicitation

writing recommendations for good requirements are given [38]. The participants are asked

whether they have read the text above and they have to click on the corresponding button

to continue the survey. If not pushed, they will be reminded once but have the option to

skip this answer.

In the next section, general information about the participants is elicited. The first two

questions are multiple-choice questions about the interest in EVerest and the profession

of the participant. The participants can select whether they are developers at PIONIX,

the company that founded EVerest, whether they are from a company that uses EVerest,

or wants to use it. The professions to choose from include software architect, software

developer, requirements engineer, and project manager. For both questions, there is also

the option “other” if none of the provided answers apply. Participants can then enter their

individual answers in a text field. In the third question, participants are asked about their

confidence in the domain of software security using a 5-point Likert scale. These three

questions collect criteria to describe the participants.

After the general questions, the main part begins. Four security categories are selected to

cover the range of security requirements while keeping the questionnaire short. They are

presented to the participants in separate sections. As discussed above, the categories confi-

dentiality, integrity, availability, and authentication & access control were chosen. In each

section, a short introduction of each security category is given to avoid misunderstandings.

The definitions are taken from ISO 27000 [37]. Then, several aspects are listed to help the

participants to come up with security requirements in EVerest for the respective category.

Since the mentioned aspects are not exhaustive, three dots are added at the end of each

list. The aspects are taken from Miller [50]. She lists aspects for different non-functional

requirements, among others, for the security categories access control, integrity, and

availability. The aspects describe important parts of the respective security category and

should therefore be considered when eliciting requirements for the respective category.

The aspects for confidentiality and authentication & access control are taken from the

category access security. Encryption is part of the category confidentiality, therefore, the

aspect of data encryption methods is added. After the introduction of each category, the

participants are asked for respective requirements regarding EVerest. They can write

up to 10 requirements for each category. The answers are all optional, as there may be

participants who cannot think of a requirement in one security category. This avoids them

having to come up with something. In each of the categories where requirements could be

entered, there is a reminder for the participant that additional fields appear dynamically,

but not all of them have to be filled. The order in which the categories are displayed is

random to prevent the last category from receiving fewer security requirements.

The last section of the questionnaire gives the participant the opportunity to write down

requirements that did not fit into any of the previous categories. At the end of the

questionnaire, the participant is thanked and an e-mail address is provided in case the

participant would like to receive the results. The questionnaire was created on the platform

LimeSurvey. It can be found in Appendix A.1.

22

5.3. Pilot Study Questionnaire

5.3. Pilot Study Questionnaire

Apilot study is a small preliminary study that is carried out before the actual study. It should

reveal problems of the initial questionnaire (c.f. Section 5.2), e.g., unclear instructions,

or inappropriate questions. The pilot study ensures the reliability and validity of the

questionnaire [48]. Reliability means, that the questionnaire measures consistently the

same responses from the participants. If they would fill in the questionnaire a second time,

the responses should stay the same [6]. A questionnaire is valid if it measures what it

intends [48]. It is best to test the questionnaire on the same group as the target group [68].

The results of the pilot study should not be used for the later study [3]. The target group

of the questionnaire is relatively small, which is why, Ph.D. students who are familiar with

the requirements engineering and security were asked to participate in the pilot study

to achieve the highest possible response rate for the later questionnaire. Therefore, an

overview of EVerest with an exemplary charging scenario and its corresponding component

diagram were provided to the participants as they do not know the software. That should

provide them with a certain amount of background knowledge to be able to respond to

the questionnaire and come up with security requirements for EVerest.

At the beginning of the pilot study, there is a short introduction as well as an explanation

of the procedure in five steps. The participant has to read the instructions and the scenario

and look at the corresponding component diagram. The duration of the questionnaire

is measured to ensure that it conforms to the indicated time [3, 48]. Therefore, the

participant starts a timer when starting the initial questionnaire and stops the timer

when the questionnaire is completed. After the explanation of the pilot study procedure,

EVerest is presented in general terms, followed by a description of its different layers.

Then, a charging scenario of EVerest is provided as well as the corresponding component

diagram. In the scenario, the different components of EVerest are described together

with their functionalities. Explanations about the authentication process and how to

conduct a charging session are provided as well. The scenario was mostly taken from

EVerest’s documentation website [1]. The simulation components were removed from

the scenario as security requirements should not be elicited for the simulated part but for

a production setting. The names of some components were also changed to have more

expressive names, e.g., token_provider was renamed in RfidReader and token_validator in
electricMobilityServiceProvider. After reading this information, the participant is asked to

answer the questionnaire. Then, he has to fill in a feedback form and report his findings.

He is questioned to fill in his duration of the questionnaire. After that, he is asked if

the instructions in the questionnaire were comprehensible and clear. The options to

select are “yes”, “no”, and “partially”. If selected “no” or “partially”, the participant should

specify what was unclear. After that, the participant is invited to make suggestions for

improvement. At the end, the participant is thanked for her time and feedback. The pilot

study can be found in Appendix A.2.

Two Ph.D. students participated in the pilot study. Both participants needed 18 minutes

to fill out the questionnaire. From the point of view of the author of this thesis, 10 to 15

minutes are appropriate for the later questionnaire, as the test persons needed extra time

23

5. Security Requirements Elicitation

being not familiar with EVerest. They stated that the given instructions and questions were

partially clear. One participant said that confidentiality and access control could be mixed

up easily. They suggested introducing the categories at the beginning or at least making

clear to which category access control belongs. This recommendation was implemented

in the later questionnaire. The other participant commented that the desired level of

detail of the requirements was hard to grasp despite the one exemplary requirement in

the introduction. The participant found the aspects of each security category not helpful

either for writing requirements. The participant commented that especially for a person

who is not a security expert, it would be hard to go through all requirement types and

aspects, and the person might skip these questions. The participant suggested deleting

the dots at the end of the aspects because it would introduce uncertainty. This was

not considered necessary. Both participants requested exemplary requirements for each

security category. One participant stated that the examples should capture the aim of

the category. The other participant would prefer examples in different granularities, and

suggested deployment requirements for availability or integrity. Therefore, one example

for each security category was added to each section, with two examples being more

abstract and two being more detailed. Both participants also provided feedback on the

pilot study itself. One participant said that the introduction of EVerest was too short and

detailed information was missing. Therefore, it was difficult to write down non-generic

security requirements in the questionnaire. This is not considered as a problem for the

later participants in the questionnaire as they are stakeholders of EVerest and know the

software. Furthermore, the participant also noted that EVerest exists, meaning that some

requirements might already be addressed. This is not a problem, as these requirements

can be elicited together with the others. The other participant gave inline feedback in the

PDF file, asking questions on what the charge point is, if the layers should be visible in the

component diagram, and what the RFID token looks like. Moreover, he advised repeating

the name of the physical connection protocol SLAC in the description of the scenario. As

the scenario is no longer used, no further adjustments were made to it.

As a reaction to the results of the pilot study, the four security categories were listed in the

introduction of the questionnaire. Access control was moved from the security category

authentication & access control to confidentiality and added as an aspect of that category.

Furthermore, one example for each security category was added. Two examples have a

higher abstraction level, two examples are more specific. The two abstract exemplary

requirements for integrity and authentication were taken from Firesmith [22]. Initially,

no examples were given to prevent participants from simple adapting the exemplary

requirement to EVerest. However, since both participants suggested that examples would

be helpful, one exemplary requirement was inserted in each security category section of

the questionnaire.

24

5.4. Questionnaire Conduction

5.4. Questionnaire Conduction

It was planned to present the survey at one of the weekly meetings to inform stakeholders

and encourage participation. Then, the link to the survey should be distributed via the

mailing list, as it is assumed that all participants of the weekly also subscribed to the

mailing list. It had about 250 subscribers at the 14th of December 2023. The subscribers

are people who are interested in electric vehicles, but also companies that use or want

to use the software and contribute to the project. The developers of PIONIX are part

of the mailing list as well. Therefore, it is assumed that the people on the mailing list

have suggestions regarding the security requirements of EVerest as they desire a secure

data processing. The survey was open for one week. A reminder via the mailing list

was planned to be sent two days after the first mail with the link to the questionnaire. It

was arranged with PIONIX that the survey could be presented at the weekly community

meeting of EVerest on Tuesday 12th of December 2023. At the meeting, the community’s

motivation for completing the questionnaire, the improvement of the security of EVerest,

was expressed. It was stated that no prior in-depth knowledge is required and that the

survey takes about 10 to 15 minutes if requirements for each category are written down.

Furthermore, it was mentioned in the meeting, that if the participants do not have 10

minutes left, already one or two requirements would be helpful. Then, the link to the

questionnaire was shared with the invitation to fill it out right after the meeting. The

survey link was also sent via the EVerest mailing list to the community of EVerest after

the meeting. Two days later, a reminder email was sent with the emphasis on filling out

the questionnaire, even if only two requirements would be written down. The subscriber

of the mailing list can decide for the intervals of the emails whether he wants to receive

individual emails or a summary for each day. Since there is no knowledge of how many

people have opted for the individual mail, the assumption has been made that many

people want to receive a summary. Therefore, the exact time of the reminder is considered

irrelevant. In the next weekly community meeting on Tuesday 19th of December 2023,

there was a reminder to fill out the survey by the end of the day. The survey officially ran

for one week from Tuesday 12th of December to 19th of December 2023. It was activated

on Monday 11th of December and closed on Wednesday 20th of December to ensure that

the answers in the late evening of Tuesday, the 19th of December were collected, especially

because some stakeholders of EVerest are located in the US.

Although 40 people participated in the questionnaire, only six completed it. One other

participant wrote security requirements but forgot to submit the questionnaire. This was

not a problem as his answers were still saved. The rest of the participants did not answer

any questions or filled out only the general part. Therefore, only the responses of the

seven people who wrote security requirements were considered in the following. A total

of 67 requirements were collected, comprising 15 on availability, 11 on integrity, 20 on

confidentiality, 16 on authentication, as well as five others. Three PIONIX employees and

four people from companies that use EVerest participated. Five participants stated that

they work both as a software developer and as a software architect. One person answered

that he works as a software architect, and one project manager also participated in the

25

5. Security Requirements Elicitation

questionnaire. The participants’ confidence concerning software security ranged from

three to five with an average of four.

To clean up the participant’s answers to the questionnaire, the following rules were

applied:

1. Ignore everything not security-related or too general responses, especially functional

requirements

2. Resolve co-references

3. Remove sentences not written as a requirement

4. Rearrange access control requirements from the category authentication to confiden-

tiality. The question asking for authentication requirements inadvertently included

access control as well. Therefore, some participants misclassified the requirements,

although access control was explicitly listed as an aspect of confidentiality.

5. Remove answers that refer to examples from the questionnaire, noting that it is not

relevant for EVerest

An exemplary requirement that was not considered security-relevant and therefore has

been removed in this process due to the first rule was “Everest shall not have any failed

session when try to charge a vehicle that is working according to the specifications of the

charging protocols”. The requirement “It should be tested with fuzzed input” was adapted

to “EVerest should be tested with fuzzed input” by resolving the co-reference using the

second rule. The third rule was applied to requirement “We should work on storing all data

in a centralized place to simplify backups in the final product. Right now there are many

files and folders that contain databases for persistent storage” that has been removed too.

A requirement that was deleted due to the fifth rule is “Authentication for management

web interfaces etc is usually out of scope for EVerest as it is provided by the OS around it”.

After this process, 57 requirements were left, two of them are multi-labeled concerning

the security objective. The requirements need to be further specified so that they can be

mapped to SecLan’s system model elements and that an automatic verification is possible

in the future. Therefore, interviews were conducted with the developers of EVerest.

5.5. Interview Design

For a further specification of the elicited security requirements from the questionnaire

to the design level, interviews were performed. They are one of the most common and

widely used techniques for requirements elicitation [15, 36, 77]. There are three types of

interviews, structured, unstructured, and semi-structured interviews (c.f. Section 2.1.2).

For this work, semi-structured interviews were selected. They serve best for the purpose

of this thesis as they allow further inquiries, but the risk of focussing too much on one area

is low. Structured interviews are not recommended for qualitative research because they

26

5.5. Interview Design

follow a strict protocol [66]. Unstructured interviews are not appropriate either, especially

since the requirements to be specified already introduce a certain structure.

Before conducting an interview, the interviewer has to be well prepared to get useful results.

Therefore, an interview protocol was designed [66]. Regarding its content, structure,

question order, and wording, several guidelines have to be observed. The protocol should

contain an introduction and ending as well as questions with optional probes [39]. At the

beginning, the interviewer should briefly introduce herself and her research topic [60].

Moreover, Bolderston [5] points out the importance of adhering to ethical rules such as

consent, privacy, and confidentiality. This includes reminding the interviewee of his right

to withdraw from the interview at any time [5]. Then, the interviewer should start with

simple, open-ended questions so that the participant feels comfortable [42]. Bolderston

mentions three categories of questions, the main, the planned, and the spontaneous follow-

up questions. The main questions deal with the research aim while the second category,

also known as probes, is helpful to get more detailed answers. Spontaneous follow-up

questions can be used after listening to the participant to ask for further clarification of his

response [5]. Prompts to get the interviewer talking are silence and repeating the question

[60]. In general, the questions should be clearly expressed, understandable, and relatively

short [5, 66]. Rowley [60] emphasizes the correct wording of the questions so that they are

not formulated too vaguely or contain implicit assumptions. At the end, the interviewer

should ask the participant if there is anything else he wants to add [5, 66]. Finally, the

interviewer should thank the interviewee [5].

The interview is divided into three parts, an introduction with initial questions, followed

by the specification of requirements in the main part, and finally, a short ending. The

introduction includes a greeting and a short presentation of the interviewer and her

research goals. The duration of the interview is also indicated. Then, the interviewee is

reminded of the declaration of consent and his rights to withdraw from the interview at

any time. After that, initial questions are asked whether the interviewee participated in the

questionnaire (c.f. Section 5.4), and general information about the interviewee is collected.

The interviewee is asked whether he works as a software developer and how long he

already works for her company. Then, the interviewee is invited to list the components of

EVerest he is working on and to show them in the previously shared component model.

At the end of the introductory questions, he is asked how confident he is in the domain of

software security on a Likert scale from one to five while five is the best.

Next, the task of the interviewee to specify requirements is explained and illustrated

using two exemplary requirements and their possible specifications. For the purpose of

requirements specification, a shared GoogleDocs document containing the two examples

as well as the requirements to be specified is used. Furthermore, the interviewer states

thought-provoking impulses for the refinement of the requirements. The interviewee

is instructed to think aloud about possible specifications of the requirement. He could

think about the deployment, components, people, or data involved and the information

flow of data. Then, he should write down an English sentence below the requirement to

specify it. The interviewer also explains the structure of the main part of the interview

to the participant and provides the definitions of the four security categories availability,

27

5. Security Requirements Elicitation

integrity, confidentiality, and authentication. These four categories are worked through

one after the other. At the end of each category, there is the opportunity to formulate

additional requirements for the respective category. After the last category, the participant

could write down further security requirements that did not fit in the aforementioned

categories.

In the main part, about 30 elicited security requirements taken from the questionnaire

are discussed by working through the four security categories as well as the remaining

category for other security-related requirements. For each requirement, the interviewee

should write down a further refinement. At the end, the participant is asked if he is

available for further inquiries and thanked for his time and knowledge. The final interview

protocol with the adjustments of the pilotstudy can be found in Appendix A.3.

Two interview protocols with different requirements from the questionnaire were created.

Each of the protocols comprised about 30 requirements written by three or four differ-

ent authors. The requirements were separated along author boundaries. One protocol

contained all the requirements written by PIONIX authors and the other contained those

written by companies that use EVerest. The interviewees were asked beforehand, if they

participated in the questionnaire. If yes, depending on their company, they received the

protocol with the requirements of the other company. If they worked for PIONIX, they

would receive the requirements written by companies that use EVerest, and vice versa.

This prevents the potentially unpleasant situation of a participant having to specify his

own requirements.

5.6. Pilot Study Interviews

Conducting pilot interviews is important to test the interview protocol. It ensures that the

questions are understandable, that the question flow is appropriate, and that the research

goals have been met [66]. Furthermore, practicing the interview is necessary to develop

important interviewer skills such as asking appropriate questions and encouraging the

participant to talk [33]. It is best if the participants of the pilot interviews are close to the

target group so that the protocol can be refined and adapted to them [39]. There are also

guidelines for the conduction of the interview. Concerning timing, the interview should

not be too long, otherwise, finding willing participants will be difficult. The interviewer is

responsible for adhering to the agreed time limit during the interview [39]. Therefore, it

is helpful to schedule the meeting with enough time buffer in case of eventualities [60].

Furthermore, disruptions should be avoided [5].

Four Ph.D. students in the domain of software engineering were asked to participate in

the pilot interviews. Although the data obtained from the pilot interviews will not be

published, a consent form was sent out one day before the interview date for the sake

of completeness. The interview protocols were shortened for the pilot interviews, so

the participants only needed to specify five security requirements taken from multiple

security categories. The interviews were conducted online via Microsoft Teams because

28

5.7. Interviews Conduction

the later interviews will also be conducted remotely. They were anticipated to take about

15 minutes. In the end, they lasted between 20 and 50 minutes because the participants

were not familiar with EVerest, asked questions, and had to come up with ideas for the

specification of the requirements. At the end of the pilot interviews, the participants were

asked for feedback and whether they noticed anything negative. One participant stated

that the font of the component model was small and there was a lot of free space between

the components. It would be easier for the people if everything would be bigger and closer

together. That was not feasible but to compensate, the component model was presented

and briefly explained in the interview introduction to gain a rough overview of EVerest.

Furthermore, the names of the components were unknown to the participants of the pilot

interviews. That was not considered a severe problem, as the developers interviewed later

were already familiar with the system. Another participant stated that the questions were

formulated clearly, the atmosphere was comfortable and there was no pressure to answer.

It was also noted that not all four security categories were present in the interview. That

was due to the brevity of the pilot interviews.

As a result of the pilot interviews, organizational matters were adjusted and the order

of questions was slightly changed to improve the transitions and make the interview

smoother. Therefore, the explanation of the component model was moved after the second

of the initial questions. Furthermore, the definitions of the security categories will be no

longer all read out at the beginning but only at the start of the corresponding category.

Moreover, the question of whether the interviewee participated in the questionnaire will

be asked in advance as it is relevant for the selection of the interview protocol. The pilot

interviews were also helpful in practicing how to respond to participants’ spontaneous

reactions. In addition, time was measured to approximate how much time the interviewee

needs per requirement and what can be expected in the interview. The schedule for the

later interviews was set up accordingly.

5.7. Interviews Conduction

When selecting the participants, it is important to consider who has the required infor-

mation [60]. The goal of the interviews is to specify to which parts of EVerest’s software

architecture the requirement relates. Therefore, developers that know the EVerest compo-

nents well were selected as participants. The contact person at PIONIX helped to select

these developers and arranged three out of four appointments. Three PIONIX developers

and one developer from Chargebyte, a company working with EVerest, agreed to an

interview. Previously, they were asked via mail if they participated in the questionnaire to

select the appropriate interview protocol. One of the PIONIX employees did participate in

the questionnaire, so he received the interview protocol without PIONIX answers. The dec-

laration of consent was sent one day before the interview and all interviewees returned it

quickly. The EVerest component model depicted in Appendix A.4 was sent one hour before

the interview as a common foundation and that the interviewee could open it on his own

computer. All interviews were conducted in German and remotely, three via GoogleMeet

29

5. Security Requirements Elicitation

and one via Skype. They lasted about an hour and a half and were not recorded. Technical

problems in form of an unstable internet connection occured in three interviews, but these

only affected the interview for a few seconds to minutes. In the first two interviews, the

link to the Google Docs document was shared during the interview while in the last two

interviews, it was sent out in advance. The first interviewee commented that the interview

would have been shorter if he had received the requirements in advance. Therefore, this

was tested with participant three and four. There were no major difference in interview

duration. That could be due to the fact that the third and fourth interviewee only skimmed

the received protocol before the interview. It is therefore not assumed that the slightly

different experimental setup significantly influenced the results. The requirements to be

specified were the same for the first and last interview as well as for the second and third

interview. Only the order of the security categories was changed to allow a balanced

specification of all requirements as the later requirements were usually addressed faster.

At the beginning of the interviews, information about the interviewee was collected. All

four interviewees were software developers. The PIONIX developers have been working

there for two to three years. The Chargebyte developer has worked with EVerest for one

and a half years. The level of confidence in the domain of software security was three

for three of the four developers. One developer gave himself only an one in the security

confidence level. The first two developers worked on various components, mainly in

the higher levels, e.g., the OCPP and Auth components. One developer stated, he has

been working a lot on the everest-framework, while the other focused more on different

components as EvseSecurity or ISO 15118. The last two developers mainly worked on

components of the lower levels such as ISO 15118, the EvseManager, Slac, or EvseV2G,

Powermeter, and the board support interface. All interviewees took time to understand

what the requirements mean and thought about how it works in EVerest. Then, they

expressed their thoughts mostly aloud. The interviewer asked probing questions if the

interviewee’s specification of the requirement was not detailed enough, such as which

components or parts of the software architecture were affected or involved. She also made

sure she had understood things correctly. If the participant explained a lot and did not

write everything important in the specified requirement, the interviewer asked whether

the participant could add what he just mentioned to the requirement. Sometimes, the

interviewee did not know e.g., which component should be responsible for a requirement

or did not understand the requirement. In that case, a comment was made and then, the

interview continued with the next requirement.

In the four interviews, 91 requirements were collected. The interviewees responses were

slightly adapted for multiple reasons. When time was short in the interviews, the inter-

viewee tended to write down his answer only in key words. These answers had to be

formulated in a complete sentence ensure a consistent format. If it was obvious what

the interviewee wanted to convey, the interviewer formulated the sentence in order to

relieve the interviewee of some of the work. Otherwise, the interviewee was asked to

formulate the sentence himself with respect to the requirements writing style mentioning

what something should or shall do. Minor changes were made to some responses. The

interviewees did not always follow the requirements writing style, also because EVerest

already fulfills some of the security requirements. For some requirements, the writing

30

5.8. Threats to Validity

style was adapted, for example, “Making sure that transactions are Eichrecht compatible,

so that the power meter driver gets signed powermeter values at the appropriate times (eg.

at the end and/or beginning of a transaction) and transmit this via OCPP” was changed

to “Transactions should be Eichrecht compatible, so that the power meter driver gets

signed powermeter values at the appropriate times (eg. at the end and/or beginning of a

transaction) and transmit this via OCPP”. Moreover, multiple specifications of one original

requirement were separated and it was made sure that the requirements specification

could stand on its own and did not need the original requirement next to it. Furthermore,

unknown abbreviations that are commonly used in the domain of electric vehicles were

added to the requirements for clarification. Moreover, if it was not clear who was respon-

sible for some activities mentioned in the requirements, the interviewees were asked to

further specify them. For the creation of the dataset, tags were introduced for the handling

of the responses. For some requirements, the interviewees also gave a reasoning. That

is not part of the requirement itself. Therefore, parts of responses of two requirements

were tagged as rationale and omitted in the dataset. 18 requirements were tagged as not
applicable to EVerest. The interviewees stated that the fulfillment of the given requirement

was not the responsability of EVerest or that this requirement was not correct for EVerest.

Therefore, they did not specify the requirements and these were also omitted in the dataset.

Six requirements were tagged as not refineable meaning that the interviewee did not come

up with a more fine-grained specification of the requirement. These six were included

unchanged in the dataset. If the interviewee could not come up with a specification of

the requirement either because he was not sure what the requirement meant or because

he was not confident in that part of EVerest, it was marked with insufficient knowledge.
The 14 affected requirements were also omitted in the dataset. All changes were sent

to the respective interviewee, so that he could confirm or correct them. At the end of

each security category, the interviewee had the opportunity to write down additional

requirements for that category. As a result, three requirements were added to the dataset.

Some requirements referred to standards and specifications, such as the OCPP 1.6 security

whitepaper and the OCPP standards. They were not described in more detail because that

would exceed the time of the interviews. Moreover, the standards are openly accessible.

At the end of this process, a total of 93 security requirements were retrieved, comprising

41 confidentiality, 14 integrity, 18 availability, 10 authentication, and 10 other security

requirements.

5.8. Threats to Validity

The threats to validity for the topics of this chapter are discussed in the following. A

distinction is made between internal, construct, and external validity. Internal validity

refers to the extend to which a causal relationship can actually be shown. A small threat

to internal validity is that the later participants of the questionnaire could have been

annoyed by the second e-mail reminder. The impact of this threat is considered to be

low as it is assumed that very annoyed e-mail recipients simply did not participate in the

questionnaire. Then, it has no impact on the answers from the questionnaire but only on

31

5. Security Requirements Elicitation

the number of participants in the questionnaire. Two of the four interviewees received

the interview protocol with the requirements to be specified in advance. That could have

influenced their answers in the interview. The interviewer asked the interviewees if they

read the protocol in advance, to which one interviewee responded in the negative and

the other said that he had only scrolled through it briefly. It is therefore assumed that no

major bias has arisen.

Construct validity describes the quality of the measurement that is used to evaluate a

concept. One risk to construct validity is that the interviewer explicitly indicated during the

interview that the requirements should be at the design level. Thereby, the answers of the

interviewees were controlled concerning the desired abstraction level. As a consequence,

the specified requirements contain many trace links to EVerest’s architecture. It is assumed

that otherwise not so many explicit trace links would have been elicited. Another threat

to construct validity is that the answers of the interviews were adapted afterward by the

interviewer because of the sentence structure and style. An attempt was made to rewrite

only the obvious requirements, e.g., form a sentence out of keywords. If the responses

were more complex, the interviewee was asked to rewrite the sentence himself. Moreover,

all changes were confirmed by the interviewees. Thereby, that threat is weakened.

External validity is concerned with the generalizability of the results. The small number

of interviewees poses a threat to external validity. To mitigate this threat, all requirements

are specified twice in two different interviews. Moreover, the interviewees represent

a relatively homogeneous group as they all work as developers in the electric vehicle

sector. One interviewee was from a different company than the other three which could

have affected his responses as well. However, no major difference compared to the other

responses was determined.

32

6. Security Requirements Classification

This chapter addresses the second research question that examines GPT’s ability to map

the security requirements of EVerest to system model elements of SecLan[57]. The clas-

sification is a first step in the creation of trace links, which are required for automatic

verification. The SecLan model helps to create a relationship between system elements and

security domain specific languages. It includes a system model containing nine element

types, among others, component, entity, and data. As classification techniques, prompt

engineering and fine-tuning of GPT 4 and 3.5 turbo are used. Prompt engineering uses

GPT 4, while the latest GPT model available for fine-tuning is GPT 3.5 turbo. In the end,

the GPT results of both approaches are evaluated. The evaluation has multiple objectives.

The first aim is to find out how well GPT identifies SecLan’s element types in the security

requirements. Then, it is determined how well GPT extracts the corresponding phrases.

Finally, the quality of extraction of phrases is evaluated regarding their element types. For

the classification, an extendable Python framework is developed as part of this thesis. Its

architecture is presented in Section 6.1. Then, the approaches of prompt engineering and

fine-tuning are described in Section 6.2. Section 6.3 contains the evaluation scenarios, the

gold standard creation, and its results. The chapter concludes with a discussion of the

evaluation results and the threats to validity in Section 6.4.

6.1. Architecture

For the classification task, a CLI tool is designed and implemented in Python. The tool has

several functionalities. It can be used for prompt engineering and fine-tuning. Finally, the

results can be evaluated in different scenarios using a gold standard. The code is grouped

into multiple packages: evaluation, prompting, fine_tuning, and helper. A rough overview

of the architecture containing the most important classes can be seen in Figure 6.1. The

abstract class Runner contains an abstract run() method. Runner has four different child

classes, RunnerPrompting, RunnerDataPreparerTuning, RunnerTuning, and RunnerEval

that are not shown in Figure 6.1. RunnerPrompting and RunnerDataPreparerTuning both

need prompts to work. The enum Prompt offers the prompts CLASSIFY_ALL, IDENTIFY_ALL,

JSON_ALL, and NOT_FOUND_ALL. A second enum that holds the definitions of the element

types is not depicted in the diagram for simplicity. Prompts can be concatenated using the

PromptBuilder. The users can choose which pre- and post-prompts he wants to use and

whether he wants to include the definitions of the element types or not. The definition

prompt flag reflects the decision of the user. Pre-prompts come before the definition

prompt while post-prompts come after it. The attribute element type can be specified as

33

6. Security Requirements Classification

well in case one specific element type is desired that should be named in the prompt. The

string that stands directly in front of the requirement to be prompted can also be changed

by the user by choosing another value of the enum RequirementIntroducer. This enum is

also not shown for simplicity. RunnerPrompting can either prompt the AIModel for a single

requirement or a whole JSON file using the respective methods of the PromptExecutor.

The single requirement can be inserted by the user via the command line. The file con-

tains a content list with entries that contain the key “requirement” with the respective

requirement. If the user inputs a JSON file, the output will be in a second JSON file with

the results of the prompting task. The AIModel directly calls the OpenAI API which is

encapsulated in its methods. If the user wants to prompt a different LLM than GPT, she can

implement the defined methods of AIModel that are kept independent from the OpenAI

API.

RunnerDataPreparerTuning is responsible for splitting up the data for fine-tuning in the

respective training, validation, and evaluation set. The user can choose between a k-fold

split and a manual specification of the training and validation set sizes. The training and

validation file follow the schema and format specified on the OpenAI website. They consist

of a system message containing the prompt, a user message with the requirement, and an

assistant message with the expected output of the fine-tuned model. The required format

for GPT is JSON Lines (JSONL). The evaluation file contains the requirement, its ID, and

the expected output. The training and validation files can directly be used in RunnerTuning,

which performs the fine-tuning task using the AIModel. The user can retrieve the state

of the fine-tuning task with the help of RunnerTuning. In case of a successful completion,

the corresponding method of AIModel retrieve_status_tuning() returns the ID of the

fine-tuned model.

RunnerEval takes two JSON files as input, the gold standard and the GPT results. They

are compared against each other according to their element types, and indicative phrases.

The results of the comparison and the evaluation metrics are written in CSV files. The

abstract class EvalStrategy provides the abstract method evaluate(). It only stores the

number of true positives, false positives, and false negatives as well as the complete eval-

uation results with the requirement ID to be flexible with regard to the calculation of

the evaluation scenario. EvalElementType and EvalIndicativePhrase provide the tem-

plate method evaluate() for their child classes that implement a concrete evaluation

scenario. Additional evaluation classes that inherit from EvalStrategy, EvalElementType,

and EvalIndicativePhrase are not shown for simplicity. Classes of the helper package

are not shown either. The omitted classes are responsible for creating and processing

JSON and CSV files.

The architecture has been designed to be easily extendable and interchangeable. There are

default values set for prompts, element types, evaluations, train, and validation sizes as

well as the GPT model in case nothing else is specified. By default, the definitions of the

element types are used as more context helps GPT to achieve better results. New prompts

can be added to the enum and directly used. The user decides if the prompt should be sent

as a system or user prompt to the AIModel. For the fine-tuning task, train and validation

size can be passed as parameters in the CLI. The user can choose which evaluations

34

6.2. Classification Techniques

<<abstract>>
EvalStrategy

_true_positives

_false_positives

_false_negatives

_results_df

evaluate()

precision_recall_f1score()

EvalElementType

evaluate()

EvalIndicativePhrase

evaluate()

<<abstract>>
Runner

run()

* 1

PromptExecutor

execute_prompt_per_requirement()

execute_prompt_for_file()

PromptBuilder

_pre_prompts

_def_prompt

_post_prompts

_element_types

build_prompt()

<<enumeration>>
Prompt

CLASSIFY_ALL

IDENTIFY_ALL

JSON_ALL

NOT_FOUND_ALL

get_prompts()

instantiate_prompt()

parse_prompt()

AIModel

_model

_client

prompt()

fine_tuning()

retrieve_status_tuning()

1

Figure 6.1.: Rough overview of the architecture

she wants to perform, by default, all are carried out. The file names for the prompting,

fine-tuning, and evaluation tasks have to be passed in as command-line arguments.

6.2. Classification Techniques

This thesis aims to classify elements in a security requirement and extract the correspond-

ing phrase. The classified elements are element types of SecLan’s[57] system model. The

corresponding phrase to be extracted from the requirement is referred to as the indica-

tive phrase. The classification forms a basis for the creation of a trace link between the

requirement and the architecture model. Trace links can then be used for an automatic ver-

ification of the requirement. For the classification, prompt engineering (c.f. Section 2.7.1)

and fine-tuning (c.f. Section 2.7.2) are used. Prompt engineering uses GPT 4, whereas

fine-tuning stays with GPT 3.5 turbo, as this is the latest version available for fine-tuning.

Both approaches work with prompts. A prompt can be composed of an instruction, context,

input data, and output indicators [24]. Han et al. [30] state that a prompt should include

five elements, an instruction of the task to be performed, the target labels, a description of

the output format, the input data, and examples in case of few-shot prompting. That is

consistent with Girays[24] suggestion, which is why it is used as the basis for constructing

the prompts in this work. Instructions can be sent to GPT in a system or user message.

35

6. Security Requirements Classification

The system message can be used to better control the output of GPT through the provided

style and instructions. It has a different influence on the model than the user message.

Multiple prompts were designed by the author of this thesis to instruct GPT. They are

listed below.

CLASSIFY_ALL Classify the requirement whether it contains the element types activity,

component, data, entity, state or not. Extract the indicative phrases for the element

types in the requirement.

IDENTIFY_ALL Identify phrases in the requirement that are of the element type activity,

component, data, entity, or state.

JSON_ALL List all the elements of all element types in a JSON array, providing for each

entry the keys indicativePhrase and elementType.

NOT_FOUND_ALL If there is no element type in the requirement, return an empty list.

The two pre-prompts CLASSIFY_ALL and IDENTIFY_ALL ask GPT to classify the require-

ment into the given element types and extract the respective indicative phrases. Then, the

post-prompt JSON_ALL specifies the output format that should contain valid JSON with

the correct keys. The second post-prompt NOT_FOUND_ALL indicates what GPT should

do if no element type is present in the requirement to be able to automatically process

GPT’s output. Between the pre- and post-prompts, the definitions of the element types

can be provided as context to GPT. SecLan’s[57] system model consists of nine element

types. The classification is restricted to five element types and performed on the element

types activity, component, data, entity, and state. All element types are explicitly named in

the prompt. Their definitions can be found in Section 2.5. By default, IDENTIFY_ALL is set

as pre-prompt and JSON_ALL and NOT_FOUND_ALL as post-prompts.

Zero-shot prompt engineering was performed using GPT 4, the newest GPT model at

the time of writing the thesis. First, IDENTIFY_ALL was used as a pre-prompt, then,

CLASSIFY_ALL was tested as well. The default post-prompts were used in both cases as

well as the definitions of the element types. Both prompt scenarios, with the instructions

in the system and in the user message were tested and compared. The case where the

instructions were in the system message is referred to as system mode, whereas the other

case is referred to as without system mode. The requirement to be classified was always

sent in the user message at the end of the prompt, introduced by a string such as, for

example, REQUIREMENT: . Furthermore, all four different prompt scenarios were carried

out three times to be able to assess the stability of the results. The input for GPT comprised

all requirements elicited from the interviews (c.f. Section 5.7). Then, the output of GPT

was evaluated by comparing it against the gold standard. Due to the fact that the above

prompts were used, the results may not be generalizable.

GPT 3.5 turbo was used for fine-tuning. A 5-fold cross-validation was performed to

evaluate the quality of the fine-tuned models. In a 5-fold cross-validation, four of the five

folds are used for training and the remaining one for the evaluation of the fine-tuned

model until all folds have been used once for evaluation. Therefore, the requirements

were shuffled and the dataset was split into five folds. Since the dataset consists of 93

36

6.3. Evaluation

requirements, the first four folds contained 18 elements, while the last one was composed

of 21 elements. OpenAI expects the data for fine-tuning in JSONL format that contains

a set of messages with a system, user, and assistant role. The system message included

the above prompts that were also used in the prompt engineering task, whereas the user

message contained the requirement. The ideal response that the model should learn was

provided in the assistant message. It consisted of a list with the pairs of the element type

and the minimal term of the indicative phrase in JSON format. Therefore, all five element

types activity, component, data, entity, and state were requested simultaneously as they can

be part of the expected element types for a requirement. For each training, ten percent of

the training data were removed from the training set and then, these seven elements were

used to validate the fine-tuned model after training. In total, five models were fine-tuned

in one iteration. The performance of the fine-tuned model was determined by reusing

the fine-tuning prompt and performing prompt engineering with the requirements of the

evaluation fold. Both prompting with and without system mode were performed. The

results were compared with the correct solutions in the evaluation fold. Each of the four

scenarios with the two different pre-prompts and the system and user message was run

three times to assess the stability of the results.

6.3. Evaluation

In this section, the evaluation scenarios that are addressed in the second research question

are described in detail. The first goal element type classification is to find out, how well

GPT classifies SecLan’s[57] element types in the security requirements of EVerest. The

evaluation of the element type classification (eval1) considers every element type instance

of a requirement separately, whereas evaluation of the element type classification per
requirement (eval2) analyzes how well GPT classifies all expected element types per

requirement. The second goal phrase extraction addresses GPT’s ability to extract indicative
phrases out of the requirement. The evaluation of the phrase extraction (eval3) analyzes

how well GPT extracts correct phrases over all requirements independent of its element

type. The evaluation of the phrase extraction per requirement (eval4) determines how

well GPT extracts all expected phrases per requirement. Eval4 is the equivalent of eval2,

just as eval1 and eval3 are equivalent. The third goal phrase extraction regarding the
element type covers GPT’s ability to extract the correct phrase regarding the element

type. The evaluation of the phrase extraction regarding the element type (eval5) checks each
indicative phrase separately if its element type is correct, contrary to evaluation of the
phrase extraction regarding the element type per requirement (eval6) that determines how

well GPT extracts all indicative phrases per requirement correctly, provided all element

types for the requirement are correct. All evaluation scenarios are performed for both

prompt engineering and fine-tuning. Prompt engineering uses GPT 4 and fine-tuning is

performed on GPT 3.5 turbo. For the evaluations, a gold standard is created which contains

a list of pairs of element type and its corresponding indicative phrase for each requirement.

The indicative phrase is divided into minimal term and phrase. The minimal term is the

term that is at least expected by GPT to indicate that the element type has been identified

37

6. Security Requirements Classification

in the requirement. The phrase contains the minimal term and describes the part of the

requirement that is still acceptable. For the evaluations, the five annotated element types

activity, component, data, entity, and state are considered. In all comparisons of the GPT

results with the gold standard, capitalization and the order of the pairs of element type and

indicative phrase are not taken into account. The six evaluation scenarios are described

in more detail in Section 6.3.1, Section 6.3.2, and Section 6.3.3, two in each section. The

creation of the gold standard is provided in Section 6.3.4. At the end, the evaluation results

are presented in Section 6.3.5.

6.3.1. Element Type Classification

The first goal element type classification is to find out, how well GPT classifies element

types in a requirement as this is a first step towards the mapping of a requirement to a

system element. The evaluation of the element type classification (eval1) considers every

element type separately. The element types activity, component, data, entity, and state are
checked individually to see how well they are classified by GPT across all requirements.

Eval1 addresses a multi-class problem, since for one instance of an element type in the

GPT results, it is determined whether this element type occurs in the gold standard for

the respective requirement or not. Multiple instances of one element type can exist in one

requirement as well. A true positive is counted for an element type if an instance of that

element type is found in the gold standard and the GPT results for a requirement. Multiple

true positives per requirement are possible. If the gold standard expects an instance of an

element type that is not present in the GPT results, this is a false negative for the respective

element type. On the contrary, a false positive is counted, if GPT outputs an instance of an

element type that was not expected by the gold standard for this requirement. If there are

elements in the GPT results list, that do not correspond to one of the five given element

types, they are counted as false positives for the class other. The true positives, false

positives, and false negatives are used to calculate the metrics introduced in Section 2.8.

First, precision, recall, and F1-score are calculated. Then, the macro, weighted, and micro

averages are determined. The 5-fold cross-validation uses the macro average over the

precisions, recalls, and F1-scores of the five models to have an unweighted average of one

cross-validation. Additionally, the weighted averages are calculated as the size of the last

evaluation set is slightly higher than the other four. Furthermore, the micro averages of

precision, recall, and F1-score are calculated to assess how well the approach works for all

element types. The micro average is used because the dataset is imbalanced, as there are

146 components and only 49 states. It gives equal weight to each instance by taking the

sums of the true positives, false positives, and false negatives of all element types. In the

end, the macro macro averages and macro micro averages for fine-tuning and the macro

average for prompt engineering are calculated to have an unweighted average of the three

runs as a general statement.

The evaluation of the element type classification per requirement (eval2) addresses a multi-

label problem per requirement as multiple element types can be correct for one requirement.

If all the element types of one requirement match the gold standard for that respective

38

6.3. Evaluation

requirement, a true positive is counted. Otherwise, the length of both lists is compared. If

the GPT results contain more elements, the false positive counter is increased by one. If

the gold standard has more elements, the GPT result is counted as a false negative, since

element types are missing. In case, the lists have the same length but not all element types

are matching, this is counted as a false negative and a false positive as at least one element

of the gold standard is missing but at the same time, GPT mistakenly found some other

element. For eval2, first, precision, recall, and F1-score (c.f. Section 2.8) are calculated

to determine the quality of the GPT results. Then, for the 5-fold cross-validation, the

macro and weighted averages are calculated as well. Finally, the macro average of all three

executions of prompt engineering and fine-tuning is calculated to have an unweighted

average.

6.3.2. Phrase Extraction

The second goal phrase extraction determines GPT’s ability to extract indicative phrases out

of the requirements, as a trace link creation needs a classified element in the requirement

to map it to one of the system elements. As in the previous goal element type classification
(c.f. Section 6.3.1), all phrases are first considered individually across all requirements

and then per requirement. For both evaluations, the extracted phrases are compared with

the gold standard to determine whether the minimal term is present in the extracted

phrase and whether the extracted phrase lies within the permitted phrase of the gold

standard. The evaluation of the phrase extraction (eval3) considers every indicative phrase

separately and counts a true positive if the extracted phrase contains the minimal term

of the gold standard and lies in the accepted phrase of the gold standard. Multiple true

positives for multiple correct phrases of one requirement are possible in eval3. If the

extracted phrase does not meet the above-described criteria, it is considered a false positive

and false negative because it is not the expected but a different phrase. If the number

of extracted phrases in one requirement exceeds the number of indicative phrases from

the gold standard, the remaining phrases are counted as false positives. Otherwise, if

the number of extracted phrases is smaller than the expected phrase number, additional

false negatives corresponding to the number of missing extracted phrases are counted.

Precision, recall, and F1-score are calculated for prompt engineering and fine-tuning as

described in Section 2.8. For the 5-fold cross-validation, the macro and weighted average

are calculated to have both an unweighted and weighted value. In the end, the macro

average is calculated over the three runs of prompt engineering and fine-tuning.

The evaluation of the phrase extraction per requirement (eval4) checks all indicative phrases
per requirement. It is assessed whether all indicative phrases of a requirement in the GPT

results match the defined phrases of the gold standard for the respective requirement

with the method described at the beginning of this subsection. If yes, a true positive is

counted for that requirement. If no, depending on the length of the two lists containing

the indicative phrases, a false positive, false negative, or both are counted analogously to

evaluation of the element type classification per requirement (c.f. Section 6.3.1). Unlike eval3,

there is only one classification result per requirement. As in evaluation of the element

39

6. Security Requirements Classification

type classification per requirement (c.f. Section 6.3.1), precision, recall, and F1-score are

calculated. For the 5-fold cross-validation, the macro and weighted averages are calculated.

In the end, the macro average over all three runs of prompt engineering and fine-tuning is

calculated.

6.3.3. Phrase Extraction regarding the Element Type

The two previous goals element type classification and phrase extraction separately analyze

element types and phrases. The third goal phrase extraction regarding the element type
deals with GPT’s ability to extract the indicative phrases regarding the element type. For

a trace link creation, it is important that both the correct element type and the correct

associated phrase are found. Therefore, in the next two evaluations, only phrases where the

associated element type is a true positive are compared against the gold standard to see if

the phrase is also correct. The comparison of the extracted phrase with the gold standard is

performed analogously to evaluation of the phrase extraction (eval3) (c.f. Section 6.3.2). The

evaluation of the phrase extraction regarding the element type (eval5) analyzes the indicative
phrases of the correct element types for each pair of element type and associated phrase

individually and separately for each element type. Multiple true positives are possible

for one requirement. The metrics are calculated analogously to evaluation of the element
type classification (c.f. Section 6.3.1), as both evaluations examine the results separately

by element type as well as aggregated over all element types. Therefore, first, precision,

recall, and F1-score are calculated. For the 5-fold cross-validation macro and weighted

averages are calculated. In the end, for all three runs, the macro macro and macro micro

averages are calculated for fine-tuning, and the macro average is calculated for prompt

engineering.

The last evaluation, evaluation of the phrase extraction regarding the element type per
requirement (eval6) checks how well GPT extracts the indicative phrases for a requirement

in the case that all element types are correct. First, for each requirement, it is checked

if all its element types are correct (c.f. Section 6.3.1). If yes, the requirement is analyzed,

whether also all corresponding phrases match those in the gold standard for the respective

requirement (c.f. Section 6.3.2). A true positive is counted if all phrases of the requirement

include the minimal term and lie in the accepted phrase of the gold standard. If one or more

phrases do not match the gold standard, a false positive and false negative are counted,

as GPT incorrectly found another phrase but the correct phrase is missing. All metrics

are calculated analogously to evaluation of the element type classification per requirement
(eval2) (c.f. Section 6.3.1) because both evaluations are per requirement and no further

distinction between the different element types are made. Precision, recall, and F1-score

are calculated, as well as macro and weighted average for the 5-fold cross-validation. For

a general statement on all three runs of prompt engineering and fine-tuning, the macro

average is determined.

40

6.3. Evaluation

6.3.4. Dataset and Gold Standard Creation

To evaluate the GPT results, a gold standard is required against which the results can

be compared. Therefore, a new dataset was created in which each entry represents a

requirement. The requirements are the specified requirements from the interviews (c.f.

Section 5.7). The security objective, which was collected through the questionnaire, is

also part of each entry. The pseudonym of the author of the requirement, who is one of

the interviewees, and his confidence in the domain of software security were added as

additional information to each entry as well. Furthermore, a numerical identifier, and

the identifier of the original requirement are part of each entry. Thereby, it is possible

to trace each fine-grained requirement from the interview to its original, coarse-grained

requirement from the questionnaire. The identifier of requirements that were elicited

during the interviews without previous coarse-grained requirements was set to minus

one. The dataset was created as a CSV file and then transformed into a JSON file. The

evaluation requires pairs of element types and their corresponding indicative phrase for

each requirement in the gold standard.

The creation of the gold standard was done by the author of this thesis. The minimal

terms were retrieved manually from the requirements whereas the phrases were added

semi-automatically to the gold standard. To classify the element types manually, the

definitions of the system model elements described in Section 2.5 were used. In this

thesis, the element types activity, component, data, entity, and state were annotated. The
remaining four element types were omitted from the gold standard. In the following, the

procedure for classifying the different element types and extracting the minimal term is

described.

For the annotation of activities, the definition of Section 2.5 has been expanded so that

activities in which the actor is not explicitly mentioned are also collected, e.g., “the database

should be backed up”(ID4) or “Tokens used for authentication should not be stored in plain

text”(ID5). The fine-grained requirements that were elicited in the interviews still have a

level of abstraction that is often too high to identify individual classes that perform an

activity. Therefore, the actions of components are also counted as activities. Only the verb

itself is taken as the minimal term for the element type activity. If the activity contains a

negation such as “not written”, the negation is also part of the minimal term, otherwise,

the minimal term would indicate the opposite. No activities are, e.g., “should not leak”,

“must comply”, or “implement”, as this does not describe an active operation of a system

component or entity.

Software parts of EVerest are annotated as components. The name of the component
is taken as minimal term, for example, “OCPP”, “ISO15118”, “Auth”, and “EvseSecurity”

in the requirement “OCPP, ISO15118, Auth module and EvseSecurity should be tested

with fuzzed input” (ID9). In the case of more general formulations such as “all modules”,

“EVerest modules”, or “certain modules” only “modules” is specified as the minimal term.

OCPP and ISO 15118 are both, specifications and names of components in EVerest. If

mentioned as a specification, they are not collected as a component. If a requirement

contains multiple comma-separated components, the gold standard classifies them as

41

6. Security Requirements Classification

separate components as can be seen in the example above. “EVerest system” or “the

application” are too coarse-grained and therefore not retrieved as components.

Files, messages, tokens, or any other information are categorized as the element type

data. The corresponding minimal term should describe the data sufficiently to know

what is meant. It is sufficient to take “authentication token” as a minimal term out

of the requirement “The OCPP modules and the authorization related modules (Auth,

TokenProvider, TokenValidator) shall ensure that no plaintext authorization tokens are

logged” (ID25).

Persons such as technicians and users who interact with the system as well as external

systems or devices such as backend and EV are categorized as entities. Interfaces of EVerest
such as “token_provider” are also classified as entities as they are software objects but not

a complete component. In this case, “interface” must occur in the minimal term to ensure

the distinguishability of components with the same name.

For the annotation of the element type state, its definition has been extended as well.

In Section 2.5, state is described as the state of an entity or activity. For this work, the
state of components is considered as a state too, since the requirements are often at a

high abstraction level, so that only components and not individual classes, which would

correspond to entities, can be annotated. Therefore, in the sentence “The state of EVerest

modules should always be consistent” (ID1), “consistent” is categorized as a state of

the component “modules”. The remaining four element types information flow, control
flow, connection, and node are not annotated, as this would go beyond the scope of this

work. For all element types, the minimal term was not taken coherently out of the

requirements. If one word occurs multiple times in a requirement, it will be included in

the gold standard multiple times. In some requirements, the interviewees wrote examples,

further specifications, or abbreviations in brackets after the respective requirement. The

words in brackets were classified if they describe an element type in more detail, e.g., a

component or a data. Otherwise, they were left out as they are usually a repetition.

Phrases were extracted out of the requirements and included in the gold standard, so that

GPT does not have to output exactly the minimal term, but a slightly longer phrase is

also acceptable. A different phrase was extracted depending on the element type. The

element types component, data, and entity are classified in a requirement when they are

mentioned as nouns. Therefore, noun phrases were chosen for these three element types.

The noun phrase can start with a determiner, possibly followed by an adjective or a gerund

verb. Then, at least one noun or proper noun in singular or plural follows. After that, a

preposition, noun, coordinating conjunction, and another noun may follow. That covers

simple and complex noun phrases. This pattern extracts the entity “no unauthorized

persons” in the requirement “No unauthorized persons shall be able to access more than

the user GUI of a charging station” (ID40). In contrast to components, data, and entities,
activities are usually expressed using verbs. Therefore, the verb phrase is selected for

the element type activity. A verb phrase may consist of a modal verb, possibly followed

by an adverb. At least one main verb in its base form has to be part of the verb phrase,

possibly followed by a verb in past participle or an adjective. With this pattern, the phrase

of the activity “shall be verified” is extracted in the sentence “Delivery of updates should

42

6.3. Evaluation

element type #elements
activity 98

component 146

data 112

entity 112

state 49

Table 6.1.: Number of elements per element type

happen over secure channels (e.g HTTPS), update signatures shall be verified by the System

module” (ID48). In opposition to the first four element types, states are usually expressed

by adjectives and adverbs. With the regex of the element type state, all adjectives, adverbs,
and also verbs in past participle are extracted. Sometimes, verbs in the past participle

describe the state of a component or entity, e.g., “authorized” in the requirement “It shall be

ensured that the API module that exposes the MQTT interface is used only by authorized

external components” (ID29).

The NLTK library is used to extract noun phrases, verb phrases, adjectives, and adverbs

from the requirements. NLTK first tokenizes the requirements and tags the words. After

that, the regex parser extracts phrases based on a defined regex structure. Some words are

incorrectly tagged due to their ambiguity, e.g., “crashes” can be the plural of a crash or the

conjugated verb in the third person. Nonetheless, this process is chosen because it is easier

to decide which phrase to put in the phrase field if there are already suggestions. Therefore,

the results of the NLTK script are taken as a baseline that can be used as a reference, but

which is not taken without verification. The script calculates all verb phrases, not only

those that correspond to the definition of an activity. Therefore, the adapted phrases are

manually matched to their corresponding minimal term. If, e.g., two activities appear

one after the other in a phrase, the same phrase is selected for both elements. A phrase

is determined manually for the elements that do not appear in the results of the phrase

calculation. The number of annotated elements for each element type in the gold standard

can be found in Table 6.1.

6.3.5. Results of Evaluations

This subsection describes the evaluation results of the six evaluation scenarios (c.f. Sec-

tion 6.3.1, Section 6.3.2, and Section 6.3.3). For the evaluations, the gold standard (c.f.

Section 6.3.4), which was derived from the elicited security requirements of EVerest at

design level (c.f. Chapter 5) is used. In each evaluation, the results of prompt engineering

on GPT 4 are compared with fine-tuning on GPT 3.5 turbo. Most of the evaluations indicate

that fine-tuning delivers much better results than prompt engineering even if fine-tuning

uses GPT 3.5 turbo and prompt engineering the newer version GPT 4.

During the evaluations of the GPT results, GPT sometimes did not output a valid JSON

format. This was corrected manually for both prompt engineering and fine-tuning. Mostly,

43

6. Security Requirements Classification

the requirement with the identifier five was affected, sometimes also requirement 34.

Requirement five is especially long and consists of eight sentences which may be a reason

for GPT’s mistake. In the classification, GPT appended the same element pair, e.g., the

element type “entity” with the indicative phrase “modules” dozens of times till the output

length was reached. To fix this error, all repeating element pairs were deleted. This occured

very rarely but can have an influence on the evaluation results. For prompt engineering,

in some cases, GPT did not answer in valid JSON format and wrote some sentences

before adding the JSON format. These sentences were deleted as well. The results of

the evaluations regarding the element type classification are presented in Section 6.3.5.1.

Section 6.3.5.2 contains the results of the evaluations concerning the phrase extraction. In

Section 6.3.5.3, the results of the evaluations of phrase extraction regarding the element

type are presented. All evaluations compare the best prompt engineering approach with

the best and worst fine-tuning approach. They compare the different prompts and modes

as well and determine how good the achieved results are.

6.3.5.1. Element Type Classification

The results of evaluation of the element type classification (eval1) (c.f. Section 6.3.1) (n=517)

show that the difference between the prompt engineering and fine-tuning results varies

depending on the element type. For the element type component, fine-tuning delivers

slightly better results than prompt engineering. The best prompt engineering approach

(F1 - Promptclassify_all system mode: 0.8) is only 1% point lower than the worst fine-tuning

result (F1 - Promptclassify_all system mode: 0.81) and 4% points lower than its best prompt

(F1 - Promptidentify_all system mode: 0.84). The element type data achieves equally good

results in prompt engineering and fine-tuning (F1 - Promptidentify_all system mode: 0.79)

for the same prompt. The worst fine-tuning result (F1 - Promptidentify_all without system

mode: 0.75) is only 2% points better than the worst prompt engineering result (F1 -

Promptclassify_all with/without system mode: 0.73). For the element type entity, the results
of the two prompts used differed noticeably, therefore, they are compared separately. The

best prompt engineering result (F1 - Promptidentify_all without system mode: 0.65) even

exceeds fine-tuning (F1 - Promptidentify_all without system mode: 0.62) by 3% points. For

the other prompt, prompt engineering (F1 - Promptclassify_all in system mode: 0.6) is 1%

point lower than fine-tuning (F1 - Promptclassify_all in system mode: 0.61). The element type

state obtains better results in fine-tuning than in prompt engineering. The best prompt

engineering result (F1 - Promptidentify_all with system mode: 0.57) is only 1% lower than the

worst fine-tuning result (F1 - Promptidentify_all with system mode: 0.58) and 8% points lower

than the best fine-tuning result (F1 - Promptidentify_all without system mode: 0.65). For

the element type activity, fine-tuning performs slightly worse than prompt engineering.

The best prompt engineering result (F1 - Promptclassify_all with system mode: 0.68) is 1%

point better than the best fine-tuning result (F1 - Promptidentify_all without system mode:

0.67) and 5% points better than the worst fine-tuning result (F1 - Promptclassify_all with

system mode: 0.63). This can have multiple reasons. The definition of activity in the

prompt is very strict. Therefore, the fine-tuned models could output less activities than the

prompt engineering approach. One observation is that the recall of prompt engineering

44

6.3. Evaluation

is 31% points higher than for fine-tuning whereas the precision of prompt engineering

is 17% points lower than in fine-tuning. It follows that GPT classifies more activities in

prompt engineering than in fine-tuning. It might be that the fine-tuned models got too

less training examples as the gold standard for activity only contains 98 elements whereas

component, for example, had 146 examples (c.f. Table 6.1).

FT PE FT PE FT PE FT PE FT PE

0.55

0.60

0.65

0.70

0.75

0.80

0.85

F1
-S

co
re

result FT
macro avg FT
result PE
macro avg PE

activity component data entity state

Figure 6.2.: Evaluation of the element type classification: Comparison of fine-tuning (FT)

and prompt engineering (PE) for all element types for all three runs

Figure 6.2 depicts the prompt engineering and fine-tuning results for the overall best

prompt engineering prompt Promptidentify_all in system mode. The diagram also shows

that the results for common understanding such as component or data are better than the

other three element types. Component and data are relatively clearly defined concepts for

which the common understanding is not restricted by the definitions in this thesis. More

detailed results of the individual element types can be found in Table A.1 and Table A.2 in

Appendix A.5.

Table 6.2 shows the macro micro averages of all element types of the three runs of prompt

engineering and fine-tuning. It can be seen that fine-tuning performs slightly better

than prompt engineering. The best prompt engineering result (F1 - Promptidentify_all

with/without system mode: 0.7) is equally good as the worst fine-tuning result (F1 -

Promptclassify_all with system mode: 0.7) and 3% points worse than the best fine-tuning

result (F1 - Promptidentify_all with/without system mode: 0.73). The results of both prompts

differ only slightly. The fact that the recall in prompt engineering is higher than precision

ranging from 3 to 15% points is especially due to the high recall of the element type activity.

For the other element types, the recall of prompt engineering and fine-tuning do not differ

as much or is higher for fine-tuning. In summary, these results show that GPT can actually

45

6. Security Requirements Classification

be used well for the element type classification in fine-tuning (F1: 0.7-0.73). Even prompt

engineering (F1: 0.67-0.7) is still usable if no training data is available for the elements to

be classified.

Precision Recall F1-score
P
r
o
m
p
t
i
d
e
n
t
i
f
y
_
a
l
l Prompt Engineering

without system mode 0.63 0.78 0.7

with system mode 0.64 0.78 0.7

Fine-tuning
without system mode 0.7 0.76 0.73

with system mode 0.73 0.73 0.73

P
r
o
m
p
t
c
l
a
s
s
i
f
y
_
a
l
l Prompt Engineering

without system mode 0.65 0.7 0.67

with system mode 0.67 0.7 0.69

Fine-tuning
without system mode 0.71 0.73 0.72

with system mode 0.71 0.7 0.7

Table 6.2.: Evaluation of element type classification: Macro micro averages over all element

types, Prompt engineering uses GPT version 4, Fine-tuning uses GPT version

3.5 turbo, n=517

Table 6.3 presents the macro averages of the evaluation of the element type classification per
requirement (eval2) (c.f. Section 6.3.1) (n=93) of the three runs of prompt engineering and

fine-tuning. It is apparent that fine-tuning performs much better than prompt engineering

in precision, recall, and F1-score. The best prompt engineering prompt (F1 - Promptclassify_all

with system mode: 0.09) is 10% worse than its fine-tuning result (F1 - Promptclassify_all

with system mode: 0.19). The best fine-tuning result (F1 - Promptidentify_all with/without

system mode: 0.2) performed 11% points better than the best prompt engineering result,

whereas the worst fine-tuning result (F1 - Promptclassify_all without system mode: 0.18)

still is 9% points better than the best prompt engineering result. The differences between

the two prompts used and the modes with and without system mode are small. For

fine-tuning, Promptidentify_all delivers slightly better results (2% points) in the F1-score,

whereas Promptclassify_all performs better in the F1-score for prompt engineering without

system mode (2% points). As this evaluation addresses a multi-label problem, the fine-

tuning results (F1-score: 0.2) are acceptable. However, prompt engineering seems to be

inappropriate to classify element types correctly per requirement. These results indicate

that it is generally hard for GPT to identify all element types per requirement correctly.

6.3.5.2. Phrase Extraction

Table 6.4 provides the macro averages of the three runs for prompt engineering and

fine-tuning of the evaluation of the phrase extraction (eval3) (c.f. Section 6.3.2) (n=517).

46

6.3. Evaluation

Precision Recall F1-score

P
r
o
m
p
t
i
d
e
n
t
i
f
y
_
a
l
l Prompt Engineering

without system mode 0.05 0.1 0.07

with system mode 0.07 0.12 0.09

Fine-tuning
without system mode 0.19 0.22 0.2

with system mode 0.22 0.2 0.2

P
r
o
m
p
t
c
l
a
s
s
i
f
y
_
a
l
l Prompt Engineering

without system mode 0.08 0.1 0.09

with system mode 0.09 0.09 0.09

Fine-tuning
without system mode 0.18 0.18 0.18

with system mode 0.2 0.18 0.19

Table 6.3.: Evaluation of the element type classification per requirement: Macro averages

of precision, recall, F1-score, Prompt engineering uses GPT version 4, Fine-

tuning uses GPT version 3.5 turbo, n=93

What stands out is that fine-tuning delivers noticeably better results than prompt en-

gineering. In contrast to the best prompt engineering approach (F1 - Promptidentify_all

with system mode: 0.52), fine-tuning had an increasement of 18% points for its best

prompt (F1 - Promptclassify_all without system mode: 0.7) and 16% points for its worst (F1 -

Promptclassify_all with system mode: 0.68). As in the evaluation of element type classification
per requirement (eval2), Promptidentify_all works better for prompt engineering, whereas

Promptclassify_all delivers better results for fine-tuning. A closer inspection of GPT’s prompt

engineering results shows that GPT outputs longer phrases. This is consistent with the

observations of Han et al. [30]. The extracted phrases are often longer than the accepted

gold standard phrases. The fine-tuning results are generally much shorter phrases and,

therefore, lie more often in the accepted phrase. In fine-tuning, the number of phrases

produced by GPT is relatively similar for the two prompts used, with Promptidentify_all

showing greater variation. In addition, the results of the two prompts are similar, whether

with or without system mode. GPT’s prompt engineering results are slightly better when

using the system mode. Furthermore, GPT extracted more phrases with Promptidentify_all

(n=647-673) than with Promptclassify_all (n=604-629) and in general much more than ex-

pected by the gold standard (n=517). Although the number of phrases of the two prompts

differs noticeably and Promptidentify_all delivers more phrases, its precision is equally good

or better (3-4% points). Moreover, the recall for Promptidentify_all is 8% points better than

for Promptclassify_all resulting in a better F1-score for Promptidentify_all (7% points). This

may be because Promptidentify_all produces in parts shorter phrases than Promptclassify_all

resulting in more accepted phrases. Moreover, GPT separates individual elements of a

phrase better with Promptidentify_all. In the sentence “In the case of a OCPP connection

from the charger to the CSMS transaction related data, telemetry and information about

updates is shared with relevant parties.”, GPT with Promptidentify_all extracts the three

47

6. Security Requirements Classification

phrases for data: “CSMS transaction related data”, “telemetry”, and “information about

updates”. Contrary, GPT with Promptclassify_all extracts only the element “transaction

related data, telemetry and information about updates”. Overall, GPT extracts the phrases

well during fine-tuning, while prompt engineering only delivers mediocre results.

Precision Recall F1-score

P
r
o
m
p
t
i
d
e
n
t
i
f
y
_
a
l
l Prompt Engineering

without system mode 0.45 0.55 0.49

with system mode 0.48 0.57 0.52

Fine-tuning
without system mode 0.65 0.71 0.68

with system mode 0.69 0.68 0.68

P
r
o
m
p
t
c
l
a
s
s
i
f
y
_
a
l
l Prompt Engineering

without system mode 0.41 0.44 0.42

with system mode 0.45 0.47 0.45

Fine-tuning
without system mode 0.69 0.71 0.7

with system mode 0.69 0.67 0.68

Table 6.4.: Evaluation of the phrase extraction: Macro averages of precision, recall, and

F1-score, Prompt engineering uses GPT version 4, Fine-tuning uses GPT version

3.5 turbo, n=517

Table 6.5 shows the macro averages for the evaluation of the phrase extraction per re-
quirement (eval4) (c.f. Section 6.3.2) (n=93). It illustrates that fine-tuning delivers no-

ticeably better results than prompt engineering. The best prompt engineering prompt

(F1 - Promptidentify_all without system mode: 0.06) performs 10% points worse than its

fine-tuning result (F1 - Promptidentify_all without system mode: 0.16). The best fine-tuning

result (F1 - Promptclassify_all with system mode: 0.18) is 12% points better and the worst

fine-tuning result (F1 - Promptclassify_all without system mode: 0.15) is still 9% points better

than the best prompt engineering result. Whether the system mode is used or not seems

to have no significant effect on the results. For prompt engineering, both prompts perform

slightly better without system mode. In fine-tuning, the best results are achieved by

Promptclassify_all with system mode, while Promptidentify_all still has an equally good F1-

score with and without system mode. In summary, it can be seen that GPT has difficulties

in finding all correct phrases per requirement which fits with the results of the respective

evaluation of the element type classification per requirement.

6.3.5.3. Phrase Extraction regarding the Element Type

The results of the evaluation of the phrase extraction regarding the element type (eval5) (c.f.
Section 6.3.3) indicate variations between prompt engineering and fine-tuning regarding

the element type. For the element type component, the best prompt engineering prompt

48

6.3. Evaluation

Precision Recall F1-score

P
r
o
m
p
t
i
d
e
n
t
i
f
y
_
a
l
l Prompt Engineering

without system mode 0.04 0.08 0.06

with system mode 0.04 0.07 0.05

Fine-tuning
without system mode 0.15 0.17 0.16

with system mode 0.18 0.16 0.16

P
r
o
m
p
t
c
l
a
s
s
i
f
y
_
a
l
l Prompt Engineering

without system mode 0.05 0.06 0.05

with system mode 0.03 0.03 0.03

Fine-tuning
without system mode 0.16 0.15 0.15

with system mode 0.19 0.17 0.18

Table 6.5.: Evaluation of the phrase extraction per requirement: Macro averages of preci-

sion, recall, F1-score, Prompt engineering uses GPT version 4, Fine-tuning uses

GPT version 3.5 turbo, n=93

(F1 - Promptidentify_all without system mode: 0.75) performs 14% points worse than the

corresponding fine-tuning result (F1 - Promptidentify_all without system mode: 0.89). The

best fine-tuning result (F1 - Promptclassify_all with/without system mode: 0.89) is 14% points

better and the worst fine-tuning result (F1 - Promptidentify_all with system mode: 0.87) is

12% points better than the best prompt engineering result. The element type data achieves
5% points better results in fine-tuning (F1 - Promptidentify_all with system mode: 0.89) than

with the best prompt engineering prompt (F1 - Promptidentify_all with system mode: 0.84).

The best fine-tuning result for data (F1 - Promptclassify_all with system mode: 0.91) is 7%

points better, and the worst fine-tuning result (F1 - Promptidentify_all with system mode:

0.85) is still 1% point better than the best prompt engineering result. For the element

type entity, the best prompt engineering prompt (F1 - Promptidentify_all with system mode:

0.67) is 19% points worse than its fine-tuning result (F1 - Promptidentify_all with system

mode: 0.86). The best fine-tuning results (F1 - Promptclassify_all with system mode: 0.9)

are 23% points better and the worst fine-tuning results (F1 - Promptclassify_all without

system mode: 0.85) are 18% points better than the best prompt engineering results. The

results for prompt engineering and fine-tuning differ most for the element type state
whereas fine-tuning noticeably performs better than prompt engineering. The best prompt

engineering result (F1 - Promptidentify_all without system mode: 0.25) is 47% worse than

its fine-tuning result (F1 - Promptidentify_all without system mode: 0.72). The fine-tuning

results differ only by 6% points. The element type activity has similar differences in the

prompt engineering and fine-tuning results. In contrast to the best prompt engineering

approach (F1 - Promptidentify_all with system mode: 0.28), fine-tuning has an increasement

of 52% points for its best prompt (F1 - Promptclassify_all with/without system mode: 0.8)

and 47% points for its worst (F1 - Promptidentify_all with system mode: 0.75).

49

6. Security Requirements Classification

The F1-scores of all three runs for prompt engineering and fine-tuning as well as their

macro averages of all element types separately are depicted in Figure 6.3 for the average

best prompt engineering prompt, Promptidentify_all with system mode. Especially for the

element types activity and state, it can be seen, that fine-tuning noticeably outperforms

prompt engineering. It can be observed that general concepts such as component, data, or
entity can be recognized relatively well by GPT, also in prompt engineering. For state and
activity, the common understanding diverges from the definitions used in this work as, for

example, not all verbs are classified as activities but only those that refer to an activity
of a component or entity. This affects not only the classification of the element type, but

also the phrase extraction. In prompt engineering, GPT often classifies an activity or state
but does not correctly extract the corresponding phrase. In the requirement “The state

of EVerest modules should always be consistent”, GPT extracts the phrase “The state of

EVerest modules” as a state whereas the gold standard expects in the description of the

state, namely “consistent” as minimal term. Often, the extracted phrase is longer than the

accepted phrase in the gold standard. On one hand, there are cases in which the minimal

term lies not in the extracted phrase such as the extracted phrase for state “the security
requirements” (ID5) that does not contain the minimal term “persistent”. On the other

hand, there are cases in which the minimal term is included in the extracted phrase but

the phrase is too long for the accepted phrase such as the extracted phrase for activity “is

responsible for restarting and orchestrating the EVerest modules” (ID11) that contains the

minimal term “restarting”. This is especially true for the element types activity and state,
whereas for component and entity, shorter phrases are extracted by GPT. In some cases,

the gold standard may also be too strict. More detailed results to the individual element

types can be found in Table A.3 and Table A.4 in Appendix A.5.

Table 6.6 presents the macro micro averages of eval5 over all element types (c.f. Sec-

tion 6.3.3). It is calculated over all three runs for prompt engineering and fine-tuning.

The best prompt engineering approach (F1 - Promptidentify_all with system mode: 0.61)

performs 26% points worse than the best fine-tuning (F1 - Promptclassify_all with system

mode: 0.87). The worst fine-tuning (F1 - Promptidentify_all without systemmode: 0.84) is still

23% points better than the best prompt engineering approach. Promptidentify_all performs

better in prompt engineering whereas the best results in fine-tuning are achieved by using

Promptclassify_all. The results of both, prompt engineering and fine-tuning, are slightly

better when using the system mode, namely 1 to 3% points in F1-score. As the evaluation is

based on correctly classified element types, the sample size differs in every case. It can be

seen that Promptidentify_all has a higher sample size in most cases than Promptclassify_all for

both prompt engineering and fine-tuning. Moreover, Promptidentify_all performs better in

prompt engineering with a difference of 6% points in F1-score compared to Promptclassify_all.

However, its fine-tuning results are slightly worse than those for Promptclassify_all.

The macro averages of evaluation of the phrase extraction regarding the element type per
requirement (eval6) (c.f. Section 6.3.3) over all three runs are depicted in Table 6.7. There

is a clear improvement from prompt engineering to fine-tuning. In contrast to the best

prompt engineering approach (F1 - Promptidentify_all without system mode: 0.75), fine-

tuning achieves 17% points better results in its best (F1 - Promptclassify_all with system

mode: 0.92) and 2% points in its worst approach (F1 - Promptclassify_all without system

50

6.4. Discussion and Threats to Validity

FT PE FT PE FT PE FT PE FT PE
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

F1
-S

co
re result FT

macro avg FT
result PE
macro avg PE

activity component data entity state

Figure 6.3.: Evaluation of the phrase extraction regarding the element type: Comparison

of fine-tuning (FT) and prompt engineering (PE) for all element types for all

three runs

mode: 0.77). In prompt engineering, Promptidentify_all is still better than Promptclassify_all.

Both prompts achieve noticeably better results in prompt engineering without using the

system mode. Overall, the results of eval6 should be treated with caution. Only those

requirements where all element types have been correctly identified are looked at to

determine whether all indicative phrases are correct as well. Therefore, the sample sizes

are relatively small. For prompt engineering, it ranges from 4 to 6 independently of the

used prompt. For fine-tuning it ranges from 8 to 14. In summary, GPT better extracts

phrases per requirement for fine-tuning than for prompt engineering which was already

indicated in the independent evaluation of the phrase extraction (eval3) Table 6.4. However,

the results of eval6 are less generalizable and should not be given too much weight due to

the low sample size compared to the number of the requirements in the gold standard.

6.4. Discussion and Threats to Validity

This section summarizes and discusses the results of the six evaluation scenarios before

examining possible threats to validity for this chapter. Evaluation of the element type
classification (eval1) (c.f. Section 6.3.5.1) shows GPT’s ability to correctly classify most

of the element types for prompt engineering (F1-score: 0.67-0.7) as well as fine-tuning

(F1-score: 0.7-0.73). The results of the element types component, data, and state reveal
equally good or better values for fine-tuning compared to prompt engineering. For entity,
it depends on the prompt used whether the prompt engineering results are slightly better

51

6. Security Requirements Classification

Precision Recall F1-score Sample Size
P
r
o
m
p
t
i
d
e
n
t
i
f
y
_
a
l
l Prompt Engineering

without system mode 0.58 0.58 0.58 400, 401, 404

with system mode 0.61 0.61 0.61 401, 397, 401

Fine-tuning
without system mode 0.84 0.84 0.84 387, 408, 380

with system mode 0.85 0.85 0.85 371, 397, 383

P
r
o
m
p
t
c
l
a
s
s
i
f
y
_
a
l
l Prompt Engineering

without system mode 0.52 0.52 0.52 366, 364, 358

with system mode 0.55 0.55 0.55 370, 365, 354

Fine-tuning
without system mode 0.86 0.86 0.86 388, 369, 370

with system mode 0.87 0.87 0.87 352, 366, 356

Table 6.6.: Evaluation of the phrase extraction regarding the element type: Macro micro

averages over all element types, Prompt engineering uses GPT version 4, Fine-

tuning uses GPT version 3.5 turbo

or the fine-tuning results. However, the element type activity achieves slightly better

results for prompt engineering than for fine-tuning. The results of the evaluation of
the phrase extraction (eval3) (c.f. Section 6.3.5.2) are slightly worse than eval1 but still

acceptable, at least for fine-tuning (F1-score: 0.68-0.7). The evaluation of the element type
classification per requirement (eval2) (c.f. Section 6.3.5.1) and the evaluation of the phrase
extraction per requirement (eval4) (c.f. Section 6.3.5.2) show that GPT has difficulties to

correctly classify all element types or phrases for one requirement. Prompt engineering

seems to be inappropriate to classify element types (F1-score: 0.07-0.09) or extract phrases

(F1-score: 0.03-0.06) per requirement. As eval2 and eval4 are multi-label classifications, the

results for fine-tuning are acceptable, both for the classification (F1-score: 0.18-0.2) and

the extraction (F1-score: 0.15-0.18) task. The results of eval2 are slightly better, which can

be explained by the fact that element types are recognized better on average than phrases.

This can be seen by comparing the results of evaluation of the element type classification (c.f.
Section 6.3.5.1) and evaluation of the phrase extraction (c.f. Section 6.3.5.2). The evaluation
of the phrase extraction regarding the element type (eval5) (c.f. Section 6.3.5.3) shows that

GPT mostly correctly extracts the indicative phrase if the corresponding element type is

correct for fine-tuning (F1-score: 0.84-0.87) while prompt engineering performs worse

(F1-score: 0.52-0.61). However, differences in phrase extraction can be found between

the respective element types. Component, data, and entity achieve good results for both

prompt engineering and fine-tuning, whereas for the element types activity and state,
the results of prompt engineering (activity: F1-score: 0.26-0.28, state: F1-score: 0.19-0.25)

and fine-tuning (activity: F1-score: 0.75-0.8, state: F1-score: 0.72-0.82) differ noticeably by

around 50% points. It can be observed that although the element type classification delivers

good results, the phrases of activity and state are often not correctly extracted. That also

puts the quite good prompt engineering results for activity in eval1 (c.f. Section 6.3.5.1)

52

6.4. Discussion and Threats to Validity

Precision Recall F1-score Sample Size

P
r
o
m
p
t
i
d
e
n
t
i
f
y
_
a
l
l Prompt Engineering

without system mode 0.75 0.75 0.75 4, 4, 4

with system mode 0.49 0.49 0.49 6, 4, 5

Fine-tuning
without system mode 0.87 0.87 0.87 11, 12, 11

with system mode 0.86 0.86 0.86 14, 12, 8

P
r
o
m
p
t
c
l
a
s
s
i
f
y
_
a
l
l Prompt Engineering

without system mode 0.62 0.62 0.62 6, 5, 4

with system mode 0.34 0.34 0.34 6, 5, 4

Fine-tuning
without system mode 0.77 0.77 0.77 9, 13, 9

with system mode 0.92 0.92 0.92 11, 13, 9

Table 6.7.: Evaluation of the phrase extraction regarding the element type per requirement:

Macro averages of precision, recall, and F1-score, Prompt engineering uses GPT

version 4, Fine-tuning uses GPT version 3.5 turbo

into perspective. The good results of evaluation of the phrase extraction regarding the
element type per requirement (eval6) (c.f. Section 6.3.5.3) should be treated with caution

as they are calculated on a low sample size and are therefore not generalizable. Prompt

engineering shows major differences between the version with system mode (F1-score:

0.34-0.49) and without (F1-score: 0.62-0.75). This can be explained by the fact that a false

positive or a false negative result has a greater influence due to the low sample size. The

results for fine-tuning for both versions are noticeably better (F1-score: 0.77-0.92). The

sample size is bigger for fine-tuning which also explains the noticeably better fine-tuning

results of eval2.

Another observation are strong variations in the results of the different fine-tuned models

of a cross-validation. These occured in all evaluation scenarios, in some more strongly,

in others less. They ranged from 7 to 11% points for eval3 to over 50% for eval6. This

questions the stability of the fine-tuning results. An example of the variations in all

three cross-validations is shown in Figure 6.4 for eval1 for the element type activity and

Promptidentify_all without system mode.

Common differences between the GPT results in prompt engineering and fine-tuning

and the gold standard are discussed in the following. The deviations in phrase extraction

affected primarily eval3, eval4, eval5, and eval6, while the element type classification

influenced eval1, eval2, eval5, and eval6. For prompt engineering, GPT often outputs much

longer phrases than expected. Thereby, it is not clear, if GPT really recognized the element

type or just chose a phrase. Sometimes, GPT classifies an element type but with the

wrong phrase. One reason for this could be that the gold standard is too specific, that the

definition of the element type is not clear, or that the common understanding overwrites

the specific definition. This is sometimes disadvantageous for the evaluation results of

53

6. Security Requirements Classification

1 2 3
Models of cross validations

0.50

0.55

0.60

0.65

0.70

0.75

0.80
F1

-S
co

re

Figure 6.4.: Evaluation of the element type classification: F1-score variations in the cross-

validations for the element type activity for Promptidentify_all without system

mode

entity. “EVerest system” is also often wrongly classified as component or entity. However,
the system as such is not part of any class as it is not an element type of itself according to

SecLan [57]. GPT also does not recognize well multiple components or activities in a listing,

e.g., “OCPP, EV communication (EvseV2G), and API”. Another mistake of GPT was that

in some cases, OCPP was recognized as a component, even though the requirement was

about the standard. The differentiation between the component OCPP and the standard

is generally difficult due to the same naming. The results for fine-tuning show other

deviations of the GPT results from the gold standard. For fine-tuning, the phrases are

much shorter because the minimal term of the gold standard is used to train the models.

Moreover, GPT usually does not name phrases twice, even if they appear twice in the

requirement and therefore in the gold standard. It is also possible that the gold standard

does not always contain the correct phrases or does not have all elements, which affects

the evaluation results. It stands out that especially activities are misclassified. The gold

standard is relatively strict and does not include verbs like “support”, “implement”, and

“comply” which are extracted by GPT. The element type state is sometimes not found,

perhaps, because it occurs only 49 times in the gold standard.

Several threats affect the validity of the element type classification and phrase extraction.

As described in Section 5.8, there are several types of validity that can be affected: internal,

construct, and external validity.

Internal validity is threatened by the fact that the prompts that are used for prompt

engineering and fine-tuning were previously tested on a part of the dataset. This was part

of the process to improve the prompts. The evaluation results could have been influenced

54

6.4. Discussion and Threats to Validity

by re-using the prompts. However, the fact that only a small set of requirements were

chosen for testing mitigates this risk. For 5-fold cross-validation, the dataset needs to be

divided into equally sized folds. As the dataset contains 93 requirements, this is not possible.

Instead, the last fold contains three requirements more than the other four. For the first

four models, 68 requirements are used for training and 18 for evaluation. The last model

is trained on 65 requirements and evaluated with 21 requirements. This could influence

the results of the models. To mitigate that threat, the weighted average was calculated

over the five models of a cross-validation set to take into account the different sizes of the

evaluation sets. However, the difference in size seems to be neglectabe as the weighted

average andmacro average differ only by 1 to 2% points in all evaluation scenarios. Another

possible threat to internal validity is that all coarse-grained requirements were specified

twice. This leads to a certain similarity between any two requirements that originate from

the same coarse-grained requirement and could affect the fine-tuning results, as these

requirements can be split into training and evaluation set. The threat is mitigated by a

manual comparison of some of these requirements which reveals that the corresponding

requirements are sufficiently different. In addition, in some cases different requirements

were not specified in an interview, which is why not all requirements have an equivalent

of the same origin.

The gold standard was created only by the author of this thesis, therefore, the risk of

misclassification is higher. As the gold standard is used to compare with the GPT results

and assess GPT’s quality, this poses a major threat to construct validity. That risk is

reduced by the transparent description of the gold standard creation and the listing of

the errors that occurred during the evaluation. To mitigate this threat it would have been

better to create the gold standard with an inter-annotator agreement. However, this was

not possible within the scope of this thesis but is intended for further research in this

area. Another threat to construct validity is that GPT is non-deterministic. Therefore, its

answers to the same question differ slightly. This threat is mitigated by carrying out all

evaluations three times and calculating an average value.

In this thesis, only the elicited dataset described in Section 5.7 is used, which poses a

threat to external validity. The creation of the dataset itself raises threats to construct

validity as discussed in Section 5.8. The dataset is relatively small and unbalanced as the

most frequent requirements of the dataset belong to the security category confidentiality.

Furthermore, the representativeness of the dataset can be questioned. This risk could be

mitigated by using a second dataset for the evaluation of GPT’s performance. That is

beyond the scope of this thesis. External validity is also threatened by evaluating only a

limited number of prompts. There may be better prompts for prompt engineering and

fine-tuning that were never tried. The selection of the prompts limits the generalizability

of the evaluation results as different prompts could provide other results. However, it is

impossible to test all prompt combinations to make a more general statement.

55

7. Conclusion and Future Work

Verification of security requirements is important. Specifically, with the spreading of

electric vehicles, the security requirements of charging stations must be ensured and thus

be verified. In this thesis, security requirements for the open-source software EVerest, a

framework for electric vehicle charging stations, were elicited and classified. For the elicita-

tion, a questionnaire was first created that covers the security categories of confidentiality,

integrity, availability, and authentication. The questionnaire was sent to stakeholders of

EVerest. Thereby, 57 security-related requirements were retrieved from seven stakeholders.

For traceability to architectural elements of EVerest, the requirements were refined in four

interviews with software developers of EVerest. To establish a common understanding of

EVerest in the interviews, a component model of EVerest was derived from the publicly

available code of EVerest and given to the interviewees. It should help the interviewees

formulate the requirements at the design level and also explicitly name components or

interfaces. In the end, 93 specified requirements were collected during the interviews.

To assist the requirements verification process, trace links can be created between the

requirement and the architecture. A classification into system model elements that can be

mapped to elements of the system architecturemarks a first step in this direction. Therefore,

the elicited security requirements were classified into the system model elements of

SecLan[57]. In this thesis, the element types activity, component, data, entity, and statewere
classified by using the large language model GPT. Zero-shot prompt engineering on GPT

4 was compared with fine-tunbing on GPT 3.5 turbo. A gold standard was created by the

author of this thesis for the 93 requirements. Six different evaluations were chosen. They

evaluate GPT’s performance concerning the identification of element types, extraction of

indicative phrases, and the extraction of the phrase if the element type is correct. These

goals were examined both for each pair of element type and indicative phrase as well as on

the requirement level. The evaluation results show that fine-tuning performs significantly

better than prompt engineering for almost every evaluation. For fine-tuning, the phrase

extraction achieves an F1-score of 0.68. With a preliminary check that the element type

is correct, an F1-score of 0.87 is even reached for the phrase extraction. Moreover, it can

be observed that GPT has difficulties in identifying all element types or phrases correctly

per requirement both for prompt engineering and fine-tuning, although the results of

the latter are better. For the classification of the element types on the requirement level,

prompt engineering only achieves an F1-score of 0.09, whereas fine-tuning reaches up to

0.2. Common mistakes in classification that are made by GPT were too long phrases in

prompt engineering and especially for the element type activity too many false positives

in fine-tuning.

57

7. Conclusion and Future Work

As a future work, the requirements could be further refined to the code level, so that a

mapping, e.g., to the element type entity for classes, is possible. To increase the reliability

of the results, the gold standard should be improved by using an inter-annotator agreement.

Moreover, the classification approach of this thesis should be tested on multiple datasets

to be able to make a more generalizable statement of GPT’s performance. A two-step

classification approach could be tested as well. The division of the identification and

extraction tasks into two separate steps could improve the results and limit the false

positive results. In the first step, GPT could be asked whether or not an element type is

present in the requirement. If GPT found the element type, it could then be asked in a

second step to extract the corresponding phrase out of the requirement. Furthermore,

different prompts could be tested to improve the classification and extraction results. GPT

is one of the largest LLMs, but also smaller models can be tested for prompt engineering

and specifically for fine-tuning, as smaller models adapt faster to less training data. An

overall aim is the full automation of the requirements verification process. If the indicative

phrase and element type would be already correctly identified, a trace link could then be

created from the requirement to the architecture element. Therefore, this thesis lays a

foundation for further research in the direction of automatic requirement verification.

58

Bibliography

[1] 5. EVerest Module Configurations — EVerest Documentation. url: https://everest.
github.io/module-net/general/05_existing_modules.html (visited on 12/05/2023).

[2] Waad Alhoshan, Alessio Ferrari, and Liping Zhao. “Zero-shot learning for require-

ments classification: An exploratory study”. In: Information and Software Technology
159 (July 2023), p. 107202. issn: 09505849. doi: 10.1016/j.infsof.2023.107202. url:

https://linkinghub.elsevier.com/retrieve/pii/S0950584923000563 (visited

on 11/09/2023).

[3] Claire Ballinger and Christine Davey. “Designing a Questionnaire: An Overview”.

In: British Journal of Occupational Therapy 61.12 (Dec. 1998), pp. 547–550. issn:

0308-0226, 1477-6006. doi: 10.1177/030802269806101204. url: http://journals.

sagepub.com/doi/10.1177/030802269806101204 (visited on 11/15/2023).

[4] Muneera Bano et al. “Teaching requirements elicitation interviews: an empirical

study of learning from mistakes”. In: Requirements Engineering 24.3 (Sept. 1, 2019).

Company: Springer Distributor: Springer Institution: Springer Label: Springer Num-

ber: 3 Publisher: Springer London, pp. 259–289. issn: 1432-010X. doi: 10.1007/

s00766- 019- 00313- 0. url: https://link.springer.com/article/10.1007/

s00766-019-00313-0 (visited on 10/25/2023).

[5] Amanda Bolderston. “Conducting a Research Interview”. In: Journal of Medical
Imaging and Radiation Sciences 43.1 (Mar. 2012), pp. 66–76. issn: 19398654. doi: 10.

1016/j.jmir.2011.12.002. url: https://linkinghub.elsevier.com/retrieve/

pii/S1939865411001329 (visited on 01/08/2024).

[6] Jaspreet Kaur Boparai, Surjit Singh, and Priyanka Kathuria. “How to Design and

Validate A Questionnaire: A Guide”. In: Current Clinical Pharmacology 13.4 (Jan. 14,

2019), pp. 210–215. issn: 15748847. doi: 10.2174/1574884713666180807151328. url:

http://www.eurekaselect.com/164433/article (visited on 11/16/2023).

[7] Petra M Boynton and Trisha Greenhalgh. “Selecting, designing, and developing your

questionnaire”. In: BMJ 328.7451 (May 29, 2004), pp. 1312–1315. issn: 0959-8138,

1468-5833. doi: 10.1136/bmj.328.7451.1312. url: https://www.bmj.com/lookup/

doi/10.1136/bmj.328.7451.1312 (visited on 10/19/2023).

[8] Tom B. Brown et al. Language Models are Few-Shot Learners. 2020.

[9] CardSystems Solutions, Inc., and Solidus Networks, Inc., d/b/a Pay By Touch Solutions,
In the Matter Of. Federal Trade Commission. Feb. 23, 2006. url: https://www.

ftc.gov/legal-library/browse/cases-proceedings/052-3148-cardsystems-

solutions - inc - solidus - networks - inc - dba - pay - touch - solutions - matter

(visited on 11/15/2023).

59

https://everest.github.io/module-net/general/05_existing_modules.html
https://everest.github.io/module-net/general/05_existing_modules.html
https://doi.org/10.1016/j.infsof.2023.107202
https://linkinghub.elsevier.com/retrieve/pii/S0950584923000563
https://doi.org/10.1177/030802269806101204
http://journals.sagepub.com/doi/10.1177/030802269806101204
http://journals.sagepub.com/doi/10.1177/030802269806101204
https://doi.org/10.1007/s00766-019-00313-0
https://doi.org/10.1007/s00766-019-00313-0
https://link.springer.com/article/10.1007/s00766-019-00313-0
https://link.springer.com/article/10.1007/s00766-019-00313-0
https://doi.org/10.1016/j.jmir.2011.12.002
https://doi.org/10.1016/j.jmir.2011.12.002
https://linkinghub.elsevier.com/retrieve/pii/S1939865411001329
https://linkinghub.elsevier.com/retrieve/pii/S1939865411001329
https://doi.org/10.2174/1574884713666180807151328
http://www.eurekaselect.com/164433/article
https://doi.org/10.1136/bmj.328.7451.1312
https://www.bmj.com/lookup/doi/10.1136/bmj.328.7451.1312
https://www.bmj.com/lookup/doi/10.1136/bmj.328.7451.1312
https://www.ftc.gov/legal-library/browse/cases-proceedings/052-3148-cardsystems-solutions-inc-solidus-networks-inc-dba-pay-touch-solutions-matter
https://www.ftc.gov/legal-library/browse/cases-proceedings/052-3148-cardsystems-solutions-inc-solidus-networks-inc-dba-pay-touch-solutions-matter
https://www.ftc.gov/legal-library/browse/cases-proceedings/052-3148-cardsystems-solutions-inc-solidus-networks-inc-dba-pay-touch-solutions-matter

Bibliography

[10] Yupeng Chang et al. A Survey on Evaluation of Large Language Models. Oct. 17, 2023.
doi: 10.48550/arXiv.2307.03109. arXiv: 2307.03109[cs]. url: http://arxiv.org/

abs/2307.03109 (visited on 11/04/2023).

[11] K. R. Chowdhary. “Natural Language Processing”. In: Fundamentals of Artificial
Intelligence. Ed. by K.R. Chowdhary. New Delhi: Springer India, 2020, pp. 603–649.

isbn: 978-81-322-3972-7. doi: 10 . 1007 / 978 - 81 - 322 - 3972 - 7 _ 19. url: https :

//doi.org/10.1007/978-81-322-3972-7_19 (visited on 11/02/2023).

[12] Communication Protocols. Vector Informatik GmbH. url: https://www.vector.

com/int/en/know-how/smart-charging/communication-protocols/ (visited on

01/10/2024).

[13] Moises Danziger and Marcos Silva. The Importance of Security Requirements Elicita-
tion and How to Do It. May 2015.

[14] Eric Dash. “Weakness in the Data Chain”. In: The New York Times. Business (June 30,
2005). issn: 0362-4331. url: https://www.nytimes.com/2005/06/30/technology/

weakness-in-the-data-chain.html (visited on 11/15/2023).

[15] A. Davis et al. “Effectiveness of Requirements Elicitation Techniques: Empirical

Results Derived from a Systematic Review”. In: 14th IEEE International Requirements
Engineering Conference (RE’06). 14th IEEE International Requirements Engineering

Conference. Minneapolis/St. Paul, MN: IEEE, Sept. 2006, pp. 179–188. isbn: 978-

0-7695-2555-6. doi: 10.1109/RE.2006.17. url: http://ieeexplore.ieee.org/

document/1704061/ (visited on 10/18/2023).

[16] M. José Escalona and Nora Koch. “REQUIREMENTS ENGINEERING FOR WEB

APPLICATIONS – A COMPARATIVE STUDY”. In: Journal of Web Engineering (2003),
pp. 193–212. issn: 1544-5976. url: https://journals.riverpublishers.com/index.

php/JWE/ (visited on 10/18/2023).

[17] EVerest. EV Charging Pioneers # 1 - How the EVerest Ecosystem will simplify Charging
Use Cases. 2022. url: https://www.youtube.com/watch?v=OJ6kjHRPkyY (visited on

12/22/2023).

[18] Everest-Core. EVerest, Nov. 27, 2023. url: https://github.com/EVerest/everest-
core (visited on 12/05/2023).

[19] EVerest/Everest-Framework. EVerest. url: https://github.com/EVerest/everest-
framework (visited on 03/01/2024).

[20] EVerest/Libevse-Security. EVerest, Feb. 11, 2024. url: https://github.com/EVerest/
libevse-security (visited on 03/01/2024).

[21] EVerest/Libocpp: C++ Implementation of the Open Charge Point Protocol. EVerest. url:
https://github.com/EVerest/libocpp (visited on 03/01/2024).

[22] Donald Firesmith. “Engineering Security Requirements.” In: The Journal of Object
Technology 2.1 (2003), p. 53. issn: 1660-1769. doi: 10.5381/jot.2003.2.1.c6.

url: http://www.jot.fm/contents/issue_2003_01/column6.html (visited on

10/13/2023).

60

https://doi.org/10.48550/arXiv.2307.03109
https://arxiv.org/abs/2307.03109 [cs]
http://arxiv.org/abs/2307.03109
http://arxiv.org/abs/2307.03109
https://doi.org/10.1007/978-81-322-3972-7_19
https://doi.org/10.1007/978-81-322-3972-7_19
https://doi.org/10.1007/978-81-322-3972-7_19
https://www.vector.com/int/en/know-how/smart-charging/communication-protocols/
https://www.vector.com/int/en/know-how/smart-charging/communication-protocols/
https://www.nytimes.com/2005/06/30/technology/weakness-in-the-data-chain.html
https://www.nytimes.com/2005/06/30/technology/weakness-in-the-data-chain.html
https://doi.org/10.1109/RE.2006.17
http://ieeexplore.ieee.org/document/1704061/
http://ieeexplore.ieee.org/document/1704061/
https://journals.riverpublishers.com/index.php/JWE/
https://journals.riverpublishers.com/index.php/JWE/
https://www.youtube.com/watch?v=OJ6kjHRPkyY
https://github.com/EVerest/everest-core
https://github.com/EVerest/everest-core
https://github.com/EVerest/everest-framework
https://github.com/EVerest/everest-framework
https://github.com/EVerest/libevse-security
https://github.com/EVerest/libevse-security
https://github.com/EVerest/libocpp
https://doi.org/10.5381/jot.2003.2.1.c6
http://www.jot.fm/contents/issue_2003_01/column6.html

[23] Donald Firesmith. “Security Use Cases.” In: Journal of Object Technology 2 (Jan. 1,

2003), pp. 53–64.

[24] Louie Giray. “Prompt Engineering with ChatGPT: A Guide for Academic Writers”.

In: Annals of Biomedical Engineering 51.12 (Dec. 1, 2023), pp. 2629–2633. issn: 1573-

9686. doi: 10.1007/s10439-023-03272-4. url: https://doi.org/10.1007/s10439-

023-03272-4 (visited on 01/17/2024).

[25] GitHub - EVerest/EVerest: Main Repository of EVerest - an EV Charging Software
Stack. All Main Documentations and Issues Are Stored Here. EVerest. url: https:
//github.com/EVerest/EVerest (visited on 03/01/2024).

[26] Dirk Grossmann andDr. Heiner Hild. Smart Charging – AKey to Successful E-Mobility.
2014.

[27] Jin Guo, Jinghui Cheng, and Jane Cleland-Huang. “Semantically Enhanced Software

Traceability Using Deep Learning Techniques”. In: 2017 IEEE/ACM 39th International
Conference on Software Engineering (ICSE). May 2017, pp. 3–14. doi: 10.1109/ICSE.

2017.9. arXiv: 1804.02438 [cs]. url: http://arxiv.org/abs/1804.02438 (visited

on 04/04/2024).

[28] Muhammad Usman Hadi et al. A Survey on Large Language Models: Applications,
Challenges, Limitations, and Practical Usage. preprint. July 10, 2023. doi: 10.36227/

techrxiv.23589741.v1. url: https://www.techrxiv.org/articles/preprint/

A_Survey_on_Large_Language_Models_Applications_Challenges_Limitations_

and_Practical_Usage/23589741/1 (visited on 11/11/2023).

[29] C.B. Haley et al. “Security Requirements Engineering: A Framework for Repre-

sentation and Analysis”. In: IEEE Transactions on Software Engineering 34.1 (Jan.

2008), pp. 133–153. issn: 0098-5589. doi: 10.1109/TSE.2007.70754. url: http:

//ieeexplore.ieee.org/document/4359475/ (visited on 11/09/2023).

[30] Ridong Han et al. Is Information Extraction Solved by ChatGPT? An Analysis of
Performance, Evaluation Criteria, Robustness and Errors. May 23, 2023. doi: 10.48550/

arXiv.2305.14450. arXiv: 2305.14450 [cs]. url: http://arxiv.org/abs/2305.

14450 (visited on 04/08/2024). preprint.

[31] Md. Ariful Haque, Md. Abdur Rahman, and Md Saeed Siddik. “Non-Functional Re-

quirements Classification with Feature Extraction and Machine Learning: An Empir-

ical Study”. In: 2019 1st International Conference on Advances in Science, Engineering
and Robotics Technology (ICASERT). 2019 1st International Conference on Advances

in Science, Engineering and Robotics Technology (ICASERT). Dhaka, Bangladesh:

IEEE, May 2019, pp. 1–5. isbn: 978-1-72813-445-1. doi: 10.1109/ICASERT.2019.

8934499. url: https://ieeexplore.ieee.org/document/8934499/ (visited on

10/24/2023).

[32] Xinyi Hou et al. Large Language Models for Software Engineering: A Systematic
Literature Review. Sept. 12, 2023. doi: 10.48550/arXiv.2308.10620. arXiv: 2308.
10620[cs]. url: http://arxiv.org/abs/2308.10620 (visited on 11/02/2023).

61

https://doi.org/10.1007/s10439-023-03272-4
https://doi.org/10.1007/s10439-023-03272-4
https://doi.org/10.1007/s10439-023-03272-4
https://github.com/EVerest/EVerest
https://github.com/EVerest/EVerest
https://doi.org/10.1109/ICSE.2017.9
https://doi.org/10.1109/ICSE.2017.9
https://arxiv.org/abs/1804.02438
http://arxiv.org/abs/1804.02438
https://doi.org/10.36227/techrxiv.23589741.v1
https://doi.org/10.36227/techrxiv.23589741.v1
https://www.techrxiv.org/articles/preprint/A_Survey_on_Large_Language_Models_Applications_Challenges_Limitations_and_Practical_Usage/23589741/1
https://www.techrxiv.org/articles/preprint/A_Survey_on_Large_Language_Models_Applications_Challenges_Limitations_and_Practical_Usage/23589741/1
https://www.techrxiv.org/articles/preprint/A_Survey_on_Large_Language_Models_Applications_Challenges_Limitations_and_Practical_Usage/23589741/1
https://doi.org/10.1109/TSE.2007.70754
http://ieeexplore.ieee.org/document/4359475/
http://ieeexplore.ieee.org/document/4359475/
https://doi.org/10.48550/arXiv.2305.14450
https://doi.org/10.48550/arXiv.2305.14450
https://arxiv.org/abs/2305.14450
http://arxiv.org/abs/2305.14450
http://arxiv.org/abs/2305.14450
https://doi.org/10.1109/ICASERT.2019.8934499
https://doi.org/10.1109/ICASERT.2019.8934499
https://ieeexplore.ieee.org/document/8934499/
https://doi.org/10.48550/arXiv.2308.10620
https://arxiv.org/abs/2308.10620 [cs]
https://arxiv.org/abs/2308.10620 [cs]
http://arxiv.org/abs/2308.10620

Bibliography

[33] S.E. Hove and B. Anda. “Experiences from Conducting Semi-Structured Interviews

in Empirical Software Engineering Research”. In: 11th IEEE International Software
Metrics Symposium (METRICS’05). 11th IEEE International Software Metrics Sym-

posium (METRICS’05). Sept. 2005, 10 pp.–23. doi: 10.1109/METRICS.2005.24.

url: https://ieeexplore.ieee.org/abstract/document/1509301 (visited on

01/17/2024).

[34] Elizabeth Hull, Ken Jackson, and Jeremy Dick. Requirements Engineering. London:
Springer, 2011. doi: 10.1007/978-1-84996-405-0. url: http://link.springer.

com/10.1007/978-1-84996-405-0 (visited on 10/20/2023).

[35] “IEEE Standard Glossary of Software Engineering Terminology”. In: IEEE Std 610.12-
1990 (Dec. 1990), pp. 1–84. doi: 10.1109/IEEESTD.1990.101064. url: https://

ieeexplore.ieee.org/document/159342 (visited on 11/16/2023).

[36] Tabbassum Iqbal and Mohammad Suaib. “Requirement Elicitation Technique: - A

Review Paper”. In: International Journal of Computer and Mathematical Sciences 3
(Dec. 2014).

[37] ISO/IEC 27000:2018. ISO. May 4, 2022. url: https://www.iso.org/standard/73906.

html (visited on 12/06/2023).

[38] “ISO/IEC/IEEE International Standard - Systems and Software Engineering – Life

Cycle Processes – Requirements Engineering”. In: ISO/IEC/IEEE 29148:2018(E) (Nov.
2018), pp. 1–104. doi: 10.1109/IEEESTD.2018.8559686. url: https://ieeexplore.

ieee.org/document/8559686 (visited on 12/08/2023).

[39] Stacy Jacob and S. Furgerson. “Writing Interview Protocols and Conducting Inter-

views: Tips for Students New to the Field of Qualitative Research”. In: The Qual-
itative Report (Jan. 20, 2015). issn: 2160-3715, 1052-0147. doi: 10 . 46743 / 2160 -
3715/2012.1718. url: https://nsuworks.nova.edu/tqr/vol17/iss42/3/ (visited

on 01/06/2024).

[40] Rajni Jindal, Ruchika Malhotra, and Abha Jain. “Automated classification of security

requirements”. In: 2016 International Conference on Advances in Computing, Commu-
nications and Informatics (ICACCI). 2016 International Conference on Advances in

Computing, Communications and Informatics (ICACCI). Jaipur, India: IEEE, Sept.

2016, pp. 2027–2033. isbn: 978-1-5090-2029-4. doi: 10.1109/ICACCI.2016.7732349.

url: http://ieeexplore.ieee.org/document/7732349/ (visited on 10/11/2023).

[41] D. Jurafsky and J. H. Martin. Speech and Language Processing: An Introduction to
Natural Language Processing, Computational Linguistics and Speech Recognition.
Prentice Hall, Pearson Education International, 2009.

[42] Eleanor Knott et al. “Interviews in the Social Sciences”. In: Nature Reviews Methods
Primers 2.1 (1 Sept. 15, 2022), pp. 1–15. issn: 2662-8449. doi: 10.1038/s43586-022-
00150-6. url: https://www.nature.com/articles/s43586-022-00150-6 (visited

on 01/24/2024).

[43] Heiko Koziolek et al. “Evaluating performance of software architecture models with

the Palladio component model”. In: Software Applications: Concepts, Methodologies,
Tools, and Applications. IGI Global, 2009, pp. 1111–1134.

62

https://doi.org/10.1109/METRICS.2005.24
https://ieeexplore.ieee.org/abstract/document/1509301
https://doi.org/10.1007/978-1-84996-405-0
http://link.springer.com/10.1007/978-1-84996-405-0
http://link.springer.com/10.1007/978-1-84996-405-0
https://doi.org/10.1109/IEEESTD.1990.101064
https://ieeexplore.ieee.org/document/159342
https://ieeexplore.ieee.org/document/159342
https://www.iso.org/standard/73906.html
https://www.iso.org/standard/73906.html
https://doi.org/10.1109/IEEESTD.2018.8559686
https://ieeexplore.ieee.org/document/8559686
https://ieeexplore.ieee.org/document/8559686
https://doi.org/10.46743/2160-3715/2012.1718
https://doi.org/10.46743/2160-3715/2012.1718
https://nsuworks.nova.edu/tqr/vol17/iss42/3/
https://doi.org/10.1109/ICACCI.2016.7732349
http://ieeexplore.ieee.org/document/7732349/
https://doi.org/10.1038/s43586-022-00150-6
https://doi.org/10.1038/s43586-022-00150-6
https://www.nature.com/articles/s43586-022-00150-6

[44] Raymond S. T. Lee. Natural Language Processing: A Textbook with Python Imple-
mentation. Singapore: Springer Nature Singapore, 2024. isbn: 978-981-9919-98-7
978-981-9919-99-4. doi: 10 . 1007 / 978 - 981 - 99 - 1999 - 4. url: https : / / link .

springer.com/10.1007/978-981-99-1999-4 (visited on 05/01/2024).

[45] Soo Ling Lim and A. Finkelstein. “StakeRare: Using Social Networks and Collabora-

tive Filtering for Large-Scale Requirements Elicitation”. In: Software Engineering,
IEEE Transactions on 38 (May 1, 2012), pp. 1–1. doi: 10.1109/TSE.2011.36.

[46] LimeSurvey Manual. url: https://manual.limesurvey.org/LimeSurvey_Manual
(visited on 03/13/2024).

[47] Pengfei Liu et al. Pre-train, Prompt, and Predict: A Systematic Survey of Prompting
Methods in Natural Language Processing. July 28, 2021. doi: 10.48550/arXiv.2107.

13586. arXiv: 2107.13586[cs]. url: http://arxiv.org/abs/2107.13586 (visited on

11/04/2023).

[48] Gill Marshall. “The purpose, design and administration of a questionnaire for data

collection”. In: Radiography 11.2 (May 2005), pp. 131–136. issn: 10788174. doi: 10.

1016/j.radi.2004.09.002. url: https://linkinghub.elsevier.com/retrieve/

pii/S1078817404001208 (visited on 11/11/2023).

[49] Pablo N Mendes et al. “Evaluating the Impact of Phrase Recognition on Concept

Tagging”. In: European Language Resources Association (ELRA) (2012).

[50] Roxanne E. Miller. The Quest for Software Requirements. Oconomowoc, WI, USA:

MavenMark Books, 2009. isbn: 1595980679.

[51] J.M. Moore and F.M. Shipman. “A comparison of questionnaire-based and GUI-

based requirements gathering”. In: Proceedings ASE 2000. Fifteenth IEEE International
Conference on Automated Software Engineering. Proceedings of ASE 2000 15th IEEE

International Automated Software Engineering Conference. Grenoble, France: IEEE,

2000, pp. 35–43. isbn: 978-0-7695-0710-1. doi: 10.1109/ASE.2000.873648. url:

http://ieeexplore.ieee.org/document/873648/ (visited on 10/18/2023).

[52] MQTT - The Standard for IoT Messaging. url: https : / / mqtt . org/ (visited on

01/12/2024).

[53] Tony Nasr et al. “Power Jacking Your Station: In-depth Security Analysis of Electric

Vehicle Charging Station Management Systems”. In: Computers & Security 112

(Jan. 1, 2022), p. 102511. issn: 0167-4048. doi: 10.1016/j.cose.2021.102511. url:

https://www.sciencedirect.com/science/article/pii/S0167404821003357

(visited on 11/08/2023).

[54] OpenAI et al. GPT-4 Technical Report. Dec. 18, 2023. doi: 10.48550/arXiv.2303.
08774. arXiv: 2303.08774 [cs]. url: http://arxiv.org/abs/2303.08774 (visited

on 01/19/2024). preprint.

[55] A. N. Oppenheim. “Questionnaire design, interviewing and attitude measurement,

New ed.” In: 1992. url: https://api.semanticscholar.org/CorpusID:221992851.

63

https://doi.org/10.1007/978-981-99-1999-4
https://link.springer.com/10.1007/978-981-99-1999-4
https://link.springer.com/10.1007/978-981-99-1999-4
https://doi.org/10.1109/TSE.2011.36
https://manual.limesurvey.org/LimeSurvey_Manual
https://doi.org/10.48550/arXiv.2107.13586
https://doi.org/10.48550/arXiv.2107.13586
https://arxiv.org/abs/2107.13586 [cs]
http://arxiv.org/abs/2107.13586
https://doi.org/10.1016/j.radi.2004.09.002
https://doi.org/10.1016/j.radi.2004.09.002
https://linkinghub.elsevier.com/retrieve/pii/S1078817404001208
https://linkinghub.elsevier.com/retrieve/pii/S1078817404001208
https://doi.org/10.1109/ASE.2000.873648
http://ieeexplore.ieee.org/document/873648/
https://mqtt.org/
https://doi.org/10.1016/j.cose.2021.102511
https://www.sciencedirect.com/science/article/pii/S0167404821003357
https://doi.org/10.48550/arXiv.2303.08774
https://doi.org/10.48550/arXiv.2303.08774
https://arxiv.org/abs/2303.08774
http://arxiv.org/abs/2303.08774
https://api.semanticscholar.org/CorpusID:221992851

Bibliography

[56] Carla Pacheco, Ivan García, andMiryam Reyes. “Requirements elicitation techniques:

a systematic literature review based on the maturity of the techniques”. In: IET
Software 12.4 (2018). _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1049/iet-

sen.2017.0144, pp. 365–378. issn: 1751-8814. doi: 10.1049/iet-sen.2017.0144.

url: https://onlinelibrary.wiley.com/doi/abs/10.1049/iet-sen.2017.0144

(visited on 10/25/2023).

[57] Sven Peldszus et al. Coupling Design-time Security Models with Implementation-level
Security Checks. to be published.

[58] Klaus Pohl. Requirements Engineering: Fundamentals, Principles, and Techniques. 1st.
Springer Publishing Company, Incorporated, 2010. isbn: 3642125778.

[59] Zoya Pourmirza and Sara Walker. “Electric Vehicle Charging Station: Cyber Security

Challenges and Perspective”. In: 2021 IEEE 9th International Conference on Smart
Energy Grid Engineering (SEGE). 2021 IEEE 9th International Conference on Smart

Energy Grid Engineering (SEGE). Aug. 2021, pp. 111–116. doi: 10.1109/SEGE52446.

2021.9535052. url: https://ieeexplore.ieee.org/abstract/document/9535052

(visited on 11/04/2023).

[60] Jennifer Rowley. “Conducting Research Interviews”. In:Management Research Review
35.3/4 (Mar. 23, 2012), pp. 260–271. issn: 2040-8269. doi: 10.1108/01409171211210154.

url: https://www.emerald.com/insight/content/doi/10.1108/01409171211210154/

full/html (visited on 01/06/2024).

[61] Oscar Sainz et al. GoLLIE: Annotation Guidelines Improve Zero-Shot Information-
Extraction. Mar. 6, 2024. doi: 10.48550/arXiv.2310.03668. arXiv: 2310.03668 [cs].

url: http://arxiv.org/abs/2310.03668 (visited on 04/15/2024). preprint.

[62] Sunita Sarawagi. “Information Extraction”. In: Foundations and Trends in Databases
1.3 (Mar. 1, 2008), pp. 261–377. issn: 1931-7883. doi: 10.1561/1900000003. url:

https://doi.org/10.1561/1900000003 (visited on 05/01/2024).

[63] Guttorm Sindre and Andreas L. Opdahl. “Eliciting Security Requirements with

Misuse Cases”. In: Requirements Engineering 10.1 (Jan. 1, 2005), pp. 34–44. issn: 1432-
010X. doi: 10.1007/s00766-004-0194-4. url: https://doi.org/10.1007/s00766-

004-0194-4 (visited on 05/09/2020).

[64] Sonit Singh. Natural Language Processing for Information Extraction. July 6, 2018.

doi: 10.48550/arXiv.1807.02383. arXiv: 1807.02383 [cs]. url: http://arxiv.

org/abs/1807.02383 (visited on 04/27/2024). preprint.

[65] John Slankas and Laurie Williams. “Automated extraction of non-functional re-

quirements in available documentation”. In: 2013 1st International Workshop on
Natural Language Analysis in Software Engineering (NaturaLiSE). 2013 1st Interna-
tional Workshop on Natural Language Analysis in Software Engineering (Natu-

raLiSE). San Francisco, CA, USA: IEEE, May 2013, pp. 9–16. isbn: 978-1-4673-6271-9.

doi: 10.1109/NAturaLiSE.2013.6611715. url: http://ieeexplore.ieee.org/

document/6611715/ (visited on 11/08/2023).

[66] Hamed Taherdoost. International Journal of Academic Research in Management. 2022.

64

https://doi.org/10.1049/iet-sen.2017.0144
https://onlinelibrary.wiley.com/doi/abs/10.1049/iet-sen.2017.0144
https://doi.org/10.1109/SEGE52446.2021.9535052
https://doi.org/10.1109/SEGE52446.2021.9535052
https://ieeexplore.ieee.org/abstract/document/9535052
https://doi.org/10.1108/01409171211210154
https://www.emerald.com/insight/content/doi/10.1108/01409171211210154/full/html
https://www.emerald.com/insight/content/doi/10.1108/01409171211210154/full/html
https://doi.org/10.48550/arXiv.2310.03668
https://arxiv.org/abs/2310.03668
http://arxiv.org/abs/2310.03668
https://doi.org/10.1561/1900000003
https://doi.org/10.1561/1900000003
https://doi.org/10.1007/s00766-004-0194-4
https://doi.org/10.1007/s00766-004-0194-4
https://doi.org/10.1007/s00766-004-0194-4
https://doi.org/10.48550/arXiv.1807.02383
https://arxiv.org/abs/1807.02383
http://arxiv.org/abs/1807.02383
http://arxiv.org/abs/1807.02383
https://doi.org/10.1109/NAturaLiSE.2013.6611715
http://ieeexplore.ieee.org/document/6611715/
http://ieeexplore.ieee.org/document/6611715/

[67] Vasily Varenov and Aydar Gabdrahmanov. “Security Requirements Classification

into Groups Using NLP Transformers”. In: 2021 IEEE 29th International Requirements
Engineering ConferenceWorkshops (REW). 2021 IEEE 29th International Requirements

Engineering Conference Workshops (REW). Notre Dame, IN, USA: IEEE, Sept. 2021,

pp. 444–450. isbn: 978-1-66541-898-0. doi: 10.1109/REW53955.2021.9714713. url:

https://ieeexplore.ieee.org/document/9714713/ (visited on 11/09/2023).

[68] ElizabethMWalker. “Questionnaire Design in Practice”. In: British Journal of Therapy
and Rehabilitation 3.4 (Apr. 1996), pp. 229–233. issn: 1354-8581, 2059-9331. doi:

10.12968/bjtr.1996.3.4.14847. url: http://www.magonlinelibrary.com/doi/

10.12968/bjtr.1996.3.4.14847 (visited on 11/17/2023).

[69] Xiang Wei et al. Zero-Shot Information Extraction via Chatting with ChatGPT. Feb. 20,
2023. doi: 10 . 48550 / arXiv . 2302 . 10205. arXiv: 2302 . 10205 [cs]. url: http :

//arxiv.org/abs/2302.10205 (visited on 05/01/2024). preprint.

[70] What Is EVerest — EVerest documentation. url: https : / / everest . github . io /
nightly/ (visited on 11/02/2023).

[71] Jules White et al. A Prompt Pattern Catalog to Enhance Prompt Engineering with
ChatGPT. Feb. 21, 2023. doi: 10.48550/arXiv.2302.11382. arXiv: 2302.11382[cs].
url: http://arxiv.org/abs/2302.11382 (visited on 11/02/2023).

[72] Wikipedia contributors. Open Charge Point Protocol — Wikipedia, The Free Encyclo-
pedia. [Online; accessed 10-January-2024]. 2023. url: https://en.wikipedia.org/

w/index.php?title=Open_Charge_Point_Protocol&oldid=1185865637.

[73] Jonas Winkler and Andreas Vogelsang. “Automatic Classification of Requirements

Based on Convolutional Neural Networks”. In: 2016 IEEE 24th International Re-
quirements Engineering Conference Workshops (REW). 2016 IEEE 24th International

Requirements Engineering Conference Workshops (REW). Beijing, China: IEEE,

Sept. 2016, pp. 39–45. isbn: 978-1-5090-3694-3. doi: 10.1109/REW.2016.021. url:

http://ieeexplore.ieee.org/document/7815604/ (visited on 10/11/2023).

[74] Masooma Yousuf and Mohammad Asger. “Comparison of Various Requirements

Elicitation Techniques”. In: International Journal of Computer Applications 116.4
(Apr. 22, 2015), pp. 8–15. issn: 09758887. doi: 10.5120/20322- 2408. url: http:

//research.ijcaonline.org/volume116/number4/pxc3902408.pdf (visited on

10/18/2023).

[75] Jianzhang Zhang et al. Empirical Evaluation of ChatGPT on Requirements Information
Retrieval Under Zero-Shot Setting. July 19, 2023. doi: 10.48550/arXiv.2304.12562.

arXiv: 2304.12562 [cs]. url: http://arxiv.org/abs/2304.12562 (visited on

04/03/2024). preprint.

[76] Yutao Zhu et al. Large Language Models for Information Retrieval: A Survey. Jan. 19,
2024. doi: 10 . 48550 / arXiv . 2308 . 07107. arXiv: 2308 . 07107 [cs]. url: http :

//arxiv.org/abs/2308.07107 (visited on 01/26/2024). preprint.

[77] Didar Zowghi and Chad Coulin. “Requirements Elicitation: A Survey of Technique,

Approaches and Tools”. In: Springer, Jan. 1, 2005, 19–46 %Uhttp://dx.doi.org/10.1007/3.

isbn: 978-3-540-25043-2. doi: 10.1007/3-540-28244-0_2.

65

https://doi.org/10.1109/REW53955.2021.9714713
https://ieeexplore.ieee.org/document/9714713/
https://doi.org/10.12968/bjtr.1996.3.4.14847
http://www.magonlinelibrary.com/doi/10.12968/bjtr.1996.3.4.14847
http://www.magonlinelibrary.com/doi/10.12968/bjtr.1996.3.4.14847
https://doi.org/10.48550/arXiv.2302.10205
https://arxiv.org/abs/2302.10205
http://arxiv.org/abs/2302.10205
http://arxiv.org/abs/2302.10205
https://everest.github.io/nightly/
https://everest.github.io/nightly/
https://doi.org/10.48550/arXiv.2302.11382
https://arxiv.org/abs/2302.11382 [cs]
http://arxiv.org/abs/2302.11382
https://en.wikipedia.org/w/index.php?title=Open_Charge_Point_Protocol&oldid=1185865637
https://en.wikipedia.org/w/index.php?title=Open_Charge_Point_Protocol&oldid=1185865637
https://doi.org/10.1109/REW.2016.021
http://ieeexplore.ieee.org/document/7815604/
https://doi.org/10.5120/20322-2408
http://research.ijcaonline.org/volume116/number4/pxc3902408.pdf
http://research.ijcaonline.org/volume116/number4/pxc3902408.pdf
https://doi.org/10.48550/arXiv.2304.12562
https://arxiv.org/abs/2304.12562
http://arxiv.org/abs/2304.12562
https://doi.org/10.48550/arXiv.2308.07107
https://arxiv.org/abs/2308.07107
http://arxiv.org/abs/2308.07107
http://arxiv.org/abs/2308.07107
https://doi.org/10.1007/3-540-28244-0_2

A. Appendix

A.1. Questionnaire

Figure A.1.: Welcome screen of the survey

67

Dear participant

This questionnaire aims to elicit security requirements for EVerest.

It will take about 10-15min to complete it.

Contact: Debora Marettek debora.marettek@student.kit.edu Karlsruhe Institute of
Technology (KIT) MCSE - Modelling for Continuous Software Engineering

KASTEL - Institute of Information Security and Dependability

Section A: Introduction to survey
Structure: After a brief introduction to requirements elicitation, you will be asked about the security requirements of EVerest.
Thus, the security categories confidentiality, integrity, availability, and authentication are presented to you. To each category,
you are asked to write as many security requirements for EVerest as possible. When entering a requirement, more text fields
will show up dynamically. Even though there are up to ten text fields available, you do not have to fill them all!

Definition:

In this questionnaire, we define "requirement" as follows:

A requirement describes the capabilities, the system should have to satisfy the needs of stakeholders. This includes e.g.,
considering how measures are to be implemented, what possible attacks should be avoided, and what data is critical. Example:
"The application shall not allow customer service agents to access the credit card information of customers."

Writing Recommendations:

Please write the requirements in a complete sentence and keep in mind the following guidelines for writing good requirements.
Requirements should be:

singular: write one requirement per sentence and keep your sentences short unambiguous: try to use active voice instead of
passive voice unambiguous: avoid fuzzy words like effective, easy, quickly, may be, possibly, best, ... verifiable: it can be tested
if the requirement is satisfied complete: the sentence contains all information to understand it

A1. I have read the text above

Yes

No

Section B: General
Before getting to the questions about the security requirements, some information about you helps to categorize the responses.

B1. What is your relation to EVerest?
I'm a developer at PIONIX

I'm from a company that uses EVerest

I'm from a company that wants to use EVerest

None of the above

B2. What is your interest in EVerest?

B3. What is your profession?
Software architect

Software developer

Requirements engineer

Project manager

Other

Other

B4. How confident are you regarding software security?

1 2 3 4 5

low | high

Section C: Security Goal: Availability

Availability is the property of being accessible and usable on demand by an authorized entity.

This includes among others:

downtime impact on the business partial availability impact on the business transparent unavailability minimizing unavailability
...

An example availability requirement is:

"The user database shall be available 90% of the time."

ISO/IEC 27000:2018. Miller, Roxanne E.. “The Quest for Software Requirements.” (2009).

C1. What are security requirements for availability in EVerest?
Up to nine additional text fields will appear dynamically. You don't have to fill them all.

Requirement 1

Requirement 2

Requirement 3

Requirement 4

Requirement 5

Requirement 6

Requirement 7

Requirement 8

Requirement 9

Requirement 10

Section D: Security Goal: Integrity

Integrity is the property of accuracy and completeness.

This includes the following aspects among others:

regular and consistent backups of the system's data prevent data loss backing up to other hard-drive tests for data restore
procedures data authenticity and precision ...

An example integrity requirement is:

"The application shall prevent the unauthorized corruption of data collected from customers and other external users."

ISO/IEC 27000:2018. Miller, Roxanne E.. “The Quest for Software Requirements.” (2009).

D1. What are security requirements for integrity in EVerest?
Up to nine additional text fields will appear dynamically. You don't have to fill them all.

Requirement 1

Requirement 2

Requirement 3

Requirement 4

Requirement 5

Requirement 6

Requirement 7

Requirement 8

Requirement 9

Requirement 10

Section E: Security Goal: Confidentiality

Confidentiality is the property that information is not made available or disclosed to unauthorized individuals, entities, or
processes.

This includes the following aspects among others:

data encryption methods user registration user authorization access control ...

An example confidentiality requirement is:

"The communication between the account management component and the payment management component shall be encrypted
with AES-256."

ISO/IEC 27000:2018. Miller, Roxanne E.. “The Quest for Software Requirements.” (2009).

E1. What are security requirements for confidentiality in EVerest?
Up to nine additional text fields will appear dynamically. You don't have to fill them all.

Requirement 1

Requirement 2

Requirement 3

Requirement 4

Requirement 5

Requirement 6

Requirement 7

Requirement 8

Requirement 9

Requirement 10

Section F: Security Goals: Authentication

Authentication is the provision of assurance that a claimed characteristic of an entity is correct.

This includes the following aspects among others:

user registration user authentication user authorization password management ...

An example authentication requirement is:

"The application shall verify the identity of all of its client applications before allowing them to use its capabilities."

ISO/IEC 27000:2018. Miller, Roxanne E.. “The Quest for Software Requirements.” (2009).

F1. What are security requirements for authentication and access control
in EVerest?

Up to nine additional text fields will appear dynamically. You don't have to fill them all.

Requirement 1

Requirement 2

Requirement 3

Requirement 4

Requirement 5

Requirement 6

Requirement 7

Requirement 8

Requirement 9

Requirement 10

Section G: Other security requirements

In the previous questions, you were asked about security requirements of certain categories. If you are unsure about the
categories of some requirements, or the categories didn't fit, please share them in the following.

G1. Please write down any other security requirements for EVerest that
come to your mind.

Up to nine additional text fields will appear dynamically. You don't have to fill them all.

Requirement 1

Requirement 2

Requirement 3

Requirement 4

Requirement 5

Requirement 6

Requirement 7

Requirement 8

Requirement 9

Requirement 10

Thank you very much for your time and expertise!

If you are interested in the results, please send an e-mail to the address below.

Contact: Debora Marettek debora.marettek@student.kit.edu Karlsruhe Institute of
Technology (KIT) MCSE - Modelling for Continuous Software Engineering

KASTEL - Institute of Information Security and Dependability

Powered by TCPDF (www.tcpdf.org)

Supplementary Material for Pilot study: Elicitation of Security
Requirements for EVerest

Dear participant,
thank you for your participation in the pilot study for Elicitation of Security Requirements for
EVerest!
The participants of the later study will be stakeholders of EVerest, a software for electric vehicle
(EV) charging stations. Background knowledge of EVerest is necessary to be able to answer the
questions of the study, therefore, EVerest is explained below using a scenario. The scenario, the
architecture diagram and the subsequent feedback form are not part of the later study, and are only
provided for the participants of the pilot study. Only the online questionnaire will be given to the
participants of the later study.

Procedure of the pilot study:
1. Read the introduction and the scenario, and look at the architecture diagram
2. Start a timer to see how long the questionnaire takes
3. Answer the online questionnaire on LimeSurvey
4. Stop the timer
5. Fill in the feedback form at the end of the document

About EVerest:
EVerest is a software that provides an open-source full-stack implementation for electric
vehicle (EV) charging stations. EVerest is a framework that offers customers the option to choose
between modules or implement their own modules to configure the respective charging scenario.

EVerest is divided into different layers. At the bottom is the hardware layer, followed by a protocol
layer for communication between the car and the charging station. The charge point is on layer 3.
The associated API is located above the charge point, followed by the authentication layer. The
energy management is located at the top.

Scenario:
To be able to charge a car, the customer has to plug in his car and connect it to the charge point. The
protocol that checks whether this connection exists is called SLAC. The
PhysicalConnectionProtocol component with its interface is located at the right bottom of the
diagram in layer 2. If both the car and the charging station implement their interfaces for the
standard ISO15118, they can communicate over this protocol. ISO15118 defines the
communication between the vehicle and the grid for bidirectional charging and provides also use
cases like Plug & Charge. The components ChargingProtocolChargePoint and
ChargingProtocolCar for ISO15118 as well as their interfaces both for the charger-side and the car-
side are on the left and right side of layer 2.
The EvseManager interface manages one charge point. Hardware is required for the charge point to
function properly. The HardwareDriver component is located at the bottom of the diagram and
provides board support for AC charging as well as a powermeter to measure the energy flowing
through the ChargePoint.

A.2. Pilot study

A.2. Pilot study

75

The display of the charging station shows information to the customer, like the amount of energy
the car has already been charged with. The DisplayChargePoint component is located on layer 4,
above the ChargePoint component on the right side.
To start the charging session, the customer has to authenticate himself with an RFID card. He
swipes the card through the RFID reader that transmits the token to the Authentication component
located at the upper right side of the diagram. The Authentication component sends the data to the
electric mobility service provider where the RFID card is registered, who can check if the token is
valid. If authentication is successful, the Authentication component authorizes the energy to flow
through the ChargePoint. The power that charges the car comes from an energy node, e.g., a Fuse
with 22A component that delivers the energy to the charge point. An EnergyManager can be used
for load balancing if there are multiple charge points. Both energy components are located at the top
left of the diagram.

The architecture diagram can be found on the next page.

A. Appendix

76

<<BasicComponent>>
EnergyManager

<<BasicComponent>>
Fuse 22A

<<Interface>>
Energy

<<BasicComponent>>
Authentication

<<Interface>>
AuthTokenProvider

<<Interface>>
AuthTokenValidator

<<Interface>>
Authentication

<<BasicComponent>>
RfidReader

<<BasicComponent>>
electricMobilityServiceProvider

<<BasicComponent>>
DisplayChargePoint

<<Interface>>
API

<<BasicComponent>>
ChargePoint

<<Interface>>
EvseManager

<<Interface>>
ISO15118Charger

<<Interface>>
ISO15118Ev

<<Interface>>
Slac

<<BasicComponent>>
ChargingProtocolCar

<<BasicComponent>>
PhysicalConnectionProtocol

<<BasicComponent>>
ChargingProtocolChargePoint

<<BasicComponent>>
HardwareDriver

<<Interface>>
Powermeter

<<Interface>>
BoardSupportAC

<<Provides>> <<Requires>>
<<Requires>>

<<Provides>>

<<Requires>>

<<Requires>>

<<Provides>> <<Provides>>

<<Provides>>

<<Provides>>

<<Requires>>

<<Requires>>

<<Provides>>

<<Provides>><<Provides>>
<<Provides>>

<<Provides>>

<<Provides>>

<<Requires>> <<Requires>>

<<Requires>>
<<Requires>>

A.2. Pilot study

77

Feedback on the questionnaire

Write down here the time you needed to answer the questionnaire (in minutes):

Please give also feedback on the questionnaire on how comprehensible and clear the instructions
and questions are. The given instructions and questions were clear (please select):

If you selected partially or no, please specify, what was unclear:

If you have suggestions for improvement, please write it down here:

Thank you for your time and feedback on the questionnaire!

No

Partially

Yes

A. Appendix

78

Introduction: (7-10min)

• Greeting
• Hints in case of technical issues
• Short presentation of interviewer and research (security requirements elicitation)
• Informed consent

Initial questions:
• Would you describe yourself as a software developer?
• How long have you been working for PIONIX/Chargebyte? (in months/years)

Explanation of the structure and notation of EVerest component diagram (PCM)
• Which components and interfaces are you working on? (show in PCM)

• How confident are you regarding software security on a scale of 1 to 5 with 5 being the
best?

Explanation main task:
The main task is to further specify elicited security requirements. At this point we switch to a
Google Docs document with about 30 requirements. The aim is to automatically verify security
requirements. For the specification, information is needed about which parts of the software
architecture the requirement relates to.

• Two examples are given, each includes sentences before and after the specification
• Think aloud about possible specifications. You can think about the deployment, involved

components, data or data transfer.
• We go through the requirements sorted by security categories and you write down the

specified requirement below the corresponding sentence.
• There is the possibility to add security requirements at the end of each category

Main part: (30-45min)

[For each of the four security categories confidentiality, integrity, availability, and authentication]
Provide short definition of the category to participant

[ask probing questions if the new requirement is not specific enough, like: Is there enough
information for you to verify the requirement? What kind of data is important for this requirement?
What parts of the software architecture are involved in this requirement?]

Are there any other security requirements for that category that are not yet mentioned?
You can write them down additionally in the document.

Is there anything else you would like to tell me?

Ending: (3min)

• Thank the participant
• Ask the participant if he is available for further questions

Placeholder for the security requirements of the category

A.3. Interview Protocol

A.3. Interview Protocol

79

A. Appendix

A.4. EVerest Full Component Model

80

A.4. EVerest Full Component Model

81

A. Appendix

82

A.4. EVerest Full Component Model

83

A. Appendix

84

A.4. EVerest Full Component Model

85

A. Appendix

86

A.4. EVerest Full Component Model

87

A. Appendix

88

A.5. Evaluation Results

A.5. Evaluation Results

Precision Recall F1-score

Activity

Prompt Engineering
without system mode 0.52 0.95 0.67

with system mode 0.51 0.95 0.66

Fine-tuning
without system mode 0.62 0.76 0.67

with system mode 0.68 0.64 0.63

Component

Prompt Engineering
without system mode 0.71 0.82 0.76

with system mode 0.72 0.85 0.78

Fine-tuning
without system mode 0.81 0.85 0.82

with system mode 0.82 0.86 0.84

Data

Prompt Engineering
without system mode 0.74 0.78 0.76

with system mode 0.8 0.77 0.79

Fine-tuning
without system mode 0.74 0.78 0.75

with system mode 0.8 0.79 0.79

Entity

Prompt Engineering
without system mode 0.67 0.63 0.65

with system mode 0.65 0.6 0.62

Fine-tuning
without system mode 0.64 0.63 0.62

with system mode 0.71 0.6 0.64

State

Prompt Engineering
without system mode 0.48 0.64 0.55

with system mode 0.52 0.62 0.57

Fine-tuning
without system mode 0.64 0.71 0.65

with system mode 0.57 0.64 0.58

Table A.1.: Evaluation of the element type classification: Macro averages for all element

types for Promptidentify_all, n=517

89

A. Appendix

Precision Recall F1-score

Activity

Prompt Engineering
without system mode 0.53 0.9 0.6

with system mode 0.56 0.86 0.68

Fine-tuning
without system mode 0.66 0.67 0.65

with system mode 0.69 0.6 0.63

Component

Prompt Engineering
without system mode 0.76 0.73 0.75

with system mode 0.76 0.83 0.8

Fine-tuning
without system mode 0.8 0.85 0.82

with system mode 0.77 0.87 0.81

Data

Prompt Engineering
without system mode 0.78 0.69 0.73

with system mode 0.75 0.7 0.73

Fine-tuning
without system mode 0.72 0.8 0.76

with system mode 0.73 0.8 0.76

Entity

Prompt Engineering
without system mode 0.64 0.55 0.6

with system mode 0.69 0.48 0.56

Fine-tuning
without system mode 0.68 0.58 0.61

with system mode 0.68 0.5 0.55

State

Prompt Engineering
without system mode 0.49 0.6 0.54

with system mode 0.54 0.54 0.54

Fine-tuning
without system mode 0.63 0.67 0.63

with system mode 0.58 0.61 0.58

Table A.2.: Evaluation of the element type classification: Macro averages for all element

types for Promptclassify_all, n=517

90

A.5. Evaluation Results

Precision Recall F1-score Sample Size

Activity

Prompt Engineering
without system mode 0.26 0.26 0.26 93, 92, 94

with system mode 0.28 0.28 0.28 93, 92, 93

Fine-tuning
without system mode 0.76 0.76 0.76 74, 78, 71

with system mode 0.75 0.75 0.75 57, 58, 69

Component

Prompt Engineering
without system mode 0.75 0.75 0.75 118, 120, 119

with system mode 0.74 0.74 0.74 124, 122, 124

Fine-tuning
without system mode 0.89 0.89 0.89 119, 123, 119

with system mode 0.87 0.87 0.87 126, 122, 128

Data

Prompt Engineering
without system mode 0.77 0.77 0.77 87, 86, 89

with system mode 0.84 0.84 0.84 86, 87, 85

Fine-tuning
without system mode 0.85 0.85 0.85 83, 93, 87

with system mode 0.89 0.89 0.89 91, 88, 89

Entity

Prompt Engineering
without system mode 0.64 0.64 0.64 70, 71, 71

with system mode 0.67 0.67 0.67 68, 65, 68

Fine-tuning
without system mode 0.88 0.88 0.88 77, 78, 59

with system mode 0.86 0.86 0.86 72, 68, 66

State

Prompt Engineering
without system mode 0.25 0.25 0.25 32, 32, 31

with system mode 0.25 0.25 0.25 30, 31, 31

Fine-tuning
without system mode 0.72 0.72 0.72 34, 36, 31

with system mode 0.78 0.78 0.78 25, 36, 31

Table A.3.: Evaluation of the element type extraction regarding the element type: Macro

averages for all element types for Promptidentify_all with their respective sample

sizes

91

A. Appendix

Precision Recall F1-score Sample Size

Activity

Prompt Engineering
without system mode 0.27 0.27 0.27 88, 86, 89

with system mode 0.27 0.27 0.27 85, 86, 82

Fine-tuning
without system mode 0.8 0.8 0.8 69, 66, 63

with system mode 0.8 0.8 0.8 60, 62, 52

Component

Prompt Engineering
without system mode 0.67 0.67 0.67 106, 108, 106

with system mode 0.7 0.7 0.7 122, 119, 120

Fine-tuning
without system mode 0.89 0.89 0.89 129, 125, 120

with system mode 0.89 0.89 0.89 128, 124, 128

Data

Prompt Engineering
without system mode 0.66 0.66 0.66 80, 77, 74

with system mode 0.68 0.68 0.68 78, 82, 75

Fine-tuning
without system mode 0.86 0.86 0.86 91, 91, 88

with system mode 0.91 0.91 0.91 86, 104, 94

Entity

Prompt Engineering
without system mode 0.6 0.6 0.6 62, 63, 61

with system mode 0.66 0.66 0.66 56, 54, 51

Fine-tuning
without system mode 0.85 0.85 0.85 65, 57, 67

with system mode 0.9 0.9 0.9 48, 60, 52

State

Prompt Engineering
without system mode 0.24 0.24 0.24 30, 30, 38

with system mode 0.19 0.19 0.19 29, 24, 26

Fine-tuning
without system mode 0.82 0.82 0.82 34, 30, 32

with system mode 0.77 0.77 0.77 30, 29, 27

Table A.4.: Evaluation of the element type extraction regarding the element type: Macro

averages for all element types for Promptclassify_all with their respective sample

sizes

92

	Abstract
	Zusammenfassung
	Introduction
	Foundations
	Requirements Elicitation
	Questionnaires
	Interviews

	LimeSurvey
	Palladio Component Model
	EVerest
	Security Metamodel SecLan
	Natural Language Processing
	Large Language Models
	Prompt Engineering
	Fine-tuning

	Metrics

	Related Work
	Elicitation of Requirements
	Information Extraction

	EVerest Software Architecture Derivation
	Architecture and Components
	EVerest Architecture Model

	Security Requirements Elicitation
	Elicitation Techniques
	Questionnaire Design
	Pilot Study Questionnaire
	Questionnaire Conduction
	Interview Design
	Pilot Study Interviews
	Interviews Conduction
	Threats to Validity

	Security Requirements Classification
	Architecture
	Classification Techniques
	Evaluation
	Element Type Classification
	Phrase Extraction
	Phrase Extraction regarding the Element Type
	Dataset and Gold Standard Creation
	Results of Evaluations

	Discussion and Threats to Validity

	Conclusion and Future Work
	Bibliography
	Appendix
	Questionnaire
	Pilot study
	Interview Protocol
	EVerest Full Component Model
	Evaluation Results

