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C O N D E N S E D  M AT T E R  P H Y S I C S

Superconductivity due to fluctuating loop currents
Grgur Palle1*, Risto Ojajärvi1, Rafael M. Fernandes2, Jörg Schmalian1,3

Orbital magnetism and the loop currents (LCs) that accompany it have been proposed to emerge in many systems, 
including cuprates, iridates, and kagome superconductors. In the case of cuprates, LCs have been put forward as 
the driving force behind the pseudogap, strange-metal behavior, and dx2−y2-wave superconductivity. Here, we 
investigate whether fluctuating intra-unit-cell LCs can cause unconventional superconductivity. For odd-parity 
LCs, we find that they are repulsive in all pairing channels near the underlying quantum-critical point (QCP). For 
even-parity LCs, their fluctuations give rise to unconventional pairing, which is not amplified in the vicinity of the 
QCP, in sharp contrast to pairing mediated by spin-magnetic, nematic, or ferroelectric fluctuations. Applying 
our formalism to the cuprates, we conclude that fluctuating intra-unit-cell LCs are unlikely to yield dx2−y2-wave 
superconductivity. If LCs are to be relevant for the cuprates, they must break translation symmetry.

INTRODUCTION
Although magnetic order most commonly arises from interactions 
related to the spin degrees of freedom, in correlated systems magne-
tism may also develop in the orbital sector. Whenever such orbital 
magnetism occurs, time-reversal symmetry breaking manifests it-
self through a pattern of spontaneously flowing currents. This pat-
tern must be made of closed loops to avoid a global current, 
forbidden due to a theorem by Bloch (1–3). Through the years, 
many types of loop-current (LC) patterns have been proposed in a 
variety of systems.

In the cuprates, inversion symmetry–breaking intra-unit-cell 
LCs have been put forward as the underlying order of the pseudogap 
state (4–6), while their fluctuations have been proposed to drive 
both dx2−y2-wave superconductivity (7) and marginal Fermi liquid 
behavior near the quantum-critical point (QCP) (8, 9). Cuprate LC 
order was also invoked to explain polarized neutron scattering ex-
periments (10–14). However, in another experiment, performed us-
ing polarized neutrons, no evidence for LC order could be detected 
(15). Nuclear magnetic resonance (NMR) measurements also failed 
to observe LC order (16, 17) of a magnitude comparable to that pre-
dicted theoretically (18). Furthermore, recent muon spin relaxation 
measurements (19, 20) found no evidence for LC order in the pseu-
dogap state and were used to argue that the effects of LCs on NMR 
relaxation rates are too small to be observable (20).

Apart from cuprates, a state consistent with LC order has been 
inferred from second-harmonic generation measurements in the iri-
date Mott insulator Sr2IrO4 (21), which displays an unusual gap upon 
doping (22, 23). An LC pattern that breaks translation symmetry is 
one of the main candidates for explaining why the charge-density 
wave displayed by the recently discovered kagome superconductors 
seemingly breaks time-reversal symmetry (24). Beyond specific ma-
terials, LCs have also been discussed in the context of the spontane-
ous anomalous Hall effect in Fermi liquids (25–27) and in the context 
of spin liquids with broken time-reversal symmetry (28).

Given their potential realization in a diverse set of systems, it is 
important to elucidate whether fluctuating LCs can give rise to 

superconductivity. In this context, intra-unit-cell (i.e., q = 0) LCs 
have been prominently discussed as the pairing glue of the cuprates, 
which makes them especially interesting, notwithstanding the diffi-
culties in detecting them. For comparison, in the case of fluctuations 
from intra-unit-cell orders that preserve time-reversal symmetry, 
such as nematic (29–31) and ferroelectric (32, 33) ones, it is well es-
tablished that s-wave pairing generally emerges with a number of at-
tractive subleading channels. Moreover, superconductivity in these 
cases is strongly enhanced as the QCP is approached, thus establish-
ing a robust regime in which pairing is dominated by the corre-
sponding fluctuations. Pairing is promoted by ferromagnetic spin 
fluctuations (34, 35) as well, the main difference being the p-wave 
nature of the leading pairing state. However, the case of pure orbital 
magnetism is different, not only because LCs do not directly couple 
to the spin but also because they usually break additional symmetries 
besides time reversal. This leads to two important questions of broad 
and particular relevance. First, are there general conditions, indepen-
dent of the details of a given material, under which pairing is domi-
nated by quantum-critical intra-unit-cell LC fluctuations? Second, in 
the specific case of the cuprates, can fluctuating intra-unit-cell LCs 
cause or enhance dx2−y2-wave pairing?

Here, we answer both questions. We show that LC fluctuations 
do not give rise to an enhanced pairing near the QCP, as shown 
schematically in Fig. 1. Even-parity LCs, such as orbital ferromag-
nets or orbital altermagnets, may cause unconventional pairing. 
However, they are as likely or unlikely to do so as any other degree 
of freedom far from its critical point. This is because the pairing 
promoted by these fluctuations is not enhanced as the QCP is ap-
proached (orange line in Fig. 1), in sharp contrast to the cases of 
ferromagnetic spin fluctuations or time-reversal-even charge fluc-
tuations, such as nematic or ferroelectric ones (blue line in Fig. 1). 
LCs that break parity, i.e., states of magneto-electric order, are repul-
sive for all pairing symmetries as one approaches the QCP (green 
line in Fig. 1). Hence, they weaken pairing caused by other mecha-
nisms. Such odd-parity LC states can at best support superconduc-
tivity when their fluctuations are sufficiently weak. In the context of 
the cuprates, we show that among the three candidate LC states, 
shown in Fig.  2 (B to D), only the fluctuations of the parity-
preserving d-wave LC favor weak dx2−y2-wave pairing (Figs. 3 and 4). 
In the presence of weak spin-orbit coupling, triplet pairing mediated 
by secondary spin-magnetic fluctuations takes place (Fig. 5) and al-
ways prevails for d-wave LCs as the QCP is approached.
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RESULTS
Formalism
We start with a general analysis that allows us to draw conclusions 
that are independent of material details. Consider a centrosymmet-
ric system with M orbitals per primitive unit cell and introduce 
the  spinors ckσ = (ckσ1, …, ckσM)T and ck = (ck↑, ck↓)

T in terms of 
which the one-particle Hamiltonian equals H0 =

∑
k c

†

k
Hkck . For 

H0, we assume that it preserves parity and time-reversal symmetry. 

We treat the interactions phenomenologically and assume from the out-
set that they give rise to intra-unit-cell orbital magnetism and LCs.

Under these assumptions, the interacting Hamiltonian Hint = 
g ∑q Φ−qϕq can be described in terms of a coupling between the 
fluctuating LC order parameter Φq and a symmetry-appropriate 
fermionic bilinear

Here, N is the number of unit cells and g is the coupling constant. 
The orbital LC pattern associated with Φq is encoded in the form 
factor Γk,p = Γ

†

p,k
 , which is a matrix in spin and orbital space. In the 

absence of spin-orbit coupling, these form factors are trivial in spin 
space, meaning Γk,p = γk,p ⊗ σ0, where σ0 is the identity matrix in 
spin space. Consequently, the orbital matrix must be odd under 
time reversal, γ∗

k,p
= −γ

−k,−p.

LC fluctuations are described by the Φq correlation function χ(q, 
ω), which we assume to be peaked at q = 0 in momentum space and 
characterized by a correlation length ξ = a0r−ν, where a0 is a micro-
scopic length scale. r is a dimensionless parameter that, by defini-
tion, vanishes at the QCP and is r ∼ 1 for a structureless correlation 
function in momentum space. For the static correlation function, 

ϕq =
1√
N

�
k

c†
k
Γk,k+qck+q (1)

Fig. 1. Schematic behavior of the leading pairing eigenvalue λ as a QCP is 
approached from the disordered side. The QCP is controlled by the tuning pa-
rameter r. The superconducting transition temperature grows with λ according to 
Tc ∝ ωce−1/λ. Pairing mediated by time-reversal-even charge fluctuations or spin 
fluctuations (blue) is enhanced near the QCP, where weak-coupling theory breaks 
down (dashed line). In contrast, we find that the pairing mediated by even-parity 
LCs (orange) is not enhanced at the QCP, whereas pairing mediated by odd-parity 
LCs (green) becomes strongly repulsive near the QCP.

A B

C

D

Fig. 2. Orbitals and LC patterns of the CuO2 planes of cuprates. (A) CuO2 plane and its active orbitals. Arrows denote hoppings included in our model. Light blue shad-
ing highlights the five orbitals used to form LCs. (B to D) Three possible LC patterns of the CuO2 plane with (B) gxy(x2−y2), (C) dx2−y2, and (D) (px, py) character. While the last 
one has the symmetry of a four-state clock model, as indicated by the four degenerate patterns, the former two display Ising symmetry.
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we use the critical scaling expression χ(q) = F(qξ)/q2−η with critical 
exponents ν and η, and scaling function F(y) that has the usual 
asymptotic behaviors F(y ≫ 1) ∼ const. and F(y ≪ 1) ∼ y2−η.

Solving this coupled many-body problem is a formidable chal-
lenge. To make progress, we follow the strategy of (7, 29) and con-
sider the system in the regime where the coupling of the electrons to 
LC fluctuations is sufficiently weak (g → 0). This allows us to analyze 
the pairing instability to leading order in perturbation theory. Such 
a strategy should be reasonable on the disordered side, far enough 
from the QCP, where Fermi liquid behavior is established and col-
lective fluctuations are sufficiently weak. This approach enables us to 
determine whether or not the weak-coupling theory breaks down as 
one approaches the QCP, thus providing an indicator for strong 
quantum-critical pairing.

In the weak-coupling limit, it is straightforward to derive the lin-
earized gap equation for the singlet and triplet pairing channels 
(Methods A):

Here, the integral goes over the Fermi surface, vk = ∣∇ εk∣ is the 
Fermi velocity, and s = +1 (−1) stands for singlet (triplet) pairing. 
The largest positive eigenvalue λ determines the superconducting 
transition temperature through kBTc = (2eγ/π)ωce−1/λ, where ωc is 
the characteristic cutoff for LC fluctuations and γ is the Euler-
Mascheroni constant. The eigenvector Δs(p) determines the 
symmetry of the pairing and is related to the superconducting 

∫FS
dSk

(2π)dvk
Vs(p, k)Δs(k) = λ Δs(p) (2)

A B C

D E F

Fig. 3. Strength of the pairing tendency due to LC fluctuations, as a function of distance from QCP and chemical potential. (A to C) Pairing eigenvalues λ (Eq. 2) for 
the three LC states of Fig. 2 as a function of the parameter r characterizing the proximity to the QCP at fixed chemical potential μ = 0.9tpd. (D to F) Eigenvalues at fixed r = 
0.5 as a function of the hole doping p. The dashed vertical lines in (D) to (F) denote the hole doping p = 0.23 corresponding to μ = 0.9tpd. The insets in (D) and (E) illustrate 
the Fermi surfaces at different values of p. The Lifshitz transition occurs at p = 0.36. Φg [(A) and (D)] and Φd [(B) and (E)] fluctuations yield dxy and dx2−y2 pairing, respec-
tively, that is only weakly enhanced near the QCP. Φp fluctuations (C) yield extended s-wave pairing (denoted s′) at not too small r, turning repulsive as the QCP is 
approached (r → 0). There is a one-parameter family of possible Φp parameterized by α (Fig. 4). In (C) and (F), we use α = 0.

A

B

C

Fig. 4. The pairing tendency and the composition of the one-parameter family 
of possible p-wave LC orders. (A) Pairing eigenvalues λ (Eq. 2) due to p-wave LC 
fluctuations as a function of α for fixed r = 0.5 and μ = 0.90tpd. s′ refers to an ex-
tended s-wave state dominated by cos(4φ) dependence on the Fermi surface angle 
φ. (B) α parametrizes the coefficients of the three p-wave current components c1,2,3 
illustrated in (C). The coefficients c1,2,3 are constrained to not generate a global 
current (Methods D).
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gap function of the Bogoliubov–de Gennes Hamiltonian via 
Δ

σσ
� (p) = Δ

+
(p)iσ

y

σσ�

 for singlet and Δσσ′(p) = Δ−(p)(σaiσy)σσ′ for 
triplet pairing, respectively. Here, all triplet orientations are degen-
erate because we assumed no spin-orbit coupling and purely orbital 
LCs Γk,p = γk,p ⊗ σ0.

The Cooper channel interactions are given by

where the overall minus sign arises because LCs are odd under time 
reversal. V0(p, k) = g2χ(p − k)f(p, k) is a combination of the LC 
correlation function χ(q) and the matrix element

where uk are the orbital components of the conduction band 
eigenvectors. The f(p, k) contain information about the nature and 
symmetry of the LC state via the form factor γp,k. For the cou-
pling  onstant g, we assume a value that yields sufficiently small 
dimensionless eigenvalues λ.

Generic behavior near the QCP
Before we discuss our results near the QCP, let us briefly comment 
on pairing mediated by critical fluctuations of other order parame-
ters. For order parameters that are spin-ferromagnetic or preserve 
time-reversal symmetry, as the QCP is approached (r → 0), one 
finds that the largest eigenvalue of the gap equation diverges like λ ∝ 
r−ψ with ψ > 0 (29, 36, 37), as schematically shown by the blue line 
in Fig.  1. While this corresponds to a breakdown of the weak-
coupling analysis, it also signals the emergence of a strong pairing 
tendency near the QCP. Weak-coupling theory alone cannot deter-
mine the precise behavior in the immediate vicinity of the QCP, yet 
numerous computational approaches show that Tc is largest at or 
near the QCP (38–40). This is the much-discussed efficiency of 
quantum-critical pairing (41, 42). Following (29), the divergence 
of λ is based on the assumption that the forward-scattering contri-
bution f(p, k)∣p → k is attractive and varies smoothly as a function of 

q = p − k. Under these circumstances, the largest eigenvalue of the 
gap equation is given by

where q∥ are the components of the transferred momentum q tan-
gential to the Fermi surface and λ0 = g2⟨v−1

k
f (k, k)⟩FS . Using the 

scaling form χ(q
∥

) = F(q
∥
ξ)∕q

2−η

∥

 introduced previously, the inte-
gral in Eq. 5 gives ψ = (3 − d − η)ν if d < 3 − η. Hence, QCPs in 
d = 2 with η < 1 yield strong pairing. In d = 3, the enhancement is 
logarithmic, provided η = 0.

For intra-unit-cell orbital magnetism, however, the analysis of 
the pairing enhancement at the QCP is different and depends on the 
parity pΦ of the LC state. In Methods A, we show that

as well as f(p, k)∣p → −k ∝ (p + k)2 for both values of pΦ. Hence, for 
even-parity LCs (pΦ = +1), the forward-scattering singularity as 
r → 0 originating from χ(p − k) in Eq. 5 is eliminated for d ≥ 1 − η 
and suppressed for d < 1 − η down to λ ∝ r(d−1+η)ν. Thus, for d ≥ 
1 − η, which we expect to always be fulfilled for systems of interest, 
the pairing response is not enhanced near the QCP, as illustrated in 
Fig. 1 (orange line). For odd-parity LC (pΦ = −1), the implications 
of Eq. 6 are even more dramatic. The positive-definiteness of the 
matrix element f(p, k) > 0 when combined with the monotonous 
decay of χ(q) from its q = 0 maximum implies that that all pair-
ing channels are repulsive near the QCP, diverging as ∝ −r−ψ 
(green line in Fig. 1). Only away from the QCP can finite-​q fea-
tures of the matrix element f(p, k) or the Fermi velocity vk result 
in an attractive pairing channel that, however, is parametrically 
weak. This robust result does not depend on material details and is 
a consequence of the fact that LC order breaks time-reversal sym-
metry with a trivial form factor in spin space. Hence, for two-
dimensional systems, even-parity intra-unit-cell LCs are inefficient 

V
±
(p, k) = −

1

2

[
V
0
(p, k) ± V

0
(p, −k)

]
(3)

f (p, k)= ∣u†
p
γp,kuk∣

2
>0 (4)

λ ≈ λ0 ∫ dd−1q
∥
χ(q

∥

) (5)

f (p, k)∣p→k∝ (p−k)2 if p
Φ
= +1,

f (p, k)∣p→k∝ const. >0 if p
Φ
= −1

(6)

A B C

Fig. 5. Strength of the pairing tendency due to spin fluctuations that are symmetry-equivalent to LCs, as a function of distance from QCP. The panels show the 
pairing eigenvalues λ (Eq. 2) due to spin fluctuations as a function of r at fixed μ = 0.90tpd. In the presence of spin-orbit coupling, these secondary spin fluctuations are 
triggered by the orbital LC order parameters Φg (A), Φd (B), and Φp (C). By symmetry, the spins must fluctuate along the z axis; the insets show on which sites or bonds they 
reside. The even-parity states have a divergent pairing strength at the QCP, signaling strong triplet pairing. In contrast, the odd-parity state is not substantially enhanced 
near the QCP. The eigenvalues for spin fluctuation–induced pairing are much larger than those promoted by the corresponding LC fluctuations in Fig. 3. These spin eigen-
values will be reduced by the smallness of the spin-orbit coupling. For the triplet states p ⊥ z and p ∥ z, the Balian-Werthamer vector Δa is oriented along the xy plane and 
the z axis, respectively.
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and odd-parity intra-unit-cell LCs are detrimental to pairing near 
their QCP.

Application to overdoped cuprates
The conclusions drawn so far are valid for generic systems. Now, we 
consider the cuprates. We analyze them from the far-overdoped side 
of the phase diagram where the normal state is a Fermi liquid (43–50). 
Provided the pairing state and dominant mechanism are unchanged 
across the phase diagram, this should give information about opti-
mally doped systems as well. For the one-particle Hamiltonian H0, we 
use the well-established three-band tight-binding model (9, 51–55) 
that is based on the copper 3dx2−y2 and oxygen 2px,y orbitals (see 
Fig. 2A and Methods B). This model is characterized by the charge-
transfer energy ϵd − ϵp and the hopping amplitudes shown in 
Fig. 2A. We use the Cu-O hopping element tpd ≈ 1.4eV to set the 
overall energy scale. Although we considered a wide range of tight-
binding parameters discussed in the literature (56–60), the precise 
choice of tight-binding parameters has proven to have a minimal 
impact on our results. We thus use one representative choice of pa-
rameters (Methods B) throughout.

Interactions in the cuprates are most often modeled with extend-
ed Hubbard interactions. Whether LC order emerges in the result-
ing model is under debate, as there are computational investigations 
that do (59, 61, 62) and do not (63–65) find evidence for LCs. While 
these are important microscopic investigations, we take a more phe-
nomenological perspective and assume from the outset that intra-
unit-cell LC fluctuations exist and exploit the consequences of this 
assumption. In this phenomenological approach, we can indepen-
dently vary the LC correlation length through r and the hole doping 
p through the chemical potential μ. In the real system, the two are 
not independent, something we must keep in mind when interpret-
ing our results. For the LC correlation function, we use χ(q) = χ0 ⋅ 4/
[2 + 2r − (1 − r)νq] where χ0 > 0 and νq = cos qx + cos qy; negative 
χ(q) indicate LC condensation. As we do not know in which LC 
channel the system orders, we classify all the possibilities (Fig. 2, B 
to D; Methods C) and study Cooper pairing for each. Figure 3 shows 
the results.

To classify intra-unit-cell LCs, we consider the minimal set of 
sites that maps onto itself under all point group operations, namely, 
the set made of one Cu site and the four surrounding O sites (see the 
blue-shaded region of Fig. 2A). The corresponding five-component 
spinor akσ = (dkσ, px,kσ, py,kσ, e−ikxpx,kσ, e−ikypy,kσ)T has particu-
larly simple symmetry transformation rules, facilitating the group-
theoretic classification (Methods C). In total, there are 25 Hermitian 
matrices Λ that one may use to construct an orbital intra-unit-cell 
fermionic bilinear ϕ(R) =

∑
σ

a†
σ

(R)Λa
σ
(R) . By projecting onto the 

Bloch states via akσ = Wkckσ where ckσ = (dkσ, px,kσ, py,kσ)T, one finds 
the form factors γk,p =W†

k
ΛWp of Eq. 1. Since W∗

k
=W

−k , the con-
dition γ∗

k,p
= −γ

−k,−p implies that LCs have purely imaginary Λ. The 
purely imaginary nature of the orbital matrix Λ can be interpreted 
as introducing phase shifts in the bare hopping parameters of H0. 
Via a reverse Peierls substitution, these phase shifts correspond to 
magnetic fluxes generated by orbital currents.

There are in total 10 = 5(5 − 1)/2 imaginary Hermitian matrices 
Λ. We chose them so that they transform under irreducible repre-
sentations (irreps) of the tetragonal point group D4h (66). These 
irreps, in turn, determine which additional crystallographic sym-
metries are broken (if any) by the LC, besides time reversal. The 

explicit expressions of the LC Λ matrices are provided in Methods 
C. Upon enforcing the constraints that no global currents are al-
lowed (1–3) and that the currents obey Kirchhoff ’s law at steady 
state, we are left with a total of six LC patterns (see Methods D). Of 
these six LC Λ, one is gxy(x2−y2)-wave, one is dx2−y2-wave, and two 
pairs are (px, py)-wave (see Fig. 2, B to D). The corresponding order 
parameters we shall call Φg, Φd, and Φp = (Φpx, Φpy). As shown in 
Fig. 4, one may interpolate between the two p-wave options, which 
we parametrize with α ∈ [0, π]. This follows from the existence of 
several paths connecting opposite oxygen orbitals of the same kind: 
an indirect path through the Cu atom (process c1 in Fig. 4C), a direct 
path (process c2), and an indirect path through the O atoms (process 
c3). In the actual cuprate structure, the second process is mediated 
by the Cu:4s orbital (57, 58, 67). In Figs. 2D and 3, we use α = 0. 
These LCs are essentially the same ones that were discussed in (7), 
with the exception of one LC state discussed therein that breaks 
translation invariance.

Using the form factors Γk,p =W†

k
ΛWp ⊗ σ

0 from the analysis 
above, we numerically solve the linearized gap (Eq. 2) supplemented 
by Eqs. 3 and 4. We consider two tuning parameters: the distance to 
the QCP r and the chemical potential μ. The latter determines the 
hole doping concentration p and the shape of the Fermi surface, 
which crosses the Van Hove singularity (VHS) at p = 0.36 (see inset 
of Fig. 3, D and E). All eigenvalues λ are measured in terms of 
the dimensionless parameter g2χ0/tpd and are thus comparable. The 
results are shown in Fig. 3.

Φg describes a gxy(x2−y2)-wave LC, which gives rise to an orbital-
magnetic dipole, i.e., an orbital ferromagnet. It has even parity (pΦ = 
+1) and transforms under the A2g irrep of D4h. Φg is an Ising order 
parameter and can be polarized by an external magnetic field orien-
tated along the z direction Bz via the coupling Hc = −κ ΦgBz, where 
κ is a coupling constant. As shown in Fig. 3A, Φg fluctuations result 
in weak dxy pairing, which is weak in the sense that the pairing ei-
genvalue λ does not diverge at the QCP (r → 0). This is in agreement 
with Eq. 6 and the general result discussed thereafter. There are sub-
leading singlet and triplet instabilities as well. In Fig. 3D, one sees 
that the leading dxy instability is weakly enhanced near the VHS, 
while dx2−y2 pairing is strongly suppressed in the same limit. The 
reported (7) degeneracy between dxy and dx2−y2 pairing for Φg is re-
covered in the limit of extremely overdoped systems with small 
Fermi surfaces, p → 1. The counterintuitive result that this degen-
eracy is lifted in favor of dxy pairing by realistic μ values follows from 
the fact that the matrix element f(p, k) vanishes whenever either p or 
k are at the high-symmetry Van Hove points (±π,0) or (0,±π), as 
proved in Methods C. Hence Φg-mediated pairing cannot exploit 
the enhanced density of states due to the VHS.

The order parameter Φd is associated with dx2−y2-wave LCs and is 
a magnetic octupole, i.e., an orbital altermagnet that is invariant un-
der the combination of time reversal and a fourfold rotation about 
the z axis, ΘC4zΦd = Φd. It transforms under the B1g irrep, and as 
such, it has even parity, pΦ = +1. Like Φg, Φd is an Ising order pa-
rameter, but unlike Φg, it does not have a magnetic moment. In-
stead, it displays piezomagnetism and can be polarized by the 
combination of shear strain ϵxy and an external magnetic field point-
ing in the z direction: Hc = −κ ΦdBzϵxy. As shown in Fig. 3B, Φd 
promotes weak dx2−y2 pairing with several sub-leading singlet and 
one triplet pairing instabilities. The pairing strength of the leading 
dx2−y2 channel is enhanced if one tunes the chemical potential to the 
VHS, as can be seen in Fig. 3E.
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Finally, Φp = (Φpx, Φpy) is a two-component order parameter 
that describes a p-wave LC, giving rise to a toroidal magnetic dipole 
moment. It transforms under the Eu irrep and thus has odd parity, 
pΦ = −1. Its statistical mechanics is governed by a four-state clock 
model, a result that follows from a Landau expansion that includes 
quartic terms. The four states for α = 0, defined in Fig. 4, are shown 
in Fig. 2D. Φp has a magneto-electric response, that is to say, it can 
be polarized by crossed electric and magnetic fields according to 
Hc = −κ(ΦpxBx + ΦpyBy)Ez. A similar effect can be achieved by ap-
plying, instead of electric fields, time-varying currents along the z 
axis. As shown in Fig. 3C, away from the QCP, we find that Φp fluc-
tuations result in weak extended s-wave superconductivity that is 
dominated by an angle-dependent gap function of the form Δ(φ) = 
Δ0 + Δ1 cos(4φ) with ∣Δ1∣ ≫ ∣Δ0∣, yielding eight vertical line nodes. 
In addition, there is a sub-leading weak dx2−y2 pairing state that 
could only become dominant if one could approach smaller hole 
doping values without increasing the LC correlation length (see 
Fig.  3F). Most importantly, and in complete agreement with the 
general discussion for odd-parity LC states after Eq. 6, the pairing 
eigenvalues turn strongly repulsive in all symmetry channels as one 
approaches the QCP, as signaled by the absence of any positive ei-
genvalue in Fig. 3C as r → 0. While the results in Fig. 3 (C and F) 
refer to α = 0, in Fig. 4A, we show the impact of the parameter α on 
pairing. Recall that α parametrizes the relative weights between dif-
ferent paths connecting opposite O orbitals (see Fig. 4, B and C). The 
impact is clearly minor, consisting of the emergence of other weak 
subleading states for a range of α values and of the suppression of the 
leading state near α = π/4.

Our analysis so far has considered only pure orbital magnetism. 
Of course, in any system with spin-orbit coupling, spin fluctuations 
with the same symmetry as the LC patterns are expected to emerge 
(68, 69). Their pairing was analyzed with a generalization of Eq. 2 to 
spin exchange. The degeneracy between the in-plane and out-of-
plane triplet channels is now lifted by the nontrivial spin structure. 
The results are shown in Fig. 5. For even-parity LC order, we find 
strong pairing in triplet channels that will eventually dominate as 
r → 0 over the weak singlet instabilities discussed earlier. Conversely, 
for odd-parity LCs, spin fluctuations promote parametrically weak 
triplet pairing. Hence the strongly repulsive behavior of the pairing 
interaction in the orbital sector cannot be offset by the contribution 
from spin fluctuations. These results can, in fact, be derived from 
Eq.  6, adapted to spin-mediated pairing. The crucial difference is 
that the conditions for the two behaviors in Eq. 6 are interchanged: 
Now, forward scattering vanishes for odd parity (pΦ = −1).

DISCUSSION
In our analysis, we did not derive the existence of orbital magnetism 
or LCs. Instead, we started with the assumption that they exist and 
then explored the strength and type of superconductivity that they 
promote. We find that away from the associated QCP, intra-unit-cell 
LC fluctuations can give rise to unconventional pairing. Because of 
the negative-definiteness of the singlet Cooper channel interaction, 
V+(p, k) < 0, any s-wave solution that has no nodes, Δ+(k) > 0, 
necessarily has negative eigenvalues λ in Eq.  2. Hence, attractive 
pairing channels must be unconventional, if they exist. However, in 
distinction to pairing mediated by spin-magnetic (34, 35), nematic 
(29–31), or ferroelectric (32, 33) fluctuations, we do not find an en-
hancement of the pairing that is related to the vicinity of the 

QCP. For even-parity LCs, the weak orbital pairing behavior persists 
near the QCP and, in the presence of spin-orbit coupling, is over-
whelmed by the symmetry-equivalent spin fluctuation that favors 
triplet pairing. In contrast, odd-parity LCs near the QCP are strong-
ly pair-breaking in all symmetry channels, a behavior that cannot be 
circumvented even when one allows for spin-orbit coupling and 
spin fluctuations. This behavior is consistent with the fact that in the 
ordered phase, a space-inversion and time-reversal symmetry 
breaking state would suppress the Cooper instability. Hence, criti-
cal intra-unit-cell odd-parity LCs behave analogously to photons, 
where the coupling of a fermion current to the vector potential—
odd under parity and time reversal—yields no superconductivity 
either. Note that the absence of a strong attractive pairing interac-
tion at the QCP justifies a posteriori the weak-coupling analysis 
used in this paper.

With regard to the cuprate superconductors, we have studied 
them in the far-overdoped regime where complications relating to 
Mott physics, the pseudogap, and competing orders can be neglect-
ed (70–72). We find that the odd-parity LC state Φp, which is the 
one most widely discussed in the cuprates, will at best give rise to 
extended s-wave pairing away from the QCP. As one approaches the 
QCP, Φp will not only fail to induce pairing in any channel but also 
suppress pairing that might arise from other collective modes.

In (7), it was argued that pairing is caused by fluctuations of the 
conjugate momentum of Φp and that this conjugate momentum has 
an essentially momentum-independent correlation function. The 
conjugate momentum of Φp must be odd under time reversal, even 
under parity, and transform like a magnetic dipole. Hence, it trans-
forms like Φg and is governed by the same form factor. The analysis 
at the QCP is then formally identical to the case r ∼ 1, where, as dem-
onstrated in Fig. 3A, we find weak dxy-wave pairing. We do not find 
the dx2−y2 pairing state that was reported for fluctuations from Φg 
(7, 37). The reason is that the matrix element f (p, k) ∝ [(k × p) ⋅ ẑ]2 
used in (7, 37) was estimated in the continuum limit, which ignores 
the fact that f(p, k) vanishes when either p or k are at the high-
symmetry Van Hove points (π,0) or (0,π) (see Methods C). Φg there-
fore cannot take advantage of the high density of states near these 
Van Hove momenta. Only for chemical potentials that yield very 
small electron pockets do we retrieve the continuum limit matrix 
element and the degeneracy between dxy and dx2−y2 pairing that fol-
lows from it (7, 37) (see Fig. 3D). The continuum limit is fully con-
sistent with Eq. 6 for pΦ = +1, i.e., it only gives rise to weak pairing 
near the QCP. While pairing due to the conjugate momentum is 
allowed and interesting, the order parameter itself should always 
couple directly to electrons and its much stronger pair-breaking 
tendency cannot, in our view, be ignored.

In conclusion, superconductivity due to this highly interesting 
state of matter is unlikely in general and in the cuprates in particular 
if we restrict ourselves to intra-unit-cell (i.e., q = 0) ordering. It is an 
interesting question of whether this remains the case if LCs break 
additional translation symmetries, which has been proposed to 
take place in cuprates (73–77) and in kagome superconductors (24). 
For such staggered LCs, the Cooper channel interaction is again 
uniformly repulsive, V+(p, k) < 0, but now with a peak at a finite 
momentum transfer Q, a behavior known to give rise to unconven-
tional superconductivity (78, 79). We find that such pairing due to 
staggered LCs strengthens as the QCP is approached as there are no 
generic symmetries, like parity or time-reversal, that suppress it. 
For the electronic structure of the cuprates, we obtain that d-wave 
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and p-wave LCs with Q = (π,π) both favor strong dx2−y2-wave pair-
ing, whereas g-wave LCs do not because of the suppression of f(p, k) 
at the Van Hove points.

METHODS
A. LC exchange
The fully antisymmetrized interaction due to exchange of LC 
fluctuations that couple to the fermionic bilinear of Eq.  1 equals 
U1234 = −(V1234 − V1243), where i ≡ (ki, αi), αi is the combined orbital 
and spin index, and

See Fig. 6 for the diagram. The pairing instability is determined by the 
Cooper channel interaction ̃Vα1α2

α3α4

(k
1
, k

3
)≡ U

α1α2α3α4
(k

1
, −k

1
, k

3
, −k

3
) 

through the linearized gap equation (80, 81)

Here, n is the bands index, εkn is the band dispersion, and Pkn = 
∑s ∣ukns〉〈ukns∣ projects onto the Bloch states of the band. The gap 
matrix was expressed in terms of a Balian-Werthamer vector Δa(p)

where Pa
p
=

∑
ss� upnsσ

a
ss�
u†
pns�

 for that n whose εpn = 0. Projecting 
onto a single Fermi surface for purely orbital Γp,k = γp,k ⊗ σ0 under 
the assumption of no spin-orbit coupling yields the linearized 
gap Eq. 2.

The matrix element f (p, k) = ∣u†
p
γp,kuk∣

2 of Eq. 4 may vanish for 
p = ±k, depending on the parity and time-reversal sign of the order 
parameter (1). Under inversion symmetry γp,k

P
→p

Φ
γ
−p,−k , where 

pΦ is the parity of Φ. Since LCs are odd under time-reversal, 
γp,k

Θ

→ − γ

∗

−p,−k
 . If we further use the transformation properties of 

orbital Bloch functions uk
P
→u

−k

Θ

=u∗
k
 under these same symme-

tries, we find

Hence, for even-parity (pΦ = +1) LCs, the matrix element f(p, k) 
vanishes at p = k, yielding Eq. 6. Because of time-reversal oddness 
of LCs, u†

−k
γ
−k,−pu−p = −u†

p
γp,kuk so f(−k, k) = 0 also vanishes.

B. Electronic structure of cuprates
In cuprates, the states closest to the Fermi level primarily derive from 
anti-bonding hybridization between Cu:3dx2−y2 orbitals and O:2px,y 
orbitals oriented along the ligands (9, 56, 82, 83) (see Fig. 2A). These 
orbitals are the basis of the three-band tight-binding model (9, 51,52, 
53, 54, 55) that we use in our calculation. In the orbital basis ckσ = 
(dkσ, px,kσ, py,kσ)T, the three-band Hamiltonian takes the form

where k = (kx, ky), ̃k = (ky , kx) , and

Typical values for the tight-binding parameters used in the litera-
ture are (60) (ϵd − ϵp)/tpd ∈ [2.5,3.5], tpp/tpd ∈ [0.5,0.6], and t′pp/tpd ≈ 
0, with tpd ∈ [1.2,1.5]eV. t′pp is not really negligible (57, 58, 67), al-
though it is often assumed to be. The importance of t′pp for LCs was 
emphasized in (59). We have considered eight different parameter 
sets that cover a wide range of physically reasonable possibilities 
(56–60) and that reproduce the ARPES Fermi surface shapes (47, 
48, 84, 85). Our results have turned out to be insensitive to these 
changes in the one-particle Hamiltonian. All results shown or quot-
ed in the paper are for the representative parameter set ϵd − ϵp = 
3tpd, tpp = 0.6tpd, t′pp = 0.5tpd, and μ = 0.9tpd, with ϵd = 0.

C. Classification of fermionic bilinears
Because of the nontrivial Wyckoff positions of the oxygen atoms, some 
point group operations (e.g., 90° rotations and parity) map orbitals be-
tween different primitive unit cells. In momentum space, the corre-
sponding unitary matrices therefore acquire k-dependent phases. For 
classification purposes, it is more convenient if the orbital and momen-
tum dependencies of the point group matrices do not mix. Instead of the 
three-component spinor cσ(R)= 

[
d
σ
(R), px,σ(R+ x̂∕2), py,σ(R+ ŷ∕2)

]T
 , 

we therefore use an extended five-component spinor a
σ
(R)=[

d
σ
(R), px,σ(R+ x̂∕2), py,σ(R+ ŷ∕2), px,σ(R− x̂∕2), py,σ(R− ŷ∕2)

]T
 that 

is related to the primitive spinor through akσ = Wkckσ, where

V1234 = g2χ(k1 − k3)
[
Γk1,k3

]
α1α3

[
Γk2,k4

]
α2α4

(7)

[Δp]α1α2 = −

1

2N

∑
kα3α4

̃V
α1α2

α3α4
(p, k)

∑
n

tanh 1

2
βεkn

2εkn

[
PknΔkP

T
−kn

]
α3α4

(8)

[
Δp

]
α1α2

=

3∑
a=0

Δa(p)
[
Pa
p
iσy

]
α1α2

(9)

u†
k
γk,pup = −p

Φ
u†
p
γp,kuk (10)

Hk =

⎛
⎜⎜⎜⎝

hd(k) hpd(k) −hpd(
̃k)

hp(k) hpp(k)

c. c. hp(
̃k)

⎞
⎟⎟⎟⎠

(11)

hd(k)=ϵd−μ

hp(k)=ϵp+2t�
pp
coskx−μ

hpd(k)= tpd(1−e−ikx)

hpp(k)= − tpp(1−eikx )(1−e−iky)

(12)

Wk =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0

0 1 0

0 0 1

0 e−ikx 0

0 0 e−iky

⎞⎟⎟⎟⎟⎟⎟⎠

(13)

Fig. 6. Diagram of the antisymmetrized four-fermion interaction that is medi-
ated by a bosonic collective mode. The bosonic propagator is denoted with a 
wavy line.
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The corresponding extended unit cell is shaded blue in Fig. 2A.
In the extended basis, point group transformation matrices 

no  longer depend on k. Hence, LCs are classified by imaginary 
Hermitian 5 × 5 matrices. In total, there are 10 linearly independent 
matrices, which we classify into irreps of the D4h point group 
(66) below

These matrices determine the form factors of the LC order pa-
rameter (Eq. 1) via Γk,p =W†

k
ΛWp ⊗ σ

0 . Hence, one would expect 
a total of 10 possible LC states. In the next section, we show that 
charge conservation and the fact that spontaneous global currents 
are forbidden in purely electronic systems reduce the total number 
down to six.

The enhanced density of states near the Van Hove points kX = 
(π,0) and kY = (0,π) can be important for pairing. This turns out to 
not be the case for Φg-mediated pairing associated with A2g LCs. To 
see why, let us consider kX. Parity implies that the band Hamiltonian 
is block-diagonal at this momentum, with the even-parity (d, px) 
block decoupled from odd-parity py. Since the conduction band 
state ukX has even parity and the g-wave LCs only couple the px and 
py orbitals, the relevant matrix element is u†

kX
W†

kX
Λ

A2gWpuy where 
uy = (0,0,1). Let M be the mirror operation across the yz plane. Both 
the kX states and the py orbitals are even under M. The A2g LCs are 
mirror-odd, however, making the matrix element vanish

The Van Hove point is therefore decoupled from the rest of the 
Fermi surface so there is no divergence at the Van Hove filling in 
Fig. 3D.

We recover the matrix element

of (7, 37) only when both p and k are near the Γ point, i.e., when the 
Fermi surface forms a small electron pocket at very large overdop-
ing (p → 1). For the coefficient, we find c0 = 2t2

pd
∕ (ϵd−ϵp−2t�

pp
)2.

D. Bloch and Kirchhoff constraints
An LC state is allowed only if its ordered state is consistent with the 
continuity equation (Kirchhoff ’s law) and with the Bloch constraint 
(1–3) that no global current can flow (see Fig.  7). A microscopic 
theory that properly derives such a state would naturally obey these 
conditions. In our phenomenological treatment, we must impose 
these constraints explicitly.

Bloch constraints: Using the extended basis, the global current 
operator can be written as

Λ

A1g
=

1

2

⎛
⎜⎜⎜⎜⎜⎜⎝

0 − i i i − i

i 0 0 0 0

− i 0 0 0 0

− i 0 0 0 0

i 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

, Λ

A2g
=

1

2

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0

0 0 − i 0 − i

0 i 0 i 0

0 0 − i 0 − i

0 i 0 i 0

⎞
⎟⎟⎟⎟⎟⎟⎠

,

Λ

B1g

1
=

1

2

⎛
⎜⎜⎜⎜⎜⎜⎝

0 − i − i i i

i 0 0 0 0

i 0 0 0 0

− i 0 0 0 0

− i 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

, Λ
B1g

2
=

1

2

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0

0 0 i 0 − i

0 − i 0 i 0

0 0 − i 0 i

0 i 0 − i 0

⎞
⎟⎟⎟⎟⎟⎟⎠

,

Λ

Eu
1,x

=

1√
2

⎛⎜⎜⎜⎜⎜⎜⎝

0 − i 0 − i 0

i 0 0 0 0

0 0 0 0 0

i 0 0 0 0

0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎠

, Λ

Eu
1,y

=

1√
2

⎛⎜⎜⎜⎜⎜⎜⎝

0 0 i 0 i

0 0 0 0 0

− i 0 0 0 0

0 0 0 0 0

− i 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎠

,

Λ

Eu
2,x

=

⎛⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0

0 0 0 − i 0

0 0 0 0 0

0 i 0 0 0

0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎠

, Λ

Eu
2,y

=

⎛⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0

0 0 0 0 0

0 0 0 0 − i

0 0 0 0 0

0 0 i 0 0

⎞⎟⎟⎟⎟⎟⎟⎠

,

Λ

Eu
3,x

=

1

2

⎛⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0

0 0 i 0 − i

0 − i 0 − i 0

0 0 i 0 − i

0 i 0 i 0

⎞⎟⎟⎟⎟⎟⎟⎠

, Λ

Eu
3,y

=

1

2

⎛⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0

0 0 − i 0 − i

0 i 0 − i 0

0 0 i 0 i

0 i 0 − i 0

⎞⎟⎟⎟⎟⎟⎟⎠

u†
kX
W†

kX
Λ

A2gWpuy =u†
kX
W†

kX
M†

Λ

A2gMWpuy

=−u†
kX
W†

kX
Λ

A2gWpuy =0
(14)

u†
k
W†

k
Λ

A2gWpup = ic0 ẑ ⋅ (k × p) (15)

A B C D

Fig. 7. LC patterns that violate Bloch and Kirchhoff constraints. (A and B) Local currents that would result in an accumulation of charge on d and py orbitals, respec-
tively. (C and D) Global currents that would violate Bloch’s theorem.
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Here, i,j are orbital indices and (J)ij = −i(ri − rj)tij, where ri are 
the basis vectors of the five extended unit cell atoms. The current 
matrix J can be expressed in terms of time-reversal-odd Eu matrices

where w = x or y. Hence, a finite global current can only be induced 
by p-wave LC order that transforms under the same Eu irrep. Con-
sider a small, but finite, order parameter Φp that couples to fermions 
through the linear combination of form factors

Linear response theory then yields the constraint

where h = (h1, h2, h3) are the linear response coefficients obtained by 
evaluating the current expectation value and c = (c1, c2, c3) specify the 
bilinear (18). h/∣h∣ depends weakly on chemical potential and for μ = 
0.9tpd equals (0.85,0.31,−0.43). After enforcing the above constraint, a 
one-parameter family of Eu bilinears c = ĥccos(α) + ĥssin(α) remains. 
Here, hc = h × (0,1,0), ĥc = hc ∕ ∣hc∣ , hs = h × hc, and ĥs = hs ∕ ∣hs∣.

Kirchhoff constraints: Local charge conservation entails that 
ṅi =

∑
j Gij , where ni is the charge on site i and Gij = −Gji is the current 

flowing from site j to i. For a steady state, it must hold that ⟨ṅi⟩ = 0 . 
One easily finds that GA1g

= 2tpdΛ
A1g

6
 currents change the copper nd 

and total oxygen npx + npy charge, whereas GB1g
= −2tpdΛ

B1g

4
+ 4tppΛ

B1g

5
 

currents change npx − npy. Hence, currents associated with GA
1g and 

GB
1g must vanish. This implies that there cannot be an LC of A1g sym-

metry and that the two coefficients c1 and c2 in the bilinear

are not independent. For μ = 0.9tpd, we find that c1/c2 = 0.72; this 
ratio depends weakly on μ.
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