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Centralized Learning in Machine Learning
● refers to the traditional approach where all data 

is gathered and stored in a central location to 
train a machine learning model.

● involves collecting and combining data from 
multiple sources into a single dataset before 
training the model.
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Centralized Learning in Machine Learning: Challenges
● Data Flow Management: Manage the transfer of large volumes of diverse data 

quickly and accurately across different organizations.
● Scalability
● Communication Overhead
● Intense competition within the industry.
● Data Privacy: Ensuring compliance with strict data protection regulations, such 

as the GDPR1 and EU AI ACT2.
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1. https://gdpr-info.eu/ 
2. https://artificialintelligenceact.eu/the-act/ 

https://gdpr-info.eu/
https://artificialintelligenceact.eu/the-act/
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Federated Learning in Machine Learning
A method that facilitates multiple peers to 
collaboratively learn a common prediction model 
by exchanging model weights while keeping the 
sensitive data on the local devices
 ( Kairouz et al. (2021) and Khan et al. (2023))

4

Server

ML 
Model 2

ML 
Model 3

ML 
Model 2

ML 
Model 3

ML 
Model 2

ML 
Model 3

ML 
Model 2

Client-1 Client-3 Client-4 Client-5

Server

data-1 data-2 data-3 data-4 data-5

Client-2



22 | 04 | 2024 by K. Alibabaei

Examples of successful applications of FL
Google already used FL in Gboard Android:
When Gboard suggests a query, your phone stores 
context and interactions locally. Federated Learning 
uses this to improve Gboard's suggestions.
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https://research.google/blog/federated-learning-collaborative-machine-learning-withou
t-centralized-training-data/ 

https://research.google/blog/federated-learning-collaborative-machine-learning-without-centralized-training-data/
https://research.google/blog/federated-learning-collaborative-machine-learning-without-centralized-training-data/
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More Examples of successful applications of FL
● Apple has employed federated learning to improve Siri's 

voice recognition capabilities while maintaining user 
privacy1. 

● Predicting oxygen requirements for COVID-19 patients in the 
ER using chest X-rays and health recorde (Muto, R., et.al. 
(2022)).

6

1. https://www.technologyreview.com/2019/12/11/131629/
apple-ai-personalizes-siri-federated-learning/ 

Source: Holger R. Roth, et.al (2023)

https://www.technologyreview.com/2019/12/11/131629/apple-ai-personalizes-siri-federated-learning/
https://www.technologyreview.com/2019/12/11/131629/apple-ai-personalizes-siri-federated-learning/
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 Categories Federated Learning 

Federated Learning can be categorized as (Khan et al. (2023)): 
● Data distribution 

○ Cross devices: the model is decentralized across the edge devices and is trained using 
the local data on each device.

○ Cross silos: where the clients are a typically smaller number of organizations, institutions, 
or other data silos.

● Architecture
○ Centralized Federated Learning: server coordinates the training
○ Decentralized Federated Learning: the communication is peer to peer

● Learning model
○ Horizontal Federated Learning: each party has the same feature space but different data 

samples. 
○ Vertical Federated Learning: datasets of each party share the same samples/users while 

holding different features (Liu, Y., et al. (2023)). 
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Workflow in FL: Communication Strategies

● Scatter and gather: global model parameters are 
distributed to client devices for local training; 
updated parameters are then aggregated. 

● Cyclic Learning (Chang, K., et al. (2018)): the 
server selects a subset of clients. Training is 
done following a predetermined sequential order 
set by the server. 

● Swarm Learning (Warnat-Herresthal, S. (2021)): 
a decentralized subset of FL where orchestration 
and aggregation is performed by the clients
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Model Aggregation 
Model Aggregation in FL is a further development of distributed learning that is specifically tailored to 
the challenges of unbalanced and non-independent, non-identically distributed data (non-IID).

● FedAvg: Local weights are collected and aggregated again after local training, using weighted 
average.

● FedProx: Loss function added to penalize the local weights of clients deviating from the global 
model.

● FedOpt: Added option of using a specified Optimizer and Learning Rate Scheduler when updating 
the global model (like SGD to aggregate the weights of the model).

● Scaffold: Added correction term to the network parameters during local training by calculating the 
discrepancy between the global parameters.

● Ditto: is a method for federated learning that improves fairness and robustness by personalizing 
the learning objective for each device.
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Possible Issues with Federated Learning! 

Reconstruction attack (Truong et al. (2021)) :
● The original training data samples can be 

reconstructed from the model weights.
 

● membership tracing i.e., to check if a given 
data point belongs to a training dataset, or 
when a participant whose local data has a 
certain property, joined collaborative 
training.

Reconstructing an input image using the gradient.. On the left: 
Image extracted from the validation dataset. In the middle: 
Reconstruction generated by a ResNet-18 model trained on 
ImageNet Right: Reconstruction from a trained ResNet-152. 

Geiping, J. et.al, (2020)

Inferring that a participant whose local data has the property of interest has 
joined the training. Melis, L. et.al, (2019) 10
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● Data Anonymization : a technique to hide or remove sensitive attributes, such as
personally identifiable information (PII) (Narayanan, A.& Shmatikov, V.  (2008) ). 

● Differential Privacy (DP)1: 
○ It provides a formal definition of privacy by introducing noise to query responses to prevent the 

disclosure of sensitive information.
○ Differential privacy mechanisms include Laplace noise addition, exponential mechanism, and more.
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● Secure Multi-party Computation (SMPC) (Zapechnikov (2022)): is a cryptographic technique that 
enables multiple parties to jointly compute a function over their private inputs while keeping those 
inputs confidential. 
○ Example: Additive secret sharing

Ana Jorge Carolin
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12



22 | 04 | 2024 by K. Alibabaei

● Secure Model Aggregation (SMA): in 
the same way as SMPC, here, the 
server works with encrypted models in 
which the individual contributions of 
the clients remain unknown during the 
aggregation process

Solutions 
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Secure model aggregation using 
masked model. Figure from:  Lu, 
S., et.al. (2023). 
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● Homomorphic Encryption (HE) (Behera et al. (2020)): 
allows computations to be performed on encrypted data. 

○ Fully Homomorphic Encryption (FHE): allows to 
perform any number of operations.

○ Somewhat Homomorphic Encryption (SWHE): limits 
the number of operations that can be performed on 
encrypted data.

○ Partially Homomorphic Encryption (PHE):
 allows only one type of operation to be performed.

Solutions 
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Poisoning attacks on Federated Learning (Truong et al. (2021)) :

During model training in FL, participants can manipulate the training process by 
introducing arbitrary updates, potentially poisoning the global model.

Solution?
● Model Anomaly Detection

 (Fung, C., Yoon, C.J., Beschastnikh, I., (2018) and Jagielski, M., et.al. ( 2018)). 
● Not applicable when using secure model aggregation 

This problem needs more research

Another possible attack
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Model FL Frameworks 
 ● Flower1: 

○ is a flexible, easy-to-use and easily understood open-source FL 
framework. 

○ It is framework-agnostic meaning that nearly every ML model can be 
easily migrated to the federated setting.

○ Well-suited for research and study projects.
● NVIDIA Federated Learning Application Runtime Environment (NVFlare)2: 

○ NVFlare is a business-ready FL framework by Nvidia. 
○ It supports a variety of models, 
○ NVFlare is framework-agnostic.

1. https://flower.ai/
2. https://nvflare.readthedocs.io/en/main/ 
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https://flower.ai/
https://nvflare.readthedocs.io/en/main/
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Model FL Frameworks 
● TensorFlow Federated (TFF)1: 

○ Developed by Google
○ Specifically designed for compatibility with TensorFlow
○ Integrates smoothly with existing TensorFlow workflows

● PySyft/PyGrid2,3: a Python library for secure Federated Learning

○ Developed by OpenMined 
○ Compatibility with popular deep learning frameworks like 

PyTorch and TensorFlow

1. https://www.tensorflow.org/federated 
2. https://blog.openmined.org/tag/pysyft/
3. https://blog.openmined.org/what-is-pygrid-demo/ 
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https://www.tensorflow.org/federated
https://blog.openmined.org/tag/pysyft/
https://blog.openmined.org/what-is-pygrid-demo/
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Model FL Frameworks 

● Federated AI Technology Enabler (FATE)1: is an 
open-source Federated Learning platform developed by 
WeBank's AI Group.

○ Business-ready FL frameworks

○ The framework comes with a large number of modules

○ It has a backend for the Deep Learning libraries PyTorch 
and TensorFlow

1. https://fate.fedai.org/ 
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https://fate.fedai.org/
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Key Considerations for Federated Learning:

● Optimizing Client Selection:
○ Use techniques to improve the response efficiency of end devices.
○ Select customers based on data quality and reliability.

● Aggregation Algorithm Selection:
○ Choose the most suitable algorithms for data aggregation.
○ Consider scalability, efficiency, and accuracy of algorithms.

● Framework Customization:
○ Tailor framework selection to meet specific task requirements.

Conclusions 
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Key Considerations for Federated Learning:

● Security Enhancement:
○ Implement robust security measures for communication and data sharing.
○ Ensure encryption, authentication, and privacy-preserving techniques.

● Compliance and Ethical Considerations:
○ Adhere to data privacy regulations and ethical guidelines.

20

Conclusions 
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● Positive aspects of FL:
○ Data transferring minimization
○ Build a larger and more diverse dataset
○ Train a more general and global model
○ International collaboration

● Considerable aspects:
○ Security issues like model poisoning 
○ Biases and Fairness
○ Interpretability 

21

Conclusions 
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