AT SCC

Scientific
Karlsruhe Institute of Technology Computing Center

Speedup of Hyperparameter Optimization
in Propulate Using Approximative
Surrogate Models

Bachelor’s Thesis of

Vito Dierksen

at the Department of Informatics
Scientific Computing Center (SCC)

Reviewer: Prof. Dr. Achim Streit
Second reviewer: Prof. Dr. Bernhard Neumair
Advisor: Dr. Markus Gotz

Second advisor: Dr. Marie Weiel

25. November 2023 — 19. March 2024




Karlsruher Institut fiir Technologie
Fakultat fiir Informatik

Postfach 6980

76128 Karlsruhe






Abstract

Hyperparameter optimization (HPO) is a critical aspect in machine learning (ML)
that involves finding the most effective settings for a model’s non-trainable parameters,
which can significantly impact its performance. Automated approaches like Random
Search, Grid Search, Bayesian Optimization (BO), or evolutionary algorithms (EAs)
train the neural network (NN) over and over again, testing new hyperparameters
(HPs) every time. This is exceptionally compute-intensive, especially as newer models
get bigger and bigger.

Predicting the performance of HP configurations during the training process allows
for early termination of less promising configurations. This work introduces surrogate
models (SMs) into PROPULATE, a program designed for HPO in high performance
computing (HPC) environments. SM have access to interim loss values from each
evaluated NN’s training during the HPO and decide about stopping it early.

Evaluating static and probabilistic SMs for HPO in PROPULATE with different
datasets and NNs shows a significant decrease in total run time and energy consumption
while still finding a loss within small bounds of the best loss found without early
stopping.

The new SM implementation added to PROPULATE is universally usable. It enables
finding and developing more powerful SMs in the future.






Zusammenfassung

Hyperparameteroptimierung (HPO) ist ein kritischer Aspekt im Bereich des Maschi-
nellen Lernens (ML), der das Finden der effektivsten Konfigurationen fiir die nicht
trainierbaren Parameter eines Modells umfasst. Schlecht gewihlte Hyperparameter
(HP) haben einen erheblichen Einfluss auf die Vorhersageleistung des Modells. Au-
tomatisierte Ansétze wie Zufallssuche, Rastersuche, Bayes’sche Optimierung (BO)
oder evolutionére Algorithmen (EA) trainieren das neuronale Netzwerk (NN) viele
Male, um so unterschiedliche HP-Kombinationen zu testen. Dies ist auflerordentlich
rechenintensiv, insbesondere da neue NNs immer grofier werden.

Die Vorhersage der Performanz von HP-Konfigurationen wéhrend des Trainings-
prozesses ermoglicht eine friithzeitige Beendigung weniger vielversprechender Konfi-
gurationen. Diese Arbeit fiihrt sogenannte Surrogatmodelle (SMs) in PROPULATE,
ein fiir HPO in Hochleistungsrechenumgebungen konzipiertes Programm, ein. SMs
ermoglichen ein frithzeitiges Abbrechen des Trainings von NNs mit schlechten HP. Sie
konnen auf Zwischenverlustwerte des Trainings jedes NNs wihrend der HPO zugreifen
und entscheiden basierend auf diesen iiber dessen vorzeitigen Abbruch.

Die Untersuchung eines statischen und eines probabilistischen SM in PROPULATE
anhand verschiedener Datensétze und NNs zeigt eine signifikante Verringerung der
Gesamtlaufzeit und des Energieverbrauchs, wobei immer noch ein Verlust innerhalb
kleiner Grenzen des besten, ohne friithzeitige Beendigung gefundenen Verlusts erreicht
wird.

Die neu in PROPULATE integrierte Implementierung ist universell einsetzbar und
ermoglicht so den zukiinftigen Einsatz leistungsfahigerer SMs.
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1. Introduction

Recent advances in hardware and methodology have led to the development of large,
complex neural networks that demonstrate significant improvements in accuracy for a
variety of tasks. A pivotal factor in these advancements is automated hyperparameter
optimization.

Traditionally, the process of HP tuning is predominately manual, relying on the
expertise of human specialists to guess, test, and adjust HPs. This method involves con-
tinuous supervision, allowing interventions when certain configurations underperform.
However, not only is this approach time-consuming and reliant on domain-specific
knowledge, but it also does not scale well, especially as the complexity of NNs grows.

Automated HPO offers a promising solution to these challenges. Techniques such as
Random Search, Grid Search, and BO have been shown to deliver promising results
and good HP configurations [24, 5, 8, 33, 37, 4] while taking the human out of the
loop and even outperforming human experts [32].

Mimicking natural selection, EAs represent another class of optimization methods
that have shown the ability to find optimal or near-optimal solutions in complex search
spaces, surpassing other automated approaches [18] and human expert performance
[29]. One such program utilizing EAs is PROPULATE [36]. It will provide the basis for
this work.

Nevertheless, all prior HPO methods entail training the same network repeatedly
with different HPs, which consumes significant computational resources, meaning
these improvements come at a cost, both financially and environmentally. The energy
requirements for training state-of-the-art models are substantial, necessitating the use
of specialized hardware like GPUs or TPUs.

This not only increases the financial burden due to hardware and electricity costs
but also contributes significantly to the environmental impact in terms of carbon
footprint. For instance, running neural architecture search (NAS) on a transformer
model can result in a carbon footprint equivalent to approximately 284.019 kg of COsqe
[34]. These costs are further amplified when new models are developed, as the whole
process repeats itself.

Furthermore, the environmental cost is exacerbated by the fact that a significant
portion of the energy used is not derived from carbon-neutral sources. For example,
training on a Google cloud server with the newest GPUs located within the EU
requires using a server in the Netherlands [10] which only uses 57 % renewable energy
whereas the rest has a carbon intensity of 317 gCOge/kWh [6].

Moreover, not all HP configurations perform equally well. Aggregating the final
losses of all evaluated HP configurations from a PROPULATE HPO for classification of
the MNIST dataset with a convolutional neural network (CNN) and the CIFAR-10
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dataset with a residual neural network (ResNet) in Figure 1.1 shows that a significant
portion of HPs perform badly.

0.111
—e— MNIST Loss
—<— CIFAR Loss
0.101
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0.071 ' 1.0
0.06 1
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Figure 1.1.: Loss deciles from a PROPULATE HPO for a CNN classification of MNIST
and a ResNet classification of CIFAR with over 192 generations (32
generations per execution on two parallel workers over three different
seeds) each. Only the last / final average validation loss of a generation is
noted. There is a wide range between the best and worst observed losses.
In a best case scenario, only the top few generations are trained fully and
all worse performing ones are stopped early to speed up HPO.

This work aims to address this inefficiency by integrating an early stopping mecha-
nism into PROPULATE. The goal is to develop and test a surrogate-based approach
within PROPULATE that can predict the performance of HP configurations early in the
training process. This method aims to reduce computational resources by halting the
training of low-performing configurations, thus speeding up the overall optimization
process while still identifying high-performing HP sets effectively. Implemented SMs
are based on prior research that showed promising results predicting (bad performing)
loss curves [22, 35].

1.1. Structure of This Work

This work is structured so as to explore the application of early termination in HPO
through the development and evaluation of a corresponding extension in PROPULATE.
Chapter 2 delves into the foundations of HPO, introducing PROPULATE and presenting
various approaches of learning curve prediction. Chapter 3 discusses the concrete SMs,
detailing their working principles and practical implementation. Chapter 4 evaluates
PROPULATE’s performance using the different SMs, comparing the reduced run time
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against their achieved results and computational performance. Finally, Chapter 5
concludes by summarizing the findings, highlighting the contributions to PROPULATE,
and suggesting directions for future development.






2. Foundations and Related Work

This chapter introduces HPO in the context of NNs and presents different approaches
to it. After briefly explaining PROPULATE, an HPC-adapted program for large-scale
HPO, all necessary components for implementing early stopping will be outlined.

2.1. Hyperparameter Optimization Methods

HPO is a fundamental aspect of ML that involves selecting the best set of HPs for
a learning algorithm to maximize its performance on a given dataset. Unlike model
parameters that are learned during training, HPs are set before the training process
and control various aspects of the learning algorithm, such as the learning rate, the
model’s complexity, its number of hidden layers, or any other fixed parameter of the
network itself. The goal of HPO is to find the HP values that yield the most accurate
predictions, which is crucial because the choice of HPs can significantly impact the
model’s performance.

The process of HPO can be viewed as an optimization problem, where the objective
function to be minimized (or maximized) is often the model’s validation error (or
accuracy). One common approach is Grid Search, which trains and validates a model
on each possible HP combination on a predefined uniform grid of HP values within a
fixed range. Although straightforward, Grid Search can be extremely computationally
expensive, especially as the number of HPs and their possible values increase. Another
approach is Random Search, which samples HP values from a specified probability
distribution for a fixed number of iterations. Random Search is already more efficient
than Grid Search, especially when only a few HPs affect the final performance of the
model significantly [5].

Compared to Grid or Random Search, BO for HPO is a more efficient approach
that is particularly suited for scenarios where evaluating the objective function is
computationally expensive, such as training complex ML models [8]. Unlike Grid or
Random Search, BO uses a probabilistic model, typically a Gaussian processes (GP),
to predict and evaluate the performance of HPs in untested regions of the search
space, incorporating both prediction accuracy and uncertainty into its decision-making
process [33]. At its core, BO models the objective function (e.g., the validation error
of a machine learning model) using this probabilistic model. This method is adept at
balancing exploration of new HP areas with exploitation of known good configurations,
a feature facilitated by the use of acquisition functions like Expected Improvement
[31].

BO is particularly effective when the dimensionality of the HP space is manageable
and the cost of function evaluations is high [9]. It can significantly reduce the number
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of evaluations needed to find optimal or near-optimal HPs, often requiring fewer
iterations with better results than Grid or Random Search and even outperforming
human experts in some cases [8, 33, 37, 4].

Another class of techniques for HPO are EAs, which draw inspiration from the
process of natural selection and biological evolution. These algorithms work by
generating a population of candidate solutions (i.e., sets of HPs), and then iteratively
evolving this population over several generations to improve the performance of the
model. At each iteration, individuals in the current population are evaluated based
on a fitness function — usually, the model’s performance on a validation set. The best-
performing individuals are then selected to produce offspring for the next generation
through operations such as crossover (mixing HPs from two parents) and mutation
(randomly altering some HPs), with the aim of creating a new generation of solutions
that is better adapted to the optimization problem. Genetic algorithms (GAs) are a
subset of EAs, specifically designed to mimic the process of natural selection more
directly [3].

One of the key strengths of EAs in HPO is their ability to explore the search space
broadly and avoid getting trapped in local optima, a common problem in gradient-
based optimization methods. This characteristic stems from their stochastic nature
and mechanisms such as mutation and crossover, which introduce variability and allow
for the exploration of diverse regions of the search space.

EAs are particularly effective when the objective function is noisy, discontinuous, or
non-differentiable, as they do not rely on the gradient of the function being optimized.
This makes them suitable for HPO of complex ML models where the relationship
between HPs and model performance is a black box and thus not straightforward.

EAs can be easily parallelized, as the evaluation of each individual in the population
can be performed independently. This parallelism significantly reduces the time
required for HPO, making EAs a good option for problems with long training times.

The effectiveness of EAs for HPO has been demonstrated multiple times, they can
outperform traditional approaches like Grid Search or BO [18] and human experts in
many problems [29].

2.2. Propulate

PROPULATE is a massively parallel, population-based, general-purpose optimizer
specifically designed for HPC environments. Traditional parallel GAs are hindered by
the need for synchronization after each generation. PROPULATE omits this synchro-
nization, maintaining a continuous population of evaluated individuals, and allows
for asynchronous evaluation and propagation of populations. It features a message
passing interface (MPI)-based implementation with variants of selection, mutation,
crossover, and migration and is extendable with custom functionality. While PROPU-
LATE supports multiple populate-based optimizer, the GA is the only variant relevant
and utilized in this work. Hence, all future explanations will pertain solely to the GA.
Experimental comparisons with the HPO tool Optuna showed that PROPULATE is
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Figure 2.1.: PROPULATE figure from [36] showing the internal communication during
the optimization process. PROPULATE is run with MPI. For every copy
of PROPULATE started with MPI, a worker is created. Each worker
maintains a local population list of evaluated HP configurations, stored
as individuals (ind). Workers run for a specified number of generations.
In each generation and when using the GA, they breed a new individual
through selection, mutation, and crossovers. This new individual is
evaluated and then shared with the other workers on the same island.
Between these cycles, workers check for incoming individuals from other
workers running in parallel and integrate them into their own population.

significantly faster (up to three orders of magnitude) without compromising solution
accuracy, demonstrating the effectiveness of its asynchronous approach.

The core of PROPULATE’s functionality lies in its novel parallel communication
scheme, which is based on a fully asynchronous island model with independently
processing workers. This allows for massive parallelism and efficient use of parallel
hardware, minimizing idle times between evaluations. In Figure 2.1, the structure on
a single island (usually equivalent to a node) with multiple workers is outlined. The
algorithm leverages asynchronous propagation of continuous populations with inter-
woven worker-specific generations, avoiding explicit synchronization points. Workers
on each island process and maintain populations, breeding and evaluating individuals
and sharing results via MPI at the end of each evaluation for mutual population
updates. Individuals from parallel workers are collected and integrated into the local
population between evaluations. PROPULATE also implements asynchronous migration
or pollination between islands, enhancing genetic diversity and algorithmic efficiency
36].
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2.3. Learning Curve Prediction

Learning curve prediction is a technique in ML to forecast model performance over
time, offering insights into future accuracy and efficiency. It can play a significant
role in HPO by predicting the outcome of different HP configurations without fully
training the model, thus saving computational resources and time.

Various methods for learning curve prediction include extrapolation of early perfor-
mance metrics, Bayesian modeling, and the use of performance bounds. Each method
aims to estimate the final performance of a model based on initial training epochs.
These predictions allow for early stopping of unpromising training runs and focusing
computational effort on configurations likely to yield better results.

Probabilistic modeling with Markov Chain Monte Carlo inference or BO from early
training data offers a way to predict the full learning curve with high accuracy [7, 20].

A newer approach is using a prior-data fitted network, trained on common learning
curve benchmarks, for learning curve extrapolation. This significantly speeds up the
prediction process itself by only using a single forward inference, while still providing
accurate extrapolations of learning curves [2].

2.3.1. Surrogate Models

SMs are simplified representations or approximations of complex real-world systems,
used to reduce computational cost while retaining essential features of the represented
system.

These models operate by emulating the behavior of a more complex model or
system through a simpler, more computationally feasible framework. In optimization
problems like NN training, SMs can be used to predict the outcome without the need
for expensive and time-consuming full-scale models. They are particularly useful in
situations where the number of possible simulations is vast, and running the actual
model is impractical due to resource constraints.

SMs can be used in HPO to speed up the search for optimal ML model configurations.
By approximating the performance of a given configuration, SMs can efficiently guide
the search process towards areas that are likely to yield improved performance, thereby
reducing the number of expensive evaluations of the actual model and speeding up
the overall HPO process [15, 16].

2.3.2. Static Termination

This chapter introduces an approach known as static termination. It simplifies the early
stopping of underperforming training runs by comparing their performance against
predefined criteria, heuristics, or baselines, without the necessity for probabilistic
forecasting. While being very effective, the traditional BO approach can demand
significant computational resources and expertise in probabilistic modeling. Static
termination emerges as a practical alternative, offering a straightforward and easier to
implement method for early stopping.
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The static early stopping criterion in Lakhmiri and Le Digabel [22] utilizes a
baseline comparison approach. This involves comparing the performance of the
currently evaluated network against a baseline set by the best configuration so far.
The decision to stop early is based on whether the network’s validation scores are
within a predefined, problem-dependent error margin from the baseline.

Another approach established by Mahsereci et al. [25] eliminates the need for a
validation set. Instead of relying on local statistics of computed gradients to decide
when to halt the optimization process, the “Evidence-Based criterion” assesses if the
gradient represents noise from the dataset’s finiteness rather than conveying meaningful
direction for optimization. The Evidence-Based criterion allows the optimizer to use
all available training data.

Most approaches employ some kind of baseline comparison. However, there is no
necessity to explicitly define said baseline. In Hyperband Li et al. 23], the HPO begins
with a broad evaluation of numerous HPs with minimal resources before utilizing
a successive halving algorithm to systematically narrowing down the pool based
on performance metrics. Early stopping decisions are made adaptively, with lower-
performing HP configurations halted early to reallocate resources to more promising
candidates. This eliminates the need for a predefined error margin or baseline.

2.3.3. Termination with Bayesian Optimization

BO is a strategy for the global optimization of objective black-box functions that are
expensive to evaluate. It is particularly useful in ML for HP tuning, where evaluations
of the objective function, i.e., training and validating a model, are computationally
costly and time-consuming.

The core idea of BO is to model the objective function f (x) with a surrogate
probabilistic model, typically a GP, and then iteratively select new points to evaluate
by balancing exploration of the domain with the exploitation of current knowledge.
The decision on where to sample next is guided by an acquisition function, which is
derived from the posterior distribution of the surrogate.

A GP defines a distribution over functions, characterized by a mean function m (x)
and a covariance function k (x,x’), which together describe the relationships and
variations in the data:

f(x) ~GP (m(x),k (x,x)) (2.1)

The mean function m (x) provides an estimate of the objective function’s values
and thus a baseline expectation for its values across its domain, essentially offering an
initial guess before any observations are factored in:

m(x) = E[f (x)] (2.2)

The covariance function k (x, x”), also called kernel, defines the similarity or “close-
ness” between points x and x” in a GP. The choice of kernel function encodes prior
beliefs about the function being modeled and can drastically influence the GP’s
performance:
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k(x,x')=E [(f (x) —m(x)) (f (x') = m (x'))] (2.3)

Kernels can be combined in various ways to model different aspects of the data,
such as periodicity, linearity, or smoothness, allowing for the construction of complex,
composite kernels that can capture a wide range of behaviors in the data [30].

Prior work mostly uses Bayesian methods like Markov Chain Monte Carlo inference
to extrapolate learning curves, which has yielded good results [7]. Building up on this,
Bayesian neural networks have been used with even better results [21] on par with
prior presented approaches like Hyperband in subsection 2.3.2.

Freeze-Thaw Bayesian Optimization [35] is the main work directly using BO for
loss curve prediction. In this approach, two GPs are utilized to efficiently explore the
HP space by predicting the performance of ML models without the need to fully train
them. The first GP models the global trend of how model performance varies with
HPs, capturing the overall behavior across the entire HP space. The second GP models
the local training dynamics of individual models, predicting how the performance of a
model will evolve as training progresses. The setup allows the optimization process to
“freeze” models that are unlikely to perform well and “thaw” and continue training for
those with promising early performances, thus focusing computational resources more
effectively.

The local GP relies on a kernel designed to capture the training curves’ characteris-
tics, assuming an exponential decay pattern towards an asymptotic loss value.

The division into local and global GPs is primarily driven by the need to manage
computational complexity. GPs are computationally expensive, with a prediction com-
plexity of O (N 3) where N is the number of training observations. This computational
demand increases quickly for HPO settings dealing with multiple HP configurations
with many loss values each. If a naive approach were applied, where a GP model
encompassed every observed training loss over time with T training iterations per set-
ting, the computational complexity would be up to O (N3T3), making it prohibitively
expensive.

2.3.4. Ranking

In the context of HPO, ranking refers to the method of ordering or prioritizing
HP configurations based on certain criteria or metrics and allocate computational
resources to promising configurations. This can be extended to halt and eventually
resume or completely abandon past configurations. By evaluating and comparing
the performance or potential of each entity, ranking allows for the identification
and selection of the most promising or effective options. Ranking can be used as
standalone speedup technique or combined with other early stopping mechanisms to
focus resources on exploring and exploiting the most beneficial configurations.
Ranking does not necessarily need to create a complete order. With the prior
presented successive halving algorithm, it is sufficient to divide running configurations
in two categories, i.e., halt and continue. This method is especially efficient with a

10
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limited computational budget, as it maximizes the utilization of available resources
by ensuring only the most promising configurations receive extensive evaluation [23].

The “Freeze-Thaw Bayesian Optimization” paper introduces a ranking system based
on BO to forecast the eventual performance of HP configurations from their early
results. This system prioritizes configurations for further evaluation not merely on
current performances but on their predicted future outcomes, allowing for an early
stop of less promising configurations and the continuation of those with potential. The
resumption occurs when, upon re-evaluation, previously halted configurations show
promise based on updated predictions or when the optimization process necessitates a
broader exploration of the HP space [35].

Another approach is to create a pool of HP configurations and rank them directly
after creation before sequentially evaluating them from the highest to lowest rank.
The process is halted as soon as a candidate exhibits superior performance compared
to the current best, thereby ignoring the remaining candidates in the pool. This
approach favors fast improving configurations. Coupled with early-stopping SMs, this
strategy can significantly speed up HPO [22].

A disadvantage of ranking mechanisms is that they need to be integrated into the
HPO framework directly as they require a synchronized view on all running instances,
adding complex communication infrastructure, and — when future resuming should be
realized — access to control the HPO framework’s candidate creation and evaluation.
This means ranking is inherently incompatible with retrospectively added SMs without
altering big parts of the original program. As this problem especially halts true for
PROPULATE, ranking is not considered further in this work.

11






3. Approximative Surrogates

Chapter 2 outlined various approaches to HPO. The goal of this work is to bring and
test some of these methods to and in PROPULATE. Three steps are needed to achieve
this:

1. Introducing and implementing an early stopping mechanism to stop training in
PROPULATE. This is explained thoroughly in section 3.1.

2. Testing the implementation and giving a reference for future SM implementation
with two examples. Both are building on prior explained concepts and are
explained in section 3.2 and section 3.3.

3. Evaluating the SMs in the next chapter 4.

3.1. Implementation

3.1.1. Goals

Apart from the pure functional details, there are three major goals for the implemen-
tation of SMs in PROPULATE.

Firstly, PROPULATE should remain usable without any SMs. Users should be able to
run legacy code without any changes, requiring backwards compatibility. In addition,
future projects should be feasible without any knowledge of SMs. As the current
implementation of SMs depends on intermediate results of the loss function from each
individual evaluation, some optimization problems without iterative evaluations are
inherently incompatible with it and can not be speed up by SMs.

Secondly, the SMs should be as extensible as possible. The only limitation is the
information given during training runs as the surrogate method calls can not be
changed. However, users should be allowed to control every aspect within the SMs.

Lastly, the SMs should be easy to use. Users should be able to employ SMs without
any knowledge of their inner workings and integrate them into their projects with
minimal effort. The implementation of the models itself is exempt from this goal as
simplicity can come into conflict with extensibility.

Further implementation details are discussed in the following sections and will refer
back to these goals to show how they are achieved.

3.1.2. Propulate Implementation

To illustrate the implementation of SMs within PROPULATE, the subsequent explana-
tion follows the path of a surrogate through the PROPULATE code.
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3. Approximative Surrogates

@ Propulator

O surrogate : Surrogate

© __init__ (..., surrogate_factory)
N \
P
o @ YourSurrogate

0..1
]
@ Surrogate A/\

© __init () : wvoid

@ start_run(ind: Individual) : void
@ update(loss: float) : void

@ cancel(loss: float) : bool

@ merge(data: T) : void

@ data() : T

Figure 3.1.: Inside the PROPULATE core functionality is only a fully abstract
Surrogate class. Concrete subclasses have to be implemented by
the user or externally provided, here depicted as “YourSurrogate”.
Propulator , the class that handles the processes’ local population,
creation of new individuals, and actual training can hold exactly one SM
in a class variable. It gets initialized with the passed down surrogate
factory as shown in Code snippet 2.

The first step is to create an SM itself. This is done by creating a class that inherits
from the abstract Surrogate class and implements all abstract methods. Everything
else inside the class is up to the user, allowing for maximum flexibility in future SMs
and effectively ensuring the second goal.

SMs are structured as abstract classes comprising five essential methods. Ini-
tially, the method start_run() is invoked once immediately after breeding a new
configuration, which is stored as an individual and passed as an argument. After
completing the evaluation of this individual, the update () method is called to
mark the conclusion of the training and convey the final loss value. Throughout the
iterative training phase, the cancel () method is called at periodic intervals with
intermediate loss values. This particular step is crucial as it determines the decision
for early stopping based on the given losses. To synchronize SMs across the MPI
processes, the methods data() and merge () are used to export and import all
relevant surrogate data at any given time, enabling synchronization at any moment
without predefined checkpoints.
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3.1. Implementation

A more detailed insight into two possible SMs and their implemented methods is
given in section 3.2 and section 3.3.

The only limitation for SMs is that the actual calls to the SM can not be changed as
they are defined within PROPULATE’s core functionality. During ind_loss () runs,
the SM thus has to work with only the prior given information plus the repeatedly
yielded intermediate loss itself.

islands = Islands( # Set up island model.

surrogate_factory=lambda: YourSurrogate (args: your_args),

Code Snipped 1: A surrogate factory is given as an argument to create Islands during
the PROPULATE configuration. This can be as simple as defining a
lambda or passing the __init__ () method. Additionally, possible
surrogate specific arguments in the constructor are defined here.

PROPULATE is usually run with MPI so it has multiple processes running in parallel.
Each process maintains its own population and runs independently from the others.
To keep the resulting asynchronous nature of PROPULATE, each process needs to
create its own instance of the SM. Accordingly, the first step is to create a factory
function that returns a new instance of the SM to be passed to the Islands class
constructor as illustrated in code Code snippet 1. The Islands class is instantiated
by the user and the main entry point for PROPULATE with its evolve () method.
Because the factory function is created outside of PROPULATE and the only place
where the SM constructor is defined, the user can override the default surrogate
constructor with additional arguments. From the Islands class, the surrogate factory
is then passed down to the Propulator class, which handles the population, generating
new individuals and evaluating them. There, a new SM is created as shown in Code
snippet 2.

class Propulator:

def _ init__ (
surrogate_factory: Callable[[], Surrogate] = None,
) —> None:
self.surrogate = None if surrogate_factory is None \

else surrogate_factory ()

Code Snipped 2: The surrogate factory is called within Propulator’s __init__ () at
the start of PROPULATE. Each Propulator (i.e., each process) has
its own instance of an SM.
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3. Approximative Surrogates

When _evaluate_individual () is called, Propulator checks whether the loss
function is a generator (see Code snippet 3). This preserves PROPULATE’s original
functionality, allowing the loss function to be implemented as a conventional function,
which is the main reason for achieving the first goal. Only if the loss function is a
generator and an SM is given, its cancel () method is called with the new interim
loss value. When the model decides to cancel the run, the loss function is stopped
and the last yielded loss value is returned as the final result. Lastly, update () is
called to signal the SM that the run has finished (see Figure 3.2).

class Propulator:

def _evaluate_individual (self) —> None:

if inspect.isgeneratorfunction(self.loss_fn):
last: float = 0.0
for last in self.loss_fn(ind):
if self.surrogate is not None:
if self.surrogate.cancel (last) :

break
ind.loss = last
else:
ind.loss = self.loss_fn (ind)

Code Snipped 3: If the loss function is a generator and a local SM exists, its
cancel () method is called any time the generator yields a new
loss value. The else block evaluates the loss function exactly like
before, making it possible to not use any SMs.

Once the evaluation is complete, the final loss is communicated back to the surrogate,
where it can be incorporated into its inner model. It is important to note that each
process operates with its own surrogate. Despite this individualized approach, there
is still a necessity to synchronize the processes. Otherwise, different surrogates would
find the same best configuration multiple times. To streamline this synchronization
without introducing error-prone and challenging-to-test additional communication
code, the surrogate is simply attached to the Individual. The Individual inherits from
Dictionary, making it easy to append the data here. This Individual, along with
its attached surrogate data, is then sent to the other PROPULATE processes via the
already implemented MPI communication as depicted in the last loop in Figure 3.2.

The receiving side of this process is shown in Figure 3.3. The existing code to check
for incoming individuals from other processes is again just extended. If and only if
surrogate data is stored with the incoming individual, the new data is merged into
the receiving processes’ own SM.
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Propulator ‘ MPI.Comm ’ ‘ Surrogate Model ’ ‘ Individual

_evaluate_individual ()

i

|

|

|

1
) .

alt ) [Surrogate Model is lised]

start_run (ind)

Evaluate ind_loss (ind)

alt / [Surrogate Model is used]

update (loss)

|
|
L )
+
T
1

alt / [Surrogate Model is used]

data ()

[

[

[

[

r

[
add surrogate data to ind

T

[

loop /) [over ranks in communicator]
[

>
|

send (ind)

1 1

Propulator ‘ MPI.Comm Surrogate Model ’ ‘ Individual

Figure 3.2.: Sequence diagram for all important calls during the
_evaluate_individual () execution. Each green box repre-
sents new code introduced along with the SMs and conditionally called
when the latter are used. Details of the “Evaluate ind_loss () ” step are
shown in Code snippet 3. In the end, the SM is appended to the newly
created and evaluated Individual that is then sent to the other processes.
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18

Propulator MPI.Comm

’ ‘ Surrogate Model

_receive_intra_island_individuals ()

.

loop /) [incoming individuals]
recv () |
>,
ind_temp :
______________________________________________________ |
T
alt /) [Surrogate Model is used and ind_temp contains surrdgate data]

I
merge (ind_temp) [

| >

. .

Propulator MPI.Comm

Figure 3.3.: Sequence diagram for the receiving side of sending individuals to the
other Propulators on the same island. Shown is the first part of the

’ ‘ Surrogate Model

_receive_intra_island_individuals () method. The green box is

the added code that checks if a local SM exists and the incoming individual
has surrogate data attached to it. If this is the case, merge () is called
to synchronize the local SM.




3.1. Implementation

3.1.3. User-Side Implementation

At the core of PROPULATE’s user-defined functionality is a loss function that handles
creating the NN with the given HPs and running the training plus validation for the
predefined number of epochs. Thus, users have fine-grained control over what happens
during training. The newly added SMs interfere exactly here. The loss function
can now be implemented either as conventional function returning the final average
validation loss or as generator yielding interim loss values. This adaptability allows
PROPULATE to behave unchanged in absence of a surrogate while at the same time
giving the flexibility to cater to as many potential surrogate models as possible.

Only when the loss function is implemented as a generator, PROPULATE activates
its SM mechanism. As the only value yielded is the loss, SMs have to autonomously
generate unique identifiers for each yielded value if a running index is needed. This
means it is crucial to maintain regularity in the yield points within the loss function.
Irregular yielding can disrupt the indexing process of some SMs, potentially leading
to inaccurate predictions (see 3).

A simple example of this is shown in Code snippet 4. The average validation loss is
yielded once per epoch. As this quantity is usually calculated anyway, this approach
would require the user to change only one line of code. It should be noted that
depending on the number of epochs in the training process, this could be too few or
too many yields and the frequency of yield should always be adjusted accordingly.

def ind_loss(
params: Dict[str, Union[int, float, strl],
) —> Generator[float, None, None]:

# ...

for epoch in range (epochs) :

# ...

# Validation loop
# ...
for batch_idx, (data, target) in enumerate (val_loader) :

avg_val_loss = total_val_loss / len(val_loader)
yield avg_val_loss

Code Snipped 4: Example illustrating where to put a possible yield in ind_loss ()
during the training process. At the end of every epoch, the average
validation loss will be yielded.

The SMs require careful handling due to their potential computational intensity.
Excessive yielding, especially with complex models, can lead to significant processing
demands. To steer the creation of new HPs even more towards the already successful
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3. Approximative Surrogates

configurations, the last yielded loss value is considered the definitive result of the run
even if the process is terminated prematurely.

limits = {
"conv_layers": (2, 10),
"activation": ("relu", "sigmoid", "tanh"),
"lr": (0.01, 0.0001),

}
propagator = get_default_propagator (

# ...
limits=limits,
# ...

)

islands = Islands(
loss_fn=ind_loss,

+ surrogate_factory=lambda: DefaultSurrogate(),

# ...

)

islands.evolve (
# ...
)

def ind_loss/(
params: Dict[str, Union[int, float, strll],
+ ) —> Generator[float, None, None]:

Code Snipped 5: User-side PROPULATE surrogate configuration for the exemplary
use case presented in subsection 4.2.1. Lines differing from usage
without SM are highlighted in green.

As clearly illustrated in Code snippet 5, the adjustment required to configure
PROPULATE with SMs on the user side is minimal. Specifically, after incorporating
the yield into the training process, only a single line needs to be modified so as to
add the surrogate factory as an argument. This streamlined approach ensures that
users can easily integrate and leverage the functionality of SMs without the need for
extensive modifications to their existing setup.

3.2. Static approach

The first SM implementation provided is based on the 2022 publication “Use of Static
Surrogates in Hyperparameter Optimization” by Lakhmiri et al. [22]. It introduces
two mechanisms to speed up HPO, i.e., firstly the early stopping of poorly performing
candidates and secondly a ranking strategy to allocate more computational resources
to well performing HPs.
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Error margin
—— Best run
—— Completed run
—— Stopped run

Loss

Epochs

Figure 3.4.: Static Surrogate explanatory graphic. When the SM gets a new loss value
from an active training run, it compares the value to an existing baseline,
called the best run (in blue). Around the best run is a relative dynamic
error margin. When a new loss lies above the error margin, like the end
of the red line, the training run is stopped. When it is inside, like the
solid part of the green line, the training run continues.

The implementation for PROPULATE only considers the early stopping mechanism
as ranking would need a deeper integration within PROPULATE to not only stop but
also start new training runs with specific HPs.

In the outlined method, the early stopping decision is based on the comparison of
a candidate’s performance against a predefined baseline, which represents the best
performance observed so far. This candidate is adjusted with a dynamic error margin,
allowing for some flexibility in performance variance. The training of networks that
do not meet this criterion is stopped early, ensuring only candidates with a realistic
chance of surpassing the baseline continue to consume resources.

This functionality can be fitted into the abstract Surrogate class. Firstly, the
surrogate needs to gather a baseline, making the first training run after starting
PROPULATE always run through completely. During the second and all following
training runs, the static surrogate has to keep track of the current training run’s loss
series. Should it turn out to perform better than the baseline in terms of the final
training loss, the baseline is replaced with the current training run’s loss series. The
start_run () call in the beginning resets the current loss series. During the training
run, cancel () continuously stores and checks the newest loss value against the loss
in the baseline at the exact same point and cancels according to the prior condition.
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3. Approximative Surrogates

Error margin
® Bestrun
—— Completed run
® Prediction completed
—— Stopped run
® Prediction stopped

Loss

Figure 3.5.: Dynamic Surrogate explanatory graphic. When the SM gets a new loss
value from an active training run, it feeds this value into its local GP
and predicts the final loss. This loss minus the variance of the results is
compared to an existing baseline, called the best run (in blue). Around
the best run is an error margin. When a new predicted loss minus its
variance lies above the error margin, like the red dot corresponding to
the predicted loss of the red line, the training run is stopped. When it is
inside, like the variance bars of the green dot that overlap with the error
margin, the training run continues.

3.3. Probabilistic approach

The second SM implementation is inspired by the early stopping mechanism presented
in the 2014 publication “Freeze-Thaw Bayesian Optimization” by Swersky et al. [35].

The implementation of the dynamic surrogate differs from Freeze-Thaw Bayesian
Optimization as the exact details are complicated and no usable implementation is
provided by the authors. While keeping the general structure of two separate GPs,
the implementation for the dynamic surrogate mainly diverges by choosing slightly
different kernels for the global and local GP. The provided dynamic surrogate uses
a combination of a Matérn 3/2 kernel with a white noise kernel for the global GP
and a combination of a Matérn 5/2 kernel with a white noise kernel for the local GP.
It keeps the prior mean for the local GP drawn from the global GPs prediction for
the new model. Additionally, an error margin for the prediction of the local GP is
introduced.

The general implementation is quite similar to the prior static surrogate in section 3.2.
Over the complete run time of PROPULATE, the best final loss of any training run
is kept. As there is no prior loss to draw from for a prediction during the first
generation, cancel () effectively only collects loss values and never stops until the
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second generation. The loss margin is multiplied with the final (predicted) loss to
decide on stopping a run. The implementation for the dynamic surrogate differs in
the actual stopping algorithm.

The global GP is created in __init__ () of the dynamic surrogate. When calling
start_run () , the global GP makes a prediction for a loss with the new HPs. The
prediction is then used as a constant prior mean for the local GP. During each
cancel () call, the local GP is optimized with the new loss value. Afterwards, it is
used to make a prediction for the final loss of the currently running configuration. A
decision to stop is made based on whether the predicted loss minus variance overlaps
with the best final loss observed so far. This behavior is depicted in Figure 3.5. Here,
the red loss curve represents a stopped training run as its predicted loss is far from
the best run. The green curve corresponds to a to be completed run as the final loss
prediction minus variance is well within the error margin of the best run.
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4. Evaluation and Discussion

This chapter explores how the prior presented SMs perform. They are benchmarked
with different NNs (section 4.2) and datasets (subsection 4.1.2) under various metrics
such as run time, best found loss, hardware utilization and energy consumption
(section 4.3) using PROPULATE.

4.1. Environment and Setup

4.1.1. Computational Environment

The experimental evaluation was conducted on virtual servers provisioned from IBM
Cloud, specifically the gx2-16x128x2v100 virtual server instance. This instance

provides 16 virtual CPUs, 128 GiB of RAM, and two NVIDIA V100 GPUs with 16
GB of memory each.

Version
Operating System Ubuntu 22.04.3 LTS
Kernel 5.15.0-1046-ibm
Python 3.10.12
MPI OpenMPI 4.1.2
PyTorch 2.2.0+cul2l
NumPy 1.26.4
NVIDIA Driver 535.154.05
CUDA 12.2

Table 4.1.: Software versions of all important components used. The other specific
Python package versions can be obtained from the requirements.tzt in the
GitHub repository under the ibmcloud branch (Appendix A).

4.1.2. Datasets

The MNIST [28] dataset is a collection of handwritten digits. It consists of 60,000
training images and 10,000 testing images, each a 28 X 28 pixel grayscale image of
a single digit. The CIFAR-10 [26] dataset is a set of 60,000 32 x 32 photo-realistic
color images in 10 classes, with 5,000 training and 1,000 testing images per class.
Both MNIST and CIFAR-10 belong to the most popular and widely used datasets
for benchmarking and developing various types of neural network architectures and
learning techniques [27].
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4.1.3. Seed Variation

PROPULATE runs are inherently not reproducible, i.e. the underlying communication
infrastructure of HPC can behave non-deterministically. Nevertheless, to make runs
of PROPULATE more reproducible, a seeding function is called before initializing
PrRoPULATE. This function takes a seed as an input argument and standardizes the
initialization across Python, Numpy, and PyTorch environments to ensure the same
initial conditions across all runs.

PROPULATE is called with MPI and usually runs multiple processes on a single
node. Initializing each process with the same seed would result in the exact same
result for every process, nullifying any advantage gained through the parallel execution.
To account for this, each seed is multiplied by the current MPI rank, making seed
values passed to the seeding function different on each process while still remaining
reproducible.

Multiple seeds allow to mitigate the impact of “lucky” seeds that could bias results
[17, 14]. Averaging outcomes across these seeds can neutralize randomness and
provides a more accurate assessment of the SMs’ impact on optimization efficiency.

Specifically, PROPULATE runs are conducted with three distinct seed values of 42,
271, and 3141. If not stated otherwise, further results in this chapter are always
averaged over these seeds.

4.1.4. Metrics Logged
4.1.4.1. Logging Training Results

Training results are directly written to a comma-separated values (CSV) file from the
surrogates. For this, a new method _log_to_csv(...) is introduced to each SM.
This method writes all relevant fields into a CSV and is called at the beginning of
cancel () . Additionally, new surrogate class variables are introduced to keep track
of the dataset, rank, epoch, individual, and the own surrogate name. To avoid write
conflicts, each process (rank) logs into its own file. This approach intentionally leaves
the code inside PROPULATE itself unchanged as modifying PROPULATE code would
be more error-prone and SMs have a more narrowly confined environment. The final
results from all 18 runs are collected into a single CSV as described in Table 4.2.
The field “avg_validation_loss” has to be calculated at the end of each epoch as:

total_validation_loss

avg_validation_loss = (4.1)

len(validation_loader)

4.1.4.2. Logging System Metrics

System metrics like the total run time and estimated COse are collected with PERUN.
PERUN is a tool specifically designed to efficiently gather usage statistics from CPU,
GPU, memory, and other hardware components, which can then be used to calculate
energy cost and COge from current local prices and carbon intensity [11].
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Table 4.2.: Collected training metrics for each PROPULATE run via direct writes to a
CSV. Unambiguous identification of a result works through the combination
of rank, surrogate, generation, epoch, dataset, and seed. All results are
merged in a single CSV which is why time cannot be used as an index.
Note that HP configurations can also appear multiple times and are not
interchangeable with generation.

Header Type Description

time float  Local unix time

rank int MPT rank

surrogate string “default”; “static”, or “dynamic”
generation int PROPULATE generation

epoch int Epoch

paramsID string Hyperparamter configuration
avg_validation_loss float  Average validation loss

dataset string “mnist” or “cifar”

seed int 42, 271 or 3141

Results are given in a short written, human-readable evaluation as plain text file
and a detailed evaluation with all measured data points in a md5 or json format. All
relevant data to evaluate the SMs can be found in the provided text file, meaning that
the detailed evaluation is not used. The results are collected via a regular expression
and then merged into a single CSV as specified in Table 4.3.

4.2. Neural Networks

The following two NNs are implemented in PyTorch and use its default build in loss
functions, optimizers, and activation functions.

4.2.1. MNIST Classification

A CNN is used for the MNIST dataset classification. To enable a direct comparison
between a version with and without SMs, the network architecture is the same as in
the PROPULATE GitHub repository tutorial torch_example.py (see section A).

The network initiates with an input layer designed to process 28 x 28 pixel grayscale
images, matching the MNIST dataset’s single input channel. The convolutional layers
are configurable with the number of layers ranging from two to ten (Table 4.5). Each
convolutional layer has a kernel size of 3 x 3 and is followed by an activation function,
selectable from ReLU, Sigmoid, or Tanh (Table 4.5). Following the convolutional
layers, the network has a fully connected layer that maps the flattened convolutional
features to ten output nodes, corresponding to the ten classes of the MNIST digits (0
through 9). The last HP is the learning rate which varies between 0.01 and 0.0001
(Table 4.5).
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Table 4.3.: Collected system metrics and estimated energy / COsgeq for each PROPU-
LATE run via PERUN. Unambiguous identification of a result works through
the combination of dataset, surrogate, and seed. The server hostname is
not an identifying attribute.

Header Type Description

dataset string “mnist” or “cifar”

surrogate string “default”, “static”, or “dynamic”
seed string  “s42” “s271”, or “s3141”

server string  Server hostname

run time float ~ Total run time in seconds

energy float  Total energy in MJ

power float  Average power consumption in watt
cpu_util float  Average CPU utilization in %
gpu_power float  Average GPU power consumption in watt
gpu_mem float  Average GPU memory utilization
mem_util float ~ Average memory utilization

kwh float  Estimated kWh used

kgco2e float  Estimated COse equivalent in kg
price float  Estimated price of electricity

Stochastic gradient descent is used as optimizer. The training runs with a batch
size of 32 and through ten epochs in total. The loss function is cross entropy loss
(Table 4.4). The seed is set externally as described in section 4.1.3.

Table 4.4.: Training parameters for MNIST classification with small CNN

Parameter Value
Batch Size 32
Epochs 10
Optimizer SGD

Loss functi

on CrossEntropyLoss

Table 4.5.: Hyperparameters to optimize for MNIST classification with small CNN
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Hyperparameter Range

convolution_layers 2 to 10

activation
learning_rate

relu, sigmoid, and tanh
0.01 to 0.0001




4.2. Neural Networks

4.2.2. CIFAR-10 classification

For the CIFAR-10 classification, a ResNet [13] is employed. The ResNet implementa-
tion for this use case is based on [1]. It has a nine-layer structure as described in [12]
and thus will be called ResNet9 in the following.

The network starts with an initial convolutional block, followed by a sequence of
increasing channel-size convolutional blocks, some of which include pooling to reduce
spatial dimensions. It has residual connections in two sections, after the second and
fourth convolutional block. The model concludes with a classifier that consists of
a max-pooling layer and a fully connected layer to output predictions across the
CIFAR-10 classes. Gradient clipping is used during training.

HPO runs over the learning rate from 0.01 to 0.0001 and a permutation of the layers
in the convolution block (Table 4.7). The permutation reorders the Conv2d, Batch-
Norm2d, and ReL.U layers according to the permutation of the current configuration
as shown in Code snippet 6. The permutation is given as an enum with six possible
values “ABC”, “ACB”, “BAC”, “BCA”, “CAB”, and “CBA” where each letter stands
for one of the layers. “ABC” is the original sequence of the layers.

Shuffling is done intentionally to worsen the network’s performance for some configu-
rations. As no configuration performs particularly bad (Figure 4.5), this change results
in a wider spread between loss curves of different configurations. This is expected to
facilitate the analysis of the behavior of SMs.

layers = shuffle_array (
[nn.Conv2d (in_channels, out_channels,
kernel_size=3, padding=1),
nn.BatchNorm2d (batch_norm_in),
nn.RelLU(inplace=True) ], perm)

Code Snipped 6: Shuffling within a convolutional block in the ResNet9. The parameter
perm refers to one permutation as described in Table 4.7. The
function shuffle_array () rearranges the given array according
to this permutation.

The Adam optimizer [19] with weight decay is used. Training uses a batch size

of 32 and runs through 10 epochs in total. The loss function is cross entropy loss
(Table 4.6).

Table 4.6.: Training parameters for CIFAR classification with ResNet9

Parameter Value
Batch size 32
Epochs 10

Optimizer Adam
Loss function CrossEntropyLoss
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Table 4.7.: Hyperparameters to optimize in CIFAR classification with ResNet9

Hyperparameter Range

Permutation abc, ach, bac, bca, cab, cbha
Learning rate 0.01 to 0.0001

4.2.3. Naming

As MNIST and CIFAR-10 classification is implemented with only one network each,
the names are used interchangeably. In the following results and figures, classification
with the CNN on MNIST as described in subsection 4.2.1 is referred to as MNIST,
while classification with the ResNet9 on CIFAR-10 as described in subsection 4.2.2 is
referred to as CIFAR.

4.3. Surrogate Comparison

4.3.1. Default Surrogate

The overhead introduced by using SMs in PROPULATE might slow down parts of the
program. Comparing the two SMs introduced in chapter 3 against an implementation
without any SM bears the risk of skewing run time measurements and the calculated
speedup. That is why a third default SM is introduced as a baseline. This default
SM implements all methods of the abstract Surrogate class but does nothing. Its
cancel () method always returns False so it will never stop a training.

SMs are referred to as Default for the default SM or DefaultSurrogate, Static (as
described in section 3.2) and Dynamic (as described in section 3.3) in the following.

4.3.2. Run time Comparison

The evaluation of the proposed SMs starts with an analysis of the total run time of
PROPULATE across the datasets and SMs. This initial step aims to discern efficiency
improvements provided by SMs when applied to different datasets. No or statistically
insignificant speedups would require fine-tuning the SMs, as further analyses would
not provide any interesting insight compared to the default. The other comparative
metric captured is the best loss found for each SM. Large discrepancies between the
best found loss possible and the actually found best loss would make the presented
SMs unsuitable for further use outside this evaluation.

As shown in Figure 4.1, a significant reduction in run time was observed across all
surrogates and datasets. To quantify these improvements, the speedup achieved by
employing an SM is calculated with respect to the default SM:

Run time of default
Run time of SM

Speedup = (4.2)
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Figure 4.1.: Total PROPULATE run time vs. the best loss for each SM. Lower is better
for both.

A speedup of 2.8 was achieved for the MNIST dataset using a static surrogate,
and a speedup of 3.3 for the CIFAR dataset under the same surrogate conditions.
Conversely, the dynamic SM achieved a speedup of 1.1 for the MNIST dataset and a
speedup of 7.6 for the CIFAR dataset, highlighting a pronounced variance in efficiency
gains, particularly with dynamic surrogates. Between the seeds, the difference in run
time varies at most by a factor of 1.6 between the fastest and slowest PROPULATE run
for the static surrogate on MNIST and at the very least by a factor of 1.01 between
the fastest and slowest PROPULATE run for the dynamic surrogate on CIFAR. This is
also apparent when looking at Figure 4.2.
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Figure 4.2.: Total run time for every PROPULATE run by dataset, surrogate, and seed.

The speedup metrics reveal a relatively consistent performance for the static SM
across datasets, whereas a notable disparity is observed with dynamic surrogates,
underscoring the impact of SM selection on computational efficiency. Across both
MNIST and CIFAR datasets, the SMs identify the same best loss values. However,
these are not the optimal loss values that could potentially be achieved without the
use of surrogates with the same PROPULATE parameters.
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Surrogate Seed Loss Surrogate Seed Loss
42 0.037786 42 0.501943
Default 271 0.041425 Default 271 0.493513
3141 0.041318 3141 0.465373
42 0.042974 42 0.507385
Static 271 0.045274 Static 271 0.496207
3141 0.041318 3141 0.465373
42 0.041796 42 0.507385
Dynamic 271 0.043200 Dynamic 271  0.496207
3141 0.041318 3141 0.465373

(a) MNIST (b) CIFAR

Table 4.8.: Lowest loss for every PROPULATE run, split by seed, grouped by dataset and
SM. The row with the lowest loss for each dataset-surrogate combination
is highlighted.

This behavior does not differ when looking at the different seeds on their own. The
shown discrepancy reveals a limitation in the SMs’ ability to identify the absolute
best loss consistently, with the actually found loss being 8.5% and 0.05 % higher
for MNIST and CIFAR, respectively. Despite this, the total numerical difference for
MNIST is minimal, suggesting that the found loss was already approaching the lower
bounds of the optimization potential.

Considering the minimum loss found by every seed individually in Table 4.8, this
becomes clearer: The best loss found for CIFAR is the same across all SMs for the
seed 3141. That mean that for some seeds the best loss is found, but not for all. SMs
introduce a slight increase in variability for the performance over different seeds.

4.3.3. Stopping Behavior

A closer examination of the SMs reveals their varying effectiveness across different
scenarios. Firstly, it is crucial to determine the exact point when each SM stops. This
is illustrated in Figure 4.3, which shows the final epoch of each generation, delineated
by dataset and SM type. When an SM terminates a run at, e.g., epoch 2, this is
counted towards the epoch 2 tally but not for epochs 0 or 1.

By design, the default surrogate does not halt prematurely, allowing all training runs
to conclude at epoch 9. The static SM exhibits consistent behavior across datasets,
predominantly halting after two epochs (mode at epoch 1), with few exceptions before
or after this point and rarely allowing runs to complete. The dynamic SM, acting
more aggressively in its approach, stops either immediately at the first epoch or not at
all. This aggressive stopping behavior is especially noticeable for the CIFAR dataset,
where almost all runs are terminated early, in stark contrast to the MNIST dataset,
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Figure 4.3.: Last epoch of every generation by dataset and SM.

which sees fewer stopped runs and consequently a longer run time as evident from
Figure 4.1.

Further analysis focused on the instances where training was halted and identifying
the runs that were allowed to complete. Figures 4.4 and 4.5 provide insight into all
observed loss curves, highlighting the top-ten runs from the default surrogate as a
benchmark. These runs are marked in green across all SMs, though their performance
varies with each model. The interruption of a run leads to different loss values being
given to PROPULATE compared to those from completed runs, causing a divergence
in the generation of new HP configurations from the default surrogate. Consequently,
not every green marked run of the default surrogate appears for the other two SMs.

The MNIST classification reveals a categorization of loss curves into four distinct
groups, i.e., those with consistently high loss, those that start high but improve over
time, those that start low but do not improve further, and those that start low and
keep getting lower. While it would be the most beneficial to let the second and last
group run completely, both SMs effectively halt the first two groups early but struggle
to identify runs that start low and do not improve over time.

The CIFAR classification presents a different scenario, with a clear division between
the best performing curves and the rest, accompanied by numerous outliers not fully
depicted in Figure 4.5. Here, the dynamic surrogate’s aggressive stopping policy
contrasts with the static surrogate’s more uniform behavior, which tends to stop runs
after two epochs.

Lastly, the median loss values at the point of interruption offer concrete insights.
Figures 4.6 and 4.7 compare these values against the best performing run for each
surrogate. Here, only the loss at the epoch of termination of each training run
contributes to the median for that epoch. The static surrogate’s median losses trace
the best run’s curve from a distance, indicating an error margin that narrows as
the median loss approaches the best run’s performance. Interestingly, for MNIST
at epoch 3, the median stopped loss dips below that of the best run, attributed to
an earlier /parallel run with lower loss. The dynamic surrogate, in contrast, exhibits
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Figure 4.4.: MNIST loss curves. Left default surrogate, middle static surrogate,
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and right dynamic surrogate. The ten lines with the best final average
validation loss for the default surrogate are colored green. For the two
other surrogates, corresponding lines with the same generation, rank, and
seed are colored green as well. Because PROPULATE’s HP configuration
generation diverges, these do not necessarily look the same. Loss curves
that only have one value, i.e., training runs stopped after epoch 0, are
shown as points, all others are shown as lines.
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Figure 4.5.: CIFAR loss curves. Left default surrogate, middle static surrogate, and
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right dynamic surrogate. The ten lines with the best final average vali-
dation loss for default surrogate are colored green. Lines with the same
generation, rank and seed are colored green in the other two surrogates.
Because PROPULATE’s HP configuration generation diverges, these do
not necessarily look the same. Loss curves that only have one value, i.e.,
training runs stopped after epoch 0, are shown as points, all others are
shown as lines.



4.3. Surrogate Comparison
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Figure 4.6.: Median loss at the last epoch over all early stopped generations for the
static surrogate by dataset. As a reference, the best generation with the
lowest final loss is shown in blue.
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Figure 4.7.: Median loss at the last epoch over all early stopped generation for the
dynamic surrogate by dataset. As a reference, the best generation with
the lowest final loss is shown in blue.

a more aggressive approach, stopping only runs with very high values for MNIST.
In contrast, the median loss at epoch 0 in CIFAR closely matches that of the static
surrogate but without any stops beyond that point.

This analysis showcased the significant impact that SMs can have on the handling
of different loss curve distributions, influenced by the distinct characteristics of the
datasets. Note that subsection 4.3.2 did not deal with potential differences in outcomes
between the SMs, as they ultimately identified the same optimal loss. The presented
stopping behavior analysis revealed the nuances of their stopping mechanisms amidst
varying loss curve distributions.

4.3.4. Hardware Utilization

The next section investigates the hardware utilization efficiency with SMs, particularly
focusing on whether these models introduce a significant overhead. Figure 4.1 reveals
that all SMs actually reduced the run time, indicating an overall positive net gain
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Figure 4.8.: Average run time for a full generation in seconds per SM.

in efficiency. However, what happens when an SM does not halt any run while still
performing its computation for cancellation? At best, such a behavior does not
(significantly) influence the total run time. This becomes especially pertinent when
considering SMs designed to be less aggressive in stopping, as the benefits of early
stopping might be negated by increased run time per generation.

For this, the most interesting metric is the run time per generation. This is depicted
in Figure 4.8, which shows the sum of the average run time from the end of the
second epoch to the end of the last (ninth) epoch and the average run time between
generations, i.e., the time from the end of the last epoch of a generation to the end of
first epoch of the following generation.

There is a run time increase across all datasets and SMs with one exception. The
run time on the MNIST dataset increased by 22 seconds (6.8%) and 37 seconds (11.4%)
for the static and dynamic surrogate, respectively. Conversely, for the CIFAR dataset,
there is an increase of 13 seconds (3.3%) for the static surrogate, while the dynamic
surrogate sees a decrease of three seconds (0.6%). The latter observation for the
CIFAR dataset’s dynamic surrogate is caused by missing data, since there are almost
no runs that actually finish as shown in Figure 4.3.

There are two potential positions where SMs could slow the execution of a gener-
ation down: firstly when calling the cancel () method, and secondly between the
generations when calling update () and start_run() .

Considering the impact of cancel () , SMs can acquire more data with increasing
number of generations, which could potentially slow down the training process. This
slowdown could particularly be noticeable with the dynamic surrogate, which requires
retraining of the local GP with each new loss value. However, the run time comparison
across the second to the last epoch in Table 4.9 shows that the SMs do not significantly
slow down the training process. For both SMs, the minimum differs by less than one
second for CIFAR and by no more than ten seconds for MNIST. At the maximums,
both SMs perform even better than the default options, with minimal differences in
average run time, suggesting no overall slowdown during training and a negligible
impact.
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Surrogate Dataset Min Max Average
Default MNIST 235.936632 307.739633 280.089069
CIFAR 337981799 345.684469 341.822665
Static MNIST 246.271889 296.196918 279.490288
CIFAR 337.935431 343.411871 340.746359
Dynamic MNIST 238.372108 302.594393 270.896124
CIFAR  337.763292 342.326477 340.203104

Table 4.9.: Run time in seconds from epoch 1 to 9 for one generation, excluding the
time for the first epoch and between generations.

Surrogate Dataset Min Max Average
Default MNIST 26.255368 91.172827  39.606222
CIFAR  39.047258 44.357307  40.643902
Static MNIST  26.529503 329.466086 62.141974
CIFAR 38.770828 340.248937 54.342863
Dynamic  MNIST 26.850699 335.423860 85.366121
CIFAR  39.065605 43.886204 39.691245

Table 4.10.: Run time in seconds between generations from the last epoch of the prior
generation to the end of the first epoch of the next generation.

Considering the computational complexity of the start_run() or update ()
methods, it is important to assess the run time between generations, in particular
because some PROPULATE runs with SMs do not complete many late full generations.
Table 4.10 reveals minimal differences in minimum run time between epochs but
significant disparities in maximum and average run time. While the minimum differs
by not more than one second across datasets and SMs, there appear to be large
differences for maximum and average values. The average for CIFAR more than
doubles for the dynamic surrogate, adding 45 seconds. The biggest differences appear
in the maximum value, jumping from 44 seconds to 340 seconds for the static surrogate
on CIFAR. This increase is just 40 seconds shy of the run time for the nine other
epochs combined (Table 4.9).

This discrepancy is largely due to a bug in the current implementation affecting
parallel processing, causing delays that falsely inflate the perceived run time between
generations. PROPULATE is called with MPI to run two processes for each GPU.
When one process finishes early, the data-loader falsely waits for the other process to
finish after each generation, causing the big increase. When working properly, there is
only a negligible difference as can be seen in the maximum for the dynamic surrogate
on CIFAR, which only differs by one second from the default. The original code can
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Figure 4.9.: Average CPU utilization in percent and memory utilization in total
memory used by PROPULATE by dataset and surrogate.
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Figure 4.10.: Average GPU power in watt and memory utilization in GB by dataset
and surrogate.

be found in an release (see Appendix A) but the bug is fixed in newer commits, as
well as inside the original PROPULATE repository.

Lastly, GPU usage statistics, as shown in Figure 4.10, indicate a slight decrease
in average GPU power for both surrogates across datasets. The only exception is
the CIFAR dynamic surrogate, which is expected behavior following the results from
Table 4.10. This finding is corroborated by Figure 4.9, which shows an increase in
CPU and memory utilization across surrogates and datasets. However, the impact
remains negligible on modern hardware as the CPU utilization went up by less than
0.05% pt. and the ram utilization by less than 5MB. Note that SMs as implemented
here run fully on the CPU and increase its utilization, so for more complex SMs or
more generations the hardware has to be scaled accordingly.

4.3.5. Energy Consumption and COsqe

HPO can demand significant energy as explained in the motivation in chapter 1.
PERUN can track GPU as well as CPU power consumption. However, Figure 4.9
indicates no substantial rise in CPU and memory usage which only leaves GPU power
consumption as interesting metric. GPU utilization remained relatively unchanged, as
shown in Figure 4.10. Thus, power consumption reductions are not to be expected on

38



4.3. Surrogate Comparison

these accounts. Expected reduction in power consumption are only to be attributed
to a reduced total run time (Figure 4.1). Perun’s COge calculations are based on
the current average network carbon intensity [11]. Since the carbon intensity for all
experiments was the same, there is a linear relationship between used kilowatt hours
(kWh) and COge. According to Figure 4.11, across different datasets and SMs, both
energy consumption and COge showed a decrease.
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Figure 4.11.: Energy consumption and emitted COge for complete PROPULATE runs
by dataset and SM. Kilowatt hours and COse are linearly related to
each other as electricity carbon intensity for all runs was the same.
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5. Conclusion

This work aimed to integrate early stopping mechanisms into the HPC-adapted
optimizer PROPULATE so as to reduce the computational resources required for
large-scale HPO and thus the environmental impact for obtaining powerful state-
of-the-art NN models. The presented implementation of SMs within PROPULATE
has demonstrated substantial potential for speeding up HPO. This conclusion is
derived from the evaluation and comparison of these SMs across different classification
problems, seeds, and early stopping mechanisms.

SMs, specifically static and probabilistic approaches, were tested to predict per-
formance and terminate unpromising training runs early. The evaluation showed
that both tested SMs significantly reduced the total run time of PROPULATE for all
presented classification use cases of the MNIST and CIFAR datasets. Specifically,
the static SM consistently demonstrated a speedup between 2.8 and 3.3, while the
dynamic SM exhibited variable performance with particularly notable efficiency on
the CIFAR dataset with a speedup of 7.6 but only 1.1 on the MNIST dataset. At the
same time, the average loss obtained was within small margins of the loss that would
have been found without SMs. With some seeds, the SMs even found this best loss.

Integrating SMs into HPO frameworks like PROPULATE paves the way to a signifi-
cant increase in computational efficiency, which is critical given the environmental
and financial costs. It constitutes a major contribution to reducing the COge and
computational cost associated with HPO research.

Despite these promising results, the SMs also introduced new challenges. Both
the static and dynamic model showed aggressive stopping behaviors that overlooked
configurations that would have performed well if allowed to train longer. Additionally,
the variations in speedup across different NNs and datasets indicate that further
refinement and context-specific tuning of the SMs is necessary to optimize their
effectiveness for any new dataset, presenting a kind of chicken-and-egg problem:
Effective tuning of an SM requires data that can only be obtained by running the
model, yet the desire is to avoid extensive model runs without an efficiently tuned SM
in place.

Future research could focus on refining these SMs, particularly on enhancing the
dynamic model’s ability to balance between terminating early and allowing potentially
successful configurations to train sufficiently. Exploring additional SM architectures
and incorporating more complex decision-making algorithms, like a prior-data fitted
network for predicting learning curves as a way to bootstrap SM performance as well
as other BO approaches, could also improve SM performance and applicability and
overcome the chicken-and-egg problem.

While this work employed a generator-based approach for SM integration into
PROPULATE, an alternative method using callbacks offers more flexibility in retrieving
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additional, more nuanced, and detailed metrics from the ind_loss function during
training. Such an approach would necessitate a more complex setup by users potentially
excluding researchers with limited programming experience from using PROPULATE.
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A. Appendix

Supplementary Information
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Code

The exact version of the code used for this work can be found as release on the
PrROPULATE fork by vtotiv. The linked branches in Table A.1 are updated to
incorporate some bugfixes that improve the performance, thus will not replicate the
same results presented in chapter 4.

Link Description

github.com/Helmholtz-Al-Energy /perun PERUN

github.com/Helmholtz-Al-Energy /propulate PROPULATE
github.com/vtotiv/propulate/tree/ibmcloud PROPULATE with SMs with results
github.com/vtotiv/propulate/tree/bwcloud ~ PROPULATE with SMs on BwUniCluster2.0

Table A.1.: Code Links

Tools

The following section declares how and where noteworthy tools were used in this work.

The bibliography is auto-generated by Zotero.

ChatGPT (GPT-4) was used to help create the Python code to create Figure 1.1,
the two explanatory graphics Figure 3.4 and Figure 3.5, and all figures in chapter 4.
ChatGPT (GPT-4) was used on every text for spell, grammar, and style checking and
to correct unnecessary and avoidable repeating words and sentences.

The abstract was initially translated from English to German using DeepL.
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