
Vol.: (0123456789)
1 3

Meccanica
https://doi.org/10.1007/s11012-024-01806-1

RESEARCH

Towards a platform‑portable linear algebra backend
for OpenFOAM

Gregor Olenik · Marcel Koch · Ziad Boutanios ·
Hartwig Anzt

Received: 29 February 2024 / Accepted: 16 April 2024
© The Author(s) 2024

Abstract Graphics processing unit accelerators
have become a widespread technology on modern
high performance computing clusters for increasing
the performance of scientific computing algorithms.
Despite early efforts to adopt linear solvers that uti-
lize graphics processing units for OpenFOAM, to this
date no widely accepted approach has gotten trac-
tion. In recent years, the number of different vendors
providing graphics processing units accelerators has
grown, and as of the writing of this paper, no com-
monly accepted, unified approach to leverage accel-
erators exists. This makes platform-portable solutions

to increase the efficiency of graphics processing units
offloading techniques desirable, and an important
research topic. In this work, we investigate a plat-
form-portable solution using the Ginkgo sparse linear
algebra library.

Keywords Computational fluid dynamics ·
OpenFOAM · Ginkgo · GPU offloading · Linear
solver · Platform-portability

1 Introduction

To serve the ever-increasing demand for computing
power, general purpose graphics processing units
(GPUs) have become an integral part of most high
performance computing (HPC) leadership systems.
In most cases, the GPUs are of the discrete server
type that are attached to the nodes as co-processors,
and provide the lion’s share of the compute perfor-
mance. Here, the GPU plays the role of an accelera-
tor. In some HPC systems, the host central processing
units (CPUs) are left with the task of orchestrating the
communication. As a consequence, CPUs with less
compute power than what was present in the CPU-
only HPC systems of the past can be used. Initially,
NVIDIA was the sole vendor that developed GPUs
for general-purpose computing, complemented with
a general programming framework, named CUDA.
Nowadays, leadership HPC systems like Aurora and
Frontier are equipped with GPUs from Intel and

All the authors equally contributed to this work.

G. Olenik (*) · M. Koch · Z. Boutanios
Scientific Computing Center, Karlsruhe Institute
of Technology (KIT), 76128 Karlsruhe, Germany
e-mail: gregor.olenik@kit.edu

M. Koch
e-mail: marcel.koch@kit.edu

Z. Boutanios
e-mail: ziad.boutanios@kit.edu

H. Anzt
School of Computation, Information and Technology,
Technical University Munich (TUM), 80333 Munich,
Bavaria, Germany
e-mail: hartwig.anzt@tum.de

H. Anzt
Innovative Computing Lab, University of Tennessee
(UTK), Knoxville, TN 37996, USA

http://crossmark.crossref.org/dialog/?doi=10.1007/s11012-024-01806-1&domain=pdf
http://orcid.org/0000-0002-0128-3933
http://orcid.org/0000-0003-2177-952X

 Meccanica

1 3
Vol:. (1234567890)

AMD respectively. This poses not only a challenge
to redesign scientific software such that it can utilize
modern HPC systems effectively, but also ideally in a
platform-portable way so that the software can run on
all available systems.

For computational fluid dynamics (CFD), three
approaches are possible. The first one is to write com-
putational kernels in a GPU native computing lan-
guage such as CUDA [1], HIP [2], or SYCL [3]. The
second consists of leveraging portability solutions
like OpenMP [4] or Kokkos [5, 6] in the original code
stack. The third approach is to offload the compu-
tationally expensive parts of an existing code to the
GPUs using specialized linear algebra libraries such
as PETSc [7] or Ginkgo [8]. The computationally
expensive parts generally consist of the solution of the
linear transport equation. In particular, the solution
of Poisson equations such as the pressure equation
is an important factor. It is solved in algorithms for
incompressible flow solvers of the SIMPLE [9] and
PISO [10] families, the latter being also applicable to
compressible flow. Solvers based on such algorithms
are commonly referred to as pressure-based solvers
in the CFD community. One CFD toolkit that makes
use of pressure-based solvers is OpenFOAM [11],
widely used in academia and industry, and this paper
deals exclusively with the subject of GPU computa-
tions in OpenFOAM. To avoid confusion, throughout
the manuscript, OpenFOAMsolvers like icoFoam or
pimpleFoam will be referred to as solver applications,
whereas matrix solvers like PCG or GAMG will be
referred to as linear solvers.

Several past projects addressed the need to
offload OpenFOAM’s linear algebra computations
to GPUs. Early work on GPU computing for Open-
FOAMinclude cufflink [12], the speedit version of

OpenFOAM [13], and using PETSc as linear solver
backend via the PETSc4FOAM plugin [14, 15]. Oth-
ers have also used NVIDIA’s AMGx [16–18], and
the Ginkgo library for offloading [19]. A list of the
important active projects is given in Table 1, and they
follow one of the three general approaches mentioned
above.

The first approach of rewriting computational ker-
nels in a native GPU language is referred to as Fork.
The forking approach comes at the cost of high devel-
opment effort that needs to be repeated for a multitude
of computational kernels, and is hardware vendor-
dependent when it uses a specific GPU programming
language. We note that HIP and OpenCL [20] make it
possible to compile code for both NVIDIA and AMD
GPUs, but this approach is not widely used. However,
the forking approach introduces the least runtime
overhead in terms of interfacing external libraries and
modifying data structures.

The second approach of leveraging portability lay-
ers in the original code stack, and compiling directly
for the GPU, face the challenge of adapting to the par-
ticular code features. Take OpenMP for example, with
several algorithms implemented in OpenFOAMbeing
essentially sequential in nature. For preconditioners
like IC or ILU a simple annotation-based offload-
ing strategy won’t guarantee sufficient performance
on GPUs. Thus, to run efficiently on GPUs different
algorithms are necessary for optimal performance.
This approach is listed under Portability, but it clearly
involves forking the original code as well.

The third approach of offloading the computation-
ally-expensive parts of the simulation is referred to
as Plugin. The plugin approach requires writing an
external plugin in a mainstream high-level language
like C++, and incurs the overhead of offloading after

Table 1 Selected GPU linear algebra solutions for OpenFOAM

Library Approach Parallelization model

OGL1 https:// github. com/ hpsim/ OGL Plugin Ginkgo, OMP, CUDA, HIP, SYCL
YoctoFOAM2 https:// gitlab. hpc. cineca. it/ openf oam/ yocto FOAM- herd/ yocto

foam- core
Fork CUDA

OpenFOAM_HMM3 https:// github. com/ ROCm/ OpenF OAM_ HMM Portability OpenMP
PETSc4FOAM4 https:// devel op. openf oam. com/ modul es/ exter nal- solver Plugin PETSc
RapidCFD5 https:// github. com/ Atizar/ Rapid CFD- dev Fork CUDA
PARALUTION6 https:// www. paral ution. com Plugin Paralution, OpenCL, OMP, CUDA
foamExtend7 https:// sourc eforge. net/ proje cts/ foam- extend/ Fork CUDA

https://github.com/hpsim/OGL
https://gitlab.hpc.cineca.it/openfoam/yoctoFOAM-herd/yoctofoam-core
https://gitlab.hpc.cineca.it/openfoam/yoctoFOAM-herd/yoctofoam-core
https://github.com/ROCm/OpenFOAM_HMM
https://develop.openfoam.com/modules/external-solver
https://github.com/Atizar/RapidCFD-dev
https://www.paralution.com
https://sourceforge.net/projects/foam-extend/

Meccanica

1 3
Vol.: (0123456789)

the matrix assembly. It can also require unneces-
sary communication between the host and the GPU
device compared to the forking approach. The plugin
approach is generally most promising if sufficient
time is spent in the linear solver itself. Here, the off-
loading target could be the Poisson pressure equation
only, while rapidly converging transport equations
like the momentum equation are solved on the CPU.
Another advantage of the plugin approach is that it
makes available a set of third-party, highly tuned, and
extensively tested GPU solvers, eliminating the asso-
ciated burdens of development and maintenance.

Several of the mentioned projects, however,
seemed to be discontinued or in most cases sup-
port only NVIDIA GPUs. Thus, this work focuses
on implementing a plugin named the OpenFOAM
Ginkgo Layer (OGL) [19, 21] to provide access to
Ginkgo [22] acting as a linear solver backend. Ginkgo
is a free and open-source library, which is under
active development and has platform portability as
one of its central design goals.

The paper is divided into three main sections.
Firstly, the general constraints and limitations of the
plugin approach used for OGL are discussed. Sec-
ondly, the details of how OGL allows for efficient use
of the Ginkgo linear algebra library are discussed.
Lastly, performance results on three different HPC
machines equipped with Intel, AMD, and NVIDIA
GPUs are presented. The performance results demon-
strate that using Ginkgo as a linear solver backend via
OGL allows offloading for all relevant GPU hardware
commercially available today.

2 Constraints and limitations of the plugin
offloading approach

In this section, the general considerations on the con-
straints and limitations of the plugin approach are
presented.

The plugin approach as outlined in Sect. 1 is lim-
ited to the scope of the solve method of the sca-
larField or vectorField instance. Thus, only
the solution of the linear system can be offloaded.
Offloading the complete process of matrix assembly
and solving the linear system is currently not sup-
ported by this approach. Naturally, this limits the

attainable speedup for solving a transport equation,
which can be expressed by Amdahl’s law as S =

1

1−p
 ,

where the acceleratable proportion is given by
p = tLS∕

(

tLS + tMA

)

 , with tLS being the time required
to solve the linear system and tMA the time required
for matrix assembly. Hence, achieving a speedup of a
factor 10, for example, solely by accelerating the lin-
ear solver, is only possible if 90% of the runtime is
spent in the linear solvers.

As mentioned above, the linear solvers are the key
part of the offloading approach via plugins. To dis-
cuss how OpenFOAM’s default linear solvers can be
replaced by solvers provided by a third-party library,
the call graph to a linear solver is outlined first.

Every solver application (e.g. icoFoam or pim-
pleFoam) calls for every transport equation the
linear solver either via a free function call of type
Foam::solve(fvMatrix<Type> &fvm) or
as member function call like fvMatrix<Type>.
solve(...) from its corresponding matrix class,
e.g. fvScalarMatrix, within its time loop. The
former, however, just dispatches to the latter via
fvm.solve(). Through further dispatching calls,
references to the corresponding solution vector1 and
right-hand side2 are obtained. Next, the solver call is
forwarded either to a segregated or coupled solver. In
the following, only segregated solvers are considered,
since the majority of the compute resources are spent
for the segregated pressure solve step in the simula-
tion cases considered herein.

During this process, an object of type lduMa-
trixSolver is constructed, which besides some
sanity checks also looks up the constructorP-
trTable for a solver specified by the solver key-
word in the corresponding section of the fvSolu-
tion file. The constructorPtrTable is a
typical entry point for plugins like OGL or PETSc-
4FOAM. When the aforementioned plugins are
loaded at startup time, for example by adding libs
("libOGL.so"); to the controlDict, the
plugin inserts pointers to the constructors of the
solver classes provided by the plugin. One simple way
to insert the pointers is via the defineTypeName-
AndDebug macros, as shown in Lst. 1 for GKOCG
as a solver for symmetric matrices.

1 Typically named psi.
2 Typically named source.

 Meccanica

1 3
Vol:. (1234567890)

After constructing an instance of the specified
solver using the pointer from the constructorP-
trTable, a member function named solve is
called. Hence, the third-party linear solver classes are
required to implement a member function with the
signature shown in Lst. 2

Here the scalarField &psi refers to the
solution vector and source to the right-hand side.
The scalarField psi is an out parameter,
i. e. the solution of the linear system can be written
directly into psi. Properties of the solution process,
such as residual norms and the number of iterations,
are returned via the solverPerformance data
structure. After solving the linear system, the instance
of the solver class is deallocated and reconstructed on
subsequent solve calls. This is an important point for
an efficient plugin implementation, since intermediate
computations need to be stored via the object registry
to avoid costly recomputation.

3 Implementation details of the OGL offloading
approach

This section discusses the considered offloading
approach using the OGL library to make Ginkgo’s
solver available for OpenFOAM. Furthermore, it
addresses some of the challenges mentioned in Sec.

2 and discusses how to limit the effect of the afore-
mentioned constraints. This includes interfacing with
Ginkgo to guarantee platform portability, a discus-
sion on device persistent data structures to reduce the
amount of data transfer, and efficient implementation

of the stopping criterion to avoid unnecessary evalua-
tions of the scaled L1 norm.

3.1 Offloading procedure

After constructing the solver class from the plugin,
the following central steps are performed:

1. At first, the OpenFOAM system matrix is con-
verted from LDU format to an appropriate format
for the GPU. For OGL this can be either the coor-
dinate list (COO), compressed sparse row (CSR),
or the Ellpack (ELL) sparse matrix format.

2. Since the sparsity pattern of the system matrix
will usually remain constant over the course of
a simulation, the row and column indices of the
system matrix on the GPU are preserved and
only the values are updated. For this, a mapping
between the LDU matrix entries and the COO/
CSR matrix entries is required.

3. Furthermore, the right-hand side and the solution
vector are copied to the device. While the solu-

Meccanica

1 3
Vol.: (0123456789)

tion vector is copied back to OpenFOAM after
the solution process, it is also re-used as the ini-
tial guess for the next time step.

4. Construction of the solver and preconditioner
objects from the Ginkgo library.

5. Call the corresponding linear solver and pass the
solution vector back to OpenFOAM.

3.2 Overview of the Gingko linear algebra library

The offloading approach presented here relies on sev-
eral important aspects of the Ginkgo3 library [22].
Ginkgo is a math library for linear algebra written
in modern C++. Its main focus lies on sparse linear
algebra for CPU multicore and GPU architectures by
implementing hardware-specific kernels in their native
languages, i. e. CUDA (for NVIDIA GPUs), HIP (for
AMD GPUs), OpenMP (for general-purpose multicore
processors, such as those from Intel, AMD, or ARM),
and SYCL for (Intel GPUs). It supports a variety of high
performance linear algebra solvers and preconditioners
suitable for CFD simulations. Furthermore, Ginkgo is
an attractive candidate as a backend for OpenFOAM
since it is open-source and comes with a permissive
BSD 3-clause license, is part of the extreme-scale Sci-
entific Software Development Kit (xSDK) [23], and has
already been integrated as a backend into other simu-
lation libraries like deal.ii [24], mfem [25], and open-
Carp [26, 27]. This implies not only that users can find
Ginkgo pre-installed on large machines supporting
xSDK, but also that they can use the Ginkgo technol-
ogy in commercial OpenFOAM projects. The following
key data structures are used within OGL:

• Ginkgo container types like gko::array and
gko::vector, to handle memory transfer
between OpenFOAM’s host-based data and the
GPU-based data. Here, the gko::vector type
is used to represent distributed vectors for MPI
parallelized runs.

• Ginkgo executor classes for an abstraction of the
memory location and available device type.

• Linear solver and preconditioner classes from
Ginkgo as an efficient and GPU-focused imple-
mentation of algorithms for preconditioning and
solving linear systems.

3.3 Device persistent data structures

A key principle for increasing performance with off-
loading is to reduce communication between the off-
loading target and the host to a minimum. To solve a
linear equation

on a dedicated accelerator device, the amount of
memory that needs to be transferred to the device is
given by

where mmat and mvec are the memory transferred in
bytes for the matrix and vectors, respectively. Further-
more, sscalar and slabel are the sizes of a scalar value and
the single precision label type respectively. The num-
ber of non-zero entries in the system matrix is given by
nNNZ and the number of cells by nDOF . Note that Eq. 3
considers three transfers of scalar arrays of length nDOF
since initially x and b are copied from the host to the
device and, after solving the linear equation, the solu-
tion vector x needs to be copied back to the host. How-
ever, for typical CFD applications, the linear equations
Eq. 1 are solved multiple times throughout a simula-
tion, for example when advancing in time for transient
simulations or within outer loops for steady-state sim-
ulations. Therefore, if the computational grid is fixed
throughout a simulation, the amount of memory trans-
ferred between host and device can be reduced by only
updating the previously copied matrix on the device
and reusing the solution vector as an initial guess in the
subsequent linear solver application.

For double precision scalar values of 8 bytes and 4
byte label sizes, considering a typical ratio of nNNZ

nDOF
= 7

4 the ratio between copying all arrays every time and
reusing existing memory on the device is approxi-
mately 0.52. Thus, almost half of the data transfer can
be avoided by reusing existing sparsity patterns and
performing updates of the system matrix. Further

(1)Ax = b

(2)mmat =
(

sscalar + 2slabel
)

nNNZ

(3)mvec = 3nDOFsscalar

(4)mmat = sscalarnNNZ

(5)mvec = 2nDOFsscalar.

3 Available at https:// github. com/ ginkgo- proje ct/ ginkgo. 4 Based on a 3D stencil, where each cell has six neighbors.

https://github.com/ginkgo-project/ginkgo

 Meccanica

1 3
Vol:. (1234567890)

optimizations can be achieved by employing com-
pression algorithms on the transferred data or exploit-
ing existing symmetry when possible. However, these
approaches are not within the scope of this work.

Reusing the system matrix and vectors on the GPU
device on subsequent linear solver calls needs the
implementation of additional functionalities into Open-
FOAM. Since the lduMatrixSolver object is deal-
located after the linear solver call has been completed,
any intermediate computations and data structures on
the GPU would also be deallocated if no further meas-
ures are taken. The principal idea to avoid costly rec-
omputation is to use OpenFOAM’s object registry to
store smart pointers to Ginkgo data types that contain
data on the accelerator. As long as the smart pointer is
kept in the object registry and the reference count does
not decrease to zero, the data on the accelerator is not
deallocated and can be retrieved on subsequent solver
calls. The full workflow for a device persisting Ginkgo
matrix is shown in Fig. 1. When the constructor of a
device persisting class is called, the constructor checks
whether an object with the requested name is already
registered in the object registry. If that is not the case,
the device persisting class performs the initialization
of the managed class. Otherwise, it will perform a less
memory-intensive update, reusing the persisting data.

To explain 1 in more detail, consider a typical con-
trol flow for a simulation with multiple linear solves.
During its first encounter, the persistent matrix does not
exist, and thus the “no” branch in Fig. 1 will be taken.
The persistent system matrix will then be initialized in
the following two steps. First, a mapping between Open-
FOAM LDU matrix coefficients and matrix coefficients
in row-major order on the device is computed. From that
the distributed Ginkgo matrix can be initialized and all
required data structures are stored in the object registry.
Here, we use the object registry of the mesh instance,
thus as long as the mesh instance exists the same spar-
sity pattern and any corresponding mappings can be
reused without any re-computation and data transfer
between host and device. The persistent matrix can now
be used to solve the linear system with Ginkgo solvers.
In the subsequent linear solve encounters, the object
now exists, so the “yes” branch is chosen. Since the
object registry contains the required objects, they can be
retrieved and updates of the matrix coefficients can be
performed using the stored LDU-COO mapping.

To facilitate this workflow of storing and retriev-
ing data via the object registry automatically, a

base class named PersistentBase was imple-
mented5. A pseudo code implementation is given
in Lst. 3. The base class requires two template argu-
ments, T which defines the underlying type for which
std::shared_ptr<textttT> is stored in the object
registry and initFunctor which is a functor that
provides a init| and a update function. When
the constructor of PersistentBase is called, it
searches in the given object registry whether an object
with the specified name already exists. If an object
with that name was found and no explicit update is
requested via the update parameter, the shared
pointer is retrieved from the object registry. In contrast,
if an explicit update is requested, the update function
from the functor is called using the pointer to the origi-
nal object. Finally, if no object with the given name is
found in the object registry, initialization of the persis-
tent object is performed via the functors init function.

Fig. 1 Procedure for initializing or reusing device persisting
system matrices

5 https:// github. com/ hpsim/ OGL/ tree/ dev/ Devic ePers istent/
Base.

https://github.com/hpsim/OGL/tree/dev/DevicePersistent/Base
https://github.com/hpsim/OGL/tree/dev/DevicePersistent/Base

Meccanica

1 3
Vol.: (0123456789)

Listing 3 Pseudo code showing the implementation of the PersistentBase class.

template<class T, class InitFunctor>

class PersistentBase {

...

public:

PersistentBase(const word name, const objectRegistry &db,

const InitFunctor f, const bool update)

: name_(name), db_(db),

from_registry_(db.foundObject<regIOobject>(name)),

init_functor_(f) {

if (from_registry_) {

if (update) {

persistent_object_ =

db_.lookupObjectRef<DevicePersistentBase<T>>(name)

.get_ptr();

f.update(persistent_object_);

} else {

persistent_ =

db_.

lookupObjectRef<DevicePersistentBase<T>>(name)

.get_ptr();

}

} else {

auto po = new DevicePersistentBase<T>(

IOobject(...), f.init()

);

persistent_ = po->get_ptr();

}

}

};

This allows the base class to check whether the
managed object is accessible via the object regis-
try and initialize or update it if required. A sim-
ple use case for the device persistent class is the
PersistentVector<T> class that derives
from PersistentBase<GkoVector<T,
VectorInitFunctor<T>> . Hence, it stores a
shared pointer to a Ginkgo distributed vector for ele-
ments of type T and provides a function for initiali-
zation and updating the managed vector. Listing 4
shows the constructor call for the persistent vec-
tor class. Here, the first parameter psi.begin()

gives access to data which needs to be copied to the
accelerator device, the field name parameter is used
as a key in the object registry, the db_ parameter is
a reference to the mesh object registry which stores
the shared pointer, this->get_exec() provides
access to the executor responsible for data access, and
updateInitGuess defines whether the data needs
to updated on the next constructor call

 Meccanica

1 3
Vol:. (1234567890)

Listing 4 Simplified constructor call for a PersistentVector

PersistentVector<scalar> dist_x{

psi.begin(), // original host data address

this->fieldName(), // name to search for in object registry

db_, // here the mesh object registry

this->get_exec(), // executor handling where data is allocated

updateInitGuess, // bool whether update is needed, default false

};

3.4 Solver generation and execution

Listing 5 gives a minimal code example of how a pre-
conditioned solver, here a preconditioned CG solver
is created. In the first step, a solver factory is cre-
ated, which allows to optionally set parameters like
the stopping criterion or the preconditioner. Within
OGL this is handled for the individual solvers in
the Solver directories and can be accessed via the
create_dist_solver method, shown in Lst. 6.

Listing 5 Example code creating a Ginkgo solver.

using cg = gko::solver::Cg<scalar>;

auto cg = cg::build()

.with_criteria(stoppingCriterionVec_)

.with_generated_preconditioner(precond)

.on(exec);

In the next step, the actual solver instance is cre-
ated via the generate call and the distributed
matrix object called dist_A_v. Next, the linear
system is solved using the solver apply method
with the distributed RHS vector named dist_b_v
and the distributed initial guess vector, dist_x_v.
Finally, the call to dist_x.copy_back() copies
the result data back to OpenFOAM via the pointer
that initially served for copying the input data.

Table 2 Overview of GPU
and CPU hardware of the
utilized systems

System CPU (total number of cores) GPU

NLA 2 AMD EPYC 7302 (32) 8 AMD MI100
HoreKa 2 Intel Xeon Platinum 8368 (76) 4 NVIDIA A100-40 GPU
SuperMUC-NG 2 Intel Xeon Platinum 8480+ (112) 4 Intel Data Center GPU Max 1550

Meccanica

1 3
Vol.: (0123456789)

Listing 6 Example code executing a Ginkgo solver from OpenFOAM

// Get the solver factory

auto solver_gen = this->create_dist_solver(

this->get_exec_handler().get_device_exec(), dist_A_v, dist_x_v,

dist_b_v, verbose_, dist_A.get_export(), precond);

// Create the actual solver instance

auto solver = solver_gen->generate(dist_A_v);

// Solve the linear system

solver->apply(dist_b_v, dist_x_v);

// Hand the solution back to OpenFOAM

dist_x_v.copy_back();

3.5 Efficient stopping criterion implementation

One potentially large overhead, especially for Krylov
solvers, can be the evaluation of the stopping criterion
in every iteration. In OpenFOAM, the computation of
the stopping criterion requires computing a scaled
L1 norm, [14]. If this L1 norm calculation relies on
OpenFOAM’s implementation on the host side, it
requires copying the full residual norm vector back to
the host for every solver iteration. Thus, a dedicated
GPU version of the scaled L1 norm calculation is
needed to guarantee equivalent convergence behavior
without introducing the overhead of repeated device-
host data transfers. Additionally, the cost of evaluat-
ing the residual norm should be kept minimal. If one
knows that a minimum number of iterations is needed
to solve a certain linear problem, evaluating the
residual norm before the minimum number of itera-
tions is reached is only relevant for monitoring pur-
poses. Furthermore, the number of times evaluating
the residual norm should be kept minimal. This can
be achieved by reducing the frequency at which the
residual norm is evaluated. This can lead to additional
iterations of the linear solver until the stopping cri-
terion is evaluated. However, the overall computation
time can benefit if the additional iterations are faster

than the residual norm calculation. The optimal fre-
quency at which the residual norms should be evalu-
ated depends on two factors:

1. The time needed for the evaluation of the residual
norm;

2. The cost of the solver iterations.

To compute the optimal frequency f with which the
residual norm should be calculated, we use a simple
cost model based on the number of iterations needed
to solve the linear equation in a previous solve step
i. e. n = nt−1 and the ratio of the computational costs
to perform a single iteration of the linear solver and to
evaluate the scaled L1 norm.

3.6 Build procedure and usage example

Ginkgo and OGL use CMake as a build file generator.
Furthermore, OGL’s build procedure can handle the
download, configure, build and installation steps of
Ginkgo to ensure the correct version is used. If a suf-
ficiently recent CMake version is installed on the tar-
get system, the provided CMake presets can be used
to configure, build and install OGL. For a release
build with Ninja, for a system without GPUs, the fol-
lowing commands can be used

 Meccanica

1 3
Vol:. (1234567890)

Besides the cpuonly preset other presets are
available for CUDA, AMD, and Intel devices.
After a successful build several shared objects, e.g.
libOGL.so and libGinkgo.so are copied to
the |FOAM_USER_LIBBIN directory. To load the
shared object at application startup one has to add
libs ("libOGL.so"); to the controlDict file.
Then Gingko solver can be selected by adapting the
fvSolution file. The following shows an example
using CG with a block Jacobi preconditioner:

 Where the executor cuda specifies to run on
a NVIDIA device.

4 Results

For a performance evaluation of Ginkgo’s GPU solv-
ers within OpenFOAM, the lidDrivenCavity3D6
was selected. The case was previously used as a

benchmark test case by several authors, e.g. [13, 14].
The presented test case uses the original, uniform,
cubic grid and evaluates results for various grid reso-
lutions ranging from 1003 to 5003 while keeping the
CFL number constant. Experiments where conducted
using the ESI OpenFOAM version 2306 and OGL
version 0.5.3.

In the experimental evaluation, we use three hard-
ware systems, referred to as NLA, HoreKa, Super-
MUC-NG. The NLA machine is non-public machine
composed of two AMD EPYC 7302 16 Core CPUs
and eight AMD MI100 GPUs. The second machine
we use is the HoreKa cluster7, where each node
hosts two Intel Xeon Platinum 8368 CPUs and four
NVIDIA A100-40 GPUs. The third system we use
in the experimental evaluation is the SuperMUC-NG
Phase 28. SuperMUC-NG features two Intel Sapphire
Rapids Xeon Platinum 8480+ CPUs and four Intel
Ponte Vecchio Data Center Max 1550 GPUs on each
node. Table 2 summarizes the hardware of the tested
HPC systems.

Fig. 2 GPU (left) and
CPU (right) linear pressure
solver performance over the
grid resolution of the three
tested HPC machines on a
single node.

Table 3 Maximum achieved performance in fvOps for the
GPU accelerated and non-accelerated CPU runs

System CPU, total CPU, per
Core

GPU per GPU

NLA 7.49E+08 2.34E+07 7.84E+09 9.80E+08
HoreKa 1.71E+09 2.26E+07 2.67E+09 6.66E+08
SuperMUC 3.83E+09 3.42E+07 2.54E+09 6.36E+08

6 https:// devel op. openf oam. com/ commi ttees/ hpc. git.

7 https:// www. scc. kit. edu/ diens te/ HoreKa. php.
8 https:// doku. lrz. de/ hardw are- of- super muc- ng- phase-2- 22289
1050. html.

https://develop.openfoam.com/committees/hpc.git
https://www.scc.kit.edu/dienste/HoreKa.php
https://doku.lrz.de/hardware-of-supermuc-ng-phase-2-222891050.html
https://doku.lrz.de/hardware-of-supermuc-ng-phase-2-222891050.html

Meccanica

1 3
Vol.: (0123456789)

The MPI-parallel OpenFOAM runs without GPU
acceleration employ as many MPI ranks as physical
cores are available on the respective machines, i.e.
32 on the NLA machine, 76 on the HoreKa cluster,
and 112 on the SuperMUC-NG cluster. For the Open-
FOAM runs using either Ginkgo’s CUDA, HIP, or
SYCL backend, the computational domain is decom-
posed into twice as many subdomains as GPUs avail-
able. In our experience, this results in a good balance
between the computational cost of assembling the
system matrix on the CPU and solving the linear sys-
tems on the GPUs. The simple scheme was taken as a
decomposition method.

4.1 Single node performance results

First, the single-node performance was investigated.
Here the LidDrivenCavity3D case was run for mesh
configurations containing 1, 8, 27, and 64 million
cells.

Figure 2 shows the achieved performance of the
linear pressure solver on a single node over different
mesh resolutions. As a performance metric, fvOps of
the linear pressure solver (PCG) are evaluated, with
fvOps = nCellsnIter,p∕tsolver , where nCells is the total
number of grid cells, nIter,p the number of required
linear solver iterations till convergence, and ∕tsolver
the required time to solution. Here, a larger number
of fvOps indicate better performance. The left figure
shows the performance of the GPU-accelerated run

and the right figure the performance of the non-accel-
erated runs on the CPUs. In general, for the GPUs an
increase of the performance with increasing problem
size can be observed. Across the tested grid sizes, the
NLA system which is equipped with eight MI100
GPUs, shows the largest performance compared
to the other systems. For smaller grid sizes of up to
eight million cells, the Intel Max 1550 shows favora-
ble performance compared to the NVIDIA A100. For
the larger cases with more than 8M cells, the Intel
Max 1550 and the A100 results are comparable.

The CPU performance decreases with increasing
problem size as shown in the right of Fig. 2. This can
be explained by a decrease in the cache utilization
for large problem sizes. The CPU performance of the
SuperMUC system exceeds the CPU performance of
the other systems across the tested problem sizes. The
maximum achieved performance for each system is
summarized in Table 3. It can be seen that the per-
formance, especially when normalized by the number
of CPU cores and GPU devices, is comparable. The
highest CPU performance per core was measured on
the Intel CPUs of the SuperMUC-NG cluster. This is
most likely a result of the significantly larger memory
bandwidth of the Sapphire Rapids architecture. The
highest per GPU performance was measured for the
AMD GPUs on the NLA system.

The single node benchmarks are conducted in a
range of cells per CPU core that is not necessarily
optimal for the CPU caches, thus one might expect
even better maximum performance per CPU core
when fewer grid cells per CPU core are utilized. This

Fig. 3 Resulting speedup of an average timestep for the GPU
accelerated cases over the grid resolution for the tested HPC
nodes

Fig. 4 Strong scaling results of the lidDrivenCavity3D case

 Meccanica

1 3
Vol:. (1234567890)

can be achieved by scaling simulations across mul-
tiple compute nodes. However, with the increasing
adoption of GPU accelerators, HPC clusters tend to
provide fewer compute nodes in total. This could in
consequence require running simulations with more
grid cells per CPU core than considered optimal
today.

Figure 3 shows the achieved speedup by offload-
ing on the tested systems over the grid size. Here,
the speedup is computed as S = tGPU∕tCPU,SN , where
tGPU is the average time required to solve a time step
with GPU acceleration and tCPU, SN the average time
required without GPU acceleration using all avail-
able CPU cores of that node. The resulting speedup
includes all overhead costs of the offloading proce-
dure, including the time required to update the GPU
device matrix and copying data between the host and
the accelerator.

The speedup generally increases with increasing
problem size. This is a result of the increasing per-
formance of the GPU and the decreasing CPU perfor-
mance for increasing problem sizes, c.f. Fig. 2. The
largest speedup of approximately a factor of 15 was
observed on the NLA machine, which is equipped
with the largest number of GPU devices and the
lowest number of CPU cores. The machines with
four GPUs and more CPU cores reach a speedup of
approximately four on the HoreKa and two on the
SuperMUC-NG machines, respectively.

4.2 Multi node performance results

In the next experiment, we investigate strong scaling
behavior on up to 10 compute nodes and 40 GPUs on
the HoreKa and the SuperMUC-NG cluster. For this,
a case with 125M cells was selected and decomposed
into 8 subdomains per node for accelerated simula-
tions. The simulation without acceleration, but utiliz-
ing all CPU cores, was taken as a reference to com-
pute the speedup, which is shown in Fig. 4.

For both tested systems, performance increases
with the number of compute nodes. However, on
the SuperMUC-NG machine a super linear speedup
can be observed when using more than 4 nodes. This
seems to be a consequence of the favorable GPU per-
formance profile of the SuperMUC-NG machine for
smaller grid resolutions, as indicated in Fig. 2.

5 Conclusion and Outlook

A platform-portable offloading approach was pre-
sented and tested on three different systems equipped
with accelerators from Intel, AMD, and NVIDIA. For
all tested cases, a speedup for sufficiently large grid
sizes can be observed. For two of the three tested
machines, strong scaling studies on up to 40 GPUs
were performed, demonstrating good strong scal-
ability. Additionally, methods to reduce the commu-
nication overhead by employing GPU device persis-
tent data structures and reducing the frequency of
the stopping criterion evaluation were discussed to
increase the overall performance. Additionally, to the
work presented here, several improvements are cur-
rently under investigation. This includes the imple-
mentation and evaluation of a distributed Multigrid
solver, the impact of GPU based preconditioner, as
well as advanced repartitioning schemes to support
different decompositions between CPU and GPU.

Acknowledgements This work was supported by the German
Federal Ministry of Education and Research (grant number
16ME0676K). This work was performed on the HoreKa super-
computer funded by the Ministry of Science, Research and the
Arts Baden-Württemberg and by the Federal Ministry of Edu-
cation and Research. The authors gratefully acknowledge the
Gauss Centre for Supercomputing e.V. (www. gauss- centre.
eu) for providing computing time on the GCS Supercomputer
SuperMUC-NG at Leibniz Supercomputing Centre (www.
lrz. de). Furthermore, the authors acknowledge the organizing
committee of the 18th OpenFOAM Workshop for the support
provided.

Author contributions All authors contributed to the study’s
conception and design. Material preparation, data collec-
tion, and analysis were performed by Gregor Olenik. Neces-
sary implementations in the investigated software were per-
formed by Gregor Olenik and Marcel Koch. The first draft of
the manuscript was written by Gregor Olenik and all authors
commented on previous versions of the manuscript. All authors
read and approved the final manuscript

Funding Open Access funding enabled and organized by
Projekt DEAL. This work was supported by the German
Federal Ministry of Education and Research (grant number
16ME0676K).

Data availability Not applicable.

Code availability The invesigated code is available at https://
github. com/ hpsim/ OGL.

Declarations

http://www.gauss-centre.eu
http://www.gauss-centre.eu
http://www.lrz.de
http://www.lrz.de
https://github.com/hpsim/OGL
https://github.com/hpsim/OGL

Meccanica

1 3
Vol.: (0123456789)

Conflict of interest Not applicable.

Ethics approval and consent to participate Not applicable.

Consent for publication Not applicable.

Materials availability Not applicable

Open Access This article is licensed under a Creative Com-
mons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Crea-
tive Commons licence, and indicate if changes were made. The
images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds
the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit
http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

 1. NVIDIA: CUDA C++ programming guide (2023)
 2. AMD: ROCm-developer-tools/HIP. ROCm Developer

Tools (2023)
 3. Khronos: SYCL—C++ single-source heterogeneous pro-

gramming for acceleration offload (2014)
 4. Dagum L, Menon R (1998) Openmp: an industry standard

API for shared-memory programming. IEEE Comput Sci
Eng 5(1):46–55

 5. Trott CR, Lebrun-Grandié D, Arndt D, Ciesko J, Dang V,
Ellingwood N, Gayatri R, Harvey E, Hollman DS, Ibanez
D, Liber N, Madsen J, Miles J, Poliakoff D, Powell A,
Rajamanickam S, Simberg M, Sunderland D, Turcksin
B, Wilke J (2022) Kokkos 3: programming model exten-
sions for the exascale era. IEEE Trans Parallel Distrib Syst
33(4):805–817. https:// doi. org/ 10. 1109/ TPDS. 2021. 30972
83

 6. Edwards HC, Trott CR, Sunderland D (2014) Kokkos:
Enabling manycore performance portability through
polymorphic memory access patterns. J. Parallel Distrib.
Comput. 74(12):3202–3216. https:// doi. org/ 10. 1016/j.
jpdc. 2014. 07. 003Domain-Specific Languages and High-
Level Frameworks for High-Performance Computing

 7. ...Balay S, Abhyankar S, Adams MF, Benson S, Brown
J, Brune P, Buschelman K, Constantinescu EM, Dalcin
L, Dener A, Eijkhout V, Faibussowitsch J, Gropp WD,
Hapla V, Isaac T, Jolivet P, Karpeev D, Kaushik D, Knep-
ley MG, Kong F, Kruger S, May DA, McInnes LC, Mills
RT, Mitchell L, Munson T, Roman JE, Rupp K, Sanan P,
Sarich J, Smith BF, Zampini S, Zhang H, Zhang H, Zhang
J (1999) PETSc Web page. https:// petsc. org/ (2024).
https:// petsc. org/

 8. Anzt H, Cojean T, Flegar G, Göbel F, Grützmacher T,
Nayak P, Ribizel T, Tsai YM, Quintana-Ortí ES (2020)
Ginkgo: a modern linear operator algebra framework for
high performance computing. arXiv preprint arXiv: 2006.
16852

 9. Patankar SV, Spalding DB (1972) A calculation pro-
cedure for heat, mass and momentum transfer in three-
dimensional parabolic flows. Int J Heat Mass Transf
15(10):1787–1806. https:// doi. org/ 10. 1016/ 0017-
9310(72) 90054-3

 10. Issa RI (1986) Solution of the implicitly discretised fluid
flow equations by operator-splitting. J Comput Phys
62(1):40–65. https:// doi. org/ 10. 1016/ 0021- 9991(86)
90099-9

 11. Weller HG, Tabor G, Jasak H, Fureby C (1998) A ten-
sorial approach to computational continuum mechan-
ics using object-oriented techniques. Comput. Phys.
12(6):620–631. https:// doi. org/ 10. 1063/1. 168744

 12. Combest DP, Day J (2011) Cufflink: a library for linking
numerical methods based on CUDA C/C++ with Open-
FOAM, 2011

 13. Tomczak T, Zadarnowska K, Koza Z, Matyka M,
Mirosław Ł (2012) Complete PISO and SIMPLE solvers
on graphics processing units. arXiv preprint arXiv: 1207.
1571

 14. Bná S, Spisso I, Olesen M, Rossi G (2020) PETSc-
4FOAM: a library to plug-in PETSc into the OpenFOAM
framework. PRACE White Paper

 15. Zampini S, Bnà S, Valentini M, Spisso I (2020) GPU-
accelerated OpenFOAM simulations using PETSc-
4FOAM. In: 8th ESI-OpenFOAM conference

 16. Piscaglia F, Ghioldi F (2023) GPU acceleration of CFD
simulations in OpenFOAM. Aerospace 10(9):792

 17. Rathnayake T (2016) Integrating OpenFOAM and GPUs
using AMGx. PhD thesis

 18. Rathnayake T, Jayasena S, Narayana M (2017) Open-
FOAM on GPUs using AMGx. In: Proceedings of the
25th high performance computing symposium, pp 1–12

 19. Olenik G, Kashi A, Nayak P, Göbel F, Ribizel T, Cojean
T, Tsai Y-H, Koch M, Georgiou V, Anzt H Improving
linear solver performance by offloading computations to
GPGPUS with GINKGO. In: 17th OpenFOAM workshop

 20. Munshi A (2009) The OpenCL specification. In: 2009
IEEE hot chips 21 symposium (HCS). IEEE, pp 1–314

 21. Olenik G, Cojean T, Göbel F, Grützmacher T, Kashi A,
Nayak P, Ribizel T, Mike Tsai Y, Anzt H (2021) Acceler-
ating OpenFOAM simulations with GPUs using Ginkgo.
In: 9th OpenFOAM conference

 22. Anzt H, Cojean T, Flegar G, Göbel F, Grützmacher T,
Nayak P, Ribizel T, Tsai Y, Quintana-Ortí ES (2022)
Ginkgo: a modern linear operator algebra framework for
high performance computing. ACM Trans Math Softw
48(1):1–33. https:// doi. org/ 10. 1145/ 34809 35

 23. Bartlett R, Demeshko I, Gamblin T, Hammond G, Heroux
M, Johnson J, Klinvex A, Li X, McInnes LC, Moulton JD
et al (2017) xsdk foundations: toward an extreme-scale
scientific software development kit. arXiv preprint arXiv:
1702. 08425

 24. Arndt D, Bangerth W, Davydov D, Heister T, Heltai
L, Kronbichler M, Maier M, Pelteret J-P, Turcksin B,
Wells D (2021) The deal.II finite element library: design,

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/TPDS.2021.3097283
https://doi.org/10.1109/TPDS.2021.3097283
https://doi.org/10.1016/j.jpdc.2014.07.003
https://doi.org/10.1016/j.jpdc.2014.07.003
https://petsc.org/
https://petsc.org/
http://arxiv.org/abs/2006.16852
http://arxiv.org/abs/2006.16852
https://doi.org/10.1016/0017-9310(72)90054-3
https://doi.org/10.1016/0017-9310(72)90054-3
https://doi.org/10.1016/0021-9991(86)90099-9
https://doi.org/10.1016/0021-9991(86)90099-9
https://doi.org/10.1063/1.168744
http://arxiv.org/abs/1207.1571
http://arxiv.org/abs/1207.1571
https://doi.org/10.1145/3480935
http://arxiv.org/abs/1702.08425
http://arxiv.org/abs/1702.08425

 Meccanica

1 3
Vol:. (1234567890)

features, and insights. Comput Math Appl 81:407–422.
https:// doi. org/ 10. 1016/j. camwa. 2020. 02. 022

 25. Anderson R, Andrej J, Barker A, Bramwell J, Camier
J-S, Cerveny J, Dobrev V, Dudouit Y, Fisher A, Kolev
T, Pazner W, Stowell M, Tomov V, Akkerman I, Dahm
J, Medina D, Zampini S (2021) MFEM: a modular finite
element methods library. Comput Math Appl 81:42–74.
https:// doi. org/ 10. 1016/j. camwa. 2020. 06. 009

 26. Plank* G, Loewe* A, Neic* A, Augustin C, Huang Y-LC,
Gsell M, Karabelas E, Nothstein M, Sánchez J, Prassl A,
Seemann* G, Vigmond* E, (2021) The openCARP simu-
lation environment for cardiac electrophysiology. Comput
Methods Prog Biomed 208:106223. https:// doi. org/ 10.
1016/j. cmpb. 2021. 106223

 27. openCARP consortium, Augustin C, Boyle PM, Loechner
V, Colin R, Huppé A, Gsell M, Houillon M, Huang Y-.C,
Hustad KG, Karabelas E, Loewe A, Myklebust L, Neic A,
Nothstein M, Plank G, Prassl A, Sánchez, J., Seemann, G.,
Stary, T., Thangamani, A., Tippmann, N., Trevisan Jost,
T., Vigmond, E., Wülfers, E.M., Linder, M.: openCARP.
https:// doi. org/ 10. 35097/ 1979 . https:// git. openc arp. org/
openC ARP/ openC ARP

Publisher’s Note Springer Nature remains neutral with regard
to jurisdictional claims in published maps and institutional
affiliations.

https://doi.org/10.1016/j.camwa.2020.02.022
https://doi.org/10.1016/j.camwa.2020.06.009
https://doi.org/10.1016/j.cmpb.2021.106223
https://doi.org/10.1016/j.cmpb.2021.106223
https://doi.org/10.35097/1979
https://git.opencarp.org/openCARP/openCARP
https://git.opencarp.org/openCARP/openCARP

	Towards a platform-portable linear algebra backend for OpenFOAM
	Abstract
	1 Introduction
	2 Constraints and limitations of the plugin offloading approach
	3 Implementation details of the OGL offloading approach
	3.1 Offloading procedure
	3.2 Overview of the Gingko linear algebra library
	3.3 Device persistent data structures
	3.4 Solver generation and execution
	3.5 Efficient stopping criterion implementation
	3.6 Build procedure and usage example

	4 Results
	4.1 Single node performance results
	4.2 Multi node performance results

	5 Conclusion and Outlook
	Acknowledgements
	References

