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Abstract  Graphics processing unit accelerators 
have become a widespread technology on modern 
high performance computing clusters for increasing 
the performance of scientific computing algorithms. 
Despite early efforts to adopt linear solvers that uti-
lize graphics processing units for OpenFOAM, to this 
date no widely accepted approach has gotten trac-
tion. In recent years, the number of different vendors 
providing graphics processing units accelerators has 
grown, and as of the writing of this paper, no com-
monly accepted, unified approach to leverage accel-
erators exists. This makes platform-portable solutions 

to increase the efficiency of graphics processing units 
offloading techniques desirable, and an important 
research topic. In this work, we investigate a plat-
form-portable solution using the Ginkgo sparse linear 
algebra library.

Keywords  Computational fluid dynamics · 
OpenFOAM · Ginkgo · GPU offloading · Linear 
solver · Platform-portability

1  Introduction

To serve the ever-increasing demand for computing 
power, general purpose graphics processing units 
(GPUs) have become an integral part of most high 
performance computing (HPC) leadership systems. 
In most cases, the GPUs are of the discrete server 
type that are attached to the nodes as co-processors, 
and provide the lion’s share of the compute perfor-
mance. Here, the GPU plays the role of an accelera-
tor. In some HPC systems, the host central processing 
units (CPUs) are left with the task of orchestrating the 
communication. As a consequence, CPUs with less 
compute power than what was present in the CPU-
only HPC systems of the past can be used. Initially, 
NVIDIA was the sole vendor that developed GPUs 
for general-purpose computing, complemented with 
a general programming framework, named CUDA. 
Nowadays, leadership HPC systems like Aurora and 
Frontier are equipped with GPUs from Intel and 

All the authors equally contributed to this work.

G. Olenik (*) · M. Koch · Z. Boutanios 
Scientific Computing Center, Karlsruhe Institute 
of Technology (KIT), 76128 Karlsruhe, Germany
e-mail: gregor.olenik@kit.edu

M. Koch 
e-mail: marcel.koch@kit.edu

Z. Boutanios 
e-mail: ziad.boutanios@kit.edu

H. Anzt 
School of Computation, Information and Technology, 
Technical University Munich (TUM), 80333 Munich, 
Bavaria, Germany
e-mail: hartwig.anzt@tum.de

H. Anzt 
Innovative Computing Lab, University of Tennessee 
(UTK), Knoxville, TN 37996, USA

http://crossmark.crossref.org/dialog/?doi=10.1007/s11012-024-01806-1&domain=pdf
http://orcid.org/0000-0002-0128-3933
http://orcid.org/0000-0003-2177-952X


	 Meccanica

1 3
Vol:. (1234567890)

AMD respectively. This poses not only a challenge 
to redesign scientific software such that it can utilize 
modern HPC systems effectively, but also ideally in a 
platform-portable way so that the software can run on 
all available systems.

For computational fluid dynamics (CFD), three 
approaches are possible. The first one is to write com-
putational kernels in a GPU native computing lan-
guage such as CUDA [1], HIP [2], or SYCL [3]. The 
second consists of leveraging portability solutions 
like OpenMP [4] or Kokkos [5, 6] in the original code 
stack. The third approach is to offload the compu-
tationally expensive parts of an existing code to the 
GPUs using specialized linear algebra libraries such 
as PETSc [7] or Ginkgo [8]. The computationally 
expensive parts generally consist of the solution of the 
linear transport equation. In particular, the solution 
of Poisson equations such as the pressure equation 
is an important factor. It is solved in algorithms for 
incompressible flow solvers of the SIMPLE [9] and 
PISO [10] families, the latter being also applicable to 
compressible flow. Solvers based on such algorithms 
are commonly referred to as pressure-based solvers 
in the CFD community. One CFD toolkit that makes 
use of pressure-based solvers is OpenFOAM [11], 
widely used in academia and industry, and this paper 
deals exclusively with the subject of GPU computa-
tions in OpenFOAM. To avoid confusion, throughout 
the manuscript, OpenFOAMsolvers like icoFoam or 
pimpleFoam will be referred to as solver applications, 
whereas matrix solvers like PCG or GAMG will be 
referred to as linear solvers.

Several past projects addressed the need to 
offload OpenFOAM’s linear algebra computations 
to GPUs. Early work on GPU computing for Open-
FOAMinclude cufflink [12], the speedit version of 

OpenFOAM [13], and using PETSc as linear solver 
backend via the PETSc4FOAM plugin [14, 15]. Oth-
ers have also used NVIDIA’s AMGx [16–18], and 
the Ginkgo library for offloading [19]. A list of the 
important active projects is given in Table 1, and they 
follow one of the three general approaches mentioned 
above.

The first approach of rewriting computational ker-
nels in a native GPU language is referred to as Fork. 
The forking approach comes at the cost of high devel-
opment effort that needs to be repeated for a multitude 
of computational kernels, and is hardware vendor-
dependent when it uses a specific GPU programming 
language. We note that HIP and OpenCL [20] make it 
possible to compile code for both NVIDIA and AMD 
GPUs, but this approach is not widely used. However, 
the forking approach introduces the least runtime 
overhead in terms of interfacing external libraries and 
modifying data structures.

The second approach of leveraging portability lay-
ers in the original code stack, and compiling directly 
for the GPU, face the challenge of adapting to the par-
ticular code features. Take OpenMP for example, with 
several algorithms implemented in OpenFOAMbeing 
essentially sequential in nature. For preconditioners 
like IC or ILU a simple annotation-based offload-
ing strategy won’t guarantee sufficient performance 
on GPUs. Thus, to run efficiently on GPUs different 
algorithms are necessary for optimal performance. 
This approach is listed under Portability, but it clearly 
involves forking the original code as well.

The third approach of offloading the computation-
ally-expensive parts of the simulation is referred to 
as Plugin. The plugin approach requires writing an 
external plugin in a mainstream high-level language 
like C++, and incurs the overhead of offloading after 

Table 1   Selected GPU linear algebra solutions for OpenFOAM

Library Approach Parallelization model

OGL1 https://​github.​com/​hpsim/​OGL Plugin Ginkgo, OMP, CUDA, HIP, SYCL
YoctoFOAM2 https://​gitlab.​hpc.​cineca.​it/​openf​oam/​yocto​FOAM-​herd/​yocto​

foam-​core
Fork CUDA

OpenFOAM_HMM3 https://​github.​com/​ROCm/​OpenF​OAM_​HMM Portability OpenMP
PETSc4FOAM4 https://​devel​op.​openf​oam.​com/​modul​es/​exter​nal-​solver Plugin PETSc
RapidCFD5 https://​github.​com/​Atizar/​Rapid​CFD-​dev Fork CUDA
PARALUTION6 https://​www.​paral​ution.​com Plugin Paralution, OpenCL, OMP, CUDA
foamExtend7 https://​sourc​eforge.​net/​proje​cts/​foam-​extend/ Fork CUDA

https://github.com/hpsim/OGL
https://gitlab.hpc.cineca.it/openfoam/yoctoFOAM-herd/yoctofoam-core
https://gitlab.hpc.cineca.it/openfoam/yoctoFOAM-herd/yoctofoam-core
https://github.com/ROCm/OpenFOAM_HMM
https://develop.openfoam.com/modules/external-solver
https://github.com/Atizar/RapidCFD-dev
https://www.paralution.com
https://sourceforge.net/projects/foam-extend/
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the matrix assembly. It can also require unneces-
sary communication between the host and the GPU 
device compared to the forking approach. The plugin 
approach is generally most promising if sufficient 
time is spent in the linear solver itself. Here, the off-
loading target could be the Poisson pressure equation 
only, while rapidly converging transport equations 
like the momentum equation are solved on the CPU. 
Another advantage of the plugin approach is that it 
makes available a set of third-party, highly tuned, and 
extensively tested GPU solvers, eliminating the asso-
ciated burdens of development and maintenance.

Several of the mentioned projects, however, 
seemed to be discontinued or in most cases sup-
port only NVIDIA GPUs. Thus, this work focuses 
on implementing a plugin named the OpenFOAM 
Ginkgo Layer (OGL) [19, 21] to provide access to 
Ginkgo [22] acting as a linear solver backend. Ginkgo 
is a free and open-source library, which is under 
active development and has platform portability as 
one of its central design goals.

The paper is divided into three main sections. 
Firstly, the general constraints and limitations of the 
plugin approach used for OGL are discussed. Sec-
ondly, the details of how OGL allows for efficient use 
of the Ginkgo linear algebra library are discussed. 
Lastly, performance results on three different HPC 
machines equipped with Intel, AMD, and NVIDIA 
GPUs are presented. The performance results demon-
strate that using Ginkgo as a linear solver backend via 
OGL allows offloading for all relevant GPU hardware 
commercially available today.

2 � Constraints and limitations of the plugin 
offloading approach

In this section, the general considerations on the con-
straints and limitations of the plugin approach are 
presented.

The plugin approach as outlined in Sect. 1 is lim-
ited to the scope of the solve method of the sca-
larField or vectorField instance. Thus, only 
the solution of the linear system can be offloaded. 
Offloading the complete process of matrix assembly 
and solving the linear system is currently not sup-
ported by this approach. Naturally, this limits the 

attainable speedup for solving a transport equation, 
which can be expressed by Amdahl’s law as S =

1

1−p
 , 

where the acceleratable proportion is given by 
p = tLS∕

(

tLS + tMA

)

 , with tLS being the time required 
to solve the linear system and tMA the time required 
for matrix assembly. Hence, achieving a speedup of a 
factor 10, for example, solely by accelerating the lin-
ear solver, is only possible if 90% of the runtime is 
spent in the linear solvers.

As mentioned above, the linear solvers are the key 
part of the offloading approach via plugins. To dis-
cuss how OpenFOAM’s default linear solvers can be 
replaced by solvers provided by a third-party library, 
the call graph to a linear solver is outlined first.

Every solver application (e.g. icoFoam or pim-
pleFoam) calls for every transport equation the 
linear solver either via a free function call of type 
Foam::solve(fvMatrix<Type> &fvm) or 
as member function call like fvMatrix<Type>.
solve(...) from its corresponding matrix class, 
e.g. fvScalarMatrix, within its time loop. The 
former, however, just dispatches to the latter via 
fvm.solve(). Through further dispatching calls, 
references to the corresponding solution vector1 and 
right-hand side2 are obtained. Next, the solver call is 
forwarded either to a segregated or coupled solver. In 
the following, only segregated solvers are considered, 
since the majority of the compute resources are spent 
for the segregated pressure solve step in the simula-
tion cases considered herein.

During this process, an object of type lduMa-
trixSolver is constructed, which besides some 
sanity checks also looks up the constructorP-
trTable for a solver specified by the solver key-
word in the corresponding section of the fvSolu-
tion file. The constructorPtrTable is a 
typical entry point for plugins like OGL or PETSc-
4FOAM. When the aforementioned plugins are 
loaded at startup time, for example by adding libs 
("libOGL.so"); to the controlDict, the 
plugin inserts pointers to the constructors of the 
solver classes provided by the plugin. One simple way 
to insert the pointers is via the defineTypeName-
AndDebug macros, as shown in Lst. 1 for GKOCG 
as a solver for symmetric matrices.

1  Typically named psi.
2  Typically named source.
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After constructing an instance of the specified 
solver using the pointer from the constructorP-
trTable, a member function named solve is 
called. Hence, the third-party linear solver classes are 
required to implement a member function with the 
signature shown in Lst.  2

Here the scalarField &psi refers to the 
solution vector and source to the right-hand side. 
The scalarField psi is an out parameter, 
i.  e. the solution of the linear system can be written 
directly into psi. Properties of the solution process, 
such as residual norms and the number of iterations, 
are returned via the solverPerformance data 
structure. After solving the linear system, the instance 
of the solver class is deallocated and reconstructed on 
subsequent solve calls. This is an important point for 
an efficient plugin implementation, since intermediate 
computations need to be stored via the object registry 
to avoid costly recomputation.

3 � Implementation details of the OGL offloading 
approach

This section discusses the considered offloading 
approach using the OGL library to make Ginkgo’s 
solver available for OpenFOAM. Furthermore, it 
addresses some of the challenges mentioned in Sec. 

2 and discusses how to limit the effect of the afore-
mentioned constraints. This includes interfacing with 
Ginkgo to guarantee platform portability, a discus-
sion on device persistent data structures to reduce the 
amount of data transfer, and efficient implementation 

of the stopping criterion to avoid unnecessary evalua-
tions of the scaled L1 norm.

3.1 � Offloading procedure

After constructing the solver class from the plugin, 
the following central steps are performed: 

1.	 At first, the OpenFOAM system matrix is con-
verted from LDU format to an appropriate format 
for the GPU. For OGL this can be either the coor-
dinate list (COO), compressed sparse row (CSR), 
or the Ellpack (ELL) sparse matrix format.

2.	 Since the sparsity pattern of the system matrix 
will usually remain constant over the course of 
a simulation, the row and column indices of the 
system matrix on the GPU are preserved and 
only the values are updated. For this, a mapping 
between the LDU matrix entries and the COO/
CSR matrix entries is required.

3.	 Furthermore, the right-hand side and the solution 
vector are copied to the device. While the solu-
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tion vector is copied back to OpenFOAM after 
the solution process, it is also re-used as the ini-
tial guess for the next time step.

4.	 Construction of the solver and preconditioner 
objects from the Ginkgo library.

5.	 Call the corresponding linear solver and pass the 
solution vector back to OpenFOAM.

3.2 � Overview of the Gingko linear algebra library

The offloading approach presented here relies on sev-
eral important aspects of the Ginkgo3 library [22]. 
Ginkgo is a math library for linear algebra written 
in modern C++. Its main focus lies on sparse linear 
algebra for CPU multicore and GPU architectures by 
implementing hardware-specific kernels in their native 
languages, i. e. CUDA (for NVIDIA GPUs), HIP (for 
AMD GPUs), OpenMP (for general-purpose multicore 
processors, such as those from Intel, AMD, or ARM), 
and SYCL for (Intel GPUs). It supports a variety of high 
performance linear algebra solvers and preconditioners 
suitable for CFD simulations. Furthermore, Ginkgo is 
an attractive candidate as a backend for OpenFOAM 
since it is open-source and comes with a permissive 
BSD 3-clause license, is part of the extreme-scale Sci-
entific Software Development Kit (xSDK) [23], and has 
already been integrated as a backend into other simu-
lation libraries like deal.ii [24], mfem [25], and open-
Carp [26, 27]. This implies not only that users can find 
Ginkgo pre-installed on large machines supporting 
xSDK, but also that they can use the Ginkgo technol-
ogy in commercial OpenFOAM projects. The following 
key data structures are used within OGL:

•	 Ginkgo container types like gko::array and 
gko::vector, to handle memory transfer 
between OpenFOAM’s host-based data and the 
GPU-based data. Here, the gko::vector type 
is used to represent distributed vectors for MPI 
parallelized runs.

•	 Ginkgo executor classes for an abstraction of the 
memory location and available device type.

•	 Linear solver and preconditioner classes from 
Ginkgo as an efficient and GPU-focused imple-
mentation of algorithms for preconditioning and 
solving linear systems.

3.3 � Device persistent data structures

A key principle for increasing performance with off-
loading is to reduce communication between the off-
loading target and the host to a minimum. To solve a 
linear equation

on a dedicated accelerator device, the amount of 
memory that needs to be transferred to the device is 
given by

where mmat and mvec are the memory transferred in 
bytes for the matrix and vectors, respectively. Further-
more, sscalar and slabel are the sizes of a scalar value and 
the single precision label type respectively. The num-
ber of non-zero entries in the system matrix is given by 
nNNZ and the number of cells by nDOF . Note that Eq. 3 
considers three transfers of scalar arrays of length nDOF 
since initially x and b are copied from the host to the 
device and, after solving the linear equation, the solu-
tion vector x needs to be copied back to the host. How-
ever, for typical CFD applications, the linear equations 
Eq.  1 are solved multiple times throughout a simula-
tion, for example when advancing in time for transient 
simulations or within outer loops for steady-state sim-
ulations. Therefore, if the computational grid is fixed 
throughout a simulation, the amount of memory trans-
ferred between host and device can be reduced by only 
updating the previously copied matrix on the device 
and reusing the solution vector as an initial guess in the 
subsequent linear solver application.

For double precision scalar values of 8 bytes and 4 
byte label sizes, considering a typical ratio of nNNZ

nDOF
= 7

4 the ratio between copying all arrays every time and 
reusing existing memory on the device is approxi-
mately 0.52. Thus, almost half of the data transfer can 
be avoided by reusing existing sparsity patterns and 
performing updates of the system matrix. Further 

(1)Ax = b

(2)mmat =
(

sscalar + 2slabel
)

nNNZ

(3)mvec = 3nDOFsscalar

(4)mmat = sscalarnNNZ

(5)mvec = 2nDOFsscalar.

3  Available at https://​github.​com/​ginkgo-​proje​ct/​ginkgo. 4  Based on a 3D stencil, where each cell has six neighbors.

https://github.com/ginkgo-project/ginkgo
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optimizations can be achieved by employing com-
pression algorithms on the transferred data or exploit-
ing existing symmetry when possible. However, these 
approaches are not within the scope of this work.

Reusing the system matrix and vectors on the GPU 
device on subsequent linear solver calls needs the 
implementation of additional functionalities into Open-
FOAM. Since the lduMatrixSolver object is deal-
located after the linear solver call has been completed, 
any intermediate computations and data structures on 
the GPU would also be deallocated if no further meas-
ures are taken. The principal idea to avoid costly rec-
omputation is to use OpenFOAM’s object registry to 
store smart pointers to Ginkgo data types that contain 
data on the accelerator. As long as the smart pointer is 
kept in the object registry and the reference count does 
not decrease to zero, the data on the accelerator is not 
deallocated and can be retrieved on subsequent solver 
calls. The full workflow for a device persisting Ginkgo 
matrix is shown in Fig. 1. When the constructor of a 
device persisting class is called, the constructor checks 
whether an object with the requested name is already 
registered in the object registry. If that is not the case, 
the device persisting class performs the initialization 
of the managed class. Otherwise, it will perform a less 
memory-intensive update, reusing the persisting data.

To explain 1 in more detail, consider a typical con-
trol flow for a simulation with multiple linear solves. 
During its first encounter, the persistent matrix does not 
exist, and thus the “no” branch in Fig. 1 will be taken. 
The persistent system matrix will then be initialized in 
the following two steps. First, a mapping between Open-
FOAM LDU matrix coefficients and matrix coefficients 
in row-major order on the device is computed. From that 
the distributed Ginkgo matrix can be initialized and all 
required data structures are stored in the object registry. 
Here, we use the object registry of the mesh instance, 
thus as long as the mesh instance exists the same spar-
sity pattern and any corresponding mappings can be 
reused without any re-computation and data transfer 
between host and device. The persistent matrix can now 
be used to solve the linear system with Ginkgo solvers. 
In the subsequent linear solve encounters, the object 
now exists, so the “yes” branch is chosen. Since the 
object registry contains the required objects, they can be 
retrieved and updates of the matrix coefficients can be 
performed using the stored LDU-COO mapping.

To facilitate this workflow of storing and retriev-
ing data via the object registry automatically, a 

base class named PersistentBase was imple-
mented5. A pseudo code implementation is given 
in Lst.  3. The base class requires two template argu-
ments, T which defines the underlying type for which 
std::shared_ptr<textttT> is stored in the object 
registry and initFunctor which is a functor that 
provides a init| and a update function. When 
the constructor of PersistentBase is called, it 
searches in the given object registry whether an object 
with the specified name already exists. If an object 
with that name was found and no explicit update is 
requested via the update parameter, the shared 
pointer is retrieved from the object registry. In contrast, 
if an explicit update is requested, the update function 
from the functor is called using the pointer to the origi-
nal object. Finally, if no object with the given name is 
found in the object registry, initialization of the persis-
tent object is performed via the functors init function.

Fig. 1   Procedure for initializing or reusing device persisting 
system matrices

5  https://​github.​com/​hpsim/​OGL/​tree/​dev/​Devic​ePers​istent/​
Base.

https://github.com/hpsim/OGL/tree/dev/DevicePersistent/Base
https://github.com/hpsim/OGL/tree/dev/DevicePersistent/Base
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Listing 3 Pseudo code showing the implementation of the PersistentBase class.

template<class T, class InitFunctor>

class PersistentBase {

...

public:

PersistentBase(const word name, const objectRegistry &db,

const InitFunctor f, const bool update)

: name_(name), db_(db),

from_registry_(db.foundObject<regIOobject>(name)),

init_functor_(f) {

if (from_registry_) {

if (update) {

persistent_object_ =

db_.lookupObjectRef<DevicePersistentBase<T>>(name)

.get_ptr();

f.update(persistent_object_);

} else {

persistent_ =

db_.

lookupObjectRef<DevicePersistentBase<T>>(name)

.get_ptr();

}

} else {

auto po = new DevicePersistentBase<T>(

IOobject(...), f.init()

);

persistent_ = po->get_ptr();

}

}

};

This allows the base class to check whether the 
managed object is accessible via the object regis-
try and initialize or update it if required. A sim-
ple use case for the device persistent class is the 
PersistentVector<T> class that derives 
from PersistentBase<GkoVector<T, 
VectorInitFunctor<T>> . Hence, it stores a 
shared pointer to a Ginkgo distributed vector for ele-
ments of type T and provides a function for initiali-
zation and updating the managed vector. Listing  4 
shows the constructor call for the persistent vec-
tor class. Here, the first parameter psi.begin() 

gives access to data which needs to be copied to the 
accelerator device, the field name parameter is used 
as a key in the object registry, the db_ parameter is 
a reference to the mesh object registry which stores 
the shared pointer, this->get_exec() provides 
access to the executor responsible for data access, and 
updateInitGuess defines whether the data needs 
to updated on the next constructor call
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Listing 4 Simplified constructor call for a PersistentVector

PersistentVector<scalar> dist_x{

psi.begin(), // original host data address

this->fieldName(), // name to search for in object registry

db_, // here the mesh object registry

this->get_exec(), // executor handling where data is allocated

updateInitGuess, // bool whether update is needed, default false

};

3.4 � Solver generation and execution

Listing 5 gives a minimal code example of how a pre-
conditioned solver, here a preconditioned CG solver 
is created. In the first step, a solver factory is cre-
ated, which allows to optionally set parameters like 
the stopping criterion or the preconditioner. Within 
OGL this is handled for the individual solvers in 
the Solver directories and can be accessed via the 
create_dist_solver method, shown in Lst. 6.

Listing 5 Example code creating a Ginkgo solver.

using cg = gko::solver::Cg<scalar>;

auto cg = cg::build()

.with_criteria(stoppingCriterionVec_)

.with_generated_preconditioner(precond)

.on(exec);

In the next step, the actual solver instance is cre-
ated via the generate call and the distributed 
matrix object called dist_A_v. Next, the linear 
system is solved using the solver apply method 
with the distributed RHS vector named dist_b_v 
and the distributed initial guess vector, dist_x_v. 
Finally, the call to dist_x.copy_back() copies 
the result data back to OpenFOAM via the pointer 
that initially served for copying the input data.

Table 2   Overview of GPU 
and CPU hardware of the 
utilized systems

System CPU (total number of cores) GPU

NLA 2 AMD EPYC 7302 (32) 8 AMD MI100
HoreKa 2 Intel Xeon Platinum 8368 (76) 4 NVIDIA A100-40 GPU
SuperMUC-NG 2 Intel Xeon Platinum 8480+ (112) 4 Intel Data Center GPU Max 1550
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Listing 6 Example code executing a Ginkgo solver from OpenFOAM

// Get the solver factory

auto solver_gen = this->create_dist_solver(

this->get_exec_handler().get_device_exec(), dist_A_v, dist_x_v,

dist_b_v, verbose_, dist_A.get_export(), precond);

// Create the actual solver instance

auto solver = solver_gen->generate(dist_A_v);

// Solve the linear system

solver->apply(dist_b_v, dist_x_v);

// Hand the solution back to OpenFOAM

dist_x_v.copy_back();

3.5 � Efficient stopping criterion implementation

One potentially large overhead, especially for Krylov 
solvers, can be the evaluation of the stopping criterion 
in every iteration. In OpenFOAM, the computation of 
the stopping criterion requires computing a scaled 
L1 norm, [14]. If this L1 norm calculation relies on 
OpenFOAM’s implementation on the host side, it 
requires copying the full residual norm vector back to 
the host for every solver iteration. Thus, a dedicated 
GPU version of the scaled L1 norm calculation is 
needed to guarantee equivalent convergence behavior 
without introducing the overhead of repeated device-
host data transfers. Additionally, the cost of evaluat-
ing the residual norm should be kept minimal. If one 
knows that a minimum number of iterations is needed 
to solve a certain linear problem, evaluating the 
residual norm before the minimum number of itera-
tions is reached is only relevant for monitoring pur-
poses. Furthermore, the number of times evaluating 
the residual norm should be kept minimal. This can 
be achieved by reducing the frequency at which the 
residual norm is evaluated. This can lead to additional 
iterations of the linear solver until the stopping cri-
terion is evaluated. However, the overall computation 
time can benefit if the additional iterations are faster 

than the residual norm calculation. The optimal fre-
quency at which the residual norms should be evalu-
ated depends on two factors: 

1.	 The time needed for the evaluation of the residual 
norm;

2.	 The cost of the solver iterations.

To compute the optimal frequency f with which the 
residual norm should be calculated, we use a simple 
cost model based on the number of iterations needed 
to solve the linear equation in a previous solve step 
i. e. n = nt−1 and the ratio of the computational costs 
to perform a single iteration of the linear solver and to 
evaluate the scaled L1 norm.

3.6 � Build procedure and usage example

Ginkgo and OGL use CMake as a build file generator. 
Furthermore, OGL’s build procedure can handle the 
download, configure, build and installation steps of 
Ginkgo to ensure the correct version is used. If a suf-
ficiently recent CMake version is installed on the tar-
get system, the provided CMake presets can be used 
to configure, build and install OGL. For a release 
build with Ninja, for a system without GPUs, the fol-
lowing commands can be used 
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Besides the cpuonly preset other presets are 
available for CUDA, AMD, and Intel devices. 
After a successful build several shared objects, e.g. 
libOGL.so and libGinkgo.so are copied to 
the |FOAM_USER_LIBBIN directory. To load the 
shared object at application startup one has to add 
libs ("libOGL.so"); to the controlDict file. 
Then Gingko solver can be selected by adapting the 
fvSolution file. The following shows an example 
using CG with a block Jacobi preconditioner: 

 Where the executor cuda specifies to run on 
a NVIDIA device.

4 � Results

For a performance evaluation of Ginkgo’s GPU solv-
ers within OpenFOAM, the lidDrivenCavity3D6 
was selected. The case was previously used as a 

benchmark test case by several authors, e.g. [13, 14]. 
The presented test case uses the original, uniform, 
cubic grid and evaluates results for various grid reso-
lutions ranging from 1003 to 5003 while keeping the 
CFL number constant. Experiments where conducted 
using the ESI OpenFOAM version 2306 and OGL 
version 0.5.3.

In the experimental evaluation, we use three hard-
ware systems, referred to as NLA, HoreKa, Super-
MUC-NG. The NLA machine is non-public machine 
composed of two AMD EPYC 7302 16 Core CPUs 
and eight AMD MI100 GPUs. The second machine 
we use is the HoreKa cluster7, where each node 
hosts two Intel Xeon Platinum 8368 CPUs and four 
NVIDIA A100-40 GPUs. The third system we use 
in the experimental evaluation is the SuperMUC-NG 
Phase 28. SuperMUC-NG features two Intel Sapphire 
Rapids Xeon Platinum 8480+ CPUs and four Intel 
Ponte Vecchio Data Center Max 1550 GPUs on each 
node. Table 2 summarizes the hardware of the tested 
HPC systems.

Fig. 2   GPU (left) and 
CPU (right) linear pressure 
solver performance over the 
grid resolution of the three 
tested HPC machines on a 
single node.

Table 3   Maximum achieved performance in fvOps for the 
GPU accelerated and non-accelerated CPU runs

System CPU, total CPU, per 
Core

GPU per GPU

NLA 7.49E+08 2.34E+07 7.84E+09 9.80E+08
HoreKa 1.71E+09 2.26E+07 2.67E+09 6.66E+08
SuperMUC 3.83E+09 3.42E+07 2.54E+09 6.36E+08

6  https://​devel​op.​openf​oam.​com/​commi​ttees/​hpc.​git.

7  https://​www.​scc.​kit.​edu/​diens​te/​HoreKa.​php.
8  https://​doku.​lrz.​de/​hardw​are-​of-​super​muc-​ng-​phase-2-​22289​
1050.​html.

https://develop.openfoam.com/committees/hpc.git
https://www.scc.kit.edu/dienste/HoreKa.php
https://doku.lrz.de/hardware-of-supermuc-ng-phase-2-222891050.html
https://doku.lrz.de/hardware-of-supermuc-ng-phase-2-222891050.html


Meccanica	

1 3
Vol.: (0123456789)

The MPI-parallel OpenFOAM runs without GPU 
acceleration employ as many MPI ranks as physical 
cores are available on the respective machines, i.e. 
32 on the NLA machine, 76 on the HoreKa cluster, 
and 112 on the SuperMUC-NG cluster. For the Open-
FOAM runs using either Ginkgo’s CUDA, HIP, or 
SYCL backend, the computational domain is decom-
posed into twice as many subdomains as GPUs avail-
able. In our experience, this results in a good balance 
between the computational cost of assembling the 
system matrix on the CPU and solving the linear sys-
tems on the GPUs. The simple scheme was taken as a 
decomposition method.

4.1 � Single node performance results

First, the single-node performance was investigated. 
Here the LidDrivenCavity3D case was run for mesh 
configurations containing 1, 8, 27, and 64 million 
cells.

Figure  2 shows the achieved performance of the 
linear pressure solver on a single node over different 
mesh resolutions. As a performance metric, fvOps of 
the linear pressure solver (PCG) are evaluated, with 
fvOps = nCellsnIter,p∕tsolver , where nCells is the total 
number of grid cells, nIter,p the number of required 
linear solver iterations till convergence, and ∕tsolver 
the required time to solution. Here, a larger number 
of fvOps indicate better performance. The left figure 
shows the performance of the GPU-accelerated run 

and the right figure the performance of the non-accel-
erated runs on the CPUs. In general, for the GPUs an 
increase of the performance with increasing problem 
size can be observed. Across the tested grid sizes, the 
NLA system which is equipped with eight MI100 
GPUs, shows the largest performance compared 
to the other systems. For smaller grid sizes of up to 
eight million cells, the Intel Max 1550 shows favora-
ble performance compared to the NVIDIA A100. For 
the larger cases with more than 8M cells, the Intel 
Max 1550 and the A100 results are comparable.

The CPU performance decreases with increasing 
problem size as shown in the right of Fig. 2. This can 
be explained by a decrease in the cache utilization 
for large problem sizes. The CPU performance of the 
SuperMUC system exceeds the CPU performance of 
the other systems across the tested problem sizes. The 
maximum achieved performance for each system is 
summarized in Table  3. It can be seen that the per-
formance, especially when normalized by the number 
of CPU cores and GPU devices, is comparable. The 
highest CPU performance per core was measured on 
the Intel CPUs of the SuperMUC-NG cluster. This is 
most likely a result of the significantly larger memory 
bandwidth of the Sapphire Rapids architecture. The 
highest per GPU performance was measured for the 
AMD GPUs on the NLA system.

The single node benchmarks are conducted in a 
range of cells per CPU core that is not necessarily 
optimal for the CPU caches, thus one might expect 
even better maximum performance per CPU core 
when fewer grid cells per CPU core are utilized. This 

Fig. 3   Resulting speedup of an average timestep for the GPU 
accelerated cases over the grid resolution for the tested HPC 
nodes

Fig. 4   Strong scaling results of the lidDrivenCavity3D case
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can be achieved by scaling simulations across mul-
tiple compute nodes. However, with the increasing 
adoption of GPU accelerators, HPC clusters tend to 
provide fewer compute nodes in total. This could in 
consequence require running simulations with more 
grid cells per CPU core than considered optimal 
today.

Figure  3 shows the achieved speedup by offload-
ing on the tested systems over the grid size. Here, 
the speedup is computed as S = tGPU∕tCPU,SN , where 
tGPU is the average time required to solve a time step 
with GPU acceleration and tCPU, SN the average time 
required without GPU acceleration using all avail-
able CPU cores of that node. The resulting speedup 
includes all overhead costs of the offloading proce-
dure, including the time required to update the GPU 
device matrix and copying data between the host and 
the accelerator.

The speedup generally increases with increasing 
problem size. This is a result of the increasing per-
formance of the GPU and the decreasing CPU perfor-
mance for increasing problem sizes, c.f. Fig.  2. The 
largest speedup of approximately a factor of 15 was 
observed on the NLA machine, which is equipped 
with the largest number of GPU devices and the 
lowest number of CPU cores. The machines with 
four GPUs and more CPU cores reach a speedup of 
approximately four on the HoreKa and two on the 
SuperMUC-NG machines, respectively.

4.2 � Multi node performance results

In the next experiment, we investigate strong scaling 
behavior on up to 10 compute nodes and 40 GPUs on 
the HoreKa and the SuperMUC-NG cluster. For this, 
a case with 125M cells was selected and decomposed 
into 8 subdomains per node for accelerated simula-
tions. The simulation without acceleration, but utiliz-
ing all CPU cores, was taken as a reference to com-
pute the speedup, which is shown in Fig. 4.

For both tested systems, performance increases 
with the number of compute nodes. However, on 
the SuperMUC-NG machine a super linear speedup 
can be observed when using more than 4 nodes. This 
seems to be a consequence of the favorable GPU per-
formance profile of the SuperMUC-NG machine for 
smaller grid resolutions, as indicated in Fig. 2.

5 � Conclusion and Outlook

A platform-portable offloading approach was pre-
sented and tested on three different systems equipped 
with accelerators from Intel, AMD, and NVIDIA. For 
all tested cases, a speedup for sufficiently large grid 
sizes can be observed. For two of the three tested 
machines, strong scaling studies on up to 40 GPUs 
were performed, demonstrating good strong scal-
ability. Additionally, methods to reduce the commu-
nication overhead by employing GPU device persis-
tent data structures and reducing the frequency of 
the stopping criterion evaluation were discussed to 
increase the overall performance. Additionally, to the 
work presented here, several improvements are cur-
rently under investigation. This includes the imple-
mentation and evaluation of a distributed Multigrid 
solver, the impact of  GPU based preconditioner, as 
well as advanced repartitioning schemes to support 
different decompositions between CPU and GPU.
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