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What do algorithms explain? The issue of the goals
and capabilities of Explainable Artificial
Intelligence (XAI)
Moritz Renftle1, Holger Trittenbach2, Michael Poznic 3✉ & Reinhard Heil 3

The increasing ubiquity of machine learning (ML) motivates research on algorithms to

“explain” models and their predictions—so-called Explainable Artificial Intelligence (XAI).

Despite many publications and discussions, the goals and capabilities of such algorithms are

far from being well understood. We argue that this is because of a problematic reasoning

scheme in the literature: Such algorithms are said to complement machine learning models

with desired capabilities, such as interpretability or explainability. These capabilities are in turn

assumed to contribute to a goal, such as trust in a system. But most capabilities lack precise

definitions and their relationship to such goals is far from obvious. The result is a reasoning

scheme that obfuscates research results and leaves an important question unanswered:

What can one expect from XAI algorithms? In this paper, we clarify the modest capabilities of

these algorithms from a concrete perspective: that of their users. We show that current

algorithms can only answer user questions that can be traced back to the question: “How can

one represent an ML model as a simple function that uses interpreted attributes?”.

Answering this core question can be trivial, difficult or even impossible, depending on the

application. The result of the paper is the identification of two key challenges for XAI

research: the approximation and the translation of ML models.
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Introduction

Achieving high predictive accuracy has been the lynchpin of
Machine Learning (ML) research and a fundamental
requirement for using ML in practice. However, the

increasing pervasiveness of ML has led to concerns among pol-
icymakers, researchers, and society about the ethical and legal
implications of using ML without an understanding of the
behavior and limitations of the models generated (cf. Goodman
and Flaxman, 2017). This has fostered research, so-called
Explainable Artificial Intelligence (XAI), on algorithms that
generate “explanations” of ML. The explanations in turn are
expected to improve ML users’ and researchers’ understanding.1

Over time, XAI algorithms have turned into a supposed
panacea for virtually every concern that may be raised in the
context of ML. There is a common scheme of reasoning regarding
XAI algorithms. First, one points out an important capability that
an ML model does not possess. Typical capabilities in focus are
interpretability, explainability, transparency, or comprehensibility
(cf. Páez, 2019; Szczepański et al., 2021). The argument then goes
that XAI algorithms supplement the respective capability through
some form of explanation. This explanation in turn is expected to
help in achieving a postulated goal, such as building trust in a
model (Arrieta et al., 2020) or delivering reasons for using the
model in a specific context (Adadi and Berrada, 2018).

This scheme is problematic for various reasons, and we address
both the scheme and some of its problems in the section “The
reasoning scheme”. However, what seems to be an even more
pressing problem is that there are diverse contextual meanings of
the terms used to describe the algorithms’ capabilities. For
example, there is no consensus on what “interpretability” means
in the context of ML, and which criteria an XAI method must
fulfill in order to make an ML model interpretable; the same
holds for most of the remaining capabilities. This issue has been
highlighted in the scientific literature ever since (cf. Lipton, 2018;
Krishnan, 2020; Robbins, 2019; Erasmus et al., 2021). If one is to
depart from the problematic reasoning scheme, the question
remains what one can reasonably expect from XAI algorithms. In
this paper, we seek an answer to this question through an
interdisciplinary perspective from computer science, philosophy,
and technology assessment. We analyze two modest capabilities
that play an important role in our discussions: (1) the algorithms’
input attributes have to be interpreted, and (2) the requirement
that functions which translate attributes into interpreted ones
have to be simple.2

We find that the modest capabilities of actual interpretation
and simplicity can be delivered by XAI algorithms, and so they
indeed help to understand what ML models can do and are in fact
doing in the context of specific applications. These properties are
more modest capabilities than the discussed capabilities in the
literature, and we submit that it is a more realistic aim for XAI
research to focus on these capabilities.

There is a recent trend to look more closely at the users of XAI
algorithms to address the issue of XAI algorithms’ goals and
capabilities. Tomsett et al. (2018) and Zednik (2021) focus on
different stakeholders and the questions they might pose when
confronted with ML applications. In line with these proposals,
our approach is to consider the perspectives of users of ML and to
engage in a thought experiment to develop our argument. The
thought experiment in which we invite the reader to participate in
the practical situation of using an email spam filter.

We use this thought experiment as a first step in clarifying two
important capabilities, actual interpretation and simplicity, that
are better suited to answering the quest for XAI algorithms’
capabilities. More precisely, our aim is to inquire which cap-
abilities one can reasonably expect to be delivered by XAI
algorithms.

We start with a general perspective of a curious human being
confronted with a technical tool that produces remarkable results.
Such a human user of ML models strives for understanding,
meaning that they have questions about these models. We suggest
interpreting XAI algorithms as methods that help to answer these
questions, or at least some disambiguated versions of them.
However, we show that algorithms can only answer a very specific
type of question. From this viewpoint, clarifying the capabilities
of XAI algorithms means, (i) to collect questions that the curious
user might have about ML models, and (ii) to identify the subset
of these questions that XAI algorithms help to answer. Further,
clarifying the capabilities of existing XAI algorithms means, (iii)
to examine what is difficult about the questions identified in (ii),
i.e., to identify the challenges for these algorithms, and (iv) to
assess how far the challenges are met by existing algorithms.

This paper is structured accordingly. We address the problems
of the reasoning scheme in the section “The reasoning scheme”.
In the section “Questions about ML models”, we introduce the
thought experiment of the spam filter and discuss the questions
that users might ask about ML models. In the section “Questions
addressed by XAI algorithms”, we find one of these questions to
be the main question currently addressed by XAI algorithms.
Answering this question reveals two general challenges, one of
translation and one of approximation, which we present in the
section “Challenges for XAI algorithms”. In the section “The state
of XAI algorithms”, we review how far existing XAI algorithms
meet these challenges. Section “Conclusions” concludes.

The reasoning scheme
As outlined in the Introduction, there is a common reasoning
regarding XAI algorithms in the scholarly literature. An impor-
tant capability of an ML model is claimed to be missing, such as
interpretability, explainability, or comprehensibility. The algo-
rithms should then supplement the capability of interest via an
explanation, and this explanation finally fosters the achievement
of a goal, such as building trust or delivering reasons for using
the model.

One can find specific criticism of accounts of some of the
capabilities attributed to XAI in the literature. One strategy of
critique is to challenge the definition of the term in question (cf.
Krishnan, 2020) by pointing out some weaknesses and proposing
an alternative. A further strategy is to differentiate the terms into
different senses (cf. Lipton, 2018). We use an alternative strategy.
We criticize the reasoning scheme that connects capabilities to
goals, and we discuss realistic expectations of what XAI can
achieve, based on the diagnosis that most proposed capabilities
are too demanding.

To make our criticism concise, we focus on explainability in
this section. This is an arbitrary choice, but we expect our
arguments to hold for other capabilities as well. One can find
several discussions of capabilities in the literature; examples are
discussions of interpretability (Lipton, 2018; Krishnan, 2020,
Erasmus et al., 2021; Fleisher, 2022), explainability (Arrieta et al.,
2020; Fleisher, 2022), and of related notions such as explicability
(Robbins, 2019) and transparency (Fleisher, 2022). In the
reconstruction of the reasoning scheme below, the term
‘explainable’ can easily be exchanged for ‘explicable’, ‘inter-
pretable’, etc.3

The reasoning scheme that we reconstruct in the following
paragraphs is not explicitly proposed in the literature. It is rather
implicit in the argumentation of many publications. For the goal
of trust or trustworthiness, one can point to several publications.
We mention only a few here. In Ribeiro et al. (2016), “trust” is
used in the title. Furthermore, the authors state:
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We show the utility of explanations via novel experiments,
both simulated and with human subjects, on various
scenarios that require trust: deciding if one should trust a
prediction, choosing between models, improving an
untrustworthy classifier, and identifying why a classifier
should not be trusted. (Ribeiro et al., 2016, p. 1135).

In another publication, one finds this instance of ‘trust’:

Explanations of machine learning models and predictions
can serve many functions and audiences. Explanations can
[…] verify and improve the functionality of a system […]
and enhance the trust between individuals subject to a
decision and the system itself. (Mittelstadt et al., 2019,
p. 280).

In some places, explainability is even declared as a necessary
prerequisite for humans to trust ML models.

In order for humans to trust black-box methods, we need
explainability—models that are able to summarize the
reasons for neural network behavior, gain the trust of users,
or produce insights about the causes of their decisions.
(Gilpin et al., 2018).

Molnar (2020) is a frequently referenced introductory book to
interpretable ML, and here one finds:

If you can ensure that the machine learning model can
explain decisions, you can also check the following traits
more easily: Fairness […] Privacy […] Reliability […]
Causality […] Trust: It is easier for humans to trust a
system that explains its decisions compared to a black box.

In Erasmus et al. (2021), the authors remain somewhat
uncommitted to the requirement of generating trust by fostering
the capability of ML models, but the term is mentioned in their
conclusion.

Conceiving of explanation according to those accounts
offered within the philosophy of science disentangles the
accuracy-explainability trade-off problem in AI, and in
doing so, deflates the apparently paradoxical relationship
between trust and accuracy which seems to plague debates
in medical AI and the ML literature. If it is simply that
explainability is required for trust, there is no cause for
worry, since highly accurate (and potentially complex)
MAIS [medical AI systems] are just as explainable as simple
ones. (Erasmus et al., 2021, p. 857).

From a philosophical perspective, one can reconstruct the
common reasoning as follows:

i) Users of an ML model can give an explanation for the
predictions of the model if and only if the model is explainable for
those users.

ii) The goal of such an explanation is to generate trust in actors
who are affected by the decisions made based on the model
predictions.

iii) Users can generate trust in actors if and only if the actors
accept the explanation as justification for the decisions made
based on the model prediction.

iv) If the actors accept the explanation as a justification for the
decisions made based on the model prediction, then the expla-
nation generates trust in the actors.

In the following, we question whether such a capability is
indeed required to achieve the goal. On the one hand, one can ask
for further supporting reasons for (ii) as well as for (iii) or (iv).
Especially, the assumed relation between explainability and trust
is oftentimes not well defined. This becomes clear in a more
stringent version of the reconstruction of the reasoning scheme:

(1) Users can give a justification for the decisions based on the
predictions of an ML model if the model is explainable for
its users.

(2) Other people—actors—trust in the model if these actors are
convinced by the justification the users give.

(3) The justification works by “explaining” the model to the
actors. Thereby the model becomes explainable also for the
actors, and establishes trust among the actors.

In the second version, we fill the gap between capability and
goal by an intermediate step of justification. However, there is no
compelling reason why the justification is sufficient to convince
the actors—even if the ML model is explainable for the users.
Next, the capability also may not be necessary to achieve the goal
of trust.4 For instance, achieving trust in a technical system is
feasible through other means than via the capability of the
algorithm. One way that actors build trust could be through the
reputation of those promoting a particular ML model, or sup-
ported by the past performances of either the same model or
other models promoted by the same parties.

As a result of these considerations, we can state a short interim
conclusion. The common reasoning scheme is insufficient to
approach the issue of XAI goals and capabilities. First, one has to
disentangle goals and capabilities. Second, the capabilities need to
be scrutinized in detail. Third, the relation between capability and
goals is not properly articulated, and it is by no means clear that
the capability directly leads to the respective goal. Our focus here
is to clarify how one can reach justified claims about the cap-
abilities of XAI. Especially we focus on capabilities that help users
and actors to understand ML models. We deem all of these
clarifications necessary to inform discussion on adequate goals for
XAI, however, we leave this discussion for another occasion.

Questions about ML models
There are discussions of user questions in the literature. For
example, Liao et al. (2020) discuss the suitability of explanations
as being question-dependent in the context of application-
oriented research. Therefore, users can ask many questions
about ML models. Here, we introduce seven questions that one
may ask when confronted with a specific ML model. Even though
we found these questions by philosophical methods rather than
by using empirical methods, some of them appear frequently in
the literature (e.g., Gunning, 2017; Hoffman et al., 2018). We do
not claim that any user has these questions in mind. What we
claim is that the questions are reasonable and not arbitrarily
invented.

We reached these questions by engaging in a thought experi-
ment of a use case of ML. In this thought experiment, a user of an
email program is confronted with the issue of the detection of
spam emails through an ML model. The questions later serve to
delineate the capabilities of XAI algorithms. While they are based
on one example, we deem them to be general and also applicable
to other ML use cases.

Thought experiment of the spam filter. Assume a spam filter S is
an ML model using the methodology of supervised ML. S clas-
sifies emails into two disjoint groups, spam and no spam. Further,
there is a user, Alice, who sees an email M which S classifies as
spam. Alice is a curious email recipient and has an interest in
understanding the ML model. Given this small set of pieces of
information, which questions are reasonable for Alice to ask? The
central task of the model is to distinguish regular emails, which
we call “normal” ones, from spam emails, and Alice is confronted
with a new email M. So, Alice may reasonably ask only a small
number of questions about issues related to these things. The list
we provide is comprehensive. However, we do not claim that it is
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exhaustive. We argue that the following questions are relevant
for Alice:

Q1: Why is M classified as spam by S?
Q2: How does S distinguish spam from no spam?
Q3: What distinguishes spam from no spam?
Q4: How does S work?
Q5: Does S work like an alternative spam filter S* Alice has

used in the past?
Q6: Alice thinks thatM is not spam. Why does S’s classification

differ from Alice’s opinion?
Q7: What distinguishes spam emails from normal emails?

Ambiguities of the questions. Intentionally, we have only made
the assumption that Alice is curious, so far. In particular, she is
one of the actors seeking a higher goal such as trust in the spam
filter (see section “The reasoning scheme”), and we do not expect
her to have special knowledge in computer science or philosophy.
Naturally, to ask questions from such a layperson’s perspective
leads to formulations that may turn out to be ambiguous
depending on the context in which they are asked. Let us illustrate
this with an example.

A computer scientist, for instance, may differentiate Q1
between asking for an explanation ex-ante, i.e., before the
model has returned a prediction of M, versus an ex-post
explanation when the model prediction is known. In both cases
the explanation is local, i.e., it is specific for M. However, in an
ex-ante explanation, the prediction of M must not be part of the
explanans. In particular, any XAI method that relies on the
prediction ofM, e.g., a counterfactual explanation (Verma et al.,
2022), does not apply. Instead, an ex-ante explanation requires
a partial answer of Q2, and then to derive the specific
explanation for M. To illustrate, if an answer to Q2 is that S
distinguishes spam from no spam by the email domain of the
sender, then an ex-ante explanation for Q1 is that M has a
specific domain D. Note that this ex-ante explanation requires
only a partial answer of Q2; in particular, it does not require us
to explain the prediction of S for any M0≠M. On the other hand,
one can deem Q1 to ask for an ex-post explanation. In this case,
one may formulate an explanation based on the prediction of S
on M. For instance, one may create a counterfactual that
searches for minor modifications of M such that the prediction
of S changes. An example of a counterfactual would be to alter a
few words in the body of the message such that M is classified as
no spam; the difference between the original and modified M is
the explanans.

A philosopher may have a different disambiguation in mind.
For instance, the type of explanation asked for can be of
importance. For Q1, one could specifically ask for, say, a
deductive nomological explanation: “What is a deductive
nomological explanation for S classifying M as spam?”. Here,
one has a comprehensive theory of explanation at one’s disposal
to disambiguate the questions. The refined question may indeed
be less ambiguous in the sense that it is more likely to get a
philosophically satisfying answer.5

Q3 is special, since it is not necessarily related to ML. In one
sense it is a general question similar to questions of the form
“what is F?”, where F is a variable for a general term that could be
interpreted to be spam but also to be something more theoretical,
such as knowledge, or something more practical like the meaning
of life. Laypeople ask these kinds of questions, but also
philosophers usually ask them. And since its beginning from
Plato onwards, Western philosophy has addressed these appar-
ently simple but difficult to answer questions. What interests us in
the context of this paper is whether XAI can make any
contribution to answering such a question.6

We deem both directions of disambiguation, for computer
science and for philosophy, as indispensable in advancing the
debate around XAI, and we also strive for disambiguation of
some of the questions below. However, we do not attempt to
account for all the various ways of disambiguation in this paper.
We rather see the merits of discussing Q1-Q7 in approaching the
debate around XAI differently and departing from a problematic
reasoning scheme. We show that turning to a questions-centered
approach can indeed bring clarity to the debate, and that it helps
to reveal unrealistic and unproductive expectations.

We now turn to the questions Alice asks, and clarify what is
required to answer them. In the end, we arrive at one question
with an improved formulation that we deem answerable in light
of the current literature on XAI: “How can one represent an ML
model as a simple function that uses interpreted attributes?”. It is
a reformulation of Q2.

Discussing the questions. Q1: Why isM classified as spam by S?
To answer this question, it is necessary to clarify what exactly S

is, and on what basis it makes classifications.
Mathematically, S is a function that maps from emails to either

the label spam or no spam. Many such functions exist, but only
some of them are accurate spam filters. To find one of these
accurate functions, our example uses supervised ML.

Supervised ML is a general methodology for predicting a target
variable Y based on an observable variable X. The goal is to find a
function that maps values of the observable variable to values of
the target variable, with low error. To find such a function,
supervised ML requires training data. Training data is a set of
pairwise observations (xi, yi) of X and Y, where i is an integer
identifying the pair. In our case, the xi represent emails, and the yi
are either spam or no spam. xi can represent whole emails, e.g., as
a sequence of zeros and ones in binary format. But xi can also
consist of only some attributes of an email, e.g., the domain of the
sender or the number of words in the email body. Supervised ML
assumes that the training data is representative of the joint
distribution of the two variables X and Y. There are different
notions of representativeness, but the most frequent is that, (a)
the observations in the training data have been sampled
independently and identically distributed (i.i.d.) from X and Y,
and that (b) the number of observations is “large enough”.

Based on the training data, supervised ML selects a function to
map from X to Y with low prediction error. The function
selection typically involves two steps: (i) choosing a set of
candidate functions, and (ii) finding the optimal function within
this set. In step (i), one chooses a function type, i.e., a set of
functions whose equations have a similar form. Examples of
function types are linear functions, decision tree functions, or
neural network functions. For the chosen function type, one
further chooses so-called hyperparameters, e.g., the number of
coefficients of a linear function. The result of step (i) is a function
with a number of free parameters, often called an ML model. In
step (ii), one then uses an ML algorithm to optimize the
remaining parameters of the model using the training data.

The algorithm returns a trained ML model, e.g., the model
together with the parameters that lead to the lowest prediction
error for the observations in the training data or a regularized,
sparse model. If the training data is indeed representative of the
joint distribution of X and Y, then this model will also have a low
prediction error for new observations of X and Y.

In view of this, we can now answer why S makes a particular
classification for M (Q1). The main point of the answer is related
to the fact that the classifications of S are the result of a specific
supervised ML methodology. This methodology involves many
decisions and assumptions, e.g., regarding the collection of the
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training data or the selection of candidate ML models. These
decisions and assumptions determine both the overall prediction
performance of S and the individual errors of S.

Q2: How does S distinguish spam from no spam?
This question can be answered by pointing to the attributes of

M and the function by which S distinguishes between the labels
spam and no spam.

An important distinction is between attributes that humans
can interpret or communicate and attributes that refer only to the
digital representation of a data item and exist only for the purpose
of ML. We will call the former attributes interpreted attributes
and the latter technical attributes. In the case of an email,
interpreted attributes include the sender domain, letters, words,
phrases, or the word count. A technical attribute would be, for
example, the result of a principal component analysis in the form
of numerical values (Abdi and Williams, 2010). Technical
attributes can lack human interpretation; e.g., one might not be
able to tell what the first principal component means. Another
example for a technical attribute of emails is their representations
as high-dimensional numerical vector embedding (Le and
Mikolov, 2014).

One way to think about interpreted attributes is to see them
related to competencies of users in mastering a language. In this
case, the terms used to describe attributes have to be understood.
This understanding is a different understanding compared to the
understanding of the overall ML models. In particular, one has to
understand a particular subset that is used in parts of the
algorithm. This is a different form of understanding, namely a
linguistic or symbolic understanding (cf. Baumberger et al., 2017).
Apart from the understanding of the attributes the individual
users have, a common understanding of the attributes is crucial so
that users can communicate with each other using the terms used
to describe the attributes.

Another aspect to consider with interpreted attributes is the
context in which the questions are asked. There is a difference
between a “system administrator” that maintains an email server
and a “layperson”. While IP addresses of the sender as email
header would count as interpreted attributes for the system
administrator, they might be technical attributes for the
layperson.

There are cases where the difference between technical and
interpreted attributes is less clear. Think of models that classify
image data. In this case, is “an RGB value of a pixel in the image”
an interpreted attribute? Are superpixels (Ribeiro et al., 2016), i.e.,
a group of connected pixels that are similar to each other,
interpreted attributes? The answers to these questions depend on
the context. In the medical imaging domain, a pathologist might
understand superpixels since they have a specific interpretation.
In another domain, e.g., autonomous driving, superpixels might
count as technical attributes. There, interpreted attributes might
rather be the illumination of an image or the presence of objects
in specific locations of the image. For the purpose of discussing
Q2, it suffices to assume that there is some context in which the
user can understand the attributes to some degree. Then, a user
can achieve what Khalifa (2017) coins as generic understanding.7

Thus, attributes are interpreted attributes as long as there is some
context where a user can understand them, and technical
attributes otherwise.

One can answer Q2 in different ways. A simple answer is to
write down the whole ML model S, as a complex mathematical
expression that involves technical attributes of emails.

But this answer has two problems. First, S might use many
more numeric parameters and attributes of emails than a human
mind can comprehend. In this case, the mathematical definition
of S is a correct answer to Q2, but not one that satisfies users such
as Alice. Second, even if the mathematical definition of an ML

model is “simple”, it might still not satisfy users if it only refers to
technical attributes and not to interpreted ones. The reason is that
users of S typically have prior knowledge and expectations
regarding the phenomenon “spam” to which they want to
compare S. This requires a definition of S that ties to users’ prior
knowledge, i.e., that uses interpreted attributes. For example, if the
function of S relies only on the first principal component of an
email vector embedding, it remains unclear whether this value is
correlated with some interpreted attribute of emails. Overall, a
good answer to Q2 that can be offered to users would be a simple
function that uses interpreted attributes of emails but still
accurately describes how the spam filter S classifies emails. Note
that such a function need not exist, or that there may be several
functions that describe the original ML model with similar
accuracy.

Q3: What distinguishes spam from no spam?
So far, we have focused on S and classification. Q3 now

changes the perspective. As mentioned above, the answer to what
discerns spam from no spam is independent of S and also
independent of any other ML model. One could approach this
question from a purely philosophical perspective and engage in a
conceptual analysis of the notion of spam. Were one to conclude
such an analysis then the distinction between spam and no spam
might be made with the help of conceptual methods only. As our
paper is based on an interdisciplinary approach that combines
philosophy and computer science, we continue with an
alternative proposal that emphasizes computer science methods.
Let us assume that it depends on the training data for S of what
spam is.

Then, a potential clarification of Q3 is: “Which functions exist
that distinguish the emails labeled spam from those labeled no
spam within the training data?”. As discussed before, users
require functions that are simple and use interpreted attributes.
Hence, we only consider such functions in the following
discussion.

The complete answer to Q3 is to specify all simple functions
that use interpreted attributes and accurately distinguish spam
from no spam within the training data. Typically, the number of
such functions may be very large or even infinite, depending on
the type and number of attributes in the training data. Thus,
examining all these functions is infeasible for users.

So, a less accurate but more useful answer to Q3 is a small,
diverse set of functions that are simple, use interpreted attributes
and accurately distinguish spam from no spam within the training
data. There are two ways to generate such a set. First, one can
create new training data that only uses interpreted attributes of
emails. One then runs an ML algorithm that optimizes a simple
function for distinguishing spam from no spam based on these
attributes. One repeats the process with other ML algorithms
until one has a diverse set of functions. Second, one can also start
with a complex ML model, like S, and then derive different simple
functions from it that use interpreted attributes. This is equivalent
to answering Q2. One can further diversify the results by deriving
the functions from different complex ML models.

Q4: How does S work?
This question asks for the mechanics of S. A simple answer is

that S is a function that maps from emails to labels. But one can
also interpret this question as asking for the mechanism of how to
derive S from data. With this interpretation, the answer to Q4
includes the answer to Q1, i.e., the selection of a predictive
function based on training data. A full answer to Q4 further
requires a description of the complete supervised ML procedure
and the algorithms that have been used to optimize S. This
description can be a pseudo-code of the algorithms or a
mathematical description. In contrast, it is irrelevant for Q4
how exactly the algorithms are implemented, i.e., in which
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programming language, with which libraries, etc., since this has
no effect on their functionality.

Q5: Does S work like an alternative spam filter S*?
This question aims at comparing two trained ML models that

use the same set of input attributes to compute their outputs.
Suppose that S and S* are white boxes, i.e., one knows their

function types and parameters. Then S and S* work equivalently
if they use the same function type and have identical parameters.
Note that the inverse is not true, i.e., two models can use different
function types and parameters and still represent the same
mathematical function. In this case, showing the equivalence of
the two models is much more difficult.

However, if either S or S* is a black box, one does not know
any explicit representation of its function. In this case, one can
only make equivalence statements with respect to a set of
observations. For example, one can verify that S and S* yield the
same classification for a set of emails. This does not show,
however, that the functions of S and S* are identical—their results
could differ on other observations.

Summing up, answering Q5 is simple if the answer is no: one
only needs one email where S and S* yield different
classifications. In contrast, proving that the answer to Q5 is
yes is difficult or almost impossible—except in the trivial case
that both models are white boxes with the same function type
and parameters.

Q6: Why does S’s classification differ from Alice’s opinion?
This question aims at comparing Alice’s personal reasoning

with the classification function S. Answering the question requires
investigating whether S relies on the same attributes of emails as
Alice does. If this is not the case, one already has an answer: S
relies on different attributes. If S and Alice rely on the same
attributes, one must further compare the function S to the one of
Alice, i.e., whether the attributes are used in the same way. We
have already discussed this in the answer to Q5. Alice may also
not be fully aware of her opinion, or might not be able to
represent her reasoning sufficiently well to allow her to compare
her personal reasoning to S. In this case, Q6 may not be
answerable at all.8

Q7: What distinguishes spam emails from normal emails?
This question asks for a universal rule. If a commonly accepted

definition of spam exists, then the answer is simple: if an email
meets the definition of a spam email, then it is spam. Here the
definition may be one reached by the method of conceptual
analysis, but it might also be the case that it is just a stipulative
definition that happens to be commonly accepted.

If the definition does not exist, one can take a set of examples
of spam and normal emails and develop an ML model with it.
The question then is whether the trained ML model is helpful in
providing an answer to Q7. This depends on the degree of
consensus among email recipients about what does and does not
qualify as a spam email. If all recipients agree with each other,
then any trained ML model with a high accuracy is a possible
answer to Q7; and any such ML model could help to establish a
commonly accepted definition of spam. However, if the recipients
disagree on which email is spam or not, there can be no universal
definition of spam, and Q7 is not answerable.

Questions addressed by XAI algorithms
In the following, we show that existing XAI algorithms do not
give answers to any of the questions introduced in the previous
section except for Q2. Each of the following paragraphs makes an
observation about XAI algorithms that rules out some of the
questions, until only Q2 remains. We then examine Q2 more
closely and show the centrality of this question to present XAI
research.

Real-world phenomena. There is consensus in the literature that
XAI algorithms primarily explain ML models and not real-world
phenomena (Gunning, 2017; Samek et al., 2017; Adadi and
Berrada, 2018; Arrieta et al., 2020). Q7 asks for a characterization
of a real-world phenomenon: spam. Although one can use ML
models to explore possible answers to questions like Q7 (Sullivan,
2022), the decision of what the correct answer is, is independent
of the models. Hence, Q7 is not addressed by XAI algorithms.

Creation process of ML models. XAI algorithms so far tend to
generate “explanations” of ML models that are independent of
how the models were created. To illustrate, consider a popular
family of algorithms, so-called feature attribution methods, e.g.,
(Ribeiro et al., 2016; Sundararajan et al., 2017). Feature attribu-
tion methods estimate, for a given input to an ML model, how
important the individual features of the input are for the corre-
sponding output of the model. One can compute such feature
attributions without knowing how the model was created. In
contrast, knowledge of the creation process of the ML model S is
necessary to answer why S classifies M as spam (Q1), and how S
works (Q4).

We conclude that Q1 and Q4 are, at present, not answered by
XAI algorithms.

Complex ML models. XAI research mainly focuses on ML
models that are very complex, e.g., because they have millions of
numeric parameters. In this setting, it is highly improbable that
two ML models created in different ways end up with the same
parameters and hence implement the same function. Thus, for
the ML models considered by XAI research, Q5 and Q6 have
trivial answers: Complex ML models hardly ever work in the
same way; and the classification function of a user is expected to
differ from that of a given complex ML model.

Q3 reduces to Q2. Recall that we have identified two ways to
answer what distinguishes spam from no spam (Q3). The first
applies traditional supervised ML methodology, namely feature
engineering and the training of simple types of ML models.

This methodology was established long before XAI emerged as
a research area. The second way of answering Q3 is to develop
one or more complex ML models, like S, and then derive from
them diverse simple functions that use interpreted attributes. This
is equivalent to collecting different answers to Q2. Thus, if XAI
algorithms address Q3, this is only partial, and only as a side
effect of addressing Q2.

After these observations, only Q2 is left for discussion: how
does S distinguish spam from no spam? For generality, we now
decouple Q2 from the example of the thought experiment with
ML model S. With the aim of discussing any kind of ML model
using the methodology of supervised ML, we formulate a
question that is applicable more broadly and deems it a
“generalized” question:

Q*: How can one represent an ML model as a simple function
that uses interpreted attributes?

From our perspective, this is the core question addressed by
XAI algorithms. Almost all existing XAI algorithms contribute in
some way to approximating complex ML models with simpler
functions (e.g., Guidotti et al., 2019), or with functions that use
interpreted instead of technical attributes (e.g., Bau et al., 2017;
Kim et al., 2018; Linardatos et al., 2021). Considering the
ambiguity of terms that the literature usually relies on to describe
the capabilities of XAI algorithms—i.e., interpretability, explain-
ability, and so on—it seems surprising that one can accurately
describe these capabilities with one simple question. We have the
impression that literature and debates often make normative
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claims on XAI algorithms that go far beyond the question Q*. For
example, it is far from clear how Q* relates to terms like “trust”,
or “fairness”, which carry normative connotations. While these
normative terms may relate to XAI algorithms in one or another
way, using them without an explicit and shared interpretation
obfuscates the results of XAI research. It spurs misconceptions on
the capabilities of XAI algorithms in politics and society, and
ultimately harms the credibility of ML research. So, we advocate a
more realistic approach to describe the capabilities of XAI
algorithms: by focusing on the questions they can currently
address.

Challenges for XAI algorithms
Given the core question Q* addressed by XAI algorithms, we now
examine what is difficult about answering it. We identify two
main challenges.

Approximation. The first challenge is to approximate complex
ML models with simpler functions, so-called surrogate models.9

An elementary way to obtain a surrogate model is to observe a
large set of inputs and corresponding outputs of the complex ML
model and then train a simple ML model on these observations.
That is, the surrogate model is optimized to predict the outputs of
the complex model, and not to predict the “true” outputs. The
accuracy of the surrogate model with respect to the complex
model, i.e., how well the surrogate predicts the complex model, is
sometimes called fidelity (Guidotti et al., 2019).

Approximating ML models is both a technical and a
conceptual challenge. For instance, there is a tradeoff between
the fidelity and the complexity of surrogate models: Simpler
surrogate models will, in general, achieve lower fidelity than
complex ones. Thus, which surrogate model is optimal for users
depends on how the users balance fidelity and complexity.

Further, there are many definitions of the complexity of an ML
model. One way is to count the number of computational steps
that an algorithm performs to obtain the output of the model for
a given input. However, there are also definitions that are specific
to types of ML models. For instance, one often quantifies the
complexity of decision trees, a specific type of ML model, with
metrics that are specific to tree structures, e.g., the length of the
longest path from the root to a leaf node. The lack of a universal
definition of model complexity can make it difficult to choose
between different types of surrogate models.

Translation. The second challenge in answering Q* is to translate
the technical attributes that ML models use to discriminate
between data items into interpreted attributes. Technical attri-
butes cover both the inputs of an ML model and the intermediate
results that the model computes for its prediction. Interpreted
attributes are all attributes of data items that humans can inter-
pret and communicate to each other using common terminology
in a shared language, see the elaborations on Q2 in the section
“Questions about ML models”.

The difficulty of the translation challenge depends on the
design and application of the ML model. For some models and
applications, it is clear how interpreted attributes relate to the
technical attributes used by the model. For example, suppose that
the spam filter S uses a digital representation of emails that
consists of a single bit, i.e., a 0 or 1.

Suppose further that this bit is set if and only if an email
contains the word “money”.

In this case, the technical attribute has a trivial mapping to an
interpreted attribute. In other cases, this mapping exists but is
unknown. For example, suppose that S relies only on the first
principal component of an email vector embedding and that the

value of this principal component correlates strongly with the
presence of the word “money”. One does not know this
correlation until investigating it. Finally, for some models and
applications, no terminology exists to accurately describe the
inputs or the intermediate results of the models. In the previous
example, this is if the principal component used by the ML model
does not correlate with any known term used to describe emails.
In summary, the translation challenge can be trivial, difficult, or
even unsolvable, depending on the ML application.

The state of XAI algorithms
We now assess how far existing XAI algorithms address the
approximation and translation challenges raised by question Q*.
This section is not a comprehensive review, but rather a summary
of present XAI algorithms with some examples.

There is a plethora of XAI algorithms that address the
approximation challenge, for different types of complex ML
models and surrogate models, and for different definitions of
complexity and fidelity. To give some examples, some algorithms
can approximate complex ML models, such as neural networks
and random forests, with simpler models, such as decision trees
(Craven and Shavlik, 1995; Bastani et al., 2019) or rule lists
(Bénard et al., 2021). There are also algorithms to approximate
complex ML models locally, i.e., in the vicinity of a given input.
Popular examples of this are LIME (Ribeiro et al., 2016), SHAP
(Lundberg and Lee, 2017) and integrated gradients (Sundararajan
et al., 2017). See Guidotti et al. (2019) for a comprehensive
overview of approximation methods.

There is also a philosophical account that uses the language of
approximation (Erasmus et al., 2021). Prima facie, this account by
Erasmus et al. might be seen as close to what we propose here.
Especially, as their account is focused on interpretation, one
might think that our notion of translation is another formulation
for their envisioned interpretation. However, Erasmus et al.
conceptualize interpretation as a relation between an “inter-
pretans” and an “interpretandum”, and state that “both the
interpretans and the interpretandum are explanations” (2021,
851). Additionally, they also claim that approximation is related
to interpretation and by that is related to explanations understood
as interpretans and interpretandum (cf. 2021, 853f.). We see
approximation differently, namely as the development of a sur-
rogate model that is not necessarily interpreted. In the following,
we hence use the term approximation but do not speak of
interpretation in the context of approximation.

Compared to the approximation challenge, the translation
challenge has received less attention. Some work addresses ML
models for computer vision, i.e., convolutional neural networks
(CNNs) that make predictions based on images. There are XAI
algorithms to discover correlations of neurons or layers in CNNs
with interpreted attributes of images, say, visible objects, shapes,
or colors (Zhou et al., 2019; Kim et al., 2018; Cammarata et al.,
2020; Goh et al., 2021). The discovered correlations enable users
to map technical attributes used by CNNs, i.e., neuron or layer
activations, to interpreted attributes. The main limitation of these
methods is that they require a comprehensive database of
annotated concepts on images.

To address this issue, Ghorbani et al. (2019) extract concepts in
an automated way. Experiments in this work indicate that many
technical attributes of images used by neural networks can be
mapped to interpreted ones. Similar to these examples from
computer vision, there is also work on translating ML models for
natural language processing (Poerner et al., 2018) and speech
recognition (Krug et al., 2018).

Answering question Q* often poses a combination of
approximation and translation challenges. Think of a typical
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computer vision model, an image classifier. The classifier uses
technical attributes of images, typically numeric pixel values for
each color channel of the image. Now suppose that one
approximates the classifier with a surrogate model. The surrogate
model will either have low fidelity, or it will be almost as complex
as the classifier. The reason is that image classification is an
inherently complex task:

Functions that map from pixel-wise color values to the target
classes are in most cases either complex or not accurate. However,
an answer to Q* can ignore some of this inherent complexity.
This is because human users think and speak about images with
interpreted attributes, e.g., shapes or objects. Answering question
Q* does not require approximation of any parts of an image
classifier that serve only to reconstruct interpreted attributes from
pixel values. On the contrary: a better answer to Q* is one that (i)
translates technical attributes in the classifier to interpreted ones,
and (ii) defines an approximation of the classifier based on the
translated attributes.

Such joint translation and approximation of ML models is an
open challenge for XAI algorithms. It occurs in all applications of
ML models where the inputs have a lower level of abstraction
than the terminology that users rely on. Besides computer vision,
this also holds for speech recognition and natural language pro-
cessing. Another example is the application of ML models to
predict physical processes; e.g., ML models that derive their
predictions from the states of individual atoms or molecules,
whereas their users observe aggregated changes on the macro
level of the material under study. One way to address the joint
approximation and translation challenge is neurosymbolic AI, i.e.,
“to develop neural network models with a symbolic interpreta-
tion” (Garcez and Lamb, 2020). A pioneering example is the
Neural Prototype Tree (Nauta et al., 2021), i.e., a neural network
that learns a few “prototypical” combinations of interpreted
attributes and then classifies inputs based on their resemblance to
these prototypes.

Conclusions
A problematic reasoning scheme in the literature currently
obfuscates the relation between general goals and capabilities of
existing XAI algorithms. In this paper, we have explored another
way to characterize XAI algorithms, namely from the perspective
of their users. We have found that current XAI algorithms pri-
marily address one particular question that users have in the
context of ML, by disambiguating, re-interpreting, and general-
izing this question to: “How can one represent a complex ML
model as a simple function of interpreted attributes?”.

The succinctness of this question contrasts with the ambiguity of
terms used in the literature to characterize XAI algorithms, such as
interpretability and explainability. Other terms in the literature have
a normative connotation, e.g., trust, whereas the identified question
is purely technical. The contrast between prevalent terminology and
the actual goals of XAI algorithms may spur excessive expectations
of the algorithms on the part of policymakers and society. To avoid
this, we propose to focus on questions that the algorithms can
actually help with. Our analysis of XAI algorithms further reveals
two key challenges for XAI research: the approximation and
translation of ML models. Regarding approximation, the literature
already offers many approaches; slightly fewer approaches exist for
translation. We think that holistic methods that address both
challenges will be key in future research.
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Notes
1 The term “explanation” itself has multiple interpretations and has been a source of
controversial debates. We elaborate on different perspectives from philosophy and
computer science as regards explanation in the section “Ambiguities of the questions”.
For a criticism of the focus on explanation and an alternative approach that speaks in
terms of understanding rather than in terms of explanation see Páez (2019). We follow
the common way of speaking about XAI algorithms according to which they provide
explanations. However, we do not wish to enter the debate about which philosophical
account of explanation is preferable; the interested reader may consult, e.g., Woodward
and Ross (2021) for explanation, in general, or Erasmus et al. (2021) that discusses
different accounts of explanation in relation to the task of explaining artificial neural
networks. In particular, one may ask whether the accounts proposed for “scientific
explanation” also fit XAI, or whether a specific account of explanation is needed. We
further build on the intuition that the aim of a user is to understand ML models.
Whether this understanding is to be cashed in with an account of explanatory
understanding or an account of objectual understanding is another issue that deserves
its own debate, see Hills (2016); Baumberger et al. (2017); Baumberger and Brun
(2020) for details. Our approach is in line with the proposal of Fleisher (2022) to take
understanding as a more basic notion than an explanation. However, Fleisher (2022)
argues for a philosophical account of understanding. Here, we instead argue from the
practice of computer science and suggest a new analysis of challenges for XAI research
based on a philosophical and interdisciplinary perspective.

2 We define these two modest capabilities in the context of our discussion of question
Q2 in the section “Questions about ML models”.

3 To give the reader a first glimpse into what could be meant by crucial terms such as
‘interpretable’ or ‘explainable’, we cite definitions by Will Fleisher and Adrian Erasmus
and collaborators. The first one reads: “A model is interpretable for a stakeholder iff it
is understandable by that stakeholder (to a sufficient degree).” And, “A model is
explainable to a stakeholder iff it is accompanied by an XAI method whose output
provides an explanation that puts the stakeholder in a position to understand why the
system made the decision it did” (Fleisher, 2022, p. 12). An alternative definition is
given by Erasmus et al. that is based on ‘interpretation’ and ‘explanation’:
“interpretation is something that one does to an explanation to make it more
understandable,” and “interpretability [is] […] the ability to provide an interpretation”
(Erasmus et al., 2021, p. 849).

4 In our discussion, we left it open whether trust is more or less equivalent to a form of
reliance or not. One may also ask if trust must be systematically related to
trustworthiness (cf. Nickel, 2021).

5 Beside deductive nomological explanations also causal or mechanist explanations
might be further options to disambiguate the question. For example, in Erasmus et al.
(2021) these three accounts of explanation and an additional fourth one (the account
of inductive statistical explanation) are discussed in detail.

6 We thank an anonymous reviewer for making us aware of the special nature of this
question.

7 Khalifa defines generic understanding in the following way: “S has some
understanding of why p if and only if ‘S understands why p’ is true in some context C”
(Khalifa, 2017, p. 5).

8 Thanks to an anonymous reviewer for pointing this out.
9 A technical remark: Our broad definition of “surrogate model” includes approaches
such as feature attribution or counterfactuals, because one can view them as local
approximations of an ML model. The usage of this term may differ in other literature
on XAI.

References
Abdi H, Williams LJ (2010) Principal component analysis. WIREs Comput Stat

2(4):433–459. https://doi.org/10.1002/wics.101
Adadi A, Berrada M (2018) Peeking inside the Black-Box: a survey on Explainable

Artificial Intelligence (XAI). IEEE Access 6:52138–52160. https://doi.org/10.
1109/ACCESS.2018.2870052

Arrieta AB, Díaz-Rodríguez N, Ser JD, Bennetot A, Tabik S, Barbado A, Garcia S,
Gil-Lopez S, Molina D, Benjamins R, Chatila R, Herrera F (2020) Explainable
Artificial Intelligence (XAI): concepts, taxonomies, opportunities and chal-
lenges toward responsible AI. Inf Fusion 58:82–115. https://doi.org/10.1016/j.
inffus.2019.12.012

Bastani O, Kim C, Bastani H (2019) Interpreting Blackbox models via model
extraction. arXiv. https://doi.org/10.48550/arXiv.1705.08504

ARTICLE HUMANITIES AND SOCIAL SCIENCES COMMUNICATIONS | https://doi.org/10.1057/s41599-024-03277-x

8 HUMANITIES AND SOCIAL SCIENCES COMMUNICATIONS |          (2024) 11:760 | https://doi.org/10.1057/s41599-024-03277-x

https://doi.org/10.1002/wics.101
https://doi.org/10.1109/ACCESS.2018.2870052
https://doi.org/10.1109/ACCESS.2018.2870052
https://doi.org/10.1016/j.inffus.2019.12.012
https://doi.org/10.1016/j.inffus.2019.12.012
https://doi.org/10.48550/arXiv.1705.08504


Bau D, Zhou B, Khosla A, Oliva A, Torralba A (2017) Network dissection:
quantifying interpretability of deep visual representations. In: 2017 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR). pp.
3319–3327

Baumberger C, Beisbart C, Brun G (2017) What is understanding? An overview
of recent debates in epistemology and philosophy of science. In: Grimm
SR, Baumberger C, Ammon S (eds). Explaining understanding: new per-
spectives from epistemolgy and philosophy of science. Routledge, New
York. pp. 1–34

Baumberger C, Brun G (2020) Reflective equilibrium and understanding. Synthese
198:7923–7947. https://doi.org/10.1007/s11229-020-02556-9

Bénard C, Biau G, da Veiga S, Scornet E (2021) Interpretable random forests via
rule extraction. In: Banerjee A, Fukumizu K (eds) Proceedings of The 24th
International Conference on Artificial Intelligence and Statistics, vol 130.
PMLR, pp. 937–945. https://proceedings.mlr.press/v130/benard21a.html

Cammarata N, Goh G, Carter S, Schubert L, Petrov M, Olah C (2020) Curve
detectors. Distill 5(6):e00024.003. https://doi.org/10.23915/distill.00024.003

Craven M, Shavlik J (1995) Extracting tree-structured representations of trained
networks. In: Touretzky D, Mozer MC, Hasselmo M (eds) Advances in
neural information processing systems, vol 8. MIT Press. https://
proceedings.neurips.cc/paper/1995/file/45f31d16b1058d586fc3be7207b580
53-Paper.pdf

Erasmus A, Brunet TDP, Fisher E (2021) What is interpretability? Philos Technol
34(4):833–862. https://doi.org/10.1007/s13347-020-00435-2

Fleisher W (2022) Understanding, idealization, and explainable AI. Episteme:1–27.
https://doi.org/10.1017/epi.2022.39

Garcez A. d’Avila, Lamb LC (2020) Neurosymbolic AI: The 3rd Wave. arXiv.
https://doi.org/10.48550/arXiv.2012.05876

Ghorbani A, Wexler J, Zou J, Kim B (2019) Towards automatic concept-based
explanations. arXiv. https://doi.org/10.48550/arXiv.1902.03129

Gilpin LH, Bau D, Yuan BZ, Bajwa A, Specter M, Kagal L (2018) Explaining
explanations: an overview of interpretability of machine learning. Paper
presented at the IEEE 5th International Conference on Data Science and
Advanced Analytics (DSAA), IEEE. pp. 80–89

Goh G, Cammarata C, Voss C, Carter S, Petrov M, Schubert L, Radford A, Olah C
(2021) Multimodal neurons in artificial neural networks. Distill 6(3):e30.
https://doi.org/10.23915/distill.00030

Goodman B, Flaxman S (2017) European Union Regulations on algorithmic
decision-making and a “Right to Explanation”. AI Mag 38(3):50–57. https://
doi.org/10.1609/aimag.v38i3.2741

Guidotti R, Monreale A, Ruggieri S, Turini F, Giannotti F, Pedreschi D (2019) A
survey of methods for explaining Black Box models. ACM Comput Surv
51(5). https://doi.org/10.1145/3236009

Gunning D (2017) Explainable Artificial Intelligence, Defense Advanced Research
Project Agency. https://www.darpa.mil/program/explainable-artificial-
intelligence. Accessed 13 Jun 2022

Hills A (2016) Understanding why. Noûs 50(4):661–688. https://doi.org/10.1111/
nous.12092

Hoffman RR, Mueller ST, Klein G, Litman J (2018) Metrics for explainable AI:
challenges and prospects. arXiv https://arxiv.org/abs/1812.04608

Khalifa, K (2017) Understanding, explanation, and scientific knowledge. Cam-
bridge University Press, New York. https://doi.org/10.1017/9781108164276

Kim B, Wattenberg M, Gilmer J, Cai C, Wexler J, Viegas F, Sayres R (2018)
Interpretability beyond feature attribution: quantitative testing with concept
activation vectors (TCAV). In: Proceedings of the 35th International Con-
ference on Machine Learning. Presented at the International Conference on
Machine Learning. PMLR, pp. 2668–2677. https://proceedings.mlr.press/v80/
kim18d.html

Krishnan M (2020) Against interpretability: a critical examination of the inter-
pretability problem in machine learning. Philos Technol 33(3):487–502.
https://doi.org/10.1007/s13347-019-00372-9

Krug A, Knaebel R, Stober S (2018) Neuron activation profiles for interpreting
convolutional speech recognition models. Paper presented at the 32nd
Conference on Neural Information Processing Systems (NeurIPS 2018),
Montréal, Canada, pp. 1–13. https://openreview.net/pdf?id=Bylpgfjen7

Le Q, Mikolov T (2014) Distributed representations of sentences and documents.
In: Proceedings of the 31st International Conference on Machine Learning.
Presented at the International Conference on Machine Learning. PMLR, pp.
1188–1196. https://proceedings.mlr.press/v32/le14.html

Liao Q, Gruen D, Miller S (2020) Questioning the AI: informing design practices
for explainable AI user experiences. Proceedings of the 2020 CHI Conference
on Human Factors in Computing Systems, pp. 1–15. https://doi.org/10.1145/
3313831.3376590

Linardatos P, Papastefanopoulos V, Kotsiantis S (2021) Explainable AI: a review of
machine learning interpretability methods. Entropy 23(1). https://doi.org/10.
3390/e23010018

Lipton ZC (2018) The mythos of model interpretability. Commun ACM
61(10):36–43. https://doi.org/10.1145/3233231

Lundberg SM, Lee S-I (2017) A unified approach to interpreting model pre-
dictions. Paper presented at the 31st Conference on Neural Information
Processing Systems (NIPS 2017), Long Beach, CA, USA, pp. 1–10. https://
proceedings.neurips.cc/paper/2017/file/8a20a8621978632d76c43dfd28b6
7767-Paper.pdf

Mittelstadt B, Russell C, Wachter S (2019) Proceedings of the Conference on
Fairness, Accountability, and Transparency. Association for Computing
Machinery, New York, NY, USA. FAT* ’19, p. 279288. https://doi.org/10.
1145/3287560.3287574

Molnar C (2020) Interpretable machine learning. https://christophm.github.io/
interpretable-ml-book/

Nauta M, van Bree R, Seifert C (2021) Neural prototype trees for interpretable fine-
grained image recognition. arXiv. https://doi.org/10.48550/arXiv.2012.02046

Nickel PJ (2021) Trust in engineering. In: Michelfelder D, Doorn N (eds) Routledge
handbook of the philosophy of engineering. Routledge, New York, pp.
494–505

Páez A (2019) The pragmatic turn in Explainable Artificial Intelligence (XAI).
Mind Mach 29(3):441–459

Poerner N, Roth B, Schütze H (2018) Interpretable textual neuron representations
for NLP. In: Proceedings of the 2018 EMNLP Workshop BlackboxNLP:
analyzing and interpreting neural networks for NLP. Association for Com-
putational Linguistics, Brussels, Belgium, pp. 325–327

Ribeiro MT, Singh S, Guestrin C (2016) “Why should i trust you?”: Explaining the
predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining. Asso-
ciation for Computing Machinery, New York, NY, USA, pp. 1135–1144

Robbins S (2019) A misdirected principle with a catch: explicability for AI. Minds
Mach 29(4):495–514. https://doi.org/10.1007/s11023-019-09509-3

Samek W, Wiegand T, Müller K-R (2017) Explainable Artificial Intelligence:
understanding, visualizing and interpreting deep learning models. arXiv.
https://doi.org/10.48550/arXiv.1708.08296

Sullivan E (2022) Understanding from machine learning models. Br J Philos Sci
73(1):109–133. https://doi.org/10.1093/bjps/axz035

Sundararajan M, Taly A, Yan Q (2017) Axiomatic attribution for deep networks.
In: Proceedings of the 34th International Conference on Machine Learning,
Sydney, Australia. PMLR, 70, pp. 1–10

Szczepański M, Choraś M, Pawlicki M, Pawlicka A (2021) The methods and
approaches of Explainable Artificial Intelligence. In: Paszynski M, Kranzl-
müller D, Krzhizhanovskaya VV, Dongarra JJ, Sloot PMA (eds) Computa-
tional science—ICCS 2021. Springer International Publishing, Cham, pp.
3–17

Tomsett R, Braines D, Harborne D, Preece A, Chakraborty S (2018) Interpretable
to whom? A role-based model for analyzing interpretable machine learning
systems. arXiv. https://doi.org/10.48550/arXiv.1806.07552

Verma S, Boonsanong V, Hoang M, Hines KE, Dickerson JP, Shah C (2022)
Counterfactual explanations and algorithmic recourses for machine learning:
a review. arXiv. https://doi.org/10.48550/arXiv.2010.10596

Woodward J, Ross L (2021) Scientific explanation. In: Zalta EN (ed.) The Stanford
Encyclopedia of Philosophy (Summer 2021 Edition). Metaphysics Research
Lab, Stanford University https://plato.stanford.edu/archives/sum2021/
entries/scientific-explanation/

Zednik C (2021) Solving the black box problem: a normative framework for
explainable artificial intelligence. Philos Technol 34(2):265–288. https://doi.
org/10.1007/s13347-019-00382-7

Zhou B, Bau D, Oliva A, Torralba A (2019) Comparing the interpretability of deep
networks via network dissection. In: Samek W, Montavon G, Vedaldi A,
Hansen LK, Müller K-R (eds) Explainable AI: interpreting, explaining and
visualizing deep learning. Springer International Publishing, Cham, pp.
243–252

Author contributions
All authors—MR, HT, MP, and RH—contributed to the conception and design of the
article. The first development of the thought experiment was done by HT. An initial
draft of the manuscript was written by MR, and all authors commented on and con-
tributed to previous versions of the manuscript. All authors read and approved the final
manuscript.

Funding
Open Access funding enabled and organized by Projekt DEAL.

Competing interests
The authors declare no competing interests.

Ethical approval
Ethical approval was not required as the study did not involve human participants.

HUMANITIES AND SOCIAL SCIENCES COMMUNICATIONS | https://doi.org/10.1057/s41599-024-03277-x ARTICLE

HUMANITIES AND SOCIAL SCIENCES COMMUNICATIONS |          (2024) 11:760 | https://doi.org/10.1057/s41599-024-03277-x 9

https://doi.org/10.1007/s11229-020-02556-9
https://proceedings.mlr.press/v130/benard21a.html
https://doi.org/10.23915/distill.00024.003
https://proceedings.neurips.cc/paper/1995/file/45f31d16b1058d586fc3be7207b58053-Paper.pdf
https://proceedings.neurips.cc/paper/1995/file/45f31d16b1058d586fc3be7207b58053-Paper.pdf
https://proceedings.neurips.cc/paper/1995/file/45f31d16b1058d586fc3be7207b58053-Paper.pdf
https://doi.org/10.1007/s13347-020-00435-2
https://doi.org/10.1017/epi.2022.39
https://doi.org/10.48550/arXiv.2012.05876
https://doi.org/10.48550/arXiv.1902.03129
https://doi.org/10.23915/distill.00030
https://doi.org/10.1609/aimag.v38i3.2741
https://doi.org/10.1609/aimag.v38i3.2741
https://doi.org/10.1145/3236009
https://www.darpa.mil/program/explainable-artificial-intelligence
https://www.darpa.mil/program/explainable-artificial-intelligence
https://doi.org/10.1111/nous.12092
https://doi.org/10.1111/nous.12092
https://arxiv.org/abs/1812.04608
https://doi.org/10.1017/9781108164276
https://proceedings.mlr.press/v80/kim18d.html
https://proceedings.mlr.press/v80/kim18d.html
https://doi.org/10.1007/s13347-019-00372-9
https://openreview.net/pdf?id=Bylpgfjen7
https://proceedings.mlr.press/v32/le14.html
https://doi.org/10.1145/3313831.3376590
https://doi.org/10.1145/3313831.3376590
https://doi.org/10.3390/e23010018
https://doi.org/10.3390/e23010018
https://doi.org/10.1145/3233231
https://proceedings.neurips.cc/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf
https://doi.org/10.1145/3287560.3287574
https://doi.org/10.1145/3287560.3287574
https://christophm.github.io/interpretable-ml-book/
https://christophm.github.io/interpretable-ml-book/
https://doi.org/10.48550/arXiv.2012.02046
https://doi.org/10.1007/s11023-019-09509-3
https://doi.org/10.48550/arXiv.1708.08296
https://doi.org/10.1093/bjps/axz035
https://doi.org/10.48550/arXiv.1806.07552
https://doi.org/10.48550/arXiv.2010.10596
https://plato.stanford.edu/archives/sum2021/entries/scientific-explanation/
https://plato.stanford.edu/archives/sum2021/entries/scientific-explanation/
https://doi.org/10.1007/s13347-019-00382-7
https://doi.org/10.1007/s13347-019-00382-7


Informed consent
Informed consent was not required as the study did not involve human participants.

Additional information
Correspondence and requests for materials should be addressed to Michael Poznic.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons licence, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2024

ARTICLE HUMANITIES AND SOCIAL SCIENCES COMMUNICATIONS | https://doi.org/10.1057/s41599-024-03277-x

10 HUMANITIES AND SOCIAL SCIENCES COMMUNICATIONS |          (2024) 11:760 | https://doi.org/10.1057/s41599-024-03277-x

http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	What do algorithms explain? The issue of the goals and capabilities of Explainable Artificial Intelligence�(XAI)
	Introduction
	The reasoning�scheme
	Questions about ML�models
	Thought experiment of the spam�filter
	Ambiguities of the questions
	Discussing the questions

	Questions addressed by XAI algorithms
	Real-world phenomena
	Creation process of ML�models
	Complex ML�models
	Q3 reduces�to Q2

	Challenges for XAI algorithms
	Approximation
	Translation

	The state of XAI algorithms
	Conclusions
	Data availability
	References
	References
	References
	Author contributions
	Funding
	Competing interests
	Additional information




