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ABSTRACT

Onion routing and mix networks are a central technology to en-

able anonymous communication on the Internet. As such, a large

number of protocols and model variants have been explored in the

field, which offer differing levels of privacy, exhibit vulnerabilities,

or even supersede each other. These factors make discovering the

appropriate formalization for new developments difficult, and some

model variants have not been formalized at all.

We address this issue by creating one parametrized framework

that encompasses the onion routing and mix network models and

functionalities with a global adversary in the related work. In doing

so, we create a categorization of the variants of onion routing mod-

els in use in the related work andmap commonOR andmix network

protocols to their variants. For each identified variant: Our frame-

work offers i) an ideal functionality in the Universal Composability

framework, and ii) game-based properties that imply realization of

the ideal functionality when a protocol satisfies them. In effect, our

framework both unifies and extends previous formalization efforts

in the field.

KEYWORDS
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1 INTRODUCTION

Onion routing (OR) and mixing are core techniques in the field

of privacy enhancing technologies: Both OR networks and mix

networks aim to provide an anonymous communication service to

their users. To prevent adversaries from linking users to the services

they access, any packets a user sends are first routed through a

series of relays. Each relay transforms the packet such that the

resulting packet cannot be linked to the incoming packet. This is

often realized through multiple layers of encryption, one of which

is “peeled” at each relay — hence the name Onion routing. With

enough users and honest relays, each user’s packet has a protective

anonymity set. Using this approach, OR protocols typically provide

protection against local adversaries that control only parts of the

network or individual corrupted relays. The most commonly used

OR protocol today is TOR [15]. Mix networks like Minx [13, 27]

use the same fundamental approach, but additionally apply mixing,
which shuffles packets at honest relays to prevent an adversary

from linking the incoming packets at a relay to the outgoing packets
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at the cost of more latency [8]. Mix networks typically target global

adversaries.

Both OR networks and mix networks require a suitable packet

format in order to prevent adversaries from linking the packets that

exit an honest relay to those that enter it — if an attacker could

link these, the benefit of using these relays would be void. It is

common in the field to treat the packet format used for OR and

mix protocols separately from the protocols’ mechanisms: Since

the basic operating principles of OR and mixing stay the same

between protocols, one packet format can be reused between pro-

tocols [3, 12]. There is a significant body of work in the field that

strives to define and create these packet formats in a provably secure

context [1, 5, 19, 20, 26]. Many of these works formalize security

using both an ideal functionality for the protocols as well as game-

based security properties. The ideal functionalities are based in the

Universal Composability (UC) framework and are effectively an

abstract, idealized version of the real OR or mix network protocols.

The abstraction makes the security properties of the protocol easier

to derive: In many cases, these properties can simply be observed

from the idealized protocol. However, showing that a real protocol

is equivalent to an ideal functionality can be cumbersome, since it

involves proving that any attack on the real protocol can also be

simulated on the ideal functionality in an indistinguishable way.

The game-based properties solve this issue by offering equivalent

security using standard cryptographic games. Proving that a pro-

tocol satisfies these can often be done through common reduction

techniques.

Authors of OR and mix network schemes use these formaliza-

tions to design new packet formats and prove their security [1, 9,

10, 12, 19, 20], but there are significant hurdles here: The existing

formalizations are spread over many works that target different

variants of OR, with differing network and adversary models, func-

tionalities, and protections. Identifying the right formalization to

base one’s work upon is difficult, especially since some of these

papers build upon each other and correct mistakes in earlier works

even when targeting a new variant [20, 26]. In addition, several

variants used in existing protocols have not been formalized at all,

leaving a gap in the existing works. Adapting the formalizations for

new OR variants requires care, since a model change necessitates a

complete re-evaluation of the schemes, properties, and proofs used.

Our paper combines and extends previous formalizations by cre-

ating a unified theoretical foundation for future work in provably

secure packet formats for OR and mix networks with a global ad-

versary. First, we provide a categorization of the related work in

provably secure OR, including existing formalizations and proto-

cols. We then classify the variants in use today, creating a unified,

parametrized model, our STIR model. Each letter of the acronym
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STIR stands for a binary option, with a total of 16 variants being

included in our analysis.

Second, we create a complete, unified theoretical foundation for

provably secure OR schemes and packet formats in each variant.

This formalization encompasses and generalizes the formalizations

in the related workwhile also extending to previously-unformalized

OR variants. Multiple existing protocols are based on these vari-

ants and can now be analyzed using our new formalization. Our

formalization includes an ideal functionality in the UC framework

as well as game-based properties that we prove are equivalent to

the ideal functionality in each variant.

In addition to our complete, unified and parametrized formal

infrastructure, we supply an intuition for the security properties of

OR and mix network packet formats.

In summary, our main contributions are:

• a categorization of both protocols and formalizations by the

variant of OR they are based in,

• a classification of the OR variants in use today, including an

analysis of each variant,

• a complete, parametrized formalization of provably secure

OR schemes in each variant we observe, including an ideal

functionality, game-based properties, and a proof of their

equivalence, while maintaining compatibility with the re-

lated work where possible,

Outline. Section 2 introduces OR and mix networks along with

the basic principles of the existing formalizations. Section 3 intro-

duces the STIR model and explains each variant along with catego-

rizing the related work into variants. Section 4 explains our notation

and enumerates the assumptions used in our model. Section 5 de-

fines OR schemes in STIR variants. Section 6 briefly explains the

ideal functionality for OR. Section 7 describes the game-based prop-

erties and the proof that they are equivalent to our ideal function-

ality. Section 8 discusses additional aspects of OR protocol design

with our model. Section 9 concludes this paper.

2 BACKGROUND

In this section, we first introduce onion routing (OR) along with

mix networks, then explain the various models and capabilities of

OR networks and the existing approaches to formally analyzing

OR and mix packet formats in the related work.

2.1 Onion Routing and Mix Networks

Onion routing prevents an adversary from linking message senders

to their chosen receivers. This is done by routing traffic via multiple

intermediate servers known as relays. Each relay processes the

packets and forwards them to the next relay. If multiple honest

senders use the same honest relay for their route (or path), an
adversary should not be able to tell which of the relay’s outgoing

packets corresponds to which incoming packet based on an analysis

of the packets themselves. To ensure that an incoming packet is not

linkable to its outgoing packet, packets have a layer of encryption

for each relay on their path. Before sending a packet, the sender

adds one encryption layer for each relay on the path. The relays

then each remove one layer, with the final relay recovering the

plaintext. Packets are thus appropriately referred to as onions that
are peeled at relays [16].

Sender

Sender

𝑃1

𝑃1

𝑃 𝑗

𝑃 𝑗

𝑃𝑛 (=Receiver)

𝑃𝑛 Receiver

OR network

OR network

a)

b)

Figure 1: The difference between the integrated-system net-

work model (a) and the service network model (b). 𝑃𝑖 denotes

a relay. Dashed lines indicate omitted intermediate relays.

Anonymous communication systems designed in this way are

typically classified into one of two categories: Onion Routing net-

works andMix networks. The former, (e.g., TOR [15]) mainly protect

against local adversaries (i.e., individual corrupted relays or network

portions). They do not attempt to protect against global adversaries.

The other category is called Mix networks [8]. Mix networks like

Nym [14] add another step to onion processing at relays: In addi-

tion to decrypting and forwarding onions, they delay and reorder

onions to combat traffic analysis attacks from global attackers [8].

In this paper, we focus on the construction of packet schemes

in the context of a global adversary. Since the structure of packet

formats in OR and Mix networks is the same, our work remains

applicable to both OR and Mix networks in doing so. Designing a

packet format that is resistant to a global adversary ensures that

the format can be used both in OR and Mix networks. To remain

consistent with the related work in the field, we will stick to the

term OR in this work. Naturally, the packet format used in an OR

or Mix network has no impact on the protocol’s security against

attacks involving traffic analysis, dropping packets, or replay or

duplicate attacks. Thus, we do not consider these in this work.

2.2 Onion Routing Variants

Multiple different variants of OR have been proposed and used in

the field. These differ in their network models, assumptions, the

security provided, and their functionality:

• Network model: Some OR variants work in the integrated-
system network model, where message receivers are them-

selves relays [5, 8, 19], while others are based in the service
model, where receivers are generic servers that are unaware

of the OR network and protocol [9, 10, 12, 15, 16, 26]. In the

integrated-system model, the final relay on an onion’s path

is the onion’s receiver. On the other hand, in the service

model, the final relay is referred to as the exit relay and is

responsible for forwarding the message to the receiver out-

side of the OR network. Figure 1 shows a comparison of the

network models.

• Receiver trust: Most OR protocols do not assume that relays

or receivers are trusted by the sender. However, some pro-

tocols assume that honest senders will only choose to send

messages to honest or semihonest receivers [1].

• Payload integrity: For a given OR packet format, we consider

an onion to be composed of two parts: A header that contains
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the forwarding information for each hop of the onion and

a payload that contains the message and other information

for the final relay. A packet format can offer either hop-by-
hop integrity or end-to-end integrity for the payload of the

onion. With the former, the payload’s integrity is verified

at each relay. This allows manipulations to be detected as

early as at the next honest relay on an onion’s path. Several

schemes and protocols instead provide end-to-end integrity,

where the payload’s integrity is only verified at the final

relay [8, 9, 26, 27].

• Replies: Many variants support anonymous replies in ad-

dition to “forward” messages. In order to accomplish this

without receivers learning the identity of the sender, senders

typically prepare an anonymous return envelope that the

receiver can combine with its reply message to create a reply
onion. Some formalizations require reply onions to be indis-

tinguishable from forward onions to increase the anonymity

set of senders [1, 12, 20].

Our goal in this paper is to create a model that covers all of these

different variants in one framework for provable security.

2.3 Provably Secure Onion Routing

There are currently multiple frameworks for analyzing provably

secure OR schemes both in the face of a global adversary [1, 5, 19,

20, 26] and against a local adversary [2]. These works are all based

on the Universal Composability (UC) framework [6]. We focus on

the works that assume a global adversary in this paper. In UC, a

protocol is proven secure by showing that it is indistinguishable

from an ideal functionality F. F itself is an abstract version of

the protocol that is run by a trusted third party. This approach

makes it easy to understand the security properties of a protocol

by analyzing the simpler ideal functionality instead of the more

complicated real protocol.

2.3.1 Existing Formal Analysis. Analyzing OR using UC was first

proposed by Camenisch and Lysyanskaya, who construct an ideal

functionality and three game-based properties for the integrated-

system model without replies. They also provide an OR scheme for

this variant of OR. The properties were constructed such that any

OR packet scheme that satisfies the property would securely realize

the ideal functionality [5]. Camenisch and Lysyanskaya’s work, and

especially the game-based properties, are the formal foundation for

multiple OR protocols [9, 10, 12].

Later, Kuhn et al. found that the game-based properties do not

actually imply the ideal functionality. As a consequence, they also

discovered vulnerabilities in the protocols that based their security

proofs on the properties. They developed new onion properties that
they showed implied secure realization of the same ideal function-

ality [19].

Ando and Lysyanskaya introduce an ideal functionality for repli-

able OR with end-to-end integrity in the integrated-system model

along with another game-based property and an OR scheme [1].

Kuhn et al. similarly extend the integrated-system ideal function-

ality to include replies with hop-by-hop integrity [20]. The onion

properties proposed in their work are the base for the properties

we construct in this paper. Finally, [26] adapt [20]’s formalization

for the service model with end-to-end integrity with the goal of

proving security for the Sphinx protocol. We make use of their

work to adapt the framework to the new model in our general for-

malization. Each of these formalizations covers one specific variant

of OR models and functionalities, but does not extend further. In

particular, many existing protocols operate in OR variants that have

not been formalized.

2.3.2 Overview of Analysis Framework. In this work, we construct

a generalization of the OR analysis frameworks introduced by [5]

and expanded upon by [1, 19, 20, 26]. In the following, we present

the common features of these frameworks, including the basic

principle behind the ideal functionalities and the onion properties.

The adversary model shared by these frameworks is that of a global

adversary with statically corrupted relays and receivers and with

control over all of the links between machines on the network. We

adopt this adversary model for our framework as well.

To begin, consider a repliable onion sent by an honest relay 𝑃𝑠
along a path of relays with the final relay 𝑃𝑛 being corrupted. Each

relay on the forward and reply paths of the onion is either honest

or corrupted. We can split these paths at all of the honest relays.

This yields multiple path segments. Each segment starts and ends at

an honest relay except for the last segment on the forward path and

the first segment on the reply path: Since 𝑃𝑛 is corrupted, these end

(or begin, respectively) with a corrupted relay. The path segments

are illustrated in Figure 2. The concept of path segments is crucial

for our analysis of provably secure OR.

The first place where path segments play an important role is

in the OR ideal functionalities. Since an ideal functionality is run

entirely on a trusted party, it does not need to build any actual “real

onions”. Instead, all of the information on sent onions is handled in-

ternally. To model the fact that the adversary can see (and influence)

onions being sent over the network and via its corrupted relays, the

ideal functionality provides the adversary with random temporary

identifiers called 𝑡𝑖𝑑s. Each 𝑡𝑖𝑑 is mapped to a path segment of an

onion. Since every 𝑡𝑖𝑑 is chosen randomly, the adversary cannot

link multiple path segments of an onion together
1
.

Since many OR protocols work in a similar way aside from

their packet formats, proving that they realize one of the ideal

functionalities can be simplified: The analysis frameworks provide

game-based onion properties for the OR packet schemes. These are

accompanied by a proof that any scheme that satisfies the properties

can be used in an OR protocol that realizes the ideal functionality.

We give an overview of the onion properties as proposed by Kuhn

et al. [20] here. For details on how the properties are equivalent to

realizing the ideal functionality, see Section 7.6.

Kuhn et al. construct four onion properties in total. The first

of these is Correctness, which demands that an onion processes

correctly in the absence of an adversary. The remaining three prop-

erties are Layer Unlinkability (LU ), Backwards Layer Unlinkability
(LU←), and Tail Indistinguishability (TI ). Each provides protection

on a different part of an onion’s path.

• LU is responsible for path segments on the forward path

that start and end with honest relays.

• LU← is responsible for path segments on the reply path that

start and end with honest relays.

1
This corresponds to the adversary being able to track an onion along a path segment,

but not over an honest relay.
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𝑃𝑠 𝑃𝑛 𝑃𝑠

inputs

𝑚

LU path segment TI path segment LU← path segment

Figure 2: A repliable onion’s path can be split into three types of path segments as depicted. Each onion property guarantees

security on one type of path segment. In the onion property games, the onion layers on the corresponding path segment (the

top arrows) are replaced with random onion layers following the same path segment (the bottom arrows). Honest relays are

drawn in black while corrupted relays are drawn in red. Dashed arrows represent omitted relays on the path. 𝑃𝑠 is the sender

and 𝑃𝑛 is the final relay on the onion’s forward path.𝑚 is the message contained in the onion.

• TI is responsible for the last and first path segments of the

forward and reply paths respectively if the final relay is

corrupted.

The three properties all work analogously: At the beginning of

the game, the adversary chooses the parameters for an onion and the

boundaries of a path segment for that onion. The challenger builds

that onion along with a replacement random onion for that path

segment. When the challenger would give the adversary the onion

for that chosen path segment, it flips a coin and potentially gives the

adversary the random onion instead. Intuitively, if this replacement

is indistinguishable for every path segment of an onion, the packets

sent on the segments hold no more information than a random

identifier 𝑡𝑖𝑑 for the adversary. The replacements performed in

each property are depicted in Figure 2. Of course, this is exactly

what the adversary receives in the ideal functionalities.

2.3.3 Tagging Attacks. In a tagging attack, the attacker modifies

a part of a packet with the goal of re-identifying the modified

packet later. OR packet formats offer different levels of protection

against these modification attacks. We distinguish between two

levels of integrity protection: The first is hop-by-hop integrity, in

which modifications are detected immediately at the next honest

relay on an onion’s path. The second is end-to-end integrity, where

modifications are only detected at an onion’s final relay. A packet

format can protect each of a packet’s components using either

level of integrity. Some formats protect the entire packet with hop-

by-hop integrity (e.g., [5, 19, 20]). Other formats only protect the

routing information in the packet this way and use end-to-end

integrity for their payloads (e.g., [12, 27]).

Packet formats that use end-to-end integrity for their payloads

are potentially susceptible to tagging attacks. For example, the at-

tacker can modify the payload of an onion’s first layer in flight. The

intermediate relays do not notice this modification and forward

the onion normally. If the onion’s final relay is corrupted, the at-

tacker can observe that the malformed payload fails the integrity

check, thus linking the onion’s sender to the corrupted final relay. In

integrated-system-model variants, the final relay is the receiver, so

this attack allows linking honest senders to their chosen receivers

if the receivers they contact are corrupted. In service-model vari-

ants, the final relay is not the receiver. If the message and receiver

address are destroyed in the tagging attack and the sender chose

its exit relay at random, then the sender still cannot be linked to its

chosen receiver [26].

3 ONION ROUTING VARIANTS

Analyzing the different variants of onion routing settings and re-

quirements used in the related work [1, 5, 12, 19, 20, 26], we identify

four main modelling decisions along which the variants differ. Clas-

sifying the variants with our model allows us to capture every

variant of provably secure onion routing in the related work as well

as some currently-unexplored variants.

In the following, we first present each of our dimensions. We

then analyze each of the 16 variants on onion routing generated by

the different modelling decisions and map the related work to the

variants in our model.

3.1 STIR Model

Each letter in the acronym STIR stands for one binary option in

constructing the OR variant. When written with a bar (e.g., R), a

letter stands for the variants “without” that option (e.g., without

replies). Without a bar, it stands for the variants “with” the option.

The options are as follows:

S: Whether the variant is used as a service, i.e., whether the network
setting is the service model (S) or the integrated-system model
(S). In the integrated-system model, senders and receivers

are all themselves relays in the OR network.

T: The trust placed in receivers. Some formalizations assume that

the communication partners of honest senders are them-

selves honest and are thus trusted receivers [1] (T). Other
OR variants explicitly want to protect against untrusted re-
ceivers [19, 20] (T).

I: The integrity of onion payloads. Strong formalizations require the

integrity of onion payloads to be protected on a hop-by-hop
basis (I). In some variants, the less costly end-to-end integrity

(I) for payloads is sufficient. We note that the difference in

this aspect applies only to the integrity of the payload, not

the header of the onion.
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Number S T I R Used in Prev. formalized Notes

V1 S T I R [5, 19, 22, 23] Yes [19] “Baseline” variant

V2 S T I R [20] Yes [20]

V3 S T I R No Vulnerable to tagging attacks [19]

V4 S T I R [8–10, 18, 21, 29]
1

No Vulnerable to tagging attacks [19]

V5 S T I R No

V6 S T I R No

V7 S T I R No

V8 S T I R [1] Yes [1]

V9 S T I R [3]
2

No

V10 S T I R [4, 7, 10, 11, 16, 17, 25]
1

No

V11 S T I R [24]
3

No

V12 S T I R [2, 13, 15, 26–28]
1

Yes [26]

V13 S T I R No Equivalent to 9

V14 S T I R No Equivalent to 10

V15 S T I R No Equivalent to 11

V16 S T I R No Equivalent to 12

Table 1: Overview of OR variants with references to related work using those variants for OR and mix nets. A variant is

considered previously formalized if the related work introduces a formal framework that is generally applicable in the variant.

1
HORNET and TARANET use Sphinx in the V4 variant in its setup phase and switch to V12 and V10 respectively for data transmission [9, 10].

2
Beato et al. do not describe their OR model, but their Sphinx variant is suitable for variant V9.

3
Loopix permits reply messages via add-ons, but does not include them in its core design [24].

R: Replies. A formalization may choose to support both forward

onions and replies [1, 20] (R) or limit itself to only using

forward onions [5, 19] (R).

We provide an overview of the different OR variants in STIR

in Table 1 and give references to the related work where applica-

ble. In the following, we explain the notable features of each OR

variants and group those with similar properties into more general

categories.

3.1.1 Baseline OR Variants (V1, V9). We choose the integrated-

system-model OR variant V1 as our “baseline” variant because it

serves to clearly illustrate a basic form of OR. It does not assume

that receivers are trusted, does not use replies, and demands hop-

by-hop integrity of payloads. The other variants can be interpreted

as extensions (through adding replies or making receivers external

to the OR network) or relaxations (by assuming that receivers are

trusted or that payload integrity need only be verified on an end-to-

end basis) of this basic variant. V1 corresponds to the OR variant

first proposed by Camenisch and Lysyanskaya [5] and also used by

Kuhn et al. [19].

The matching service-model variant V9 behaves very similarly

to V1: One can transform an OR scheme in V1 to V9 by simply

including an external receiver’s address in the onion payloads and

changing the final relay’s role from that of the receiver to that of

the exit relay.

3.1.2 Tagging-Vulnerable Variants (V3, V4). Some variants are vul-

nerable to tagging attacks by construction. These attacks work in

service-model variants with end-to-end integrity protection of pay-

loads, where a modification is not detected until the onion reaches

its final relay. The attack works on V3 and V4 as described in Sec-

tion 2.3.3.

3.1.3 Trusted-Receiver Variants (V5–V8). In these OR variants, we

can assume that an honest sender will only communicate with an

honest receiver. This assumption allows us to relax some of our

security requirements: The final layers of onions (including their

decrypted payloads) can leak information about the sender without

impacting privacy. Notably, V7 and V8 permit the use of end-to-end

integrity without becoming vulnerable to the tagging attack that

affects V3 and V4.

3.1.4 Repliable OR Variants (V(2𝑘)). These OR variants extend the

functionality available in the baseline variant by adding replies.

This addition leads to a more complex formalization since one must

ensure privacy for both the forward and the reply paths of an honest

sender’s onion. In V8, it also causes a vulnerability inherent to the

OR variant.

Multiple formalizations for OR with replies exist in the related

work, including Kuhn et al.’s work in V2 [20], Ando and Lysyan-

skaya’s formalization for V8 [1], and [26]’s introduction of V12.

3.1.5 Sphinx Variants (V11, V12). V11 and V12 are notable in that

they are the service-model counterparts to the vulnerable variants

V3 and V4, but do not necessarily suffer from the same vulnerability.

This is due to the additional level of indirection introduced by the

exit relay. In the integrated-system model, an adversary-modified

payload is discovered by the receiver, thereby linking the sender to

the chosen receiver. In the service model, the exit relay decrypts

the modified payload. If the exit relay is chosen randomly by the

sender, this does not expose the link to the receiver as long as the

receiver address is destroyed in the modification attack. The onion
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properties for these variants are defined in a way that requires the

payload to be completely destroyed by such a modification.

We refer to these variants as Sphinx variants because V12 was
first introduced in [26] to prove the packet format Sphinx secure.

3.1.6 Trusted-Receiver Service-Model Variants (V13–V16). The vari-
ants V13 through V16 are the final combinations of the STIR options.

They combine the service model with the trusted-receiver assump-

tion.We argue that these variants are equivalent to variants V9–V12

because trusted receivers do not affect the variant in the service

model: The adversary is assumed to have full control over the link

from the exit relay to the receiver. Since we assume that forward

and reply messages are sent in plaintext without integrity protec-

tion, the adversary has full access to any receiver communication.

As a result, receivers being trustworthy has no benefit for the secu-

rity of the OR scheme. We omit V13–V16 in the following sections;

any results for V9–V12 can be analogously applied to the respective

variant.

4 NOTATION AND ASSUMPTIONS

4.1 Notation

In this work, we closely follow the notation introduced by the

related work ([19, 20]). In an OR network, we refer to the packets

sent between relays as onion layers (also shortened to onions). An
onion layer consists of a header 𝜂 and a payload 𝛿 , where the header

contains the forwarding information and the payload holds data

including the message 𝑚. Onions have paths that define which

relays process the layers of the onion in which order, denoted as

P = (𝑃1, . . . , 𝑃𝑛). In the integrated-system model (S), paths end

with the final relay on the onion’s path. In the service model (S), the

final relay is also referred to as the exit relay and is followed by the

external receiver𝑅 on the path. In the following sections, differences

between variants like the one above are denoted using

X rounded boxes like this one. The X is one or multiple of

the letters in STIR (or their negations) and indicates that

the boxes’ contents only apply in variants where X holds.

Multiple connected boxes are not exclusive.

Public-private keypairs are written as (𝑃𝐾, 𝑆𝐾). When discussing

layers of an onion 𝑂 , 𝑂𝑖 refers to the 𝑖-th layer, which is produced

by 𝑃𝑖−1 and sent to 𝑃𝑖 .

R Parameters for reply onions are marked with a backwards

arrow: □←.

4.2 Adversary Model

Throughout this paper, we assume that the adversary has global

control over all of the links in the network as well as a statically

corrupted set of relays and receivers. The adversary may actively

manipulate packets. We do not consider traffic analysis attacks in

this work since we focus on providing tools for packet formats.

4.3 Assumptions

The assumptions we make in this paper are inherited from the

related work, including [19, 20], and [26]. We quote [26]’s phrasings

in the following. These assumptions serve to make handling the

formal protocols more easily tractable and removing edge cases.

Assumption 1. A maximum path length (number of relays on
the path) of 𝑁 is used (inclusive upper bound) [5].

Assumption 2. Honest senders choose acyclic paths (to increase
the chance of picking at least one honest relay) [20].

Assumption 3. A sender always knows the public keys 𝑃𝐾𝑖 of
any relays 𝑃𝑖 it uses for its onion’s paths [5].

Assumption 4. An onion 𝑂 consists of a header 𝜂 and a payload
𝛿 such that 𝑂 = (𝜂, 𝛿) [1].

Assumption 5. Honest relays inside the OR network communicate
with each other via secure channels.
S Relays and external receivers do not communicate via secure

channels [26].

The choice of a secure transport protocol warrants discussion.

For instance, practical OR protocols in the service model may

choose to secure the channels between relays and receivers (e.g.,

via TLS). We do not assume so for two reasons: First, we prevent

loss of generality this way. Second, securing these channels does

not generally improve our privacy or integrity guarantees against

a global adversary. Since relays may be corrupted, the adversary

could read or manipulate messages at the exit relay even if the

channel to the receiver is secured. For a discussion of the use of

TLS between senders and receivers, see Section 8.

S Assumption 6. Honest external receivers cannot process
onions sent to them and thus drop them. Similarly, relays
do not expect any onions on channels to external receivers and
drop those as well [26].

Assumption 7. An onion [. . . ] never has an empty forward path.
R If it is repliable, it does not have an empty [reply] path [26].

This assumption serves to prevent a useless edge case. In repli-

able variants, we use an empty reply path as a sentinel value for a

non-repliable onion.

R Assumption 8. An honest relay will always drop an unso-
licited reply (i.e., a reply with a header the relay does not
recognize as belonging to the final reply [onion] layer of an
onion it sent) [26].

The relay would not be able to map this reply to any com-

munication, so discarding it is the obvious course of action.

5 OR SCHEMES

This section defines OR schemes for each STIR OR variant as tuples

of efficient algorithms. These definitions were originally proposed

by Camenisch and Lysyanskaya [5] and Ando and Lysyanskaya [1].

We inherit [26]’s presentation of the algorithms and modify them

to suit the different OR variants. An OR scheme in a STIR variant

is built using the following algorithms:

• 𝐺 , a key generation algorithm:

(𝑃𝐾, 𝑆𝐾) ← 𝐺 (1𝜆, 𝑝, 𝑃)
where 𝑃 ∈ N is a relay name and 𝑝 is the set of public parameters.
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• FormOnion, used by senders to build onions:

R 𝑂𝑖 ← FormOnion(𝑖,R,𝑚,P, 𝑃𝐾P),
R 𝑂𝑖 ← FormOnion(𝑖,R,𝑚,P, 𝑃𝐾P,P←, 𝑃𝐾P← ),

S with P (←) = (𝑃 (←)
1

, . . . , 𝑃
(←)
𝑛 (←)
),

S
with P (←) = (𝑃 (←)

1
, . . . , 𝑃

(←)
𝑛 (←)

, 𝑅),

𝑃𝐾P (←) = (𝑃𝐾
(←)
1

, . . . , 𝑃𝐾
(←)
𝑛 (←)
) .

𝑖 is the desired onion layer index (𝑖 > 1 is only required in our

onion properties, not in practice). If 𝑖 > 𝑛, the (𝑖 − 𝑛)-th layer of

the reply onion is output instead. R is the randomness for the

algorithm.

R To build a non-repliable onion, set P← = ().
• ProcOnion, used by relays to process onions:

(𝑂 ′, 𝑃 ′) ← ProcOnion(𝑆𝐾,𝑂, 𝑃),
where 𝑆𝐾 is the relay 𝑃 ’s secret key and 𝑂 is the onion layer

to process. 𝑂 ′ is the next layer and 𝑃 ′ is the next address on

the onion’s path. In case of an error, (𝑂 ′, 𝑃 ′) = (⊥,⊥). When

processing a final forward onion layer,

S (𝑚,⊥) ← ProcOnion(𝑆𝐾,𝑂𝑛, 𝑃𝑛) .
S (𝑚,𝑅) ← ProcOnion(𝑆𝐾,𝑂𝑛, 𝑃𝑛).
R (𝑚←,⊥) ← ProcOnion(𝑆𝐾,𝑂𝑛+𝑛← , 𝑃←𝑛← )

R • FormReply, used by the final relay to build a reply onion:

(𝑂←, 𝑃←) ← FormReply(𝑚←,𝑂, 𝑃, 𝑆𝐾),
where𝑚← is the reply message, 𝑂 is the final layer of the

forward onion, and 𝑆𝐾 is the final relay 𝑃 ’s secret key.

The following algorithms are only required for our onion prop-

erty definitions and proofs. For these definitions, recall that we

consider an onion 𝑂 = (𝜂, 𝛿) to consist of a header 𝜂 that contains

the forwarding information and a payload 𝛿 that holds the message

along with any associated data.

• RecognizeOnion (abbrev. ROnion), used in definitions to iden-

tify layers of a known onion:

R 𝑏 ← ROnion(𝑖,𝑂,R,𝑚,P, 𝑃𝐾P).
R 𝑏 ← ROnion(𝑖,𝑂,R,𝑚,P, 𝑃𝐾P,P←, 𝑃𝐾P← ) .

If the header of𝑂 matches the header of the 𝑖-th onion layer built

by FormOnion given these parameters, then 𝑏 = true. Other-
wise, 𝑏 = false. Note that 𝑂’s payload is deliberately ignored by

ROnion [20].

I • TagOnion, used to reproduce the effects of tagging onion

payloads:

𝑂 ← TagOnion(𝑂, 𝛿 ′,𝑂 ′),
TagOnion is used by the challenger in one of our onion prop-

erties when the adversary modifies an onion’s payload (thus

tagging it) and submits the onion with the correct header,

but a tagged payload to the challenger. 𝑂 is the unmodified

onion the challenger “expected” to receive, 𝛿 ′ is the tagged
payload of the actually-received onion, and 𝑂 ′ is another
onion.

TagOnion should modify 𝑂 ′’s payload such that the effect of the

modification is indistinguishable from the effect of the modifica-

tion applied to 𝛿 ’. For example, if the payload is encrypted using a

PRP, any modification leads to the payload decrypting to a random

bitstring. In this case, TagOnion could simply replace 𝑂 ′’s pay-
load with any random bitstring for an indistinguishable effect [26].

This definition is similar to one originally proposed by Ando and

Lysyanskaya [1].

Definition 1

An OR scheme is a tuple of PPT algorithms (𝐺 , FormOnion, Pro-

cOnion, R FormReply , ROnion, I TagOnion ).

An OR scheme can be turned into an OR protocol in a straight-

forward manner: After key generation, a sender chooses the param-

eters for its onion and builds it with FormOnion. The onion then

traverses the network as each relay runs ProcOnion on the onion

layer it receives and forwards the result. The final relay recovers

the payload contents and uses FormReply to build the reply onion,

which is forwarded back to the sender again.

S The final relay forwards the message to the receiver and

gets the reply message in response.

6 IDEAL FUNCTIONALITY

In this section, we describe our generalized ideal functionality F
and the security guarantees it provides. F adapts to every STIR OR

variant and is itself an adaptation and restructuring of the ideal

functionalities for OR presented in the related work by Camenisch

and Lysyanskaya [5], Kuhn et al. [19], and [26]. The full version

of F is given in Appendix A in pseudocode. Differences between

variants are denoted using the STIR letters.

As explained previously, the core concept behind the ideal func-

tionalities for OR in both our work and the related work is the

introduction of temporary identifiers (referred to as 𝑡𝑖𝑑s) as an

abstract representation of a sequence of onion layers on one of an

onion’s path segments. While the trusted IF holds all of the infor-

mation on the onion itself, the only information the adversary (or

simulator) receives on the onion as it moves through the network

are the random 𝑡𝑖𝑑s associated with each path segment along with

other information that an OR protocol in a given OR variant would

leak to the adversary.

The exact information provided to the adversary by F varies de-

pending on the OR variant and determines the level of privacy that

can be afforded by an OR protocol in that variant. In the following,

we explain the privacy guarantees that are provided by F in every

variant and detail which information is leaked to the adversary.

Fundamentally, F only provides privacy to its senders if at least

two onions from honest senders share the same honest relay on

their paths. In that case, the adversary cannot determine which of

the two 𝑡𝑖𝑑s “after” the honest relay belongs to which of the 𝑡𝑖𝑑s

“before” the honest relay and thus cannot link an honest sender to

the message it sent or to its receiver [19].

R The same logic protects onions on the reply path.

F does not protect against timing attacks, replay and duplicate

attacks, traffic analysis, or attacks that involve dropping all but one

of the honest onions that reach an honest relay. Protecting against

these attacks is out of scope for an IF and typically handled by the

protocol implementation instead of the OR scheme [19].
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In every variant, F leaks 𝑡𝑖𝑑s and the path segments they belong

to the adversary. This is unavoidable since an attacker can always

link onion layers that it processed itself.

S F also keeps messages from honest senders secret from the

adversary if the receiver is honest.

S The adversary learns message-receiver combinations for

every onion since these are sent in plaintext over the link

from the exit relay to the receiver.

R Received reply messages are not part of the honest parties’

output to the environment in F. If they were part of the

output, the adversary could learn which honest reply re-

ceiver received which message by asking the environment,

allowing it to link the reply receiver (the honest sender) to

the reply sender (the receiver) [26]. To ensure that F still

provides privacy to senders, we thus do not provide the

reply message output. This limitation is instructive for the

design of protocols using OR and is discussed in more depth

in Section 8.

I In these variants, the attacker can tag a set of 𝑡𝑖𝑑s while they

are in flight. When the onions these 𝑡𝑖𝑑s belong to reach

their last path segment, the adversary is informed that a

tagged onion was received if the last relay on the path is

corrupted [26]. In some variants, this allows linking senders

and receivers (see Section 3), so F does not protect senders

in these variants.

7 GENERALIZED ONION PROPERTIES

In this section, we present generalized versions of the four onion

properties previously introduced by Kuhn et al. [20]. For each OR

variant, satisfying a particular subset of these properties is sufficient

to securely realize the corresponding ideal functionality F2. We

first provide a general overview of the properties and explain which

of them are required to securely realize F in one of our variants.

Afterwards, we discuss each property in turn.

First, Correctness ensures that the scheme operates correctly

in the absence of an adversary. Onion path segments that begin

and end with an honest relay on the forward path are handled by

the next property, called Layer Unlinkability (LU ). Similarly, the

segments that begin and end with an honest relay on the reply path

are covered by Backwards Layer Unlinkability (LU←). Finally, Tail
Indistinguishability (TI ) is responsible for the segments at the end

of the forward path and the beginning of the reply path if 𝑃𝑛 is

corrupted.

7.1 Required Properties

Only some of the OR variants defined in Section 3 require all three of

the onion properties. Which property is required in which variants

is shown in the following:

All: Correctness, LU . Every OR variant requires Correctness and
features forward path segments that begin and end with

honest relays.

2
Note that protocols in the variants vulnerable to tagging attacks remain vulnerable

even if the properties are satisfied.

R: LU←. Analogously to the previous point, any variant that sup-

ports replies has reply path segments that begin and end

with honest relays.

T or S: TI . If an integrated-system-model OR variant does not trust

sender-chosen receivers, TI is necessary to protect onions on
path segments that end at a corrupted receiver. As described

in Section 3.1.6, we assume exit relays in the service model to

be untrusted in general. This means that the path segments

containing the exit relay require TI for protection.
The definitions of the onion properties also change depending

on the variant they are used in. These changes are discussed in

detail in the following.

7.2 Correctness

Correctness requires an OR scheme to behave as expected in the

absence of an adversary. Essentially, this means that processing

an onion with ProcOnion leads to the same sequence of relays

as in the forward (and reply) paths the onion was created with.

Processing the onion at the final relay must result in the correct

message and, in the service model, the correct receiver as well. The

following definition is adapted from [26]’s version of Correctness.

Definition 2 (Correctness)
Correctness is defined as:

Let (𝐺 , FormOnion, ProcOnion, R FormReply , Recog-

nizeOnion, TagOnion) be an OR scheme with maximum path

length N and polynomial |N| and |𝐷 |. Then for all 𝑛 < 𝑁, 𝜆 ∈
N, all choices of the public parameter 𝑝 , all choices of random-

ness R , all messages𝑚, all keypairs (𝑃𝐾 (←)
𝑖

, 𝑆𝐾
(←)
𝑖
) generated by

𝐺 (1𝜆, 𝑝, 𝑃 (←)
𝑖
), and all choices of internal randomness used to run

FormOnion and ProcOnion, the following needs to hold:

Correctness of forward path.

S For all choices of P = (𝑃1, . . . , 𝑃𝑛),
S For all choices of P = (𝑃1, . . . , 𝑃𝑛, 𝑅),

𝑄𝑖 = 𝑃𝑖 , for 1 ≤ 𝑖 ≤ 𝑛 and 𝑄1 := 𝑃1,

R 𝑂1 ← FormOnion(1,𝑚, 𝑅,P, 𝑃𝐾P),

R 𝑂1 ← FormOnion(1,𝑚, 𝑅,P, 𝑃𝐾P,P←, 𝑃𝐾P← ),

(𝑂𝑖+1, 𝑄𝑖+1) ← ProcOnion(𝑆𝐾𝑖 ,𝑂𝑖 , 𝑄𝑖 ) .
Correctness of request reception.

S (𝑚,⊥) = ProcOnion(𝑆𝐾𝑛,𝑂𝑛, 𝑃𝑛).

S (𝑚,𝑅) = ProcOnion(𝑆𝐾𝑛,𝑂𝑛, 𝑃𝑛) .

R Correctness of backward path.

For all choices of 𝑛← < 𝑁 ,𝑚←, reply path

P← = (𝑃←
1
, . . . , 𝑃←𝑛 ), and randomness in FormReply,

𝑄←𝑖 = 𝑃←𝑖 for 1 ≤ 𝑖 ≤ 𝑛
and (𝑂←

1
, 𝑄←

1
) ← FormReply(𝑚←,𝑂𝑛, 𝑃𝑛, 𝑆𝐾𝑛),

(𝑂←𝑖+1, 𝑄
←
𝑖+1) ← ProcOnion(𝑆𝐾←𝑖 ,𝑂←𝑖 , 𝑄←𝑖 ) .

Correctness of reply reception.

(𝑚←,⊥) = ProcOnion(𝑆𝐾←𝑛← ,𝑂
←
𝑛← , 𝑃

←
𝑛← ).
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The correctness of RecognizeOnion and TagOnion follows from

the following security properties, where they are required.

7.3 Forwards Layer Unlinkability (LU )

LU is the onion property that ensures that onion layers on a path

segment between two honest relays on the forward path are indistin-

guishable from random onion layers that only follow that segment.

It is used in every OR variant we discuss. We use Kuhn et al.’s

formulation of this property [20] and incorporate changes from

[26] to accomodate the variants handled in those works. Merging

these variants into a single property generates new combinations

that we consider in our constructions and proofs.

LU works as follows: The challenger holds two keypairs that

correspond to the honest sender relay and another honest relay.

The adversary is given oracle access to these honest relays. It then

submits parameters to the challenger for the honest sender relay to

build an onion. The challenger uses these to make the first layer𝑂1

of the adversary-chosen onion. The challenger also builds a second

“replacement” onion 𝑂1 that uses only the first path segment of

the adversary’s chosen path. The challenger then flips a coin and

outputs the corresponding onion to the adversary. After this, the

adversary gets oracle access again and can submit its challenge

onion to the honest relay’s oracle. If the onion the adversary re-

ceived was 𝑂1, it is processed as usual. However, if the adversary

received𝑂1 and the submitted onion is recognized as the processed

replacement onion by the challenger, the oracle responds with 𝑂𝑐 .

𝑂𝑐 is built with the adversary’s original inputs except that the first

path segment is cut from the front of the forward path. The adver-

sary must distinguish between the two different scenarios to win

the LU game.

The LU game changes depending on the OR variant. These

changes are indicated using rounded boxes in the definition. The

letter in the left cell of the box shows which variants the contents

of the box apply to. We also summarize the differences here: In

service-model variants, paths end in receivers, which are handled

accordingly. Repliable variants add reply oracles in addition to the

normal processing oracles and feature an additional case if the

first path segment consists of the entire forward path. Variants

without payload integrity change how the replacement challenge

onion is detected in the oracle during the second round of oracle

access: If the payload has not been manipulated, processing pro-

ceeds as normal. If the payload was tagged, the payload of𝑂𝑐 is also

tagged, the payload contents (i.e., the message and, in the service

model, the receiver) are replaced with randomness, and𝑂𝑐 becomes

non-repliable. The content replacement ensures that any protocol

that satisfies LU prevents tagging attacks that do not destroy the

payload contents.

Definition 3 (Forwards Layer Unlinkability)
LU is defined as:

(1) The adversary receives the honest router names 𝑃𝐻 , 𝑃𝑠 and

challenge public keys 𝑃𝐾𝑆 , 𝑃𝐾𝐻 , chosen by the challenger

by letting (𝑃𝐾𝐻 , 𝑆𝐾𝐻 ) ← 𝐺 (1𝜆, 𝑝, 𝑃𝐻 ) and (𝑃𝐾𝑆 , 𝑆𝐾𝑆 ) ←
𝐺 (1𝜆, 𝑝, 𝑃𝑠 ).

(2) Oracle access: The adversary may submit any number of

Proc requests for 𝑃𝐻 or 𝑃𝑠 to the challenger. When asked

for Proc(𝑃𝐻 ,𝑂 = (𝜂, 𝛿)), the challenger checks whether the

header 𝜂 is on the 𝜂𝐻 -list. If it is not on the list, it sends the

output of ProcOnion(𝑆𝐾𝐻 ,𝑂, 𝑃𝐻 ) to the adversary, stores

𝜂 on the 𝜂𝐻 -list and 𝑂 on the 𝑂𝐻 -list.

R The adversary may also submit Reply requests. For

any Reply(𝑃𝐻 ,𝑂,𝑚), the challenger checks if 𝑂

is on the 𝑂𝐻 -list and if so, the challenger sends

FormReply(𝑚,𝑂, 𝑃𝐻 , 𝑆𝐾𝐻 ) to the adversary.

(Similar for requests to 𝑃𝑠 with the 𝜂𝑆 and 𝑂𝑆 -list).

(3) The adversary submits

• a message𝑚,

• a position 𝑗 with 1 ≤ 𝑗 ≤ 𝑛,

•
S a path P = (𝑃1, . . . , 𝑃𝑛, 𝑅) with 𝑃 𝑗 = 𝑃𝐻 and a

receiver 𝑅,

S a path P = (𝑃1, . . . , 𝑃 𝑗 , . . . , 𝑃𝑛) with 𝑃 𝑗 = 𝑃𝐻 ,

• R a path P← = (𝑃←
1
, . . . , 𝑃←

𝑛← = 𝑃𝑠 ),
• and public keys for all nodes 𝑃𝐾𝑖 (1 ≤ 𝑖 ≤ 𝑛 for the nodes

on the path and 𝑛 < 𝑖 for the other relays).

(4) The challenger checks that the chosen paths are acyclic, the

router names are valid and that the same key is chosen if the

router names are equal, and if so, sets 𝑃𝐾 𝑗 = 𝑃𝐾𝐻 and picks

𝑏 ∈ 0, 1 at random. R 𝑃𝐾←
𝑛← = 𝑃𝐾𝑆 .

(5) The challenger creates the onion with the adversary’s input

choice and honestly chosen randomness R :
𝑂1 ← FormOnion(1,R,𝑚,P, 𝑃𝐾P),

and a replacement onion

S with the first part of the forward path and a random

receiver 𝑅: P = (𝑃1, . . . , 𝑃 𝑗 , 𝑅),
S with the first part of the forward path P =

(𝑃1, . . . , 𝑃 𝑗 ),
a random message𝑚 ∈ 𝑀 , honestly chosen randomness R .

𝑂1 ← FormOnion(1,R,𝑚,P, 𝑃𝐾P) .
R 𝑂1 ← FormOnion(1,R,𝑚,P, 𝑃𝐾P,P←, 𝑃𝐾P← ),

𝑂1 ← FormOnion(1,R,𝑚,P, 𝑃𝐾P,P
←, 𝑃𝐾P← ),

with P← = () being an empty reply path.

(6) If 𝑏 = 0, the challenger outputs 𝑂1 to the adversary.

Otherwise, the challenger outputs 𝑂1 to the adversary.

(7) Oracle access: If 𝑏 = 0 the challenger processes all oracle

requests as in step 2).

Otherwise, the challenger processes all requests as in step 2)

except for those where:

• If 𝑗 < 𝑛:

– Proc(𝑃𝐻 ,𝑂 = (𝜂, 𝛿)) with
ROnion( 𝑗,𝑂,R,𝑚,P, 𝑃𝐾P) = 𝑇𝑟𝑢𝑒,

I and the unmodified payload 𝛿 = 𝛿 𝑗 , 𝜂 not in 𝜂𝐻

and ProcOnion(𝑆𝐾𝐻 ,𝑂, 𝑃𝐻 ) ≠ (⊥,⊥):
The challenger outputs (𝑃 𝑗+1,𝑂𝑐 ) with

𝑂𝑐 ← FormOnion(1, R̃,𝑚, P̃, 𝑃𝐾P̃),
honestly chosen randomness R̃ , and forward path P̃ =

(𝑃 𝑗+1, . . . , 𝑃𝑛) and adds 𝜂 to the 𝜂𝐻 -list and 𝑂 to the

𝑂𝐻 -list.
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S P̃ = (𝑃 𝑗+1, . . . , 𝑃𝑛, 𝑅) .
R Include the reply paths in the algorithms:

ROnion( 𝑗,𝑂,R,𝑚,P, 𝑃𝐾P,P
←, 𝑃𝐾P← ) = 𝑇𝑟𝑢𝑒,

𝑂𝑐 ← FormOnion(1, R̃,𝑚, P̃, 𝑃𝐾P̃,P
←, 𝑃𝐾P← ) .

I – Proc(𝑃𝐻 ,𝑂 = (𝜂, 𝛿)) with
ROnion( 𝑗,𝑂,R,𝑚,P, 𝑃𝐾P) = 𝑇𝑟𝑢𝑒,

but the incorrect payload 𝛿 = 𝛿 ′, 𝜂 is not on the 𝜂𝐻 -list

and ProcOnion(𝑆𝐾𝐻 ,𝑂, 𝑃𝐻 ) ≠ (⊥,⊥):
The challenger outputs (𝑃 𝑗+1,𝑂𝑐 ) with

𝑂𝑐← FormOnion(1, R̃,𝑚, P̃, 𝑃𝐾P̃),
honestly chosen randomness R̃ , P̃ = (𝑃 𝑗+1, . . . , 𝑃𝑛),
a freshly chosen random message𝑚, and with 𝑂𝑐 ←
TagOnion(𝑂 𝑗 , 𝛿

′,𝑂𝑐 ). The challenger adds 𝜂 to the

𝜂𝐻 -list and 𝑂 to the 𝑂𝐻 -list.

S P̃ = (𝑃 𝑗+1, . . . , 𝑃𝑛, 𝑅) with a random 𝑅.

R Include the reply path P← in ROnion and an

empty reply path in FormOnion:

ROnion( 𝑗,𝑂,R,𝑚,P, 𝑃𝐾P,P
←, 𝑃𝐾P←)=𝑇𝑟𝑢𝑒,

𝑂𝑐←FormOnion(1, R̃,𝑚, P̃, 𝑃𝐾P̃, (), ()).

• If 𝑗 = 𝑛:

– Proc(𝑃𝐻 ,𝑂 = (𝜂, 𝛿)) with
ROnion( 𝑗,𝑂,R,𝑚,P, 𝑃𝐾P) = 𝑇𝑟𝑢𝑒,

𝜂 is not on the 𝜂𝐻 -list and

ProcOnion(𝑆𝐾𝐻 ,𝑂, 𝑃𝐻 ) ≠ (⊥,⊥):
The challenger outputs (𝑚,⊥) and adds 𝜂 to the 𝜂𝐻 -list

and 𝑂 to the 𝑂𝐻 -list.

R Include the corresponding reply path in the algo-

rithm:

ROnion( 𝑗,𝑂,R,𝑚,P, 𝑃𝐾P,P
←, 𝑃𝐾P← ) = 𝑇𝑟𝑢𝑒,

R – Reply(𝑃𝐻 ,𝑂,𝑚←) with
ROnion( 𝑗,𝑂,R,𝑚,P,P←, 𝑃𝐾P, 𝑃𝐾P← ) = 𝑇𝑟𝑢𝑒,

𝑂 is on the 𝑂𝐻 -list and has not been replied before

and

FormReply(𝑚←,𝑂, 𝑃𝐻 , 𝑆𝐾𝐻 ) ≠ (⊥,⊥):
The challenger outputs (𝑂𝑐 , 𝑃

←
1
) with

𝑂𝑐 ← FormOnion( 𝑗 +1, R̃,𝑚←,P,P←, 𝑃𝐾P, 𝑃𝐾P←)
and honestly chosen randomness R̃ .

(8) The adversary produces guess 𝑏 ′.

LU is achieved if any PPT adversary A cannot guess 𝑏 ′ = 𝑏 with a

probability non-negligibly better than
1

2
[20].

7.4 Backwards Layer Unlinkability (LU←)
LU← ensures that onion layers on a path segment between two

honest relays on the reply path are indistinguishable from random

forward onion layers that only follow that segment. Accordingly,

it is only used for repliable OR variants. Like with LU , we base

our version of LU← on Kuhn et al.’s version [20] with changes

from [26]. This merger leads to the creation of new combinations,

which we discuss in our proofs.

LU← works similarly to LU , but the onion replacement takes

place on the reply path. After getting oracle access to the honest re-

lays, the adversary submits its parameters for the first forward layer

𝑂1 of the adversary-chosen onion. The challenger then chooses a

random bit 𝑏. If 𝑏 = 0, 𝑂1 is built and given to the adversary with

the correct parameters. If 𝑏 = 1, 𝑂1’s reply path is truncated at

the end, removing the last path segment between the honest relay

and the honest sender. The adversary can now access the oracles

again. If the adversary received the onion with the truncated path,

the honest relay oracle operates differently when recognizing the

challenge onion: A new random onion 𝑂1 that only uses the last

path segment to the honest sender is given to the adversary. If

the challenge onion is submitted to the honest sender, it outputs

nothing in both scenarios.

The LU← game only changes in service-model variants: In those,

receivers are included in the paths and handled accordingly. Note

that, unlike LU , LU← does not require special logic for variants

without payload integrity. This is because the honest sender does

not output any messages or error symbols for challenge onions, so

manipulated payloads are simply discarded.

Definition 4 (Backwards Layer Unlinkability)
LU← is defined as:

(1) The adversary receives the honest router names 𝑃𝐻 , 𝑃𝑠 and

challenge public keys 𝑃𝐾𝑆 , 𝑃𝐾𝐻 , chosen by the challenger

by letting (𝑃𝐾𝐻 , 𝑆𝐾𝐻 ) ← 𝐺 (1𝜆, 𝑝, 𝑃𝐻 ) and (𝑃𝐾𝑆 , 𝑆𝐾𝑆 ) ←
𝐺 (1𝜆, 𝑝, 𝑃𝑠 ).

(2) Oracle access: The adversary may submit any number of

Proc and Reply requests for 𝑃𝐻 or 𝑃𝑠 to the challenger. For

any Proc(𝑃𝐻 ,𝑂 = (𝜂, 𝛿)), the challenger checks whether

the header 𝜂 is on the 𝜂𝐻 -list. If it is not on the list, it sends

ProcOnion(𝑆𝐾𝐻 ,𝑂, 𝑃𝐻 ), stores 𝜂 on the 𝜂𝐻 -list and 𝑂 on

the𝑂𝐻 -list. For any requestReply(𝑃𝐻 ,𝑂,𝑚), the challenger
checks if 𝑂 is on the 𝑂𝐻 -list. If so, the challenger sends

FormReply(𝑚,𝑂, 𝑃𝐻 , 𝑆𝐾𝐻 ) to the adversary. (Similar for re-

quests on 𝑃𝑠 with the 𝜂𝑆 -list).

(3) The adversary submits

• a message𝑚,

• a position 𝑗← with 0 ≤ 𝑗← ≤ 𝑛←,

•
S a path P = (𝑃1, . . . , 𝑃𝑛, 𝑅) with a receiver 𝑅 and

where 𝑃𝑛+1 = 𝑃𝐻 , if 𝑗← = 0,

S a path P = (𝑃1, . . . , 𝑃𝑛) where 𝑃𝑛 = 𝑃𝐻 , if 𝑗← = 0,

• a path P← = (𝑃←
1
, . . . , 𝑃←

𝑗← , . . . , 𝑃
←
𝑛← = 𝑃𝑠 ) with the hon-

est node 𝑃𝐻 at backward position 𝑗← if 1 ≤ 𝑗← ≤ 𝑛←
and the second honest node 𝑃𝑠 at position 𝑛

←
,

• and public keys for all nodes 𝑃𝐾𝑖 (1 ≤ 𝑖 ≤ 𝑛 for the nodes

on the path and 𝑛 < 𝑖 for the other relays).

(4) The challenger checks that the chosen paths are acyclic, the

router names are valid and that the same key is chosen if the

router names are equal, and if so, sets 𝑃𝐾←
𝑗← = 𝑃𝐾𝐻 (resp.

𝑃𝐾𝑛+1 if 𝑗← = 0), 𝑃𝐾←
𝑛←+1 = 𝑃𝐾𝑆 and sets bit 𝑏 at random.

(5) The challenger creates the challenge onion:

• 𝑏 = 0: The challenger creates the onion with the adver-

sary’s input choice and honestly chosen randomness R :
𝑂1 ← FormOnion(1,R,𝑚,P,P←, 𝑃𝐾P, 𝑃𝐾P← )
and sends 𝑂1 to the adversary.

150



A Framework for Provably Secure Onion Routing against a Global Adversary Proceedings on Privacy Enhancing Technologies 2024(2)

• 𝑏 = 1: The challenger creates an onion with the adver-

sary’s inputs, but a reply path P← := (𝑃←
1
, . . . , 𝑃←

𝑗← ) that
is truncated after relay 𝑃←

𝑗← , and honestly chosen random-

ness R :
𝑂1 ← FormOnion(1,R,𝑚,P,P←, 𝑃𝐾P, 𝑃𝐾P← )

(6) The adversary gets oracle access as in step 2) except for those

where:

(a) The request is. . .

• for 𝑗← > 0: Proc(𝑃𝐻 ,𝑂 = (𝜂, 𝛿)) with
ROnion(𝑛 + 𝑗←,𝑂,R,𝑚,P,P←, 𝑃𝐾P, 𝑃𝐾P←) = 𝑇𝑟𝑢𝑒,

𝜂 is not on the 𝜂𝐻 -list and

ProcOnion(𝑆𝐾𝐻 ,𝑂, 𝑃𝐻 ) ≠ (⊥,⊥):
stores 𝜂 on the 𝜂𝐻 and 𝑂 on the 𝑂𝐻 -list and . . .

• for 𝑗← = 0: Reply(𝑃𝐻 ,𝑂,𝑚←) with
ROnion(𝑛,𝑂,R,𝑚,P,P←, 𝑃𝐾P, 𝑃𝐾P← ) = 𝑇𝑟𝑢𝑒,
𝑂 is on the 𝑂𝐻 -list and no onion with this 𝜂 has been

replied to before and

FormReply(𝑚←,𝑂, 𝑃𝐻 , 𝑆𝐾𝐻 ) ≠ (⊥,⊥):
. . . then: The challenger picks the rest of the return path

S P = (𝑃←
𝑗←+1, . . . , 𝑃

←
𝑛←+1, 𝑅) with an honestly cho-

sen random receiver 𝑅,

S P = (𝑃←
𝑗←+1, . . . , 𝑃

←
𝑛←+1),

an empty backward path P← = (), a random message𝑚,

and honestly chosen randomness R and generates:

𝑂1 ← FormOnion(1,R,𝑚,P,P←, 𝑃𝐾P, 𝑃𝐾P← ) .
• If 𝑏 = 0, the challenger calculates

(𝑂 𝑗←+1, 𝑃←𝑗←+1)=
{
ProcOnion(𝑆𝐾𝐻 ,𝑂, 𝑃←𝑗←) for 𝑗←>0,

FormReply(𝑚←,𝑂, 𝑃←
𝑗←, 𝑆𝐾𝐻 ) for 𝑗

←=0
and outputs 𝑂 𝑗←+1 for 𝑃←𝑗←+1 to the adversary.

• Otherwise, the challenger outputs 𝑂1 for 𝑃
←
𝑗←+1 to the

adversary.

(b) Proc(𝑃𝑠 ,𝑂) with𝑂 being the challenge onion as processed

for the final receiver on the backward path, i.e.:

• for 𝑏 = 0:

ROnion(𝑛 + 𝑛←,𝑂,R,𝑚,P,P←, 𝑃𝐾P, 𝑃𝐾P← ) = 𝑇𝑟𝑢𝑒
• for 𝑏 = 1:

ROnion(𝑛←− 𝑗←,𝑂,R,𝑚,P,P←, 𝑃𝐾P, 𝑃𝐾P← ) = 𝑇𝑟𝑢𝑒
. . . then the challenger outputs nothing.

(7) The adversary produces guess 𝑏 ′.

LU← is achieved if any PPT adversaryA cannot guess 𝑏 ′ = 𝑏 with

a probability non-negligibly better than
1

2
[20].

7.5 Tail Indistinguishability (TI )
TI is the final onion property. It handles onion layers on path

segments between an honest relay and the final corrupted relay on

the forward path as well as between a corrupted replying relay and

the first honest relay on the reply path. For these layers, TI ensures
that they are indistinguishable from random onion layers that only

follow those path segments and have the same message. Thus, TI
is used for OR variants that do not trust the receivers chosen by

honest senders or that are in the service model, where exit relays

are generally untrusted.

In repliable variants, TI operates as follows: The challenger con-
trols three keypairs. These model the honest sender, an honest

relay on the forward path, and an honest relay on the reply path.

The adversary is given oracle access to these relays and submits

the parameters for its adversary-chosen 𝑂1. The challenger now

chooses a random bit 𝑏. If 𝑏 = 0, the challenger uses the parameters

to build the onion layer that would have been output by the honest

relay on the forward path in normal processing and outputs it to

the adversary. If 𝑏 = 1, the adversary instead receives a random

onion that uses the path segment between the honest relay and

the corrupted receiver as its forward path. The random onion also

includes the first path segment on 𝑂1’s reply path as its reply path.

The adversary is given oracle access again and must determine

which scenario it is in. The adversary may submit the challenge

onion to the oracle for the honest relay on the reply path. In that

case, the oracle outputs nothing.

In non-repliable variants, there is no reply path and thus no

second honest relay. The random onion is accordingly built without

a reply path as well. No special oracle handling is added in non-

repliable variants since there is no honest relay left on the path of

the challenge onion.

As discussed above, TI adds a second honest relay on the reply

path for repliable variants. In service-model variants, receivers are

added to the paths accordingly and the random onion’s receiver is

the same as that of the adversary-chosen onion. TI does not require
modifications in variants without payload integrity since there is

no oracle processing that outputs a challenge onion and would thus

have to account for it.

Definition 5 (Tail Indistinguishability)
TI is defined as:

(1) The adversary receives the honest router names 𝑃𝑠 , 𝑃𝐻 and

challenge public keys 𝑃𝐾𝑆 , 𝑃𝐾𝐻 , chosen by the challenger

by letting (𝑃𝐾𝑆 , 𝑆𝐾𝑆 ) ← 𝐺 (1𝜆, 𝑝, 𝑃𝑠 ) and (𝑃𝐾𝐻 , 𝑆𝐾𝐻 ) ←
𝐺 (1𝜆, 𝑝, 𝑃𝐻 ).
R The adversary also receives the router name 𝑃←

𝐻
with the public key 𝑃𝐾←

𝐻
, where (𝑃𝐾←

𝐻
, 𝑆𝐾←

𝐻
) ←

𝐺 (1𝜆, 𝑝, 𝑃←
𝐻
).

(2) Oracle access: The adversary may submit any number of

Proc requests for 𝑃𝐻 or 𝑃𝑠 to the challenger. When asked

for Proc(𝑃𝐻 ,𝑂 = (𝜂, 𝛿)), the challenger checks whether

the header 𝜂 is on the 𝜂𝐻 -list. If not, it sends the output of

ProcOnion(𝑆𝐾𝐻 ,𝑂, 𝑃𝐻 ), stores 𝜂 on the 𝜂𝐻 -list and 𝑂 on

the 𝑂𝐻 -list.

R The adversary may also submit Reply requests

and 𝑃←
𝐻

is also available as an oracle. For any

Reply(𝑃𝐻 ,𝑂,𝑚), the challenger checks if 𝑂 is

on the 𝑂𝐻 -list and if so, the challenger sends

FormReply(𝑚,𝑂, 𝑃𝐻 , 𝑆𝐾𝐻 ) to the adversary.

(Similar for requests to R 𝑃←
𝐻 , 𝑃𝑠 ).

(3) The adversary submits

• a message𝑚,

•
S a path P = (𝑃1, . . . , 𝑃 𝑗 , . . . , 𝑃𝑛, 𝑅) with a receiver

𝑅,

S a path P = (𝑃1, . . . , 𝑃 𝑗 , . . . , 𝑃𝑛)
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with the honest node 𝑃𝐻 R or 𝑃←
𝐻 at position 𝑗, 1 ≤

𝑗 < 𝑛,

R • a path P← = (𝑃←
1
, . . . , 𝑃←

𝑛← ) with the honest node

𝑃←
𝐻

at position 1 ≤ 𝑗← ≤ 𝑛← + 1

• and public keys for all nodes 𝑃𝐾𝑖 (1 ≤ 𝑖 ≤ 𝑛 for the nodes

on the path and 𝑛 < 𝑖 for the other relays).

(4) The challenger checks that the given paths are acyclic, the

router names are valid and that the same key is chosen if the

router names are equal, and if so, sets 𝑃𝐾 𝑗 = 𝑃𝐾𝐻

R (or 𝑃𝐾𝑗 = 𝑃𝐾←
𝐻
, if the adversary chose 𝑃←

𝐻
at this

position as well), 𝑃𝐾←
𝑗← = 𝑃𝐾←

𝐻
, 𝑃𝐾←

𝑛← = 𝑃𝐾𝑆

and sets bit 𝑏 at random.

(5) The challenger creates the onion with the adversary’s input

choice and honestly chosen randomness R :
𝑂 𝑗+1 ← FormOnion( 𝑗 + 1,R,𝑚,P,P←, 𝑃𝐾P, 𝑃𝐾P← )
and a replacement onion with the path from the honest relay

𝑃𝐻 to the corrupted final relay P = (𝑃 𝑗+1, . . . , 𝑃𝑛), honestly
chosen randomness R
R and the backward path from the corrupted final

relay starting at position 0 ending at 𝑗←: P← =

(𝑃←
1
, . . . , 𝑃←

𝑗← ):

𝑂1 ← FormOnion(1,R,𝑚,P, 𝑃𝐾P).
S P = (𝑃 𝑗+1, . . . , 𝑃𝑛, 𝑅).
R Include the corresponding reply path in the algo-

rithms:

𝑂1 ← FormOnion(1,R,𝑚,P, 𝑃𝐾P,P
←, 𝑃𝐾P← ) .

(6) If 𝑏 = 0: The challenger sends 𝑂 𝑗+1 to the adversary.

Otherwise: The challenger sends 𝑂1 to the adversary.

(7) Oracle access: the challenger processes all requests as in step

2)

R except for those where Proc(𝑃←
𝐻
,𝑂) with𝑂 being the

challenge onion as processed for the honest relay on

the backward path, i.e.:

• for 𝑏 = 0:

ROnion(𝑛+ 𝑗←,𝑂,R,𝑚,P,P←, 𝑃𝐾P, 𝑃𝐾P← ) = 𝑇𝑟𝑢𝑒
or

• for 𝑏 = 1:

ROnion((𝑛− 𝑗)+ 𝑗←,𝑂,R,𝑚,P,P←, 𝑃𝐾P, 𝑃𝐾P←)=𝑇𝑟𝑢𝑒
. . . then the challenger outputs nothing.

(8) The adversary produces guess 𝑏 ′.

TI↔ is achieved if any PPT adversary A cannot guess 𝑏 ′ = 𝑏 with

a probability non-negligibly better than
1

2
[20].

7.6 UC Realization

We aim to prove that the onion properties we constructed for each

OR variant suffice to securely realize the corresponding IF for that

variant. With that, we complete our formalization: When creating

an OR scheme, proofs can be written for the OR properties, while

the IFs allow for intuitive reasoning about the privacy guarantees

of the variants.

Definition 6

A secure OR scheme (𝐺 , FormOnion, ProcOnion, R FormReply ,

ROnion, TagOnion) in an OR variant is an OR scheme that satisfies

that variant’s subset of the onion properties Correctness, LU , LU←,

and TI .

Definition 7

A secure OR protocol is based on a secure OR scheme in an OR

variant and behaves as described in Definition 1.

Theorem 1. A secure OR protocol in an OR variant securely real-
izes that variant’s OR IF F.

The proof argument for Theorem 1 can be found in Appendix B.

8 DISCUSSION

In this section, we discuss our assumptions as well as additional

aspects of OR protocol design to consider when using the STIR

model.

Indistinguishability of Forward and Reply Onions. In our ideal

functionality and onion properties, we demand that the adversary

cannot distinguish forward onion layers between two honest relays

from reply onion layers between the same honest relays if the

onion’s (forward) sender is honest. This requirement is not strictly

necessary for secure OR with replies and comes with efficiency and

security tradeoffs (see [26] for a detailed discussion). We do so in

keeping with the related work on provably secure OR and because

it doubles the expected size of the set of onions any given onion

could be confused with.

Choice of Relays. A user must choose a path of relays for ev-

ery onion they send. To provide protection, OR requires that the

path includes at least one honest relay. Ideally, paths would thus

be acyclic (Assumption 2) and consist of entirely random relays

to maximize the chances of choosing an honest relay. In practice,

users might instead opt for paths that incorporate topological or

geographical concerns. This must be done with care to prevent

tracking. In service-model variants that permit tagging, exit relays

must be chosen randomly. Since tagging allows the global adver-

saries to link senders to exit relays, any senders that choose exit

relays predictably risk deanonymizing themselves.

Reacting to Replies. When an honest sender sends a repliable

onion to a corrupted receiver, the adversary controls the reply

message. If the adversary can choose a reply message that provokes

an (observably distinct) reaction from the sender, the adversary can

use that to link the sender to its original forward message. This

also applies when the adversary tags a reply onion to destroy its

contents. When designing a protocol that uses OR, this potential

risk must be taken into account.

End-to-end Encryption. In this work, we assume that senders

do not encrypt the messages inside the onions they send to their

chosen receivers. However, in practice, senders will often use end-

to-end encryption (E2EE) via protocols like TLS inside onions to

secure their messages. In the integrated-system model, this makes

no difference: the OR protocol itself already ensures end-to-end

encryption and integrity from the sender to the final relay, which

is also the receiver.
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The service model behaves differently due to the addition of

the link between the exit relay and the receiver. When using CCA-

secure E2EE here, the adversary does not learn plaintext messages

or replies on the final link. We considered including the use of E2EE

in this manner in our analysis framework, but found that doing so

made both the ideal functionality and the onion properties in the

service model excessively complex due to the special case on the

final link: Since the packet sent on that link is an E2E-encrypted

ciphertext instead of an onion, we must essentially duplicate every

onion property to also handle the cases where the property’s honest

relay 𝑃𝐻 is the exit relay and it sends or receives a ciphertext instead

of an onion. Instead, we choose to discuss the consequences of the

inclusion informally here.

The protection offered by adding E2EE to service-model OR is

similar to that of adding an additional innermost onion layer to

each onion, which is peeled by the receiver. This is not entirely

equivalent to the integrated-system model since relays are distinct

from receivers (i.e., receivers cannot be chosen as intermediate

relays) and encrypted reply messages can be tagged (i.e., destroyed)

before they are embedded in their reply onion by the exit relay.

Apart from these differences, packets in the service model with

E2EE behave like packets in the integrated-system model.

9 CONCLUSION

In this work, we first propose the STIR model to categorize existing

OR and mix networks as well as their formalizations. Our STIR

model comprises twelve distinct categories distinguished by four

binary properties: the Service setting, Trust in receivers, Integrity

of payloads, and Replies.

Building upon the identified variants, we propose the STIR frame-

work that covers the privacy requirements of OR packet formats for

each of the variants. More precisely, for each variant, we construct

an ideal functionality F and onion properties Correctness, LU , LU←,

and TI . We show that an OR packet format that satisfies its variant’s

properties securely realizes that variant’s F.
Using our framework, new OR packet formats can be proven

secure using our onion properties. The OR protocols based on these

packet formats can then be used as a component in larger protocols

with the help of F, which offers an abstract interface to the OR

protocol, again making it easier to prove security for the larger

protocols.
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A IDEAL FUNCTIONALITY

In this appendix, we present our generalized ideal functionality

F for OR in any of our OR variants. The functionality is given as

pseudocode in three algorithms: Algorithm 1, Algorithm 2, and

Algorithm 3. F consists of several routines that are executed by the

trusted third party when triggered. Routines labeled On message

are triggered byZ or S directly via sending the according message

with the listed parameters to the trusted party. Routines labeled

procedure are used internally by F and are only called from other

routines. Outputs are sent to the honest and corrupted parties via

the Send procedure.

In F, onions are a tuple of parameters used for the onion’s pro-

cessing:

• 𝑠𝑖𝑑 : A unique identifier for every onion in the network.

• 𝑃𝑠 ,𝑚, P, P←: The parameters used to construct the onion.

These are the same as the parameters to FormOnion. For

the sake of readability, we retain the reply path parameter in

the pseudocode even in non-repliable variants. In that case,

the reply path is always empty.

• 𝑖: The index of the most recent honest relay on the onion’s

path that processed the onion.

• 𝑑 : The current direction of the onion, i.e., whether it is on its

forward (𝑓 ) or reply (𝑏) path.

Fmaintains multiple data structures to keep track of onions and

temporary identifiers:

• Bad: The static set of corrupted parties in the network.

• 𝐿𝑜 : The list of onion layers under the adversary’s control.

Onion layers are added to this list once per path segment

when they are forwarded by their sender or an honest relay.

• 𝐵𝑖 : The list of onion layers currently held by the honest

relay 𝑃𝑖 . A layer is removed from the list whenZ decides to

forward the onion.

R • 𝐵𝑟
𝑖
: The list of honest reply onions currently held by the

honest relay 𝑃𝑖 . These are onions where 𝑃𝑖 is the final relay

on the forward path and the reply onion has been created,

but not yet forwarded byZ.

• 𝐵𝑎𝑐𝑘 : 𝐵𝑎𝑐𝑘 maps temporary identifiers to onion reply

information. An entry in 𝐵𝑎𝑐𝑘 is created when an onion

reaches its final honest relay. The information is used when

the reply onion is created due to S or an honest 𝑃𝑖 .

• 𝐼𝐷fwd: 𝐼𝐷fwd maps from the 𝑠𝑖𝑑 of a forward onion to

the corresponding 𝑠𝑖𝑑 ′ of the reply onion. This is used for

outputs to S when processing onions from a corrupted

sender.

S • 𝑅𝑒𝑝𝑖 : On an honest exit relay 𝑃𝑖 , this list maps

the temporary identifiers used in 𝐵𝑎𝑐𝑘 to reply IDs,
which keep track of the connection between the exit

relay and the receiver.

I • 𝐿tag: The list of onions that have been tagged by the ad-

versary.

As a guide for understanding the processing of an onion in F,
we provide Figure 3. The figure illustrates the order in which the

routines in F are used to process an onion.

Algorithm 1 Ideal Functionality F (Creation and Onion Processing)
⊲ 𝑃𝑠 ∈ N creates and sends a new onion

On message ProcessNewOnion(𝑚, P, P←) from Z or S via 𝑃𝑠
P← ← () R

if |P | > 𝑁 or |P← | > 𝑁 then reject

else

𝑠𝑖𝑑 ←𝑅
session ID

𝑂 ← (𝑠𝑖𝑑, 𝑃𝑠 ,𝑚, P, P←, 0, 𝑓 )
OutputCorruptSender(𝑃𝑠 , 𝑠𝑖𝑑,𝑚, P, P←, start, 𝑓 )
ProcessNextStep(𝑂)

⊲ Give S all information on an onion if 𝑃𝑠 is corrupted

procedure OutputCorruptSender(𝑃𝑠 , 𝑠𝑖𝑑,𝑚, P, P←, 𝑡𝑖𝑑,𝑑)
if 𝑑 = 𝑓 and 𝑃𝑠 ∈ Bad then

Send(S, “𝑡𝑖𝑑 is from 𝑃𝑠 with 𝑠𝑖𝑑 ,𝑚, P, P← , 𝑑”)

else if 𝑑 = 𝑏 and P←|P←|−1 ∈ Bad then

Send(S, “𝑡𝑖𝑑 is reply from 𝑃𝑠 with 𝑠𝑖𝑑 ,𝑚, P, P← ,

𝑑 , replying to onion from P←|P←|−1 with 𝐼𝐷fwd (𝑠𝑖𝑑)”)

R

⊲ 𝑃𝑜𝑖 has processed𝑂 , passes it to 𝑃𝑜𝑖+1
procedure ProcessNextStep(𝑂 = (𝑠𝑖𝑑, 𝑃𝑠 ,𝑚, P, P←, 𝑖, 𝑑))

if ∀𝑗 > 𝑖 : 𝑃𝑜𝑗 ∈ Bad or 𝑖 = |P | then
⊲ Either all remaining relays including the final relay

⊲ (or reply receiver) are corrupted, S or 𝑃𝑜𝑖 is the exit relay

if 𝑂 ∈ 𝐿tag then DeliverTagged(𝑂) I

else

if 𝑑 = 𝑓 then LeakMessage(𝑂)

else LeakReplyOnion(𝑂) R

else ProcessToRelay(𝑂)

⊲ S learns the message at the end of𝑂 ’s path

procedure LeakMessage(𝑂 = (𝑠𝑖𝑑, 𝑃𝑠 ,𝑚, P, P←, 𝑖, 𝑑))
if𝑚 = ⊥ then return

OutputCorruptSender(𝑃𝑠 , 𝑠𝑖𝑑,𝑚, P, P←, end, 𝑑)

if P← ≠ () then
ConfigureReply(𝑂)

R

if 𝑖 = |P | then Send(𝑃𝑜𝑖 , “Sent message to 𝑃𝑜 |P |−1 ”) S

else Send(𝑃𝑜𝑖 , “Sent onion to 𝑃𝑜𝑖+1 ”)

Send(S, “𝑃𝑜𝑖 sends onion with message𝑚 to 𝑃𝑜 |P |−1
via (𝑃𝑜𝑖+1 , . . . , 𝑃𝑜 |P |−2 )”)

⊲ Process onion with honest successor relay 𝑃𝑜𝑗
procedure ProcessToRelay(𝑂 = (𝑠𝑖𝑑, 𝑃𝑠 ,𝑚, P, P←, 𝑖, 𝑑))

𝑃𝑜𝑗 ← 𝑃𝑜𝑘 with smallest 𝑘 > 𝑖 such that 𝑃𝑜𝑘 ∉ Bad

𝑡𝑖𝑑 ←𝑅
temporary ID

Send(S, “𝑃𝑜𝑖 sends 𝑡𝑖𝑑 to 𝑃𝑜𝑗 via (𝑃𝑜𝑖+1 , . . . , 𝑃𝑜𝑗−1 )”)
Send(𝑃𝑜𝑖 , “Sent onion to 𝑃𝑜𝑖+1 ”)
OutputCorruptSender(𝑃𝑠 , 𝑠𝑖𝑑,𝑚, P, P←, 𝑡𝑖𝑑,𝑑)

if 𝑑 = 𝑏 and 𝑖 = 0 then

Send(S, “𝑡𝑖𝑑 belongs to 𝑠𝑖𝑑”)

R

Add (𝑡𝑖𝑑,𝑂, 𝑗) to 𝐿𝑜

⊲ The tagged onion𝑂 reaches its final relay

procedure DeliverTagged(𝑂 = (𝑠𝑖𝑑, 𝑃𝑠 ,𝑚, P, P←, 𝑖, 𝑑))
OutputCorruptSender(𝑃𝑠 , 𝑠𝑖𝑑,𝑚, P, tagged, 𝑑)
if 𝑖 < 𝑛 then

Send(S, “𝑃𝑜𝑖 sends tagged onion via (𝑃𝑜𝑖+1 , . . . , 𝑃𝑜 |P |−2 )”)
Send(Z, “𝑃𝑜𝑖 sends onion to 𝑃𝑜𝑖+1 ”)

else Send(Z, “Onion at 𝑃𝑜𝑖 fails integrity check”)

I
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Algorithm 2 Ideal Functionality F (Delivery and Forwarding)

⊲ S tags the onion 𝑡𝑖𝑑

On message Tag(𝑡𝑖𝑑) from S
if (𝑡𝑖𝑑, _, _) ∈ 𝐿𝑜 then

Retrieve (𝑡𝑖𝑑,𝑂, _) from 𝐿𝑜
Store𝑂 in 𝐿tag

I

⊲ S delivers the onion 𝑡𝑖𝑑 to the next relay

On message DeliverOnion(𝑡𝑖𝑑) from S
if (𝑡𝑖𝑑, _, _) ∈ 𝐿𝑜 then

(𝑡𝑖𝑑,𝑂 = (𝑠𝑖𝑑, 𝑃𝑠 ,𝑚, P, P←, 𝑖, 𝑑), 𝑗) ← 𝐿𝑜
𝑂 ← (𝑠𝑖𝑑, 𝑃𝑠 ,𝑚, P, P←, 𝑗, 𝑑)

if 𝑑 = 𝑓 and 𝑗 = |P | then
if𝑚 ≠ ⊥ and 𝑂 ∉ 𝐿tag I then

if P← ≠ () then
ConfigureReply(𝑂)

R

Send(𝑃𝑜𝑗 , “Message𝑚 received”)

else if 𝑂 ∈ 𝐿tag then
Send(Z, “Onion at 𝑃𝑜𝑗 fails integrity check”)

I

S

else if 𝑑 = 𝑏 and 𝑗 = |P | then
if𝑚 ≠ ⊥ and 𝑂 ∉ 𝐿tag I then

Send(𝑃𝑜𝑗 , “Message𝑚 received as reply”)

⊲ Not forwarded to Z

R

else

𝑡𝑖𝑑′ ←𝑅
temporary ID

Send(𝑃𝑜𝑗 , “𝑡𝑖𝑑
′
received from 𝑃𝑜𝑗−1 ”)

Store (𝑡𝑖𝑑′,𝑂) in 𝐵𝑜𝑗

⊲ 𝑃𝑖 (honest or corrupted) is done processing the onion 𝑡𝑖𝑑
′

On message ForwardOnion(𝑡𝑖𝑑′) from Z or S via 𝑃𝑖
if (𝑡𝑖𝑑′, _) ∈ 𝐵𝑖 then

Pop (𝑡𝑖𝑑′,𝑂) from 𝐵𝑖

ProcessNextStep(𝑂)

else if (𝑡𝑖𝑑′, _) ∈ 𝐵𝑟
𝑖
then

Pop (𝑡𝑖𝑑′,𝑚, 𝑡𝑖𝑑) from 𝐵𝑟
𝑖

SendReplyOnion(𝑚, 𝑡𝑖𝑑)

R

⊲ S (masquerading as 𝑃𝑖 ∈ N) delivers a message to a receiver

On message DeliverMessage(𝑃𝑖 ,𝑚, 𝑟𝑖𝑑 R , 𝑅) from S
Send(𝑅, “Message𝑚 received from 𝑃𝑖 ”)

if 𝑟𝑖𝑑 ≠ ⊥ then

Send(𝑅, “Message is repliable with 𝑟𝑖𝑑”)

R

S

Algorithm 3 Ideal Functionality F (Reply Handling)

⊲ Send and store information to enable replies to𝑂

procedure ConfigureReply(𝑂 = (𝑠𝑖𝑑, 𝑃𝑠 ,𝑚, P, P←, 𝑖, 𝑑))
𝑟𝑖𝑑, 𝑡𝑖𝑑 ←𝑅

temporary IDs

Store (𝑡𝑖𝑑, 𝑃𝑠 , P, P←, 𝑃𝑜𝑖 , 𝑠𝑖𝑑) in 𝐵𝑎𝑐𝑘

if 𝑖 = |P | then
Store (𝑟𝑖𝑑, 𝑡𝑖𝑑) in 𝑅𝑒𝑝𝑜𝑖
Send(S, “Reply to following with reply ID 𝑟𝑖𝑑”) S

Send(𝑃𝑜𝑖 , “Reply to following with reply ID 𝑟𝑖𝑑”) S

else

P←
1
← prefix of P← up to (including) the first honest relay

Send(S, “Reply to following with 𝑡𝑖𝑑 , reply path begins with P←
1
”)

⊲ S uses a 𝑡𝑖𝑑 to reply from any adversarial relay

On message SendAdversarialReplyOnion(𝑚, 𝑡𝑖𝑑) from S via 𝑃𝑖
if (𝑡𝑖𝑑, . . .) ∈ 𝐵𝑎𝑐𝑘 then

SendReplyOnion(𝑚, 𝑡𝑖𝑑)

⊲ 𝑃𝑖 replies to an onion with an 𝑟𝑖𝑑

On message SendHonestReplyOnion(𝑚,𝑟𝑖𝑑) from Z via 𝑃𝑖
if (𝑟𝑖𝑑, _) ∈ 𝑅𝑒𝑝𝑖 then
(𝑟𝑖𝑑, 𝑡𝑖𝑑) ← 𝑅𝑒𝑝𝑖
𝑡𝑖𝑑′ ←𝑅

temporary ID

Store (𝑡𝑖𝑑′,𝑚, 𝑡𝑖𝑑) in 𝐵𝑟
𝑖

Send(𝑃𝑖 , “Send reply onion with 𝑡𝑖𝑑′”)

S

⊲ 𝑅 ∈ 𝐷 decides to send a reply message to 𝑟𝑖𝑑 via 𝑃𝑖
On message SendReplyMessage(𝑃𝑖 ,𝑚, 𝑟𝑖𝑑) from Z or S via 𝑅

Send(S, “𝑅 replies to 𝑟𝑖𝑑 with message𝑚 via 𝑃𝑖 ”)

⊲ 𝑃𝑖 creates an onion from 𝑅’s reply request

On message DeliverReplyMessage(𝑅, 𝑃𝑖 ,𝑚, 𝑟𝑖𝑑) from S
Send(𝑃𝑖 , “Reply𝑚 received from 𝑅”)

if (𝑟𝑖𝑑, _) ∈ 𝑅𝑒𝑝𝑖 then
(𝑟𝑖𝑑, 𝑡𝑖𝑑) ← 𝑅𝑒𝑝𝑖
𝑡𝑖𝑑′ ←𝑅

temporary ID

Store (𝑡𝑖𝑑′,𝑚, 𝑡𝑖𝑑) in 𝐵𝑟
𝑖

Send(𝑃𝑖 , “Send reply onion with 𝑡𝑖𝑑′”)

S

⊲ Create and send the reply onion for 𝑡𝑖𝑑

procedure SendReplyOnion(𝑚, 𝑡𝑖𝑑)

if (𝑡𝑖𝑑, . . .) ∉ 𝐵𝑎𝑐𝑘 then reject

else

(𝑡𝑖𝑑, 𝑃𝑠 , P, P←, 𝑠𝑖𝑑′, _) ← 𝐵𝑎𝑐𝑘

𝑠𝑖𝑑 ←𝑅
session ID

Store (𝑠𝑖𝑑, 𝑠𝑖𝑑′) in 𝐼𝐷fwd
𝑂 ← (𝑠𝑖𝑑, 𝑃𝑖 ,𝑚, P←, (), 0, 𝑏)
OutputCorruptSender(𝑃𝑖 , 𝑠𝑖𝑑,𝑚, P, P←, start, 𝑏)
ProcessNextStep(𝑂)

⊲ S learns the reply message as it is delivered to the corrupted sender

procedure LeakReplyOnion(𝑂 = (𝑠𝑖𝑑, 𝑃𝑠 ,𝑚, P, P←, 𝑖, 𝑑))
Send(S, “𝑃𝑜𝑖 sends reply 𝑡𝑖𝑑 with message𝑚 to 𝑃𝑜 |P |−1

via (𝑃𝑜𝑖+1 , . . . , 𝑃𝑜 |P |−2 )”)
Send(𝑃𝑜𝑖 , “Sent onion to 𝑃𝑜𝑖+1 ”)
OutputCorruptSender(𝑃𝑠 , 𝑠𝑖𝑑,𝑚, P, P←, 𝑡𝑖𝑑,𝑏)

R
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ProcessNewOnion

ForwardOnion

SendReplyOnion

LeakMessage

𝑚 to S

ProcessToRelay

DeliverTagged

𝑚 destroyed

LeakReplyOnion

𝑚← to S

ProcessNextStep

Only forward onions

Only reply onions

All onions

ConfigureReply

I (Tag) DeliverOnion

ConfigureReply

SendAdversarialReplyOnion

DeliverMessage

SendReplyMessage

DeliverReplyMessage

ForwardOnion

SendHonestReplyOnion

I

R

R

SR

& Final relay
𝑚 (←) to 𝑃𝑜𝑛

More honest relays

Corrupt final relay

S

& Honest final relay

Figure 3: Flowchart illustrating the processing of abstract onions in F. An onion is created using ProcessNewOnion. It then

goes through one ProcessToRelay–DeliverOnion–ForwardOnion cycle for every path segment before reaching the end of

its path. In repliable variants, repliable onions may go through more cycles via SendReplyOnion. The text below some routine

names indicates which party learns the plaintext message in that situation. Solid arrows mean that the transition happens

immediately within F, while dashed arrows mean that an input fromZ or S is required to continue.
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Z Honest Corrupted AΠ

SCorruptedHonestZ F Honest CorruptedΠ Ab)

a)

Figure 4: Two scenarios the environmentZmust distinguish

in a UC realization proof. In a),Z interacts with the actual

protocol Π in the role of the honest parties, whileA controls

the corrupted parties. In b),Z controls the honest parties in

F and A commands the corrupted parties in Π. S simulates

their respective other parties.

B UC REALIZATION PROOF ARGUMENT

Theorem 1. A secure OR protocol in an OR variant securely realizes
that variant’s OR IF F.

Proof. The basic structure of our proof follows that of related

proofs for existing OR formalizations by Kuhn et al. [19, 20] and

[26]. We focus on this structure here since it communicates the

most important ideas and intuitions. However, every OR variant

requires its own adaptations to the basic structure. We summarize

these changes where appropriate. Throughout the proof, we take

advantage of our deliberate construction of the onion properties

for each variant so they apply cleanly in the proof argument.

To prove that a protocol securely realizes an IF in a UC model,

one must show that any given attacker A on the real protocol can

be simulated by a corresponding simulator S that interacts with the

IF such that any environmentZ (which controls the honest parties)

cannot distinguish between the two. In particular, the environment

and the attacker may communicate and collaborate at will. Our

proof thus proceeds in two steps:

(1) Construct a matching simulator S for every attackerA . Our

simulator usesA internally and translates theA ’s messages

in the real protocol into messages to F and vice versa. S
effectively acts as a middle-man between F and A .

(2) Prove that the interaction betweenZ, F, and S is indistin-

guishable from the interaction betweenZ, the real protocol,

andA from bothZ’s andA ’s perspectives. The onion prop-

erties are required in this step. Figure 4 illustrates the two

scenarios.

Construction of S. S needs to act as the bridge between the

attacker A and the IF F. This means that the messages sent to S
by F must be translated into onions or plaintext messages to A ,

while any real-world onions or messages from A must be turned

into messages to F.
The difficulty in translating the onions from each world into the

other is that S does not have complete information on the onions it

needs to translate — it must operate solely based on the information

it is given by F and the onions it receives fromA . In the following,

we first explain S’s handling of onions from honest senders, then

the translation for onions S receives from A .

Onions from honest senders. The behavior of S described below

is also depicted as a flowchart in Figure 5.

WhenZ commands an honest party in the ideal world to send an

onion, S receives information from F every time the onion is sent

along a segment on its path in the ideal world. However, assuming

the path segment leads from 𝑃𝑜𝑖 to 𝑃𝑜 𝑗
, the only information S gets

is a random 𝑡𝑖𝑑 used to identify that path segment of the onion along

with the path segment (𝑃𝑜𝑖 , . . . , 𝑃𝑜 𝑗
) itself (see ProcessToRelay).S

must use this information to build real-world onions forA . Since S
does not have any information on the contents of the onion or the

rest of the path, it can only create an onion with random contents

that follows the given path segment. This parallels the behavior of

LU , which we make use of later.

At this point, the onion is under A ’s control until A eventually

decides to process and forward it to S’s real-world 𝑃𝑜 𝑗
. Once that

happens, S recognizes the onion as being the random onion it sent

earlier using RecognizeOnion. S now uses the 𝑡𝑖𝑑 it got from F
to notify F that the onion has been delivered. This cycle continues

until the onion reaches its final honest relay.

I While the onion was under A’s control, A might have de-

cided to tag the payload.S can detect this using RecognizeO-

nion and notifies F of it with the Tag message.

At the final honest relay, two different cases might occur: Ei-

ther the onion’s final honest relay is also the last relay on the

path, or there are more corrupted relays following it. In the former

case:

S The final honest relay is the onion’s exit relay. S receives

the message R and a potential 𝑟𝑖𝑑 of the onion and for-

wards them to the external receiver via A .

S The final honest relay is the onion’s receiver (i.e., the re-

ceiver is honest), so the onion’s processing ends there. The

message R and potentially an 𝑟𝑖𝑑 are delivered to the

honest receiver.

I If the onion was tagged, the payload is destroyed and

no message is delivered.

If, on the other hand, there are more corrupted relays on the

path, the onion still has one path segment left. In this case, S gets

the message, the receiver, and the remaining path segment of the

onion (see LeakMessage). When creating the onion for A , S can

now include the correct contents as well as using the correct path

segment. This behavior is comparable to that of TI .

I If the adversary tagged the onion before it reached the final

honest relay, S does not get this information (see Deliv-

erTagged) and must instead create a real-world onion with

a random message and receiver. Before giving that onion to

A , S tags it. The definition of LU ensures that the payload

contents are completely destroyed by the tagging attack, so

the adversary cannot notice the replacement.

R For repliable onions, F also leaks the first path segment on

the onion’s reply path to S in LeakMessage. S includes

this path segment as the reply path of its random onion.
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Forward onion

𝑃𝑜𝑖 sends onion to 𝑃𝑜 𝑗

via (𝑃𝑜𝑖+1 , . . . , 𝑃𝑜 𝑗−1 )
Create random onion 𝑃𝑜𝑖+1

𝑃
(←)
𝑛 (←)

𝑡𝑒𝑚𝑝 received

S|R 𝑚 received

SR with 𝑟𝑖𝑑

I Integrity check failed
Find on list

I Detect tagging

𝑃𝑜 𝑗−1

Forward onion

S 𝑃𝑜𝑖 sends𝑚 to P|P|−1
SR with 𝑟𝑖𝑑

𝑃𝑜𝑖 sends onion with

message𝑚 to P|P|−1

Send message

Create random onion

𝑅

𝑃𝑜 𝑗+1

Find on list
𝑃←𝑜 𝑗←

LU/ LU←

TI

𝑂1

I Tag onion

𝑂 𝑗−𝑖

(𝑚, R 𝑟𝑖𝑑 )

𝑂1

R Build reply

𝑂←
𝑗←

I Tag +

DeliverOnion

SR Send honest reply1More honest relays

Last honest relay

SendAdversarialReplyOnion

Store info

Store info

Figure 5: A sequence diagram illustrating the F simulator’s handling of onions by honest senders. The interaction between the

environmentZ, the IF F, the simulator S, and the adversaryA is shown for an onion’s entire lifetime. Red text indicates events

that occur if the adversary tags the onion. The colored boxes show where each onion property’s security guarantees are used.

1
The honest reply process is simplified here for the purpose of representation. See Algorithm 3 for details.

R Reply handling. If the onion is repliable, the receiver may

decide to reply. We again distinguish whether the final relay

on the path is honest:

• The final relay is honest.

S The receiver is honest. Since the receiver is a relay,

it can build its own reply onion and send it (see

SendHonestReplyOnion).

S The exit relay is honest.A may decide to deliver a

reply message with the correct 𝑟𝑖𝑑 to the exit relay.

S communicates this to FwithDeliverReplyMes-

sage, from where the reply onion is treated like in

the first case.

• The final relay is not honest. In this situation, A has con-

trol over the final layer of the onion S built for it and

can build the reply onion itself. If A chooses to reply, S
will receive its replacement onion from A at the end of

the reply path S chose. S can recognize the replacement

onion with RecognizeOnion. From it, S receives the re-

ply message (since it controls the relay that received the

replacement onion’s reply) and uses SendAdversarial-

ReplyOnion to create the ideal-world reply onion and

deliver it to the first honest relay on the reply path.

Onions from A . When S receives a real-world onion from A
at one of the honest relays it controls, that onion is either S’s
replacement for an honest sender’s onion (which S can recognize

and process as described above) or an onion that is unknown to

S. In the latter case, the onion was sent by an adversarial sender

in the real protocol. S now needs to translate that onion into the

ideal world. To do so, S processes the real-world onion as far as

it can using the real-world private keys of the honest relays. This

results in S learning the onion layers on a subpath of the onion’s

path consisting only of consecutive honest relays. If the subpath

is a suffix of the onion’s path, S also learns the contents of the

onion. Using this information, S creates an ideal-world onion using

ProcessNewOnion with the appropriate parameters and stores

the path and onion layers for later use. Z now has control over

the forwarding of the ideal-world onion. When it chooses to do

so, S is notified and sends the appropriate layer of the real-world

onion to A . This layer is returned to S when A decides to deliver

the onion to the next honest relay. S calls DeliverOnion to notify

F of the delivery. This process continues until the subpath that

S learned is exhausted, at which point the onion will have been

delivered to the last relay on the subpath. This may be the final

relay on the real-world onion’s path. Alternatively, the real-world

onion’s next relay could be adversarial. In this case, S sends the last

onion layer it was able to learn to A , concluding the processing of

these onion layers. The same onion may be processed further by

A and delivered back to S at a later time. S cannot correlate these

separate layers of the onion and will treat the new layer as a fresh

onion from A .
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I A may choose to deliver a tagged onion to S. If the onion
subpath S can process does not include the final relay, S
will not notice the tagging and will not tag the ideal-world

onion. This has no impact on F’s outputs toZ. A may also

tag one of the intermediate onion layers that S sends to it

followingZ’s command. S can notice these tags by simply

comparing the onion layer it receives to the onion layer it

sent. S tags the onion in F accordingly.

R If the onion is repliable and the subpath of honest relays

that S learns includes the final relay, S can also build a real-

world reply onion and potentially process it to learn a prefix

of the real-world onion’s reply path. If so, S includes the

reply path prefix in the parameters to ProcessNewOnion.

If the ideal-world reply onion ends up being sent byZ, S
can build the corresponding real-world reply onion after

learning the reply message via OutputCorruptSender.

The remainder of the reply’s processing is identical to the

forward case.

This concludes our description of the construction of the simulator.

Indistinguishability. Now, all that remains is to show that the

interaction betweenZ and the real protocol with the attacker A
is indistinguishable from the interaction between Z and F with

the simulator S. First, we note that adversarial onions are handled
indistinguishably from the real protocol by S.Z receives exactly

the same information from F when handling these onions in the

ideal world as it would in the real protocol by construction of S
and F.

That leaves only onions from honest senders. To prove that these

are handled correctly by S, we make use of the onion properties

in each variant in a hybrid argument beginning with a hybrid

machine that controls the honest parties and simply runs the real

OR protocol and ending at a hybrid that only sends random onion

layers instead of real onion layers for every onion from an honest

sender. The behavior of the final hybrid is just like that of F with

S. FromZ’s perspective, the honest sender’s onions are processed

correctly by both the hybrid and F +S. FromA ’s perspective, both

the hybrid and F +S send the same random onion layers on every

path segment. We conclude that completing the hybrid argument

proves that the real protocol securely realizes F in the appropriate

OR variant.

To move from the first hybrid machine to the last, we need to

apply the onion properties to replace onion layers on individual

path segments with random onion layers. We begin with an onion’s

first path segment: Applying LU allows us to replace the onion

layers there.

I If an onion layer is tagged on the replaced path segment, the

hybrid machine needs to treat it like LU would by tagging

the re-inserted onion layers after the honest relay.

By repeating this argument, we can replace the onion layers of every

honest sender’s onion’s first path segment in successive hybrids
3
.

Following this, the next hybrids replace the onion layers on the

other path segments on the forward path for these onions, applying

3
This applies even for polynomially many onions, as can be verified through a standard

hybrid reduction.

LU for every replacement
4
. In OR variants that require Correctness

and LU as their only onion properties, this already concludes the

hybrid argument.

R In variants with replies, we repeat the same sequence

of path segment replacements on the reply path. Path

segments are replaced from back to front, applying LU←

for every replacement.

T|S In these variants, TI is required because the final

relay on the onion’s path may not be honest. Af-

ter the previous sequence of hybrids, any onions

with a corrupted final relay will still have one

path segment left at the end of their forward path

R and one segment at the start of the reply path . The

onion layers on these path segment(s) can be replaced

with random onion layers by applying TI .

With this, we have shown that a secure OR protocol in an OR

variant securely realizes F in that variant as well.

4
Applying LU for multiple path segments of one onion in this manner is possible

because the onion that is re-inserted after the honest relay by LU is not the 𝑗 -th layer

of the original adversary-chosen onion, but instead the first layer of an onion with the

same parameters and a truncated forward path. Thanks to this, the re-inserted onion

fulfills the requirements for applying LU on the next path segment.
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