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Chapter 1

Introduction

1.1 Motivation and Thematic Overview

Bitcoin was introduced as a novel cash system eliminating the need for traditional financial
intermediaries (Nakamoto, 2008) and marks the inception of the cryptocurrency market. Cryp-
tocurrencies’ peer-to-peer structures and novel mechanisms to achieve unified agreement on
transaction records enable transfers directly from one party to another without reliance on
trust. Also, the underlying blockchain technology is said to have disruptive character and
promises transformative changes across various economic sectors, especially in financial appli-
cations such as securities settlement and collateralized loans, among others (see, e.g., Berentsen
and Schär, 2017; Schuster et al., 2020). Despite Bitcoin and other cryptocurrencies not being
widely accepted for payments, and many blockchain applications being still in their infancy,
the cryptocurrency market has flourished since the launch of Bitcoin in January 2009. Various
new cryptocurrencies have arisen, collectively forming a new financial asset class. According
to coinmarketcap.com, the total market capitalization of this new asset class accounted for
about 2.5 trillion U.S. dollars by the end of March 2024. In November 2021 the accumulated
market capitalization even surged to a peak as high as 2.97 trillion U.S. dollars, surpassing the
concurrent aggregated market capitalization of the Deutsche Aktienindex (DAX) by about 1.5
times.

Despite the consistent increase in the popularity of cryptocurrencies over time, many questions
surrounding this asset class remained unanswered for a significant period and continue to chal-
lenge understanding. For example, what determines the value of these distributed databases
representing units of virtual cash? Are we simply witnessing an enormous bubble or do cryp-
tocurrencies rely on unique design features that justify at least part of the demand – for instance,
the cryptographic techniques inducing a high degree of counterfeit safety or the protocols that
set an upper bound on cryptocurrency supply acting as commitment device not to issue too
much virtual money? Are such design features crucial value drivers and do they impact the

https://coinmarketcap.com/


2 Chapter 1. Introduction

price volatility of this emerging asset class? How is systematic risk, associated with specific
design features, perceived within the markets? Do different consensus protocols have diverging
effects on the price building mechanisms?

This dissertation addresses these open questions, focusing particularly on the unique features of
the wide variety of cryptocurrencies. Most of the unique features, which specify the rules of the
network, are directly encoded in the source codes and thus, they directly arise from the network
design. Consequently, this dissertation refers to those features as design features. Examples in-
clude the consensus mechanisms applied to reach unified agreement on the decentralized ledger,
the hash function employed to embed new information into the blockchain, or the supply curve
with its direct implications for validator rewards. Each cryptocurrency is characterized by a
unique set of design features, which may have diverse implications for prices, volatility, and risk,
inter alia, compared to its competitors. Overall, the cryptocurrency landscape exhibits a wide
variety of different design feature combinations, rendering the asset class of cryptocurrencies
quite heterogeneous – a perspective on this asset class which is maintained throughout this
dissertation.

Within literature that examines (cross-sectional) cryptocurrency returns, cryptocurrency valu-
ation, and price volatility, a significant part predominantly focuses on financial markets-related
determinants or macroeconomic and regulatory events. For instance, Liu et al. (2022) show
that three factors adapted from traditional financial markets – cryptocurrency market, size,
and momentum – explain the cross-section of cryptocurrencies’ expected returns. Other stud-
ies introduce further financial market-related factors or concentrate on latent factors (see, e.g.,
Babiak and Bianchi, 2021; Liu et al., 2020). Albeit only being a small subset of this strand of lit-
erature, some papers drive this approach further and take into account the unique features and
specific conditions of cryptocurrencies. These studies typically include cryptocurrency-specific
factors such as the network adoption rate (see, e.g., Cong et al., 2021a; Liu and Tsyvinski,
2021) or the hash rate (see, e.g., Bhambhwani et al., 2023) and show that these factors indeed
increase the explanatory power for cross-sectional returns. Yet, these factors are the outcome
of the underlying cryptocurrency design features rather than unique features themselves. This
dissertation addresses the gap in literature by analyzing the impact of cryptocurrency design
features in the strict sense (i.e., as defined in the underlying source code) on various aspects of
the cryptocurrency market, including valuation, volatility, and risk-return profiles.

The dissertation first develops a novel taxonomy that categorizes the broad spectrum of de-
sign features into six top-level groups, thereby providing a profound basis for analyzing design
feature influence. Based on this taxonomy and utilizing hand-collected data, the dissertation
investigates the impact of cryptocurrency design on valuation, measured through market capi-
talization, and on volatility in a second step. Since the design features generally have no time
variation and the dependent variables are highly persistent, these analyses concentrate on a
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simple cross-section when studying the impact of various design features. The analyses’ results
are crucial for cryptocurrency investors, regulators, and developers, as they disclose the im-
pact of design and the underlying technology on market outcomes, thereby aiding in informed
decision-making and policy formulation.

A design feature that has drawn much attention is the consensus protocol. Consensus proto-
cols define a network’s rules by determining how unified agreement on transaction records is
established within the network. Obviously, they are of upmost importance for cryptocurrency
networks to maintain their integrity. Among the different types of consensus protocols, the
Proof-of-Work (PoW) protocol has been the subject of much debate, particularly due to its
perceived unsustainability. PoW networks rely on miners who update the ledger on a round-
by-round basis by competitively solving cryptographic puzzles. This process demands vast
computing power, resulting in immense energy consumption.1 In response to this excessive
energy consumption during times of high climate change concerns, alternative consensus proto-
cols have emerged and gained in importance, with Proof-of-Stake (PoS) being the most notable.
By the course of time, the number of PoS cryptocurrencies surpassed those using PoW (Irres-
berger et al., 2020). Most prominently, Ethereum, the second-largest cryptocurrency, completed
a transition from PoW to PoS in September 2022 in an event known as the Merge. The basic
procedure of PoS is fairly different to the one of PoW. Network members stake coins and get
stake-proportional authorization to update the blockchain history. Following the network rules,
updating users are granted a reward. Dishonest behavior, in contrast, can lead to sanction-
ing. Obviously, such systems do not only depend on their sound implementation, but are also
critically determined by the financial economics of the network. Consequently, the economics
and price building mechanisms of PoS systems are fairly different to PoW networks. By intro-
ducing a novel valuation model for PoS networks and analyzing its equilibrium outcome, this
dissertation documents crucial differences between the two major consensus mechanisms with
respect to network stability: Stemming from an opportunity cost problem, PoS is inherently
more fragile than PoW. Juxtaposing to the PoW model of Pagnotta (2022), the dissertation
shows that the stability of PoS networks is more sensitive to changes in certain design features.

In an ensuing chapter, the dissertation integrates established asset pricing methods with unique
design feature data, thereby shedding light on the asset pricing significance of design-related
characteristics of cryptocurrencies. Overall, this part relates design characteristics to expected
returns and systematic risk. The focus on returns allows a combination of time-invariant
design features with time-varying return predictors established in literature (e.g., Babiak and
Bianchi, 2021; Liu et al., 2022), thereby employing a panel structure in the data. Using an
Instrumented Principal Component Analysis (IPCA) as introduced by Kelly et al. (2019) and

1As of the end of 2023, the Cambridge Bitcoin Electricity Consumption Index estimates the annualised
electricity consumption of Bitcoin, the most prominent PoW network, to be as high as the annual electricity
consumption of countries like Poland or Malaysia (source: U.S. Energy Information Administration).

https://cbeci.org/
https://www.eia.gov/international/data/world/electricity/electricity-consumption


4 Chapter 1. Introduction

building upon the idea of Müller et al. (2023), this study elucidates systematic risk premiums
associated with various design-related features of cryptocurrencies. The main focus centers
around the risk premium of a long-short portfolio going long PoW-based cryptocurrencies and
short PoS cryptocurrencies, albeit with the important feature that the long-short portfolio has
zero exposure to all other characteristics. In the early parts of the sample, PoS is perceived
systematically riskier than PoW. The systematic risk premium can be related to the health of
the staking system, and thus to the inherent opportunity cost problem which induces a lower
network stability, as documented in the preceding part of this dissertation. In more recent
times, PoW carries a premium compensating for the energy consumption risk and climate
risk concerns. Besides, the risk premiums associated with other design-related features are
examined. Specifically, the analysis contrasts coins with tokens, privacy with non-privacy
cryptocurrencies, as well as smart contract featuring networks with those that do not. This
rounds off the dissertation, which discloses an asset pricing perspective on cryptocurrency
design.

1.2 Structure of the Dissertation

This dissertation is structured as follows.

In Chapter 2, which bases on the working paper “Design and Valuation of Cryptocurrencies”
(Eska et al., 2022b), we first propose the novel taxonomy of cryptocurrency design features
and introduce hand-collected data on these features. This provides a valuable overview of
which specific design characteristics are observed in the cryptocurrency market with what
frequency. Further, the data builds the basis for the subsequent analysis that reveals the
impact of cryptocurrencies’ designs on cryptocurrency valuation. Using a two-stage regression
approach and LASSO regressions, it is shown that forks and deviations from the design of
Bitcoin are associated with lower market capitalization. Non-anonymous cryptocurrencies and
cryptocurrencies that do not pass on any transaction fees and/or tips to agents who maintain
the integrity of the network have, on average, higher market values. The results presented in
this chapter are robust to variations in the way we measure market valuation.

Considering the design features introduced in Chapter 2, their impact on the cross-sectional
volatility of cryptocurrencies is analyzed in Chapter 3. We estimate LASSO regressions using
the design features as independent variables and volatility measures as the dependent vari-
ables. The results show that older cryptocurrencies tend to be less volatile. In contrast, the
chapter provides evidence that networks passing transaction fees and/or tips on to verifiers are
associated with higher volatility levels. Besides, cryptocurrencies with mandatory transaction
fees, cryptocurrencies with non-public development teams, as well as the ones based on either
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PoS or delegated Proof-of-Stake are more volatile. To assure robustness, the volatility mea-
sures are calculated on basis of Bitcoin and U.S. dollars denominated prices, respectively. Note
that this chapter builds on the working paper “Do Design Features Explain the Volatility of
Cryptocurrencies?” by Eska et al. (2024).

Chapter 4, which is based on the working paper “After the Merge: Network Fragility and Ro-
bust Design of PoS Cryptocurrencies” (Eska et al., 2022a), develops an economic model for
cryptocurrencies that achieve consensus via PoS. The model links the demand-driving network
structures with security-relevant components in PoS networks. The price interacts as the con-
necting component and can be determined in so-called stationary equilibria. The model reveals
an opportunity cost problem in PoS systems. The usefulness of a PoS coin for transactions
negatively affects the incentive for staking which can reduce network security and ultimately
lead to a system breakdown. Consequently, PoS systems are inherently more fragile than
cryptocurrencies utilizing a PoW-based consensus protocol. Several design parameters such as
the inflation rate, the fork length, and others, critically determine the extent of the network
fragility. In the second part of this chapter, the model is calibrated to the Ethereum network
and thereby provides guidance on parameter choices ensuring the stability of the system.

In Chapter 5, which builds on the working paper “Climate Change, Energy Prices, and the
Returns of Proof-of-Work vs. Proof-of-Stake Crypto Assets” by Eska and Müller (2024), sys-
tematic risk premiums of cryptocurrency design features are analyzed. Based on a latent factor
asset pricing model, the returns of long-short portfolios managed by the design-related features
are examined, thereby identifying systematic risk premiums linked to these design-related char-
acteristics. This chapter particularly focuses on consensus-related risk premiums and thus on
the question whether returns of PoW- and PoS-cryptocurrencies include different compensa-
tions for systematic risk. Specifically, we relate the systematic part of the returns from a
portfolio that is long PoW and short PoS to proxies accounting for climate change concerns,
energy consumption risk, and staking health. The analysis reveals a negative covariation with
innovations in climate change concerns and energy consumption risk in recent times. Prior to
2021, PoS was systematically riskier than PoW. This can be attributed to the cyclicality of
the opportunity cost associated with PoS, which dominates the energy-related risk premium of
PoW in this period of the sample. Employing the same methodology, further design-related risk
premiums are investigated. Except for coins versus tokens, we find similar structural breaks in
the risk-return profiles during the time span of the consensus risk adjustment. For instance,
privacy featuring cryptocurrencies earned a systematic risk premium of almost 20% p.a., which
vanished to a level indistinguishable from zero during the break.

Chapter 6 recapitulates the main findings of this dissertation and gives a concise outlook on
possible future research questions.
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Chapter 2

Design and Valuation of
Cryptocurrencies

2.1 Introduction

Cryptocurrency values are highly volatile. While the time-series variation of cryptocurrency
values in general, and that of Bitcoin in particular, attracts a lot of public attention, the
cross-sectional differences in cryptocurrency values receive much less attention and are not well
understood. Some cryptocurrencies, the so-called stablecoins, are backed by a portfolio of assets
and thus have valuations linked to those assets, but most are not. The question therefore arises
of what determines the relative valuations of different cryptocurrencies. This question is of
obvious importance to users of and investors in cryptocurrencies, to trading venue operators
and regulators.

This chapter sheds light on a specific aspect of this issue. We analyze empirically whether
design features of cryptocurrencies and the specific characteristics associated with them affect
their relative valuation. To this end, we first develop a taxonomy of the wide range of cryp-
tocurrency design features and sort them into six groups, namely, (i) features related to the
development process of the cryptocurrency, (ii) technical design features, (iii) features related
to cryptocurrency supply, (iv) features related to transactions and transaction processing, and
(v) features related to the usability of the underlying network as well as (vi) general features.
Additionally, we include the age of each cryptocurrency to take into account the fact that older
cryptocurrencies may have more users and, because of the network externalities associated with
the number of users, may be more valuable. We hand-collect a data set covering the design
features and age of 79 cryptocurrencies with the highest market capitalization as of September
2020. Note that we only consider cryptocurrencies in the strict sense, i.e., coins, and exclude
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tokens because tokens do not operate on their own independent distributed ledger.2

We combine the data on design features with data on market capitalization, obtained by multi-
plying coin supply by coin prices. To take into account the overall market movements between
the inception of a coin and our sample period, we additionally introduce and analyze a dis-
counted version of market capitalization.

Our data set is characterized by a high number of potentially relevant independent variables
relative to the number of cryptocurrencies in the sample. We use two methodological approaches
to tackle this problem. First, we implement a two-stage cross-sectional regression approach
inspired by Karnaukh et al. (2015). In step 1 we estimate six regressions in which we regress
the market values of the cryptocurrencies in our sample on the design features contained in
one of the six groups introduced above. In step 2 we estimate an encompassing regression
in which we include those design features that have the highest explanatory power in the
respective first-stage regression. Our second approach is the machine learning-based LASSO
(least absolute shrinkage and selection operator) regression approach which combines variable
selection and regularization. Our approach has two distinct characteristics which differentiate
it from traditional asset pricing approaches. First, we explain the cross-section of market
valuations, not the cross-section of returns. Second, we do not use a panel data set (or a
repeated cross-section as in Fama and MacBeth, 1973) but rather a simple cross-section. This
approach is warranted because our dependent variables (cryptocurrency market values) are
highly persistent and most of our independent variables (the design features) have little or no
time-series variation.

Our results indicate that cryptocurrencies with a Bitcoin-like combination of design features
tend to have higher market capitalization than currencies that are distinctively different from
Bitcoin. We also find that cryptocurrency networks that were spun off another network (so-
called forks) and not built from scratch tend to have lower market capitalization, possibly
because forks compete against their parent networks which are very similar and have a first-
mover advantage. Cryptocurrencies that do not pass on any transaction fees and/or tips to
agents who maintain the integrity of the network have, on average, a higher market capitaliza-
tion. Such transaction fees can increase the fragility of the system: Some users drop out directly,
waiting times increase as a result, and consequently, even more users drop out (Basu et al.,
2023; Easley et al., 2019; Huberman et al., 2021). Adverse effects related to network security
are also conceivable (Pagnotta, 2022). Our analysis also indicates that networks that require
the disclosure of the real-world identities of their users have higher market capitalization. A
possible reason for the higher valuation of non-anonymous currencies is that market participants
price in the expectation of regulatory approval of non-anonymous currencies and/or regulatory

2Even though stablecoins have “coins” in their name, they are generally tokens operating on an existing
distributed ledger and therefore are excluded from our analysis.
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action against anonymous currencies. Finally, we find (weak) evidence that currencies which
had for-profit companies as their main developers have lower market capitalization, possibly
because of a lower degree of decentralization.

Related Literature
This chapter contributes to the literature on the valuation of cryptocurrencies. A first strand of
this literature addresses the question why cryptocurrencies which are neither backed by a pool
of assets nor by a trustworthy institution such as a central bank have a non-zero value (Abadi
and Brunnermeier, 2018; Aoyagi and Adachi, 2018; Biais et al., 2023; Bolt and Oordt, 2020;
Dwyer, 2015; Pagnotta, 2022; Schilling and Uhlig, 2019; Sockin and Xiong, 2023; Zimmerman,
2020). A second strand of the literature analyzes financial markets-related determinants of
cryptocurrency values. Papers in this area analyze, for example, whether there are common
factors driving cryptocurrency returns (Bianchi et al., 2022; Borri et al., 2022; Cai and Zhao,
2024; Hu et al., 2019; Leong and Kwok, 2023; Liu et al., 2020; Liu et al., 2022; Zhang et al.,
2021), or whether macroeconomic or regulatory events affect cryptocurrency prices (Auer and
Claessens, 2021; Corbet et al., 2020; Koenraadt and Leung, 2024; Li and Miu, 2023). Some
papers in this strand of the literature also include cryptocurrency-specific factors driven by
network effects or cryptocurrency production cost (Babiak and Bianchi, 2021; Bhambhwani
et al., 2023; Cong et al., 2021a; Liebi, 2022; Liu and Tsyvinski, 2021). The third strand of
the literature, and the one most closely related to our work, attempts to identify determinants
of the cross-section of cryptocurrency values related to cryptocurrency design and blockchain
functionality. Two early papers that relate cryptocurrency design to price levels and returns
are Hayes (2017) and Wang and Vergne (2017). Hayes (2017) investigates the impact of cryp-
tocurrency design features on prices. He considers prices on a single day in 2014 and examines
four design features, two of which (the rate of coin creation and the use of the scrypt algorithm)
are found to be significant for price formation.3 Wang and Vergne (2017), in contrast, analyze
the returns of five cryptocurrencies and find that they are positively related to a measure of
innovation potential as well as to supply growth and liquidity. Furthermore, Shams (2020)
demonstrates that the comovement structure of cryptocurrencies is too high to be explained
by similarities in characteristics such as the consensus mechanism. He suggests that trading on
cryptocurrency exchanges is the main driver of the comovement. We extend this line of research
by analyzing a data set much broader both in terms of cryptocurrencies and in terms of de-
sign features, by implementing two distinctively different empirical methodologies and various
model specifications, and by proposing a novel taxonomy of cryptocurrency design features.

3Hayes (2017) also finds that the hashrate affects prices. The hashrate, however, is not a design feature of a
cryptocurrency but rather a market outcome.
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The remainder of this chapter is structured as follows. In Section 2.2, we introduce our novel
taxonomy of cryptocurrency design features, describe the data collection procedure, and present
descriptive statistics on cryptocurrency design. In Section 2.3, we describe the methodology
and in Section 2.4, we present and discuss the results of our empirical analysis. Section 2.5
concludes.

2.2 Cryptocurrency Design Features

In this section we introduce in Subsection 2.2.1 a novel taxonomy of cryptocurrency design
features and hypothesize how the design features might affect the market value of a cryptocur-
rency. In Subsection 2.2.2 we describe how we collected data on the design features for a total
of 79 cryptocurrencies and in Subsection 2.2.3 we present summary statistics.

2.2.1 Taxonomy

The different coins in the cryptocurrency universe can be characterized by combinations of var-
ious design features. While there exists a wide range of such features, these can be categorized
into a small number of groups. The taxonomy we propose in this section differs from previous
attempts which either do not allow a unique allocation of individual features to groups (Garriga
et al., 2020), or which create abstract categories which are difficult to link to individual design
features (Cousins et al., 2019). We propose six categories which are Development, Technical,
Supply, Transactions, Usability, and General.

Development
During the development process of a cryptocurrency, a basic concept is transformed into imple-
mentable code. The identity of the developers and the organization of the process may affect
the design and subsequent valuation of the cryptocurrency. With respect to the identity of
the developers, we differentiate between: (i) a loose network of independent developers and
development teams (DeveloperPublic), (ii) a non-profit organization (NPO) (DeveloperNPO),
or (iii) a private, for-profit company (DeveloperPrivate). It is not a priori clear how the iden-
tity of the development team will affect valuation. On the one hand, users may prefer a public
development team because everyone can contribute to the development process, resulting in
a high degree of decentralization, a particularly appealing cryptocurrencies characteristic. On
the other hand, private developers may have a stronger incentive to make design choices that
result in high valuation while public development teams may maximize welfare, which is not
necessarily the same thing.
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A closely related aspect is the question who decides on code changes. In some networks, a
privileged group decides on code changes. In other networks, the decision whether a suggested
modification is integrated into the core code is made by the network members and thus by
majority voting. We define the dummy variable NoMajorityChanges which is set to 1 for the
cryptocurrencies without such majority voting.4 For those cryptocurrencies enabling majority
voting the variable NoMajorityChanges is set to 0. We expect that users value decentralized
decision making and that, consequently, cryptocurrencies without majority voting will be less
valuable.

We also record general code-related features such as the core code’s primary implementation
language and the accessibility of the core code. With respect to the implementation language
we differentiate between C++ (dummy variable CodeC++), Go (CodeGo), and other languages
(CodeOther). With respect to accessibility we record whether the core code is fully accessible
on Github or a similar platform. If this is the case, we set the dummy variable CodeNonPublic
to 0; otherwise, it takes a value of 1. We expect that the lower transparency associated with a
non-accessible implementation lowers market capitalization.

The last design feature in the category development is Fork, a dummy variable that indicates
whether the initial implementation of a cryptocurrency network was forked from another net-
work (Fork = 1) or built from scratch (Fork = 0). Forks often involve improvements to certain
aspects of the parent network, which may potentially lead to a higher valuation of the fork. On
the other hand, though, a fork is essentially a (modified) imitation of the parent which lacks
innovation and has to overcome the first mover advantage of the parent network. Our prior
expectation is that the second effect dominates the first, resulting in lower valuations of forks.

Technical
The technical category comprises design features related to the consensus mechanism, the hash
function, and the cryptographic methods used to authenticate signatures.

The consensus mechanism provides the rules for reaching agreement on the network status
among its users and thus determines how transactions are validated. Validating a transaction
is tantamount to authorizing a change to the distributed ledger that documents the change
in ownership of the coins transacted. The first and most prominent consensus mechanism
is “Proof-of-Work” (PoW), proposed by Nakamoto (2008).5 The PoW mechanism results in
extremely high energy consumption.6 Currently, the most important alternative to PoW is

4To assign a value of zero to NoMajorityChanges, we do not require that all decisions on code changes are
made by the network members. Instead, we only require that some decisions are made in this manner.

5In PoW, consensus is reached through the work of so-called miners who compete to solve cryptographic
puzzles.

6For instance, in 2022 the total electricity consumption of Bitcoin, the most prominent cryptocurrency based
on PoW, summed up to about 107.65 TWh according to the Cambridge Bitcoin Electricity Consumption Index
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“Proof-of-Stake” (PoS). PoS is based on the idea that agents with higher coin holdings are
generally more interested in a healthy network. In line with this incentive, the probability that
a network member can authorize a transaction is positively related to the coin holdings of that
member. Besides (i) PoW and (ii) PoS, Irresberger et al. (2020) identify three further main
consensus mechanisms: (iii) hybrid PoW/PoS, (iv) delegated Proof-of-Stake (dPoS), and (v)
non-standard consensus mechanisms. We condense these five consensus mechanisms into three
dummy variables for PoW (ConsensusPoW ), for PoS and dPoS (ConsensusPoSdPoS ), and
for nonstandard mechanisms (ConsensusOther). We combine PoS and dPoS into one variable
because both are based on the aforementioned idea that “richer” network members are more
interested in the success of the network and should therefore have more influence on the valida-
tion process.7 We capture hybrids between PoW and PoS by assigning the value of one to both
ConsensusPoW and ConsensusPoSdPoS, for the respective cryptocurrencies. The lower energy
consumption of PoS is a clear benefit and may result in higher valuation of cryptocurrencies
adopting that mechanism. However, it is not clear that PoS and other alternative mechanisms
are as resistant to attacks as PoW.8 We therefore have no clear prediction on the sign of the
coefficients for the three consensus mechanism dummy variables.

Transactions are combined into blocks, and hash functions are used to ensure that blocks cannot
be altered discretely.9 Within the cryptocurrency universe, many different hash functions are
used for this purpose. For our data set on design features, we categorize them in to five different
specifications: (i) SHA-256, the function which Bitcoin uses, (ii) Ethash or the closely related
keccak256 function, (iii) blake, (iv) scrypt,10 and (v) other hash functions. While we do collect
the corresponding data for all cryptocurrencies in our sample, we do not want to inflate the
number of independent variables in our empirical analysis. Therefore, we introduce the age of
the hash function as a proxy for the quality of the hash function. More recently developed hash
functions will typically offer a higher level of security.11 Consequently, we anticipate that the
age of the hash function will negatively affect market valuation.

Cryptocurrencies use Digital Signature Algorithms (DSA) which are based on elliptic curve

(see cbeci.org/) - a value roughly equal to the aggregated electricity consumption of the Netherlands (113
TWh in 2021) according to U.S. Energy Information Administration. Mora et al. (2018) argue that the carbon
emissions caused by Bitcoin mining can push global warming above 2°C.

7The difference between PoS and dPoS is the fact that in dPoS the network member can outsource the task
to third parties, so-called delegates.

8As a case in point, before the Ethereum network eventually adopted PoS in September 2022, it was stated
on the Ethereum homepage that “[PoS] is still in its infancy, and less battle-tested, compared to [PoW]” (see
ethereum.org/en/developers/docs/consensus-mechanisms/pos/ [Accessed: December+12, 2023]).

9Each block contains the hash value of the previous block. If a block is changed, its hash value will also
change and will then deviate from the value written in the next block. This link between blocks makes ex-post
changes to a block easily detectable.

10For PoW-based crpytocurrencies, Hayes (2017) finds a positive influence of scrypt on prices.
11See, e.g., Pfautsch et al. (2020) or https://www.streetdirectory.com/etoday/-ejcluw.html [Accessed:

April 15, 2024].

https://cbeci.org/
https://www.eia.gov/international/data/world/electricity/electricity-consumption
https://ethereum.org/en/developers/docs/consensus-mechanisms/pos/
https://www.streetdirectory.com/etoday/-ejcluw.html
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cryptography in order to authenticate the signatures of the parties in a transaction. We dif-
ferentiate between three types of elliptic curves, (i) ECDSA, the curve which is used, among
others, by the Bitcoin network, (ii) Ed25519, a widely used alternative,12 and (iii) other curves.
While the DSAs are essential for secure coin transfer, not many network users are aware of the
specific differences between the elliptic curves. We therefore do not expect a significant impact
on market values.

Supply
The process of supplying cryptocurrencies is very different from the process of supplying fiat
currency. While the supply of fiat currency depends on the monetary policy of the respective
central bank and is therefore subject to discretionary decisions, the supply of cryptocurrencies is
predetermined in most networks. Oftentimes, the growth in coin supply is linked to the process
of verifying transactions – agents who successfully participate in the verification process are
rewarded with newly created coins. In addition, many cryptocurrencies have a supply cap,
implying that the maximum number of coins cannot exceed a predetermined threshold. We
use the binary variable NoMaxSupply, set to 1 in case of no cap, indicating the existence of a
predetermined maximum number of coins.

In general, cryptocurrencies can (i) have a fixed supply (a feature captured by the dummy
variable FixedSupply), (ii) be deflationary (Deflationary), or (iii) be inflationary. If the supply
is fixed, the number of coins in circulation does not vary over time. For deflationary currencies,
the number of coins decreases over time as a result of certain “burn mechanisms”. Inflationary
currencies come in various forms, characterized by different supply growth schemes. Many
cryptocurrencies with increasing supply have a reward reduction similar to that of Bitcoin
in place. Consequently, the supply curve is increasing and concave over time, and possibly
converges to a predetermined threshold. The dummy variable InflationaryDecreasing identifies
currencies with that feature. Instead of a reward reduction, cryptocurrencies may have constant
rewards, resulting in a linear supply function over time (InflationaryFixed). Finally, the supply
curve may be convex. This can be achieved by fixing the supply growth rate (rather than
the number of coins issued per unit of time). The growth rate is often referred to as the
rate of inflation of the currency (InflationaryFixedInflationRate). Finally, some currencies
have dynamic and thus time-varying supply growth rates, resulting in non-deterministic supply
growth (InflationaryDynamic). We expect that cryptocurrencies with supply caps, fixed supply
and deflationary currencies have lower value because the supply restrictions may limit the
adoption of the currency by users.

12For instance, Lisk, Monero and Zcash use this elliptic curve for the authentification of signatures. Ed25519
offers a higher level of anonymity compared to ECDSA.
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As noted, the reward to those agents verifying transactions in the network is linked to coin
supply. The reward can be a coinbase reward (the creator of each new entry to the ledger
earns a specific number of new coins) or an alternative reward distributions scheme based on
inflationary schemes, e.g., one where rewards are distributed among a larger network user group
(e.g., all verifiers) and are not necessarily attached to individual new ledger entries. We capture
these two cases by the dummy variables RewardCoinbase and RewardInflation. In either case,
those two reward distribution schemes incentivize agents to contribute to a healthy network
and thus, we expect a positive influence on market capitalization.

Transactions
The category transactions contains design features related to transactions on the cryptocurrency
network and the ways in which these transactions are processed.

The number of transactions a network can process per period of time is often referred to as the
throughput. In theory it can be measured by transactions per second (TPS). However, TPS is
controversial, primarily due to the inconstistency in its measurement across different networks.
Therefore, we proxy TPS by the time between neighbouring blocks and the existence or non-
existence of a blocksize limit. The time between blocks determines the frequency of changes
of the distributed ledger. We differentiate between the theoretically intended minimum time
between two blocks (TheoreticalBlockTime) and the actually observed time between blocks
(BlockTimeAverage).13 We note that shorter time between blocks does not only mean that
more transactions can be processed per unit of time, but also means that the minimum time it
takes to complete a transaction is lower. We therefore expect that shorter time between blocks
is associated with higher valuation. A blocksize limit sets a limit to the number of transactions
that can be processed per unit of time and thus limits the throughput of the network. The
dummy variable BlocksizeLimit is set to 1 if such a limit exists.14 We expect that the existence
of a blocksize limit affects market value negatively.15

In many cryptocurrency networks users have to pay a fee for the processing of their trans-
actions. We include three variables that intend to capture the existence and design of such
fees, TransactionFeeObligation, NoTipSpecialTreatment, and NoFeeTipForMinerForger. Trans-
actionFeeObligation records whether a cryptocurrency network has a mandatory fee for a trans-
action to be processed. Because the existence of a mandatory fee makes it more expensive to
use the network, we expect a negative impact on market valuation. Some networks allow their
users to prioritize a transaction by paying a special fee, often called tip. We define the dummy

13If there was a fork within a network that induced a change in at least one of these variables, we record
the post-fork values of the variables. In the subsequent analysis, we restrict ourselves to the actually observed
blocktime due to data availability and reliability.

14We were unable to verify whether a blocksize limit exists for some cryptocurrencies, implying that we have
missing data for this variable.

15We note, though, that an unlimited block size may result in excessively large ledger entries.



2.2. Cryptocurrency Design Features 15

variable NoTipSpecialTreatment which is set to 1 if such tips are not possible. We expect that
investors value the possibility to prioritize their transactions and therefore expect a positive
impact on market valuation. The third variable, NoFeeTipForMinerForger, is set to 1 for net-
works where the transaction fees and/or the tips are not – neither fully nor partly – passed on
to the agents verifying transactions (e.g., miners in PoW and stakers in PoS). A scheme where
fees and/or tips are passed on to those agents (miners or stakers) makes their activities more
profitable and may thus attract more agents. This, in turn, increases the degree of network
decentralization and the security (i.e., resistance against attacks) of the network. We therefore
expect a negative effect of NoFeeTipForMinerForger on market values.

Usability
The first cryptocurrency, Bitcoin, was devised as a means of payment. However, there are use
cases for cryptocurrencies beyond that. A cryptocurrency network can be a payment system,
a platform for smart contracts (the Ethereum network is a case in point), or it can serve
other purposes such as decentralized finance applications. We capture the intended use of
a cryptocurrency by three dummy variables, IntentionPayment, IntentionSmartContract, and
IntentionOther. We expect that cryptocurrencies that serve purposes beyond being a means of
payment have higher market values.

In some networks the ownership of coins embodies rights (e.g., voting rights), or possibilities of
usage beyond making payments. The variable UsageBeyondPayment takes on the value one for
cryptocurrencies for which this is the case. We expect a positive coefficient. Some cryptocur-
rency networks offer implicit smart contract support (without requiring sidechains or similar
arrangements).16 For networks with this feature we set the dummy variable SmartContract-
Support to one. We anticipate a positive value impact due to expanded functionalities, but
the risk of hacking attacks on smart contracts resulting from implementation errors is likely to
introduce a negative effect. The dominant effect remains undetermined.

General
The final category comprises three further design characteristics that may potentially affect val-
uation. Most cryptocurrencies bundle transactions into blocks and update the network status
by appending blocks to a blockchain. Since Ripple’s introduction in 2012, the cryptocurrency
space has expanded to include networks that utilize alternative distributed open-source pro-
tocols instead of blockchain technology. The variable LedgerOther identifies such networks.
Generally, these alternative designs aim at overcoming the scalability problem of blockchains,
thereby potentially creating possibilities for new usages of cryptocurrencies. This aspect might

16There certainly are other features that extend the usability of a cryptocurrency. However, we are not aware
of other features that are consistently documented in the public domain. We therefore restrict ourselves to the
variable SmartContractSupport.
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lead to a higher valuation of the respective cryptocurrencies. However, these no-blockchain
designs may be less secure (or less battle-proof), limiting their adoption and lowering their
valuation. As it is unclear which of these effects is stronger, we do not have a clear prediction
for the sign of the coefficient on the LedgerOther variable.

There are two accounting schemes that are commonly applied in the cryptocurrency world.
The first cryptocurrencies (including Bitcoin) rely on unspent transaction outputs (UTXOs)
to balance the ledger. Under this accounting scheme the ledger does not store information
on account balances. Consequently, to infer account balances one has to process the entire
blockchain and sum up all UTXOs logged to the respective account. Given the enormous
size of many blockchains this may not be the most efficient solution. Therefore, other cryp-
tocurrency networks apply a traditional balance accounting scheme. Such networks store every
account’s balance on the blockchain (similar to banks that store customer account balances
using electronic records). This accounting scheme does not require a network member to parse
the whole ledger to infer account balances. Rather, a synchronization without accessing the
whole history of the ledger becomes possible. We identify cryptocurrencies using such an ac-
counting scheme by the variable AccountingBalance. We expect a positive coefficient because
of the efficiency and intuitive appeal of these accounting schemes.

Another important feature is the degree of anonymity that a cryptocurrency network offers its
users. In networks like Bitcoin, every transaction and wallet balance can be traced back to a
pseudonymous public address. Other networks prioritize providing enhanced privacy and facil-
itate fully anonymous transactions through specific cryptographic methods.17 We identify net-
works that allow anonymous transactions by the variable Anonymous. Enhanced privacy meets
the demand for censorship resistance18 and thus makes anonymous cryptocurrency networks
more attractive. We therefore expect that networks supporting full anonymity have higher
valuation than those which only allow pseudonymous transactions. On the other end of the
anonymity spectrum are cryptocurrency networks that connect the addresses and transactions
to real world identities (identified by the variable NonAnonymous). Such a non-anonymous

17Examples include zk-SNARKs (Zero-Knowledge Succinct Non-Interactive Argument of Knowledge) of Zcash,
a form of zero-knowledge cryptography. In this network, transactions can be fully encrypted but the validity can
still be verified with specific zk-SNARK proofs. In detail, a “prover” can prove to a “verifier” that a statement
is true without revealing any information beyond the validity itself. Via specific combinations, this procedure
allows transaction processing without disclosing information about the transaction itself.

18Pagnotta and Buraschi (2018) state that censorship resistance “has multiple sources including financial re-
pression through governmental capital controls; option-like hedging against government abuses such as arbitrary
wealth confiscations or the targeting of political dissidents and/or religious groups; hedging against changes in
inheritance laws; the risk of disruptions of the traditional banking system due to bank runs, fiat hyperinflation
or forced maturity conversion of bank deposits; the ability to secure wealth transfers in the event of armed
conflicts, territorial invasions, civil wars, refugee crises”, as well as criminal activity.
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design may offer advantages with respect to regulatory acceptance because KYC (Know-Your-
Customer) is already fulfilled. Supervisory authorities might thus favor non-anonymous cryp-
tocurrencies. In addition, note that these networks do not necessarily bear a higher risk to
reveal their members’ identity to the public. These currencies may have higher values than
those with pseudonymous transactions due to the prospect for regulatory acceptance.

In Table 2.1, we list the introduced variables, specifying if they are binary and our expected
coefficient signs (“+” or “-”) based on the prior discussion. A “0” indicates that we either have
no clear prediction for the respective variable, or that we consider its impact on valuation to
be negligible.

2.2.2 Data Collection

Unlike price and quotation data for cryptocurrencies, data on design features cannot be ob-
tained from data vendors. We therefore had to hand-collect data on the variables introduced
in Section 2.2.1. We primarily used data sources directly related to the network founders, the
development team, and the network community, such as whitepapers, official network web-
sites, developers’ documentation, and the code repository. When necessary information was
not available from these sources, or when it was incomplete or inconsistent, we extended our
search to expert forums like the respective subreddits and those on the developers’ portals.19

For the variables IntentionPayment, IntentionSmartContract and IntentionOther, we restricted
our data collection procedure to the tags provided by Coinmarketcap and Messari. For well-
known and highly capitalized cryptocurrencies we could collect the required data rather easily.
However, the quality of documentation is often poor for less well known and less capitalized
cryptocurrencies. For many of these currencies the data required for our analysis was unavail-
able, despite accessing a broad range of different data sources. Eventually we managed to
collect data on the relevant design features for the 79 cryptocurrencies with the highest market
capitalization as of September 2020. We admit that our data set is not free from survivorship
bias. However, because data on design features of cryptocurrencies with low market valuations
and of cryptocurrencies that were discontinued is unavailable, there is no obvious way to cure
this problem. As explained below, we try to mitigate it by relating market valuation to lagged
data on design features, i.e., the data on design features from September 2020, the month right
before our sample period.

19Whenever relying on these data sources, we ensured that the information in our data set was backed by two
independent sources.

https://coinmarketcap.com
https://messari.io/
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Table 2.1: Design features variables, expected influence, and descriptive statistics

Maintaining the different design feature groups, this table lists the variables introduced in Section 2.2.1 and
summarizes its expected influence on market capitalization. Additionally, the columns on the right provide
descriptive statistics for each variable. We consider (i) all cryptocurrencies in our sample in their design config-
uration as of December 2020 and (ii) all cryptocurrencies in our sample including all of their historical design
feature combinations. Since we do not include the specific hash functions into our empirical analysis, we do not
attempt to predict their influences on market valuation.

Panel A: Development

Variable Binary Predicted
influence

As of December 2020 All-time

Obs. Mean Std. Dev. Obs. Mean. Std. Dev.
DeveloperPublic yes + 79 0.2025 0.4045 114 0.2368 0.4270
DeveloperNPO yes + 79 0.2785 0.4511 114 0.2544 0.4374
DeveloperPrivate yes - 79 0.5190 0.5028 114 0.5088 0.5021
NoMajorityChanges yes + 79 0.3544 0.4814 114 0.3158 0.4669
CodeNonPublic yes - 79 0.0380 0.1924 114 0.0263 0.1608
CodeC++ yes 0 79 0.3924 0.4914 114 0.4386 0.4984
CodeGo yes 0 79 0.3671 0.4851 114 0.3246 0.4703
CodeOther yes 0 79 0.2532 0.4375 114 0.2456 0.4324
Fork yes - 79 0.5063 0.5032 114 0.5526 0.4994

Panel B: Technical

Variable Binary Predicted
influence

As of December 2020 All-time

Obs. Mean Std. Dev. Obs. Mean. Std. Dev.
ConsensusPoW yes 0 79 0.3165 0.4681 114 0.4386 0.4984
ConsensusPoSdPoS yes 0 79 0.4937 0.5032 114 0.4035 0.4928
ConsensusOther yes 0 79 0.2278 0.4221 114 0.2018 0.4031
HashSHA256 yes N/A 79 0.4304 0.4983 114 0.4035 0.4928
HashEthash yes N/A 79 0.1519 0.3612 114 0.1316 0.3395
HashScrypt yes N/A 79 0.0759 0.2666 114 0.0789 0.2708
HashBlake yes N/A 79 0.1392 0.3484 114 0.1140 0.3193
HashOther yes N/A 79 0.2785 0.4511 114 0.3421 0.4765
HashAge no − 79 4752.99 1993.83 114 4614.67 1994.05
CurveECDSA yes 0 79 0.6329 0.4851 114 0.6316 0.4845
CurveED25519 yes 0 79 0.3418 0.4773 114 0.3158 0.4669
CurveOther yes 0 79 0.0759 0.2666 114 0.0877 0.2841

Panel C: Supply

Variable Binary Predicted
influence

As of December 2020 All time

Obs. Mean Std. Dev. Obs. Mean. Std. Dev.
NoMaxSupply yes - 79 0.3418 0.4773 114 0.2895 0.4555
FixedSupply yes - 79 0.2278 0.4221 114 0.2105 0.4095
Deflationary yes - 79 0.1139 0.3197 114 0.0789 0.2708
InflationaryDecreasing yes 0 79 0.4177 0.4963 114 0.4825 0.5019
InflationaryFixed yes 0 79 0.1013 0.3036 114 0.1053 0.3082
InflationaryFixedInflationRate yes 0 79 0.0506 0.2206 114 0.0439 0.2057
InflationaryDynamic yes 0 79 0.1772 0.3843 114 0.1404 0.3488
Inflationary yes 0 79 0.7468 0.4376 114 0.7719 0.4214
RewardCoinbase yes + 79 0.6582 0.4773 114 0.6930 0.4633
RewardInflation yes + 69 0.3165 0.4681 114 0.2632 0.4423
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Table 2.1: Design features variables, expected influence, and descriptive statistics (cont.)

Panel D: Transactions

Variable Binary Predicted
influence

As of December 2020 All-time

Obs. Mean Std. Dev. Obs. Mean. Std. Dev.
TheoreticalBlockTime (seconds) no - 73 99.65 175.53 105 127.16 197.43
BlockTimeAverage (seconds) no - 76 97.83 170.27 106 127.55 196.0435
BlocksizeLimit yes - 60 0.7333 0.4459 91 0.7473 0.4370
TransactionFeeObligation yes - 77 0.7143 0.4547 111 0.6577 0.4766
NoTipSpecialTreatment yes + 73 0.4384 0.4996 105 0.4000 0.4922
NoFeeTipForMinerForger yes - 79 0.2025 0.4045 114 0.1667 0.3743

Panel E: Usability

Variable Binary Predicted
influence

As of December 2020 All-time

Obs. Mean Std. Dev. Obs. Mean. Std. Dev.
IntentionPayment yes 0 79 0.3291 0.4729 114 0.4035 0.4928
IntentionSmartContract yes + 79 0.3671 0.4851 114 0.3070 0.4633
IntentionOther yes + 79 0.3038 0.4628 114 0.2895 0.4555
SmartContractSupport yes 0 79 0.6835 0.4681 114 0.5789 0.4959
UsageBeyondPayment yes + 79 0.4430 0.4999 114 0.3947 0.4910

Panel F: General

Variable Binary Predicted
influence

As of December 2020 All-time

Obs. Mean Std. Dev. Obs. Mean. Std. Dev.
LedgerOther yes 0 79 0.0633 0.2450 114 0.0702 0.2566
AccountingBalance yes + 79 0.5316 0.5022 114 0.4561 0.5003
Anonymous yes + 78 0.2692 0.4464 113 0.2832 0.4526
Pseudoanonymous yes - 78 0.7051 0.4589 113 0.6991 0.4607
NonAnonymous yes + 78 0.0641 0.2465 113 0.0442 0.2066
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When we include in our data set soft forks that imply a change in at least one design features
of our taxonomy,20 our data set increases from 79 to 114 observations. Note, though, that this
all-time data set includes those cryptocurrencies twice that experienced a design change that
was not associated with a hard fork. These two versions of the same cryptocurrency existed in
different periods; i.e., at each point in time only one of them existed. We retain the all-time
data set because it allows to reconstruct the exact design configuration of all cryptocurrencies
in the sample at any point in time during the sample period.

Despite our attempts to collect data on all design features introduced for all cryptocurrencies
in our sample, there are some variables with missing observations. These include RewardInfla-
tion (10 missing entries), TheoreticalBlockTime (6 missing entries), BlockTimeAverage (3 miss-
ing entries), BlocksizeLimit (19 missing entries), TransactionFeeObligation (2 missing entries),
NoTipSpecialTreatment (6 missing entries), and the degree of anonymity (1 missing entry).
Only the observations with no missing entries among the variables are included in the analysis.

2.2.3 Summary Statistics

Table 2.1 shows summary statistics (number of observations, mean and standard deviation) for
all design feature variables, both for the all-time data set (the one that contains soft-forked
cryptocurrencies) and for our main data set containing 79 cryptocurrencies in their design
configuration as of December 2020. We describe summary statistics for the latter data set.
This description not only characterizes our sample but also offers an overview of the designs
of the most important cryptocurrencies. We note that in some cases the categories we have
created to capture alternative specifications of a design feature are not mutually exclusive. As
a consequence, the fractions shown in Table 2.1 can add up to more than 100%.21 During
analysis, the dummy variables are handled conventionally, wherein the variables representing
all categories except one are incorporated into the analysis as independent variables.

We find that approximately half of the cryptocurrencies were developed by private, for-profit
entities, 27.9% by not-for-profit organizations, and 20.3% by networks of independent develop-
ers. In 64.6% of the cryptocurrency networks decisions on major code changes and/or decisions

20For instance, Monero, a cryptocurrency which allows completely anonymous transactions by obscuring
transaction senders and recipients through cryptography, originally had a blocktime of one minute. In 2016, the
blocktime was raised to two minutes (alongside with some other changes not relevant in the context of our design
feature variables). Such a situation implies two entries in our all-time data set. The first one includes the initial
blocktime of one minute while the blocktime variable is set to two minutes in the second entry. Such changes
are not necessarily associated with hard forks that result in two cryptocurrencies existing simultaneously after
the fork date.

21Consider, for example, the three dummy variables which capture the consensus mechanism (ConsensusPoW,
ConsensusPoSdPoS, and ConsensusOther). Three cryptocurrencies use a combination of consensus mechanisms,
for each of which we assign a value of one to two of the corresponding variables. Therefore, the means shown
in the table add up to 1.038.
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on governance issues are passed on to the network members. This figure implies that some
networks developed by for-profit entities still involve the users in the development process. We
further find that nearly all networks have publicly available core codes, and that most cryp-
tocurrency networks are either using either C++ (∼39.2%) or Go (∼36.7%). About 50% of the
cryptocurrencies were forked from another network, while the others were built from scratch.

31.7% of the cryptocurrencies in our sample use a consensus mechanism based on PoW. PoS
or dPoS are more widely used (49.4%), and 22.8% of the cryptocurrencies use other consensus
mechanisms. These figures are in line with the observation made by Irresberger et al. (2020),
that proof of stake is becoming more popular. The most widely used hash function is Bitcoin’s
SHA-256 (43.0%), followed by HashEthash (15.2%). Although different elliptic curves can
theoretically be used for signature generation, most coins use the two standard digital signing
algorithms ECDSA (63.3%) and Ed25519 (34.2%).

Of the 79 cryptocurrencies in our sample, 27 (34.2%) have no supply cap. 22.8% of the coins
have a fixed supply while 11.4% are deflationary. Of the cryptocurrencies with increasing
supply (74.7%), most have adopted a scheme with decreasing growth rates (41.8% of the total,
equivalent to 56% of the inflationary currencies). The alternative growth schemes are less
popular. In about two thirds of the networks in our sample, the verifying agents are rewarded
with coinbase rewards. An alternative reward scheme is used by 31.7% of the networks (note
that there are some missing values for this variable).

The summary statistics of the design features in the category “transactions” indicate that the
average theoretical blocktime amounts to 99.65 seconds with a standard deviation of 175.53.
The blocktime that is actually observed in the market is slightly lower, at 97.83 seconds with a
standard deviation of 170.27.22 Of the 60 cryptocurrencies for which we could infer whether a
blocksize limit exists, approximately three quarters (73.3%) have such a limit in place. 71.4%
of the networks require their users to pay a mandatory transaction fee, and 56.2% allow a
prioritization of transactions by paying a tip. In 20.3% of the cryptocurrency networks in our
sample, transaction fees and/or tips are not included in the rewards for miners and stakers.

Turning to the variables in the “usability” group, we find that the original intention of the
cryptocurrencies in our data set is roughly evenly distributed across the categories payment
system, smart contract platform, and other. 68.4% of the cryptocurrency networks support
smart contracts within their core code implementation, and in 44.3% of the networks coin
holdings are associated with further rights, such as voting rights, or enable usages beyond pure
transaction purposes.23

22Reducing the sample “as of December 2020” to the observations for which both, theoretical and actual,
blocktimes are available, we have average blocktimes of 99.11 seconds and 99.43 seconds for the theoretical and
the observed blocktimes, respectively.

23Binance coin is an example of a coin that provides such additional usage. The coins in this network can be
used to pay for several fees when using the centralized exchange Binance, such as listing fees.
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The overwhelming majority (93.7%) of the networks in our sample use a blockchain-based
ledger. Only 6.3% use alternative ledgers. More than half (53.2%) of the cryptocurrencies use
a balance accounting scheme, leaving 46.8% for UTXO accounting. With respect to the degree
of anonymity, a strong majority (70.5%) of the networks allows pseudonymous transactions (as
is also the case in the Bitcoin network). 26.9% are fully anonymous while only 6.4% of the
networks require the disclosure of the real world identities of their users.

2.3 Empirical Methodology

2.3.1 Two-Stage Regressions and LASSO

We aim to empirically analyze which design features from our taxonomy have explanatory
power for the cross-sectional valuation of cryptocurrencies. To identify those that significantly
affect the value of cryptocurrencies, we regress two different measures of market valuation on
the design feature variables introduced in Section 2.2. Our empirical design is characterized
by a low number of observations (the 79 cryptocurrencies) and a large number of explanatory
variables, making a standard regression analysis unlikely to yield reliable results. To tackle
the issue of overfitting, we use two methodological approaches: a two-step regression approach
inspired by Karnaukh et al. (2015) and LASSO (least absolute shrinkage and selection operator)
regressions.

The two-step regression approach proceeds as follows. We first estimate six separate regressions
with the respective market valuation measures as the dependent variable and the design features
of one of our six categories as independent variables (“intra-group regressions”). Those variables
with the highest explanatory power are then included as independent variables in the second-
step regression (“encompassing regression”). We judge the explanatory power by the p-values
in the intra-group regressions and use different cut-off values (0.3, 0.2 and 0.1). We further
include the age of the cryptocurrencies in the encompassing regression.

The LASSO regressions integrate variable selection and regularization.24 Specifically, we per-
form a 10-fold cross validation with random subsets selection to determine the tuning parameter
λ that minimizes the mean squared error (MSE) for the LASSO regression with intercept. Based
on the value of λ, the LASSO is then applied on the entire data set to determine the model’s

24Compared to a standard linear regression (with intercept), a penalty term λ
∑n

j=1 | βj | is introduced and

the algorithm’s objective is to minimize
∑n

i=1

(
yi − α−

∑
j xijβj

)2

+λ
∑n

j=1 | βj |, see e.g., Tibshirani (1996).
The choice of λ is crucial. The higher λ, the more variables are eliminated, but the deviation of estimated values
from observed data increases. If λ is low instead, more variables are selected and the variation in the predictions
decreases.
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parameter estimates and the intercept. We repeat this procedure 10, 000 times in order to base
our inference on a broad range of different training and validation data subset compositions.25

The majority of our independent variables (i.e., the design characteristics) are time-invariant.
We therefore use time-series averages of the dependent variables to eliminate effects that may
be specific to individual days. As noted in Section 2.2.2, the 79 cryptocurrencies in our sample
are those with the highest market capitalization as of September 2020. To alleviate endogeneity
issues, we use market valuation data averaged over all days of the fourth quarter of 2020 in our
main analysis. We show results for alternative specifications in Subsection 2.4.2.

2.3.2 Variables Definitions

Dependent Variables: Market Valuation Data
We measure market valuation by market capitalization and a discounted version of the market
capitalization. The calculation of market capitalization requires data on cryptocurrency prices
and circulating supply. We obtain the former from the APIs of the respective exchange and
from cryptocurrency data provider Kaiko, while the latter is obtained from Messari.26

The price data that we use is a daily volume-weighted average of the prices of nine cryptocur-
rency exchanges.27 Whenever a cryptocurrency is traded against USD on an exchange, our
dataset which is combined from the exchange API and Kaiko provides daily volume-weighted
average prices for the respective venue. We use these prices whenever available, and we refer
to them as direct prices. Not every cryptocurrency is traded against USD on every exchange.
Therefore, direct prices are not always available. However, these cryptocurrencies are usually
traded against BTC, and BTC is traded against USD. We use these two prices to calculate an
implicit USD price of the cryptocurrency under consideration and refer to these implicit prices
as indirect prices.28 In doing so we implicitly assume that USD and BTC quotes are consistent.

25When we use five folds instead of ten in the cross validation procedure, our results remain qualitatively
similar.

26Pricing data from Kaiko is used only in case there are missing values in the API data. Messari provides
cryptocurrency data and is recommended by Kaiko as a source for circulating supply. Circulating supply excludes
coins/tokens from the outstanding supply that are (i) restricted by any contracts, e.g., on-chain-lockups, or (ii)
are held by projects/foundations without selling intention (see https://messari.io/report/messari-proprietary-
methods). This mitigates concerns that our market capitalization variable actually measures trading motives
and/or investor sentiment rather than “equity value”.

27We originally obtained data of the following ten exchanges from Kaiko: Binance, Bitfinex, Kraken, Bitstamp,
Coinbase, bitFlyer, Gemini, itBit, Bittrex, and Poloniex. These exchanges are considered reliable, meaning that
they do not report inflated volume (see Härdle et al. (2020); on the importance of reliable data in the context
of cryptocurrency trading data, see Alexander and Dakos (2020)). We exclude Poloniex because the only fiat
currency traded on this exchange is Malaysian ringgit (RM). Due to the low liquidity between RM and USD,
we refrained from converting the RM quote to a USD quote via the RM-USD rate.

28For example, the price of ABBC Coin (ABBC) in USD is not available on Bittrex, but Bittrex trades ABBC
against BTC and BTC against USD. With USD

ABBC
= BTC

ABBC
· USD
BTC

, we obtain the Bittrex USD price of ABBC
coins.

https://www.kaiko.com/
https://messari.io/
https://www.kaiko.com/
https://messari.io/
https://www.kaiko.com/
https://messari.io/report/messari-proprietary-methods
https://messari.io/report/messari-proprietary-methods
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One exchange, Binance, is an exception. It does not trade cryptocurrencies against USD, but
it does trade them against EUR. We calculate indirect prices for those cryptocurrencies traded
against EUR on Binance by combining the EUR price of the currency with the EUR-USD ex-
change rate (obtained from exchangerate.host).29 To check the reliability of the indirect prices
we calculate indirect prices for cryptocurrency-exchange combinations for which direct prices
are also available. We observe average differences below 1% for almost all combinations.

There are different ways how we could construct our final data set. We could use direct prices
where available and use indirect prices only when direct prices are unavailable, or we could
generally use indirect prices. We opt for a combination of these procedures. We use indirect
prices when only these are available, and we use a volume-weighted average of direct and indirect
prices when both are available.30 We end up with one price for each cryptocurrency-exchange
pair that is either an indirect price or a weighted average of direct and indirect prices. These
prices are then used to calculate the weighted average price across the nine exchanges. We then
multiply this weighted average price by the circulating supply to obtain our measure of market
capitalization (referred to as plain market capitalization in the sequel).

The cryptocurrencies in our sample are of very different age. For instance, the genesis block
of Bitcoin was created in January 2009 while Avalanche was just introduced in mid-September
2020. On average, cryptocurrencies that are older and more established are associated with
higher market capitalization, possibly because of network effects (Alabi, 2017; Metcalfe, 2013)
and/or because older cryptocurrencies tend to be less volatile (Hafner, 2020; Kim, 2015; Nabilou
and Prüm, 2019) and thus are better suited to act as a store of value. In addition, an older
cryptocurrency may have established a “brand value” and customer loyalty and hence, are less
impacted by adverse news.31 These factors might result in higher market capitalization. Finally,
these cryptocurrencies also benefit from the overall enhancement of the entire cryptocurrency
market. Therefore, in addition to the “plain” market capitalization we also analyze discounted
market valuation. Specifically, we adapt the fund size scaling procedure of Pástor et al. (2015)
and calculate the discounted market capitalization of cryptocurrency i at time t according to

DiscountedMCapi,t = MCapi,t ·
CRIXGenesisi

CRIXt
(2.1)

29We are aware of the fact that there are arbitrage opportunities in the cryptocurrency market (see, e.g.,
Makarov and Schoar, 2020)). We note, though, that the exchanges in our sample are among the most liquid
cryptocurrency exchanges, and higher liquidity is usually associated with higher market efficiency. Further-
more, the cryptocurrency market has generally become more efficient over time (Kristoufek and Vosvrda, 2019;
Köchling et al., 2019; Noda, 2021).

30We do this to alleviate endogeneity concerns. Indirect prices may be systematically biased, and it is more
likely that a cryptocurrency with low market capitalization is not directly traded against USD. Note that our
results are qualitatively similar, when we use indirect prices throughout.

31Bianchi (2020), Finck (2018), Jo et al. (2020), and Polasik et al. (2015) argue that the cryptocurrency
market is heavily sentiment-dependent and its users perceive blockchain as an immature technology that is still
evolving, with uncertain practical implications. As a result, well-performing cryptocurrencies are likely to have
been in existence for a longer time and are less impacted by adverse news.

https://exchangerate.host/#/
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with CRIXGenesisi and CRIXt denoting the value of the CRIX (see, Trimborn and Härdle,
2018), a widely used cryptocurrency market index, at the genesis date of coin i and at time
t, respectively. For the seven cryptocurrencies in our data set that were launched prior to
the CRIX, i.e. before July 31, 2014, we set CRIXGenesisi to the CRIX’s initial value of 1000.
Intuitively, the procedure described by Equation (2.1) deflates the value of cryptocurrency i at
time t to its launch date.

For either methodological approach, we control for outliers by winsorizing the top three cryp-
tocurrencies according to market capitalization (Bitcoin, Ethereum, and Ripple) and discounted
market capitalization,32 respectively. We rescale the market capitalization variables to the range
[0, 1] in order to obtain coefficient estimates of a convenient magnitude. As a robustness check
we also estimate an alternative specification that avoids winsorizing. Specifically, we use the
log of the plain and discounted market valuation as dependent variables and obtain results (not
tabulated) that are qualitatively similar to those reported in this chapter.

Independent Variables: Design Feature Data
Irrespective of the methodology applied we furthermore reduce the number of independent
variables by conflating some of them. Specifically, we do not include the variables CodeGo and
CodeOther but rather the binary variable CodeNonC++ which is set to 1 if at least one of
the former variables is 1, and 0 otherwise. Similarly, we introduce the binary variable Code-
NonECDSA to identify networks which do not use ECDSA for signature generation. Within
the design feature group usability, we combine IntentionSmartContract and IntentionOther to
the new variable IntentionNonPayment. Moreover, we do not include the variables that identify
the different types of inflationary supply curves but restrict ourselves to the aggregated variable
Inflationary. Finally, as already mentioned in Subsection 2.2.1, we do not include the specific
hash function variables in our regression analysis but rather only include the age of the hash
function.

Several of our independent variables are exhaustive sets of dummy variables (such as CodeC++
and CodeNonC++). We therefore need to define a base case and exclude the corresponding
dummy variable from the regression. We always dropped the variable that corresponds to the
design of the Bitcoin network. As an implication of this specification, the constant in our
regression captures the value of a network that has a Bitcoin-like combination of the design
features captured by the dummy variables, with all other variables equal to zero. We then take
this approach one step further and recalculate actual blocktimes as well as the age of the hash

32When considering different time horizons to calculate the time-series average of the discounted market
capitalization, we notice that the top three cryptocurrencies are more than five interquartile ranges above the
third quartile and therefore should be considered as outliers. Note that the top three cryptocurrencies are
not always the same - for example, in the fourth quarter of 2020, the top three cryptocurrencies according to
discounted market capitalization are Bitcoin, Polkadot and EOS.
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function according to

BlockT ime =
TheoreticalBlocktimeBitcoin −BlockT imeAverage

TheoreticalBlocktimeBitcoin

=
600−BlockT imeAverage [s]

600

(2.2)

and
HashAge =

HashAgeBitcoin −HashAge

HashAgeBitcoin
, (2.3)

respectively. These modified variables take on a value close to zero (equal to zero) for the
Bitcoin network. Positive values indicate a blocktime lower than that the theoretical blocktime
of Bitcoin (implying higher throughput of the network as compared to Bitcoin), and a hash
function younger (and thus arguably more secure) than that used by the Bitcoin network,
respectively. We note that Bitcoin has the highest theoretical blocktime (10 minutes) and the
oldest hash function in our sample (SHA-256), implying that the two modified variables take on
the value (close to) zero for Bitcoin and positive values for any cryptocurrency in our sample.
We further rescale the two variables to the interval [0, 1].

2.4 Results and Discussion

In this section, we present our empirical results. We present the main results, based on average
market capitalization (both plain and discounted) in the fourth quarter of 2020 in Subsec-
tion 2.4.1. In Subection 2.4.2, we then show that we obtain qualitatively similar results when
we vary the period over which we measure market capitalization.

2.4.1 Main Results

In Table 2.2 we show the results for the plain market capitalization. Panel A, i.e., columns (1)
to (4), show the results of the two-stage regression analysis while Panel B, i.e., columns (5)
to (8), shows the LASSO results. We start with the presentation of the two-stage regression
results. The four columns of Panel A show the results of the encompassing regression. The
corresponding intragroup regression results that determine the set of variables to be included
in the encompassing regression are shown in Appendix A.1. Column (1) ((2), (3)) shows the
results that we obtain when all variables with a p-value below 0.1 (0.2, 0.3) in the intragroup
regression are included in the encompassing regression. Column (4) shows the results that we
obtain when all independent variables are included in the encompassing regression.33 Note that

33The number of observations is lower in columns (3) and (4) than in columns (1) and (2) because variables
with missing values (such as BlockTimeAverage) are included in columns (3) and (4), but not in columns (1)
and (2).
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the F-statistics shown in the last line indicate that the independent variables have significant
explanatory power for the market capitalization of the cryptocurrencies only in columns (1),
(2), and (3), but not in column (4) where all independent variables are included. This finding
supports our choice of the two-stage regression design.

The encompassing regressions of the two-step regression approach yield three main results.
First, the age of a cryptocurrency network, as measured by the variable DaysAge (the number
of days since the launch of the genesis block, rescaled to the range [0, 1]), is positively related to
market capitalization.34 Second, spin-offs from other cryptocurrencies (forks) have significantly
lower market values. This result is in line with our argument that such networks are almost
identical copies of already existing cryptocurrencies (i.e., their respective parent networks), and
that this lack of innovation negatively affects valuation. Third, we find that a configuration of
design features similar to that of Bitcoin is associated with higher valuation. Remember that
we defined our dummy variables such that they essentially capture deviations from the Bitcoin
design, and that the continuous variables HashAge and BlockTimeAverage take on the value
zero for the Bitcoin network and positive values for other cryptocurrencies in the sample. The
observation that most coefficient signs in Table 2.2 are negative thus implies that deviations
from the Bitcoin design result in lower valuation. This result may be due to the first mover
advantage of the Bitcoin network, to the higher attention that Bitcoin receives in comparison
to other networks, and to the fact that cryptocurrency users and investors are better informed
about the details of Bitcoin than about those of its contenders

We now turn to the discussion of the LASSO results which are independent of the design features
classifications’ following our taxonomy.35 In Figure 2.1 we graphically illustrate for the first 200
(out of a total of 10,000) simulations the variables which were selected by the procedure and the
magnitude of the coefficient estimates. The lines represent the independent variables and the
columns the 200 simulation runs. Green (red) color indicates a positive (negative) coefficient
estimate, and the intensity of the color represents the magnitude of the estimate. We show
numerical results in columns (5) to (8) of Table 2.2. In column (5) we show the frequency with
which a variable is selected. In columns (6) and (7), we show, conditional on a variable being
selected, the frequency of positive and negative coefficient estimates, respectively. In column 8
we show the mean coefficient estimate.36

34The variable DaysAge potentially correlates with some other predictors. When we exclude DaysAge from the
regression model we still observe the same significant effects, and no other variable shows up to be consistently
significant.

35Since the LASSO procedure considers all design features without taking into account their allocation within
our taxonomy, the results of the analysis show that our results are not driven by the taxonomy itself.

36The means are unconditional, i.e., they are calculated based on all 10,000 simulation runs. Whenever a
variable is not selected, the coefficient estimate is set to 0. Conditional means (i.e., means that are calculated
conditional on the respective variable being selected by the LASSO procedure) can be obtained by combining
the unconditional means with the data on the selection frequency provided in column (5) of Table 2.2.
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Table 2.2: Market capitalization regression analysis of Q4 2020

This table reports results of the cross-sectional regression of the average market capitalization in the fourth
quarter of 2020 on the design feature variables and provides statistics for the variable selection process when
applying LASSO with cross-validation. The encompassing models (1), (2), and (3) include the design feature
variables with p-values below 0.1, 0.2 and 0.3 in the intra-group regressions, respectively. We control for
multicollinearity and find that all variance inflation factors (VIF) in (1) - (3) are below 4.32. Column (4) shows
the results for the case that all design feature variable are included (max. VIF of 8.65). Standard errors are
given in parentheses. ∗, ∗∗, and ∗∗∗ indicate statistical significance at the 10%, 5% and 1% level, respectively.
Column (5) reports the percentage of cases in which a variable is selected by LASSO while (6) and (7) indicate
the related sign of the coefficient. Column (8) reports the average of the parameter estimates indicating the
economic significance.

Market capitalization
Panel A: Encompassing regression Panel B: LASSO

(1) p < 0.1 (2) p < 0.2 (3) p < 0.3 (4) All (5) Included (6) Positive (7) Negative (8) ∅ coefficent
Constant 0.133 0.311∗ 0.367∗ 0.084 100% 100% 0% 0.024

(0.112) (0.159) (0.216) (0.384)
DaysAge 0.583∗∗∗ 0.454∗∗ 0.486∗∗ 0.724∗ 80.86% 100% 0% 0.166

(0.189) (0.211) (0.229) (0.417)
DeveloperNPO -0.057 -0.151 0% - - 0

(0.120) (0.198)
DeveloperPrivate -0.066 -0.045 -0.110 -0.241 23.02% 0% 100% -0.006

(0.071) (0.076) (0.111) (0.177)
NoMajorityChanges -0.021 0% - - 0

(0.128)
CodeNonC 0.235 2.75% 100% 0% 0.000

(0.142)
CodeNonPublic 0.002 2.75% 0% 100% 0.000

(0.291)
Fork -0.132∗ -0.164∗∗ -0.193∗∗ -0.226∗ 28.19% 0% 100% -0.025

(0.068) (0.072) (0.077) (0.124)
ConsensusPoSDPoS -0.023 -0.138 -0.079 -0.105 2.03% 0% 100% -0.000

(0.083) (0.123) (0.139) (0.200)
ConsensusOther -0.150 -0.109 0.051 0% - - 0

(0.126) (0.147) (0.218)
HashAge -0.153 -0.232 -0.104 0.005 17.38% 0% 100% -0.003

(0.121) (0.140) (0.168) (0.271)
CurveNonECDSA -0.013 0% - - 0

(0.143)
NoMaxSupply 0.079 0% - - 0

(0.199)
SupplyCirculation 0.105 0% - - 0

(0.242)
Deflationary 0.064 0% - - 0

(0.182)
FixedSupply -0.051 -0.013 0.001 0% - - 0

(0.086) (0.095) (0.170)
RewardCoinbase -0.019 0.085 0% - - 0

(0.099) (0.166)
RewardInflation -0.023 0.040 0.261 0% 0

(0.084) (0.116) (0.213)
BlockTimeAverage -0.125 0.013 0.16% 0% 100% -0.000

(0.149) (0.228)
TransactionFeeObligation -0.064 0% - - 0

(0.139)
NoTipSpecialTreatment -0.040 0% - - 0

(0.116)
NoFeeTipForMinerForger 0.107 0.126 0.085 0.117 26.19% 100% 0% 0.012

(0.080) (0.090) (0.113) (0.171)
IntentionNonPayment 0.284 0% - - 0

(0.245)
SmartContractSupport -0.386∗∗ 24.24% 0% 100% -0.014

(0.187)
UsageBeyondPayment -0.061 0% - - 0

(0.139)
LedgerStyleOther 0.381 0.444 39.35% 100% 0% 0.049

(0.270) (0.439)
AccountingBalance 0.026 0% - - 0

(0.183)
Anonymous -0.031 -0.023 -0.048 24.24% 0% 100% -0.005

(0.086) (0.094) (0.119)
NonAnonymous 0.373 0.561 25.50% 100% 0% 0.034

(0.228) (0.346)
Observations 68 68 65 59 ∅ Observations:
R2 0.256 0.294 0.386 0.525 59
Adjusted R2 0.182 0.170 0.198 0.082
F Statistic 3.491∗∗∗ 2.375∗∗ 2.055∗∗ 1.185 ∅ R2:

(df=6;61) (df=10;57) (df=15;49) (df=28;30) 0.108
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The variable that is most frequently selected (80.0% of the simulations) is the age of a cryp-
tocurrency. Whenever selected, the coefficient estimates are consistent with the results of the
two-stage regression approach, positive. All other variables are selected much less frequently.
The variable Fork is selected in 28.2% of the simulations and the coefficient estimates are, again
in line with the regression results presented above, always negative.

The LASSO procedure further selects the variables DeveloperPrivate (effect sign: −), HashAge
(−), NoFeeTipForMinerForger (+), SmartContractSupport (−), LedgerStyleOther (+), Anony-
mous (−), and NonAnonymous (+) with reasonable frequency. In all cases the estimated di-
rection of the effect is consistent with the sign of the coefficient estimates in the two-stage
regressions.37 The negative sign of DeveloperPrivate indicates that cryptocurrencies which
were developed by for-profit entities have lower valuation. The negative impact of HashAge
on valuation implies that, contrary to our prediction, younger hash functions, which arguably
offer higher levels of security, do not increase market capitalization, ceteris paribus.38 The
positive coefficient sign of the variable NoFeeTipForMinerForger indicates that networks that
do not pass on any transaction fees and/or tips to agents who maintain the integrity of the
network have a higher market capitalization. In networks that directly reward contributions
to transaction processing with fees and/or tips, transaction fees obviously play an important
role. One drawback is that such transaction fees can lead to user non-participation: The fees
directly cause some users to drop out, while longer waiting times cause other users who pay
fees to drop out as well (Basu et al., 2023; Easley et al., 2019; Huberman et al., 2021). In
addition, this can lead to adverse effects related to network security (Pagnotta, 2022). Overall,
these fees can increase the vulnerability of the system, which may serve to explain the positive
influence of the variable NoFeeTipForMinerForger.

The positive coefficient signs for the variable LedgerStyleOther indicate that non-blockchain-
based cryptocurrencies have higher market valuation. This finding should be interpreted with
care, though, because our sample only contains five cryptocurrencies with that feature. The
effect signs of the variables Anonymous and NonAnonymous imply that cryptocurrencies that
allow completely anonymous transactions have lower market values while those that require
disclosure of real-world identities have higher market values. The former result may be due to
concerns that fully anonymous networks might be misused for illegal transactions. The latter
result may reflect the expectation of regulatory acceptance of non-anonymous cryptocurrencies.

The negative effect on market valuation ascribed to the variable SmartContractSupport runs
counter to the intuition that a network that allows for smart contracts allows alternative uses
beyond making payments and should thus be more valuable. However, smart contracts may

37Note that although the coefficient estimates were insignificant in the encompassing regression, the coefficients
of the variables DeveloperPrivate, HashAge, and NoFeeTipForMinerForger were significant at the 10% level or
better in the intra-group regressions.

38Remember that we defined the variable HashAge such that larger values mean younger hash functions.
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also be gateways for fraudulent behavior and/or may be subject to coding errors which might
result in security breaches.

Figure 2.1: LASSO variable selection and economic magnitudes (marketcap Q4 2020)

This figure shows the economic magnitude of the estimated coefficients for each design feature covering 200
randomly selected training and validation data subset compositions from our LASSO approach. Red (green)
bars refer to a negative (positive) coefficient estimate, while grey bars refer to coefficient estimates equal to zero,
i.e., to non-selected design features. More intense colors refer to stronger economic magnitudes.

We next turn to the results for the discounted market capitalization. The dependent variable
is the time-series average of the discounted market capitalization (Equation (2.1)) during the
last quarter of 2020. Otherwise the analysis is identical to the one presented above. We present
in Table 2.3 results of the two-stage regressions (columns (1) to (4)) and the LASSO results
(columns (5) to (8)). In addition, a graphical representation of the results for the first 200 runs
of the LASSO procedure can be found in Figure 2.2.

The coefficient estimates for the age of the cryptocurrency (variable DaysAge) in the encom-
passing regressions are much smaller than before and are always insignificant. Furthermore, the
variable is never selected by the LASSO approach. These results indicate that the discounting
procedure successfully removed the effect of age on market valuation.
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Table 2.3: Discounted market capitalization regression analysis of Q4 2020

This table reports results of the cross-sectional regression of the average discounted market capitalization in the
fourth quarter of 2020 on the design feature variables and provides statistics for the variable selection process
when applying LASSO with cross-validation. The encompassing models (1), (2), and (3) include the design
feature variables with p-values below 0.1, 0.2, and 0.3 in the intra-group regressions, respectively. We control
for multicollinearity and find that all variance inflation factors (VIF) in (1) - (3) are below 2.27. Column (4)
shows the results for the case that all design feature variable are included (max. VIF of 8.65). Standard errors
are given in parentheses. ∗, ∗∗, and ∗∗∗ indicate statistical significance at the 10%, 5% and 1% level, respectively.
Column (5) reports the percentage of cases in which a variable is selected by LASSO while (6) and (7) indicate
the related sign of the coefficient. Column (8) reports the average of the parameter estimate indicating the
economic significance.

Market capitalization
Panel A: Encompassing regression Panel B: LASSO

(1) p < 0.1 (2) p < 0.2 (3) p < 0.3 (4) All (5) Included (6) Positive (7) Negative (8) ∅ coefficent
Constant 0.168∗∗ 0.186∗∗ 0.436∗∗∗ 0.049 100% 100% 0% 0.189

(0.064) (0.068) (0.144) (0.371)
DaysAge 0.101 0.100 0.016 0.175 0% - - 0

(0.158) (0.158) (0.169) (0.402)
DeveloperNPO -0.059 -0.117 -0.232 0% - - 0

(0.070) (0.103) (0.191)
DeveloperPrivate -0.150 -0.303∗ 0% - - 0

(0.093) (0.170)
NoMajorityChanges 0.044 0% - - 0

(0.123)
CodeNonC 0.179 0% - - 0

(0.137)
CodeNonPublic -0.094 0% - - 0

(0.280)
Fork -0.170∗∗∗ -0.175∗∗∗ -0.221∗∗∗ -0.315∗∗ 80.52% 0% 100% -0.066

(0.062) (0.063) (0.067) (0.120)
ConsensusPoSDPoS -0.002 0% - - 0

(0.193)
ConsensusOther 0.116 0% - - 0

(0.210)
HashAge 0.043 0% - - 0

(0.261)
CurveNonECDSA 0.056 0% - - 0

(0.138)
NoMaxSupply 0.091 0% - - 0

(0.192)
SupplyCirculation 0.189 0% - - 0

(0.234)
Deflationary 0.032 0% - - 0

(0.176)
FixedSupply -0.008 0% - - 0

(0.164)
RewardCoinbase 0.225 0% - - 0

(0.160)
RewardInflation 0.329 0% - - 0

(0.205)
BlockTimeAverage -0.177 -0.010 0% - - 0

(0.123) (0.220)
TransactionFeeObligation -0.069 0% - - 0

(0.134)
NoTipSpecialTreatment -0.091 0% - - 0

(0.112)
NoFeeTipForMinerForger 0.077 0.075 0.169∗∗ 0.199 73.74% 100% 0% 0.018

(0.075) (0.075) (0.083) (0.165)
IntentionNonPayment 0.156 0% - - 0

(0.236)
SmartContractSupport -0.261 0% - - 0

(0.180)
UsageBeyondPayment 0.062 0.002 0% - - 0

(0.072) (0.134)
LedgerStyleOther 0.077 0% - - 0

(0.423)
AccountingBalance -0.0001 0% - - 0

(0.176)
Anonymous -0.041 0% - - 0

(0.115)
NonAnonymous 0.400∗∗ 0.415∗∗ 0.368∗ 0.611∗ 65.97% 100% 0% 0.036

(0.184) (0.186) (0.186) (0.333)
Observations 68 68 65 59 ∅ Observations:
R2 0.187 0.196 0.291 0.478 59
Adjusted R2 0.135 0.131 0.190 -0.009
F Statistic 3.625∗∗ 3.028∗∗ 2.878∗∗∗ 0.982 ∅ R2:

(df=4;63) (df=5;62) (df=8;56) (df=28;30) 0.087
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Figure 2.2: LASSO variable selection and economic magnitudes (discounted marketcap Q4 2020)

This figure shows the economic magnitude of the estimated coefficients for each design feature covering 200
randomly selected training and validation data subset compositions from our LASSO approach. Red (green)
bars refer to a negative (positive) coefficient estimate, while grey bars refer to coefficient estimates equal to zero,
i.e., to non-selected design features. More intense colors refer to stronger economic magnitudes.

Regarding the influence of the design features on the market valuation, the results for discounted
market capitalization are similar to those for plain market capitalization. We note, though, that
the LASSO procedure selects fewer variables when we use discounted market capitalization as
the dependent variable. As before, we find that spin-offs from other cryptocurrencies (variable
Fork) have lower valuation. The respective coefficient estimate is negative and highly signifi-
cant in the encompassing regression, and it is very frequently (80.5%) selected by the LASSO
procedure, always with a negative coefficient estimate. Finally, and again consistent with our
previous results, we obtain a positive coefficient estimate for the variable NonAnonymous. It
implies that cryptocurrency networks that require disclosure of real world identities tend to
have higher valuation. Furthermore, our earlier result that networks in which agents who ver-
ify transactions are rewarded by a scheme independent of fees and/or tips have a higher market
valuation is also confirmed. The respective coefficient estimate (variable NoFeeTipForMiner-
Forger) in the encompassing regressions is always positive (significantly so in one case), and
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the variable is frequently selected (73.7%) by the LASSO procedure, always with a positive
coefficient sign. Finally, there is still (albeit weak and only in the two-stage regression analysis)
evidence that cryptocurrencies developed by private for-profit entities are less valuable. We no
longer find evidence that younger hash functions are associated with lower valuation, nor is
there evidence that fully anonymous networks are less valuable.

2.4.2 Robustness

So far we have analyzed whether design features can explain the average (both plain and dis-
counted) market capitalization in the fourth quarter of 2020. While averaging over values for
an entire quarter should make our results insensitive to day-to-day fluctuations in cryptocur-
rency prices, we still have to establish that our findings are not specific to the single quarter we
have considered. To this end we repeat our entire analysis using the average (both plain and
discounted) market capitalization over (i) the entire year 2020 and (ii) the first, second and
third quarter of 2020. The results for the full year are shown in Tables A.3, A.4, A.5, and A.6
in Appendix A.1. The results for quarters 1 to 3 are qualitatively similar to those reported in
this dissertation and are thus omitted.

The two-stage regression approach for the plain market capitalization averaged over the full year
(Table A.3) fully confirms the three main results highlighted previously. Older cryptocurrencies
have higher market valuation, forks have lower market capitalization, and deviations from the
Bitcoin design are associated with lower market capitalization. The latter conclusion, as before,
follows from the fact that the overwhelming majority of the coefficients of the encompassing
regression are negative, and that we have defined all independent variables such that their values
for the Bitcoin network are zero. The results in Table A.3 also confirm our previous finding that
networks where the reward of agents who verify transactions are independent of fees and/or
tips have higher valuation. The LASSO results in Table A.4 are fully consistent with those
discussed previously. Furthermore, they are also consistent with the LASSO results in Table 2.2
in that the variables DeveloperPrivate (effect sign: −), HashAge (−), SmartContractSupport
(−), LedgerStyleOther (+), Anonymous (−), and NonAnonymous (+) are again selected with
reasonable frequencies, and have the same coefficient signs as in Table 2.2.

The results for the discounted market valuation, averaged over the entire year 2020 (Tables A.5
and A.6) again support all previous conclusions. The age of a cryptocurrency does not sig-
nificantly affect its discounted market capitalization, forks have lower valuation, and most
coefficient estimates in the encompassing regressions are negative, implying that deviations
from the Bitcoin design are associated with lower valuation. Furthermore, the result that non-
anonymous networks have higher value is confirmed, as is the previous result that networks in
which transactions fees and/or tips are passed to agents maintaining the network’s integrity at
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all have higher market capitalization. Even the (weak) evidence that cryptocurrencies devel-
oped by private for-profit entities are less valuable is confirmed.

2.5 Conclusion

In this chapter we analyze whether the value of cryptocurrencies as measured by their market
capitalization can be related to specific cryptocurrency design features. To this end, we first
propose a taxonomy of cryptocurrency design features and hand-collect a data set that contains
these features for 79 cryptocurrencies. We then use two different methodological approaches, a
two-stage regression analysis in the tradition of Karnaukh et al. (2015) and LASSO regressions,
to analyze whether any of these design features are cross-sectionally related to cryptocurrency
valuation. To control for the potential effect of the age of a cryptocurrency on its value more
comprehensively we repeat the analysis using discounted instead of plain market capitalization
as our dependent variable.

We find that cryptocurrencies that were spun off from other cryptocurrencies (i.e., forks) are
less valuable. On the other hand, cryptocurrencies where agents who verify transactions are
rewarded by a scheme independent of fees and/or tips tend to be more valuable. Interestingly,
cryptocurrencies that require the disclosure of the real-world identities of its users have higher
values, possibly in expectation of easier regulatory approval of these networks. Apart from that
we find that deviations from the design of Bitcoin tend to be associated with lower valuation.
Thus, even though Bitcoin may not be the most technologically advanced cryptocurrency, users
and investors apparently value its design.

Overall, we provide evidence that design features partly affect the market valuation of cryp-
tocurrencies. Due to the relatively new underlying technology of cryptocurrencies and its
complexity, investors might not be aware of crucial design feature differences between the dif-
ferent cryptocurrency networks. Thus, they might not value the technology per se, but rather
hope to invest in the “next Bitcoin”.

While we consider the impact of a large number of design features on cryptocurrency valuation,
we do not take into account interactions between different design features. Such interactions
may be relevant, though. For instance, the influence of shorter blocktime in a PoS network is
expected to be positive due to higher throughput enabled by shorter blocktimes. In contrast,
if the blocktime is too small in a PoW network, attacks on the network by fraudulent agents
may become more likely which, in turn, may result in more reluctant network adoption and
eventually in reduced market capitalization. Extending our research approach to incorporate
such interaction effects is a promising avenue for future research.
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Chapter 3

Do Design Features Explain the
Volatility of Cryptocurrencies?

3.1 Introduction

High volatility appears to be a general characteristic of cryptocurrencies. However, not all
cryptocurrencies are equally volatile. Rather, as documented below, there are large cross-
sectional differences. Understanding the determinants of these differences in return volatility
is crucial for cryptocurrency investors, regulators, and developers alike. In this chapter, we
analyze whether differences in volatility can be traced back to differences in cryptocurrency
design. If that were the case, investors could predict the volatility of a cryptocurrency based on
its constellation of design features, and developers could deliberately design cryptocurrencies
that can be expected to have low volatility. To conduct our analysis, we adopt the taxonomy
proposed in Chapter 2. This chapter identifies a wide variety of cryptocurrency design features
and sorts them into six categories, namely “development”, “technical”, “supply”, “transactions”,
“usability”, and “general”. We collect a complete record of these design features for a broad
sample of cryptocurrencies and then employ LASSO regressions to identify those design features
that affect volatility.

This chapter contributes to the literature on cryptocurrency volatility. While numerous papers
focus on the volatility of Bitcoin (e.g., Ardia et al., 2019; Baur and Dimpfl, 2021; Byström
and Krygier, 2018; Conrad et al., 2018; Urquhart, 2017) or a limited number of other major
cryptocurrencies, such as Ethereum or Ripple (e.g., Caporale and Zekokh, 2019; Cheikh et al.,
2020; Chu et al., 2017; Gradojevic and Tsiakas, 2021), Panagiotidis et al. (2022) take a broader
approach by analyzing a sample of 292 cryptocurrencies. They employ different GARCH-
type models to examine regime changes in the volatility of these 292 cryptocurrencies. Other
studies explore volatility dynamics across different cryptocurrencies and document spillover
effects (e.g., Aslanidis et al., 2021; Ji et al., 2019; Katsiampa et al., 2019; Koutmos, 2018; Yi
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et al., 2018). Some further papers analyze factors and/or statistical models, as well as machine
learning approaches, that can explain and predict cryptocurrency volatility (e.g., Amirshahi and
Lahmiri, 2023; Baur and Dimpfl, 2018; Bouri et al., 2019a; Catania and Grassi, 2022; D’Amato
et al., 2022; Katsiampa, 2019; Wang et al., 2023a; Yen and Cheng, 2021). Notably, Wang
et al. (2023b) consider sentiment and blockchain data such as the average block size and the
hash rate as determinants of cryptocurrency volatility. These cryptocurrency-specific factors
are the outcomes of the design and the economics of a cryptocurrency network. We extend this
literature by adopting a perspective which relates cryptocurrency volatility to cryptocurrency
design in the strict sense. To the best of our knowledge, this work is the first to explore
this relationship for a broad range of design features. The existence of a connection between
design features and cryptocurrency valuation has been established by Hayes (2017) and within
Chapter 2, both of which provide evidence that design features influence the market valuation
of cryptocurrencies.

Our results are somewhat ambiguous because they partly depend on the volatility measure and
the sample period. Nonetheless, several consistent findings emerge. In line with the theoretical
model of Bolt and Oordt (2020), we observe that older cryptocurrencies tend to be less volatile.
Additionally, starting from 2020, our results demonstrate that cryptocurrencies which do not
pass on any transaction fees/tips to agents maintaining the network’s integrity exhibit lower
volatility levels. Also, the presence of mandatory transaction fees increases the volatility of the
corresponding coin. Besides, we reveal that, from 2020 until 2022, cryptocurrencies developed
by private, for-profit entities are associated with higher volatility levels. For the years 2019 to
2022, we demonstrate that cryptocurrencies based on Proof-of-Stake (PoS) or delegated Proof-
of-Stake (dPoS) are more volatile. Thus, we do not find convincing support for the prediction
made by Saleh (2018), that Proof-of-Work (PoW) cryptocurrencies are inherently more volatile
than those employing alternative consensus mechanisms.

The remainder of this chapter is organized as follows. In Section 3.2 we describe our data and
methodology, in Section 3.3 we present the results and Section 3.4 concludes.

3.2 Data and Methodology

Cryptocurrencies exhibit a range of design features, often reflecting choices made by their
developers. For instance, the consensus mechanism (PoW, PoS, etc.) is a key aspect. Other
features, such as whether the developer is a for-profit organization, relate to the development
process. Efforts have been made to categorize these design features (see, e.g., Cousins et al.,
2019; Eska et al., 2022b; Garriga et al., 2020). We adopt the taxonomy proposed in Chapter 2,
which is designed to explore the relationship between cryptocurrency design features and market
valuation – a research question related to ours. Table 3.1 presents the six categories of design
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features, and lists the variables within each category and their respective definitions. Our data
set includes design feature information, sourced from official network websites, whitepapers and
other reliable sources, for a total of 58 cryptocurrencies.39

Besides data on design features, we obtain daily price data on the cryptocurrencies in our
sample from the exchange APIs of eight different cryptocurrency trading venues, covering the
period from January 2019 to December 2023. The selected trading venues are Binance, Bitfinex,
Kraken, Bitstamp, Coinbase, Gemini, Bittrex, and Poloniex. According to Härdle et al. (2020),
they are all considered reliable since they do not report inflated trading volumes. Our primary
data sources are the respective exchange APIs, and in case of missing data, we first consult
CryptoDataDownload, then CoinGecko, and if data is still unavailable, we resort to Yahoo
Finance.

For our analysis, we consider two different sets of cryptocurrency returns: (i) Bitcoin (BTC)
denominated returns and (ii) U.S. dollar (USD) denominated returns. For the BTC sample,
we use daily closing prices (price of last trade before midnight UTC against BTC), aggregate
the time series from these trading venues, and construct the volume-weighted average price
from which we calculate the daily returns. We obtain daily returns on BTC prices for all
cryptocurrencies in our sample – except BTC itself, obviously.40 Sample (ii) is based on daily
closing prices in USD quotation. On Binance, cryptocurrencies are traded only against EUR,
so we convert EUR prices into USD using the daily USD-EUR exchange rate. Poloniex is
excluded from our USD sample because it solely trades in Malaysian ringgit (RM). Eventually,
we are left with a set of cryptocurrency prices against USD which is referred to as direct prices.
Unfortunately, not all cryptocurrencies have direct prices against USD on the trading venues
used for data sourcing. For instance, Bitfinex, the exchange with the most direct USD quotes,
only lists direct quotes for 42 of the cryptocurrencies in our sample. Therefore, we convert
BTC prices into USD prices using the USD-BTC exchange rate from the respective trading
venues. We refer to these converted USD prices as indirect prices. We then compile our final
USD sample as follows: (i) For cryptocurrencies quoted only in BTC on each trading venue, we
use the indirect prices to calculate daily returns. (ii) For cryptocurrencies with both BTC and
USD prices available, we calculate volume-weighted direct and indirect prices separately. Using
these two price series, we then compute the volume-weighted average price and, eventually, the
daily returns for these cryptocurrencies.

Both the BTC sample and the USD sample offer distinct advantages and disadvantages. The
39We initially collected data on design features for 79 cryptocurrencies, but not all features are available for

every cryptocurrency, resulting in a reduced number of cryptocurrencies considered in our analysis. Ultimately,
the final sample comprises 58 cryptocurrencies that have a sufficiently long time series for volatility calculation.

40Note that, if a cryptocurrency is traded against BTC on none of the eight exchanges in certain sample
years, we rely on data from CoinGecko or Yahoo Finance. Neither CoinGecko nor Yahoo Finance provide BTC-
denoted prices. Thus, we construct their BTC price by dividing their USD price by the USD price of BTC from
CoinGecko.

 https://www.cryptodatadownload.com/
https://www.coingecko.com/
https://finance.yahoo.com/
https://finance.yahoo.com/
https://www.coingecko.com/
https://finance.yahoo.com/
https://www.coingecko.com/
https://finance.yahoo.com/
https://www.coingecko.com/
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Table 3.1: Design features: variable description

This table describes the design feature variables, grouped according to the taxonomy developed in Eska et al.
(2022b).

Panel A: Development
Variable(s) Binary Description
(i) DeveloperPublic
(ii) DeveloperNPO
(iii) DeveloperPrivate

yes
(each)

Describes whether the development are conducted by
(i) independent developers, (ii) a non-profit organization,
(iii) a private, for-profit company

NoMajorityChanges yes Takes value of 1 if no part of the decision process
about the networks’ direction are passed on to the community

CodeNonPublic yes Describes whether the core code is fully accessible on Github or
a similar platform

(i) CodeC++
(ii) CodeGo
(iii) CodeOther

yes
(each)

Primary language in which the core code is implemented is
(i) C++, (ii) Go, or (iii) other

Fork yes Indicates whether a cryptocurrency network was forked from another
one (take 1 as value) or built from scratch (take 0 as value)

Panel B: Technical
Variable(s) Binary Description
(i) ConsensusPoW
(ii) ConsensusPoSdPoS
(iii) ConsensusOther

yes
(each)

Type of consensus mechanism used by the network: (i) Proof-of-Work,
(ii) Proof-of-Stake or Delegated Proof-of-Stake, or (ii) other

(i) HashSHA256
(ii) HashEthash
(iii) HashScrypt
(iv) HashBlake
(v) HashOther

yes
(each)

Type of hash function used by the network to ensure transaction
validity

HashAge no Age of the hash function used.
(i) CurveECDSA
(ii) CurveED25519
(iii) CurveOther

yes
(each) Type of elliptic curve used in the respective network

Panel C: Supply
Variable(s) Binary Description

NoMaxSupply yes Takes value of 1 if there is no limitation regarding the maximum
number of coins to be issued

(i) FixedSupply
(ii) Deflationary
(iii) Inflationary (InflationaryDecreasing,
InflationaryFixed, InflationaryFixedRate,
InflationaryDynamic)

yes
(each)

The cryptocurrency (i) has a fixed supply, (ii) is deflationary, or
(iii) is inflationary with different supply growth schemes

RewardCoinbase yes Takes a value of 1 if each new entry to the ledger entails a specific
number of new coins.

RewardInflation yes Takes the value of 1 if the distribution of new coins is not directly linked
with coinbase rewards. Note that also a no reward structure is possible.
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Table 3.1: Design Features: variable Description (cont.)

Panel D: Transactions
Variable Binary Description
TheoreticalBlockTime (seconds) no Theoretically intended time between two ledger entries
BlockTimeAverage (seconds) no Average time between two ledger entries observed historically
BlocksizeLimit yes Takes the value of 1 when the network has a blocksize limit

TransactionFeeObligation yes Takes the value of 1 if the network has an obligatory fee
for a transaction to be processed

NoTipSpecialTreatment yes Takes the value of 1 if the network does not allow their
user to prioritize a transaction by paying a special fee (tip)

NoFeeTipForMinerForger yes Takes the value of 1 if the network does not (partly) pass
transaction fees and/or tips to miners

Panel E: Usability
Variable(s) Binary Description
(i) IntentionPayment
(ii) IntentionSmartContract
(iii) IntentionOther

yes
(each)

Take the value of 1 when the network is intended to be (i) a payment
system, (ii) a smart contract platform, or (iii) neither of the aforementioned,
by the developers

SmartContractSupport yes Network support smarts contracts, i.e., implicit smart contract possibility
TokenUsageBeyondPayment yes Services or rights beside the possibility to make financial transactions

Panel F: General
Variable(s) Binary Description

LedgerOther yes Take the value of 1 when the network does not apply the blockchain
technology but an alternative distributed open source protocol

AccountingBalance yes Accounting system is balance based, i.e., the actual account balances are
saved in blocks

(i) Anonymous
(ii) Pseudoanonymous
(iii) Non-anonymous

yes
(each)

Describe the different privacy level of the network. Note that the Bitcoin
network is identified as pseudoanonymous
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BTC sample generally avoids currency conversions but relies on transactions of one cryptocur-
rency against another (BTC). On the other hand, the USD sample measures prices against a
fiat currency but includes indirect prices, which may raise concerns about arbitrage opportu-
nities in cryptocurrency markets.41 To ensure robustness, we analyze both samples. The USD
sample includes Bitcoin, whereas the BTC sample, with Bitcoin as the numeraire, does not.
To validate consistency, we re-estimate all models for the USD sample excluding Bitcoin and
find similar results.

We compute two volatility measures from the daily returns series: the interquartile range and
the standard deviation. These are calculated for five sample periods (each year from 2019 to
2023), including cryptocurrencies with at least 90 daily returns per year. Our design feature
data is from Eska et al. (2022b) and reflects the status as of September 2020. We are generally
not capturing any time-series variation during the years 2021 to 2023. Even though certain
networks undergo structural changes from time to time, these events are generally very rare.42

Thus, the impact of those on the results of our analysis is negligible.

Table 3.2 shows the descriptive statistics for our ten subsamples, i.e., each combination of the
BTC and USD sample with the five sample periods from 2019 to 2023. For each subsample,
the table provides summary statistics for both volatility measures. The most important insight
from the descriptive statistics is that the volatility of the cryptocurrencies in our sample varies
considerably in the cross-section. It is this variation that we wish to explain in our empirical
analysis. Additionally, the table highlights that volatility is generally higher in the BTC sample
than in the USD sample.

In our empirical setup, we have a limited number of cross-sectional observations (cryptocur-
rencies) and numerous potentially relevant explanatory variables (design features). In a first
step we reduce the number of explanatory variables by conflating some of the design feature
variables.43 Furthermore, instead of including the specific hash function employed by a cryp-
tocurrency directly in our regression analysis, we capture its effect on volatility by considering
its age. The majority of our independent variables are binary variables, with their default val-
ues corresponding to the design of the Bitcoin network. Furthermore, we redefine continuous

41Indirect prices are a possible cause for concern because it is known that there are arbitrage opportunities
in the cryptocurrency market (see, e.g., Makarov and Schoar, 2020). We note, though, that the trading venues
in our sample belong to the most liquid market places for cryptocurrencies, and higher liquidity tends to be
associated with higher price efficiency (see, e.g., Wei, 2018). For cryptocurrency-exchange pairs for which both
direct and indirect prices are available, we find only very small price deviations.

42Investigating the data originally collected, the aggregated lifetime of all cryptocurrencies in our sample
equal 115,981 days. Furthermore, the sample had 33 events which caused a change in at least one of the design
features. Consequently, within the whole sample, such an event occurs every 3,514.58 days which is about 9.6
years.

43We conflate the variables CodeGo and CodeOther to a single binary variable CodeNonC++ which is set to
one if at least one of the former variables is one, and zero otherwise. Similarly, we introduce the binary variables
CodeNonECDSA, IntentionNonPayment and Inflationary. We refer the reader to Eska et al. (2022b) for further
details.
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variables such that the value for Bitcoin is zero. For example, we recalculate blocktimes as

BlockT imemod =
BlocktimeBitcoin −Blocktime

BlocktimeBitcoin
.

We proceed in a similar way for the age of the hash function. Given this definition of our
independent variables, all of them are zero for the Bitcoin network.

To assess the impact of cryptocurrency design on cryptocurrency volatility, we use LASSO (ab-
solute shrinkage and selection operator) regressions, a widely-used technique in machine learn-
ing. This method is able to select those design variables that affect cryptocurrency volatility.
Our LASSO regression approach connects variable selection and regularization by 10-fold cross
validation, repeated 10, 000 times in our analysis.44

3.3 Results

Table 3.3 shows the LASSO results for the interquartile range as volatility measure for the BTC
and the USD sample. If a variable is never selected by the LASSO procedure, the respective
cell in the table has no entry. For all variables selected at least once, we provide an estimate
of the sign and strength of their impact on volatility. To accomplish this, we calculate the
average value of the corresponding coefficient, incorporating a value of zero for cases where the
variable was not selected. Furthermore, we report how frequently a variable has been selected
by the LASSO regressions. Specifically, *** [**, *, #] indicates that the respective variable has
been selected in more than 80% [60%, 40%, 20%] of the cases. We will focus our discussion on
the design feature variables selected by the LASSO in more than 50% of the ten subsamples,
representing the years 2019 through 2023, each denominated in either BTC or USD.

Five design features stand out for being selected in more than half of all subsamples, with some
subsamples even exceeding 80% of all LASSO regressions, and consistently exhibiting the same
sign in all selected subsamples (light green in Table 3.3). First, among these features, age is the
most noticeable, being selected in all subsamples: Older cryptocurrencies consistently exhibit
lower volatility, aligning with studies by Bekaert and Harvey (1997) and Aggarwal et al. (1999)
on traditional financial markets and Pessa et al. (2023) for the crypto universe.45 Following
this, cryptocurrencies that do not pass transaction fees or tips onto verifiers are associated
with lower volatility, a trend observed since 2020 with a significant spike in 2022. Although not
selected in either 2023 sample, cryptocurrencies with mandatory transaction fees exhibit higher
volatility levels, reflecting similar patterns observed in traditional financial markets (see, e.g.,

44When we use five folds instead of ten in the cross-validation procedure our results remain qualitatively
similar.

45Pessa et al. (2023) state that large price variations are less likely with increasing cryptocurrency age. Other
design features – in contrast to this study – are not analyzed.
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Jones and Seguin, 1997; Umlauf, 1993). Furthermore, from 2020 to 2022, private, profit-driven
cryptocurrencies consistently demonstrate higher volatility. Lastly, cryptocurrencies employing
PoS or dPoS consensus mechanisms show increased volatility, particularly evident in the BTC
sample and during the early stages of the investigation period, contradicting Saleh (2018), who
suggests Proof-of-Work cryptocurrencies are inherently more volatile.46

Two additional variables are selected in more than half of all cases, FixedSupply and NoMa-
jorityChanges (light blue in Table 3.3). FixedSupply generally increases volatility, with an
exception in the 2022 BTC sample where it has a negative value, but its economic impact and
selection frequency are low. The impact of an absence of opportunities for network members
to participate in the governance process on volatility shows a temporal structure. While it ex-
acerbates volatility in the early subsamples (2019 and 2020), it has a volatility-reducing effect
from 2022 onwards.

When we analyze volatility using the standard deviation instead of the interquartile range, we
consistently observe the same sign for the selected variables across subsamples (provided that
the variable is selected for both measures).47 However, the results for the interquartile range
show higher overall significance. This outcome is anticipated, as the interquartile range is a
robust measure of volatility unaffected by outliers.

3.4 Conclusion

In this chaoter, we investigate whether the design features of cryptocurrencies affect their
volatility. We utilize both BTC-denominated prices and USD-denominated prices to calculate
daily returns. Conducted on a yearly basis, our analysis reveals that design features influence
cryptocurrency volatility. While some design feature effects are limited to the volatility measure
of choice and the time frame under consideration, others exhibit consistent patterns. We show
that older cryptocurrencies tend to be less volatile, which corresponds with their increased
maturities and their more established network structures. A transaction fees/tip structure with
direct transfers from transaction senders to verifiers increases the volatility of the respective
cryptocurrencies. Additionally, cryptocurrencies implementing mandatory transaction fees and
those developed by private teams exhibit higher volatility. Moreover, details of the consensus
mechanism also affect the volatility of the respective cryptocurrencies. While this chapter
analyzes the impact of individual design features on volatility, it is conceivable that there are

46Another variable selected in more than half of the subsamples is LedgerStyleOther. The negative coefficient
suggests that non-blockchain distributed ledger types decrease volatility. However, its economic impact and
selection frequency are low, indicating minimal influence.

47In Appendix B, the LASSO results using the standard deviation as the dependent variable are presented
and briefly discussed.
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interdependencies between design features, and that specific combinations of design features
drive volatility. Exploring such interdependencies is a promising avenue for future research.





47

Chapter 4

After The Merge: Network Fragility
and Robust Design of PoS
Cryptocurrencies

4.1 Introduction

Notwithstanding the fast-growing popularity of Bitcoin and other cryptocurrencies, one of the
main points of criticism is the immense energy consumption of the underlying Proof-of-Work
(PoW) technology. The electricity consumption of the Bitcoin network of about 121 TWh in
the year 2023 exceeds that of whole countries such as the Netherlands or the Philippines.48 As a
result, many competing cryptocurrencies using the alternative Proof-of-Stake (PoS) mechanism
have entered the market, and the pressure for established cryptocurrencies to adopt PoS is
rising. Most prominently, the second-largest cryptocurrency Ethereum has completed a move
from PoW to PoS in September 2022 in a transition event called the Merge.

While in PoW systems, so-called miners maintain the integrity of the network by using their
computing power to solve difficult cryptographic puzzles, the consensus mechanism in PoS
networks is based on staking : Network members post coin stakes, and those with large stakes
are more likely to get selected for updating the blockchain history. While an update in line
with the consensus is rewarded, dishonest behavior leads to a loss of the stake. The stability
and security of such a system does obviously not only depend on its sound implementation,
but is also critically driven by the financial economics of the network. In particular, the
willingness of agents to stake their coins, the resulting security of the system against a potential

48The data on Bitcoin electricity consumption sources from Cambridge Bitcoin Electricity Consumption
Index (https://cbeci.org/) and consumption data per country is published by the U.S. Energy Information
Administration (https://www.eia.gov/international/data/world/electricity/electricity-consumption). Note that
the comparative values is the 2021 electricity consumption for the Netherlands (113 TWh) and the Philippines
(98TWh), respectively.

https://cbeci.org/
https://www.eia.gov/international/data/world/electricity/electricity-consumption
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saboteur’s attack, and the utility arising from using the PoS currency for goods transactions
are all endogenous equilibrium outcomes that depend on the specific design of the network
together with the agents’ preferences.

In this chapter, we propose an economic model for PoS systems that allows us to analyze
these aspects and their dependence on the design of the network in detail. We highlight
that one of the central economic features of PoS systems compared to PoW networks is an
opportunity cost problem: The incentive of agents to stake their coins does not only depend on
the expected reward for staking, but is also critically influenced by the potential lost utility as
coins cannot be used for transactions while they are staked. Therefore, a high utility derived
from transactions with the coin compared to the staking reward can lead to a small amount of
staked coins in equilibrium, negatively affecting the network security. If the staking reward falls
far below the opportunity costs, the network completely breaks down. In PoW networks, this
opportunity cost problem does not exist: Agents’ mining activities do not affect their ability to
use PoW coins for transactions; furthermore, miners only forego a potential one-time reward if
the network breaks down and are not required to put large cryptocurrency stakes at risk.

In more detail, our model explicitly takes into account the security side as well as the demand
side of PoS systems. On the security side, so-called forgers (i.e., network members staking coins)
compete against a saboteur to maintain the network’s transaction ability. Hence, their actions
determine the security level of the network. On the demand side, there are agents who use
the network for consumption goods transactions. In doing so, they are aware of the possibility
that their transactions may fail as a result of a successful attack of the saboteur. Taking into
account the cryptocurrencies’ implicit coins function as a reward, as a means of exchange, and
as a cost-related component to forgers, we are able to uniquely identify situations in which
both model sides are jointly at equilibrium. We find that equilibria with strictly positive prices
are unique and arise when the aggregated stake of the forgers exceeds the holdings of the
saboteur. The staking decision is based on the expected reward, the initial endowment, and
the foregone utility that forgers would generate from using coins for transactions. Therefore,
both the current as well as the expected cryptocurrency price determine the aggregated stake
and thus the security of the network. Our model points out that this influence provides an
additional feedback loop for price changes and ultimately the stability of the network.

We point out several design features that are critical with respect to the network stability. Our
analysis is based on a calibration to the Ethereum network as of August 2022, just before the
Merge. The first critical parameter driving the stability of the PoS network is the money growth
rate – one of the parameters that is explicitly set by the developers in the cryptocurrency’s
programming code. We find that generally, there is an optimal money growth rate in PoS
systems that maximizes the welfare of the participating agents. When money growth is set
higher than the optimal rate, excessive staking will occur at the expense of the utility that can
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be derived from goods transactions with cryptocurrency coins. On the other side, for a lower-
than-optimal money growth rate, the amount of newly distributed coins as a reward for staking
is too low to provide a good enough incentive for staking and to guarantee the system security.
In fact, a money growth rate below a certain threshold leads to the breakdown of the system.
The possibility of such breakdowns makes the PoS system fragile, especially when taking into
account that the welfare-optimal level for the money growth rate is quantitatively very close
to the breakdown threshold. As a remedy for this issue, we recommend PoS developers not to
set the money growth rate exactly at the welfare-optimal level, but to leave a safety buffer that
accounts for possible parameter and model uncertainty. Our recommendation is reminiscent of
the inflation target in today’s monetary systems, which is usually set close to zero to ensure
price stability but still reasonably above zero to avoid the risk of deflation.

Second, the model highlights the critical importance of the required fork length – which is
also defined in the cryptocurrency’s code – for PoS network stability. A larger fork length
positively affects the security of the system, as it becomes more difficult for the saboteur to
attack the system. On the other hand, a large fork length negatively affects the adoption of a
cryptocurrency, as shown by Easley et al. (2019). Our analysis reveals that for the fork length,
there is also a minimum threshold below which the system collapses as the security is not
guaranteed anymore. Interestingly, this minimum value is higher in PoS systems compared to
PoW networks, leading to less favorable adoption prospects. The underlying economic reason
is that forgers in PoS networks are exposed to the risk of a saboteur’s attack, such that a higher
security level is necessary to achieve a sufficient amount of staking. In PoW systems, a low
security of the cryptocurrency network does, on the other hand, not directly affect the incentive
to mine. We show that this disadvantage of PoS systems can be alleviated and the minimum
fork length can be reduced when the network implements a transaction fee, which is paid by
buyers and directly passed on to the forgers. These results support the design choice of the
Ethereum network that forgers are rewarded through fees paid by buyers (called Gas) as well
as through newly distributed coins.49

A third main feature of a PoS system that drives the fragility of the network is what is modeled
as the meeting probability between buyers and sellers. This parameter corresponds to the extent
of adoption of the network for buying and selling goods. We find that generally, the welfare of
the participating agents increases with a greater meeting probability due to the greater utility
derived from transactions. However, there is the critical caveat that if the meeting probability
goes beyond a certain threshold, the network collapses and the welfare goes to zero. This
network fragility again directly results from the opportunity cost problem: When the utility
derived from transactions using the PoS coin becomes too large, agents are not willing to stake

49The creation of new coins which are distributed as the coinbase reward was stopped after the Merge.
Nevertheless, our work provides evidence that the transaction fees incentivize forgers such that sufficiently high
staking levels are achieved.
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sufficient amounts of cryptocurrency anymore, such that the system becomes vulnerable to
saboteurs’ attacks. It directly follows that caution should be exercised regarding the idea that
a pure PoS system could be used to facilitate a great multitude of day-to-day transactions. If the
coin’s utility for conducting transactions outruns the incentives for staking, the security of the
system is not guaranteed anymore, and the network could become a victim of its own success.
Our results imply that pure PoS networks are mainly feasible for markets with significant search
frictions, while we recommend a hybrid PoS/PoW system for more general use cases.

Finally, the model allows us to analyze to what extent the developers’ incentives when de-
signing a network are aligned with the goal of maximizing welfare for the participating agents.
Developers typically own a stake of the cryptocurrency that they are working on, and their eco-
nomic incentive is to achieve a price increase of the coin through their innovative labor input.
Our results show that for the highlighted parameters, the developers’ incentives deviate from
the welfare-optimal choices. On a positive note, however, the developers’ profit-maximization
typically leads to design choices that have a greater distance from the points at which the net-
work breaks down, making the network less fragile. For instance, the welfare-optimal money
growth rate is very close to the minimum threshold below which the network collapses, while
the developers’ profit-maximizing choice would yield a rate well above this point.

Related Literature
This chapter contributes to the growing literature on economic models of cryptocurrencies.
One strand in this field of literature analyzes the conditions in which blockchain networks are
expected to generate stable, decentralized consensus. Among them, Biais et al. (2019) iden-
tify equilibrium conditions under which the coordination among miners generates consensus.
Leaded by the scalability trilemma, Abadi and Brunnermeier (2018) present a general model
to analyze the situation in which a blockchain is preferable over a traditional centralized in-
termediary in record-keeping. While the former two are restricted to blockchains with PoW
consensus mechanisms, Saleh (2021) formalizes consensus finding in PoS networks and estab-
lishes equilibrium conditions in which PoS generates consensus. Cong and He (2019) find that
equilibria in blockchain networks have a wider economic range with their design affecting the
consensus generation.

Besides models concentrating on consensus finding, this literature also covers pricing models.
While Biais et al. (2023) concentrate on the interplay between price expectation and transac-
tional benefits, Cong et al. (2021b) provide a fundamental-based dynamic valuation model with
coin prices arising from the aggregated transactional demand and the platform adoption. Athey
et al. (2016) focus on the dynamics of cryptocurrency adoption in the context of exchange rate
uncertainty. In a similar vein, Sockin and Xiong (2023) formalize coins as a means of exchange
and find that users’ benefits as well as speculative demand drive prices which could lead to
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market breakdown. Bolt and Oordt (2020) state that the exchange rate of a virtual currency is
determined by the current value of transactions, the expectation of forward-looking investors,
and the future consumer adoption and merchant acceptance. Further, the more established
the cryptocurrency, the less sensitive it is to shocks resulting from speculation. Within their
endowment economy model with two competing currencies50, Schilling and Uhlig (2019) even
show that under certain conditions, speculation does not arise in equilibrium. These models all
consider cryptocurrencies in general without particularly paying attention to different consen-
sus mechanisms. They take the transaction ability of cryptocurrency networks and therefore
also the security level as given. In contrast, Chiu and Koeppl (2022) explicitly model double-
spending attacks in a PoW blockchain and show that mining competition and settlement delay
tackle the issue of double spending. Next to double-spending attacks, Budish (2018) also models
sabotage attacks and relates them to the cost for running a blockchain.

The model of Pagnotta (2022) picks up the possibilities for sabotage attacks and connects them
to the valuation of the cryptocurrency. He uses a setting with mining competition in the sense
of Nakamoto (2008) to jointly determine prices and security while particularly taking their
interaction into account. Irresberger et al. (2020) also highlight the importance of the security
within cryptocurrency networks. This chapter is closely related to Pagnotta (2022) whose
results are restricted to PoW based cryptocurrencies. Consistency with his PoW model allows
us to provide a direct comparison between price and security levels in networks with PoW and
PoS consensus. Focusing on the effect of scaling, John et al. (2021a) compare PoW and PoS
systems and find opposing effects of higher throughput on security and prices. The valuation
framework for PoS payments systems introduced by Fanti et al. (2019) is also pertinent to our
research. While their results are based on traditional quantity theory of money, they do not
account for the feedback loop between security and prices. Jermann (2023) delves into the
dynamics of the Ethereum network in its post-the Merge era, introducing a dynamic stochastic
equilibrium model. His results show, inter alia, that the staking fraction is determined by the
utility value of network coins, albeit overlooking potential meanchisms between transaction
capability, network security, and prices. Staking equilibria are further studied by John et al.
(2021b) and Cong et al. (2022).

The remainder of this chapter is structured as follows. In Section 4.2, we introduce our model
for Proof-of-Stake cryptocurrency networks. Section 4.3 calibrates the model to the Ethereum
network and provides a comparison between PoS and PoW networks with respect to the net-
works’ fragility. In Section 4.4, we analyze the effects of specific design parameters on prices,
welfare, and network fragility for PoS systems and compare our results to an analogous PoW

50The competition between cryptocurrencies and established fiat currencies is also assessed by Fernández-
Villaverde and Sanches (2019) and Cong and Mayer (2021). Choi and Rocheteau (2021) shows that privately
produced fiat currencies can reach a steady-state.
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network. We further succinctly discuss the results and present design recommendations. Fi-
nally, Section 4.5 concludes.

4.2 Model

4.2.1 Setup

In our PoS model, time is discrete and goes from zero until infinity. Following the recent
search-theoretic models of money,51 we divide each period t = 0, 1, 2, . . . into two subperiods,
called day and night. During the day, the agents operate in a centralized competitive market in
which they trade a general good. Any agent can produce and consume this general good which
acts as the numeraire in our model. During the night, the agents operate in a decentralized
market which is subject to frictions but opens beneficial exchange possibilities. We associate
this market with a cryptocurrency network. Following the competitive equilibrium approach of
Rocheteau and Wright (2005), we assume that all agents take prices as given in both subperiods.

We consider a saboteur who attempts to manipulate the cryptocurrency network so that it
collapses and transactions are no longer feasible. We do not primarily think of within-network
attacks here, but rather of an act of economic sabotage.52 The attack of such a saboteur
aggregates the various sources of risk affecting the cryptocurrency network and is primarily
motivated from outside the network, e.g., to profit from short positions or to establish a com-
peting currency. Within our model, an attack can basically take place every period between
the day and the night market. In the event of a successful attack in period t, trust in the
network is lost and the cryptocurrency network is destroyed. Transactions will then no longer
be feasible in period t’s night market, causing the value of the cryptocurrency network to fall
to zero. As a result, the price of the network’s inherent coin falls to zero, too, and we assume
that it remains at this level thereafter. Formally, we consider the endogenous function Φt to
capture the likelihood that the network resists a potential attack in period t. Thus, Φt proxies
for the security of the network and we refer to it as the security function. Furthermore, we
assume that all agents are aware of the fact that sabotage attacks can make the cryptocurrency
network collapse. Hence, the time-t-expectation about the future coin price pt+1 in terms of

51The search-theoretic models of money following Lagos and Wright (2005) provide an appropriate framework
which allows to study frictions that necessitate the usage of money while remaining analytically tractable and
easily quantifiable. The approach has become a workhorse model in the monetary theory literature.

52There are natural economic limits for within-network attacks. If double spending is revealed, the cryptocur-
rency price drops which in return limits the profits for the fraudulent agents from double spending. Further, the
possibility for successful double spending attacks, given that the fraudulent agent does not own the majority of
hashrate (PoW) or stake (PoS), can efficiently be combated by setting-specific requirements on the number of
confirming blocks to consider a transaction to be valid. For a detailed discussion of different sources of risk on
cryptocurrency networks see e.g., Budish (2018).
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the numeraire is given by Et [pt+1] = ΦtE
(1)
t [pt+1] with E(1)

t representing the expectation given
that the network resisted the attack.

The entirety of agents interacting in our model comprises two groups besides the saboteur. On
the one hand, we have profit-maximizing agents whose actions facilitate transactions in the
night market. These agents, called forgers, verify the correctness of the transactions within
the cryptocurrency network. To be able to do so, they have to stake coins which they cannot
use for transaction purposes. In return they are rewarded with newly created coins. Since the
actions of this agent group determine whether the cryptocurrency network can withstand a
sabotage attack, i.e., whether the transaction ability and thus the security of the network is
maintained53, we refer to this group as the security side.

On the other hand, there are cryptocurrency network users including all agents that are willing
to make transfers in the night market. We further subdivide this group into two types according
to their actions in the cryptocurrency network. Buyers want to consume during night but
cannot produce while sellers are able to produce but do not want to consume. This setup with
heterogeneous, anonymous54 agents generates demand for a means of exchange, a function
which the cryptocurrency network’s inherit coins fulfill. In what follows, we refer to this group
of buyers and sellers as the demand side.

We separate between forgers (security side) and users (demand side) in our model. In reality,
one might argue that agents are willing to concurrently operate as a forger and as a buyer.55

The competitive setting with Walrasian prices implies that such an agent would not need to
consider inter-group interaction effects when choosing the optimal behavior. Hence, the optimal
behavior of this agent would be subject to the same optimality conditions.

In the following, we discuss our PoS model in detail. We first concentrate on the security and
the demand side before eventually combining the two groups.

4.2.2 Security Side

Network security in our setting is mainly determined by forgers’ who compete against a sabo-
teur. We characterize the forgers optimization problem, derive the aggregated total number of
coins staked by all forgers for a given security level, and then deduct the security function.

53The likelihood for a successful sabotage attack depends on the ratio between the attacker’s stake and the
total stake provided by our second agent group.

54The anonymity excludes future trading promises and thereby credit arrangements between the two types
of agents within this group. This causes the need for a means of exchange given the existence of a double-
coincidence problem (Kocherlakota, 1998; Lagos and Wright, 2005; Temzelides and Yu, 2004).

55Other combinations than agents who partly stake and partly use coins for night market transactions, i.e.,
simultaneously selling in the night market while also staking coins, are irrelevant here as the optimal behavior
overlaps solely in the optimal choice of the network coins bought in period t’s day market.
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Forgers and the Validation Process
The security side consists of NF generation-t-forgers who can purchase coins in the day market
and hold them in the night market of this period. Right after having bought coins and thereby
having entered the night market, a forger stakes coins in order to get authorized for participation
in the verification process in period t’s night market.56 Note that due to the investment in the
network’s inherit coins, the risk of sabotage attacks is also borne by the forgers. The likelihood
that forger i gets selected for verification is equal to the ratio between her number of coins
staked Sit and the total number of coins staked St =

∑NF

j=1 Sjt. The verification itself does
not come with any cost for the respective forger. Having correctly verified the transactions in
the night market, the selected forger receives newly created network coins which she sells in
the next period’s day market and uses the proceedings for numeraire good consumption. We
here assume a Bitcoin-like inflation and reward scheme. This means that the reward is the
only source for changes of the total coin supply and that the reward per block is fixed within
a specific time period. As the reward is only a very small fraction of the coins in circulation
NC

t , we introduce an inflation rate ρ with NC
t+1 = NC

t ρ which is approximately constant
in such a situation.57 In our model, the coin reward for the authorized forger is therefore
NC

t (ρ− 1) coins. Thus, the present value of forger i’s risk-adjusted expected reward is given
by Sit

St
· δΦtE

(1)
t [pt+1] ·NC

t (ρ− 1) in terms of the numeraire. Sit
St

captures the probability that
forger i was authorized to verify the transactions and δ is the time preference.

While the verification itself is not associated with any cost, the forgers face opportunity cost in
form of loosing transaction possibilities as coins staked cannot be used for transaction purposes
in the night market. Within our model, we assume that the fewer coins a forger owns, the
higher her marginal cost to stake one additional coin.58

More formally, given forger i’s initial numeraire endowment eit that could potentially be used in
the night market, staking Sit coins reduces the maximum night market good quantity a forger
could realize from eit

zt
to eit

zt
−Sit

pt
zt

with zt denoting the night market good’s numeraire price.59.
To capture the foregone utility by staking, we define utility over consumption of the night
market through the function uF (·). We assume uF (·) to be a continuous, strictly increasing
and concave utility function fulfilling uF (0) = 0, u′F (0) = ∞, and uF (X) = X for some X > 0.
In detail, we assume that the utility function has the same functional form and is based on the

56Carrying coins through the night market and not staking them is inefficient as the chance for the reward is
reduced without cost saving.

57In the Bitcoin network, miners obtain a block reward of Xt coins. Approximately every four years, the block
reward is reduced to Xt+4 = Xt

2
. The time period until the next reward halving can therefore be considered as

an era in which the inflation is constant.
58For instance, if a forger owns 10 coins, staking 1 coin does not hurt him much since 9 coins are left for

transaction purposes. If, in contrast, this forger already staked 9 coins, the marginal cost for staking her last
remaining coin is higher than in the previous case.

59As we assume the initial endowment to be given in terms of the numeraire, eit
zt

and eit
zt

− Sit
pt
zt

refer to the
number (quantity) of night market goods from which utility is generated.
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same risk aversion parameter as the one on demand side (see Subsection 4.2.3). Furthermore,
note that the quantity of night market goods traded between the two counterparties, denoted
by Qt, serves as the input variable for uF (·).

However, it is uncertain whether a transaction counterpart is met and thus whether coins could
actually be transferred. Therefore, we integrate search-model related night market frictions and
assume that night market transactions are feasible with probability µ only. If no transaction
counterpart is met, non-staked coins are simply carried through the night market.

Moreover, we also take into account that forgers might have specific preferences for staking
over night market good transactions. To this end, we consider a staking preference parameter
ζ ∈ [0, 1] 60 that scales the foregone utility due to staking. In total, we thus capture the forgers’
costs of staking as opportunity costs derived from the foregone utility in case of a meeting and
the return of the coins in case of not having met a transaction counterpart. Formally, forger i

ultimately faces the maximization problem

max
Sit

ζµ max
Qit≤

eit
zt

−Sit
pt
zt

{
uF (Qit) + δE(1)

t

[(
eit
pt

− ztQit

pt

)
pt+1

]}
+ . . .

. . .+ ζ (1− µ) δE(1)
t

[(
eit
pt

)
pt+1

]
+

Sit

St
· δΦtE

(1)
t [pt+1] ·NC

t (ρ− 1) (4.1)

s.t. Sitpt ≤ eit.

Note that parameters given in uppercase letters refer to quantities while lowercase letters are
given in terms of the numeraire.

In what follows, we assume homogeneous forgers with the same initial endowments eit = et

for all i ∈
{
1, . . . , NF

}
. The following lemma identifies a condition for the aggregated total

number of coins staked by all forgers.

Lemma 4.1. In a symmetric Nash equilibrium the total amount of coins staked St by NF

homogeneous forgers satisfies the condition

St = ΦtδztN
C
t (ρ− 1)E(1)

t

[
pt+1

pt

]
NF − 1

NF

(
ζ · µ · u′

(
et
zt

− St

NF

pt
zt

))−1

. (4.2)

Proof. See Appendix C.1.

For given prices and security, (4.2) reveals that the total stake provided raises in the inflation
rate ρ, in the time preference δ, and in the initial endowment et. The first two parameters

60Since the possibilities to use the network for transaction purposes and the coins as a means of payment is
still limited, we introduce this scaling parameter and thereby account for the current situation in PoS-based
networks.Furthermore, note that due to the homogeneity assumption, we do not consider individual staking
preferences.
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naturally increase the time-t-value of forgers’ rewards leading to a higher number of coins
staked. The initial endowment reduces the cost for forgers and in turn increases the aggregated
stake. In contrast, increasing the total number of forgers while keeping their total initial
endowment constant leads to a lower total stake. This is explained by the fact that with
increasing NF , each forger is able to only buy a smaller number of coins for staking. Thus,
opportunity cost for providing an additional coin as stake is higher which in turn decreases the
total stake.61 Moreover, a higher probability for feasible night market transactions µ results
in a lowered aggregated stake ceteris paribus. Intuitively, if µ rises, the expected utility from
night market good consumption rises. As this situation is associated with higher opportunity
cost, the amount staked decreases.

Note that in PoW systems like Bitcoin, the coins function as a means of exchange and as an
incentive for maintaining the network integrity. In a PoS setting, coins serve additional roles:
Along with their prices, they affect the cost of staking and thus also the cost for a saboteur to
attack the network. The last term of equation (4.2) captures this dependency of staking costs
on coin prices. This is a crucial difference to PoW networks, where, most notably, exogenous
energy cost and the cost of leasing hardware drive the mining cost and the cost for a saboteur.
Thus, the related formula determining the hashrate in PoW networks only depends on the
expectation for pt+1 but not on the current value of pt62.

Security Function
So far, our derivations take the security level Φt as given. However, the aggregated stake
actually determines the security level of the cryptocurrency network and thus, the likelihood
that the network resists a sabotage attack. In our model, we focus on sabotage attacks as an
aggregate source of risk rather than double-spending attacks. The saboteur’s instrument to
force a collapse of the cryptocurrency network is to establish an alternative blockchain history
which makes the network members lose confidence in the network’s integrity. We assume that
this situation arises if a disruptive fork with κ > 1 blocks is realized. In a PoS network
the authority to attach the next block to the blockchain is generally offered to a randomly
selected stakeholder63 according to the size of her deposit. Thus, the likelihood for such a
disruptive fork and therefore a collapse is determined by the distribution of the total stake
between honest forgers and the saboteur. To internalize this probability into our model, we
introduce a gambler’s ruin problem similar to Pagnotta (2022). Given the forgers’ aggregated
stake St and a saboteur’s budget of at = At · pt in terms of the numeraire, a κ block disruptive

61Conversely, a less intense competition would lead to higher stakes. As security is increasing in total stake
provided by honest miners, fewer forgers (keeping total initial endowment fixed) in our model would imply a
more secure network. In reality, however, decentralization would be partly given up which in return makes the
network more vulnerable. This impact of centralization on security is not modelled.

62The model of Pagnotta (2022) reflects this intuition.
63In our model, the entity of stakeholders are the NF forgers supplemented by the saboteur.
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fork is established with probability
(
At
St

)κ
=

(
at

pt·St

)κ
if at

pt
< St and probability one if the

saboteur’s stake exceeds the honest forgers’ aggregated stake.64 Accordingly, we define the
security function Φt as

Φt (at, St) =

(
1−

(
at

pt · St

)κ)
· 1{at

pt
<St

} (4.3)

which can be interpreted as the likelihood that the cryptocurrency network resisted the sabo-
teur’s attack in period t. The security function is a key endogenous object within our model.
It reflects the component which connects the security side to the demand side.

4.2.3 Demand Side

The demand side of our model comprises NB buyers and an arbitrary number of sellers, all
born in period t. In the day market of period t, any generation-t-buyer can produce the
numeraire good at unitary production disutility and consume it at unitary marginal utility. In
the following, we require the utility of consumption to be smaller or equal than the disutility
from production and we let lt denote the excess disutility. Furthermore, buyers can buy any
non-negative amount of cryptocurrency coins Cit, i = 1, . . . , NB, at price pt thereby gaining
access to the cryptocurrency network, i.e., the night market. With probability µ, a buyer meets
a seller in the night market. In case of a meeting, they exchange coins against the night market
good which can be produced by the sellers at unitary marginal disutility in any number. The
quantity of night market goods traded between the two counterparties will be denoted by Qt

and zt again labels the price for one night market good in terms of the numeraire. From the
consumption of the acquired night market good, buyers derive utility according to a utility
function uB (·) fulfilling the same properties as uF (·) from Subsection 4.2.2. In the day market
of period t+1, generation-t-buyers and generation-t-sellers sell their (remaining) coin holdings
to the next generation, consume the numeraire good from the proceedings and then die. This
microfounded demand-side setting to model the existence of cryptocurrency coins follows the
PoW case of Pagnotta (2022).

In summary, the lifetime utilities of buyers and sellers are given by −lt + uB (Qt) + δct+1 and
−Qt+δct+1, respectively, with time preference δ ∈ (0, 1) and numeraire good consumption ct+1

in period t + 1. Integrating risk-adjusted expected future prices and uncertain night market
trading possibilities into the general model setting, we can rewrite the problems of the agents
on the demand side as follows.

64See, e.g., Feller (1968).
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A price-taking buyer i, i ∈ {1, . . . , NB}, faces the maximization problem

max
lit,Cit

− lit +Φtµ max
Qit≤

Citpt
zt

{
uB (Qit) + δE(1)

t

[(
Cit −

ztQit

pt

)
pt+1

]}
+Φt (1− µ) δE(1)

t [Citpt+1]

(4.4)

s.t. Citpt ≤ lit

Equation (4.4) represents a two-stage maximization problem. The first-stage problem requires
buyers to choose the numeraire good surplus which they directly invest by buying Cit coins.
The auxiliary condition imposes the budget constraint that no more than the numeraire good
surplus can be spent on coins.65 This first-stage problem also considers the proceeds from
coins not traded in the night market provided that no meeting took place. The second-stage
maximization problem determines the optimal amount of night market goods buyer i demands
given that a meeting took place.

The program of a price-taking seller j is given by

max
Qt

{
−Qt + δE(1)

t

[(
ztQt

pt

)
pt+1

]
, 0

}
. (4.5)

For the case that the price of the night market good zt and expected holding returns make
the sellers break-even, maximization problem (4.5) requires δE1

t

[
pt+1

pt

]
= 1

zt
for sellers to be

indifferent between any positive production level. In the case of inequality, sellers would seek
unbounded production (would not produce at all) due to the circumstance that time- and
risk-adjusted expected returns are strictly positive (negative).

In contrast to the PoW model of Pagnotta (2022), the demand for cryptocurrency coins does not
just originate from the buyers but also from the saboteur and the forgers. Thus, market clearing
requires that the total number of coins NC

t in period t has to equal
∑NB

i=1 Cit+St+At. Stated
differently, the number of coins in circulation for night market transactions Ct =

∑NB

i=1 Cit is
the total coin supply NC

t reduced by St + At. Considering this market clearing condition and
taking Φt as given, our model implies the following property for any partial equilibrium in
which (4.4) and (4.5) are fulfilled:

Lemma 4.2. In any equilibrium, δΦtE1
t

[
pt+1

pt

]
≤ 1 ∀t. If the inequality is strict, the night

markets clears at Qt below the efficient exchange quantity Q∗
t , all buyers choose the same cryp-

tocurrency holdings (in terms of the numeraire) below the level needed to meet Q∗
t , and there is

65Due to the anonymity in our model framework, credit arrangements are infeasible and thus, short positions
cannot be taken.
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a unique market clearing price that satisfies

pt = δΦtE
(1)
t [pt+1]

(
1 + µ

(
u′B

(
δ
NC

t − St −At

NB
E(1)
t [pt+1]

)
− 1

))
. (4.6)

Proof. See Appendix C.1.

The term δΦtE
(1)
t

[
pt+1

pt

]
≤ 1 states that net risk-adjusted expected holding returns are non-

positive.66 As a result, buyers try to avoid carrying coins through the night market and therefore
choose Qt below the efficient level Q∗

t with u′B (Q∗
t ) = 1, i.e., the situation in which buyers’

marginal utilities and seller’s marginal production costs balance out. Congruent to the PoW
result from Pagnotta (2022), the resulting pricing equation (4.6) equals the present value of
the risk-adjusted expected price plus a non-negative term designated as liquidity premium by
Pagnotta (2022). The liquidity premium is mainly influenced by the meeting probability µ

and the marginal utility from night market transactions. Since the number of coins circulating
in the night market is lower in PoS than in the PoW case, exchange quantity per coin in the
night market is higher ceteris paribus. Assuming equal meeting probabilities and an identical
exchange quantity per coin, the liquidity premium is higher in PoW networks.

4.2.4 Stationary Equilibrium and Welfare

For our following analysis, we focus on non-negative price situations in which the optimality
conditions of the different agent groups are met, the security function is given as in (4.3), the
cryptocurrency market clears, and balances of the cryptocurrency holdings in numeraire terms
are constant. More specifically, we require that forgers maximize their expected profit leading to
(4.2), the buyers’ actions satisfy (4.4), the sellers’ production decisions satisfy (4.5), and market
clearing according to NC

t = Ct +St +At. Considering the inflation rate from Subsection 4.2.2,
the stationary condition NC

t pt = NC
t+1pt+1 requires that the condition E(1)

t

[
pt+1

pt

]
= 1

ρ holds
in a stationary equilibrium. By multiplying the pricing equation (4.6) with the number of
outstanding coins NC

t , we obtain the aggregated coin holdings ht := pt · N c
t in terms of the

numeraire. Integrating the stationary condition and defining constant numeraire holdings as
h̄ = ht = ht+1, it has to hold that

h̄ =
δ

ρ
· Φt

(
at, St

(
h̄
))

· h̄ ·
(
1 + µ

(
u′B

(
Q
(
h̄
))

− 1
))

(4.7)

with night market exchange quantity Q
(
h̄
)
= δ

ρ
h̄
Nc

t

(
N c

t − St

(
h̄
)
−At

(
h̄
))

in any stationary
equilibrium. Formula (4.7) presents a fix-point problem. In order to explicitly determine

66If this condition were not met, buyers would demand an unbounded amount of coins which they carry
through the night market and thereby enlarge their lifetime utility.
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stationary equilibria, we use numerical methods for root determination of nonlinear functions
to solve for h̄ and consequently prices. This setup follows the stationary equilibrium analysis
of Pagnotta (2022) and allows for a direct comparison between his PoW setting and our PoS
model.

Furthermore, we analyze welfare implications in our forthcoming analysis. We do not consider
the saboteur’s benefits from a successful attack to be part of the welfare since these benefits
arise outside the cryptocurrency network, if at all. Thus, the social welfare of a cryptocurrency
network is given by the buyers’ trade surplus in the night market less cost associated with
staking. Forgers’ rewards as well as sellers’ proceeds do not positively contribute to welfare
since they only represent a reallocation of the same real coin holdings, i.e., coin holdings in
terms of the numeraire, between the different agents groups. For our PoS model, welfare is
thus defined as:

W = NBE [uB (Q)−Q]−NFE
[
uF

(
et
zt

)
− uF

(
et
zt

− Sjt
pt
zt

)]
. (4.8)

4.3 PoS Network Fragility in a Calibrated Setting

We explore the equilibria of our model as defined in Subsection 4.2.4 and point out that for
certain parameter constellations, the only existing equilibrium is one where prices, security,
and welfare are zero. Such situation – which we call a network breakdown – is the worst
possible scenario for a cryptocurrency that should be avoided by all means. After calibrat-
ing our model to the Ethereum network in Subsection 4.3.1, we characterize the equilibria in
Subsection 4.3.2. We show that moving to PoS makes the system more vulnerable to network
breakdowns compared to the PoW case due to an opportunity cost problem that arises from
the PoS mechanism.

4.3.1 Calibration to the Ethereum Network

Our empirical analysis is based on the parameters of the Ethereum network as in August 2022,
just prior to the Merge. During this time, the Ethereum mainnet generated consensus using a
PoW implementation, albeit running a PoS implementation on a testnet. Due to the timely
proximity to the transition event, a very similar network structure could be observed after the
mainnet’s subsequent move from PoW to PoS. Thus, calibrating our model to the August 2022
data provides an ideal setting for understanding the implications of the PoS mechanism on the
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one hand and for further comparing these implications to the PoW case.67

For our calibrated model version, we assume that each period represents one month. In Au-
gust 2022, there were about 15,610,000 active addresses using the Ethereum network for trans-
action purposes according to theblock.co. In order to estimate the night market’s meeting
probability, which is not directly observable to us, we assume that each buyer was willing to
transact on the network every third day. With the number of buyers NB = 15,610,000 this
results in a demand for 161,303,333 transactions in August 2022. During that time, there were
only 34,900,623 transactions recorded on the Ethereum blockchain. Accordingly, we set our
model’s meeting probability µ to match these numbers, i.e., µ = 34,900,623

163,303,333 = 0.2164. Within
our calibration, buyers value consumption of the night market goods according to a Constant
Relative Risk Aversion (CRRA) utility function uB (X) = X1−σ

1−σ . Following Lagos and Wright
(2005) and Pagnotta (2022), we set the risk aversion parameter σ to 0.5, which also reflects the
intuition that cryptocurrency users are not highly risk-averse.

Since agents in a PoS based cryptocurrency network decide between staking their coins and
using them for transaction purposes, each buyer is also a potential forger. Thus, we assume
that the number of buyers and forgers are both equal to the number of active addresses.68

Further, we set the parameter to ζ = 0.15 indicating a strong preference for staking which is
explained by the actual number of transactions in the Ethereum network, the average size per
transaction, and the fact that block proposers and block validators in the Ethereum network
also receive transaction fees which upgrades the expected reward compared to the cost. For a
forger’s endowment eit = et, we assume that the aggregated endowment NF et equals the total
market capitalization. Due to the homogeneity assumption, each of the NF forgers is thus
endowed with NC

t pt
NF coins.

On the supply side, there was a circulating supply of NC
t = 119,922,554 Ether69 on August 1,

2022. This number increased by 422,169 Ether until September 1, 2021 which corresponds to
a monthly inflation rate of 0.3520%. Consequently, we set ρ = 1 + 0.3520%. Similar to the
Bitcoin network, we assume that the only source of inflation is the coinbase reward70 for agents
verifying transactions.

67Using more recent data from the Ethereum network to work out the PoS implications would indeed be
possible, the comparison with PoW would require to forward fill certain parameters like the hashrate, leading
to less reliable results.

68We here ignore a potential minimum staking amount as implemented in Ethereum (32 Ether minimum
amount), for instance. Due to the possibility of pooling in so-called stacking pools, this threshold barrier is
rather theoretical and no real constraint in reality. Furthermore, remember that we do not need to consider
interaction effects between staking and using coins for transactions due to our model’s competitive setting.

69The coins in the Ethereum network are named Ether.
70While most part of the newly generated Ether are “common” coinbase rewards, an insignificant number of

new coins arise from uncle block rewards. Uncle blocks are blocks that are valid and verified but have not been
included into the chain due to the simultaneous propagation of a two blocks at the same time in the network.
In contrast to the orphan blocks in the Bitcoin network, the miners of the uncle blocks are also rewarded with
newly created Ether.

https://www.theblock.co/
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On the security side, we need to calibrate the security function (4.3). We require that a
disruptive fork with κ = 20 blocks needs to be established to force a network collapse in our
model. This number is based on the confirmation requirements of Kraken, one of the leading
cryptocurrency exchanges. They prescribe that an Ethereum transaction has to be confirmed
by 20 subsequent blocks in order for funds to be credited to a customer’s deposit. Furthermore,
the saboteur in our model is endowed with 2% of the average market capitalization of the
network in August 2022, i.e., at = NC

t · pt · 0.02 = 119,922,554 · 1,698.93 · 0.02 = 4,074,800,493,
which is approximately twice the amount that the richest Ethereum address which could not
be linked to an exchange owned during that time.71

Besides, we fix the time discount factor δ to 0.9957 what equals an annual rate of 0.95. Table 4.1
summarizes the values of the model parameters which constitute the basis for our quantitative
analyses.

Table 4.1: Calibrated model parameters

Description Variable Value
Number of buyers NB 15,610,000

Meeting probability µ 0.2164

Number of forgers NF 15,610,000

Number of coins in network NC
t 119,922,554

Inflation rate ρ 1 + 0.3520%

Staking preference ζ 0.15

Length of fork to force collapse κ 20

Attacker stake (in terms of numeraire) at 4,074,800,493

Risk aversion σ 0.5

Time preference δ 0.9957

Given this parameterization, coin prices and corresponding security levels can be computed by
solving (4.7). Our PoS model specification results in an equilibrium price of 1,330.38 with a
security level of Φ = 99.99%. Security levels in this range are a direct result of our rather
high choice of the necessary length of the saboteur’s fork to cause a collapse of the network.
The aggregated stake of the forgers adds to 6,325,277.67 or, stated differently, 5.274% of the
circulating supply.

In addition to the calibration of our PoS model, we aim at providing a comparison with the PoW
model of Pagnotta (2022). On the PoW model’s security side, we assume 17 miners consistent
with the 17 pools who each mined at least 1% of all blocks mined in August 2022. These

71The average daily closing price in August 2022 was 1,698.93 U.S. dollars.
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numbers capture the notion that staking in a PoS cryptocurrency network is more competitive
compared to PoW mining due to the lack of cooperation via pools and lower entry barriers.
Furthermore, we follow Pagnotta (2022) and calibrate the cost component within the PoW
setting such that the average hashrate of 928,256 GH/s observed during August 2022 is met
by honest miners. In our quantitative setting, the saboteur’s hashrate amounts to one third of
the honest miners’ hashpower. All other parameters are kept as in the PoS model calibration.
In this PoW setting, two different stationary equilibria72 exist, one associated with low prices
and security and the other with higher prices and security. For our quantitative example, the
two prices levels are 643.54 and 1221.94 with security levels of 92.24% and 99.99%.

4.3.2 Network Fragility: PoS vs. PoW

Figure 4.1a graphically illustrates the identification of stationary equilibria in the PoS network
based on equation (4.7). In Figure 4.1b, we show the corresponding plot for an otherwise
analogous PoW network in line with Pagnotta (2022) as discussed in Subsection 4.2.3. The
plot for PoS networks reveals that there is a unique non-negative equilibrium in the PoS case. In
this equilibrium, coin prices exceed a certain threshold level, such that forgers provide St > At

(a higher hashrate than the attacker) due to the high expected rewards. On the other hand,
there are cases where the non-negative equilibrium does not exist. In that case, coin prices are
low and honest forgers do not exceed the saboteur’s stake. In this case, the network fails its
mission to facilitating transfers which results in a network value of zero.

Figure 4.1: Determination of stationary equilibria

(a) PoS (b) PoW

72The equilibrium conditions follow the Decentralized Monetary Equilibrium of Pagnotta (2022) and reflects
a PoW network’s equivalent situation to our PoS equilibrium discussed in Subsection 4.2.4.
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Network breakdowns can also happen in PoW systems – however, there is a broader range of
parameters for which non-negative equilibria exist and in fact, two equilibria emerge (consistent
with Pagnotta, 2022): one with high cryptocurrency prices and high security levels, and one
with low prices and low security. A low equilibrium is not viable in a PoS system. This can
be attributed to the fact that forgers are exposed to the risk of sabotage attacks due to their
coin investment. They are aware that their stake might become worthless and thus consider
the network’s security level when determining the optimal stake. This interplay generates a
downward feedback loop for low prices which ultimately makes the network worthless.

As a result, the initial requirement on the price threshold for an equilibrium to exist is higher
in PoS than in PoW. This finding indicates that PoW systems are more robust to sabotage
attacks than PoS systems when coin prices are low. If, in contrast, prices are high, the feedback
loop increases security which leads to slightly higher equilibrium prices and security levels in a
PoS system compared to the high equilibrium of a PoW network.

4.4 Designing Breakdown-Resistent PoS Cryptocurrencies

Based on the quantitative setting introduced in Subsection 4.3.1, we analyze the fragility of
PoS cryptocurrency networks dependent on different design parameters. In particular, Sub-
section 4.4.1 presents our results on the impact of these parameters on prices and welfare and
characterizes scenarios in which a positive equilibrium does not exist. As an important reference
point, we conduct the same analysis in an analogous PoW-based network. In Subsection 4.4.2,
we provide specific design recommendation for PoS cryptocurrencies with the goal of maximiz-
ing the welfare provided by the system while ensuring at the same time that the scenario of a
network breakdown is avoided.

4.4.1 Critical Network Features

Money Growth Rate
At first, we turn our focus to the money growth rate in the PoS system, which is defined by
the parameter ρ. This parameter is defined by the implementation of the respective network’s
core code. Hence, it is subject to the developer team’s choice, and our model framework can
provide insights on the parameter value’s impact on welfare, price development, and network
fragility.

Figure 4.2 shows the effect of the money growth rate parameter on welfare and equilibrium
cryptocurrency prices. We directly observe that for a broad range of values for ρ, welfare
increases with a declining money growth rate. In this range of values, ρ > ρ̄W , the marginal
effect of buyers’ trade surplus is lower than the marginal cost associated with staking. In this
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case, one would observe socially excessive staking. The welfare level provided by the system
reaches a maximum at ρ̄W . Below that point, welfare decreases again since the amount of
newly distributed coins as a reward for staking is too low to provide a good enough incentive
for staking and to guarantee the system security. In such scenario, a beneficial planner would
need to raise the inflation rate to incentivize forgers. In fact, a money growth rate below a
certain threshold leads to the breakdown of the system. The possibility of such breakdowns
makes the PoS system fragile, especially when taking into account that the welfare-optimal
level for the money growth rate is quantitatively very close to the breakdown threshold.

Figure 4.2: Effect of changes in inflation rate ρ

(a) On welfare (b) On prices

The relation of equilibrium cryptocurrency prices to the underlying money growth rate of the
system is qualitatively different. Understanding the price outcomes of the model is important
for design choices as well, as developers holding a significant stake of coins have an incentive to
make choice that lead to price increases. We find a consistent price increase with the inflation
rate ρ in a PoS-based cryptocurrency network, which is in clear contrast to classical monetary
systems in which higher central bank money supply translates to a lower value of money.

The reason is that in PoS systems, there are two value-enhancing effects that dominate the
classical negative money growth channel. These effects are on the one hand the security channel,
under which a higher ρ leads to more staking and thus an increased security of the system, and
on the other hand the scarcity channel, as the number of coins used for transaction purposes
is effectively reduced by the additional stake. Formally, the three different effects can be
illustrated by integrating the stationary condition into the equilibrium price (4.6) for a given
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security level, such that we obtain:

pt =

(
µΦt (ρ) δ

1−σρσ

ρ− δΦt (ρ) (1− µ)

) 1
σ

· NB

NC
t −At − St (ρ)

(4.9)

pos. security channel, neg. money growth channel, pos. scarcity channel

As the formula reveals, ρ enters negatively through the money growth channel, but positively
through the security and scarcity channels.

Fork Length
The fork length parameter κ is an important ingredient in blockchain-based systems that has
to be specified by the developers. In particular, it implies that a saboteur needs to generate a
fork of length κ in order to provoke a collapse of the system, in accordance with our security
function in equation (4.3). A larger fork length therefore increases the security of the network,
but also leads to longer waiting times for transactions (Easley et al., 2019). Figure 4.3 reveals
the influence of κ on welfare and price levels in PoS systems, again compared to the PoW case.
Our model reflects the intuition that the smaller κ is, the more likely it is for a saboteur’s
attack to be successful.73 Thus, welfare and prices rise in the necessary fork length. If κ is
high, the effect of further increasing this parameter vanishes as the security is already very
high and hardly increases when κ rises further. For lower κ values that are still higher than a
certain threshold κ̄, prices are more sensitive to κ changes. If the necessary fork length is below
κ̄, there is no viable, strictly positive equilibrium. This behavior is observed for both PoS and
PoW networks. However, all else equal, the threshold level in a PoW network is lower than in
a PoS system which can be traced back to the circumstance that forgers participate at the risk
of sabotage attacks. Regarding welfare, the price level transmits to the trade surplus as well
as to the cost of forging in PoS and of mining in PoW, respectively.74

Our model parameter κ also captures the number of blocks that should be required for a
transaction to be considered valid and thus the waiting time until the transaction is finally
processed. Easley et al. (2019) state that the longer this waiting time becomes, the more users
exit the network.75 Hence, the network parameter κ captures two opposing effects. While

73Additionally, the required fork length also proxies for the waiting time until a reward can be paid out to
a miner or forger, respectively. A faster payout of the rewards increases the present value of the risk-adjusted
expected return, the investment in maintaining the network integrity, and consequently prices. Our model
setting, however, does not reflect this intuition. Nevertheless, we argue that the likelihood of a successful attack
offsets this effect, particularly because forgers take potential attacks into consideration when determining their
optimal stake.

74Scaling the y-axis of Figure 4.3a reveals that the graphs’ shapes are similar to the one of the influence on
prices.

75Their analysis, however, is restricted to the Bitcoin network. Further, they find that mining fees that are
able to prioritize transactions can partly help in offsetting this effect. The impact of fees is also discussed within
Huberman et al. (2021) and Basu et al. (2023), inter alia.
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Figure 4.3: Effect of changes in necessary fork length κ for collapse

(a) On welfare (b) On prices

a higher value in this variable is obligatory for a positive price equilibrium to exist, network
effects might be mitigated if the waiting time for transactions to be considered valid is too long.
Regarding this concern, transaction fees could help in balancing out those opposing effects.

Meeting Probability
The third network primitive that is critically related to the network’s fragility is the meeting
probability µ. If the probability that buyers and sellers meet in the night market increases,
the demand side within our PoS model generates an upward price pressure due to a higher
expected value of night market utility per coin. This makes it more costly for forgers to give
up transaction possibilities, directly affecting the security side.

Figure 4.4 shows that for a broad range of values for µ, the welfare provided by the system
increases in the meeting probability in the night market. Despite the fact that the cost of
staking for forgers increases, the utility for the buyers increases as well, such that the overall
welfare goes up. However, there is a threshold beyond which the opportunity cost for the forgers
becomes so high that their stake is reduced to the level at which the security of the system is
not guaranteed anymore. As a result, the network breaks down. In other words, widespread
adoption of a PoS cryptocurrency and the resulting increased meeting probability in the night
market can make the network a victim of its own success.

Comparing these results with PoW systems highlights a critical economic difference between
PoS and PoW networks: The analogous PoW network does not break down due to a substantial
increase in µ. In contrast to a PoS system, the miners’ decision is independent from the actual
meeting probability. As the upward pressure on the demand side applies to PoW system as



68 Chapter 4. After The Merge: Network Fragility and Robust Design of PoS ...

Figure 4.4: Effect of changes in meeting probability µ

(a) On welfare (b) On prices

well, strictly increasing welfare and price curves arise.

In summary, our analysis shows that a PoS system is not viable for a market that has only
very minor search-type frictions, in contrast to PoW networks where less restrictive search-
type frictions lead to larger welfare and higher prices. The presence of frictions motivates
agents to stake their coins, while in a frictionless situation they would prefer to use their coins
for transaction purposes instead, and the reduced incentive for staking leads to the risk of a
network collapse. Our results complement the findings of Budish (2018) and Hinzen et al.
(2022), who point out breakdown scenarios in other cryptocurrency-related settings.

4.4.2 Design Recommendations

Based on our analysis of the critical network parameters in Subsection 4.4.1, we provide in-
formed guidance on the design of PoS systems. Our recommendations are made with the goal
to increase the welfare provided by the system while also ensuring that a network breakdown
is avoided.

Set Robust Money Growth Rate
As shown in Subsection 4.4.1, the welfare-optimal money growth rate of a PoS system is quanti-
tatively close to the lower threshold below which the system breaks down. While it is therefore
important to set the money growth reasonably close to its welfare-optimal level, it should also
be ensured that the presence of parameter and model uncertainty does not lead to a scenario
below the critical threshold. This situation is reminiscent of the inflation targeting problem in
today’s monetary system. While an inflation close to zero is desired to ensure price stability,
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policy-makers typically define an inflation target reasonably above zero – such as 2% p.a. – to
avoid a deflation scenario. In a similar vein, we recommend PoS developers to leave a safety
buffer that accounts for possible parameter and model uncertainty. Quantitatively, Figure 4.2
reveals that the welfare-optimal money growth rate is around 0.3% per month, and a network
breakdown occurs at 0.27% per month. We therefore recommend a money growth rate of
around 0.4% per month to establish a certain distance to the breakdown scenario, but still not
lose too much welfare in case the parameter values turn out to be exactly as assumed.

Use Network Transaction Fees
In Subsection 4.4.1, we further have shown that the fork length in PoS networks needs to be
set to a level that is significantly larger than for PoW systems, at the expense of longer waiting
times for transactions. In the subsequence, we show that transaction fees that are paid by
buyers and passed along to the forgers, can help mitigate the risk of a collapse for lower fork
lengths. For that, we extend our model as follows: If a buyer and seller meet in the night
market and agree on a transaction with a value of X, the buyer pays X to the sellers and
a fractional transaction fee τ · X with τ ∈ [0, 1] to the network, which is directly passed to
the forger validating the respective transaction. Since sellers are unaffected by this kind of
transaction fees, forgers are cross-financed by buyers. Integrating the transaction fee in the
forgers’ and the buyers’ maximization problems (4.1) and (4.4), the problems transform to

max
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respectively.

Figure 4.5 shows the equilibrium prices in the model, dependent on the fork length, for different
transaction fee scenarios. The plots directly reveal that transaction fees of 1% and 3% mitigate
the risk of a network breakdown for a range of smaller fork lengths. The underlying economic in-
tuition is that when transaction fees are introduced, the expected reward of the forgers increase
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ceteris paribus. Therefore, more stake is provided which increases security and thus prices for
a constant fork length (κ) and constant demand. On the demand side, transaction fees imply
that the exchange quantity q and thus demand is reduced which reduces prices. Regarding the
network fragility the increased security level resulting from higher staking incentives dominates
the demand-caused loss in expected rewards (result of the reduced expected future price from
demand side). The security level itself also depends on the interplay with the saboteur and
a reduced model fork length decreases security. Since the higher staking incentives increase
security, a designer could reduce κ and thereby, the network will effectively have the security
level as in the case when no transaction fee is present. Even though this comes along with a
slightly reduced price, we observe a more robust network. Stated differently, we have a “shift
of price to security level” similar to the cross-financing of the security side from the demand
side. We could state that the lower network fragility comes at the cost of reduced prices.

Figure 4.5: Effect of changes in necessary fork length κ for collapse with transaction fees

Implement Pure PoS Only for Markets with Significant Frictions
We finally discuss the implications of our result related to the meeting probability from Sub-
section 4.4.1, i.e., that a very high meeting probability in the night market leads to a network
breakdown. This result provides a somewhat pessimistic view on the prospects of pure PoS
systems to be used for applications with high transactions throughput. In particular, a network
solely based on PoS does not appear to provide a suitable platform for providing high-frequency
financial transactions. As the utility from conducting transactions would be very high, this util-
ity competes with the incentive to stake the coins, and in equilibrium a reasonable amount of
stakes coins cannot be guaranteed. For such use cases, we recommend a hybrid system that
combines PoS with the PoW algorithm. On the other hand, one could very well imagine a
PoS system that is specialized for personal real estate transactions. In this market, there are
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significant search frictions and liquid coins are not frequently needed, such that they can very
well be staked, leading to a sufficient security level of the system. Finally, Figure 4.6 shows
that transaction fees also mitigate the issue with the meeting probability rate to some extent.
In summary, a network design in which the forgers’ reward is not only generated from newly
created coins, but also from buyers’ transaction fees, is strongly supported by our analysis.

Figure 4.6: Effect of changes in meeting probability µ with transaction fees

4.5 Concluding Remarks

Since PoW systems are considered unsustainable, particularly due to their huge energy con-
sumption, and since there are concerns regarding their economic viability,76 other consensus
protocols like PoS have gained in importance and continue to further do so. These concerns
highlight the importance for a deeper economic understanding of these alternative consen-
sus protocols. Against this background, this chapter presents a first valuation model for PoS
cryptocurrencies that connects prices and security. We argue that the findings from Pagnotta
(2022) who analyzes a similar setting within PoW based cryptocurrencies do not transfer to
other cryptocurrency systems per se due to different network structures arising from the par-
ticular consensus protocol. The quantitative analysis which is built on our PoS model discloses
several interesting findings with crucial influence on the design of PoS networks. Jointly deter-
mining prices and security, we find that any stationary equilibrium with strictly positive prices
and security levels is unique. Such an equilibrium exists if prices and thus expected rewards for
staking reach a level in which the aggregated stake of honest forgers exceed the coin holdings of

76See, e.g., Budish (2018) and Hinzen et al. (2022).
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the saboteur.77 The costs of honest forgers and the saboteur arise within the network, as both
have to buy coins. This way they are exposed to price changes. Hence, the forgers participate
at the risk of sabotage attacks and, furthermore, the higher prices are the less coins a saboteur
can purchase for her attack given a fixed initial endowment. As a result, an equilibrium with
low prices and low security, as it is found in a PoW system, is not viable in PoS.

Considering specific network design components and network primitives we further find major
differences between the two network types. A first crucial difference arises with respect to the
influence of inflation rates. In a PoS system, changes in this parameter affect prices by three
different channels: (i) the positive security channel, (ii) the positive scarcity channel, and (iii)
the negative money growth channel leading to prices that monotonically increase in inflation
rate. Determining the optimal welfare level, there exists an inflation rate level for which welfare
is maximized which requires developers to carefully balance out the two opposing objectives
of price and welfare optimality. Furthermore, our model indicates that the waiting time for
a transaction to be considered valid should be chosen higher in a PoS system compared to a
PoW one as the threshold level for a necessary fork length leading to a collapse in demand
is higher in PoS. Regarding meeting frictions, we also find that a crucial difference between
the two network types. While a PoW network rises when search-type frictions vanish, their
existence is necessary in a PoS network for a positive price equilibrium to exist limiting the
possible adoption and economic importance.

In addition, our work contributes to transformation process from PoW to a PoS cryptocurrency,
exemplified by the Ethereum network on the verge of the Merge. The effects of design feature
changes indicate that the network structures may need to be transformed in order to maintain
a network’s viability after such a transition. If a developer who holds a considerable amount
of coins aims at maximizing her profit, she would need to set the inflation rate infinitely large
according to our model. Such an inflation rate would result in a substantial shift of coin holdings
from network users to forgers. In a more generalized model whose security function penalizes
wealth centralization, that redistribution would lead to declining demand from users and thus
lower prices. Consequently, the developer’s profit from large inflation rates would be limited
and the long-term viability of the network could be questioned. Hence, an orientation of the
inflation rate at the welfare optimal level seems favorable, particularly to maintain the long-
term viability without major wealth redistribution. Moreover, the motivation beyond the pure
coinbase reward for network members to stake needs to be strengthened, particularly when the
coinbase reward is reduced or even a suppression of coin generation is intended. Otherwise,
increased adoption and higher economic importance might result in a collapse. Nevertheless,
one needs to consider that transaction fees might help mitigating this issue. While this approach

77In any stationary equilibrium with strictly positive prices, the security level of a PoS is rather high. In our
quantitative setting we choose a necessary fork length of κ = 20 to observe a collapse of the network. Alleviating
κ to levels which are still higher than 10, security levels would only marginaly decrease.
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is partly addressed for Bitcoin-like networks,78 their usefulness within PoS networks still needs
to be evaluated.79

78See, e.g., Basu et al. (2023) and Huberman et al. (2021).
79The Ethereum network reduced and eventually even removed coinbase rewards. Instead, the validators are

rewarded solely with transaction fees. In unreported result, we investigate the influence of transaction fees
as in Subsection 4.4.2 with respect to the non-existence of coinbase rewards. In our calibrated setting, it is
required that a 3% (10%) transaction fee still requires ρ−1 to be as high 0.1395% (0.0312%) for a positive price
equilibrium to exist.
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Chapter 5

Climate Change, Energy Prices, and
the Returns of Proof-of-Work vs.
Proof-of-Stake Crypto Assets

5.1 Introduction

Since the introduction of Bitcoin in 2009, a huge number of crypto assets has emerged. As
of the end of 2023, coinmarketcap.com reports more than 23,000 cryto assets with a total
market capitalization of 1.5 trillion U.S. dollars. During this period of crypto-emergence, the
severe threats associated with global warming grew obvious (NASA, 2024), which triggered a
steady rise in climate change concerns among individuals and institutions (Ardia et al., 2023).
This particularly fostered the discussion about the immense energy consumption of crypto
assets (Kolbert, 2024; EIA, 2024). In September 2022, the Office of Science and Technology
Policy consulting the White House published a report estimating that crypto assets consume
an amount of electricity that falls within the range of 0.4% to 0.9% of total global electricity
usage (OSTP, 2022).

Although often grouped together, it is important to note that different crypto assets consume
different amounts of energy. The most significant differentiator with respect to energy inten-
siveness is the consensus mechanism, which is the crypto assets’ fundamental building block,
as it facilitates participants to have a homogeneous view of the ownership records. While many
crypto assets employ Proof-of-Work (PoW) mechanisms, others rely on Proof-of-Stake (PoS).
Within PoW, the miners, as the ones that update the ledger on a round-by-round basis, have to
competitively solve a numerical problem where the winner in each round is permitted to append
new transactions to the ledger. There is no analytical solution to this problem, requiring solu-
tions to be found through trial and error, necessitating considerable computational power and
leading to substantial energy consumption. The winning miner is compensated for their efforts

https://coinmarketcap.com
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with a mining reward, paid in the respective network’s native cryptocurrency. On the other
hand, in PoS, the minter chosen to update the ledger is selected randomly, with the selection
probability generally proportional to a specific staking amount. Staked coins are locked from
other uses, incurring opportunity costs for PoS (Eska et al., 2022a; Jermann, 2023). However,
there is no severe energy cost associated with minting in PoS. As compensation, the minter
receives a staking reward, also in the ledger’s native cryptocurrency.

Since energy price dynamics are related to the business cycle (see, e.g., Kilian and Park, 2009;
Ready, 2018), PoW-based crypto assets as assets with high energy consumption, could carry a
risk premium over their PoS peers without such energy dependence (see, e.g., Dittmar et al.,
2020). On the contrary, if the opportunity cost of staking co-move with the business cycle,
PoS crypto assets could sustain a risk premium over their PoW peers without the opportunity
cost problem. Within this chapter, we elaborate on the systematic relevance of the consensus
mechanism from an empirical asset-pricing perspective by contrasting these two hypotheses.
Carefully isolating the risk premium of PoW vs. PoS, we show that in the early part of our
sample, i.e., prior to November 2020, the opportunity cost effect of PoS is dominant, whereas,
for the most recent period, starting from December 2021, the energy reliance of PoW makes
crypto assets using PoW for consensus finding the riskier assets. Our findings indicate that
growing concerns about climate change accompanied by an increasing impact of energy prices
on the marginal investor’s decisions are major factors driving the shift towards assessing PoW
crypto assets as riskier compared to PoS assets in the later part of our sample.

As a basis for our empirical analyses we compile a data set that integrates design-related as
well as price- and trading-related characteristics of a broad cross-section of crypto assets. For
the design-related characteristics, we extract tags and detailed descriptions of each crypto asset
from coinmarketcap.com. Example tags are Proof-of-Work and Proof-of-Stake but also non-
consensus related tags such as Smart Contracts or Coin. Coinmarketcap.com’s maintenance of
these tags is partially incomplete. In particular, it often occurs that tags are forgotten. Utilizing
the descriptions and the subset of crypto assets with available tags, we train machine learning
models to label the data with missing tags. For the resulting enriched set of tagged crypto assets,
we subsequently develop design-related characteristics with respect to consensus, coin/token,
privacy, and smart contracts. On top of these design-related characteristics, we also gather a
variety of price- and trading-related characteristics such as the return, the market cap, and the
trading volume of a crypto asset, thereby following the footsteps of Babiak and Bianchi (2021),
Liu and Tsyvinski (2021), and Liu et al. (2022), who all show the price relevance of several
price- and trading-related characteristics on the crypto market. Our analyses are conducted
based on weekly returns for all crypto assets with a market capitalization above one million
U.S. dollars from February 2016 until January 2023. Leveraging all collected characteristics,
we estimate an asset pricing model for the crypto market employing an Instrumented Principal

https://coinmarketcap.com
https://coinmarketcap.com
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Component Analysis (IPCA) as introduced by Kelly et al. (2019). Proceeding further based on
the estimated asset pricing model, we follow the methodological idea of Müller et al. (2023) and
analyze the systematic returns of a portfolio that is exposed only to consensus-related risk while
maintaining zero exposure to all other design-, price- and trading-related characteristics. This
approach is akin to constructing long-short portfolios going long PoW crypto assets and short
PoS crypto assets, albeit with the important additional feature that the long-short portfolio
has zero exposure to all other characteristics. The analysis is conducted in a rolling-window
manner, leaving us with a time series of systematic risk premiums associated with PoW vs.
PoS crypto assets.

Our results show that compensation for consensus risk in the crypto market is not constant, but
varies over time. We identify periods of exuberant information arrival (PEIAs) in the crypto
market during 2020-21 using the method proposed by Phillips et al. (2015). These PEIAs,
which can be interpreted as the time when mainstream investors became aware of and entered
the crypto market, appear to have caused a structural break that led to a shift in the risk
preferences of the marginal investor. Prior to the PEIAs, PoS crypto assets were systematically
riskier compared to PoW crypto assets, with a significantly negative consensus risk premium
of approximately -9.1% per annum (p.a.). However, following the PEIAs, from December 2021
onwards, the sign of this premium reversed, with PoW crypto assets earning a premium of
20.1% p.a. over PoS crypto assets.

Examining the time series relationship between the consensus risk premium and variables linked
to either the opportunity cost of PoS, the energy cost of PoW, or climate change concerns, we
identify a significant negative relationship between changes in the Google Trends score for
the term Staking Crypto during the pre-PEIAs period. The score serves as a proxy for the
popularity of staking and, thereby, an indirect proxy for the opportunity cost associated with
PoS. A high score indicates that staking is very popular, and hence, opportunity costs for staking
are relatively low. This negative relationship between the score and the consensus premium is
sensible, as PoS is the short leg in the consensus portfolio. Theory suggests that higher staking
popularity, i.e., lower opportunity cost, should contemporaneously be positively associated with
the systematic part of PoS returns, which is exactly what we observed during the pre-PEIAs
period of our sample. In terms of economic significance, a positive one-standard-deviation
shock to changes in the Google Trends score is associated with a decrease of the consensus risk
premium by 5% of its standard deviation. During this pre-PEIAs period, there is no significant
relationship between the consensus risk premium and variables linked to either the energy cost
of PoW or climate change concerns.

In the post-PEIAs period, during which PoW carries a positive risk premium over PoS, we
observe a significantly negative relationship between the consensus premium and changes in
the Media Climate Change Concerns Index (MCCC) by Ardia et al. (2023), as well as between
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the premium and the returns of the U.S. oil price. No significant relationships are found with
the other variables (returns of the Chinese coal price, the U.S. gas price, and the Google
Trends score for Staking Crypto). This suggests that if climate change concerns are rising,
the prices of the energy-intensive PoW crypto assets, the long leg of the consensus portfolio,
systematically decrease over the post-PEIAs period, and a similar relationship holds for the
oil price. The economic significance between a positive climate change concerns shock and the
systematic consensus premium is -25%. In other words, when climate change concerns rise by
one standard deviation, returns of PoW crypto assets fall by 25% of their standard deviation.
For the relationship between the U.S. oil price and the systematic consensus premium, the
economic significance is -11%.

To summarize, in the pre-PEIAs period, the opportunity cost of PoS crypto assets appears
to be the primary driver of the consensus premium, with higher opportunity costs leading
to less attractive staking and, consequently, lower systematic PoS returns. However, in the
post-PEIAs period, the relationship between the opportunity cost of staking and the consensus
premium is no longer observable, and instead, the premium is strongly related to climate change
concerns and oil prices, with an increase in either one being associated with lower PoW returns.
The shift from opportunity cost dominance to climate change dominance between the pre- and
post-PEIAs periods suggests that a change in the marginal investor’s preferences occurred
during the PEIAs, which is the period where crypto broadly became mainstream. Prior to
the PEIAs, the fragility of PoS networks might have been a relevant systematic concern, but
this concern diminished as the asset class grew during the PEIAs. Simultaneously, during the
PEIAs, a different group of investors with more sustainable preferences compared to the early
crypto investors entered the market, resulting in a shift towards more environmentally conscious
preferences of the marginal investor.

We further examine the risk premiums associated with other design-related characteristics.
Specifically, we analyze coins vs. tokens, privacy featuring vs. non-privacy featuring crypto
assets, as well as smart contract featuring vs. non-smart contract featuring crypto assets.
With the exception of the coins vs. tokens characteristic, the systematic risk premiums of all
the other characteristics also suffered a structural break during the PEIAs. Over our entire
observation period, coins earn a significantly positive systematic risk premium over tokens at
the magnitude of around 21.5% p.a. (PEIAs excluded). This premium is relatively stable across
the pre- and post-PEIAs periods. However, privacy featuring crypto assets earn a systematic
risk premium of 18.7% p.a. in the post-PEIAs period and no risk premium pre-PEIAs. This
increase in the risk premium from pre to post-PEIAs could be related to increasing regulatory
concerns of the marginal investor regarding privacy featuring crypto assets. Smart contract
featuring crypto assets earn risk premiums of 19.0% p.a. over their respective peers during
the pre-PEIAs period. Post-PEIAs, the premium drops to zero. The drop could be in line
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with an increased resilience of the crypto space in general during the PEIAs, which led to less
vulnerability of smart contracts enabling various services and applications, particularly in the
field of Decentralized Finance (DeFi).

Our findings demonstrate robustness across various specifications of the underlying asset pricing
model. In detail, the number of principal components considered in the IPCA model does
not change the consensus premium notably, albeit economic magnitudes slightly differ. This
consistency underscores the resilience and reliability of our findings independent of the specific
asset pricing model assumed.

Related Literature
This chapter first contributes to the literature that examines the influence of design features on
the price behavior of crypto assets. In this strand, Eska et al. (2022b) and Hayes (2017) highlight
that the network design of crypto assets impacts market capitalization and prices, respectively.
In a similar vein, Chapter 3 of this dissertation relates network design to volatility. Wang
and Vergne (2017) explores cross-sectional returns, demonstrating that innovation potential
and supply growth drive returns. Meanwhile, Shams (2020) examines returns’ co-movements
and states that its structure cannot be solely explained by similarities in design-based charac-
teristics. We extend this strand of literature by connecting design-related risks to investors’
perceptions via expected returns. Thereby, we established an understanding of systematic risk
associated with specific design-related crypto asset characteristics.

A design feature that has drawn significant attention is the consensus mechanism, which is of
upmost importance for crypto asset networks to maintain their integrity. Particularly, PoW
and PoS as the most prominent protocols stand out. In a general equilibrium model, Chap-
ter 4 of this dissertation investigates the effects of certain design features within a PoS network
and reveal distinctive impacts on network stability compared to the PoW model of Pagnotta
(2022). The disparity between PoW and PoS stems from an inherent opportunity cost problem
in PoS networks, as also addressed by Jermann (2023). Additional studies exploring differences
between PoW- and PoS-based crypto assets include Chiu and Koeppl (2022), Vashchuk and
Shuwar (2018), and John et al. (2021a), among others. We contribute to this literature by em-
pirically determining the risk premium of a long-short portfolio going long in PoW-based crypto
assets and short in PoS, thereby unveiling systematic risk perception of these two consensus
protocol types.80

In a risk-neutral simulation study, Zhang and Chan (2020) demonstrate that PoW crypto assets,
unlike PoS networks, are strongly related to energy prices due to higher energy consumption.

80Employing portfolio analysis, Sapkota and Grobys (2021b) do not find return differences between PoW- and
PoS-based crypto assets.
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The energy consumption and resulting environmental cost associated with mining in PoW-
based crypto assets like Bitcoin is quantified within several papers (see, e.g., Gallersdörfer et
al., 2020; Krause and Tolaymat, 2018; Mora et al., 2018). Hayes (2017) and Kristoufek (2020)
outline a connection between production cost, measured through the energy consumption, and
PoW-based crypto asset prices. Similarly, Wang et al. (2022) show a co-movement between
the production cost and public environmental attention of crypto assets.81 Clark et al. (2023)
reverse the assumption that crypto assets create environmental cost and investigate the causal
effect of several environmental variables on Bitcoin returns. Similarly, Corbet et al. (2021)
investigate mining dynamics and price volatility of Bitcoin, demonstrating an effect on large
electricity and utilities markets. We contribute to this literature by showing that energy inten-
sive crypto assets carry a risk premium in recent times, which correlates with energy prices and
environmental awareness. We such establish the view that crypto assets, which require high
amounts of energy, are compensated for their higher energy consumption risk. Thus, this chap-
ter contributes to the literature connecting crypto assets with energy prices and environmental
cost.

Besides, this chapter aligns with another strand of literature, which focuses on cross-sectional
asset pricing within the crypto market, reflecting its growing prominence. Numerous studies
investigate return determinants from traditional financial markets and relate them to crypto
assets (see, e.g., Borri, 2019; Cai and Zhao, 2024; Dunbar and Owusu-Amoako, 2022; Leong and
Kwok, 2023; Liu et al., 2020; Liu et al., 2022; Zhang et al., 2021). Further papers contributing
to this strand of literature analyze the influence of macroeconomic and regulatory events as well
as geopolitical risk (Ciner et al., 2022; Koenraadt and Leung, 2024; Li and Miu, 2023; Long
et al., 2022). Other studies further delve into crypto asset-specific network and production
factors as potential determinants of cross-sectional returns (Bhambhwani et al., 2023; Borri et
al., 2022; Liebi, 2022; Liu and Tsyvinski, 2021). Notably, Babiak and Bianchi (2021) apply an
IPCA framework on the crypto market, building on the work of Kelly et al. (2019) in the equity
market and Kelly et al. (2023) in the bond market. Albeit relying on a similar methodological
approach to ours, the focus differs significantly. While Babiak and Bianchi (2021) aim at
constructing a well performing factor model based on relevant characteristic from traditional
financial markets, our work establishes connections between cross-sectional return differences,
systematic risk, and, most importantly, design-related features. Thereby, this chapter adds
a valuable dimension to the existing literature on cross-sectional asset pricing in the crypto
market.

81Based on the equity market, various studies show that increased awareness for environmental issues among
investors causes a demand for sustainable assets (see, e.g., Carpentier and Suret, 2015; El Ouadghiri et al., 2021;
Gutsche and Ziegler, 2019). Combing the two markets, Naeem and Karim (2021) show that a combination of
green financial assets and Bitcoin can provide hedging characteristics.
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The remainder of this chapter is structured as follows. In Section 5.2, we introduce and de-
scribe our data set. In Section 5.3, we first establish our methodology by showing how to
derive the consensus-related risk premium (Subsections 5.3.1 and 5.3.2). We then proceed to
discuss the trajectory of the consensus premium in the time series and investigate its relation
with proxies for the opportunity cost of PoS, climate change concerns, and energy prices (Sub-
section 5.3.3), followed by our examination of potential risk premiums of other design-related
features (Subsection 5.3.4). In Section 5.4, we conclude.

5.2 Data

We require a rich set of variables to be able to estimate an asset pricing model for the crypto-
market using an IPCA analyis (see Subsection 5.3.1) as a basis for our further analyses. To this
end, we collect trading data as well as data concerning design-related features of crypto assets
from coinmarketcap.com, a leading provider of crypto asset data. Our data set encompasses all
crypto assets available during the period from February 12, 2016, to January 18, 2023. Albeit
coinmarketcap.com provides data starting on April 29, 2013, we restrict our data set to this
time horizon in order to include a sufficiently large cross-section. Note that our sample includes
both listed and delisted crypto assets, thus alleviating any concerns regarding survivorship bias.
Coinmarketcap.com aggregates trading data (e.g., closing price, trading volume, circulating
supply) from a wide variety of exchanges, resulting in a comprehensive data set comprising
22,796 individual crypto assets over the analyzed time span. Additionally, coinmarketcap.com
features a unique tagging system that facilitates the classification of crypto assets into various
categories, such as stablecoins (e.g., Tether and USDC), crypto assets using PoW for consensus
finding (e.g., Bitcoin and Dogecoin), or crypto assets featuring smart contracts (e.g., Ethereum
and Cardano). Alongside the trading data outlined in Subsection 5.2.1, we incorporate variables
derived from these tags into our study to proxy for the design-related features of the crypto
assets as described in Subsection 5.2.2.

5.2.1 Trading Data and Common Characteristics

Coinmarketcap.com aggregates information on prices and trading volumes from 227 centralized
exchanges (CEXs) and 430 decentralized exchanges (DEXs). The platform provides daily data
on open, high, low, and close prices, market capitalization, and the 24-hour aggregated trading
volume. We use these metrics and characteristics derived from this information for our sub-
sequent risk-return analysis. Specifically, we calculate returns using close prices and subtract
the respective risk-free rate derived from the one-month Treasury bill rate, to determine excess
returns. To ensure the robustness of our study and the validity of our results, various filters

https://coinmarketcap.com
https://coinmarketcap.com
https://coinmarketcap.com
https://coinmarketcap.com
https://coinmarketcap.com
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are implemented. These filters aim to eliminate data errors, crypto assets tethered to other
assets such as gold, highly illiquid crypto assets, and data points indicative of fake or suspicious
trading activity. In detail, we apply the following filters on each crypto asset-day pair:

• We filter out all stablecoins and wrapped coins/tokens.

• We exclude crypto assets that exhibit a closing price of zero.

• As in Liu and Tsyvinski (2021) and Liu et al. (2022), we eliminate crypto assets with
a market capitalization below 1,000,000 U.S. dollars. To tackle errors in the data, we
furthermore ensure that the market capitalization does not exceed the one of Bitcoin, the
network with the largest capitalization at any point in time.

• We calculate the daily market capitalization return and retain only those observations
with a return below 500%. Pairs failing to meet this criterion are likely to exhibit erro-
neous changes in the coin supply.

• We introduce a dollar volume filter to remove trading days with negligible trading activity,
as those are frequently associated with anomalously high or low returns. Specifically, any
crypto asset-day pair with a volume below 10 U.S. dollars is eliminated.

• We calculate the ratio of traded volume to market capitalization (turnover) and exclude
the observations with a ratio greater than 2.82 Thereby, we filter out pairs of potentially
artificial trading volume.

For an in-depth description of the data processing with filtering we refer the reader to Ap-
pendix D.1.1. After applying all filters, we are left with a panel of 3,910 crypto assets and a
total of 2,123,600 daily observations.

Based on this sample, we derive a set of 25 trading data related characteristics, which we refer
to as common characteristics, from information on price, volume, and market capitalization,
solely. These characteristics encompass price- and size-related characteristics, volume-based
characteristics, CAPM estimates, liquidity measures, past returns to capture momentum and
reversal effects, as well as the age of the crypto assets to control for time-driven network effects.
For a detailed list and definitions of the characteristics, see Table D.1 in Appendix D.1.1. All
characteristics are calculated on a daily basis, first. As we run our analyses on a weekly grid, we
then aggregate the daily data to weekly data similar to Liu and Tsyvinski (2021) and Liu et al.
(2022). This means that we divide each year into 52 weeks, with the first seven days of a year
constituting the first week of the year. Weeks 1 through 51 each consist of seven days, and the
last week of each year includes the last 8 or 9 days of the year. We consider the characteristics
as of the last day of each week. If this day is filtered out, no observation is recorded for this

82This filter was also incorporated by Bianchi et al. (2022) and Babiak and Bianchi (2021) who opted for a
threshold level of 1 instead of 2 as we do here. Applying the stronger and less conservative threshold of Bianchi
et al. (2022) yields qualitatively similar results.
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crypto asset-week pair. Eventually, our filtered sample has 248,757 total observations (crypto
asset-week pairs) and a cross-section of 3,126 crypto assets.

Panel A of Table 5.1 presents the summary statistics of the 25 common characteristics. The
crypto assets in our sample have an average market capitalization of 628.23 million U.S. dol-
lars. The market capitalization demonstrates a highly positive skewness, primarily driven by
a few big networks like Bitcoin and Ethereum. Similarly, the weekly trading volumes com-
prises 385.43 million U.S. dollars, with 95% of the observations having a weekly volume below
361.78 million U.S. dollars. The weekly returns show a mean of 2.63% and a standard deviation
of 24.64%. The average bid-ask spread is 4.28%.

5.2.2 Design-Related Characteristics

To classify crypto assets based on their specific designs, we employ the tagging system of
coinmarketcap.com. We download the tags as of January 2023 from coinmarketcap.com.83

While the tags are predominantly assigned and populated by coinmarketcap.com, network
developers are also permitted to provide tags and information on predefined tags for their
respective projects. For our classification, we consider tags from both sources. Specifically, we
select the set of tags that are related to the design of the crypto assets. We allocate them
into different groups related to the specific design-related feature they connect to and construct
comprehensive labels out of these groups. In total, coinmarketcap.com includes a set of 512
different tags. The tagging system is well-maintained for larger, well-known crypto assets but
is often incomplete for smaller, lesser-known ones. Alongside the tags, coinmarketcap.com
provides textual descriptions for all crypto assets, enabling us to enhance the tagging system
using machine learning-based classification algorithms applied to these descriptions. Typically,
tagged crypto assets represent an incomplete set of positive examples (attribute is present),
while untagged examples could be either positive or negative (attribute is not present). We
use the descriptions of all crypto assets, along with the tagged part of the unfiltered data, and
apply adequate machine-learning techniques to assign missing proxies to the untagged part
of the data. The following paragraphs describe in detail how we obtain design-related labels
forming the basis for our analysis.

83This means that we are not capturing any time-series variation of the tags. Occasionally, certain networks
undergo structural changes with respect to design-related components. Generally, such events are very rare.
Nevertheless, we correct for changes in design characteristics, e.g., for the transition of Ethereum from PoW to
PoS, as far as we are aware of them. Even though we might not be aware of all relevant changes of the design-
related characteristics in our data set, the impact of those on the results of our analysis should be negligible
due to their rarity (see, e.g., data set of Eska et al., 2022b) and the equal-weighting of our long-short portfolios.

https://coinmarketcap.com
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Table 5.1: Summary statistics

This table reports summary statistics of the characteristics used in our analysis. Panel A presents time-series
averages of the cross-sectional mean, standard deviation, and various quantiles for the 25 common characteristics
that can be calculated from data on price, volume, and market capitalization only. Descriptions of these
characteristics can be found in Table D.1 in Appendix D.1.1. The statistics are derived from the final filtered
data set on a weekly basis. Panel B displays the cross-sectional mean and standard deviation of the design-
related characteristics, alongside their definitions and value sets.

Panel A: Common characteristics, 248,757 crypto asset-week pairs

Percentiles
Variable Mean Std.

1% 5% 25% 50% 75% 95% 99%
Price 77.34 1,016.28 0.00 0.00 0.02 0.13 0.80 23.47 587.33
MaxPrice (week) 91.04 1,241.03 0.00 0.00 0.03 0.16 0.99 28.77 678.58
MaxPrice (month) 114.96 1,676.39 0.00 0.00 0.04 0.21 1.28 36.19 817.75
ClosenessToHigh (3-month, %) 0.52 0.19 0.08 0.19 0.40 0.52 0.64 0.82 0.92
Mcap (106) 628.23 9,933.63 1.15 1.45 3.48 10.41 42.25 590.70 5,763.18
TradeVol (106) 385.43 5,220.97 0.00 0.02 0.33 2.25 17.22 361.78 4,966.41
AvgTradeVol (106) 53.87 729.72 0.00 0.00 0.06 0.39 2.87 51.50 692.07
TradeVolShock -0.01 0.05 -0.19 -0.10 -0.03 −0.01 0.01 0.06 0.09
WeeklyTurnover 0.08 0.13 0.00 0.00 0.01 0.03 0.09 0.32 0.64
CAPM-β 0.87 0.81 -1.08 -0.19 0.50 0.86 1.22 1.96 3.08
CAPM-α 0.01 0.02 -0.03 -0.02 -0.01 0.00 0.01 0.04 0.09
Ivol (%) 8.34 7.88 1.52 2.56 4.36 6.34 9.63 20.56 40.15
AvgBidAskSpread (month, %) 4.28 4.32 0.87 1.32 2.18 3.13 4.77 10.92 21.23
WeeklyReturn (%) 2.63 24.64 -36.39 -22.27 -8.51 -0.99 8.38 37.56 85.81
MonthlyReturn (%) 15.48 66.01 -57.98 -39.25 -15.36 1.82 26.22 109.13 260.48
3-MonthReturn (%) 87.00 240.93 -75.82 -53.64 -13.50 27.93 98.37 401.90 970.84
LaggedWeeklyReturn (%) 2.81 25.80 -36.57 -22.45 -8.62 -1.05 8.45 38.34 89.90
Lagged2-WeekReturn (%) 7.24 42.70 -45.55 -29.24 -11.62 -0.42 14.48 63.81 157.54
MaxDailyReturn (month, %) 28.85 29.19 5.01 7.63 13.05 19.85 32.74 80.18 155.19
MaxWeeklyReturn (month, %) 55.91 73.09 4.82 10.46 21.95 35.73 61.48 158.87 360.33
MaxWeeklyReturn (3-month, %) 106.51 120.91 16.88 25.41 43.76 68.62 117.28 318.75 634.08
StdDailyReturn (month) 255.93 9,180.73 0.03 0.04 0.06 0.08 0.11 0.22 0.48
SkewnessDailyReturn (month) 0.57 1.03 -1.48 -0.79 -0.08 0.42 1.07 2.49 3.64
KurtosisDailyReturn (month) 5.25 3.41 2.11 2.41 3.17 4.11 5.98 12.29 18.67
Age (Days) 756.01 504.79 113.51 165.13 375.00 660.00 1,025.09 1,793.15 2,173.78

Panel B: Design-related characteristics, 3,126 crypto assets

Label variable Mean Std. Value set Definition
Consensus -0.0096 0.4366 [1,−1] PoW − PoS (hybrids are included)
Coin 0.2710 0.4445 {0, 1} 1Coin

Privacy 0.0502 0.2184 {0, 1} 1Privacy

Smart Contract 0.3631 0.4810 {0, 1} 1Smart Contract
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Consensus
To be able to explore the impact of consensus-related risk premiums, we introduce the Con-
sensus characteristic, which characterizes crypto assets based on their consensus mechanisms
on a unified scale between 0 and 1. PoS crypto assets like Cardano obtain a value of 0 in the
consensus characteristic, PoW assets, e.g., Bitcoin, have a value of 1, and assets using hybrid
consensus mechanisms receive a value between 0 and 1, depending on the closeness of the mech-
anism to either PoS or PoW. For details on the consensus classification of crypto assets and
the construction of this characteristic we refer the reader to Appendix D.1.2.

As noted above, the tagging system providing the consensus identifiers is partially incomplete.
Thus, we employ a neural network to enrich our data set with respect to the Consensus charac-
teristic. In detail, we utilize our labeled subsample, i.e., the crypto assets for which respective
tags are provided, alongside the descriptions of the crypto assets from coinmarketcap.com, to
train a neural network in a first step. The neural network is then employed to estimate the vari-
able Consensus for the unlabeled portion of our data set, in the second step. It is important to
note that we only assign values to the unlabeled coins while unlabeled tokens are disregarded.
This is due to the circumstance that tokens, in contrast to coins, inherit the values of their
parent network. The details of this machine learning classification procedure are explained in
detail in Appendix D.1.2.

Other Design-Related Characteristics
On top of the consensus mechanism, we also incorporate further design-related features of
crypto assets in our analysis by, again, relying on the tagging system of coinmarketcap.com.
First, we distinguish between coins and tokens and define the characteristic variable Coin to
take a value of one if the crypto asset operates on its own blockchain (coin) or zero in the case of
a token (operates on its parent network’s ledger). Second, we construct a Privacy characteristic
via aggregating the assets tagged with Bulletproofs, Privacy, or Zero Knowledge Proofs.
Examples of privacy-focused crypto assets are Monero, Zcash, and Firo. Third, we incorporate a
Smart Contract characteristic indicating whether or not a crypto asset features smart contracts.
Such crypto assets provide an essential platform feature allowing for a wide variety of different
applications, most notably in the field of Decentralized Finance (DeFi). For each of these three
characteristics, we also enrich the data set using a machine learning methodology similar to
the one we use for the consensus characteristic. Details on the characteristics and the specific
machine learning procedures can be found in Appendix D.1.2.

As depicted in Panel B of Table 5.1, the mean consensus characteristic value is -0.01. This
means that, on average, our final sample maintains a relative balance between PoW and PoS
crypto assets. 27.1% of the crypto assets operate on their own blockchain, qualifying them as

https://coinmarketcap.com
https://coinmarketcap.com
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coins. About 5% of the networks in our sample prioritize anonymity, resembling privacy crypto
assets. 36.3% of the crypto assets feature smart contracts.

5.3 Empirical Analysis of the Consensus Premium

Based on an Instrumented Principal Component Analysis (IPCA), this chapter identifies risk
premiums associated with design-related characteristics of crypto assets, such as the consen-
sus mechanism. This section first provides the basis for the empirical methodology. Having
introduced the IPCA model and motivated the specifications for our main analysis in Subsec-
tion 5.3.1, Subsection 5.3.2 shows how to derive the consensus-related risk premiums. Further
it motivates the consideration of so-called periods of exuberant information arrival (PEIAs).
This provides a profound basis for the subsequent discussion of consensus risk and its relation
with climate change concerns, energy prices, and staking health (Subsection 5.3.3). Eventually,
Subsection 5.3.4 discloses risk premiums associated with further design-related characteristics.

5.3.1 Estimation of an Asset Pricing Model

We estimate an asset pricing model for the crypto market using an IPCA, as introduced by
Kelly et al. (2019) (henceforth, KPS) for the equity market and also applied by Kelly et al.
(2023) to the corporate bond market. IPCA identifies a set of latent asset pricing factors by
applying a restricted principal component analysis. Formally, the core concept of IPCA is
pinned down by the following two equations84:

ri,t+1 = β′
i,tft+1 + εi,t+1, (5.1)

with
βi,t = z′i,tΓβ, (5.2)

where ri,t+1 represents the excess return of crypto asset i over week t+ 1. The loadings βi,t of
asset i with respect to the risk factors ft+1 are calculated through the product of the character-
istics vector z′i,t and the mapping matrix Γβ . The characteristics vector z′i,t is an (L×1) vector,
stacking all of the crypto asset i’s characteristics at the end of week t, including a constant (thus,
L = #characteristics+ 1). All common characteristics are cross-sectionally ranked, demeaned,
and scaled to range within [−0.5, 0.5]. The design-related characteristics are only scaled to the
interval of [−0.5, 0.5]. Demeaning and ranking the design-related characteristics is renounced

84The version of IPCA characterized by Equations (5.1) and (5.2) is the restricted version where the intercept
is set to zero. In Panel C of Table D.4 in Appendix D.2, we present results following the bootstrapping procedure
proposed by KPS, demonstrating that for K ≥ 3 the intercept in our setting is statistically indistinguishable
from zero.
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due to their discrete character. Γβ is an (L × K) matrix, where K represents the number of
estimated latent risk factors. Both Γβ and the factors ft+1 are estimated concurrently using
alternating least squares.

We use weekly excess returns and the 29 characteristics introduced in Section 5.2 (plus a con-
stant) to apply the out-of-sample setting of KPS for models with K = 4 principal components.
We utilize a rolling window of 3 years (156 weeks) of backward-looking data to finally obtain a
time series of estimates for Γβ and ft+1. Our first out-of-sample test week is week 7, 2019, and
our last one is week 2, 2023.85 Note that each estimated factor in the vector ft+1 constitutes
a portfolio of the assets used in the estimation. To prevent a look-ahead bias, the weights of
these portfolios are fixed based on the in-sample estimation results, utilizing data up until t.
To derive the t+1 values of the factors, these weights are subsequently multiplied by the t+1

returns of the assets.

To the best of our knowledge, we are the first to incorporate design-related features in an
IPCA model for the crypto market. In Appendix D.2, we offer a detailed performance analysis
of the IPCA models. By comparing IPCA models using only the common characteristics with
those incorporating the full set of characteristics, we demonstrate that design-related features
improve the model performance notably when judged by the out-of-sample relative pricing error,
although this comes at the cost of slightly lower R2s. Furthermore, increasing the number of
principal components beyond K = 4 improves the model performance only very modestly,
which is the reason we opt for K = 4 as our main specification.86

5.3.2 Derivation of the Consensus Premium

Based on the estimated asset pricing factors and the mappings for the crypto assets’ risk
exposures with respect to these factors, we now want to examine to which extent crypto asset
returns are systematically driven by the consensus mechanism. To this end, we analyze the
returns of a portfolio of crypto assets whose characteristic vector zConsensus

ls is uniformly zero,
except for having a value of one at the position of the consensus characteristic. Such a portfolio
has a maximum exposure in the consensus dimension and can be interpreted as a long-short
portfolio going long PoW crypto assets and short PoS crypto assets. In contrast to a classical
long-short portfolio, this portfolio has zero exposure to all other characteristics. Formally, we
define the systematic part of this long-short portfolio return as our estimator for the systematic

85Even though the data of coinmarketcap.com starts in April 2013, the cross-section of our final, filtered data
set of crypto assets is smaller than the number of characteristics considered in the IPCA until week 7, 2016.
Estimation technique requires that the number of crypto assets is sufficiently large for the whole estimation
window. Consequently, the initial estimation period is from week 7, 2016, to week 6, 2019, leading to the first
out-of-sample test week in week 7, 2019.

86We show in Appendix D.5.1 the robustness of our results when using various different numbers of principal
components instead.

https://coinmarketcap.com
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consensus premium
spConsensus

t = zConsensus′
ls Γ̂β,t−1f̂t, (5.3)

where t corresponds to the out-of-sample test week. Since we estimate the IPCA model in a
rolling window manner, we can examine the evolution of these systematic risk premiums over
time.

It is important to emphasize that Equation (5.3) represents a realized return. Our intention
is to use this realized return as an estimator for expected returns, i.e., as an estimator for
the systematic consensus premium. As Elton (1999) points out, using realized returns as an
unbiased estimator for expected returns relies on the assumption that information surprises
cancel out over the estimation period. A prominent and recent example that demonstrates
violations of this assumption leading to biased results is the examination of the Greenium, the
expected return of green versus brown assets, during the 2010s, highlighted by Pástor et al.
(2022). The authors demonstrate that naively assuming information surprises for green offset
those for brown stocks between 2010 and 2020 leads to the conclusion that green stocks are
riskier compared to brown ones. However, accurately correcting for unexpected information
arrival, the results indicate the opposite. Brown stocks are riskier than green stocks, and
consequently, brown stocks have higher expected returns.

Therefore, particularly given our case of a short sample for the crypto market, drawing con-
clusions about the systematic consensus premium based on Equation (5.3) must be handled
with great care. By simply adopting the naive approach of estimating expected returns via
realized returns, we would implicitly assume that unexpected news for PoW and PoS crypto
assets cancels out during our examination period. This assumption might be problematic as
the literature documents that the crypto market exhibited periods of exuberant information
arrival within our sample period (Bouri et al., 2019b; Corbet et al., 2018; Geuder et al., 2019;
Hafner, 2020). Following this literature, we apply the methodology of Phillips et al. (2015) to
the time series of the value-weighted crypto market index constructed from our final data set
and identify two periods of exuberant information arrival (PEIAs):

(i) from October 13, 2020 (week 41) to May 20, 2021 (week 20) and

(ii) from October 7, 2021 (week 40) to December 2, 2021 (week 48).

The procedure is explained in detail in Appendix D.3.

The two identified PEIAs are close to each other, with only a gap of 19 weeks in between them.
Notice that the timeframe from the beginning of the first PEIA in October 2020 to the end
of the second PEIA in December 2021 can be viewed as a period when crypto assetsy became
mainstream and attracted many new investors. In addition to the asymmetric arrival of new
information, the fact that the ecosystem potentially underwent structural changes during our
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sample period raises a second concern regarding the link between realized returns and expected
returns. Such structural changes could have an impact on (i) the systematic risk exposure
of PoW vs. PoS assets as well as (ii) the properties of the stochastic discount factor. To
understand this more clearly, keep in mind that before this period, the crypto asset market was
primarily dominated by tech-savvy enthusiasts. However, during the PEIAs, many new types
of investors entered the crypto asset space. This surge in popularity, along with the expanding
user base, might have altered the properties of the underlying decentralized networks as well
as the preferences of the marginal investor simultaneously.

To rule out any potential biasing effects stemming from the PEIAs period and to potentially
allow for variation in the underlying properties of the ecosystem, when examining the results
of our risk premium analysis in the following, we focus on the subsamples of the pre-PEIAs
period (before the first PEIA) as well as on the post-PEIAs period (after the second PEIA)
separately.

5.3.3 Consensus Risk Premium over Time

Before examining the results, we want to explain in detail the economic arguments behind
the two competing hypotheses regarding the sign of the consensus premium outlined in the
introduction. The opportunity cost hypothesis originates from a PoS network’s dependence on
stakeholders staking the network’s native coins, to enable secure transaction processing. Staked
coins are refrained from other usage, which introduces an opportunity cost. The impact of the
opportunity cost is examined in the theoretical model of Chapter 4, where it is shown that
the loss of transaction opportunities due to staked PoS coins negatively impacts the staking
incentive, diminishing network security and affecting the overall vulnerability of the network.87

This opportunity cost problem is only restricted to PoS but not to PoW and thus, if the
opportunity cost of staking co-moves with the business cycle, PoS crypto assets should sustain
a risk premium over their PoW peers. On the contrary, the energy dependence hypothesis is
derived from the fact that PoW networks consume significantly more energy compared to PoS,
as the PoW mechanism requires miners to numerically solve a mathematical problem in order
to process transactions. Given that energy price dynamics are linked to the business cycle (see,
e.g., Kilian and Park, 2009; Ready, 2018), PoW assets should carry a systematic risk premium
over PoS peers without such energy dependence (see, e.g., Dittmar et al., 2020).

Against this background, Figure 5.1 illustrates the evolution of the consensus risk premium over
time. While we observe a negative premium prior to the shaded PEIA periods, the premium
reverses its sign after the PEIAs. Based on the trajectory of the premium, it becomes obvious

87This opportunity cost problem is also addressed in Jermann (2023). In his model, however, prices are not
directly linked with security and their interplay is disregarded.
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that the PEIAs introduce a notable structural break in the time-series. The first row of Table 5.2
shows that pre-PEIAs the consensus risk premium has an average value of -9.13% p.a. with
a t-statistic of -4.54. This is in line with the opportunity cost hypothesis, as PoS is short in
the consensus portfolio. In recent times, for the period starting after the second PEIA, the
associated risk premium turns positive to 20.14% p.a. with a t-statistic of 9.54. As PoW is
long in the consensus portfolio, the latter is in line with the energy dependence hypothesis.
Additionally, the downward correction of PoW prices relative to PoS during the PEIAs is
directionally in line with the dynamics of the risk premium changing its sign from negative
pre-PEIAs to positive post-PEIAs. As a whole, the results can be interpreted as if pre-PEIAs
energy intensiveness of PoW is irrelevant for the consensus premium, and the opportunity
cost hypothesis is dominating, which is in line with the negative consensus premium. Then,
during the PEIAs, the preferences of the marginal investor adjust towards a higher relevance of
energy intensiveness, which is in line with the negative returns of the consensus portfolio during
that time. Finally, in the post-PEIAs period the energy intensiveness hypothesis dominates,
which aligns with the positive consensus premium during this time. Note that this pattern is
observable regardless of the number of principal components we use in the IPCA. We provide,
for robustness, the results of this analysis and of all analyses following in the remainder of this
chapter in Appendix D.5.1.

Figure 5.1: Risk premium of Consensus

This figure shows the annualized weekly Consensus risk premium over time. Intuitively, this is the systematic
part of a portfolio that is long in PoW and short in PoS while having zero exposure to all other characteristics.
The results are based on the restricted IPCA model with K = 4 latent factors. EWMA is the exponentially
weighted moving average using the observations of the current week and the preceding 51 weeks. Gray-shaded
areas belong to PEIA periods.
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Table 5.2: Risk premiums of design-related characteristics

This table shows the average risk premiums of the design-related characteristics resulting from the restricted
IPCA model with K = 4 latent factors. The values in columns (1) to (3) are obtained by taking the time series
average from the risk premiums of the portfolios that are long in the respective characteristic and short in the
inverse of the characteristic. All values are reported in % on an annualized basis. For (1), we consider the time
prior to the first PEIA period, i.e., from week 7, 2019 until week 41, 2020. (2) refers to the sample after the
second PEIA period, i.e., from week 48, 2021, until week 2, 2023. (3) includes the whole time horizon, i.e.,
from week 7, 2019 until week 2, 2023. Newey and West (1987) adjusted t-statistics for the null hypothesis that
the given value is equal to zero are given in parentheses. Column (4) reports the test statistics t of Welch’s
t-tests under the null hypothesis that the sample means of (1) and (2) are equal. ∗ and ∗∗ indicate statistical
significance at the 5% and 1% level, respectively.

Annualized systematic risk premium in %
Characteristic

(1) Pre-PEIAs (2) Post-PEIAs (3) Whole sample
(4) Welch’s

t-test

Consensus -9.13 (-4.54)∗∗ 20.14 (9.54)∗∗ 1.38 (0.26) -8.43∗∗

Coin 15.56 (6.83)∗∗ 27.31 (7.36)∗∗ 13.33 (2.60)∗ -2.63∗∗

Privacy -3.56 (-0.46) 18.73 (5.32)∗∗ 21.39 (2.46)∗ -2.66∗∗

Smart Contract 18.95 (7.87)∗∗ -3.62 (-1.16) 18.12 (3.14)∗∗ 5.42∗∗

Dissecting the consensus premium
In the previous section, we have demonstrated that the consensus premium shifts from negative
in the pre-PEIAs period to positive in the post-PEIAs period, indicating that PoS is riskier
before the PEIAs and PoW is riskier afterwards. Generally, this is in line with the narrative
that the energy intensiveness of PoW crypto assets became a more dominating part of investors’
preferences post-PEIAs, whereas the opportunity cost associated with PoS might have been the
more relevant factor pre-PEIAs. In this section, we explore the factors driving the trajectory
of the consensus premium in the pre- and post-PEIAs periods to elaborate on whether or not
this narrative makes sense. Our analysis asses the contemporaneous relationship between the
systematic returns of the consensus portfolio and proxies for climate change concerns, energy
prices, and the opportunity cost of staking. The intuition behind this approach is that changes
in expected returns affect today’s prices. If expected returns increase, today’s prices decrease,
and vice versa.

If staking becomes less attractive due to higher opportunity costs, PoS networks become more
vulnerable and, therefore, riskier. Hence, contemporaneously, a rise in opportunity costs should
be associated with declining PoS prices during this period. Recalling that PoS is in the short
leg of the consensus portfolio, we expect a positive relationship between the return of the
consensus portfolio and opportunity cost for staking in the pre-PEIAs period. For the post-
PEIAs period, we particularly expect to observe correlations between changes in climate change
concerns and changes in energy prices with the returns of the consensus portfolio. According
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to our hypothesis, rising climate change concerns and energy prices alike decrease the utility of
PoW crypto assets for the marginal investor in the post-PEIAs period. As PoW is in the long
leg of the systematic consensus portfolio, we expect a negative relationship between these two
variables and the systematic consensus premium contemporaneously.

Before we can check for these correlations in the two subperiods, we first need to introduce
proxies for the different measures of interest, including some potentially confounding variables.
As our proxy for climate change concerns, we utilize the Media Climate Change Concerns
Index (MCCC) by Ardia et al. (2023). This index assesses climate change concerns based on
newspaper articles from major U.S. newspapers and newswires, measured daily. We use the
seven-day moving average of this index for our weekly analysis. Note that the MCCC index is
available only up to August 2022. To extend it up to January 2023, we consider the Google
Trends scores for climate risk and employ a regression model. For a detailed explanation of
the extension procedure, we refer the reader to Appendix D.4.

The incorporation of energy costs associated with PoW crypto assets requires us to consider
the global distribution of miners. Although detailed information about the locations of miners
is generally scarce, the Bitcoin mining map by the Cambridge Centre for Alternative Finance
provides a time series of each country’s share in the Bitcoin hash rate serving us as an indicator
for the general hash rate distribution of all PoW crypto assets. This data indicates a significant
concentration of mining power in a few countries. Prior to the mining ban in May 2021, China
was the primary domicile of Bitcoin miners, with a hash rate share well above 50%. Following
the ban, there has been a significant shift towards the U.S. As China’s electricity generation is
heavily reliant on coal, we use the generic 1st Zhengzhou thermal coal (ZCE) future converted
to U.S. dollars (denoted as Coal) as our first proxy for energy costs. In the U.S., natural gas is
the main energy source for electricity generation, prompting our second proxy, the generic 1st
futures of natural gas (Henry Hub) in the U.S. (denoted as Gas). Given that miners in the U.S.
frequently utilize flare gas from oil drilling for mining (see, e.g., Sigalos, 2022), we introduce
a third energy cost proxy, the generic 1st futures of crude oil (WTI) in the U.S. (denoted as
Oil).88

To investigate the opportunity cost hypothesis, we incorporate a proxy for the opportunity cost
of staking in our analysis. Specifically, we utilize the Google Trends score for the term Staking

Crypto (denoted as GT Staking Crypto), which measures the popularity of staking. Since high
popularity of staking suggests lower opportunity costs and vice versa, it is important to have

88The time series of the generic 1st Zhengzhou thermal coal future (ticker: TRC1 Comdty), the CNY/USD
rate (ticker: CNY Curncy), the generic 1st futures of natural gas (ticker: NG1 Comdty), and the generic 1st
futures of oil (ticker: CL1 Comdty) source from Bloomberg. The ZCE coal, Henry Hub natural gas, and WTI
crude oil are the most quoted products in these commodity classes. Furthermore, the futures used to proxy for
energy cost on the Chinese, i.e., thermal coal (ZCE), and the U.S. market, i.e., natural gas (Henry Hub) and
crude oil (WTI), are the most liquid futures on the respective products.

https://ccaf.io/cbnsi/cbeci/mining_map
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in mind that this is an inverse proxy for the opportunity cost of staking.

In addition to the aforementioned variables of interest, we integrate a set of control variables
into our analysis. First, it is crucial to understand that the expenses associated with mining
in PoW networks are influenced not only by energy costs but also by the amount of energy
consumed during the mining process. In a PoW network, the total hash rate is a proxy for the
total computational power allocated to mining activities and thus mirrors the actual electricity
consumption of the respective network. Due to the lack of precise energy consumption data for
each of the 282 PoW crypto assets included in our data set, we employ the hash rate of Bitcoin
(Hashrate) as a proxy. Second, while miners and minters are compensated in the crypto assets
they mine or mint, their energy expenditures or opportunity costs are settled or measured in
fiat currencies. Therefore, the price of these crypto assets in U.S. dollars is also considered
to capture their cost/reward relationship accurately.89 For this purpose, we utilize both an
equal-weighted PoW U.S. dollar basket price (PoW Basket) and an equal-weighted PoS U.S.
dollar basket price (PoS Basket) as control variables. These basket prices represent a one-dollar
investment distributed equally across all PoW or PoS crypto assets in our sample, respectively.
It is noteworthy that these two baskets differ from the long and short legs of spConsensus, as
the long and the short leg of spConsensus both maintain nonzero exposure to all characteristics
beyond consensus.

Equipped with the above-introduced proxies, we can now analyze whether it makes sense to
argue that the consensus premium was driven by opportunity cost pre-PEIAs and climate
change concerns post-PEIAs. To this end, we estimate the following regression model:

spConsensus
t = α+ βMCCC · rMCCC

t + βCoal · rCoal
t + βGas · rGas

t + βOil · rOil
t +

βGT Staking Crypto · rGT Staking Crypto
t + βHashrate · rHashrate

t +

βPoW Basket · rPoW Basket
t + βPoS Basket · rPoS Basket

t + ϵt

(5.4)

with standardized relative weekly net returns rCoal, rGas, rOil, rPoW Basket, rPoS Basket, and
standardized percentage changes rMCCC , rGT Staking Crypto, rHashrate. We standardize by di-
viding the respective values through their in-sample standard deviation. The dependent vari-
able spConsensus is standardized as well. Hence, beta estimates indicate by which fraction of
a standard deviation the consensus premium changes if a right-hand side variable is upward
shocked by one standard deviation.

Before examining the results, let us briefly summarize the expected signs for the betas that
align with our narrative of a dominating opportunity cost pre-PEIAs and a dominating energy
intensiveness post-PEIAs. Pre-PEIAs, we expect to observe a relationship between staking

89One might debate the importance of accounting for the height of mining and minting rewards in terms of
crypto assets. However, a negative trend in the rewards becomes negligible when focusing on first differences,
which is why we can overlook this aspect.
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popularity and the returns of the consensus portfolio. Specifically, we expect a negative beta
for staking popularity for the pre-PEIAs period. Rising staking popularity implies lower oppor-
tunity costs, and lower opportunity costs contemporaneously align with higher returns of PoS
assets, which are included in the short leg of the consensus portfolio. Post-PEIAs, we expect
to observe a relationship between climate change concerns and energy prices with the returns
of the consensus portfolio. A negative sign is expected for all of these betas during this period.
Higher climate change concerns, as well as higher energy prices, align with lower prices of PoW
assets, which are in the long leg of the consensus portfolio.

The results for the pre- and post-PEIAs periods separately are documented in columns (1)
and (2) of Table 5.3. Beginning with the pre-PEIAs period in column (1), we find that among
our variables of interest, only staking popularity exhibits a significant relationship with the
consensus premium. The coefficient is significantly negative at -0.05 (t = -3.35). This suggests
that during the pre-PEIAs period, reduced staking popularity is contemporaneously associated
with lower PoS prices, which is in line with our expectations. The size of the coefficient yields an
economic significance of -5%, i.e., a one standard deviation upward shock to relative changes in
staking popularity relates to lower consensus premium by 5% of a standard deviation. Climate
change concerns and energy prices do not seem to be related to the consensus premium during
the pre-PEIAs period. This supports the hypothesis that in the pre-PEIAs era, the opportunity
cost of PoS was the primary driver of the consensus premium.

Examining the results for the post-PEIAs period in column (2), the picture shifts significantly.
We now identify a significant negative relationship between the consensus premium and both
climate change concerns and oil prices, with coefficients of -0.25 (t = -3.17) and -0.11 (t =
-2.32), respectively. This is in line with our expectations that, post-PEIAs, higher climate
change concerns, as well as higher energy prices are contemporaneously associated with lower
prices for energy-intensive PoW assets. The economic significance of the relationship between
climate change concerns and the premium is particularly striking. A one standard deviation
shock to relative changes in the MCCC index is associated with a 25% standard deviation
decrease in consensus portfolio returns. For oil price changes the economic significance is lower,
yet still notable at -11%. Interestingly, we observe that staking popularity does not exhibit a
significant relationship with the premium during this period.

To complete the picture, column (3) documents the results for the entire sample period. Among
the variables of interest, we only observe a significant relationship between staking popularity
and the consensus premium at -0.09 (t = -4.22). However, given our assumption of structural
changes in the ecosystem during the PEIAs, we hold no definitive expectations regarding the
behavior of any of our variables of interest over the entire sample, and thus we refrain from
drawing conclusions based on the whole sample results.
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In summary, the results of this analysis support the narrative that there is a negative con-
sensus premium pre-PEIAs due to the opportunity cost effect, which transitions to a positive
consensus premium post-PEIAs that is driven by the hypothesis of energy intensiveness. The
results indicate that pre-PEIAs, changes in the opportunity cost proxy are indeed related to
the consensus premium in the hypothesized direction, whereas post-PEIAs, this relationship
disappears. Conversely, post-PEIAs, changes in climate change concerns and changes in oil
price are connected with the premium in the hypothesized direction, but these relationships
are not observable in the pre-PEIAs period.

Table 5.3: Risk premium of Consensus, sustainability awareness, energy prices, and staking popularity

This table reports the results of multivariate regressions as in Equation (5.4). For (1), we consider the time
prior to the first PEIA period, i.e., from week 7, 2019 until week 41, 2020. (2) refers to the sample after the
second PEIA period, i.e., from week 48, 2021, until week 2, 2023. (3) includes the whole time horizon, i.e., from
week 7, 2019 until week 2, 2023. Newey and West (1987) adjusted t-statistics are given in parentheses. ∗ and
∗∗ indicate statistical significance at the 5% and 1% level, respectively.

(1) Pre-PEIAs (2) Post-PEIAs (3) Whole sample
rMCCC -0.01 -0.25∗∗ -0.09

(-0.44) (-3.17) (-1.84)
rCoal 0.12 0.005 0.04

(1.73) (0.09) (0.76)
rGas 0.004 -0.02 -0.01

(0.16) (-0.50) (-0.11)
rOil 0.02 -0.11∗ 0.00

(1.22) (-2.32) (0.06)
rGT Staking Crypto -0.05∗∗ 0.43 -0.09∗∗

(-3.35) (2.01) (-4.44)
rHashrate -0.02 -0.04 0.07

(-0.70) (-0.84) (1.09)
rPoW Basket -0.27∗∗ -0.08 -0.17∗

(-3.05) (-0.67) (-2.02)
rPoS Basket 0.23∗∗ -0.18 0.26∗∗

(2.78) (-1.40) (2.61)
Constant -0.14∗ 0.62∗∗ 0.15

(-2.52) (8.99) (1.03)
Obs. 85 58 203
Adj. R2 0.56 0.10 0.17
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5.3.4 Other Design-Related Risk Premiums

While Subsection 5.3.3 concentrates on the systematic risk premium of the consensus mecha-
nism, our methodology, in principle, allows us to examine the systematic premium associated
with each characteristic. Within this section, we want to have a brief look at the time series
of the remaining three design-related characteristics in our analyses. Specifically, these are the
risk premiums of the coin vs. token characteristic, the privacy vs. non-privacy characteristic
as well as the smart contract vs. non-smart contract characteristic.

Coin vs. Token
Starting with the coin vs. token characteristic, the literature provides arguments that coins and
tokens have different systematic risk profiles. Tokens are usually built on established platforms
like Ethereum and, therefore, benefit from the security and reliability of these platforms. Often,
as in the case of security tokens, they are even regulated. Therefore they should be less exposed
to systemic risks compared to coins, which may be more exposed to speculative demand and
less regulated environments. This inherent difference suggests that tokens could exhibit lower
systematic risk than coins, due to both the stability of their parent networks and regulatory
oversight (Alabi, 2017; Charfeddine et al., 2022; Gandal and Halaburda, 2016; Gandal et al.,
2021; Nadler and Guo, 2020; Wu et al., 2018).

Figure 5.2a shows the trajectory of the coin vs. token premium over time, line two in Table 5.2
has the corresponding average values. Indeed we observe an overall significant positive premium
of coins vs. tokens by a magnitude of 13.33% p.a. In the course of time, the coin over token
systematic risk premium increased from 15.56% p.a. in the pre-PEIAs period to 27.31% p.a.
in the post-PEIAs era, both at statistically significant levels. This is accompanied by a sharp
decline in coin prices relative to tokens during the PEIAs, as shown in Figure 5.2a, which
supports the notion that during the PEIAs, token-favorable information was released, which
is in line with the increased systematic riskiness of coins compared to tokens from pre- to
post-PEIAs.

Privacy vs. non-privacy
Public blockchains with the possibility to link real-world identities to public addresses bear
the risk of completely revoking anonymity. In this view, some privacy-enhancing networks,
such as Zcash, offer complete anonymity by making it technologically infeasible to track trans-
action information and the members themselves.90 Narayanan et al. (2016), Pagnotta and
Buraschi (2018), and Harvey and Branco-Illodo (2020) identify several channels motivating

90Sapkota and Grobys (2021a) state that privacy networks and non-privacy crypto assets are associated with
two distinct asset market equilibria. Somewhat contrary, Ahmed et al. (2020) demonstrate that simple technical
trading rules do not generate positive returns for privacy crypto assets, albeit ignoring systematic risk.
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privacy crypto assets that can insure users against bad states of the world, which provides ar-
guments for a negative systematic privacy premium. On the other hand, full anonymity opens
doors for maleficent behavior and illegal activities like terrorist financing or money laundering
(Europol, 2017), thereby drawing the attention of regulators. These concerns put pressure
on widespread adoption and regulatory acceptance (Dupuis and Gleason, 2020; Houben and
Snyers, 2018; Li et al., 2019), which might give a reason for a positive systematic privacy
premium.91

Figure 5.2b shows the trajectory of the privacy premium over time, the corresponding average
values are presented in the third line of Table 5.2. Overall the privacy premium is significantly
positive at a value of 21.39% p.a. It is statistically indistinguishable from zero in the pre-
PEIAs time span. Post-PEIAs, it rises to a statistically significant level of 18.73% p.a. By
examining the trajectory of the premium, it seems as if during the first PEIA, information in
favor of privacy-featuring crypto assets arrived, which is indicated by the positive peak in the
time series during that time. Overall, the positive privacy risk premium rather supports the
notion that regularity concerns dominate the actual privacy-protecting effects, especially for
the post-PEIAs period. This finding aligns with the shift of the crypto asset user base towards
mainstream investors which induces a change in the preference of the marginal investor towards
regulatory certainty.

Smart contract vs. non-smart contract
With the rise of blockchains, many have appraised their groundbreaking potential for various
applications and use cases. Among the most prominent use cases that have persisted beyond
the initial hype are so-called decentralized finance (DeFi) applications and services. These
aim to create financial systems in a decentralized and open manner, obviating the need for
centralized intermediaries.92 DeFi can deliver financial services in situations where centralized
intermediaries face restrictions. A typical example of such a service is liquidity provision on
exchanges. In traditional centralized financial markets, it is well-documented that liquidity
tends to diminish during crisis periods (Hu et al., 2013; Næs et al., 2011; Schestag et al., 2016).
According to intermediary asset pricing literature, in a market mediated by intermediaries, asset
prices are heavily influenced by the health of these intermediaries (see, e.g., Haddad and Muir,

91Privacy crypto assets even face the risk of being banned by central authorities. Some authorities (Japanese
Financial Security Agency, United States Secret Service) already banned the use of privacy crypto assets (see,
e.g., Novy, 2018; Viglione, 2018; Wilmoth, 2018).

92According to Harvey et al. (2021), DeFi has the potential to address some inherent “flaws” in traditional
finance by eliminating the need for centralized intermediation. Such flaws include inefficiency, centralized control,
limited access, lack of interoperability, and opacity. Similarly, Schär (2021) suggests that DeFi could reinvent
the financial industry, offering a more robust, open, and transparent infrastructure, provided challenges related
to smart contract execution, operational security, dependencies on other networks, external data, and illicit
activities are resolved. However, Makarov and Schoar (2022) adopt a more skeptical stance, noting that DeFi
may introduce additional problems in areas such as tax enforcement, regulation, and financial malfeasance,
potentially impacting the broader economy negatively.
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2021; He et al., 2017), which is typically pro-cyclical. Thus, crypto assets in the field of DeFi
exhibit resilience in adverse economic conditions and should display a negative systematic risk
premium compared to crypto assets that are not related to DeFi services. An essential building
block for DeFi applications are smart contracts. Thus, following the argumentation from above,
smart contract featuring crypto assets should exhibit negative systematic risk premiums over
non-smart contract featuring networks.93

Figure 5.2c and the averages in line four of Table 5.2 show that, generally, the results cannot
support this hypothesis. The risk premium for crypto assets featuring smart contracts over
those that are not is significantly positive at 18.12% p.a. for the whole sample. Although,
this is mainly due to the pre-PEIAs period where the premium is at 18.95% p.a. Post-PEIAs,
the privacy premium becomes indistinguishable from zero. Examining the trajectory of the
premium reveals positive peaks during both PEIAs, which yields the arrival of smart contract-
favoring information in that time. This is in line with the negative shift in the level of the
smart contract premium from pre-PEIAs to post PEIAs.

5.4 Conclusion

Using the IPCA framework by Kelly et al. (2019) and following the methodological idea of
Müller et al. (2023), we are able to analyze the systematic returns associated with PoW over
PoS. While in the early part of our sample, between the beginning of 2019 and October 2020,
PoS earns a premium over PoW, our results show that the more energy-intensive PoW carries a
risk premium over PoS for the period from December 2021 onwards. This finding for the latter
part of our sample aligns with asset pricing theory, suggesting that energy-intensive assets such
as PoW-based crypto assets are systematically riskier due to the cyclicality of energy prices
(Dittmar et al., 2020; Kilian and Park, 2009; Ready, 2018). Using a multivariate regression
approach, we relate the systematic part of the returns from a portfolio that is long PoW
and short PoS with various proxies for energy prices, climate change concerns, and staking
popularity. We find a significant negative covariation of this premium with climate change
concerns as well as with the oil price for this latter period. Both of these covariations are
unobservable in the early part of our sample during which PoS carries a positive risk premium
over PoW. Interestingly, during this early period of our sample prior to the PEIAs, the risk
premium co-moves with a proxy for staking popularity. Overall, our results align well with the
narrative that at the beginning of our sample, PoS was systematically more risky compared
to PoW, which seems to be linked to the opportunity cost problem associated with PoS. After

93Atzei et al. (2017), Schuster et al. (2020), and Milkau (2023) investigate smart contract risks and point
towards several risk channels like coding errors and single points of failure. These sources of risk, however, are
rather idiosyncratic and non-systematic.
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Figure 5.2: Risk premiums of other design-related characteristics

This figure shows the annualized weekly risk premiums of the long-short portfolios managed by the design-
related characteristics Coin, Privacy, and Smart Contract. These portfolios are long in the crypto assets with
the specific characteristic and short the respective peers while the exposure to all other characteristics is zero.
Baseline model is the restricted IPCA model with K = 4 latent factors. EWMA is the exponentially weighted
moving average using the observations of the current week and the preceding 51 weeks. Gray-shaded areas
belong to PEIA periods.

(a) Coin (b) Privacy

(c) Smart Contract
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the PEIAs, this shifted to PoW being systematically riskier than PoS, and the premium then
is mostly linked to changes in climate change concerns as well as to oil-price returns. Taken
together, this fits well with an alternation of the marginal investor’s preferences during the
PEIAs towards a higher concern regarding sustainability.

It is not unlikely that the preferences of the marginal investor at current times are closer to the
ones from the period starting in December 2021, the post-PEIAs period of our analyses. Hence,
the results for this period are particularly relevant for current market participants. Focusing on
this period, the two most important results are (i) that PoW assets earn a systematic premium
over PoS assets of roughly 20% per year, which by our interpretation is a compensation for
the additional risk of PoW assets due to their energy intensiveness, and (ii) shocks in climate
change concerns and energy prices are related to drops of PoW vs. PoS prices by economic
significance of 25% and 11%, respectively.

To leverage our approach for the consensus mechanism, we also examine the systematic risk
premiums for three other design-related features of crypto assets. Distinguishing between coins
and tokens, we document that tokens are less risky compared to the average coin. Further,
privacy-featuring networks earn a risk premium over non-privacy networks. This finding points
towards a compensation for intervention risk posed by regulating authorities. Concerning smart
contract-featuring crypto assets, our results show market participants initially perceived smart
contract-featuring assets as systematically more risky. However, the premium vanished over
the course of time.

Overall, we observe that an adjustment of the systematic risk premiums took place during peri-
ods of exuberant information arrival to the crypto market during the years 2020 and 2021. The
adjustment in systematic risk perception of the marginal investor during the PEIAs indicates a
shift in preferences, likely due to a change of crypto asset investors from tech-savvy enthusiasts
to mainstream and institutional investors.



101

Chapter 6

Summary and Outlook

This dissertation discloses an asset pricing perspective on the design of cryptocurrencies. In
its first part (Chapters 2 and 3), it relates the broad range of different design characteristics
to market capitalization and volatility, thereby providing a more profound understanding of
how the design affects the market outcome. Overall, it is shown that differences in the network
designs are associated with diverging market outcomes.

Chapter 2 first introduces a novel taxonomy which allocates 47 design feature variables, pre-
dominantly binary, into six categories. Based on this taxonomy and a hand-collected sample
of 79 cryptocurrencies, we analyze whether the design of cryptocurrencies helps to explain the
huge cross-sectional variation in the market values of cryptocurrencies. While we find that
forked network are less valuable, cryptocurrencies with an fee-independent reward scheme have
higher market capitalizations. Further, non-anonymous cryptocurrencies have higher market
capitalizations, possibly in expectation of regulatory approval of these networks. Apart from
that, we find that deviations from the design of Bitcoin tend to be associated with lower valua-
tion. Thus, even though Bitcoin may not be the most technologically advanced cryptocurrency,
users and investors apparently value its design. Albeit our results reveal that certain design fea-
tures affect the market valuation of cryptocurrencies, one needs to be aware of the circumstance
that a large part of investors might not be aware of cross-sectional differences in the cryptocur-
rency design. Consequently, valuation might be partly driven by sole speculative demand as
investors seek for the “new Bitcoin”. Due to the large cross-section of different cryptocurrencies
and speculative demand being at random, this chapter nevertheless provides an indication of
which cryptocurrencies design feature might predominate the cryptocurrency universe in the
future. Our analysis, however, does not consider interaction effects between the single features.
Thus, we encourage future research to incorporate interactions between different design fea-
tures. Also, revisiting the results taking into account timely changes in investor structures, as
described in Chapter 5, might open new perspectives on the influence of cryptocurrency design
on market valuation.
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In a similar vein, Chapter 3 introduces volatility measures on daily returns calculated from
two distinct samples. They are then related to the design features introduced in Chapter 2.
The results of the corresponding analysis indicate, inter alia, that older cryptocurrencies and
networks that do not pass transactions fees and/or tips on to transaction verifiers are less
volatile. In contrast, cryptocurrencies with mandatory transaction fees, the ones developed
by private teams and those using (delegated) Proof-of-Stake as consensus mechanisms tend
to be more volatile. The findings presented in this chapter help predicting the volatility of
a cryptocurrency based on its design feature constellation, thereby providing assistance for
developers deliberately aiming to design cryptocurrencies with low expected volatility. While
this chapter analyzes the impact of individual design features, exploring interdependencies
between design features could be a promising avenue for future research.

In the following parts, the focus of the dissertation shifts to one of the most essential design
features of cryptocurrencies, the consensus protocols. While Proof-of-Work (PoW) algorithms
like the one of Bitcoin are accompanied by excessive energy consumption, other protocols gained
in importance over time. Most prominently, Proof-of-Stake (PoS) protocols have drawn more
and more attention. Albeit the underlying economics of PoS networks are fairly different,
many studies focus on solely PoW-like cryptocurrencies. Chapter 4 addresses this gap by
introducing a valuation model for PoS cryptocurrencies. It reveals that PoS network have
an inherent opportunity cost problem which introduces a higher degree of network instability
to these networks. In particular, some design features such as the inflation rate are crucial
determinants for extent network fragility. We show that transaction fees can help mitigating
the collapse risk. While this approach is partly addressed for Bitcoin-like networks, the precise
impact and its usefulness within PoS networks is an avenue for future research.

Building on the theoretical considerations of Chapter 4, Chapter 5 investigates how the oppor-
tunity cost problem transfers to the risk-return structure of PoS cryptocurrencies compared to
their PoW counterparts. For the early sample, the consensus-related systematic risk premium
reveals that PoS networks are systematically riskier than PoW cryptocurrencies supporting
the theoretical model’s outcome. From December 2021 onwards, the sign of the risk pre-
mium reverses and PoW earns a premium over PoS. This shift indicates that the perception
of risk changed by the course of time towards a dominance of energy consumption risk and
climate change concerns. This finding aligns with with asset pricing theory, suggesting that
energy-intensive assets, such as PoW-based crypto assets, are systematically riskier due to the
cyclicality of energy prices. In addition, Chapter 5 analyzes further design-related systematic
risk premiums. Overall, adjustments of these systematic risk premiums took place during peri-
ods of exuberant information arrival to the crypto market – similar to the consensus premium.
This points towards a change in investor structure and a potential increase in market efficiency,
which can be revisited by future research in light of our results. Furthermore, by employing
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the methodology that isolates specific characteristic-related systematic risk premiums, theoret-
ical assumptions, models, and abstract considerations about the cryptocurrency market can be
evaluated – such as the impact of centralized (CEXs) vs. decentralized trading (DEXs).
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Appendix A

Design and Valuation of
Cryptocurrencies

This appendix includes complementary results to Chapter 2. Section A.1 includes the intra-
group regressions’ results and Section A.2 shows the results of the robustness analysis presented
and discussed in Subsection 2.4.2.
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A.1 Intra-Group Regressions Results from Main Analysis

Table A.1: Intra-group market capitalization regressions of Q4 2020

This table reports results of the cross-sectional intra-group regression of the average market capitalization in
the fourth quarter of the year 2020 on the design feature variables.We control for multicollinearity and find that
all variance inflation factors (VIF) are below 2.6. p-Values are given in parentheses. ∗, ∗∗, and ∗∗∗ indicate
statistical significance at the 10%, 5% and 1% level, respectively.

Market capitalization
(1) (2) (3) (4) (5) (6)

Constant 0.406∗∗∗ 0.397∗∗∗ 0.323∗∗∗ 0.325∗∗ 0.270∗∗∗ 0.204∗∗∗

(0.000) (0.000) (0.003) (0.011) (0.000) (0.001)
DeveloperNPO -0.145

(0.224)
DeveloperPrivate -0.190∗

(0.074)
NoMajorityChanges 0.024

(0.772)
CodeNonC -0.025

(0.769)
CodeNonPublic -0.185

(0.397)
Fork -0.183∗∗

(0.024)
ConsensusPoSDPoS -0.208∗∗

(0.039)
ConsensusOther -0.150

(0.179)
HashAge -0.280∗

(0.056)
CurveNonECDSA -0.022

(0.766)
NoMaxSupply -0.011

(0.899)
SupplyCirculation -0.0003

(0.917)
Deflationary 0.058

(0.634)
FixedSupply -0.136

(0.166)
RewardCoinbase -0.118

(0.231)
RewardInflation -0.126

(0.184)
BlockTimeAverage -0.199

(0.206)
TransactionFeeObligation -0.015

(0.873)
NoTipSpecialTreatment 0.030

(0.745)
NoFeeTipForMinerForger 0.191∗

(0.089)
IntentionNonPayment -0.032

(0.801)
SmartContractSupport -0.113

(0.341)
UsageBeyondPayment 0.007

(0.931)
LedgerStyleOther 0.161

(0.248)
AccountingBalance -0.037

(0.622)
Anonymous -0.111

(0.179)
NonAnonymous 0.270

(0.214)
Observations 68 68 68 59 68 68
R2 0.109 0.089 0.077 0.078 0.047 0.073
Adjusted R2 0.022 0.031 -0.014 0.009 0.003 0.014
F Statistic 1.248 1.533 0.845 1.138 1.060 1.245

(df=6;61) (df=4;63) (df=6;61) (df=4;54) (df=3;64) (df=4;63)
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Table A.2: Intra-group discounted market capitalization regressions of Q4 2020

This table reports results of the cross-sectional intra-group regression of the average discounted market capitalization in
the fourth quarter of the year 2020 on the design feature variables.We control for multicollinearity and find that all variance
inflation factors (VIF) are below 2.6. p-values are given in parentheses. ∗, ∗∗, and ∗∗∗ indicate statistical significance at
the 10%, 5% and 1% level, respectively.

Discounted market capitalization
(1) (2) (3) (4) (5) (6)

Constant 0.320∗∗∗ 0.202∗∗ 0.158 0.241∗∗ 0.116∗ 0.125∗∗

(0.001) (0.033) (0.116) (0.038) (0.066) (0.026)
DeveloperNPO -0.149

(0.163)
DeveloperPrivate -0.119

(0.209)
NoMajorityChanges 0.015

(0.837)
CodeNonC 0.037

(0.621)
CodeNonPublic -0.139

(0.476)
Fork -0.210∗∗∗

(0.004)
ConsensusPoSDPoS 0.018

(0.846)
ConsensusOther -0.066

(0.525)
HashAge -0.111

(0.415)
CurveNonECDSA -0.046

(0.510)
NoMaxSupply -0.001

(0.993)
SupplyCirculation 0.0002

(0.927)
Deflationary 0.007

(0.950)
FixedSupply -0.094

(0.306)
RewardCoinbase -0.014

(0.882)
RewardInflation 0.054

(0.543)
BlockTimeAverage -0.150

(0.297)
TransactionFeeObligation -0.006

(0.948)
NoTipSpecialTreatment 0.028

(0.740)
NoFeeTipForMinerForger 0.210∗∗

(0.042)
IntentionNonPayment 0.089

(0.442)
SmartContractSupport -0.102

(0.349)
UsageBeyondPayment 0.085

(0.245)
LedgerStyleOther -0.096

(0.446)
AccountingBalance 0.057

(0.396)
Anonymous -0.056

(0.456)
NonAnonymous 0.349∗

(0.078)
Observations 68 68 68 59 68 68
R2 0.144 0.041 0.032 0.091 0.041 0.089
Adjusted R2 0.060 -0.020 -0.064 0.024 -0.004 0.031
F Statistic 1.710 0.669 0.333 1.349 0.905 1.540

(df=6;61) (df=4;63) (df=6;61) (df=4;54) (df=3;64) (df=4;63)
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A.2 Results of the Robustness Analysis

Table A.3: Market capitalization regression analysis of year 2020

This table reports results of the cross-sectional regression of the average market capitalization in the whole year
2020 on the design feature variables. Columns (1) - (6) shows the coefficients for the intra-group regressions.
Models (7), (8), and (9) include the design feature variables with intra-group regression p-values below 0.1, 0.2,
and 0.3, respectively. We control for multicollinearity and find that all variance inflation factors (VIF) in (1)
- (7) are below 2.4 and below 4.43 in (8) and (9). Column (10) shows the results for the case that all design
feature variable are included (max. VIF of 8.78). Standard errors are given in parentheses. ∗, ∗∗, and ∗∗∗

indicate statistical significance at the 10%, 5% and 1% level, respectively.

Market capitalization
(1) (2) (3) (4) (5) (6) (7) p < 0.1 (8) p < 0.2 (9) p < 0.3 (10)

Constant 0.366∗∗∗ 0.373∗∗∗ 0.270∗∗ 0.321∗∗ 0.234∗∗∗ 0.172∗∗∗ 0.119 0.382∗∗ 0.497∗∗∗ 0.108
(0.091) (0.089) (0.094) (0.113) (0.060) (0.054) (0.101) (0.168) (0.180) (0.325)

DaysAge 0.516∗∗∗ 0.419∗∗ 0.282 0.655∗

(0.171) (0.183) (0.201) (0.355)
DeveloperNPO -0.150 -0.022 -0.029 -0.159

(0.106) (0.102) (0.104) (0.170)
DeveloperPrivate -0.172∗ -0.043 -0.080 -0.089 -0.235

(0.094) (0.064) (0.097) (0.099) (0.152)
NoMajorityChanges 0.008 -0.037

(0.074) (0.108)
CodeNonC -0.014 0.249∗

(0.076) (0.123)
CodeNonPublic -0.158 0.072

(0.197) (0.253)
Fork -0.170∗∗ -0.115∗ -0.175∗∗ -0.201∗∗∗ -0.191∗

(0.071) (0.061) (0.067) (0.068) (0.101)
ConsensusPoSDPoS -0.198∗∗ -0.030 -0.103 -0.081 -0.133

(0.088) (0.076) (0.125) (0.126) (0.173)
ConsensusOther -0.142 -0.109 -0.134 0.009

(0.098) (0.128) (0.132) (0.187)
HashAge -0.280∗∗ -0.155 -0.205 -0.215 -0.041

(0.130) (0.110) (0.138) (0.147) (0.233)
CurveNonECDSA -0.031 -0.046

(0.066) (0.120)
NoMaxSupply 0.002 0.026

(0.079) (0.169)
SupplyCirculation -0.0002 0.043

(0.003) (0.207)
Deflationary 0.047 0.034

(0.111) (0.158)
FixedSupply -0.129 -0.021 -0.008 -0.033

(0.088) (0.083) (0.087) (0.148)
RewardCoinbase -0.090 0.082

(0.086) (0.131)
RewardInflation -0.103 0.008 0.233

(0.084) (0.081) (0.171)
BlockTimeAverage -0.202 -0.130 -0.113 -0.024

(0.141) (0.128) (0.133) (0.192)
TransactionFeeObligation -0.029 -0.084

(0.087) (0.120)
NoTipSpecialTreatment 0.007 -0.056

(0.081) (0.101)
NoFeeTipForMinerForger 0.199∗ 0.090 0.177∗∗ 0.119 0.125

(0.100) (0.072) (0.083) (0.097) (0.143)
IntentionNonPayment -0.011 0.355

(0.107) (0.210)
SmartContractSupport -0.121 -0.115 -0.433∗∗

(0.101) (0.085) (0.162)
UsageBeyondPayment 0.011 -0.039

(0.070) (0.117)
LedgerStyleOther 0.124 0.319 0.496

(0.118) (0.226) (0.375)
AccountingBalance -0.021 0.070

(0.067) (0.157)
Anonymous -0.094 -0.003 -0.026

(0.075) (0.082) (0.098)
NonAnonymous 0.187 0.405

(0.198) (0.285)
Observations 71 71 71 61 71 71 71 67 67 61
R2 0.107 0.103 0.067 0.099 0.049 0.054 0.245 0.331 0.383 0.564
Adjusted R2 0.023 0.048 -0.021 0.035 0.006 -0.003 0.174 0.212 0.218 0.183
F Statistic 1.279 1.887 0.763 1.542 1.146 0.948 3.452∗∗∗ 2.776∗∗∗ 2.310∗∗ 1.479

(df=6;64) (df=4;66) (df=6;64) (df=4;56) (df=3;67) (df=4;66) (df=6;64) (df=10;56) (df=14;52) (df=28;32)
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Table A.4: LASSO variable selection for market capitalization regression of year 2020

This table provides statistics for the variable selection process when applying LASSO with cross-validation using
the average market capitalization in the whole year 2020 as the dependent variable. Column (1) reports the
percentage of cases in which a variable is selected by LASSO while (2) and (3) indicate the related sign of
the coefficient. Column (4) reports the average of the parameter estimate indicating the economic significance.
Deviance is defined as 2 (loglikesat − loglike), where loglikesat is the log-likelihood for the saturated model.
Null deviance is defined to be 2 (loglikesat −NULL) with NULL referring to the intercept model.

Market capitalization
(1) Included (2) Positive (3) Negative (4) ∅ coefficent

Constant 100% 100% 0% 0.162
DaysAge 51.16% 100% 0% 0.082
DeveloperNPO 0% - - 0
DeveloperPrivate 13.27% 0% 100% -0.002
NoMajorityChanges 0% - - 0
CodeNonC 1.78% 100% 0% 0.000
CodeNonPublic 0% - - 0
Fork 16.93% 0% 100% -0.015
ConsensusPoSDPoS 0.27% 0% 100% -0.000
ConsensusOther 0% - - 0
HashAge 14.95% 0% 100% -0.007
CurveNonECDSA 0% - - 0
NoMaxSupply 0% - - 0
SupplyCirculation 0% - - 0
Deflationary 0% - - 0
FixedSupply 1.78% 0% 100% -0.000
RewardCoinbase 0% - - 0
RewardInflation 0% 0
BlockTimeAverage 10.82% 0% 100% -0.002
TransactionFeeObligation 0.01% 0% 100% -0.000
NoTipSpecialTreatment 0% - - 0
NoFeeTipForMinerForger 16.93% 100% 0% 0.009
IntentionNonPayment 0% - - 0
SmartContractSupport 16.03% 0% 100% -0.010
UsageBeyondPayment 0% - - 0
LedgerStyleOther 19.80% 100% 0% 0.024
AccountingBalance 0.015% 100% 0% 0.000
Anonymous 14.95% 0% 100% -0.002
NonAnonymous 14.31% 100% 0% 0.009
∅ Observations 61
∅ Fraction of (null) deviance explained 0.062
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Table A.5: Discounted market capitalization regression analysis of year 2020

This table reports results of the cross-sectional regression of the average market capitalization in the whole year
2020 on the design feature variables. Columns (1) - (6) shows the coefficients for the intra-group regressions.
Models (7), (8), and (9) include the design feature variables with intra-group regression p-values below 0.1, 0.2,
and 0.3, respectively. We control for multicollinearity and find that all variance inflation factors (VIF) in (1) -
(9) are below 2.4. Column (10) shows the results for the case that all design feature variable are included (max.
VIF of 8.78). Standard errors are given in parentheses. ∗, ∗∗, and ∗∗∗ indicate statistical significance at the
10%, 5% and 1% level, respectively.

Discounted market capitalization
(1) (2) (3) (4) (5) (6) (7) p < 0.1 (8) p < 0.2 (9) p < 0.3 (10)

Constant 0.324∗∗∗ 0.218∗∗ 0.155 0.283∗ 0.127∗∗ 0.129∗∗ 0.203∗∗∗ 0.361∗∗∗ 0.527∗∗∗ 0.205
(0.095) (0.096) (0.101) (0.120) (0.063) (0.056) (0.067) (0.110) (0.153) (0.383)

DaysAge 0.028 -0.053 -0.078 0.050
(0.167) (0.173) (0.179) (0.419)

DeveloperNPO -0.164 -0.170∗ -0.116 -0.214
(0.111) (0.098) (0.109) (0.200)

DeveloperPrivate -0.133 -0.149 -0.165∗ -0.329∗

(0.098) (0.091) (0.097) (0.180)
NoMajorityChanges 0.010 0.039

(0.077) (0.128)
CodeNonC 0.058 0.194

(0.079) (0.144)
CodeNonPublic -0.109 -0.053

(0.205) (0.298)
Fork -0.198∗∗∗ -0.159∗∗ -0.206∗∗∗ -0.225∗∗∗ -0.296∗∗

(0.074) (0.066) (0.070) (0.072) (0.119)
ConsensusPoSDPoS 0.018 -0.012

(0.096) (0.204)
ConsensusOther -0.063 0.108

(0.106) (0.221)
HashAge -0.111 -0.010

(0.141) (0.275)
CurveNonECDSA -0.052 0.039

(0.072) (0.141)
NoMaxSupply -0.004 0.061

(0.085) (0.199)
SupplyCirculation 0.0001 0.178

(0.003) (0.244)
Deflationary -0.0001 0.004

(0.119) (0.187)
FixedSupply -0.089 -0.021

(0.094) (0.175)
RewardCoinbase 0.010 0.209

(0.093) (0.154)
RewardInflation 0.060 0.276

(0.089) (0.201)
BlockTimeAverage -0.160 -0.219∗ -0.069

(0.150) (0.131) (0.226)
TransactionFeeObligation -0.019 -0.083

(0.092) (0.142)
NoTipSpecialTreatment 0.014 -0.115

(0.086) (0.118)
NoFeeTipForMinerForger 0.201∗ 0.045 0.068 0.160∗ 0.240

(0.106) (0.078) (0.079) (0.088) (0.168)
IntentionNonPayment 0.067 0.137

(0.113) (0.247)
SmartContractSupport -0.078 -0.269

(0.107) (0.191)
UsageBeyondPayment 0.090 0.060 0.031

(0.074) (0.076) (0.138)
LedgerStyleOther -0.125 0.036

(0.122) (0.442)
AccountingBalance 0.067 0.046

(0.069) (0.185)
Anonymous -0.030 0.012

(0.077) (0.116)
NonAnonymous 0.355∗ 0.402∗∗ 0.423∗∗ 0.363∗ 0.521

(0.204) (0.198) (0.196) (0.199) (0.336)
Observations 71 71 71 61 71 71 71 71 67 61
R2 0.123 0.038 0.028 0.078 0.033 0.083 0.146 0.189 0.263 0.452
Adjusted R2 0.041 -0.020 -0.063 0.012 -0.010 0.027 0.094 0.113 0.161 -0.027
F Statistic 1.493 0.651 0.306 1.188 0.764 1.485 2.810∗∗ 2.482∗∗ 2.587∗∗ 0.943

(df=6;64) (df=4;66) (df=6;64) (d =4;56) (df=3;67) (df=4;66) (df=4;66) (df=6;64) (df=8;58) (df=28;32)



A.2. Results of the Robustness Analysis 111

Table A.6: LASSO variable selection for discounted market capitalization regression of year 2020

This table provides statistics for the variable selection process when applying LASSO with cross-validation using
the average discounted market capitalization in the whole year 2020 as the dependent variable. Column (1)
reports the percentage of cases in which a variable is selected by LASSO while (2) and (3) indicate the related sign
of the coefficient. Column (4) reports the average of the parameter estimate indicating the economic significance.
Deviance is defined as 2 (loglikesat − loglike), where loglikesat is the log-likelihood for the saturated model. Null
deviance is defined to be 2 (loglikesat −NULL) with NULL referring to the intercept model.

Discounted market capitalization
(1) Included (2) Positive (3) Negative (4) ∅ coefficent

Constant 100% 100% 0% 0.194
DaysAge 0% - - 0
DeveloperNPO 0% - - 0
DeveloperPrivate 0% - - 0
MajorityChanges 0% - - 0
CodeNonC 0% - - 0
CodePublic 0% - - 0
Fork 65.01% 0% 100% -0.035
ConsensusPoSDPoS 0% - - 0
ConsensusOther 0% - - 0
HashAge 0% - - 0
CurveNonECDSA 0% - - 0
MaxSupply 0% - - 0
SupplyCirculation 0% - - 0
Deflationary 0% - - 0
FixedSupply 0% - - 0
RewardCoinbase 0% - - 0
RewardAlternative 0% 0
BlockTimeAverage 0% - - 0
TransactionFeeObligation 0% - - 0
TipSpecialTreatment 0% - - 0
NoFeeTipForMinerForger 14.55% 100% 0% 0.001
IntentionNonPayment 0% - - 0
SmartContractSupport 0% - - 0
UsageBeyondPayment 0% - - 0
LedgerStyleOther 0% - - 0
AccountingBalance 0% - - 0
Anonymous 0% - - 0
NonAnonymous 30.03% 100% 0% 0.007
∅ Observations 61
∅ Fraction of (null) deviance explained 0.035
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Appendix B

Do Design Features Explain the
Volatility of Cryptocurrencies?

This appendix includes additional results for the volatility analysis in Chapter 3.

B.1 Standard Deviation as Volatility Measure

Table B.1 presents the results from the LASSO regression approach introduced in Chapter 3
with the second volatility measure, the standard deviation of daily returns, as the dependent
variable. In line with Table 3.3, variables highlighted in light green or light blue indicate selec-
tion in at least 50% of the ten subsamples, with consistent or inconsistent signs, respectively.
The results again show that cryptocurrency age reduces volatility levels, while cryptocurren-
cies with mandatory transaction fess tend to be more volatile. Also, cryptocurrencies with
private, for-profit developement teams demonstrate higher volatilities, albeit a negative outlier
with negligible economic magnitude is observed in the 2019 USD sample. Although no other
variables are selected across more than half of the subsamples, the results confirm the findings
presented in Chapter 3, as we observe sign consistency for the variables discussed and selected
for either volatility measure.
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Appendix C

After The Merge: Network Fragility
and Robust Design of PoS
Cryptocurrencies

This appendix includes additional information on and complementary results to Chapter 4. It
includes the proofs of Lemmas 4.1 and 4.2 from Subsections 4.2.2 and 4.2.3.

C.1 Proofs

C.1.1 Proof of Lemma 4.1

We can transform the maximization problem (4.1) into:

max
Sit

ζ

(
µM + (1− µ) δE1

t

[
eit

pt+1

pt

])
︸ ︷︷ ︸

V (Sit)

+
Sit

St
· δΦtE

(1)
t [pt+1] ·NC

t (ρ− 1)

This equation implies

ζV ′ (Sit) + ΦtδN
C
t (ρ− 1)E(1)

t [pt+1]
St − Sit

S2
t

= 0 (C.1)

for Sit > 0. The inner maximization problem denoted by M is given by the term

M = max
Qit≤

(
eit
zt

−Sit
pt
zt

)
{
uB (Qit) + δE(1)

t

[(
eit
pt

− ztQit

pt

)
pt+1

]}
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and requires the unconstrained solution Q∗
t with u′B (Q∗

t ) − δE1
t

[
zt

pt+1

pt

]
= 0. The sellers’

program (4.5) implies u′B (Q∗
t ) = δztE1

t

[
pt+1

pt

]
= 1.

Let q∗t = Q∗
t zt, i.e., the unconstrained inner solution in numeraire terms. Then if

(i) qit ≥ q∗t , forger i demands all night market goods that the sellers provide, e.g., Q∗
t with

the remaining coins. Due to uncertainty about the possibility of trading the night good,
they do not intentionally want to bring more coins than they actually want to exchange
for night market goods and staking is the preferred option.

Then V (Sit) = µ
(
uB (Q∗

t ) + δE1
t

[
(eit − q∗t )

pt+1

pt

])
+(1− µ) δE1

t

[
eit

pt+1

pt

]
. It follows that

V ′ (Sit) = 0. With the original condition of the forgers’ problem (C.1), we have that for
positive expected rewards and Sit > 0 the demand for staking and thus the demand for
coins would be unbounded.

(ii) qit < q∗t , the budget constraint within M is binding, e.g., Qit =
eit
zt

− Sit
pt
zt

as giving up
beneficial transaction possibilities is costly. In this case

V ′ (Sit) = −ptµ

zt
u′B

(
eit
zt

− Sit
pt
zt

)
.

It is required that −ζV ′ (Sit) =
ptµ
zt

u′B

(
eit
zt

− Sit
pt
zt

)
!
= δNC

t (ρ− 1)E(1)
t [pt+1]

St−Sit

S2
t

. Us-

ing homogeneity among forgers, i.e., Sit = Sjt and St = NF · Sit, we obtain St =

ΦtδztN
C
t (ρ− 1)E(1)

t

[
pt+1

pt

]
NF−1
NF

(
ζ · µ · u′

(
et
zt
− St

NF
pt
zt

))−1
in any equilibrium.

C.1.2 Proof of Lemma 4.2

Our proof of this lemma follows the one of Pagnotta (2022) who extended the analysis of Lagos
and Wright (2005) and Rocheteau and Wright (2005) to the PoW equivalent of our model
setting.

With cryptocurrency balances in terms of the numeraire cit = Citpt, the budget constraint of
equation (4.4) can be written −lit ≤ −cit and we have the transformed maximization problem

max
cit

−cit +Φt

(
µM + (1− µ) δE1

t

[
cit

pt+1

pt

])
︸ ︷︷ ︸

V (cit)

. (C.2)

Equation (C.2) implies −1+ΦtV
′ (cit) ≤ 0 and ΦtV

′ (cit) = 1 if cit > 0. The inner maximization
denoted by M = maxQit≤

cit
zt

{
u (Qit) + δE1

t

[
(cit − ztQit)

pt+1

pt

]}
requires the unconstrained
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solution Q∗
t with u′B (Q∗

t ) − δE1
t

[
zt

pt+1

pt

]
= 0. The sellers’ program (4.5) implies u′B (Q∗

t ) =

δztE1
t

[
pt+1

pt

]
= 1 94.

Let c∗t = Q∗
t zt. Then if

(i) cit ≥ c∗t , a buyer demands all night market goods that the sellers provide, e.g., Q∗
t .

Due to uncertainty about the night good amount traded and as buyers do not inten-
tionally buy more coins than they want to exchange for night market goods, buyers
do not stake the additional coins and interaction effects are neglible. Then V (cit) =

µ
(
uB (Q∗

t ) + δE1
t

[
(cit − c∗t )

pt+1

pt

])
+(1− µ) δE1

t

[
cit

pt+1

pt

]
and therefore, V ′ (cit) = δE1

t

[
pt+1

pt

]
.

Eventually, the first order condition requires δΦtE1
t

[
pt+1

pt

]
≤ 1. Otherwise, demand for

coins would be unbounded.

(ii) cit < c∗t , the budget constraint within M is binding, e.g., Qit =
cit
zt

, since otherwise buyers
would just carry coins through the night market. This is costly as beneficial transaction
possibilities are given up at no cost reduction. In this case

V ′ (cit) =
µ

zt
u′B

(
cit
zt

)
+ (1− µ) δE1

t

[
pt+1

pt

]
. (C.3)

Given the properties of the utility function, i.e., strictly increasing and convex as well as
uB (0) = 0, −1+ΦtV

′ (cit) is strictly decreasing in cit ∈ [0, c∗t ]. Thus, for δΦtE1
t

[
pt+1

pt

]
< 1

with Φt > 0, there is an unique c̃ < c∗t satisfying ΦtV
′ (c̃) = 1.

Considering (C.3), it holds Φt

(
µ
zt
u′B

(
cit
zt

)
+ (1− µ) δE1

t

[
pt+1

pt

])
= 1 and with the condi-

tion from the sellers problem and the market clear, i.e., NBCit + St +At = NC
t , (4.6) is

obtained.

94In this situation, the buyer’s marginal utility and the seller’s marginal production cost are balanced.
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Appendix D

Climate Change, Energy Prices, and
the Returns of Proof-of-Work vs.
Proof-of-Stake Crypto Assets

This appendix includes additional information on and complementary results to Chapter 5.
Section D.1 provides a detailed description of the data processing with filtering, characteristic
descriptions and calculations as well as the application of the machine learning-based classifi-
cation techniques to enrich the data sample with respect to the design-related characteristics.
The asset pricing performance of the IPCA models is shown and discussed in Section D.2.
Section D.3 contains the identification of the periods of exuberant behavior (PEIAs). In Sec-
tion D.4, we show how we extended the Media Climate Change Concerns Index (MCCC) by
Ardia et al. (2023). Further, Section D.5 includes robustness considerations regarding the
design-related risk premiums and the relation between climate change concerns, energy prices,
and consensus risk.

D.1 Data Procession

D.1.1 Trading Data Procession, Filters, and Common Characteristics

As illustrated in Subsection 5.2.1, we implement several filters to eliminate errors in the data
and observations with fake or suspicious trading activity. However, calculating the charac-
teristics after having applied all filters significantly reduces the number of observations. By
combining these two steps meaningfully, we not only derive more reasonable characteristics
but also minimize the number of crypto asset-week pairs that are excluded unnecessarily. For
instance, applying our market capitalization filter of 1,000,000 U.S. dollars before calculating
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the average trading volumes over the last n days could significantly bias the true average trad-
ing volume. Therefore, we will provide a chronological overview of our data processing and
calculation of the common characteristics in the following.

1. We initially filter out all stablecoins and wrapped coins/tokens, i.e., the crypto assets
that are tagged as Algorithmic Stablecoin, Asset Backed Stablecoin, Asset Backed Token,
EUR Stablecoin, Stablecoin, Tokenized Gold, Tokenized Stock, USD Stablecoin, or Wrapped
Tokens by coinmarketcap.com.

2. We delete crypto assets on those days on which their market capitalization exceeds the
one of Bitcoin.

3. We exclude crypto asset-day pairs with a closing price equal to zero.

4. We eliminate all daily low (high) prices that are lower (higher) than 1% (10,000%) of
the opening and/or closing price. Thereby, we filter out those crypto asset-day pairs on
which the daily low and/or high price is unreasonable.

5. We determine the price-related characteristics. In detail, we establish maximum (mini-
mum) prices over the last n days and the closeness to those. Further, we use the remain-
ing open, high, low, and close prices to estimate bid-ask spreads as in Abdi and Ranaldo
(2017).95

6. We calculate the crypto assets’ returns for different time horizons. Further, we subtract
the respective risk-free rate, computed using the one-month Treasury bill rate, from the
calculated returns to determine excess returns.

7. We filter out unreasonable returns. In detail, we set daily (weekly, 2-week, 1-month, 2-
month, 3-month, 6-month) returns to NA if they are above 300% (1000%, 1500%, 2000%,
3000%, 6000%, 10000%)

8. We determine maximum returns over the last n days and compute the skewness and
kurtosis of daily returns.

9. We filter out crypto asset-day pairs associated with erroneous changes in the coin sup-
ply. We do so by calculating the daily return of the market capitalization and filter out
observations with returns above 500%.

10. We only maintain observations with a volume to market capitalization ratio smaller or
equal than 2. Thereby, we filter out pairs of potentially artificial trading volume

95We solely use the bid-ask spread to measure illiquidity. This is particularly due to the circumstance that
that the illiquidity measure of Amihud (2002) performs purely on the crypto market due to a reversed relation
between volume and liquidity (Brauneis et al., 2021). Investigating calculations of the Amihud (2002) measure
based on our data, we also find unreliable illiquidity levels. Extending our set of characteristics within the IPCA
analysis by the Amihud (2002) measure, we further investigate a poor model performance with respect to this
variable. Therefore, estimated bid-ask spreads remain the only liquidity characteristic in our IPCA analysis.

https://coinmarketcap.com
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11. We calculate the volume-based characteristics, i.e., average trading volumes, volume
shocks, and turnovers

12. We only maintain crypto asset-day pairs with associated trading volumes in excess of 10
U.S. dollars. We thereby ensure that small, isolated trades triggering unreasonable prices
changes remain unconsidered.

13. We filter out crypto assets on those days on which their market capitalization is below
1,000,000 U.S. dollars as in Liu and Tsyvinski (2021) and Liu et al. (2022).

14. We estimate the CAPM alpha and beta based on a 30-day rolling window. The mar-
ket return is calculated as the value-weighted average of all single crypto asset returns
available at each day. Further, we calculate the resulting idiosyncratic volatility as the
standard deviation of the residuals from the CAPM.

Table D.1 provides an comprehensive overview and detailed descriptions of the 25 common
characteristics used in our study. These characteristics can all be calculated solely from in-
formation on open, high, low, and close prices, trading volumes, and market capitalizations.
Within our IPCA analysis, they serve as the common characteristics next to the design-related
characteristics introduced in Subsection 5.2.2.

D.1.2 Design-Related Characteristics and Machine Learning-Based Classi-
fication

In Subsection 5.2.2, we introduce four design-related characteristics, namely Consensus, Coin,
Privacy, and Smart Contract. In the following paragraphs, we further delve into the construc-
tion of the characteristic variables relying on the tagging system of coinmarketcap.com. Fur-
thermore, recall that this tagging system is well-maintained for larger, well-known crypto assets
but lacks completeness for smaller, lesser-known crypto assets. As outlined in Subsection 5.2.2,
we address this data gap by using textual crypto asset descriptions. We apply suitable ma-
chine learning-based classification algorithms to these descriptions alongside the tagged data,
thereby classifying untagged observations. In the following paragraphs, we further describe the
approach to enrich the design-related characteristic data.

Consensus
To explore the impact of consensus-related risk premiums, it is essential to categorize crypto
assets based on their consensus mechanisms. To this end, we introduce the three label variables
PoW, PoS, and Other. Each crypto asset in our dataset is assigned a value for these variables,
allowing for a range between zero and one to account for the presence of hybrid consensus
mechanisms. The assignment process begins by grouping the tags from coinmarketcap.com
into seven tag groups, as detailed in Panel A of Table D.2. A crypto asset tagged with an

https://coinmarketcap.com
https://coinmarketcap.com
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Table D.1: Common asset characteristics

This table lists and describes the 25 common characteristics used in our analysis. They are all calculated
from only the information on open, high, low, and close prices, trading volumes, and market capitalizations as
provided by coinmarketcap.com.

Characteristic Description
Price Daily close price denoted in U.S. dollars
MaxPrice (week) Maximum daily close price over the last week (7 days)
MaxPrice (month) Maximum daily close price over the last month (30 days)

ClosenessToHigh (3-month) Ratio of daily close price to the maximum daily close price over
the last 3 months (90 days)

Mcap Market capitalization in U.S. dollars
TradeVol Weekly trading volume in U.S. dollars

AvgTradeVol Average daily U.S. dollars volume over the last 2 months (60
days)

TradeVolShock
Log average volume over the last week minus log average vol-
ume over the past month (30 days) scaled by the log standard
deviation as in Bianchi et al. (2022)

WeeklyTurnover
Ratio of average weekly U.S. dollars volume to U.S. dollars
market capitalization. This ratio is equal to trading volume
(in coins/tokens) over the coin/token supply

CAPM-β CAPM beta calculated on a 30-day rolling window. Market
portfolio is value-weighted portfolio of filtered data

CAPM-α CAPM alpha calculated on a 30-day rolling window. Market
portfolio is value-weighted portfolio of filtered data

Ivol Idiosyncratic volatility based on the standard deviation of the
residuals from CAPM calculation on a 30-day rolling window

AvgBidAskSpread (month) Monthly average of the “two-day” corrected bid-ask estimator
of Abdi and Ranaldo (2017)

WeeklyReturn Weekly return calculated from U.S. dollars close prices
MonthlyReturn Monthly return calculated from U.S. dollars close prices
3-MonthReturn Three-month return calculated from U.S. dollars close prices
LaggedWeeklyReturn Weekly return lagged by one week
Lagged2-WeekReturn 2-week return lagged by two weeks
MaxDailyReturn (month) Maximum daily return within the past month
MaxWeeklyReturn (month) Maximum weekly return within the past month
MaxWeeklyReturn (3-month) Maximum weekly return within the last 3 months
StdDailyReturn (month) Standard deviation of the last month’s daily returns
SkewnessDailyReturn (month) Skewness of the last month’s daily returns
KurtosisDailyReturn (month) Kurtosis of the last month’s daily returns
Age Number of days listed on coinmarketcap.com

https://coinmarketcap.com
https://coinmarketcap.com
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identifier from the first three tag groups will see its corresponding variable set to one, while
the other two variables are assigned zero values. For assets associated with hybrid tag groups,
the relevant variables are assigned fractional values of 1

2 (for hybrids between two categories)
or 1

3 (for hybrids among all categories), respectively. In situations where a crypto asset is
tagged with identifiers from multiple tag groups, we consider it as a hybrid version between
the consensus types for which at a least one tag is provided. In a final step, we ensure that the
sum of the three label variables for one crypto asset always equals one. This procedure leaves
us with a labeled subsample of 813 crypto assets with a value greater than zero in at least one
of the three label variables. Since the three variables are mutually exclusive, our approach also
generates negative observations (feature is not present). This enables the application of neural
networks to categorize the remaining coins out of the 22,460 crypto assets unlabeled regarding
consensus.96 To do so, we initially convert the crypto assets’ descriptions into numerical vectors
utilizing the embedding model text-embedding-ada-002 of OpenAI. Subsequently, we use the
resulting embedding vectors alongside the consensus label variables of the labeled subsample,
reformulated to the vector structure [PoW, PoS, Other Consensus], as input data for training
a neural network featuring two hidden layers. The first hidden layer incorporates 500 neurons,
the second one 300. Activation functions employed are ReLU (rectified linear unit) for the first
and the second layer and softmax for the final layer. We then apply the trained neural network
to classify untagged observations with respect to consensus, i.e., to ultimately determine the
value of the consensus label variables PoW, PoS, and Other for all unlabeled coins.

To evaluate the performance of our neural network, we randomly divide the tagged data into
training (90% of observations) and validation (10% of observations) subsamples. Applying
the neural network, as described, 100 times, the average percentage of correctly classified ob-
servations into the vector structure [PoW, PoS, Other Consensus] is 64.7%. Investigating the
misspecified examples, we observe that hybrid version are more error-prone. For instance, a
PoW-PoS hybrid network [0.5, 0.5, 0] is classified as PoW ([1, 0, 0]) or PoS ([0, 1, 0]) at times
and not always as its actual hybrid version. In this view, we contend that the performance of
our neural network is appropriate. Investigating our final, classified sample, the label variables
PoW, PoS, and Other have averages of 0.46, 0.48, and 0.06, respectively.

Finally, as we are interested in the distinctions between PoW and PoS crypto assets, for each
asset, we aggregate the three label variables into the Consensus characteristic. Consensus is
defined as the differences between the PoW and PoS label variables, scaled to range within 0
and 1. Consequently, a value of 0 in this characteristic variable indicates that the respective
crypto asset is PoS-based, while a value equal to 1 belongs to PoW crypto asset. Hybrid versions
are assigned with a value in between 0 and 1, dependent on the closeness of the mechanism to

96Note that we solely classify coins and exclude tokens. Tokens inherit the consensus mechanism from their
parent network’s crypto asset and consequently, we intentionally omit them from our analysis of consensus-
related risk premiums.

https://openai.com/
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either PoS or PoW.

Table D.2: Overview on tags from coinmarketcap.com

This table lists the tags which we retrieve from the tagging system of coinmarketcap.com and indicates the
mapping procedure. Panel A includes the tags associated with consensus-related characteristics. Panel B refers
to the other design-related characteristics.

Panel A: Consensus-related characteristics

Tag groups Tags from coinmarketcap.com
PoW CryptoNight, CryptoNight-Lite, Hybrid-dPoW&PoW, M7 POW, PoW,

PoWT
PoS Hybrid-PoS&LPoS, LPoS, PoS, PoS 2.0, PoS 3.0, PoS+, PoST, rPOS
Other PoA, PoC, PoI, PoP, PoSign, Proof-of-Authority
Hybrid PoW-PoS Hybrid-PoW&DPoS, Hybrid-PoW&nPoS, Hybrid-PoW&PoS
Hybrid PoW-Other -
Hybrid PoS-Other Hybrid-PoW&PoD, Hybrid-PoS&PoP
Hybrid PoW-PoS-Other Hybrid-PoS&PoW&PoT, Hybrid-PoW&PoM&PoSII

Panel B: Other design-related characteristics

Tag groups Tags from coinmarketcap.com
Coin Coin
Token Token
Privacy Bulletproofs, Privacy, Zero Knowledge Proofs
Smart Contract Smart Contracts

Other Design-Related Characteristics
Besides Consensus, we consider three additional design-related characteristics. First, we dis-
tinguish between coins and tokens. Every crypto asset in our sample is explicitly tagged as
either Coin or Token. The tags are mutually exclusive, enabling us to directly introduce the
design-related characteristic variable Coin which takes a value of either 1 (Coin) or 0 (Token).
Note that the tagging system of coinmarketcap.com is complete with respect to these two tags
which eliminates the need for additional post-processing. Second, we identify crypto assets that
particularly protect privacy by obscuring transaction details such as senders, recipients, and
amounts, thereby rendering it nearly impossible to trace users and their transaction histories.
We label a crypto asset with the value Privacy as 1 if any of the associated tags Bulletproofs,
Privacy, or Zero Knowledge Proofs is assessed. The third design-related characteristics iden-
tifies crypto assets with implicit smart contract support by employing the tag Smart Contracts.
These networks provide an essential platform characteristic enabling services and applications

https://coinmarketcap.com
https://coinmarketcap.com
https://coinmarketcap.com
https://coinmarketcap.com
https://coinmarketcap.com
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in the field of DeFi, among others. A crypto asset is labeled with the value Smart Contract as
1 if it fulfills this platform characteristic.

Recall the incompleteness issue of the tagging system maintained by coinmarketcap.com. In
contrast to the consensus-based variables, the design-related characteristics Privacy and Smart
Contract are not mutually exclusive, making the application of neural networks impractical
due to missing negative examples. Note that at this stage, the two design-related characteristic
variables have a value of 1 if the corresponding feature is present. A value equal to 0, indeed,
is equal to unlabeled data. In this view, we adopt the approach proposed by Elkan and Noto
(2008), which is specifically designed for scenarios in which labeled data is an incomplete set of
positive examples (feature is present) and unlabeled examples either being positive or negative
(feature is not present). Initially, we again generate embedding vectors from the crypto asset
descriptions utilizing the embedding model text-embedding-ada-002 of OpenAI. We then
train a support vector machine (SVM) classifier on the embedding vectors and the labels of
the crypto assets, treating the tagged data as positive examples and the unlabeled observations
as negative examples. We employ the SVM with a radial basis function kernel. Subsequently,
the trained SVM classifier is used to determine the probability of a data point being labeled
and the probability of a positive data point being labeled. Assuming that labeled examples are
randomly selected from positive examples, the probability that a sample is positive is obtained
by dividing the probability that an unlabeled sample is labeled by the probability that a positive
sample is labeled. This procedure, as proposed by Elkan and Noto (2008), such enables to finally
predict that an unlabeled sample is positive. Specifically, we consider a probability threshold
level of 0.5 for untagged crypto assets to be assumed to feature the respective design-related
characteristic. We use this approach to categorize the part of the data unlabeled with respect
to the characteristic variables Privacy and Smart Contract which proxy for the presence of the
corresponding design-related features.

To evaluate the performance of this classification technique, we apply the trained model to
the observations that are known to be positive, i.e., crypto assets with tags for the respective
design-related label variables. We find high hit ratios, attesting the resilience and reliability
of the approach. Specifically, for Privacy (Smart Contract), 79.67% (84.80%) of the positive
observations are correctly specified.

D.2 Asset Pricing Performance of IPCA Models

Similar to Kelly et al. (2019) (henceforth, KPS) and Kelly et al. (2023), we evaluate the
asset pricing performance for models with different numbers of principal components using the

https://coinmarketcap.com
https://openai.com/
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following metrics:
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where T i equals the respective number of non-missing observations for crypto asset i in our test
sample, and T is the total number of test months. R2

Total, R
2
TS , and R2

CS measure the total,
time-series, and cross-sectional variation of the returns explained by a model. The relative
pricing error (RPE) measures how well the differences in crypto assets’ average returns are
explained by a model. Table D.3 shows these metrics for models with different numbers of
principal components. Panel A presents the results based on our full set of characteristics
using individual crypto assets as test assets. The measures R2

Total, R
2
TS , and R2

CS increase with
the number of latent factors K. The RPE fluctuates for different Ks. We observe the lowest
values of 39.1% and 47.3% for K = 1 and K = 2, respectively, followed by 51.1% for K = 4.
Particularly, the RPE of the model with K = 4 appears as a low outlier compared to the
models that have a high explanatory power of individual crypto asset returns in terms of the
different R2-measures, i.e., among all models with K ≥ 3. The pattern of increasing R2s with
the number of principal components is consistent when using managed portfolios as test assets,
as shown in Panel B. For the managed portfolios, we observe a monotonically declining RPE,
the more principal components we allow the model to have, contrasting the bumpy pattern of
RPE for the single assets. We observe high R2s combined with a relatively low RPE for K = 4

principal components among the results of both Panel A, with individual crypto assets as test
assets, and Panel B, with managed portfolios as test assets. Inclusion of more than K = 4

principal components only marginally improves the performance and thus, we select the IPCA
model with K = 4 principal components as our main specification for the analyses that results
are presented and discussed in Subsections 5.3.3 and 5.3.4. However, we demonstrate in a set
of robustness tests in Appendix D.5.1 that our results are qualitatively similar regardless of the
number of principal components considered.

We also estimate asset pricing models without the four design-related features to evaluate
whether these characteristics are already spanned by the common characteristics. Comparing
the metrics for the model fits using only the common characteristics in Panels C (individual
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Table D.3: Out-of-sample performance of the restricted IPCA models

This table reports the out-of-sample asset pricing performance of the restricted IPCA models with K = 1, . . . , 7
latent factors. Specifically, we report total, time series, and cross-section R2, as well as the relative pricing
error. Panel A (C) show the results with individual crypto assets when (no) design-based characteristics are
considered. Panel B (D) present the results with managed portfolios as test assets when (no) design-based
characteristics are used. We estimated the models on a 3-year rolling-window basis starting week 7, 2016 until
week 2, 2023.

K
1 2 3 4 5 6 7

Panel A: Individual crypto assets, with design-based characteristics
R2

Total (%) 20.6 21.3 22.0 22.5 22.9 23.1 23.3
R2

TS (%) 30.1 30.9 31.6 32.1 32.6 32.8 33.0
R2

CS (%) 16.0 16.7 17.4 17.9 18.2 18.5 18.7
RPE (%) 39.1 47.3 53.1 51.2 55.6 53.3 51.7

Panel B: Managed portfolios, with design-based characteristics
R2

Total (%) 96.1 97.0 97.7 98.3 98.5 98.6 98.8
R2

TS (%) 18.6 37.0 51.2 64.2 68.3 70.8 73.7
R2

CS (%) 83.6 86.4 89.0 91.8 92.6 93.1 93.5
RPE (%) 13.0 6.7 3.1 1.9 1.8 1.3 0.8

Panel C: Individual crypto assets, no design-based characteristics
R2

Total (%) 21.2 21.9 22.6 23.2 23.5 23.7 23.9
R2

TS (%) 31.0 31.9 32.5 33.1 33.4 33.5 33.8
R2

CS (%) 16.3 17.0 17.7 18.2 18.5 18.7 19.0
RPE (%) 50.1 60.0 67.1 65.4 71.5 67.4 66.7

Panel D: Managed portfolios, no design-based characteristics
R2

Total (%) 95.9 97.1 97.8 98.5 98.7 98.9 99.0
R2

TS (%) 6.1 30.2 46.8 62.1 66.9 69.7 72.6
R2

CS (%) 83.1 86.2 89.2 92.5 93.2 93.9 94.4
RPE (%) 28.2 14.4 4.7 2.8 2.1 1.4 1.4

crypto assets) and D (managed portfolios) with their respective counterparts in Panels A and B
reveals that although the R2

Totals and the R2
CSs are consistently slightly larger for the reduced

set of characteristics, the designed-based features add significant information with respect to
explaining crypto asset returns, over and above the common characteristics, as evidenced by
the higher R2

TSs and most notably the much lower RPEs.

The IPCA version we consider in Chapter 5 is restricted by setting the intercept to zero. In
order to test the validity of this assumption, we show the in-sample asset pricing performance of
the restricted IPCA models with K = 1, . . . , 7 principal components and thereof, bootstrapped
p-values for the null hypothesis that the IPCA model intercept is equal to zero. In doing so,
we follow the procedure of KPS. The results are illustrated in Table D.4. For K ≥ 3, the
null hypothesis cannot be rejected at any conventional significance level. Note that again,
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the performance measures show a reasonable explanatory power with R2
Total in ranges around

25% and 95% for the cases with individual crypto assets and characteristic managed portfolios
as test assets, respectively. Also the RPE is reasonable small, particularly for the managed
portfolios.

Additionally, Table D.5 shows the out-of-sample performance of unrestricted IPCA models
with K = 1, . . . , 7 principal components. These models allow for intercepts in the central
IPCA Equation (5.1), i.e.,

ri,t+1 = αi,t + β′
i,tft+1 + εi,t+1, (D.1)

while αi,t is calculated as the product of the characteristics vector z′i,t and a mapping matrix
Γα. Γα is estimated simultaneously to the factors ft+1 and the matrix Γβ determining the
factor loadings βi,t with the characteristics vector z′i,t (see Equation (5.2)). We find that the
asset-pricing performance of the restricted models are superior compared to their unrestricted
counterparts, particularly with respect to the RPE. From these results, we conclude that the
intercept-to-zero restriction in our main specification is reasonable.

Table D.4: In-sample performance of the restricted IPCA model

This table reports the in-sample asset pricing performance of the restricted IPCA models with K = 1, . . . , 7
latent factors. Specifically, we report total, time series and cross-section R2, as well as the relative pricing error.
Panels A and B show the results with individual crypto assets and for the case that managed portfolios are
used as test assets, respectively. Panel C reports the bootstrapped p-values (200 simulations) for the test of
H0 : Γα = 0 as in Kelly et al. (2019). The data covers the period from week 7, 2016 until week 2, 2023.

K
1 2 3 4 5 6 7

Panel A: Individual crypto assets
R2

Total 24.2 25.7 26.6 27.2 27.7 28.2 28.5
R2

TS 31.7 33.0 33.7 34.4 34.8 35.1 35.3
R2

CS 17.8 18.6 19.5 20.1 20.5 20.8 21.1
RPE 37.3 48.3 53.3 53.1 51.3 48.6 48.6

Panel B: Managed portfolios
R2

Total 92.4 94.6 95.8 96.7 97.0 97.4 97.7
R2

TS 20.9 43.5 56.6 65.1 69.6 72.9 76.4
R2

CS 76.6 80.4 83.8 86.9 88.5 90.0 90.7
RPE 6.5 2.9 0.8 0.6 0.7 0.5 0.6

Panel C: Testing H0 : Γα = 0

p-value 0.00 0.00 50.50 50.50 50.50 15.00 96.50
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Table D.5: Out-of-sample performance of unrestricted IPCA models

This table reports the out-of-sample asset pricing performance of the unrestricted IPCA models with K =
1, . . . , 7 latent factors. Specifically, we report total, time series and cross-section R2, as well as the relative pricing
error. Panels A and B show the results with individual crypto assets when (no) design-based characteristics are
considered. Panels C and D present the results for the case that managed portfolios are used as test assets when
(no) design-based characteristics are used. We estimated the models on a 3-year rolling-window basis starting
week 7, 2016 until week 2, 2023.

K
1 2 3 4 5 6 7

Panel A: Individual crypto assets, with design-based characteristics
R2

Total (%) 1.7 11.3 19.1 20.1 20.8 21.4 22.3
R2

TS (%) 5.8 16.7 27.4 28.5 29.7 30.4 31.6
R2

CS (%) -14.9 -2.8 12.3 14.3 15.0 16.0 17.2
RPE (%) 863.2 824.2 288.2 220.5 220.2 187.1 129.3

Panel B: Managed portfolios, with design-based characteristics
R2

Total (%) 19.3 56.4 84.9 87.0 89.3 90.6 93.3
R2

TS (%) -0.5 -0.8 8.4 10.2 34.6 41.1 52.4
R2

CS (%) -368.0 -249.9 11.1 31.9 43.7 55.3 68.0
RPE (%) 1268.3 1087.0 452.9 360.6 377.5 256.7 116.9

Panel C: Individual crypto assets, no design-based characteristics
R2

Total (%) -39.9 -23.6 16.0 16.5 19.2 20.3 22.1
R2

TS (%) -47.4 -29.8 21.1 21.5 27.4 28.5 30.9
R2

CS (%) -85.8 -66.5 8.2 8.4 11.4 13.3 16.0
RPE (%) 1804.8 3607.0 776.3 713.8 621.3 549.3 311.2

Panel D: Managed portfolios, no design-based characteristics
R2

Total (%) -134.9 -74.8 71.8 73.2 83.4 86.6 92.5
R2

TS (%) -39.4 -26.4 -1.6 -12.2 24.9 36.2 51.4
R2

CS (%) -2276.2 -1994.8 -108.3 -116.3 -62.2 -24.8 31.2
RPE (%) 3001.4 8071.5 1934.2 1809.1 1665.4 1327.7 536.1
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D.3 Identification of Periods of Exuberant Information Arrival

Literature documented that the crypto market exhibited periods of exuberant information
arrival (PEIAs). Phillips et al. (2015) (henceforth, PSY) propose a method that enables to
identify multiple periods of exuberance within a time series of prices. This method is applied
by several other studies within the overall crypto market or subsets of it (Bouri et al., 2019a;
Corbet et al., 2018; Geuder et al., 2019; Hafner, 2020).97 It first tests for the presence of
exuberance behavior and then uses a recursive backward regression technique to identify the
start and the end date of these periods. The method generalizes the supremum Augmented
Dickey–Fuller (SADF) test statistic of Phillips et al. (2011). It considers the regression

yt = µ+ βyt−1 +
k∑

i=1

δrwβ∆yt−i + εt
98 (D.2)

and tests the null hypothesis H0 : β = 1 against the alternative hypothesis H1 : β > 1 which
indicates that the underlying time series contains an explosive root. PSY propose to use the
test statistic

GSADF (r0) = sup
r2∈[r0,1]

r1∈[0,r2−r0]

{
ADF r2

r1

}

to detect exuberance behavior. ADF r2
r1 denotes the ADF statistic obtained from regression

(D.2). After that the starting and end dates of the periods with exuberance behavior are
stamped using the backward GSADF (BSADF )

BSADFr2 (r0) = sup
r1∈[0,r2−r0]

{
ADF r2

r1

}
.

In detail, exuberance periods are defined by start date(s) r̂b and end date(s) r̂e according to

r̂b = inf
r2∈[r0,1]

{
r2 : BSADFr2 (r0) > scvαr2

}
and

r̂e = inf
r2∈[r̂b,1]

{
r2 : BSADFr2 (r0) < scvαr2

}
,

97For an overview about periods of exuberance in the crypto market, we refer to Kyriazis et al. (2020).
98The variables are defined and determined as follows. yt is the value of the price time series at time t. k

refers to the maximum number of lags; the number of lags is set according to the BIC. The rolling window
regression sample bases on the (fractional) window size rw = r2 − r1 starting with a fraction r1 and ending with
a fraction r2 of the total sample. OLS is used to estimate the model parameters µ, β, and δ.
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respectively. scvαr2 defines the 1−α critical value of the test statics based on the subsample r2.

We use this methodology to identify PEIAs in a value-weighted crypto market index calculated
from the final data (on a weekly basis and after application of the implemented filters described
in Appendix D.1.1). We use 500 simulations to determine the critical value sequence. As in
PSY, the initial window size is calculated by 0.01 + 1.8√

T
with T equal to the total number of

observations. Further, we define a PEIA to last more than one month, i.e., at least 5 weeks in
our sample. Figure D.1 presents the results of the GSADF test. In Subfigure D.1a, one can
observe that the BSADF sequence (black line) exceeds the 95% critical value sequence (red
line) twice for a time horizon for more than a month. The two PEIAs are gray-shaded and
cover the periods

(i) from October 13, 2020 (week 41) to May 20, 2021 (week 20) and

(ii) from October 7, 2021 (week 40) to December 2, 2021 (week 48).

As can be seen in Subfigure D.1b, the crypto market sharply increased to new all-time peaks
during these periods.

When extending the time horizon considered for the systematic premium discussion in our
main analysis, i.e., prior to week 7, 2019, we identify further PEIAs from February 2017 until
June 2017 and from late July 2017 until February 2018. These findings are consistent with the
aforementioned literature.

D.4 Extension of Media Climate Change Concerns Index

As our proxy for climate change concerns, we use the Media Climate Change Concerns Index
(MCCC) by Ardia et al. (2023) which is available up to the end of August 2022 only. To
investigate the relation between the consensus-related risk premium and the MCCC, we are
required to the extent the MCCC time series until the end of our investigation period, i.e.,
until January 18, 2023. In doing so, we first regress the 7-day moving average of the MCCC
on the weekly Google Trends score for the term Climate Risk considering all observations up
to August 31, 2022. The results of this in-sample regression are presented in Table D.6. In a
second step, we then predict the missing observations from September 2022 until the end of
our investigation period. Using the linear regression model from the first step and the Google
Trends scores for Climate Risk over this time span, we extend the MCCC time series for our
investigation period.

Figure D.2 graphically illustrates the 7-day moving average of the MCCC alongside the pre-
dicted time series from our regression approach. Albeit we observe lower total magnitudes for
the predicted time series, relative changes are little affected by these discrepancies.
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Figure D.1: Identification of periods with exuberant information arrival

This figure shows the BSADF sequence and the corresponding 95% critical value sequence of the index values in
Subfigure D.1a. We obtain the critical value sequence by Monte Carlo simulations and define exuberance periods
as those periods in which the BSADF exceeds the critical value more than a month (4 weeks). Subfigure D.1b
connects the identified periods of exuberant information arrival to the value of the value-weighted crypto market
index.

(a) BSADF test (b) Crypto market index

Figure D.2: MCCC vs. predictions

This figure shows the 7-day moving average of the MCCC alongside the predicted time series from our regression
approach.
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Table D.6: MCCC extension

This table reports the results of a linear regression, where the 7-day moving average of the MCCC is regressed
on the weekly Google Trends score for the term Climate Risk. Newey and West (1987) adjusted t-statistics are
given in parentheses. ∗ and ∗∗ indicate statistical significance at the 5% and 1% level, respectively.

MCCC
GT climate risk 0.01∗∗

(2.84)
Constant 0.76∗∗

(8.28)
Obs. 183
Adj. R2 0.13

D.5 Robustness

D.5.1 Design-Related Risk Premiums

IPCA bases on several specifications. In particular, the number of principal components have
a key role and potentially evince inconsistent results from the corresponding models. A higher
number of latent factors in the IPCA models can reveal additional effects that cannot be
captured by fewer latent factors (Fieberg et al., 2020), although at the cost of potentially
omitting an anomaly intercept. Against this background, we show the robustness of our results
with respect to a higher number of principal components in the this section.

Exemplary, Table D.7 presents the average weekly risk premiums for the restricted IPCA model
with K = 7 principal components. Figure D.3 graphically shows the corresponding trajectories
of the design-related risk premiums. Comparing the systematic risk premiums with those
obtained from our main analyses in Subsections 5.3.3 and 5.3.4, one finds that our results
remain similar. Regarding the Consensus risk premium, we find consistency in the signs of
the average risk premiums for the pre- and post-PEIAs periods. The total magnitudes are
somewhat less pronounced when K is higher and the time series are not significantly different
from zero. The positive risk premiums of Coin are observed constantly over the course of time
in the K = 7 IPCA model, again. While the economic magnitude is estimated to be a little
lower compared to the baseline results, the risk structure itself, however, remains untouched.
The circumstance that Privacy recently earns a risk premium compensating for regulatory
intervention risk persist for K = 7 principal components. Moreover, crypto assets featuring
smart contracts again exhibit a positive risk premium over their respective peers in the pre-
PEIAs period. Summarized, the robustness analysis with K = 7 principal components validate
the results from Chapter 5.
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Figure D.3: Robustness of design-related risk premiums

This figure shows weekly risk premiums of the long-short portfolios managed by the design-related characteristics
Consensus, Coin, Privacy, and Smart Contract. For Consensus, the portfolio is long in PoW-based crypto assets
and short in PoS networks. For the further characteristics, these portfolios are long in the crypto assets that have
the specific characteristic and short in the ones without this characteristic. Baseline model is the restricted IPCA
model with K = 7 latent factors. EWMA is the exponentially weighted moving average using the observations
of the current week and the preceding 51 weeks. Gray-shaded areas belong to PEIA periods.

(a) Consensus (b) Coin

(c) Anonymity (Privacy) (d) Smart Contract
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Table D.7: Robustness of risk premiums

This table shows the average risk premiums of the design-related characteristics resulting from the restricted
IPCA model with K = 7 latent factors. The values in columns (1) to (3) are obtained by taking the time series
average from the risk premiums of the portfolios that are long in the respective characteristic and short in the
inverse of the characteristic. All values are reported in % on an annualized basis. For (1), we consider the time
prior to the first PEIA period, i.e., from week 7, 2019 until week 41, 2020. (2) refers to the sample after the
second PEIA period, i.e., from week 48, 2021, until week 2, 2023. (3) includes the whole time horizon, i.e.,
from week 7, 2019 until week 2, 2023. Newey and West (1987) adjusted t-statistics for the null hypothesis that
the given value is equal to zero are given in parentheses. Column (4) reports the test statistics t of Welch’s
t-tests under the null hypothesis that the sample means of (1) and (2) are equal. ∗ and ∗∗ indicate statistical
significance at the 5% and 1% level, respectively.

Weekly risk premium in %Characteristic (1) Pre-PEIAs (2) Post-PEIAs (3) Whole sample
(4) Welch’s

t-test
Consensus -5.28 (-1.28) 7.60 (0.82) -3.67 (-0.54) -1.25
Coin 3.00 (0.57) 16.55 (2.60)∗ 0.94 (0.13) -1.69
Privacy 8.76 (0.76) 15.21 (4.02)∗∗ 24.05 (2.39)∗ -0.68
Smart Contract 26.45 (5.46)∗∗ 0.94 (0.21) 22.97 (4.10)∗∗ 4.33∗∗

D.5.2 Climate Change, Energy Prices, and Consensus Risk

Table D.8 shows robustness results for the multivariate regression relating the risk premium
of Consensus to environmental sustainability awareness, energy prices, and staking popularity.
We restrict some βs of regression (5.4) to zero and thereby only allow one proxy to account for
energy cost, environmental sustainability awareness, or staking popularity at a time. Such, we
control for our results’ robustness accounting for a potential dependency among these indepen-
dent variables. The results confirm the conclusions drawn within Subsection 5.3.3.
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