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Abstract

Current deep learning algorithms are capable of learning from large amounts
of data and extracting complex patterns.  They have been successful in var-
ious applications such as computer vision, natural language processing and
speech recognition. A central challenge in integrating deep learning systems
into complex real-world applications that involve a dynamic and evolving en-
vironment, like automated driving, is the phenomenon of catastrophic forget-
ting.  Catastrophic forgetting refers to the tendency of deep learning systems
to completely forget previously learned information when trained on new
data. This poses a significant challenge in the development of reliable and
robust deep learning models for real-world applications. While research in
continual learning aims to overcome catastrophic forgetting and enable deep
learning models to retain and adapt to new information without losing pre-
viously acquired knowledge, the underlying principles and effects of catas-
trophic forgetting remain mostly obscure. 

Therefore, instead of pursuing incremental algorithmic improvements to
continual learning methods, this thesis aims to reveal the causes and conse-
quences of catastrophic forgetting that arise during continual learning and
that remain valid independently of the progress of the state-of-the-art meth-
ods. Through an exploration of continual learning scenarios for real-world
semantic segmentation in automated driving, distinctive characteristics of
forgetting that arise in class- and domain-incremental semantic segmentation
are uncovered.  To investigate these characteristics further, a set of analysis
tools that allow quantitatively measuring the effects of catastrophic forget-
ting are compared.  Utilizing these methods, the principles of forgetting are
studied independently for class- and domain-incremental learning. It is found
that in class-incremental learning, the semantic shift of the background class
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is a major cause of forgetting, which primarily affects the layers close to the
output layer.  In contrast, in domain-incremental learning, forgetting is often
caused by changes to low-level features that primarily affect the input layers
of the network. Furthermore, it is found that methods such as strong image
augmentations or comprehensive pre-training that lead to more generalized
features, enable the model to reuse learned features in future tasks, which
drastically reduces catastrophic forgetting. Finally, the effects of several
architectural choices are studied, revealing that the increased robustness
towards catastrophic forgetting of vision transformers is mainly caused
by the better generalization capabilities of these models. However, this
increased robustness can be replicated in convolutional neural networks by
modifying architectural elements such as increasing kernel sizes, exchanging
normalization layers and input transformations.

Overall, this thesis provides insight into the intricate mechanisms of catas-
trophic forgetting in continual learning scenarios, shedding light on the
causes and effects that impact the performance of deep learning models
in complex real-world applications. These findings hold promise for the
development of more resilient and adaptable deep learning systems, crucial
for ensuring the reliability and effectiveness of applications like automated
driving.
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Kurzfassung

Aktuelle Deep-Learning-Algorithmen sind in der Lage, aus großen Daten-
mengen zu lernen und komplexe Muster zu extrahieren. Sie haben sich in
verschiedenen Anwendungen wie Computer Vision, Textverarbeitung und
Spracherkennung bewährt. Eine zentrale Herausforderung für die Integration
von Deep-Learning-Systemen in dynamischen und sich verändernden realen
Anwendungen, wie z. B. automatisiertes Fahren, ist das sogenannte ”kata-
strophale Vergessen”. Katastrophales Vergessen bezeichnet die Tendenz von
Deep-Learning-Systemen, zuvor gelernte Informationen vollständig zu ver-
gessen, wenn sie mit neuen Daten trainiert werden. Dies stellt eine große Her-
ausforderung bei der Entwicklung zuverlässiger und robuster Deep-Learning-
Modelle für reale Anwendungen dar. Obwohl die Forschung im Bereich des
kontinuierlichen Lernens darauf abzielt, das katastrophale Vergessen zu über-
winden und Deep-Learning-Modelle in die Lage zu versetzen, neue Informa-
tionen zu lernen und sich an diese anzupassen, ohne das zuvor erworbene
Wissen zu verlieren, sind die zugrundeliegenden Prinzipien und Auswirkun-
gen des Vergessens noch relativ unklar.

Deshalb zielt diese Arbeit nicht darauf ab, die Methoden des kontinuierlichen
Lernens inkrementell zu verbessern, sondern die Ursachen und Folgen des ka-
tastrophalen Vergessens aufzudecken, die während des kontinuierlichen Ler-
nens auftreten und unabhängig von den Fortschritten der modernsten Metho-
den gültig bleiben. Durch die Analyse von klassen- und domäneninkremen-
tellen Lernszenarien für die reale semantische Segmentierung beim automa-
tisierten Fahren werden charakteristische Merkmale des Vergessens, die bei
klassen- und domäneninkrementeller semantischer Segmentierung auftreten,
aufgedeckt. Umdiese Charakteristikaweiter zu untersuchen, werden eine Rei-
he vonAnalysewerkzeugen verglichen, die es erlauben, die Auswirkungen des
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katastrophalen Vergessens quantitativ zu messen. Mit Hilfe dieser Methoden
werden die Prinzipien des Vergessens separat für klassen- und domäneninkre-
mentelles Lernen untersucht. Es zeigt sich, dass beim klasseninkrementellen
Lernen die semantische Änderung der Hintergrundklasse eine Hauptursache
für das Vergessen ist, was vor allem die Schichten des neuronalen Netzes na-
he der Ausgabeschicht betrifft. Im Gegensatz dazu wird das Vergessen beim
domäneninkrementellen Lernen häufig durch Änderungen von Low-Level-
Merkmalen verursacht, die in erster Linie die Eingabeschichten des Netzes be-
treffen. Darüber hinaus zeigt sich, dass Methoden wie starke Bildaugmentie-
rungen oder umfassendes Pre-Training, die generalisiertereMerkmale ermög-
lichen, das Modell in die Lage versetzen, gelernte Merkmale in zukünftigen
Aufgaben wiederzuverwenden, wodurch katastrophales Vergessen drastisch
reduziert wird. Schließlich werden die Auswirkungen verschiedener Archi-
tekturen untersucht, wobei sich herausstellt, dass die erhöhte Robustheit ge-
genüber katastrophalem Vergessen von Vision-Transformern hauptsächlich
auf die besseren Generalisierungsfähigkeiten dieser Modelle zurückzuführen
ist. Diese gesteigerte Robustheit kann jedoch in faltbaren neuronalen Netzen
durch Modifikation von Architekturelementen wie Erhöhung der Kernelgrö-
ße, Austausch von Normalisierungsschichten und Eingangstransformationen
repliziert werden.

Die vorliegende Arbeit untersucht die vielschichtigen Mechanismen des
katastrophalen Vergessens in kontinuierlichen Lernszenarien und liefert
Erkenntnisse über die Ursachen und Auswirkungen, die die Leistung von
Deep-Learning-Modellen in komplexen realen Anwendungen beeinflussen.
Diese Erkenntnisse sind vielversprechend für die Entwicklung robusterer und
anpassungsfähigerer Deep-Learning-Systeme, die für die Gewährleistung der
Zuverlässigkeit und Effektivität von Anwendungen wie dem autonomen
Fahren entscheidend sind.
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Notation

This chapter introduces the notation and symbolswhich are used in this thesis.

General Defintions

𝜖 infinitesimally small positive quantity
𝜇 arithmetic mean
𝜎2 variance
|| ⋅ ||𝐹 Frobenius Norm
|| ⋅ ||2 Euclidean Norm

Datasets and Tasks

𝑇 training task
𝑆 A disjoint subset of a dataset
𝑘 index of current task
𝑥𝑚 image of dataset
𝑦𝑚 label of dataset
𝑝𝑚 sample probability of training sample (𝑥𝑚, 𝑦𝑚)
𝒞𝑘 set of classes of the current task
𝐶𝑘 number of classes of the current task
𝒮𝑘 set of novel classes that are introduced in task 𝑇𝑘
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Notation

𝒞𝑘−1 ∪̇ 𝒮𝑘 the disjoint union of the sets 𝒞𝑘−1 and 𝒮𝑘
𝐼 Set of pixels in an image

Artificial Neural Networks

𝑓𝑘 model after optimization on task 𝑇𝑘
𝑁 number of the layers of model 𝑓
𝜃𝑘 parameters of model 𝑓𝑘
𝑙𝑘,𝑛 layer 𝑛 of model 𝑓𝑘
𝒜𝑛 activations space 𝑙𝑛
𝐀𝑘,𝑛 activation / feature map of 𝑙𝑘,𝑛 with dimensions

𝐻 ×𝑊 × 𝐶
ℒ loss function
𝐻 height of a feature map
𝑊 width of a feature map
𝐶 number of channels of a feature map
𝐵 batch dimension
𝜏 temperature parameter of the softmax function

Numbers and indexing

𝑖,𝑗,𝑣 indices
𝑐 indexing for classes
ℝ real numbers
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1 Introduction

The world around us is highly complex, constantly changing and evolving.
To cope with this complexity, humans possess a unique ability to continually
learn and adapt. We successfully navigate through diverse environments, rec-
ognize objects, understand language, and make sense of the world.  In today’s
technological-driven society, we are challenged to transfer these abilities to
computers to automate and solve complex problems without human interven-
tion over long-term continuous operation. However, fully comprehending the
intricate workings of these capabilities remains a challenge, making it diffi-
cult to directly replicate them in machines

Previous advances in machine learning allow us to partially overcome this
restriction by allowing machines to learn from large amounts of data that en-
able them to infer patterns and to solve complex tasks for which human ex-
perts fail to develop problem-specific algorithms. Specifically, the advances
in deep learning and neural networks have enabled machines to mimic hu-
man learning capabilities in certain domains, such as computer vision and
natural language processing. Over the past decades, the capabilities of deep
neural networks have increased substantially from only classifying handwrit-
ten digits in 1989 [LeC89], to image recognition [Den09], to translating and
understanding natural language [Dev18] and even surpassing human-level
performance in strategic games like chess [12], Go [16] and even particular
instances of computer vision such as traffic sign recognition [Cir12] or scene
perception [Lon15].

However, contrary to our ability to learn continually from new experiences
by refining existing knowledge and accumulating new knowledge, the train-
ing process of these deep neural networks currently produces static models
that cannot easily be expanded in their function without adversely interfering

1



1 Introduction

with their ability to perform previously-learned tasks. This limitation hinders
the adaptability and flexibility of neural networks, as they require extensive
retraining for each new task.

Research in the field of continual learning aims to overcome this limitation
by enabling machines to learn continually from new data while preserving
previously acquired knowledge. Continual learning encompasses the ability
to incrementally acquire new skills, refine existing ones, and seamlessly inte-
grate new information into the existing knowledge framework.

However, progressively acquiring new knowledge without adversely inter-
fering with previously learned knowledge is one fundamental constraint of
state-of-the-art deep learning algorithms. This challenge is known as catas-
trophic forgetting [McC89]. Catastrophic forgetting refers to the phenomenon
where a neural network’s performance on previously learned tasks signifi-
cantly degrades when it is trained on new data.

The objective of this thesis is to investigate the principles of catastrophic for-
getting for deep neural networks in continual learning. Although the focus
within this thesis is on scene perception for highly automated driving, many
of the observations are likely to be applicable beyond this specific application.

1.1 Continual Learning in Highly Automated
Driving

Over the past decade, remarkable progress has been made in the field of auto-
mated driving, from the first automated vehicles in the DARPA Urban Chal-
lenge [Bue09] to now having fully autonomous robotaxis available in selected
cities around the globe [Ama21, Vij22, Che23] and the widespread adoption
of advanced driver assistance systems such as adaptive cruise control, auto-
matic emergency braking system or lane keeping assist that are fading into the
transition to fully autonomous systems. These achievements are promising to
revolutionize transportation by enhancing road safety, optimizing traffic flow,
and providing greater accessibility and efficiency. Central to the success of

2
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automated driving systems is the ability of their perception systems to accu-
rately perceive and interpret the surrounding environment.  These systems
are tasked with interpreting and recognizing the vehicle’s surroundings by
detecting pedestrians, traffic signs, road markings, and other vehicles using
measurements obtained by the vehicle’s sensor suite, which most commonly
consists of cameras, Light Detection and Ranging (LiDAR) and Radio Detec-
tion and Ranging (radar) sensors. An exemplary setup of such a system is
displayed in Fig. 1.1. The raw data obtained with such a comprehensive sen-
sor suite has then to be processed and interpreted by the perception system
in real-time to make safe and reasonable driving decisions. Scene perception,
particularly semantic segmentation, plays a critical role in understanding the
complex visual information that an autonomous vehicle encounters.

Figure 1.1: Illustration of a typical sensor suite for an exemplary automated vehicle.
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1 Introduction

Recent advances in deep learning have significantly enhanced the capabilities
of scene perception systems, enabling automated vehicles to extract high-level
semantic information from raw sensor data with unprecedented accuracy and
efficiency. Deep neural networks, in particular, have emerged as powerful
tools for solving complex computer vision tasks, providing a promising so-
lution for scene perception in automated driving. However, state-of-the-art
deep learning approaches rely on full supervision in the form of staggering
amounts of manually-labeled image collections, to infer patterns and learn a
robust visual recognition model. Even then, when large amounts of training
data are available, current learning algorithms require that the training data
exhaustively represent what the model will encounter in the real world, since
it cannot account for yet unseen requirements. This poses a considerable lim-
itation to using deep learning for perception in automated driving, as it is vir-
tually impossible to collect data for requirements that will arise in the future.

Therefore, it is expected that the perception system will require updates to
adapt to the changing driving environment, e.g. for the adaptation of these
driving systems to a different market that introduces a significantly different
driving environment or to classify new objects that were previously unknown,
such as e-scooters or motor-rickshaws. The most efficient way to update such
a systemwould be an incremental update in which the model is trained exclu-
sively on new data while incorporating the new information into the knowl-
edge it has already acquired in previous training sessions. This would not only
significantly reduce the time until such an update would be available but also
the computational cost for such an update, as it only requires training on the
new data and also decreases the dependency on owning and storing all data.

However, this repeated updating process will inevitably lead to catastrophic
forgetting. In the context of continual semantic segmentation in automated
driving, catastrophic forgetting poses a significant obstacle. Currently, the
only way to circumvent this limitation is to completely retrain the models
on all available training data. This leads to a significant overhead as every
minor update would require a complete retraining of the model, instead of
just an incremental update on the new data. An even bigger challenge is that
data are not always collectively available due to data privacy restrictions or
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data storage capacity or ownership of the data. For this reason, continual
learning aims to establish training methods that overcome the challenge of
catastrophic forgetting, in which a model forgets the knowledge that it has
learned from previous tasks while learning a new task.

In recent years, many algorithms were proposed to overcome catastrophic
forgetting for incremental nominal recognition tasks. The performance of
these algorithms is mostly measured using only the accuracy of the models
on the test sets of the tasks in the sequence. While the models’ accuracy
on the test set is useful for comparing different learning algorithms on their
respective benchmarks, it cannot provide insight into how and where a deep
learning model is affected by catastrophic forgetting.

The objective of this thesis is to investigate the principles of catastrophic for-
getting for continual semantic segmentation that can arise in an automated
driving context. Contrary to prior work, the focus is not on incremental im-
provements to continual learning algorithms but instead on investigating and
understanding the underlying causes and effects of catastrophic forgetting
on neural networks that are expected to remain valid independently of the
progress of state-of-the-art methods. The insights gained are intended to aid
in the development of more robust and adaptable perception models, which
will be essential for the widespread adoption of safe and reliable autonomous
vehicles in the future.

1.2 Why Continual Learning in Automated
Driving?

As it can be seen, the perception system in an automated driving system will
require several updates during its lifetime due to errors in the system aswell as
to extend the system’s capabilities to new domains or new objects. The most
secure and safe way to update such a system without risking catastrophic
forgetting would be to optimize it on the entirety of the relevant data when
new data is gathered.  However, training the model on the entirety of the data
as soon as new data is gathered is not feasible in many situations.
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Firstly, offline training demands extensive computational resources. Tesla’s
Autopilot system, for instance, requires a staggering 70,000 GPU hours for
each re-training on their entire dataset [Kar20].  This immense computational
requirement considerably increases the time until an update to the system
is available, which in the worst case could lead to increased unavailability
or downtime of the automated driving function, as safety concerns cannot be
addressed in a timelymanner. This enormous computational requirement also
induces significant costs for updating such a system. A single training session
of Tesla’s Autopilot on Azure, a widely used cloud computing platform, would
amount to approximately 255,000 USD [Kar20]¹.

Finally, offline training requires that the entirety of the training data is collec-
tively available, which often cannot be guaranteed due to data privacy restric-
tions or data ownership. For instance, the European General Data Protection
Regulation (GDPR) or Personal Information Protection Law (PIPL) of the Peo-
ple’s Republic of China strictly regulate outbound data transfers. Addition-
ally, in some instances, perception systems may be supplied with pretrained
models but lack the accompanying data required for adaptation or re-training,
which will be especially the case for the so called foundation models, which
are trained on billions of images that only companies like Google or Meta
have access to.

Furthermore, the volume of data generated by automated driving systems
poses a significant challenge in terms of storage capacity. A single test vehicle
can produce around 19 terabytes of data per hour if all sensors are recorded
[Göt21].  Even when data is carefully selected for training using active learn-
ing or corner case detection approaches, it is a severe challenge to save all
the data. However, a silver lining is that while datasets are big, the resulting
models trained on those datasets are small, for example the training dataset
of the state-of-the-art model Segment-Anything-Model [Kir23] is 10TB, the
weights of the model are only 2GB.

¹ Pricing is taken from https://azure.microsoft.com/en-us/pricing/details/machine-learning/ for
an ND96asr A100 v4 instance that costs 27.197 USD/hour for 8x Nivida A100 GPUs.
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1.3 Contributions

Therefore, in the future when it would not be feasible to store all data in the
same place or have access to the data at the same time, with continual learning
it would be possible to condense the training data into a neural network so
that it would not be required to have all data collectively available.  At the
same time continual learning will significantly reduce the training time at
each model iteration.

1.3 Contributions

The work presented in this thesis makes the following contributions to the
field of continual learning for semantic segmentation:

• A thorough empirical evaluation of the main categories of continual
learning approaches in class- and domain-incremental learning is
conducted for the first time for semantic segmentation and compared
to similar investigations for classification. Therefore, two incremen-
tal benchmarks based on the automotive datasets Cityscapes and
BDD100k are proposed that cover domain- and class-incremental
learning settings. Relevant continual learning approaches were evalu-
ated on those benchmarks, which revealed several distinct properties
of how catastrophic forgetting manifests itself in continual semantic
segmentation. Furthermore, replay-based learning is first proposed
for class-incremental semantic segmentation to overcome inter-task
confusion for classes that do not reappear in images of subsequent
tasks. This work was published in the 2021 IEEE Intelligent Vehicles
Symposium (IV 2021) [Kal21].

• A set of tools to measure, locate and interpret catastrophic forgetting
in deep neural networks is constructed based on methods to measure
the similarity of activations or weights as well as re-training and re-
evaluation methods. These methods are compared in their ability to
measure the effects of catastrophic forgetting to understand what in-
ferences can be made when using them and when they potentially lead
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to wrong conclusions. Additionally, this chapter introduces a new ap-
proach named decoder retraining to measure the impact of inter-task
confusion on the encoder and decoder in class-incremental learning
and firstly utilizes the stitching framework proposed by Csiszárik et al.
[Csi21] for measuring the activation drift in a continual learning set-
ting. These results were published partly in the 16ᵗʰ Asian Conference
on Computer Vision (ACCV2022) [Kal22a] and partly in the Proceed-
ings of the 2022 Joint Workshop of Fraunhofer IOSB and Institute for
Anthropomatics, Vision and Fusion Laboratory [Kal23a].

• An analysis into the causes of catastrophic forgetting for class-
incremental learning, in which the impact of the semantic shift of
the background class is evaluated in three different task protocols:
overlapped, disjoint and a novel full disjoint setup. The degree of
activation drift in different layers is analyzed by stitching them with
the network from the previous task, uncovering that the main cause
of the catastrophic drop in performance in class-incremental semantic
segmentation is the semantic shift of the background class. Forgetting
mainly happens in the decoder layers of the model, where discrimina-
tive features for old classes of the encoder are assigned to new visually
similar classes or to the background class.  However, the re-appearance
of previous classes in the background of subsequent training tasks
also reduces the internal activation drift in the encoder.   The results
indicate that methods that do not use any form of replay fail to learn
discriminative features for all classes. Specifically, the model is not
able to distinguish old classes from new classes that are visually closely
related, e.g. the classes train and bus. These results were published in
the 16ᵗʰ Asian Conference on Computer Vision (ACCV 2022) [Kal22a].

• An analysis of the causes of catastrophic forgetting for domain-
incremental learning and the role of feature reuse to overcome the
severe activation drift. This analysis reveals that the major cause of
forgetting in domain-incremental learning is the shift of low-level rep-
resentations in the first convolution layer, which adversely affects the
population statistics of the following batch normalization layer.  Using
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different augmentation strategies to match the target domains in color
statistics and in the frequency domain, the experiments demonstrate
that color-invariant features stabilize the features in the early layers,
as they are not changed when the model is adapted to a new domain. 
With a combination of pre-training, augmentations and exchanged
normalization layers an overall reduction of forgetting by around 20
mIoU is achieved compared to fine-tuning without using any form of
replay. These results highlight that pre-training and augmentations are
often overlooked ingredients for continual learning. The findings were
published in the IEEE / CVF Computer Vision and Pattern Recognition
Conference 2023 (CVPR 2023) [Kal23c].

• An analysis of various architectural decisions that were introduced in
recent years for segmentation models for continual learning, in which
different encoder and decoder architectures and normalization layers
are evaluated in class- and domain-incremental semantic segmenta-
tion.  The experiments highlight that the neural architecture influences
both the extent and the location in the network where the model is
affected by catastrophic forgetting. Thereby, the architecture of the
model has a significant impact on the model’s plasticity and stability.
However, the findings suggest that the increased robustness towards
catastrophic forgetting of modern architectures such as ConvNeXt and
Vision Transformers does not originate only in the self-attention layer
but is also linked to other micro and macro design choices. This work
was published in the 2023 IEEE Intelligent Vehicles Symposium (IV
2023) [Kal23b].

• As samples for replay-based learning are mostly selected at random, it
is observed that the performance can vary significantly compared to
other continual learning approaches. Therefore, several sample selec-
tion strategies for replay-based continual semantic segmentation were
developed and adapted, which achieve more stable results compared to
random selection.  Effective replay strategies aid in stabilizing feature
representations, particularly in deeper network layers, during domain-
incremental training. It is shown that approximating the distribution
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of internal task data representations or selecting samples with median
entropy yields the best results and that in class-incremental learning,
class-balancing is the most crucial factor for sample selection. This
work was published in the 2022 IEEE Conference on Intelligent Trans-
portation Systems (ITSC 2022) [Kal22b].

1.4 Thesis Outline

The goal of this thesis is to investigate the causes and effects of catastrophic
forgetting in continual semantic segmentation, answering how, where and
why catastrophic forgetting arises in deep neural networks. Therefore, Chs. 2
and 3 introduce the fundamentals of deep learning in the context of continual
learning and discuss the recent advances in continual learning and semantic
segmentation. Next, Ch. 4 studies how existing continual learning approaches
that were developed and evaluated for classification tasks perform and be-
have in class- and domain-incremental semantic segmentation. The results
open up several research questions, of how catastrophic forgetting is affect-
ing models differently for semantic segmentation than for classification and
why and how catastrophic forgetting affects the segmentation model in class-
and domain-incremental learning. To answer these question, Ch. 5 presents
and evaluates several measures and methods that allow deeper insights into
the internal activation and weight changes of the segmentation model in con-
tinual learning. In Ch. 6, the main part of this thesis, these tools are utilized
to investigate the principles of catastrophic forgetting for class-incremental
learning (Sec. 6.1) and domain-incremental semantic segmentation (Sec. 6.2).
Finally, Ch. 7 examines how different neural architecture choices affect catas-
trophic forgetting and why vision transformers (VTs) are more robust against
catastrophic forgetting.
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The following chapter establishes the required theoretical basis on which ap-
proaches for continual learning for semantic segmentation are built. The first
part provides a brief introduction to artificial neural networks as well as con-
volutional neural networks and vision transformers, which are essential in
understanding the challenges that arise in continual learning. Section 2.3 first
introduces the concept of continual learning and its desiderata, and then ex-
plains the challenges that arise, such as catastrophic forgetting and its under-
lying effects. The final section of this chapter will present metrics that will
be used to evaluate methods for continual semantic segmentation throughout
this thesis. Parts of the sections regarding continual learning and artificial
neural networks are based on the author’s publication in [Kal23a].

2.1 Artificial Neural Networks

Artificial neural networks (ANNs) are a class of machine learning models in-
spired by biological neural networks in the brain. ANNs are capable of learn-
ing complex mappings between input and output data, making them powerful
tools for a wide range of applications, including image and speech recogni-
tion, natural language processing and autonomous driving. A typical ANN
consists of multiple layers of neurons. Figure 2.1 depicts a basic neural net-
work with an input, an output and two hidden layers.
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Figure 2.1: Artificial Neural Network with two hidden layers.

In typical feed-forward networks neurons are only connected with neurons of
subsequent layers. Overall, an ANNmodel 𝑓 consists of𝑁 consecutive layers
of neurons 𝑙𝑛 so that 𝑓 = 𝑙𝑁 ∘ … ∘ 𝑙1, where 𝑙𝑛 ∶ 𝒜𝑛−1 → 𝒜𝑛 are mappings
between the activation spaces 𝒜𝑛−1 and 𝒜𝑛 with 𝒜0 = 𝒳. Generally, the
goal of an ANN is to approximate mapping function 𝑓⋆ ∶ 𝒳 ↦ 𝒴 which
maps an input space 𝒳 to target output space 𝒴. To approximate function
𝑓⋆ the parameters 𝜃 of the model 𝑓 are optimized w.r.t to a loss function ℒ
that measures the agreement between the target output 𝑦 and the model’s
output 𝑓(𝑥) = ̂𝑦.

Given a learning task 𝑇 = {(𝑥𝑚, 𝑦𝑚)}𝑀𝑚=1 that consists of a set of 𝑀 inputs
𝑥𝑚 ∈ 𝒳 and corresponding labels 𝑦𝑚 ∈ 𝒴, the model is optimized by tak-
ing steps in the direction of the negative gradient of the empirical risk 𝑔 over
𝑇 w.r.t to the loss ℒ. Most commonly 𝑔 is approximated by calculating the
stochastic gradient ̃𝑔 on a mini batch 𝑇′ ⊂ 𝑇 with 𝑝𝑖 as the sampling prob-
ability for a training sample.

̃𝑔 = ∑
(𝑥𝑖,𝑦𝑖)∈𝑇′

𝑝𝑖 ∇ℒ (𝑓(𝑥𝑖), 𝑦𝑖) (2.1)

Typically 𝑝𝑖 is uniform for all training samples, so the expectation of ̃𝑔 is
equal to 𝑔. The gradients for each individual weight 𝜃 of the model are com-
puted with the backpropagation algorithm [Rum86]. During optimization,
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the optimizer takes gradient steps on randomly selected mini batches 𝑇′ until
convergence. Once a local minimum is found, the neural network is put into
production and utilized to make predictions for new unseen data.

2.2 Deep Neural Networks for Computer
Vision

The universal approximation theorem [Cyb89, Hor91] states that ANNs are
universal function approximators, meaning that they can approximate any
continuous function to arbitrary accuracy given a bounded number of hidden
layers and an arbitrary number of neurons in each layer.  Similarly, Lu et al.
[Lu17] proved the arbitrary depth-case given a bounded width of the neural
network for various continuous functions. They conclude that “The width
and the depth are two key components in the design of a neural network
architecture. Width and depth are both important and should be carefully
tuned together for the best performance of neural networks, since the depth
may determine the abstraction level but the width may influence the loss of
information in the forwarding pass.”

That specifically entails that one way to improve the performance of a model
is to increase the number of hidden layers of the ANN.  Generally, models
with more than one hidden layer are termed deep neural networks (DNNs).
The wide success of DNNs in computer vision was achieved with the intro-
duction of convolutional neural networks (CNNs) and more recently with the
introduction of the vision transformer (VT), because of their specific induc-
tive biases that the architecture provides for vision tasks. In the following,
the main ideas about these architectures are explained.

2.2.1 Convolutional Neural Networks

CNNs are a special type of ANNs that were specifically designed to optimize
the performance for processing digital images and videos. The human visual
cortex served as inspiration for their design. Neurons in this section of the
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brain only respond to stimuli inside their immediate region, known as their
receptive field. The fundamental distinction between ANNs and CNNs is the
usage of convolutional layers, which reduce the number of parameters for the
ANN. This is achieved with two key ideas:

1 Local Receptive Fields: CNNs assume that elements that are close to a
region of interest in the input data are more likely to be related and thus
more relevant than elements that are more distant. Convolutional lay-
ers capture this by connecting neurons of a layer only to a local part of
the neurons of the previous layer to extract only features from a fixed
local neighborhood. Thereby, reducing the number of connections be-
tween neurons.

2 Weight Sharing: CNNs assume that the same features or patterns
can appear in different parts of the input. Therefore, the same set
of weights is used across multiple spatial locations of the input. By
sharing weights, the network learns to detect and recognize fea-
tures irrespective of their specific position, leading to translational
invariance.

These design choices introduce inductive biases that not only reduce the
amount of parameters, but also lead to better generalization capabilities as
CNNs become, in part, translation invariant.

The first CNNs consisted only of very few layers and were capable of clas-
sifying hand-written digits [LeC89, Fuk80].  With the release of large-scale
datasets such as ImageNet and efficient computation on Graphics Processing
Units (GPUs), CNNs outperformed classical computer vision approaches for
the first time. Since then, significant improvements have been made, allowing
the models to be stacked even deeper [He16] and to converge faster [Iof15],
which has led to the wide adoption of CNNs in several computer vision tasks
such as object detection, semantic segmentation, visual question answering,
image editing and image generation. 

Themain component of a CNN is the convolutional layer, which computes the
activation of each neuron with discrete convolution.  The input of a neuron
in the convolutional layer is calculated as the inner product of a filter kernel
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𝐾 ∈ ℝ𝑤𝑘×ℎ𝑘 with the currently underlying image section. Given a filter
kernel 𝐾 with the size 𝑤𝑘 × ℎ𝑘 and an input image 𝐼 with the size 𝑤 × ℎ × 𝑟
the output 𝑆(𝑥,𝑦) at a position (𝑥,𝑦) is computed as:

𝑆(𝑥,𝑦) =
𝑤𝑘

∑
𝑖=1

ℎ𝑘
∑
𝑗=1

𝐼(𝑥 − 𝑖, 𝑦 − 𝑗)𝐾(𝑖, 𝑗) (2.2)

where 𝐾(𝑖, 𝑗) represents one element of the given kernel. The output size
𝑤out × ℎout is directly affected by the padding and stride of the convolution.
The stride specifies the distance between the spatial locations where the filter
kernels are applied. That means with a stride of one, the width and height
of the output will be equal to the input width and height, which is illustrated
in Fig. 2.2. Typically, a single convolutional layer consists of multiple filter
kernels that operate on the same input. Each filter applies a convolution op-
eration to the input, extracting relevant features. The resulting features are
concatenated and result in a feature map 𝐀 of the size 𝑤out × ℎout × 𝑙 where
𝑙 denotes the number of filter kernels. 

0 0 0 0 0 0

0 3 2 1 2 0

0 1 1 1 1 0

0 1 2 2 1 0

0 2 1 2 3 0

0 0 0 0 0 0

0 0 0
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Figure 2.2: Illustration of the convolution and a sequential max pooling operation. To ensure
that the output feature map has the same dimensions as the input, the image is fist
padded with zeros. A filter kernel of size 3 × 3 is convolved with an input image of
size 4×4. The resulting output feature map is then max-pooled with a kernel of size
2 × 2 and a stride of 2.

After a convolutional layer, a pooling layer is typically added to reduce the
size of feature maps and improve computation speed. A pooling operation is
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defined by the filter size, usually (2 × 2) or (3 × 3), the stride and the pooling
function. The most commonly used pooling function is max pooling, which
returns the maximum value within the receptive field of the filter.  In order to
reduce the size of the feature maps, pooling operations are mostly used with
stride 2, which reduces the size of the feature map to a quarter of its original
size, as illustrated in Fig. 2.2.

Another essential component of CNNs are normalization layers that enable
faster convergence during training by stabilizing the distribution of input val-
ues within the network, making the layers more robust to changes in the input
statistics [Iof15]. Given a mini-batch of feature maps 𝑎 = (𝐀1, … , 𝐀𝐵) of size
𝐵, normalization layers normalize the input as:

𝑎′ = 𝛾 ( 𝑎 − 𝜇
√𝜎2 + 𝜖

) + 𝛽 (2.3)

where 𝜇 and 𝜎2 are the mean and variance of the input features, respectively.
The learnable parameters 𝛾, 𝛽 are affine transformations to retain the repre-
sentational capacity of the layer after normalization. There are several types
of normalization layers that normalize the activations along different dimen-
sions of the feature map, as illustrated in Fig. 2.3. The most commonly used
normalization layer is batch normalization (BN), which normalizes the input
across the batch dimension. To achieve deterministic behavior during infer-
ence that is independent of other samples within a batch, the mini-batch vari-
ance and mean are replaced with the global population mean and variance
of the training dataset, which are computed using an exponential running
average during training.
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Figure 2.3: Illustration of different normalization methods derived from [Wu18b] and [Pha22].
Each big cube represents a feature map tensor, with 𝐵 as the batch axis, 𝐶 as the
channel axis, and (𝐻,𝑊) as the spatial axis. The pixels in blue are normalized by
the same moments across the batch dimension. Pixels in red are normalized by the
same moments calculated within the sample and orange pixels are only normalized
along the spatial dimensions.

Other commonly used normalization layers are layer normalization (LN) that
normalizes across the spatial dimensions and the channel dimensions, in-
stance normalization (IN) that normalizes only along the spatial dimensions,
group normalization (GN) [Wu18b] that normalizes along spatial dimensions
and specific grouped channels and continual normalization (CN) which com-
bines group and batch normalization.

With these main components, most CNNs follow a similar structure with
blocks of convolutions, normalization and pooling layers and residual con-
nections that enable CNNs to improve their classification accuracy with in-
creased depth [He16]. With this hierarchy, CNNs naturally extract features
with increasing levels of abstraction through the succession of convolutions.
Figure 2.4 shows that early layers respond to edges, then later layers capture
textures and even deeper layers respond to specific patterns or parts of objects
and layers close to the output correspond to entire objects [Zei14]. The hier-
archical nature of those features of a CNN will play a role in understanding
the effects of catastrophic forgetting in Ch. 6.
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Figure 2.4: Feature Visualization from different layers of a CNN trained on ImageNet. The fea-
ture visualizations are taken from Olah et al. [Ola17]

2.2.2 Vision Transformers

The VT is a neural architecture that was proposed as an alternative to CNNs,
which have been the dominant approach for many computer vision tasks for
years. The first VT that was widely adopted is ViT [Dos21]. The ViT model
is based on the transformer architecture, which was originally introduced for
natural language processing tasks. The transformer architecture uses the self-
attention block to process sequential data, such as sentences. Self-attention
enables the model to weigh the importance of different parts of an input se-
quence so that it is able to draw global dependencies between input and output
[Vas17]. To achieve this, every element in the input sequence is first trans-
formed to a high-dimensional vector named token.  Then for each token a
query vector𝑄, a key vector𝐾 and a value vector𝑉 is computed using the cor-
responding learned weight matrices: 𝑊𝑞 ,𝑊𝑘 and𝑊𝑣 . These vectors are used
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to compute a weighted representation of the input sequence 𝑋 of length 𝑁:

𝑄 = 𝑋𝑊𝑞, 𝐾 = 𝑋𝑊𝑘, 𝑉 = 𝑋𝑊𝑣 (2.4)

SelfAttention(𝑄, 𝐾, 𝑉) = softmax (𝑄𝐾
𝑇

√𝑑𝑘
)𝑉 (2.5)

where 𝑑𝑘 is the dimension of the key vectors. ViT uses the exact same self-
attention mechanism, but in order to work on image data, each image is first
divided into a set of equally sized patches, which are then used as a sequence
of input tokens [Dos21]. The architecture is shown in Fig. 2.5. The main ad-
vantage of VT over CNNs is the ability to capture long-range dependencies
between different regions of the image. A downside of this property is that
they lack some of the inductive biases of CNNs such as translation equivari-
ance and locality. That is why they often require more training data to gener-
alize well [Dos21].  However, it was discovered that when VTs are trained on
a sufficiently large amount of training data, they learn convolutional-like con-
figurations in early layers of the network [Cor19, Rag21]. Therefore, hybrid
models were proposed that use the flexibility of the self-attention mechanism
to capture long-range dependencies in the image but also re-introduce the
inductive biases of CNNs [dAs21, Dai21].
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Figure 2.5: Vision Transformer architecture: The image is divided into equally sized patches
and embedded into a high dimensional vector space using a convolutional layer with
stride equal to the patch size. To each resulting patch a positional encoding is added.
Each transformer block (displayed on the right) consist of two layer normalization
layers, a multi-head self-attention layer and a fully connected layer. Image from
Dosovitskiy et al. [Dos20]

2.3 Continual Learning

Continual learning, also referred to as life-long learning, is a sub-field of ma-
chine learning that focuses on enabling machine learning systems that have
the ability to learn from a continuous stream of data while gradually ex-
tending the acquired knowledge without negatively interfering with previ-
ously learned knowledge [Del21]. This is in contrast to the common prac-
tice for developing machine learning models, where it is generally assumed
that all required data is collectively available during training, meaning that
the data distribution stays fixed during the life-cycle of the machine learn-
ing system. Therefore, instead of learning from a single task 𝑇 with a fixed
training distribution, in continual learning the model is optimized on a se-
quence of tasks 𝑇1..𝐾 , while only having access to data from one task at a
time. Each task can introduce new classes or visually distinct instances of
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the same classes [Hsu18]. Generally, given marginal probability distributions
over inputs 𝑃(𝑋𝑘) and outputs 𝑃(𝑌𝑘) and a set of classes 𝒞𝑘 for a task 𝑇𝑘 ,
three different scenarios are commonly defined for continual learning [Van18,
Hsu18, Ven22]:

• Class-incremental learning, where each new task adds a set of novel
classes 𝒮𝑘 to the existing set of classes 𝒞𝑘 . So that 𝒞2 = 𝒞1 ∪ 𝒮2.

• Domain-incremental learning, where the classes remain the same but
the images of each task are obtained from distinct distributions and thus
have distinct visual appearances. In this setting 𝑃(𝑋𝑘|𝑌) is changing so
that 𝑃(𝑋1|𝑌1) ≠ 𝑃(𝑋2|𝑌2) while 𝑃(𝑌1) ≈ 𝑃(𝑌2) and 𝒞2 = 𝒞1.

• Task incremental learning is similar to class-incremental learning, with
the exception that for each sample a task identifier is given, so that
the model does not need to discriminate between classes of different
tasks. This setting reduces the complexity of the incremental learning
problem.  This setting is relatively unlikely since a sufficiently reliable
task identifier is generally difficult to establish in most cases; hence, this
thesis will not focus on this type of continual learning.

A visualization of these settings is shown in Fig. 2.6. In the domain-
incremental setting (left), the classes stay the same, but the visual appearance
of the classes is changing. In the class-incremental setting (middle), the
differently looking street signs are introduced as new classes that have to
be distinguished from the previously learned classes. On the right, in the
task incremental setting, the new classes are classified independently from
the old classes as the output spaces between different tasks are disjoint.
Therefore, in this scenario the model is not required to distinguish between
classes of 𝑇1 and 𝑇2.
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Figure 2.6: The most commonly defined incremental learning scenarios as defined by [Hsu18].
In each sub-figure the boxes represent the input for training, 𝑥 denotes the input and
𝑦 the corresponding labels.

2.3.1 Catastrophic Forgetting

A major challenge in continual learning is to overcome catastrophic forget-
ting, where the model overwrites knowledge learned from previous tasks
while learning a new task [Fre94, McC89]. Catastrophic forgetting arises be-
cause the model cannot be jointly optimized on all available data, so during
optimization on a task 𝑇𝑘 data from task 𝑇𝑘−1 is not available. This changes
the stochastic optimization procedure introduced in Eq. (2.1), because the sam-
pling probability 𝑝𝑖 is no longer uniform for all training samples but instead
only uniformly distributed over samples belonging to the current task𝑇𝑘 . Fur-
thermore, as training data from previous tasks is no longer available during
optimization on task 𝑇𝑘 , the sample distribution for all samples of previous
tasks {𝑇𝑡|𝑡 ≠ 𝑘} is 𝑝𝑖 = 0. This changes the gradient calculation for optimiza-
tion up to the current task 𝑇𝑘 for a sequence of tasks 𝑇1..𝐾 from:

̃𝑔 =
𝐾
∑
𝑡

∑
(𝑥𝑖,𝑦𝑖)∈𝑇𝑡

𝑝𝑖 ∇ℒ (𝑓(𝑥𝑖), 𝑦𝑖) (2.6)
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to a sequence of distinct optimization processes that start with the model
trained on the previous task 𝑓𝑘−1:

̃𝑔𝑘 = ∑
(𝑥𝑖,𝑦𝑖)∈𝑇𝑘

𝑝𝑖 ∇ℒ (𝑓(𝑥𝑖), 𝑦𝑖) (2.7)

Thus, when training on task 𝑇𝑘 the optimization process disregards other
tasks’ distributions, except for the initialization as 𝑓𝑘−1, in the sense that the
gradients are computed only based on the loss on the current task dataset.
This is the root cause of catastrophic forgetting in continual learning. The
effects this optimization process has on neural networks are not fully under-
stood; however, Masana et al. [Mas20] have identified four effects of how
catastrophic forgetting manifests itself in continual learning.

• Weight Drift: During optimization on 𝑇𝑘 , the weights of the model
that was trained on 𝑇𝑘−1 are updated without regard to the previous
task. This can lead to unwanted changes to weights that were important
for the previous task, which results in a drop in performance on task
𝑇𝑘−1.

• Activation Drift: A change in the weights of the model directly results
in a change in the internal activations of the neurons and the output of
the model. While activation drift is a direct result of weight drift, acti-
vation drift additionally takes the input data distribution into account.

• Inter-task confusion: Theobjective of class-incremental learning is to
correctly discriminate between classes from all tasks. However, as the
classes are never jointly trained, the learned features are not optimized
to discriminate classes from different tasks, as shown in Fig. 2.7. Inter-
task confusion is also linked to task-specific spurious features that can
emerge in domain-incremental learning [Les22].

• Task-recency bias: In the class-incremental setting, the model is op-
timized to predict new classes without considering the old classes. This
results in a increased bias for the most recently learned classes, that is
evident in the bias values of the classification layers.
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Figure 2.7: Visualization of inter-task confusion in class-incremental learning. As classes of Task
1 (car and bicycle) and classes of Task 2 (bus and motorcycle) are never trained at the
same time, the classifier never learns to discriminate between bicycle and motorcy-
cles, which causes inter-task confusion.

2.3.2 Desiderata

Continual learning is currently studied for many existing machine learning
tasks such as computer vision, natural language processing and reinforce-
ment learning. However, to keep focus, the scope of this work will be limited
to the widely adopted computer vision tasks of classification and semantic
segmentation. The overarching goal in continual learning for a model is to
learn from an infinite stream of data and to gradually acquire new knowledge
without negatively interfering with previously learned knowledge. Accord-
ing to De Lange et al. [De 19] an ideal continual learning algorithm should
meet the following 10 desiderata, stated verbatim:

1 Constant memory: Regardless of the number of tasks or the
length of the data stream, the continuous learning algorithm
should consume constant memory. The reason for this is to
avoid dealing with unbounded systems.

2 No task boundaries: Data does not arrive in incremental
batches but in a continuous stream, where clear task bound-
aries are not defined, e.g. the transition between data from
different domains is fluent. Having the ability to learn from
input data without having to split it up into specific tasks
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lends a great deal of flexibility to the continuous learning
process.

3 Online learning: The ability to learn from a continuous
stream of data without offline training of large batches or
separate tasks.

4 Forward transfer: This characteristic indicates the impor-
tance of the previously acquired knowledge to aid the learn-
ing of new tasks.

5 Backward transfer: A continual learning system should not
only aim at retaining previous knowledge but preferably
also at improving the performance on previous tasks when
learning future related tasks.

6 Problem agnostic: A continual learning method should be
general and not limited to a specific setting (e.g. only clas-
sification).

7 Adaptive: Being able to learn from unlabeled data would
increase the method applicability to cases where original
training data no longer exists and further open the door to
a specific user setting adaptation.

8 No test time oracle: Continual learning methods should not
be dependent on task oracles to make predictions.

9 Task revisiting: When revisiting a previous task again, the
system should be able to successfully incorporate the new
task knowledge.

10 Graceful forgetting: The selective forgetting of unimportant
information is an essential mechanism to maintain stability
and plasticity in an bounded system.

Thus far there is no common understanding on the importance of each of
these desiderata, so proposed algorithms for continual learning only adhere to
a varying selection of the desiderata, respective of what their specific purpose
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is. Therefore, many of these desiderata are better understood than others. Es-
pecially, the property of continual learning approaches being task agnostic is
mostly overlooked, as proposed algorithms are only ever evaluated either on
object detection, classification or semantic segmentation. This also explains
why state-of-the-art approaches for continual learning in semantic segmen-
tation, classification and other tasks are different.

2.4 Semantic Segmentation

RGB Image:
3

Prediction:

Fully Convolutional Network

score vector:

TruckCarRiderPersonSkyFenceWallBuildingSidewalkRoad
BicycleMotorcycleTrainBusTerrainVegetationTraffic SignTraffic LightPole

Classes

output vector:

Figure 2.8: Semantic segmentation: Given an RGB image 𝑥 the CNN predicts a score vector ̂𝑦.
The model is optimized by calculating the cross-entropy loss between the ground-
truth 𝑦 and score vector ̂𝑦.

The task of semantic segmentation is to assign a semantic class, out of a set
of pre-defined classes 𝒞, to each pixel in a given image. A training task 𝑇 =
{(𝑥𝑚, 𝑦𝑚)}𝑀𝑚=1 consists of a set of 𝑚 images 𝑥 ∈ 𝒳 with 𝒳 = ℝ𝐻×𝑊×3 and
corresponding labels 𝑦 ∈ 𝒴 with 𝒴 = 𝒞𝐻×𝑊 . Given the task 𝑇 the goal is to
learn a mapping 𝑓 ∶ 𝒳 ↦ ℝ𝐻×𝑊×|𝒞| from the image space 𝒳 to a vector 𝑞
that is normalized using the softmax function to obtain the score vector ̂𝑦. The
score vector ̂𝑦 gives a score for each pixel 𝑖 ∈ 𝐼 with 𝐼 = {1, … ,𝐻} × {1, … ,𝑊}
in the input image 𝑥 and each class of𝒞 that the pixel 𝑥𝑖 belongs to class 𝑐 ∈ 𝒞.
The final segmentation mask is then computed as ̄𝑦𝑖 = argmax𝑐∈𝐶 ̂𝑦𝑖,𝑐 . The
model 𝑓 is trained by optimizing the cross-entropy between the estimated
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score vectors ̂𝑦 and the one-hot encoded ground-truth class labels 𝑦.

ℒce(𝑦, ̂𝑦) = − 1
𝐻 ⋅ 𝑊 ∑

𝑖∈𝐼
∑
𝑐∈𝐶

𝑦𝑖,𝑐 log ( ̂𝑦𝑖,𝑐) (2.8)

Semantic segmentation has seen significant progress in recent years, due to
large-scale datasets as well as the use of CNNs for this task. The first break-
through in this field came with the introduction of fully convolutional net-
works (FCN) [Lon15].  Subsequent seminal worksmade several improvements
to the architecture, such as using skip-connections [Ron15], spatial pyramid
pooling [Zha17], dilated convolutions [Che17a] and using vision transformers
[Tou21, Xie21]. Most recently, MaskFormer [Che21b, Che22] was introduced,
which converts the per-pixel classification into mask classification. Instead of
predicting a class probability for each pixel, as in previous semantic segmen-
tationworks, MaskFormer predicts a set of binarymasks, each of which corre-
sponds to a single class prediction. In this thesis, the widely used DeepLabV3+
[Che18] and ERFNet [Rom18] will be mainly used, as DeepLabV3+ is the most
common choice for evaluating methods for continual semantic segmentation
and ERFNet as it is a commonly used real-time capable method for automo-
tive applications.

2.5 Evaluation Metrics

In the following, the quantitative evaluation metrics used throughout this
thesis are presented. The first section introduces the most commonly used
semantic segmentation metric mean intersection over union (mIoU) and dis-
cusses its benefits in comparison to other metrics. Next, specific metrics are
presented that are used to compare the performance of different continual
learning methods.
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2.5.1 Semantic Segmentation

The evaluation of the performance of different semantic segmentation models
requires quantitativemetrics tomeasure the accuracy of segmentation results.
The most common metrics used in semantic segmentation are: pixel accuracy
(PA), mean pixel accuracy (mPA), intersection over union (IoU) and mean in-
tersection over union (mIoU) [Lon15]. Generally, for a binary classification
task there are four outcomes for a prediction:

• true positive (TP) : The model predicts a positive class label, and the
ground truth label is also positive. In the context of semantic segmen-
tation, true positives occur when the model assigns the correct label to
a pixel that belongs to the object class.

• false positive (FP) : The model predicts a positive class label, but the
ground truth label is negative. In the context of semantic segmentation,
false positives occur when themodel assigns an incorrect label to a pixel
that does not belong to the true object class.

• true negative (TN): The model predicts a negative class label, and the
ground truth label is also negative. In the context of semantic segmen-
tation, true negatives occur when the model correctly assigns a back-
ground label to a pixel that does not belong to the object class.

• false negative (FN): The model predicts a negative class label, but the
ground truth label is positive. In the context of semantic segmentation,
false negatives occur when the model fails to assign the correct object
label to a pixel that belongs to the object class.

Given the number of pixels of class 𝑖 predicted to belong to class 𝑗 as 𝑛𝑖,𝑗 and
𝑡𝑖 as the total number of pixels of class 𝑖 and 𝐶 as the number of classes, 𝑛𝑗,𝑗
denotes the number of true positives of class 𝑗 and 𝑡𝑗 the total number of pixel
labeled as class 𝑗.
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Pixel Accuracy

The pixel accuracy measures the ratio between correctly classified pixels and
the total number of pixels. A downside of this simple metric is that it does
not account for the class imbalance in an image and can be misleading when
the number of pixels for classes varies significantly, e.g. if the class street
took up 90 % of the image, a model that predicts everything as street would
achieve 90 % accuracy. Therefore, mean pixel accuracy (mPA) calculates the
accuracy for each class separately and then takes their mean. This metric
provides a more balanced view of the model’s performance, but it does not
directly account for false positive predictions.

PA ≔
∑𝐶

𝑗=1 𝑛𝑗,𝑗
∑𝐶

𝑗=1 𝑡𝑗
mPA ≔ 1

𝐶
𝐶
∑
𝑗=1

𝑛𝑗,𝑗
𝑡𝑗

(2.9)

Mean Intersection over Union (mIoU)

Mean intersection over union is the most popular metric for measuring the
performance of semantic segmentationmodels and is equivalent to the Jaccard
Index. It calculates the intersection over union (IoU) for each class separately
and then takes their mean. The IoU𝑗 for a class 𝑗 is calculated by dividing
the number of true positive predictions 𝑛𝑗,𝑗 by the union of true positive, false
positive and false negative pixels.

IoU𝑗 ≔
𝑛𝑗,𝑗

𝑛𝑗,𝑗 +∑𝐶
𝑖=1(𝑛𝑗,𝑖 + 𝑛𝑖,𝑗)

𝑖 ≠ 𝑗 (2.10)

Most commonly instead of providing the IoU for each individual class, the
mean is reported as:

mIoU ≔ 1
𝐶

𝐶
∑
𝑗=1

IoU𝑗 (2.11)
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2.5.2 Continual Learning Metrics

The performance of a model in continual learning is usually evaluated from
two perspectives: its ability to learn new tasks and its ability to retain knowl-
edge of previous tasks. To assess this, the model’s performance is evaluated
on all previous and future test sets after each training task. In the context of
semantic segmentation, the mIoU of the model trained on all tasks up to task
𝑇𝑘 and evaluated on task 𝑇𝑣 is denoted as mIoU𝑘,𝑣 . Hence, the performance of
a model trained on task 𝑘 = 0 and evaluated on 𝑣 = 1 is denoted as mIoU0,1.
Mirzadeh et al. [Mir22b] defines the following metrics:

• average forgetting: measures the drop of accuracy between the peak
mIoU on a test set during the training sequence and the mIoU achieved
after training on all tasks. It is used to measure the stability of a model.
For a task sequence of length 𝐾 it is calculated as:

1
𝐾 − 1

𝐾−1
∑
𝑣=1

max
𝑘∈{1,…,𝐾−1}

(mIoU𝑘,𝑣 −mIoU𝐾,𝑣) (2.12)

• average accuracy: measures the average accuracy after the model has
been trained on a task sequence of length 𝐾. This is the most com-
mon metric that has been used to compare the final performance of a
continual learning algorithm. It is computed as:

1
𝐾

𝐾
∑
𝑣=1

mIoU𝐾,𝑣 (2.13)

• learning accuracy: measures the plasticity of a model, by averaging
the accuracy for each task directly after it is learned.

1
𝐾

𝐾
∑
𝑘=1

mIoU𝑘,𝑣 (2.14)
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• offline accuracy: measures the accuracy a model achieves when it is
trained on the data of all tasks together.
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3 Related Work

The following chapter provides an overview of the relevant literature and re-
search in the field of continual learning for semantic segmentation. In the first
part, themost prominent strategies proposed in the literature for classification
are presented and their strengths and weaknesses are discussed. The second
part of the chapter focuses on the state-of-the-art approaches for continual
semantic segmentation, with an emphasis on class-incremental learning and
continual unsupervised domain adaptation.  Finally, Sec. 3.3 discusses related
work that has studied the effects of catastrophic forgetting in classification
tasks.

3.1 Continual Learning Approaches

Approaches to mitigate the effects of catastrophic forgetting are commonly
categorized into three categories [De 19]: methods that replay a selection
of data from previous tasks, methods that regularize the model’s weights or
outputs and methods that isolate specific parameters for each task. The main
categories and their subcategories are shown in Fig. 3.1. In the following the
main methods and their known limitations are discussed.
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Figure 3.1: The main categorization of continual learning methods proposed by De Lange et al.
[De 19].

3.1.1 Replay-Based Methods

Replay-based approaches store a selection of old training data for rehearsal
during training on new data. Standard rehearsal methods store previous data
either as raw image and label pairs [Reb17, Wu19a, Cas18] or internal repre-
sentations of the model [Hay20, Ach20]. This replay buffer is constrained to
a fixed number of training samples, so once the buffer is full, samples have
to be removed before new samples can be added. Therefore, a sample selec-
tion strategy decides which samples should be stored in the replay buffer and
which should be discarded. The most commonly used sampling strategies are
herding [Wel09] and random sample selection for replay, which are reported
to be very strong baselines [Alj19].  Sample strategies for class- and domain-
incremental semantic segmentationwill be discussed inmore detail in Sec. 4.4.

Pseudo-rehearsal methods use Generative Adversarial Networks (GANs)
or auto-encoders to approximate the previous training distribution so that
pseudo-samples can be generated during training on a new task [Shi17,
Zha19a, Wu18a].  However, the major drawback of these methods is that
the GAN or auto-encoder is also affected by catastrophic forgetting, as the
desideratum of a bounded system does not allow to train a new generator
for each task [Zha19a].  Moreover, constrained optimization is another form
of replay, in which parameter updates are constrained so that the loss for
samples in the replay buffer is not increased [Lop17, Cha18b, Alj19].  How-
ever, constrained optimization is often outperformed by naive replay, as the
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constraints can often be too restrictive, leading to overfitting on the memory
buffer [Ver21].
Replay-based methods are reported to be the most effective methods to
mitigate catastrophic forgetting in continual learning for image classifica-
tion [Hsu18, De 19] and might be required for class-incremental learning to
solve inter-task confusion [Ven20]. Verwimp et al. [Ver21] study why replay
is so effective at mitigating forgetting even though the model overfits on
the rehearsal memory.  Their results suggest that the replay buffer prevents
the continually trained model from leaving the first low-loss region during
optimization on new data, possibly harming generalization.

3.1.2 Regularization-Based Methods

Regularization-based approaches can be divided into prior-based regular-
ization approaches and knowledge distillation-based approaches. Prior
regularization methods constrain parameter updates of parameters that were
most crucial for solving previous tasks [Alj18, Kir15, Zen17].  Therefore, they
add an additional regularization term to the loss function, which varies the
weights’ plasticity based on the estimated importance Ω𝑗 of the weights
in previous tasks.

ℒreg( ̃𝑦, 𝑦, 𝜃) = ℒce(𝑦, ̂𝑦) + 𝜆∑
𝑗
Ω𝑗(𝜃𝑗 − ̃𝜃𝑗)2 (3.1)

where ̃𝜃𝑗 are the old network parameters and 𝜆 is a hyper-parameter to bal-
ance the regularization. The main difference between methods in this cate-
gory is in the wayΩ𝑗 is calculated. Kirkpatrick et al. [Kir15] introduce Elastic
Weight Consolidation (EWC), in which they estimate the importance  Ω𝑗 for
each parameter, using the diagonal of the Fisher information matrix. Zenke
et al. [Zen17] propose to estimate Ω𝑗 by accumulating changes in each pa-
rameter along the entire learning trajectory. Memory Aware Synapses (MAS)
[Alj18] computes the importance Ω𝑗 based on how sensitive the predicted
output function is to a change in this parameter 𝜃𝑗 for a new given sam-
ple. Other approaches combine the Fisher Matrix approximation and path
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integral of Zenke et al. [Zen17] to calculate the importance of each param-
eter [Cha18a]. Recent regularization methods are mostly only evaluated in
the task-incremental setting, where a task identifier is available at test time
to select the corresponding classifier head [Alj18, Kir15, Cha18b].  In class-
incremental learning, where such a task identifier is not available, regulariza-
tion methods are outperformed by knowledge distillation-based approaches
and replay [Mas20, Hsu18]. Prior-regularization methods are assumed to be
limited as they cannot overcome inter-task confusion (Fig. 2.7) without addi-
tional replay samples [Van18, Les20].  

The other class of regularization methods are based on the idea of knowledge
distillation for neural networks [Hin15].     Knowledge distillationwas first in-
troduced to distill the knowledge from big or ensemblemodels, named teacher,
to a smaller student model, with the goal of training the student model to
achieve a similar performance as the teacher model. The idea behind knowl-
edge distillation is that the more complex teacher model has learned a rich
representation of the data, which can be transferred to the student model to
improve its performance. This is achieved by calculating the Kullback-Leibler
divergence (KL) between the teacher outputs 𝑞𝑇 and the student outputs 𝑞𝑆
softened with a temperature factor 𝜏 in the following way:

ℒ𝐾𝐷(𝑞𝑇 , 𝑞𝑆) = 𝜏2∑
𝑖∈𝐼

∑
𝑐∈𝐶

softmax(
𝑞𝑇𝑖,𝑐
𝜏 ) log(softmax(

𝑞𝑆𝑖,𝑐
𝜏 )) (3.2)

Li et al. [Li18] used knowledge distillation in Learning without Forgetting
(LwF) to mitigate catastrophic forgetting by using the model trained on the
previous task as a teacher while the student is learning on new training data.
This is achieved by using the output of the previous model as soft labels for
the new data. Recent continual learning approaches adapted knowledge dis-
tillation in combination with rehearsal, where the distillation loss is typically
also applied to the samples of the replay buffer [Reb17, Hou19, Wu19a]. Other
approaches additionally include a knowledge distillation term for intermedi-
ate activations of the model [Dou20, Zho19] or use different metrics to mea-
sure the distance of the output, such as cosine similarity [Hou19]. One of
the known limitations of knowledge distillation for continual learning arises
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with larger domain shifts between tasks, because the outputs of the teacher
will deteriorate the performance of the student [Alj17].

3.1.3 Parameter Isolation Methods

Parameter isolation methods mitigate or completely eliminate forgetting by
dedicating a subset of a model’s parameters to each task increment, e.g. by
masking a set of parameters for each task or by growing new branches for
new tasks. However, the main downside of these methods is that simultane-
ous evaluation for all learned tasks is not possible, as these models require
specific paths or parts of the network to be activated for each individual task,
which makes these methods impractical for task-agnostic settings. Dynamic
architectures are used when there is no constraint on the size of the archi-
tecture, so that the model can be expanded for each new task. Early methods
relied on creating duplicates of the model for each new task to eliminate for-
getting [Alj17] or extending each layer while freezing old weights. However,
the number of parameters quickly increases with the number of tasks. There-
fore, Ebrahimi et al. [Ebr20] combine their proposed dynamic architecture
with replay and disentangle shared and task-specific features with an adver-
sarial loss. Still, these methods often require a task identifier at test time to
select the right subset of parameters. DER [Yan21] and Simple-DER [Li21]
remove this need by training a single classifier on the concatenation of all
embeddings produced by the different parameter subsets. However, when
applied to a large number of tasks, these strategies induce a significant mem-
ory overhead and necessitate complex pruning as post-processing. DyTox
[Dou22] reduces the memory overhead by sharing the encoder and decoder
among all tasks and dynamically expanding special tokens to specialize the
decoder on a task distribution. This allows for strict control of the parameters
expansion, resulting in negligible memory and computation overhead.

Contrary to dynamic architectures, fixed architecture methods isolate a sub-
set of parameters for each task. This can be achieved by masking parame-
ters using iterative pruning [Mal18], by learning selective routing through
the network for each task [Fer17] or by storing the parameters for each task
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in superposition to each other in the same model [Che19]. To enable the dif-
ferent subsets of parameters, these methods usually require a task identifier
at inference. Wortsman et al. [Wor20] circumevent this limitation and infer
the task identifier by selecting the subnetwork with the lowest entropy.

The main downside of parameter isolation methods in continual learning is
that they require allocating separate sets of parameters for each task, which
can lead to an exponential increase in memory requirements as the number
of tasks grows. This can become impractical or even infeasible for large-scale,
real-world applications such as automated driving. Additionally, parameter
isolation methods do not fully exploit the knowledge gained from previous
tasks, which can lead to suboptimal performance on future tasks.

3.2 Continual Semantic Segmentation

While continual learning has already been extensively studied for years in
object classification, continual semantic segmentation has recently attracted
attention, mostly in the topics of class-incremental learning and continual un-
supervised domain adaptation. The following section will cover the latest ad-
vancements in class-incremental semantic segmentation (CiSS) and domain-
incremental semantic segmentation (DiSS).

3.2.1 Class-Incremental Semantic Segmentation (CiSS)

In class-incremental semantic segmentation, each new task requires learning
a novel set of classes, while previously learned classes remain unlabeled in
subsequent tasks. As a result, the model is challenged to learn to distinguish
between old and new classes, even though they are never labeled within the
same image. State of the art approaches typically address this challenge by
implementing a knowledge distillation-based loss [Hin15], in which a model
trained on old data generates soft labels for new training data to reduce for-
getting [Li18]. Tasar et al. [Tas19] were the first to adapt this approach to
class-incremental semantic segmentation, as displayed in Fig. 3.2.
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Samples from T2

Predictions for 𝒮1

Distillation Loss

Student for 𝒮1,2

Predictions for 𝒮1,2

TrainableFixed
Labels from 𝒮2

Cross-Entropy
Loss

Teacher for 𝒮1

Figure 3.2: Schematic Overview of Learning without Forgetting. The teacher model provides
soft labels for classes learned in the first task, as in the second task only ground-
truth labels for new classes are provided. So the student model learns to distinguish
between new and old classes by combining knowledge distillation for old classes and
cross-entropy loss for new classes.

Follow-up work byMichieli et al. [Mic19] and Klingner et al. [Kli20] improved
this approach by only producing soft labels for the unlabeled part of the new
training samples and therefore stopping interference between old and new
classes. More recent work explicitly addresses the semantic background shift
that occurs between different class increments, for example by de-biasing
the initialization of the classifier for the background class when new classes
are added and normalizing the objective function to account for the back-
ground shift [Cer20].  Douillard et al. [Dou21a] were the first to incorporate
a confidence-based pseudo-labeling strategy to integrate hard labels into the
training. Finally, Michieli et al. [Mic21] focused on learning more discrimi-
nate features by enforcing latent consistency for old classes using prototype
matching, while at the same time using a contrastive loss to cluster the fea-
tures according to semantics.
The effectiveness of these knowledge distillation-based approaches has been
demonstrated on their respective benchmarks, in which classes of previous
tasks reappear in the background of images of future tasks. However, it should
be noted that if this cannot be ensured, these methods are still susceptible
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to catastrophic forgetting [Kal21]. To overcome this limitation, several ap-
proaches combine replay of old classes with the knowledge distillation-based
loss [Mar21, Dou21b].  In these works, data are either replayed as saved full
image-label pairs [Mar21, Kal21], by segments of each class [Dou21b] or us-
ing unlabeled auxiliary data [Cer22, Yu22]. The most recent approach utilizes
the reformulation of semantic segmentation as a mask-classification prob-
lem and propose the Continual MaskFormer [Cer22], which uses the Mask-
Former [Che21b] architecture with an adaptive distillation loss and a mask-
based pseudo-labeling strategy. Contrary to approaches in class-incremental
classification, CiSS approaches aremainly based on knowledge distillation. Fi-
nally, recent work explores unsupervised class-incremental learning, in which
a model learns new unknown classes without annotations by discovering un-
known objects in images and clustering them [Uhl22].

3.2.2 Domain-Incremental Semantic Segmentation
(DiSS)

The literature on domain-incremental learning for semantic segmentation is
limited, as research is mostly focused on adapting to new domains in an un-
supervised manner. Recent work in supervised domain-incremental learning
by Garg et al. [Gar22] proposes an architecture that learns domain-specific
paths in the network for the individual domains to enable the model to learn
domain-specific features of each domain, while themajority of the parameters
are shared between the domains. Mirza et al. [Mir22a] address the issues of bi-
ased population statistics in the batch normalization layers by re-estimating
the population statistics for each individual domain. This enables them to
use domain-specific population statistics during inference, which prevents the
bias toward the most recently learned domain.

However, most of the current research is focused on continual domain adpa-
tion (CDA), in which a segmentation model is first trained on a labeled source
domain and then sequentially adapted to a series of unlabeled target domains.
During the adaptation process on a new domain, the model can only access
the source domain dataset and the most recent target domain dataset [Mar22].
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CDA approaches typically preserve information about the style of each do-
main, e.g. by capturing the style of the target domains using GANs [Wu19b,
Mar22] or by storing low-frequency components of each domain [Ter21].  Us-
ing this style information, the labeled source images can then be transferred
into the styles of the different target domains during training without access
to the previous target domain images. Kim et al. [Kim20] propose to save
domain-specific information in a small-capacity sub-network during train-
ing so that these sub-networks can be used during inference for each target
domain. While CDA is a more complex challenge than domain-incremental
learning, the challenges of avoiding catastrophic forgetting are the same. A
more general overview of domain adaptation for semantic segmentation is
provided by Schwonberg et al. [Sch23b].

3.3 Effects of Catastrophic Forgetting

The performance of a continual learning method is mostly measured by
the accuracy of the model on the individual test sets in a task sequence.
Díaz-Rodríguez et al. [Día18] propose three metrics, namely average ac-
curacy, which measures the average accuracy on the test set on all tasks,
backward transfer, which measures the influence that learning a task has
on the performance of previous tasks and forward transfer, which measures
the influence that learning a task has on the performance on future tasks.
While these metrics are valuable to evaluate and compare various continual
learning algorithms on their respective benchmarks, they cannot provide
deeper insights into the specific causes and effects of catastrophic forgetting
or which parts of the model are most affected.

Therefore, recent work has begun studying the effects of catastrophic for-
getting. Murata et al. [Mur20] measure forgetting for a specific layer 𝑙 by
measuring Partial Retrain Accuracy, which is the accuracy that can be gained
after freezing layer 𝑙 while the rest of the model is re-trained on all data. Us-
ing this method, they show a non-negligible amount of forgetting is already
happening at early layers.
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Similarly, Davari et al. [Dav22] study representational forgetting using lin-
ear probing, which compares the accuracy of an ideal linear classifier before
and after introducing a new task. Their results support the view that the ob-
served test accuracy of continual learning algorithms only offers limited in-
sights into the model and indicate that representational forgetting is not as
severe as accuracy metrics suggest. Therefore, they advise that it is necessary
to evaluate representational changeswithin the network to avoidmisinterpre-
tation of results. Nguyen et al. [Ngu19] used Task2Vec [Ach19] to investigate
how properties of the task sequence, such as the similarity and complexity
of individual tasks, affect catastrophic forgetting. Surprisingly, they found
no correlation between the error rates and the similarity of the tasks in a se-
quence and a positive correlation between the error rate and task complexity
[Ngu19]. Follow-up work for class-incremental learning demonstrated that
forgetting is not evenly distributed throughout the model but instead concen-
trated at later layers, which change significantly, specifically for tasks with
intermediate similarity [Ram21].

Other works investigate the loss landscape of the model by using linear mode
connectivity [Fra20] to show that different optima obtained by gradient-based
optimization are connected by simple paths of non-increasing loss [Mir21]
and how different training regimes such as dropout, learning rate decay and
batch size widen the local minima to reduce forgetting on subsequent tasks.
Recently, De Lange et al. [De 22] identified that common continual learning
models suffer from substantial forgetting upon starting to learn new tasks, but
that this forgetting is only temporary and followed by a phase of performance
recovery. They refer to this phenomenon as stability gap and propose contin-
ual evaluation for models to measure the worst-case performance of a model.
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4 Continual Learning for Class- and
Domain-Incremental Semantic
Segmentation

Continual learning research has been mainly focused on developing algo-
rithms for class- and domain-incremental classification tasks [Hsu18, Mas20,
De 19], with the underlying assumption that approaches are task-agnostic [De
19], so that results are transferable to other machine learning tasks. However,
this assumption may not be entirely valid for tasks like semantic segmenta-
tion, which exhibits several fundamental distinctions from classification. Un-
like classification tasks, where each image contains only one object of interest,
semantic segmentation requires locating and differentiating between differ-
ent classes in the same image. Especially in class-incremental settings, old
classes will typically appear in the background of future training samples,
which can lead to additional confusion.

Furthermore, the benchmarks on which continual learning approaches are
usually evaluated, such as Split-MNIST [Hsu18], Cifar-100 [Kri09] and Im-
ageNet [Den09], have very specific and controlled domain and class incre-
ments. This makes them less representative of the challenges faced in auto-
mated driving, where the domain and class increments are more varied and
unpredictable. For instance, in automated driving, domain increments could
correspond to different weather or lighting conditions, camera perspectives,
new higher resolution cameras, or even changes in the road infrastructure.
Meanwhile, class increments correspond to new objects, such as e-scooters,
different types of road signs or vehicles. To address this gap, this chapter in-
troduces a domain- and class-incremental benchmark for semantic segmenta-
tion for scene perception in automated driving based on Cityscapes [Cor16]
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and BDD100k [Yu20].  This benchmark is then utilized to evaluate the perfor-
mance of several continual learning approaches for continual semantic seg-
mentation. Finally, the obtained results are compared to recent continual clas-
sification surveys of Hsu et al. [Hsu18] and Masana et al. [Mas20] to gain in-
sights into challenges that might arise specifically for semantic segmentation
under more realistic conditions. This chapter is mainly based on the author’s
publications [Kal21] and [Kal22b].

4.1 Incremental Semantic Segmentation

As described in Sec. 2.4 the goal of semantic segmentation is to assign a class
out of a set of pre-defined classes 𝒞 to each pixel in a given image. However,
in incremental semantic segmentation, the model 𝑓 is not optimized on a sin-
gle task 𝑇 but on a sequence of tasks 𝑇𝑘 , that can introduce new classes or
visually distinct instances from the same classes. These differences between
tasks can include a shift in the label distribution 𝑃(𝑌) and/or in the input
distribution 𝑃(𝑋). With this, the base incremental learning scenarios that
were presented in Sec. 2.3 can be defined, namely, class-, domain-, and task-
incremental learning. For the evaluation in this chapter, the task-incremental
setting is disregarded as it requires a task identifier that specifies which task
the model is evaluated on during testing, which is not available in many real-
world applications. Therefore, this section introduces a class- and a domain-
incremental benchmark for semantic segmentation based on realistic driving
scenarios from Cityscapes and BDD100k. An overview of these benchmarks
is displayed in Fig. 4.1.
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Classes:
fence, pole, traffic
light, traffic sign,
person, rider, car

Classes:
truck*, bus*,

train, motorcycle*,
bicycle

BDD100k

Country: USA
Time: day/night
Weather: all

Cityscapes

Country: Germany
Time: day
Weather: cloudy

Classes:
road, sidewalk,

building, wall, sky
vegetation, terrain

Class-Incremental Domain-Incremental

*class exclusively contained in images of

Figure 4.1: Class- and domain-incremental learning scenarios for continual semantic segmenta-
tion. In the domain incremental setting only the input distribution changes and the
classes stay the same. In the class incremental setting the input distribution stays
the same, but every new task adds a set of novel classes.

4.1.1 Domain-Incremental Segmentation

In the domain-incremental learning scenario, at each increment the condi-
tional distributions of input 𝑃(𝑋𝑘|𝑌𝑘) are changing while the output distri-
bution 𝑃(𝑌𝑘) remains the same, so that 𝑃(𝑋1|𝑌1) ≠ 𝑃(𝑋𝑘|𝑌2) while 𝑃(𝑌1) ≈
𝑃(𝑌2).  In practice, this means that one observes the same classes, but they
differ in their visual appearance. Examples of such domain increments would
be adapting from synthetically-generated data to camera-recorded data, from
one country to another, from day to night, or different weather conditions,
while the same selection of classes would be labeled. To meet both require-
ments, in the domain-incremental setting the models are initially trained on
BDD100k and subsequently fine-tuned on Cityscapes.

The first requirement 𝑃(𝑋1|𝑌1) ≠ 𝑃(𝑋𝑘|𝑌2) is fulfilled as the datasets are
recorded in vastly different driving scenarios with varying camera setups.
While BDD100k covers diverse driving environments, including day and night
drives, driving during different weather conditions, driving on highways and
driving in cities in the United States, Cityscapes is collected during the day-
time in dry weather conditions across German, Swiss and French cities. Since
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the datasets share a common 19-class labeling policy and a similar class dis-
tribution, 𝑃(𝑌1) ≈ 𝑃(𝑌2), which can be seen in Fig. 4.2, this setup is purely
domain-incremental.

Figure 4.2: Class distributions of Cityscapes and BDD100k, measured by the percentage of im-
ages containing a specific class (horizontal axis). The plot highlights that Cityscapes
and BDD100k have similar distributions of classes.

4.1.2 Class-Incremental Segmentation

In the class-incremental setting, each task 𝑇𝑘 extends the previous set of
classes 𝒞𝑘−1 by a set of exclusive novel classes 𝒮𝑘 resulting in the new label
set 𝒞𝑘 = 𝒞𝑘−1 ∪̇ 𝒮𝑘 . In this setting, the labels of classes 𝒞𝑘−1 are not part of
the training set of the current task 𝑇𝑘 . As each task introduces an exclusive
subset of new classes by definition 𝒞1 ≠ 𝒞2. In class-incremental classi-
fication, this requirement also implies that 𝑃(𝑋1) ≠ 𝑃(𝑋2) because every
training sample only contains one class.  However, in semantic segmentation
the input distribution can remain similar, i.e., 𝑃(𝑋1) ≈ 𝑃(𝑋2), as an image
contains multiple classes, which include previous and potentially future
classes. Therefore, similar to Klingner et al. [Kli20] the Cityscapes dataset
is divided into three distinct subsets: 𝑇1, 𝑇2, and 𝑇3.  In each subset, only
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an exclusive selection of classes 𝒮𝑘 is labeled that does not reappear in the
labels of the other subsets. However, while the classes of a set are not labeled
in subsequent sets, they are likely to reappear in the images of subsequent
sets since 𝑃(𝑋1) ≈ 𝑃(𝑋2). To increase the difficulty of the class-incremental
setting, a disjoint Cityscapes setup is defined, in which images are sampled
so that three of the five classes of 𝒮2 do not reappear in the training images
of the remaining subsets 𝑇1 and 𝑇3. 

This ensures that 𝑃(𝑋2) ≠ 𝑃(𝑋3). The resulting class distributions of the tasks
𝑇1, 𝑇2, and 𝑇3 are shown in Fig. 4.3. Previous works such as [Mic19, Cer20,
Kli20] have proposed similar class-incremental settings for semantic segmen-
tation, but the proposed benchmark introduces an additional challenge by
requiring the model to learn classes that appear in 𝑇2 but not in 𝑇1 or 𝑇3.
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Figure 4.3: Class distributions of the three defined subsets of the class-incremental disjoint
Cityscapes setup. The solid bars in indicate that these classes are labeled in this
subset while those represented in empty bars are unlabeled. The classes truck, bus
and motorcycle exclusively appear in the images of training set 𝑇2

4.2 Experimental Setup

Smaller models with fewer parameters are expected to exhibit more severe
forgetting. So in an effort to decrease the need to evaluate continualmodels on
long training sequences, the difficulty of the setting is assessed by comparing
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the performance of two models of different sizes. Specifically, this experiment
compares the performance of the widely adapted DeepLabV3+ (31M param-
eters) [Che17b] and the much smaller ERFNet (1.2M parameters) [Rom18].
The results in Tab. 4.1 show that both ERFNet and DeepLabV3+ are capable
of learning the task sequences in a non-incremental manner, and as expected,
DeepLabV3+ achieves an absolute increase of about 7.9 % in accuracy in the
non-incremental setting compared to ERFNet.  When learning in the incre-
mental setting, however, it is observed that the drop in accuracy of ERFNet is
more severe on the previous task as compared toDeepLabV3+.  ERFNet suffers
from an absolute drop of 23.9 % mIoU when trained incrementally compared
to the non-incremental setting, whereas DeepLabV3+ only drops by an abso-
lute of 16.9 % mIoU. This supports the initial assumption that ERFNet is more
susceptible to forgetting due to its smaller size. Hence, the following exper-
iments are conducted with the smaller ERFNet architecture, as this reduces
the training time significantly. A more in-depth evaluation of the effects that
the architecture choice has on continual learning is given in Ch. 7.

Table 4.1: Comparison of DeepLabV3+ (31M parameters) and ERFNet (1.2M parameters) by
mean Intersection over Union (mIoU) in the domain-incremental setting. Evaluation
is run after training on both datasets either incremental or non-incremental.

Method Architecture mIoU𝐵𝐷𝐷 mIoU𝐶𝑆

Non-Incremental DeepLabV3+ 64.7 77.4
Non-Incremental ERFNet 57.0 69.4
Fine-Tuning DeepLabV3+ 48.8 77.1
Fine-Tuning ERFNet 33.1 72.3

4.2.1 Baseline Overview

In the following experiments six different continual learning approaches are
evaluated that cover the fundamental approaches that recent methods are
built on.  Specifically, the experiments compare two distillation-based meth-
ods (CIL [Kli20], LwF [Tas19, Li18]), three prior-focused approaches (L2 reg-
ularization, MAS [Alj18], EWC [Kir15]) and naive replay.
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The approach by Tasar et al. [Tas19] adapts the original knowledge distilla-
tion-based objective to semantic segmentation, as shown in Eq. (4.1), where
the unormalized score vector 𝑞𝑇 of the teacher is used to replace the one-hot-
encoded label 𝑦.  The distillation loss is used in combination with the standard
cross-entropy shown in Eq. (2.8). The hyperparameter 𝜆 is used to balance
the losses.

ℒlwf = ℒce(𝑦, ̂𝑦) + 𝜆ℒkd(𝑞𝑇 , 𝑞𝑆) (4.1)

CIL improves LwF by applying the distillation loss only for unlabeled sec-
tions within the image to avoid interference with regions for which labels
are available.

The prior-focused regularization approaches vary the weights’ plasticity
based on the estimated importance Ω𝑗 of the weights in previous tasks. The
resulting loss is defined by

ℒreg( ̂𝑦, 𝑦, ̃𝜃) = ℒce(𝑦, ̂𝑦) + 𝜆∑
𝑗
Ω𝑗(𝜃𝑗 − ̃𝜃𝑗)2 (4.2)

where ̃𝜃𝑗 is the 𝑗-th parameter of the old network and 𝜆 is a hyperparame-
ter to balance the regularization term. EWC uses the diagonal of the Fisher
information matrix to infer the importance  Ω𝑗 of a weight. MAS computes
the importanceΩ𝑗 based on how sensitive the predicted output function is to
a change in this parameter 𝜃𝑗 for a new given sample.  In the original MAS
implementation, the importance update could also be calculated on arbitrary
unlabeled data. However, in order to achieve a fair comparison to the remain-
ing approaches that do not utilize additional data, the training dataset is used
instead. Additionally, a naive baseline approach for regularization is evalu-
ated in which all parameters are weighted equally, so that Ω𝑗 = 1 ∀𝑗 ∈ 𝜃,
which is termed L2 regularization.

The naive replay approach randomly selects a subset of training samples from
past tasks and replays them during training on new data. In these experi-
ments, replay uses a fixed buffer size of either 32 or 64. The memory buffer
is evenly shared for each previous task. During training on subsequent tasks,
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each training batch is constructed of an equal amount of new data and replay
data. Additionally, a combination of CIL and replay is also used in the eval-
uation, that employs both knowledge distillation and a small replay buffer in
order to mitigate forgetting. This combination is denoted as CIL + Replay.

Finally, an upper bound and lower bound of performance are inferred by com-
paring the results of the continual learning methods to those obtained by
training the models in a non-incremental manner and by naively adapting
the model to new data. Two methods are compared for naive adaptation: the
fine-tuning (FT) approach and feature extraction (FE). While fine-tuning op-
timizes the parameters of the encoder and decoder of the model, FE freezes
the model’s encoder and only optimizes the decoder.

4.2.2 Evaluation

All of the following experiments are initialized with the ERFNet [Rom18]
model that is pretrained on ImageNet. The model is optimized for 250 epochs
with a batch size of 8 using stochastic gradient descent (SGD)withmomentum
0.9 and weight decay of 3×10−4.  Moreover, the optimizer uses a learning rate
of 0.01 and a polynomial learning rate schedule with a power of 0.9. For the
second task, the learning rate is decreased to 0.005 for the domain-incremental
setting and to 0.007 for the class-incremental setting. During training, the im-
ages are first cropped to a 2:1 ratio, then scaled by a factor between 1.0 and
2.0 and finally cropped to a random region of size 512 × 1024.  The network
architecture remains unchanged except for regularization and fine-tuning ap-
proaches in the class-incremental setting, for which a new decoder head is
added for every task, as proposed by [Kli20].

All results are reported using the mIoU on the respective evaluation sets of
Cityscapes and BDD100k, averaged over 5 runs each initialized with different
random seeds. In order to evaluate approaches in the class-incremental set-
ting, the mIoU is only computed with regard to the classes of the respective
subset, so when evaluating on 𝑇1, the mIoU does not account for classes of 𝒮2
or 𝒮3.  However, after completing training on all three subsets, the mIoU𝐶𝑆
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compares the final performancewith respect to all 19 classes on the Cityscapes
evaluation set.

4.3 Results and Discussion

Table 4.2: Comparison of different continual learning methods on ERFNet by mIoU for the class-
incremental setting. Evaluation is run on the Cityscapes validation set using the in-
dicated class subsets shown in Fig. 4.2. Colors are normalized per column. The mean
and standard deviation over five runs is reported.

after Training on 𝑇1, 𝑇2 after Training on 𝑇1, 𝑇2, 𝑇3Method 𝑇1 𝑇2 𝑇1 𝑇2 𝑇3 mIoU𝐶𝑆
Offline 84.8 ± 0.2 76.3 ± 0.9 83.3 ± 0.1 70.8 ± 0.4
FT 50.7 ± 3.1 70.1 ± 2.8 50.7 ± 2.2 49.5 ± 5.3 80.6 ± 0.2 31.1 ± 1.1
FE 79.1 ± 0.0 56.9 ± 0.5 79.1 ± 0.0 56.9 ± 0.5 69.4 ± 0.3 40.7 ± 0.3
L2 79.3 ± 0.2 57.5 ± 1.9 79.0 ± 0.1 56.9 ± 1.9 69.6 ± 0.2 42.3 ± 0.4
EWC 79.3 ± 0.1 57.2 ± 2.7 79.0 ± 0.1 56.9 ± 2.9 68.6 ± 0.3 42.0 ± 0.8
MAS 72.3 ± 1.2 68.5 ± 2.3 73.1 ± 1.1 66.6 ± 1.4 74.3 ± 0.3 42.2 ± 0.7
LWF 77.2 ± 0.7 74.0 ± 2.7 76.9 ± 0.5 71.2 ± 3.6 79.6 ± 0.4 60.0 ± 1.4
CIL 78.5 ± 0.4 75.3 ± 3.3 78.0 ± 0.6 70.6 ± 1.6 79.7 ± 0.4 63.9 ± 0.4
Replay (32) 67.5 ± 1.4 67.2 ±2.4 66.8 ± 1.5 45.7 ± 4.0 81.8 ± 0.6 42.0 ± 0.9
Replay (64) 71.6 ± 1.9 69.9 ± 1.0 69.2 ± 1.3 50.1 ± 2.6 81.4 ± 0.7 43.3 ± 1.0
CIL + Replay 76.3 ± 1.2 65.4 ± 1.8 76.1 ± 0.6 50.5 ± 4.5 81.7 ± 0.1 57.7 ± 0.3

4.3.1 Results on Class-Incremental Learning

The results in Tab. 4.2 show that although FT is better than FE at adapting
to new classes it suffers from sever forgetting of old classes, achieving only
mIoU𝐶𝑆 of 31.1 % compared to the 70.8 % when trained offline. On the other
hand, feature extraction (FE) completely retains the original performance on
the individual tasks but is inhibited in learning the newest classes and strug-
gles to discriminate between classes of different tasks.

The prior regularization approaches perform similarly to FE in terms of re-
taining performance on the previous task. However, since the weights in the
encoder are no longer completely fixed, the model is better at adapting to new
classes, resulting in a small increase for the latest classes. It is noteworthy that
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naive L2 regularization performs similarly to the more sophisticated MAS and
EWC, which was also observed for classification tasks [Hsu18].
All of the aforementioned approaches score a high mIoU in the range from
50 % to 80 % on the individual subsets 𝑇1, 𝑇2 and 𝑇3, but the overall perfor-
mance on all classes is only at 40.7 % mIoU, which indicates that these models
are not able to distinguish between classes of different tasks. This is likely a
combination of a severe bias towards the most recent task and the fact that
the models suffer from inter-task confusion as they do not learn discriminat-
ing features for the classes of different tasks as they are never observed in the
same task. The confusion matrices for FT and EWC in Fig. 4.4 also validate
that the classes of 𝒮1 and 𝒮2 are mostly confused with the classes of the most
recent task. While there is a visible improvement when comparing the con-
fusion matrix from FT to EWC, EWC still classifies the classes 𝒮2 still mostly
as classes from the latest training set 𝒮3.

Replay barely outperforms the prior regularization methods when evaluated
on all classes, which is unexpected as it is the most effective method in class-
incremental classification [Hsu18].  When looking at the confusion matrix in
Fig. 4.4 it can be seen that replay is effectively reducing the bias towards the
new classes and improves the performance for classes of 𝒮2.  However, the
performance for 𝒮2 deviates significantly, up to 4 % mIoU, which is likely
caused by the random sample selection.

The best performance is achieved by the knowledge distillation-based ap-
proaches CIL and LwF, which score the overall highest results, outperforming
the next best approach by 18 % mIoU and achieving a mIoU𝐶𝑆 of 63.9 %.  This
is attributed to the multi-class nature of semantic segmentation, because old
classes can reappear in the background of new training data so that they are
effectively rehearsed when using knowledge distillation. However, the con-
fusion matrix shows that once these classes do not reappear, as is the case for
𝒮2, the model still struggles to correctly classify those classes. Section 6.1 will
investigate this observation in more detail. The combination of CIL and re-
play achieves worse overall performance than CIL alone, this is likely caused
by the fact that the replay samples can contain new classes that are labeled as
background, which inhibits learning the new classes.
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The overall results show that, contrary to the results for image classification
that were reported by Hsu et al. [Hsu18], knowledge distillation is the most
effective method for class-incremental segmentation. However, some form of
replay will be required for classes that will not reappear in new training data
to prevent forgetting of these classes.

Classes of 𝒮1 Classes of 𝒮2 Classes of 𝒮3 

(a) Fine-Tuning

Classes of 𝒮1 Classes of 𝒮2 Classes of 𝒮3 

(b) EWC

Classes of 𝒮1 Classes of 𝒮2 Classes of 𝒮3 

(c) Replay

Classes of 𝒮1 Classes of 𝒮2 Classes of 𝒮3 

(d) CIL

Figure 4.4: Confusion matrices after training on the Cityscapes Disjoint Sequence.
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4.3.2 Results on Domain-Incremental Learning

Table 4.3 displays the results for the domain-incremental setting. The results
highlight that all continual learning approaches mitigate forgetting in some
way compared to fine-tuning, but particularly the regularization-based ap-
proaches struggle to adapt to the new task. Overall, FT is best at adapting
to the new task, but in turn suffers from the most severe performance drop
on the first task. Freezing the encoder drastically reduces forgetting on the
first task, leading to an increase of 15 % mIoU for FE compared to FT, but also
inhibits adapting to the new task. Similar to class-incremental learning, the
prior-regularization approaches (EWC, MAS, L2) achieve a better balance be-
tween the adaptability of FT and the stability of FE, as they do not completely
prohibit parameter updates of the encoder but simply constrain updates on
them. Among the prior-focused methods, EWC is observed to be the best at
adapting to new data, while L2 regularization was the most effective at re-
taining the previous task’s performance.

LwF outperforms the prior-regularization methods in mitigating forgetting
on the old task but has similar issues in learning the new tasks, where it is
outperformed by FT by 7.8 % mIoU𝐶𝑆 .  This suggests that the teacher-model
limits the student’s ability to adapt to new data, which happens if the teacher
contradicts the current training labels. This problem does not arise in the
class-incremental setting, as the teacher’s predictions are for a disjoint set of
classes that occur in a different region of the image; therefore, knowledge
distillation is highly effective in the class-incremental setting.

Replay achieves the highest average mIoU of over 59.0 %, which is 4 mIoU
below the upper-bound performance of the offline model, while using only
64 images of the original 7000 (0.91 %) images of BDD100k. Small memory
sizes are commonly believed to cause overfitting due to the limited diversity
of samples. However, the results suggest that severe overfitting is unlikely to
occur once the model has been optimized for the entire dataset. A hypothesis
is that the combination of new diverse data with the memory buffer keeps
the model close to the minima of the previous task, which corroborates the
results in Ch. 5 and the findings of Verwimp et al. [Ver21].
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However, the standard deviation of the performance on the first task for replay
is noticeably increased compared to the other remaining approaches, specif-
ically for the smaller memory buffer size 𝑛 = 32.  This can be attributed to
the fact that replay samples are chosen randomly, which leads to more devi-
ating results in each run. As this is problematic for real applications, Sec. 4.4
discusses further sample strategies for continual semantic segmentation.

Table 4.3: Comparison of different continual learning methods on ERFNet by mIoU for the
domain-incremental setting. Evaluation is run after training on both datasets either
incremental or non-incremental. Colors are normalized per column.

Method mIoU𝐵𝐷𝐷 mIoU𝐶𝑆 Average
Offline 57.0 ± 0.4 69.4 ± 0.2 63.2
FT 33.1 ± 0.8 72.3 ± 0.5 52.7
FE 48.3 ± 0.4 58.7 ± 0.1 53.5
L2 46.8 ± 0.7 65.5 ± 0.3 56.2
EWC 46.0 ± 0.7 67.2 ± 0.5 56.6
MAS 44.8 ± 1.2 66.6 ± 0.6 55.7
LWF 48.5 ± 0.4 66.4 ± 0.3 57.5
Replay (32) 45.9 ± 1.8 69.9 ± 0.7 57.9
Replay (64) 47.0 ± 1.1 71.1 ± 0.4 59.0

4.3.3 Comparison to Results on Image Recognition

To contextualize the findings so far, they are compared to the findings of Hsu
et al. [Hsu18], who extensively evaluated various continual learning tech-
niques for image recognition. Their study identifies two significant similari-
ties with the results of this chapter: firstly, the ineffectiveness of regulariza-
tion approaches in mitigating forgetting; and secondly, the effectiveness of
replay in the domain-incremental setting. However, due to the nature of se-
mantic segmentation, where multiple classes may appear in a single image,
the efficacy of other approaches varies in the class-incremental setting. No-
tably, knowledge distillation appears to be far more effective in CiSS than in
classification, as classes are expected to reoccur in the background region of
new training images, producing superior results in this evaluation and only
slightly outperforming fine-tuning in image recognition. Additionally, the re-
sults of this chapter indicate that replay-based methods may face challenges
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4 Continual Learning for Class- and Domain-Incremental Semantic Segmentation

in distinguishing between classes of different class increments in the con-
text of semantic segmentation, whereas in image recognition, replay is often
considered necessary in the class-incremental setting, as reported by [Hsu18,
Ven20]. These findings suggest that the background class may play an im-
portant role in both causing and mitigating forgetting in CiSS, which Sec. 6.1
will focus on.

4.4 Improving Data Selection for Replay

The experiments have shown that replay is a simple yet effective method
to combat catastrophic forgetting in domain- and class-incremental seman-
tic segmentation.  However, the experiments also demonstrated that the per-
formance of replay varies significantly when samples are selected by random
choice, especially when learning in a sequence of class-unbalanced tasks with
small memory sizes. Therefore, this section investigates various sample selec-
tion strategies for continual learning that aim to outperform random sample
selection for the task of semantic segmentation. 

In these experiments the following methods are compared to select training
samples for the memory buffer:

• Random: samples are chosen randomly

• Entropy (Max/Median): samples with max/median entropy are selected

• Loss: samples with highest/median cross-entropy loss are selected

• Gradient-based sample selection (GSS): samples are selected based on
the diversity of the gradients [Alj19]

• Representation-based sample selection (RSS): samples are selected to
approximate the learned representations of the training data of previ-
ous tasks. Therefore, the activations are extracted by the encoder of
the model and projected into a lower dimensional space, using UMAP
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[McI18]. The projected activations are grouped into clusters using k-
means clustering and the samples that are closest to the cluster centers
are selected.

• Class balanced samples: samples that are closest to a uniform distribu-
tion of classes are selected

• Class balanced buffer: samples are greedily selected to steadily move
the class distribution in the buffer towards a uniform distribution of
classes

• Ambivalent classes: samples with the highest number of different
classes are selected

4.4.1 Sample Selection for Domain-Incremental
Learning

Themethods are first evaluated in domain-incremental settings. The results in
Tab. 4.4, highlight that: (1) random sample selection is a strong baseline (2) se-
lection by Mean Loss, Mean Entropy and RSS can outperform random sample
selection in reducing catastrophic forgetting, but in turn also inhibit learn-
ing the new task. However, they still lead to a higher average mIoU across
the datasets. From these three methods, only selection by Median Loss and
Median Entropy leads to less deviating results on the first task than random
sample selection.

Class-balancing methods or GSS perform worse or similar to random selec-
tion. Finally, selection by Max Loss leads to a severe degradation in perfor-
mance, especially on the first task. The reason for the lackluster performance
is that Max Loss selected almost exclusively samples of BDD100k that contain
erroneous labels, which result in a high loss. 
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Table 4.4: Results in mIoU (%) of sample selection methods for domain-incremental setting with
buffer size = 64. Evaluation is run after training on both datasets.

Method mIoU𝐵𝐷𝐷 mIoU𝐶𝑆 Average
Random 47.0 ± 1.1 71.1 ± 0.4 59.1
RSS 48.9 ± 1.2 70.2 ± 0.4 59.6
Loss Median 49.9 ± 0.2 69.7 ± 0.3 59.8
Entropy Median 49.3 ± 0.4 69.3 ± 0.4 59.3
GSS 47.2 ± 0.8 70.5 ± 0.5 58.9
Ambivalent Classes 45.6 ± 0.4 69.7 ± 0.4 57.6
Class Balanced Samples 45.5 ± 1.1 70.0 ± 0.3 57.8
Class Balanced Buffer 43.6 ± 0.6 70.0 ± 0.4 56.8
Entropy Max 38.0 ± 3.9 69.6 ± 0.1 53.8
Loss Max 27.8 ± 0.3 68.8 ± 0.0 48.3

4.4.2 Sample Selection for Class-Incremental Learning

In the class-incremental setting replay is used in combination with CIL. The
results are displayed in Tab. 4.5. Overall, it is observed that the sample selec-
tion strategy plays a more important role in the class-incremental setting, as
the class-balancing methods lead to a significant increase of up to 8.2 % mIoU
on 𝑇2 while also reducing the deviation of the results.  Contrary to the re-
sults in domain-incremental learning, class-balancing methods such as class-
balanced samples and class-balanced buffer achieve the best performance,
whereas selection with RSS or Median Entropy leads to similar results as ran-
dom selection.
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Table 4.5: Results in mIoU (%) of sample selection methods for class-incremental setting with
buffer size = 64. Evaluation is run after training on both datasets.

after Training on 𝑇1, 𝑇2, 𝑇3Method 𝑇1 𝑇2 𝑇3 mIoU𝐶𝑆
Random 76.1 ± 0.6 50.5 ± 4.5 81.7 ± 0.1 57.7 ± 0.3
RSS 73.0 ± 0.5 52.7 ± 0.8 81.7 ± 0.2 57.4 ± 0.2
Loss Median 76.3 ± 0.4 47.1 ± 2.7 82.3 ± 0.6 58.4 ± 1.1
Entropy Median 75.7 ± 0.7 48.2 ± 1.1 81.1 ± 0.9 57.3 ± 0.3
GSS 74.1 ± 0.2 49.5 ± 3.2 80.0 ± 0.1 56.6 ± 0.5
Ambivalent Classes 75.0 ± 0.6 49.6 ± 1.1 81.5 ± 0.3 57.4 ± 0.5
Class Balanced Samples 77.0 ± 0.3 58.7 ± 2.1 82.8 ± 0.5 60.5 ± 0.3
Class Balanced Buffer 75.3 ± 0.3 56.8 ± 3.0 81.6 ± 0.1 58.8 ± 0.1
Entropy Max 75.2 ± 0.4 47.8 ± 2.1 81.1 ± 0.2 57.3 ± 0.3
Loss Max 76.3 ± 0.2 52.7 ± 3.9 81.7 ± 0.2 57.4 ± 0.4

4.4.3 Different Buffer Sizes

Comparison of the performance for selected sample selection methods with
buffer sizes 32, 64 and 128 are displayed in Figs. 4.5 and 4.6. The figure high-
lights that with decreasing memory size, the sample selection method has a
much bigger impact on the final performance. This means that when memory
is scarce, sample selection becomes even more critical.
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Figure 4.5: Influence of the Memory Size on the performance in mIoU (%) of different sample
selection methods in the domain-incremental setting.
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Figure 4.6: Influence of the Memory Size on the performance in mIoU (%) of different sample
selection methods in the class-incremental setting.
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4.5 Conclusion and Research Questions

This chapter compared established methods for continual learning to the task
of semantic segmentation and investigated their effectiveness in class- and
domain-incremental learning. The results show that the nature of the task of
semantic segmentation changes which methods are most effective at mitigat-
ing catastrophic forgetting in the class-incremental setting compared to image
classification. In particular, knowledge distillation has proven to be most ef-
fective at mitigating forgetting in the class-incremental setting. None of the
analyzed methods provided satisfactory results for both class- and domain-
incremental learning, which indicates that forgetting materializes differently
in these settings. Furthermore, the deviating results of the feature extraction
approach on the new task suggest that in domain-incremental learning the
model is dependent on updating the encoder layers of the network, as freez-
ing these layers has a negative impact on the performance on the new task.
While knowledge distillation excels in the class-incremental setting, it is not
suited for domain-incremental learning as it struggles to adapt to new data.
On the other hand, naive replay is the most effective method to overcome for-
getting in domain-incremental learning, only using 32 images (0.46 %) of the
previously observed training data, but struggles to distinguish between old
and new classes in the class-incremental setting. These observations lead to
several research questions, which will be answered in the following chapters.

Section 6.1 will discuss class-incremental segmentation and will answer the
following questions:

1 Why are regularization methods inefficient in class incremental learn-
ing?

2 Why is knowledge distillation so much more effective in semantic seg-
mentation than in classification?

3 What role does the semantic shift of the background class play in caus-
ing and mitigating catastrophic forgetting?
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Next, Sec. 6.2 first investigates how domain-incremental learning affects the
segmentation model and then compares the differences between the effects in
class- and domain-incremental learning:

4 How does catastrophic forgetting affect a semantic segmentation model
in domain-incremental learning?

5 How is forgetting different between class- and domain-incremental for-
getting?

6 How are batch normalization layers affecting catastrophic forgetting?

Finally, Ch. 7 will investigate the effect of architecture choices to reduce catas-
trophic forgetting:

7 What effect does the neural architecture have on catastrophic forget-
ting?

As answering these questions requires tomeasure and locate forgetting at spe-
cific parts of the neural network, the next chapter discusses methods that al-
low deeper insights into the changes within the neural network when trained
in a continual manner.
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Effects of Catastrophic Forgetting

The previous chapter demonstrated that catastrophic forgetting might mani-
fest itself differently in semantic segmentation and classification as well as be-
tween class- and domain-incremental learning. However, the current means
of evaluating continual approaches are limited to evaluation on their respec-
tive test sets and cannot provide deeper insights or explanations into the ob-
servations made in the previous chapter.

Therefore, this chapter presents a set of tools to measure the causes and ef-
fects of catastrophic forgetting in an incrementally trainedmodel for semantic
segmentation. These methods allow to measure the representational similar-
ity, weight distance, and inter-task confusion of the model to examine the
causes and effects of catastrophic forgetting. In addition, the caveats asso-
ciated with these techniques are laid out so that incorrect inferences can be
avoided. These tools provide the basis for the evaluation of continual semantic
segmentation in class-incremental learning and domain-incremental learning
in Ch. 6. The presented results in this chapter are mainly based on two of the
author’s publications [Kal22a, Kal23a].

5.1 Overview

As the previously underlying effects of catastrophic forgetting cannot be mea-
sured exclusively by the accuracy achieved on the test sets, several methods
were proposed to study the causes and effects of catastrophic forgetting. An
overview of the methods is displayed in Fig. 5.1.

63
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Figure 5.1: Overview of methods that are used to measure the effects of catastrophic forgetting
in continual learning. Methods marked with * were proposed in the author’s publi-
cation [Kal22a].

The methods can broadly be divided into three categories: weight-based,
activation-based and accuracy-based. Weight-based methods measure the
effects of forgetting by computing the distance of models’ weights, either
holistically or per layer, to infer which layers are most affected [Ney20].  The
downside of these approaches is that they do not take the data distribution
into account, as not every weight change implies meaningful changes of the
activations with respect to the data distribution.

In comparison, activation-based approaches measure the similarity directly
through the activations of specific layers of the network and therefore
also take the data distribution into account. Methods like Centered Ker-
nel Alignment (CKA) [Kor19] were already used to measure the activation
drift between models of different tasks [Dav22, Ram21].  Activation-based
approaches can be further distinguished into approaches that measure rep-
resentational similarity (e.g. CKA) and approaches that measure functional
similarity. Representational similarity measures the change of the activations
directly without taking into account the effect that this change has on the
prediction of the network, whereas functional similarity methods such as
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Dr. Frankenstein [Csi21] gauge the effect that the activation drift has on the
output and overall performance of the network on a specific task.

Accuracy-based methods re-estimate or re-train specific parts of the network
while keeping the remaining parts of the network fixed to infer how useful
the representations of the incrementally trained model are to solve the joint
task of the network [Mur20, Dav22]. As there is no prior work on comparing
the different tools to measure forgetting in continual learning, the goal of this
chapter is to compare the different analysis methods in their ability to mea-
sure the effects of catastrophic forgetting in class- and domain-incremental
semantic segmentation. In order to understand what inferences can be made
when using them and when they potentially lead to wrong conclusions.

5.2 Experimental Setup

To allow comparison of these analysis methods in their ability to measure
the effects of catastrophic forgetting in semantic segmentation, in these ex-
periments the segmentation architecture is trained in a class- and domain-
incremental setting.

In the domain-incremental setting, the model is trained incrementally first
on Cityscapes [Cor16] (CS) and then on the ACDC-Night [Sak21] subset.
ACDC and CS are both large-scale datasets for semantic understanding of
urban street scenes for autonomous driving and share a common 19-class
labeling policy, so that the increment is purely the change from day images
(CS) to night images (ACDC). For the class-incremental setting, the models
are trained on the commonly used PascalVOC-15-5 [Mic19] benchmark. The
PascalVOC-15-5 split is a two-step incremental learning task that consists
of learning 15 classes (1–15) in the first step 𝑇0 and the remaining 5 classes
(16–20) in the second step 𝑇1. 

The same ERFNet [Rom18] architecture is trained in these incremental bench-
marks using various continual learning methods, namely: fine-tuning (FT),
the prior-regularization method EWC [Kir15], Learning without Forgetting
(LwF) [Li18, Tas19] and replay. The test results that are displayed in Tab. 5.1,
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5 Methods to Measure the Causes and Effects of Catastrophic Forgetting

generally demonstrate the same trends as in Ch. 4:  (1) Higher forgetting for
fine-tuning in the class-incremental setting; (2) LwF achieves better perfor-
mance than replay in class-incremental learning; (3) Replay is the most effec-
tive method in domain-incremental learning.  In the following sections, the
models will be thoroughly evaluated using the given tools. In every section a
method will be discussed by first giving a general explanation of the method
then discussing the results when using the method to measure catastrophic
forgetting and finally pointing out the method’s limitations.

Table 5.1: Comparison of EWC, replay and fine-tuning in the class- and domain-incremental
learning scenarios. Evaluation is run after training on the entire task sequence.

Class-Incremental Domain-IncrementalMethod 0-15 15-21 Forgetting Cityscapes Night Forgetting
Fine-Tuning 4.6 22.2 51.3 37.1 41.7 31.3
EWC 33.5 8.1 22.4 39.2 36.5 29.2
Replay 41.0 31.5 14.9 58.2 40.5 10.2
LwF 43.5 25.7 12.4 40.2 39.3 28.2

5.3 Activation Drift

First, methods to measure the activation drift between two models 𝑓0 and 𝑓1
are evaluated, in which model 𝑓0 is trained on 𝑇0 and 𝑓1 is initialized with the
parameters of 𝑓0 and incrementally trained on 𝑇1.  The goal of the methods
in this section is to measure the activation drift for every layer 𝑛 between the
activations 𝐀0,𝑛 and 𝐀1,𝑛 of the models 𝑓0 and 𝑓1. The current key methods
to measure activation drift in neural networks are centered kernal alignment
(CKA) [Kor19] and layer matching with Dr. Frankenstein  [Kal22a, Csi21].
This section discusses how these methods measure activation drift in contin-
ual learning and what the differences between those methods are.
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5.3 Activation Drift

5.3.1 Layer Matching with Dr. Frankenstein

The Dr. Frankenstein tool set aims to analyze the similarity of representa-
tions in deep neural networks, by matching the activations of two networks
on a given layer by joining them with a 1x1 convolutional stitching layer,
as displayed in Fig. 5.2. It was first proposed by [Len15] and recently was
reevaluated in comparison with other similarity metrics [Csi21, Ban21].
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Figure 5.2: Comparison of the original Dr. Frankenstein layer matching [Csi21] (left) with the
approach without an additional stitching layer (right), named layer stitching.

The goal of the stitching layer is to transform the activations of a specific
layer of 𝑓0 to the corresponding activations of model 𝑓1. The stitching layer
is initialized using least-squares matching and optimized using the loss func-
tion the network was trained with. In order to measure the similarity of the
learned representations, the accuracy of the resulting Frankenstein network
is evaluated on the test set and compared to the initial accuracy of the model
𝑓0.  The higher the resulting relative accuracy, the closer the learned repre-
sentations of the models are to each other.

Contrary to prior work, in which models from completely different initializa-
tions are compared, the objective in this context is to measure the activation
drift between amodel at different points during a continual learning sequence.
These models are closely related because 𝑓1 is initialized with the parameters
of 𝑓0. Therefore, the setup shown on the right in Fig. 5.2 without an additional
stitching layer is followed, meaning that the activations of the layer 𝑛 under
examination 𝑓1 are directly propagated to the layer 𝑛 + 1 in 𝑓0.
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If the accuracy of the stitched network is not adversely affected, this is a clear
indication that the internal representations of 𝑓1 were not altered drastically
during training on 𝑇1.  This analysis will give insights into howmuch the acti-
vation drift at a specific layer impacts the performance on a previous task. In
the following, “Dr. Frankenstein” refers to when an additional stitching layer
is used and “layer stitching” refers to when the additional 1 × 1 convolution
layer is omitted.

Results

The layer-wise activation drift measured with layer stitching for the incre-
mental learning scenarios is displayed Fig. 5.3. It is apparent that in the class-
incremental scenario (Pascal-15-5) the encoder layers up until layer 8 are not
at all affected by activation drift, as even after training on a set of new classes
in the second task, themodel’s representations are completely reusable for the
model trained only on the first task. Only later encoder layers and especially
the decoder layers show significant representation drift, in which model 𝑓0 is
not able to correctly classify old classes using the representations of 𝑓1. Most
notably is the drop in similarity from layer 18 to layer 19, which is observed
for fine-tuning and EWC, which will be examined in Sec. 6.1. These results
support the conclusions of recent research which found that representation
drift in class-incremental learning is concentrated near the classification layer
[Dav22, Ram21]. 

However, in the domain-incremental learning setting, it is apparent that the
first layers are primarily affected by activation drift and later layers only
change slightly, indicating that the activation drift might be concentrated in
the early layers, which Sec. 6.2 will investigate in more depth.
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5.3 Activation Drift

Figure 5.3: Activation drift between 𝑓1 to 𝑓0 measured by relative mIoU on the first task of
the networks stitched together at specific layers (horizontal axis). The layers of the
encoder are layer 0–16 (grey area), the decoder layers are 17–21 (white area). In
the class-incremental Pascal-15-5 setting, the activations of the early layers of the
encoder stay stable for all methods, only EWC and fine-tuning have severe activation
drift in the decoder layers of the network. In the domain-incremental setting only
the first layers (0–8) are affected by activation drift, layers 9–20 only change slightly.
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Figure 5.4 compares layer stitching with and without the additional 1×1 con-
volutional layer. The stitching layer is initialized with least-squares match-
ing and optimized using the task loss [Csi21]. With the exception that Dr.
Frankenstein generally achieves a higher similarity with the additional stitch-
ing layer, both variants show the same trends: high similarity in the encoder;
sudden drop of similarity from layer 18 to 19 for EWC and fine-tuning and
highest similarity at the final layer for LwF. However, the drop in similarity
is more severe when measuring using Dr. Frankenstein compared to layer
stitching. This is unexpected as the model without an additional stitching
layer achieves a higher performance for layers 19 and 20 and one would ex-
pect that the additional stitching layers of Dr. Frankenstein should lead to
an increase in similarity as the stitching layers are able to learn additional
transformations to transform the activations back to more useful activations
for the initial network.
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Figure 5.4: Activation drift between 𝑓1 to 𝑓0 measured by Layer Stitching (top) and Dr.
Frankenstein (bottom) with the additional 1 × 1 convolutional stitching layer.
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Limitations

A limitation of this approach without the additional stitching is that it cannot
measure positive backward transfer without the additional stitching layer, in
which the model would learn a new, improved representation for old data
while learning a new task. This could occur when a feature that was discrim-
inative for 𝑇0 is replaced with a feature that is more useful for discriminating
all classes. In that case, 𝑓0 could no longer extract useful information from
the stitched representations of 𝑓1, which would lead to a performance drop,
although these representations are still useful for 𝑓1 to classify all classes.

5.3.2 Centered Kernel Alignment (CKA)

CKA [Kor19] is a similarity index that measures the similarity between in-
ternal representation of neural networks. Given |𝑇| samples and their corre-
sponding matrices of activations 𝐀𝑛 ∈ ℝ|𝑇|×𝑝 and 𝐁𝑛 ∈ ℝ|𝑇|×𝑝 of 𝑝 neurons
at a specific layer𝑛 of two neural networks𝑓𝑎 and𝑓𝑏 linear CKA is defined as:

𝐶𝐾𝐴(𝐀𝑛, 𝐁𝑛) =
‖𝐀𝑇

𝑛𝐁𝑛‖2𝐹
‖𝐁𝑇𝑛𝐁‖𝐹‖𝐀𝑇𝑛𝐀𝑛‖𝐹

(5.1)

|| ⋅ ||𝐹 denotes the Frobenius norm.  The higher the score, the more similar
are the activations at hand. The value ranges between 0 and 1. Kornblith et
al. [Kor19] designed CKA to be invariant to invertible orthogonal transfor-
mations and isotropic scaling but not invertible linear transformations. They
empirically validate that with these properties, CKA captures intuitive no-
tions of similarity, such as that networks that were trained from different
initializations on the same data should be similar, while networks trained on
a different dataset or that are completely untrained should be less related.
Recently, linear CKA has been used to compare the intermediate representa-
tions of models 𝑓0 and 𝑓1 in continual learning [Dav22, Ram21], in which a
high CKA score equates to lower representational forgetting.

72



5.3 Activation Drift

Csiszárik et al. [Csi21] investigated the relationship between representational
similarity that is measured by CKA and functional similarity measured by Dr.
Frankenstein. In this case, functional similarity denotes that the representa-
tion leads to a similar output of the model, whereas representational similar-
ity directlymeasures the distance between representations. They demonstrate
that a network can retain high functional similarity using layer stitchingwhile
simultaneously decreasing the similarity index measured by CKA.This can be
explained by the fact that CKA can be affected by changes to features that are
not relevant for the networks’ predictions. In other words, they can change
the representations of a layer while the output of the entire network is not
affected notably.

Results

The similarity scores between the representations of 𝑓0 and 𝑓1 measured by
CKA are displayed in Fig. 5.5. In the class-incremental setting, it can be ob-
served that the CKA score stays close to 1.0 up until layer 10, at which a
decrease in similarity can be observed, specifically for fine-tuning and replay.
As one would expect in the class-incremental setting, the similarity scores
drop severely in the decoder layers. However, EWC retains much higher rep-
resentational similarity than replay or LwF, which at first sight contradicts
the results in Tab. 5.1, where EWC shows significantly more forgetting than
replay or LwF. When combining these findings with the observations from
the layer stitching plot in Fig. 5.3 and the results from Tab. 5.1, it can be de-
duced that the small representational changes, as measured by CKA, lead to
significant functional changes, measured by layer stitching, that in turn lead
to catastrophic forgetting.

The CKA plot in Fig. 5.5 at the bottom for the Cityscapes to Night setting also
illustrates that the similarity of the representations is mostly affected in the
early layers and only decreases very slowly throughout the network. Similar
to layer stitching, replay shows the fewest changes in the activations.
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Figure 5.5: Activation drift between 𝑓1 to 𝑓0 measured by CKA for Pascal-15-5 (top) and
Cityscapes→ Night [Kal22a] (bottom) at specific layers (horizontal axis).
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Limitations

Similar to layer stitching, CKA is also not able to measure positive backward
transfer. Furthermore, CKA should be understood as a pure distance mea-
sure between feature vectors that does not differentiate between relevant and
irrelevant features for the given task. Hence, meaningless changes to the ac-
tivations that do not have an impact on the predictions can lead to dissimi-
larity, as observed in the prior experiment. This effect was also observed by
Bansal et al. [Ban21]. Therefore, the similarity scores of layer stitching are
more meaningful to measure the effects of catastrophic forgetting, as they are
not affected by unrelated feature changes [Csi21, Ban21], but still, CKA can
be considered a useful complement to layer stitching.

5.4 Re-Training and Re-Estimation

Re-training and re-estimation methods try to freeze specific layers of the net-
work and re-train the remaining layers on the joint data distribution to show
how useful the features of the frozen layers are to solving the joint task. De-
coder re-training and linear probing freeze the backbone of the model and
re-train the classification layer or decoder of the network to estimate how
discriminative the features of the backbones are. Partial re-training accuracy
on the other hand, measures forgetting for single layers of the network while
the remaining are trained from scratch [Mur20].  Finally, batch normaliza-
tion re-estimation is used to measure the contribution of the changing batch
normalization population statistics to catastrophic forgetting.

5.4.1 Batch Normalization Re-Estimation

Major contributors to the activation drift of a model trained incrementally
are the changing population mean and variance of batch normalization lay-
ers, which are collected during training to achieve a deterministic behavior for
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inference [Iof15].  While this works for i.i.d.¹ data, in the non-i.i.d. incremen-
tal learning setting, the batch normalization estimates of the population mean
and variance are heavily biased towards the most recent task, leading to a sig-
nificant drop in accuracy on old tasks [Lom20]. A straightforward method to
measure the impact of changing BN statistics is to re-estimate them on the
joint dataset. This can be achieved by simply doing a forward pass over the
entire joint dataset, without the backward pass. After re-estimation of the BN
statistics, the model is evaluated on the test set on the first task and the change
in mIoU compared to the initial performance on the first task is reported as
ΔmIoU𝐵𝑁 .  This gives a quantifiable measure of how much the changing BN
statistics impact catastrophic forgetting. A higher value of ΔmIoU𝐵𝑁 means
that the network was more affected by the changing population statistics.

Results

Table 5.2 shows the respective re-estimation results for the domain- and
class-incremental experiments. By comparing the ΔmIoU𝐵𝑁 , it appears
that the changing BN statistics have a much more significant impact on
domain-incremental learning. Furthermore, in the domain-incremental set-
ting, replay alleviates the change in BN statistics completely, as re-estimation
even slightly decreases the mIoU. Therefore, it is concluded that changing BN
statistics are a significant contributor to forgetting in the domain-incremental
setting and the severity of that effect can be measured with BN re-estimation.

¹ independent and identically distributed
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Table 5.2: Performance in mIoU (%) of the adapted model 𝑓1 after re-estimating the population
statistics of all batch normalization layers. By measuring and comparing the increase
after re-estimating BN statistics (ΔmIoU𝐵𝑁), it is observed that in class-incremental
learning re-estimating BN statistics leads to a less significant increase compared to
the domain-incremental setting.

Class-incremental Domain-IncrementalMethod mIoU𝐵𝑁 ΔmIoU𝐵𝑁 mIoU𝐵𝑁 ΔmIoU𝐵𝑁
Fine-Tuning 4.6 0.0 47.2 10.1
EWC 35.6 2.1 54.1 14.9
Replay 41.2 0.3 56.8 -1.4
LwF 42.1 -1.4 47.0 6.8

Limitations

BN re-estimation can only give ameasure of which batch normalization layers
are affected by the changing BN population statistics, but provides no insights
into the direct effects of the change. However, it can be vital to understand
how a continual learning algorithm is affecting the BN statistics, e.g., how
replay stabilizes population statistics using the replay buffer. Finally, it should
be noted that this method is not applicable to the recent vision transformer
architectures [Dos21], as they use layer normalization [Ba16] instead of batch
normalization.

5.4.2 Partial Re-Training Accuracy (PRA)

Murata et al. [Mur20] measure representational forgetting of a given layer 𝑙𝑘,𝑖
with partial re-train accuracy (PRA), which is the improvement in accuracy
that can be achieved, when re-initializing and re-training themodel on all data
while the parameters of the given layer 𝑙𝑘,𝑖 are frozen. After that, they re-order
the sequence in which the tasks are learned to prevent the effect the task order
has on the learned representations. Using this strategy, they demonstrate that
a significant amount of forgetting is already occurring at shallow layers.
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Limitations

The validity of this method is questionable because the majority of the net-
work is re-trained on the joint data of the model, so the activation drift of
intermediate layers can potentially be rectified by following layers as they
are trained on the joint task. E.g., when freezing only the very first block of a
network in the domain-incremental setting, the remaining layers will amend
the activation drift of the first layer, although the very first layers are known
to be causes of severe forgetting in this setting. So while the aforementioned
approaches, which directly compare the activations, are not able to distin-
guish whether the model has learned a new representation for old data or if
the previous representation has been overwritten, PRA can falsely lead to the
conclusion that a new representation has been learned due to re-training.

5.4.3 Decoder Re-Train Accuracy and Linear Probing

Decoder re-training, which the author proposed in [Kal22a] and linear prob-
ing [Dav22] aim to measure representational forgetting by calculating the dif-
ference in accuracy an optimal classifier layer achieves on an old task before
and after introducing a new task.  Since the methods are similar, except that
decoder re-training is intended for semantic segmentation and linear probing
for classification, this section only considers decoder re-training. To measure
the decoder re-training accuracy, the encoder of the model is frozen while
the decoder is re-trained on all classes with the same training configuration
and subsequently evaluated on all tasks. The performance of the re-trained
model is denoted as mIoU𝑅 and the gain as ΔmIoU𝑅 . The mIoU𝑅 shows how
useful the learned representations are to discriminate between classes of dif-
ferent tasks. Linear probing and decoder re-training have been used to show
that continual learning methods that seem ineffective in the class-incremental
setting, such as EWC, are in fact able to stabilize internal representations and
that only a few final layers are the main contributors to deteriorating perfor-
mance on the old task [Kal22a, Dav22]. 
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Limitations

Decoder re-train accuracy and linear probing are aimed at differentiating be-
tween representational forgetting in the encoder and forgetting in the de-
coder. They indicate how discriminative the features of the backbone are in
distinguishing all observed classes and thereby give a quantitative measure on
the effect of inter-task confusion. However, they cannot give further insights
into which layers are affected. Furthermore, it is not as useful in the domain-
incremental setting because forgetting is mainly affecting the early layers.

5.5 Weight Drift

Instead of measuring activation drift, it is also possible to measure the
changes of the model from 𝑓0 to 𝑓1 simply by calculating the ℓ2-distance of
the model’s normalized parameters from 𝜃0/‖𝜃0‖2 to 𝜃1/‖𝜃1‖2, as it was done
by Neyshabur et al. [Ney20] to measure the distance between initializations
of pre-trained and randomly initialized models. Furthermore, to see how
individual layers are affected by weight drift, the distance between specific
convolutional layers or batch normalization layers is also measured.

Results

Table 5.3 displays the ℓ2-distance for all the models’ parameters for the class-
and domain-incremental setting. It is noticeable that the models trained with
EWC stay the closest to 𝜃0, which is intuitive as EWC explicitly constrains
updates on existing parameters. Although replay and LwF are least affected
by catastrophic forgetting, they have the largest ℓ2-distance between the
model’s weights in the class-incremental setting. This clearly indicates that
ℓ2-distance of the weights does not have a meaningful direct connection
to catastrophic forgetting.
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Table 5.3: Weight distance calculated as ℓ2-distance of the models parameters 𝜃0 to 𝜃1. The dis-
tance between the models’ parameters is lowest for EWC as it explicitly constraints
updates on existing parameters. While replay performs the best at mitigating catas-
trophic forgetting, the weight distance is the biggest for replay. This indicates that
weight distance does not always correlate with catastrophic forgetting.

Method Class-Incremental Domain-Incremental
ℓ2 (

𝜃1
‖𝜃1‖2

− 𝜃0
‖𝜃0‖2

) ℓ2 (
𝜃1

‖𝜃1‖2
− 𝜃0

‖𝜃0‖2
)

Fine-Tuning 0.11 0.2
EWC [Kir15] 0.03 0.16
Replay 0.14 0.25
LwF 0.31 0.23

Additionally, Fig. 5.6 compares the layer-wise distances of the convolutional
layers. Interestingly, the model trained with EWC is affected by very minor
changes to the models’ weights up until later layers in the decoder of the net-
work, which coincides with the layers, in which a significant drop in similar-
ity was observed when using layer stitching. Moreover, the different methods
follow a similar pattern of spikes in the Fig. 5.6, though with a different scale.
In the case of LwF, that could be potentially explained by the use of knowl-
edge distillation in the loss function, as the temperature value 𝜏 in Eq. (3.2)
changes the scale of the output of the network and therefore also the weights.
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Figure 5.6: The distance of 𝑓1 and 𝑓0 measured by ℓ2-distance of the weights of the convolu-
tional layer in the class-incremental setting (top) and the running mean of the batch
normalization layers in the domain-incremental setting.
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Finally, Fig. 5.6 also displays the ℓ2-distance of the population mean of the
batch normalization layers in Fig. 5.6 for the domain-incremental setting. It
is apparent that the very first batch normalization layer undergoes the most
drastic changes. After this initial peak, only smaller peaks at very specific
layers are observed that coincide with the downsampler block in the encoder
and an upsampler block in the encoder.

Limitations

The major difference between measuring weight drift instead of activation
drift is that weight drift does not take the training data into account. However,
the results clearly highlight that the distance of the parameters of the model
is not indicative of the performance drop on the previous task.  Therefore, it is
concluded that it can be used to interpret how the weights have changed, but
it should not be understood as a direct measure for catastrophic forgetting.

5.6 Conclusion

This chapter evaluated and discussed tools to assess the effects of catastrophic
forgetting. A series of class- and domain-incremental experiments showcased
the strengths and weaknesses of these tools. It was found that these ap-
proaches work best in combination since they complement each other and
capture different effects. For example, measuring activation drift with CKA
or layer stitching is helpful to locate forgetting, but BN re-estimation and de-
coder re-training are required to identify the causes. Furthermore, the results
illustrate that evaluating weight distances does not correlate with the drop
in performance of previous tasks and should not be interpreted as a measure
of catastrophic forgetting. Finally, measures of activation drift such as layer
stitching and CKA are useful in both domain- and class-incremental settings,
whereas BN re-estimation is more insightful in domain-incremental learning
and Decoder re-training in class-incremental learning. The summary of the
results in Tab. 5.4 again highlights that catastrophic forgetting is nuanced as
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many effects contribute to forgetting in a different manner, so that there is
no single measure that can show the full picture.

Table 5.4: Comparison of methods to measure catastrophic forgetting. As CKA and layer match-
ing measure similarity of activations for every layer, only the minimum values are
reported. Values in bold indicate the method that supposedly is least affected by for-
getting according to the measure used.

Class-Incremental Domain-Incremental
Layer Weight Layer WeightMethod Forgetting CKA Stitching Distance ΔmIoU𝐵𝑁 Forgetting CKA Stitching Distance ΔmIoU𝐵𝑁

Fine-Tuning 51.3 51.7 15.9 0.11 0.0 31.3 80.4 55.9 0.20 10.1
EWC 22.4 93.4 60.4 0.03 2.1 29.2 77.9 58.1 0.17 14.9
Replay 14.9 74.3 76.3 0.15 0.3 10.2 96.2 83.8 0.25 -1.4
LwF 12.4 86.3 87.0 0.32 -1.4 28.2 79.8 58.1 0.23 6.8

However, this analysis demonstrates that when these methods are used indi-
vidually, layer stitching provides themost meaningful and easily interpretable
results, as it: (1) takes the data distribution into account, (2) is robust towards
irrelevant activation changes compared to CKA and (3) gives an easily inter-
pretable measure for every layer. Therefore, layer stitching will be utilized as
a foundation in the following chapter of this thesis to gain a holistic overview
of the activation drift within the network and the remaining methods will be
applied to understand which specific effect is at play.
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6 Principles of Catastrophic
Forgetting in Continual Semantic
Segmentation

The findings presented in Ch. 4 for continual semantic segmentation suggest
that forgetting in class- and domain-incremental semantic segmentation may
have distinct underlying causes and consequences. Beyond that, the observed
patterns of forgetting in class-incremental semantic segmentation seem to dif-
fer from those reported in previous studies that addressed class-incremental
classification [Mas20, Hsu18]. This chapter analyzes how catastrophic forget-
ting affects a semantic segmentation model in class-incremental and domain-
incremental learning with the aim of gaining a deeper understanding of these
findings.
Therefore, Sec. 6.1 investigates the principles of catastrophic forgetting for
class-incremental semantic segmentation (CiSS), answering how the back-
ground class affects catastrophic forgetting, why knowledge distillation is
more effective in semantic segmentation and where the models’ represen-
tations are most affected by activation drift. To understand how the prin-
ciples of forgetting between domain- and class-incremental learning differ,
Sec. 6.2 discusses the causes and effects of catastrophic forgetting in domain-
incremental learning, answering how low-level feature reuse, batch normal-
ization and pre-training can affect domain-incremental learning. The final
section of the chapter illustrates the differences between catastrophic forget-
ting in class- and domain-incremental learning and discusses the implications
for continual learning. The presented results in this chapter are mainly based
on two of the author’s publications [Kal22a, Kal23c].
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6.1 Principles of Catastrophic Forgetting in
Class-Incremental Learning

When comparing the most successful approaches in class-incremental im-
age classification [Mas20] and CiSS, which were introduced in Sec. 3.2.1, it
is noticeable that contrary to classification in CiSS, most of the recent meth-
ods build on the idea of Learning without Forgetting (LwF) [Li18] and utilize
a knowledge distillation-based loss [Hin15]. The findings in Ch. 4 suggest
that knowledge distillation-based approaches even outperform replay-based
methods in CiSS. However, they require previously learned classes reappear
in future training images because otherwise they would still suffer from for-
getting, as the experiments in this section will further confirm. The two main
challenges in CiSS that have to be overcome are: (1) catastrophic forgetting of
old classes and (2) the semantic shift of the background class. Although exist-
ingmethods significantly reduce catastrophic forgetting and help to overcome
these challenges, there is limited understanding of how the drop in accuracy
manifests itself within the deep neural network.

The focus of this chapter is to identify the causes and effects of forgetting
that arise in the neural network in CiSS. Specifically, it aims at revealing how
activation drift, inter-task confusion and task-recency bias affect the perfor-
mance in CiSS and how existing approaches overcome these effects. There-
fore, Sec. 6.1.2 studies the impact of the semantic shift of the background class
on PascalVoc-2012 [Eve12] in three different task protocols with varying de-
grees of semantic shift of the background class, namely: overlapped, disjoint
and a novel full disjoint setup. Next, Sec. 6.1.3 analyzes the degree of activa-
tion drift in various layers by stitching themwith the previous task’s network,
as described in Sec. 5.3.1. Using layer stitching and the three task protocols,
it is revealed that the semantic shift of the background class is the main cause
of the catastrophic drop in performance in CiSS and that forgetting mainly
occurs in the decoder layers of the model, where discriminating features for
old classes of the encoder are assigned to new visually similar classes or to
the background class. However, at the same time, the re-appearance of pre-
vious classes in the background of subsequent training tasks also reduces the
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internal activation drift in the encoder. Furthermore, decoder retraining is uti-
lized to analyze the degree to which the decoder of the network contributes
to inter-task confusion. It is observed that methods that do not use any form
of replay fail to learn discriminating features for all classes. Specifically, the
model is not able to distinguish old classes from new classes that are visually
closely related, e.g., train and bus. Finally, the results are also extended to
varying CNN architectures to support the previous inferences.

6.1.1 Experimental Setup

The experiments in this chapter are conducted on the PascalVoc-2012 [Eve12]
dataset, which contains 20 object classes and one background class. The ex-
periment setup follows the established PascalVoc-15-5 split that is widely used
in CiSS [Dou21a, Mic19, Mic21, Cer20].  The PascalVOC-15-5 split is a two-
step incremental learning task that consists of learning 15 classes (1–15) in the
first step 𝑇0 and the remaining 5 classes (16–20) in the second step 𝑇1.  The
first two training setups follow the disjoint and overlapped settings proposed
by Cermelli et al. [Cer20].  In both settings, only the set of current classes 𝒮𝑘
is labeled, while the rest is labeled as background 𝑏.  However, in the disjoint
setting, the images of the current task 𝑇𝑘 only contain pixels of classes 𝒞𝑘 ,
meaning that images that contain pixels belonging to classes of future tasks
will be discarded in the training set of 𝑇𝑘 .  In the overlapped setting, pixels
can belong to any of the classes, but classes that do not belong to the current
training set 𝒮𝑘 will be labeled as background.
Finally, an additional full disjoint setting is proposed to examine the effect of
the semantic shift that the background class is subjected to in the disjoint and
overlapped settings. The full disjoint setting completely avoids the semantic
background shift, as each task only contains pixels belonging to the current
set of classes, so that classes from the other task will not appear in the back-
ground of the current training set. However, it should be emphasized that
this scenario is highly unlikely in practice because in semantic segmentation
classes would naturally reappear in subsequent tasks.
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Models

Similarly as in the previous chapters, ERFNet [Rom18] is used in the evalua-
tion. The reason is that the underlying effects of forgetting are similar to more
established models like DeepLabV3+ [Che18], but at the same time ERFNet is
more susceptible to forgetting due to its smaller size, which exaggerates the
effect of the causes of forgetting. The findings in this section are confirmed in
Sec. 6.1.6 with DeepLabV3+, U-Net [Ron15], BiSeNet V2 [Yu21] andHRNetV2-
W48 [Wan19]. The models in the following experiments are initialized with
the same randomly initialized weights for every method, as pre-training can
increase robustness to catastrophic forgetting [Gal21, Meh21].

Optimization Strategy

ERFNet is optimized with the SGD optimizer with a weight decay factor of
3 × 10−4, momentum of 0.9 and an initial learning rate of 0.07 for the first
task and 5 × 10−4 for the second task. The learning rate is divided by 2 if
the validation loss does not reduce for 8 consecutive epochs. The models are
trained for 100 epochs in each task, with a batch size of 16. After training
on the entire task sequence, the model is evaluated on the validation set of
PascalVoc2012. During training, the data is augmentedwith the augmentation
scheme proposed by Cermelli et al. [Cer20].¹

Methods Compared

In this evaluation, representative continual learning approaches from the
main categories are compared, including naive fine-tuning approaches,
representative regularization and replay methods. For prior regularization
methods, EWC [Kir15] and MAS [Alj18] are considered. For data regular-
ization methods, LwF [Li18] is used with the modification of Klingner et al.
[Kli20], in which the distillation loss is only applied to the parts of the image

¹ Detailed information about implementations, pre-training and the used augmentations can be
found in Appendix B.
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that are labeled as background. Incremental improvements of knowledge
distillation-based approaches [Dou21a, Cer20, Mic21, Mar21] are explicitly
left out, as this chapter focuses on evaluating the underlying causes of for-
getting. Finally, for replay 20 samples for each class are stored.  For every
experiment, the results also include an offline model, which is jointly trained
on all classes in one step. Further information regarding the implementation
details and selected hyperparameters can be found in Appendix B.

6.1.2 Semantic Background Shift and Class Confusion

This experiment examines the effect of semantic background shift on forget-
ting through a comparison of selected CiSS methods on the overlapped, dis-
joint, and full disjoint tasks. As these tasks have a varying degree of semantic
shift of the background class, this setup enables to measure the influence that
the semantic background shift has on catastrophic forgetting. The results are
displayed in Tab. 6.1.

Table 6.1: Results of semantic segmentation on Pascal-VOC 2012 in mIoU (%) on the overlapped,
disjoint and full disjoint settings. The models are evaluated after training on the com-
plete task sequences.

Overlapped Disjoint Full DisjointMethod 0–15 16–20 all 0–15 16–20 all 0 - 15 16 - 20 all
Fine-Tuning 4.5 22.2 8.8 4.6 23.0 9.0 5.1 16.3 7.8
MAS [Alj18] 24.1 10.8 21.0 30.6 12.9 26.4 35.6 12.9 30.2
EWC [Kir15] 23.8 11.8 21.0 28.1 10.1 23.8 35.2 10.9 29.4
Replay 41.3 31.5 39.0 42.2 29.1 39.1 48.2 28.8 43.6
LwF [Li18] 45.8 28.2 41.6 44.4 25.4 39.9 35.9 12.6 30.4
Offline 55.7 47.6 53.8 55.7 47.6 53.8 55.7 47.6 53.8

For the overlapped and disjoint tasks, it can be noted that only LwF and replay
effectively learn to discriminate between all classes. EWC and MAS effec-
tively mitigate the forgetting of old classes (0–15) compared to fine-tuning,
but they also inhibit the learning of new classes (16–20).  The reason for the
low mIoU for EWC and MAS on all classes can be inferred from the confusion
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matrix in Figs. 6.2b and 6.2c, in which EWC and MAS exhibit a strong bias
to the background class and a minor bias towards a few new classes, which
is also visible in the bias values of the final convolutional layer in Fig. 6.1.
LwF and replay notably reduce both biases. In the overlapped and disjoint set-
tings, LwF and replay achieve similar performance, as in this setting LwF can
effectively replay old classes by discovering them in the background of new
images. However, once these classes do not reappear in the background, as is
the case in the full disjoint task, LwF develops a strong bias towards selected
new classes. In contrast to this, replay benefits from the full disjoint setting as
the training is no longer affected by the semantic background shift. Similarly,
MAS and EWC also show significant improvement in this setting, as they ben-
efit from the fact that old classes do not appear as background in the new task,
thus not interfering with previously learned knowledge. This is especially
noticeable in the confusion matrices of the full disjoint setting in Figs. 6.2h
and 6.2i, in which the bias towards the background class is greatly reduced¹.

¹ The confusion matrices for the overlapped setting are displayed in Appendix A.
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Figure 6.1: The bias values of the final convolutional layer after training on the disjoint Pas-
calVoc-15-5 split show severe bias towards the most recent classes 15–20 and the
background class.

This demonstrates that the semantic shift of the background class is a signifi-
cant cause of forgetting for prior regularization methods like EWC and MAS
and that it has a noticeable effect on replay as well. The results also indi-
cate that knowledge distillation is the most effective method to combat this
semantic shift.

Finally, upon a closer look at the semantics of the false positives in the con-
fusion matrices, it is apparent that old classes that are falsely assigned to a
new class share semantic and visual properties. In this case, bus (6), car (7),
boat (5) are assigned to train (19), whereas cow (10) and horse (13) are classi-
fied as sheep (17). The remaining classes that do not share such a relationship
with the new classes are falsely classified as background. This confusion can
only be alleviated by either replay or LwF when old classes reappear in the
background in subsequent tasks.

91



6 Principles of Catastrophic Forgetting in Continual Semantic Segmentation

Disjoint
1 - 15 16 - 200

(a) Fine-Tuning

1 - 15 16 - 200

(b) MAS

1 - 15 16 - 200

(c) EWC
1 - 15 16 - 200

(d) LwF

1 - 15 16 - 200

(e) Replay

1 - 15 16 - 200

(f) MAS + UNCE
Full Disjoint

(g) Fine-Tuning

1 - 15 16 - 200

(h) MAS (i) EWC

(j) LwF (k) Replay (l) Offline

ID Name
0 background
1 aeroplane
2 bicycle
3 bird
4 boat
5 bottle
6 bus
7 car
8 cat
9 chair
10 cow
11 dining table
12 dog
13 horse
14 motorbike
15 person
16 potted plant
17 sheep
18 sofa
19 train
20 monitor

Figure 6.2: Confusion matrices after training on PascalVoc-15-5 disjoint. The confusion matrix
for (a) Fine-tuning shows a severe bias to the background class and the classes of
the most recent task (16–20). EWC [Kir15] and MAS [Alj18] decrease the bias in
exchange for worse accuracy on the most recent classes. Replay and LwF [Li18]
reduce the bias towards new classes and the background.
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6.1.3 Activation Drift in Class-Incremental Learning

To clarify which layers of the model contribute the most to the bias for the
background class and newly learned classes, the internal activation drift is
measured using layer stitching. Specifically, the activation drift for each layer
is measured between the model before and after learning Task 1, in order to
identify the layersmost affected by internal activation drift. The setupwithout
an additional stitching layer is used, in which the activations of themodel 𝑓1 at
the layer 𝑛 under examination are directly propagated to the subsequent layer
𝑛+1 in the model 𝑓0, resulting in the stitched network 𝑓𝑛1,0. For each stitched
network 𝑓𝑛1,0, Fig. 6.3 displays the mIoU relative to the initial performance on
the first task.

Figure 6.3: Activation drift between 𝑓1 to 𝑓0 measured by relative mIoU on the first task of
the networks stitched together at specific layers (horizontal axis). The layers of the
encoder are layer 0–15 (grey area), the decoder layers are 16-21 (white area). The
activations in the early layers of the encoder stay very stable for all methods, whereas
EWC, MAS and fine-tuning have a severe drift in activations in the decoder layers of
the network, which is clear evidence that forgetting is mostly affecting later layers
in the disjoint setting.
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First of all, it can be observed that the early layers of the network (layers
0–4) remain relatively stable across all methods, while later layers, particu-
larly those in the decoder, are more vulnerable to activation drift. This find-
ing aligns with prior work on image classification [Dav22, Ney20], indicating
that catastrophic forgetting in CiSS is predominantly observed in deeper lay-
ers of the network. Moreover, the analysis reveals that EWC and MAS are
effective at mitigating the impact of activation drift on deeper layers of the
encoder, with their performance dropping to approximately 90 % of the initial
mIoU on the disjoint task. In contrast, the stitched fine-tuning model suffers
a much steeper drop in performance, reaching only 30 % of the initial mIoU. 
This suggests that forgetting for EWC andMAS is less severe than accuracy in
Tab. 6.1 would reveal. The reason for this could be two-fold: Firstly, the bad
accuracy could be attributed to the classifier being biased towards new classes
(task-recency bias) or secondly, that the regularization methods fail to learn
meaningful features that help to discriminate between old and new classes
as they are never trained jointly. While a biased classifier is fixed more eas-
ily, inter-task confusion is a fundamental shortcoming of prior regularization
methods [Les20].

Another striking phenomenon is the severe change of activations at the third
decoder layer (layer 17) that fine-tuning, MAS and EWC exhibit on the disjoint
task. The predictions of the specific stitched networks 𝑓181,0 and 𝑓191,0 in Fig. 6.4,
show that 𝑓181,0 is able to correctly classify old classes (bike, person) as such,
but 𝑓181,0 assigns the background class to these regions. Therefore, it can be
concluded that the sudden activation change of MAS originates from the fact
that features that were evidence for old classes in 𝑓0 are now attributed as
evidence for the background class. This validates that the semantic shift of
the background class is predominantly affecting the later layers of the decoder
and that discriminating features for old classes are, in fact, not forgotten but
assigned to the background class. When completely avoiding the semantic
background shift in the full disjoint task, the activation drift for the fine-tuned
model is much more pronounced in the middle layers of the encoder (layer 8–
15), which implies that the re-appearance of old classes, even though they are
labeled as background, is mitigating the activation drift in the earlier layers
of the model.
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Input Ground Truth LwF MAS MAS 𝑓181,0 MAS 𝑓191,0 MAS+UNCE

bicycle bus car horse motorbike person sheep train

Figure 6.4: Visualizations of the segmentation maps for LwF, MAS and the resulting networks
of MAS 𝑓181,0 and 𝑓191,0. The predictions of 𝑓181,0 and 𝑓191,0 show that up until layer 18
the information for previously learned classes person and horse is still available, but
is assigned to the background in layer 18.

6.1.4 The Impact of Inter-task Confusion on the Encoder

As Sec. 6.1.3 demonstrated that the early layers of a model trained with a con-
tinual learningmethod do not suffer from severe activation drift, the following
experiment investigates how useful the learned features of the encoder of the
different methods are to discriminate between all classes. Therefore, decoder
retrain accuracy is measured by retraining only the decoder of the model on
all classes and subsequently evaluating the retrained model on the test set.
The first observation to be made when looking at the retraining accuracy in
Tab. 6.2, is that all methods improve after decoder retraining, though EWC,
MAS and fine-tuning show bigger improvements than LwF and replay. This
again confirms that forgetting in the encoder is not as severe for fine-tuning,
EWC and MAS as the accuracy indicates. Furthermore, it also verifies that
MAS and EWC are effectively preserving important features for old classes
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in the encoder, but that the biased decoder layer might wrongly attribute im-
portant features for old classes to the background class or new classes, which
leads to a severe amount of misclassifications.

Table 6.2: Decoder retraining results on Pascal-VOC, mIoU𝐼 and mIoU𝑅 denote the mIoU (%)
before and after retraining and Δ the discrepency between mIoU𝐼 and mIoU𝑅.

Overlapped Disjoint Full DisjointMethod mIoU𝐼 ↑ mIoU𝑅 ↑ Δ ↓ mIoU𝐼 ↑ mIoU𝑅 ↑ Δ ↓ mIoU𝐼 ↑ mIoU𝑅 ↑ Δ ↓
Fine-Tuning 8.8 28.0 19.2 9.0 27.9 18.9 7.8 22.0 14.2
MAS [Alj18] 21.0 34.3 13.3 26.4 36.2 9.8 30.2 37.3 7.1
EWC [Kir15] 21.0 34.3 13.3 23.8 35.1 11.3 29.4 36.9 7.5
LwF [Li18] 41.6 45.3 3.7 39.9 43.3 3.4 30.4 38.1 7.7
Replay 39.0 42.6 3.6 39.1 42.9 3.8 43.6 45.6 2.0
Offline 53.8 54.6 0.8 53.8 54.6 0.8 53.8 54.6 0.8

Still, as EWC, MAS and fine-tuning do not achieve a comparable mIoU as
LwF or replay after decoder retraining, it can be concluded that the learned
features of the encoder are less useful for discriminating between all classes.
Specifically, the aforementioned related classes bus (6), car (7), boat (5), train
(19), as well as cow (10), horse (13), sheep (17) cannot be effectively classified
after retraining, compare Fig. 6.5. This indicates that replay does not suffer
from inter-task confusion since old classes are taken into account when op-
timizing for new classes, leading to more discriminative features. The same
holds for LwF in the overlapped and disjoint setting, in which old classes are
effectively replayed by using soft-labels for old classes that are discovered in
the background.
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1 - 15 16 - 200

(a) MAS (b) MAS-Retrain (c) LwF-Retrain

Figure 6.5: Confusion matrices before (a) and after (b), (c) retraining the decoder on all classes
of PascalVoc2012.

6.1.5 Reducing Background Bias and Task Recency Bias

A simple method to reduce the recency bias in the classification layer that is
used in class-incremental classification is to calculate the cross entropy loss
(CE) only for classes of the current training set [Mas20]. This enforces that
errors are only back-propagated for probabilities that are related to the current
set of classes 𝒮𝑘 instead of all classes that were already observed 𝒞𝑘 :

ℒce(𝑦, ̂𝑦) = − 1
|𝐼| ∑𝑖∈𝐼

∑
𝑐∈𝒮𝑘

𝑦𝑖,𝑐 log ( ̂𝑦𝑖,𝑐) (6.1)

However, in the case of CiSS, this addition has proven to be less effective
than the standard cross-entropy loss [Dou21b]. Therefore, an unbiased cross
entropy loss (UNCE) is proposed by Cermelli et al. [Cer20], which accounts
for the uncertainty of the content of the background class. This is achieved
by comparing the pixels that are labeled as background with the probability
of having either an old class or the background predicted by the model:

ℒUNCE(𝑦, ̂𝑦) = − 1
|𝐼| ∑𝑖∈𝐼

∑
𝑐∈𝒞𝑘

𝑦𝑖,𝑐 log ( ̃𝑦𝑖,𝑐) (6.2)
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̃𝑦𝑖,𝑐 = {
∑𝑞∈𝒞𝑘−1

̂𝑦𝑖,𝑞 if 𝑐 = 𝑐𝑏
̂𝑦𝑖,𝑐 otherwise

(6.3)

The variable 𝑐𝑏 denotes the index of the background class in the class set of
𝒞𝑘 . In addition, weight normalization layers [Sal16] were also successfully
used in classification tasks to address the recency bias [Les21]. 

The results in Tab. 6.3 show the impact of UNCE and UNCE combined with
weight normalization to combat the recency and background bias in CiSS.
Overall, UNCE improves the accuracy for all approaches on the disjoint set-
ting. Specifically, the prior regularization methods (MAS and EWC) show
significantly higher accuracy compared to the basic cross-entropy loss. This
can be attributed to the fact that UNCE effectively mitigates the background
bias, as can be seen in the confusion matrix in Fig. 6.2f and the segmentation
maps in Fig. 6.4. In addition, the severe activation drift that is observed in
Fig. 6.3 between layers 18 and 19 for MAS completely vanishes with the use
of UNCE.Therefore, UNCE effectively resolves the confusion between the old
classes and the background class. This confirms the assumption that a major
cause of forgetting was in fact a bias of the classifier towards the background
and the new classes. However, the confusion matrices show that while the
background bias is severely reduced by using UNCE, the semantic confusion
of old and new classes is amplified.

In the full disjoint setting, the use of UNCE does not improve the performance
as much as it does in the disjoint setting. The reason is that in the full disjoint
setting the pixels of old classes do not re-occur and thus the de-biasing effect
of UNCE is decreased. Therefore, the content of the background class plays
an important role in mitigating forgetting.

Of the selected approaches, only replay benefits from the addition of the
weight normalization layer. Finally, it should be noted that EWC and MAS,
with the addition of UNCE, show competitive performance compared to the
remaining approaches and more recent approaches like MiB [Cer20], even
without the use of knowledge distillation or replay. However, it is likely that
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for longer task sequences and more classes, MiB will outperform prior regu-
larization methods, as they will not be able to learn discriminative features.

Table 6.3: Results on Pascal-15-5 in mIoU (%) on the disjoint and full disjoint settings with: cross-
entropy loss (CE), unbiased cross-entropy loss (UNCE) and UNCE combined with a
weight normalization (UNCE+WN). UNCE effectively reduces forgetting for all ap-
proaches, especially for EWC and MAS.

Disjoint Full Disjoint
CE UNCE UNCE+WN CE UNCE UNCE+WNMethod

0–15 16–20 all 0–15 16-20 all 0–15 16–20 all 0–15 16–20 all 0–15 16–20 all 0–15 16–20 all
Fine-Tuning 4.6 23.0 9.0 10.4 21.8 13.1 16.5 21.6 17.7 5.1 16.3 7.8 6.0 15.5 8.3 7.7 15.2 9.5
EWC [Kir15] 28.1 10.1 23.8 48.2 11.6 39.4 17.0 9.4 15.2 35.2 10.9 29.4 41.1 9.8 33.6 34.8 9.7 28.8
MAS [Alj18] 30.6 12.9 26.4 45.8 14.4 38.3 41.0 13.9 34.6 35.6 12.9 30.2 39.1 12.3 32.7 32.5 11.8 27.6
LwF [Li18] 44.4 25.4 39.9 45.3 22.9 40.0 46.6 19.7 40.2 35.9 12.6 30.4 38.0 13.8 32.2 38.8 13.3 32.8
Replay 42.2 29.1 39.1 47.2 31.4 43.5 48.1 31.9 44.3 48.2 28.8 43.6 47.7 28.0 43.0 48.8 28.5 44.0
MiB [Cer20] - - - 48.6 21.7 42.2 49.4 24.1 43.3 - - - 47.6 19.7 41.0 48.6 20.7 42.0

6.1.6 Effects of Different Architectures

Finally, the findings so far are confirmed on different CNN architectures,
namely DeepLabV3+, U-Net, HRNetV2-W48 and BiSeNet V2. These specific
architectures are chosen to verify whether even deeper models with more
parameters are affected by the same effects and, additionally, how models
that have multi-stage input for the decoder are affected in class-incremental
learning, such as U-Net. Similar to before, the models are evaluated on all
three settings: overlapped, disjoint and full disjoint. The models are trained
incrementally using fine-tuning, either with the basic cross-entropy or the
UNCE loss.

The results in Tab. 6.4 overall confirm the previous findings. Using the basic
CE loss leads to severe forgetting of classes 0–15, whereas introducing the
UNCE loss significantly reduces forgetting in the overlapped and disjoint
settings as classes reappear in the second task’s images. However, it is
striking that when using the CE loss, the results for bigger models, such
as DeepLabV3+ and HRNetV2-W48, are similar to the smaller ERFNet and
BiSeNet V2. Only when using the UNCE loss do the bigger models achieve
significantly better results. This occurs because themodels are severely biased
towards the background class and new classes, so that old classes are almost
never correctly identified. Though U-Net, which uses the same ResNet-50
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backbone as DeepLabV3+ in these experiments, is significantly more affected
by forgetting. This effect can be attributed to the fact that the U-Net decoder
receives input from multiple earlier stages of the network, so that during
training, early network layers are more susceptible to activation drift.

Indeed, the layer stitching plots in Fig. 6.6 demonstrate that, despite the fact
that DeepLabV3+ and U-Net use the same encoder, the early layers of the
encoder in U-Net are significantly more affected by activation drift than the
corresponding layers in DeepLabV3+. This suggests that the multi-stage in-
put exacerbates the effects of catastrophic forgetting by increasing activation
drift in earlier layers. The remaining layer stitching plots of HRNetV2-W48,
DeepLabV3+ and BiSeNet V2 confirm the findings for ERFNet. 
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(a) DeepLabV3+

(b) U-Net

(c) BiSeNet V2

(d) HRNetV2-W48

Figure 6.6: Activation drift for different architectures on Pascal-15-5 using fine-tuning with
cross-entropy (CE) and unbiased cross-entropy (UNCE). Other CNNs are affected
by the same sudden activation drift in layers close to the output layer, specifically
in the overlapped and disjoint setting. Models that have input from multiple encoder
stages to the decoder (b) and (c) show increased activation drift in early layers.
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Table 6.4: Results in mIoU (%) of fine-tuning for the overlapped, disjoint and full disjoint settings
using fine-tuning with cross-entropy (CE) and unbiased cross-entropy (UNCE).

Overlapped Disjoint Full Disjoint
CE UNCE CE UNCE CE UNCEArchitecture

0 - 15 16-20 all 0 - 15 16-20 all 0 - 15 16-20 all 0 - 15 16-20 all 0 - 15 16-20 all 0 - 15 16-20 all
ERFNet 4.6 23.0 9.0 10.4 21.8 13.1 5.1 16.3 7.8 6.0 15.5 8.3 5.1 16.3 7.8 6.0 15.5 8.3
DeepLabV3+ 4.6 25.8 9.6 34.2 24.8 32.0 4.7 26.4 9.8 32.0 25.6 30.5 5.6 19.1 8.8 14.1 18.8 15.3
U-Net 4.7 21.8 8.8 10.5 21.8 13.2 4.5 24.5 9.3 14.0 24.0 16.4 5.3 14.2 7.4 5.8 14.3 7.8
BiSeNet V2 4.5 23.5 9.0 25.7 23.3 25.1 4.5 24.3 9.3 21.5 23.2 21.9 5.3 16.7 8.0 8.1 17.2 10.3
HRNetV2-W48 4.5 25.1 9.4 35.0 23.5 32.3 4.6 24.7 9.4 27.1 22.1 25.9 5.4 15.7 7.8 12.0 17.4 13.3

6.1.7 The Role of the Background Class to Overcome
Forgetting

The prior observations show that in CiSS the semantic shift of the background
class is a major cause of a rapid drop in performance if not addressed correctly.
However, if the uncertainty of the content of the background class is taken
into account by either UNCE, knowledge distillation or both, the appearance
of old classes in the background can to some extent be used for replay. The
experiments in the full disjoint setting highlight that once classes do not re-
occur, these methods are less effective, whereas explicit replay of classes ben-
efits from avoiding the semantic shift.

The ranking of the methods of full disjoint setting in CiSS is also similar to
the ranking of the same methods for class-incremental image classification
(compare Tab. 6.5), indicating that the discrepancy in performance between
LwF and replay in image classification is due to the missing background class.
Looking at it the other way around, this could also mean that introducing
an out-of-set class for image classification could help to reduce forgetting in
the class-incremental setting without requiring explicit replay via stored sam-
ples, as the re-appearing classes in the out-of-set class play a similar role as
explicit replay.
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Table 6.5: Classification results on PascalVoc-15-5 in (%).

Full DisjointMethod 0 - 15 16 - 20 all
Fine-Tuning 13.6 27.6 17.1
MAS [Alj18] 32.0 27.8 31.0
EWC [Kir15] 27.2 25.4 26.8
Replay 39.6 32.7 37.9
LwF [Li18] 42.1 34.2 40.1
Offline 51.3 54.8 52.2

6.1.8 Conclusion

This section highlighted how catastrophic forgetting manifested itself in the
hidden representations of the network. It demonstrated that forgetting is con-
centrated at deeper layers in the decoder, where features that were evidence
for old classes are reassigned to the background class or to new, visually simi-
lar classes. The experiments with varying degrees of the semantic background
shift demonstrate that the background class causes severe forgetting but can
also be leveraged to reduce activation drift in the model by using knowledge
distillation or a loss that accounts for the uncertainty of the background class.
Finally, it was found that only methods that in some form rehearse old classes
during training of new classes can learn to correctly discriminate between all
classes after incremental training, as otherwise the model fails to learn to dis-
criminate between new and old classes that share similar visual features.

6.2 Principles of Catastrophic Forgetting in
Domain-Incremental Learning

The previous section examined the causes of forgetting in class-incremental
semantic segmentation and explored the impact of semantic shift of the back-
ground class on the model’s internal representations. It was found that catas-
trophic forgetting in class-incremental learning predominantly stems from a
pronounced activation drift in the later decoder layers of the network, while
the earlier layers remain relatively unaffected. These observations suggest
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that, during class increments, themodel primarily reassigns features that were
previously indicative of old classes to new classes or the background.

However, in the domain-incremental learning setting, the classes remain un-
changed while the input distribution undergoes a shift. As a result, it is antic-
ipated that forgetting in domain-incremental semantic segmentation would
primarily arise from activation drift in the earlier layers of the network. This
chapter aims to validate this assumption by examining how the internal rep-
resentations of semantic segmentation models are affected during domain-
incremental learning andwith that to identify the specific effects and causes of
catastrophic forgetting in domain-incremental semantic segmentation (DiSS).

Furthermore, because transfer learning has been shown to be more effective
when previously learned features are reused for the downstream task [Ney20],
it is hypothesized that reusing features can also mitigate catastrophic forget-
ting by preventing overwriting of previous features.  To test this hypothesis,
this section also investigates the impact of pre-training and various augmenta-
tion techniques that should facilitate more general features in the model, with
the goal to reduce the internal representation shift in themodel. Similarly, this
hypothesis indicates that if subsequent tasks are more visually similar to each
other, more features may be reused because they likely share similar features,
which in turn should reduce catastrophic forgetting. In order to investigate
this, the models will be evaluated in four parallel domain-incremental scenar-
ios in which they are adapted to varying adverse weather conditions.

6.2.1 Related Work

Recent work by Neyshabur et al. [Ney20] investigates the role of feature reuse
in transfer learning, in which they have shown that for a successful transfer,
feature reuse and low-level statistics of the data are important. They observe
that compared to randomly initialized models, pre-trained models are in the
same basins of the loss landscape and develop similar features in the early lay-
ers of the model, especially when the downstream task shares similar visual
features with the pre-training domain.  This work inspired the idea that fea-
ture reuse might also be vital to mitigate forgetting. Similarly, Mirzadeh et al.
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[Mir20] demonstrated that common regularization techniques, such as drop-
out and learning rate decay, lead to a reduction of catastrophic forgetting by
widening the current task’s local minima, which again links better generaliza-
tion capabilities to reduced forgetting. Concurrent work also highlights that
improved domain generalization can be achieved by utilizing a combination
of various augmentations that are used during training on a source domain
[Sch23a]. Furthermore, several works investigate the impact of pre-training
in continual learning, in which they empirically demonstrate that it reduces
forgetting by leading to wider local minima [Meh21] and that self-supervised
methods are even more data-efficient than supervised pre-training methods
[Gal21]. This section links the ideas of pre-training and improved generaliza-
tion to increased feature reuse and matching of low-level statistics.

6.2.2 Experimental Setup

The experiments in this section are all conducted in a domain-incremental
setting, which involves adapting from the Cityscapes (CS) [Cor16] dataset
to ACDC [Sak21], which is commonly used as a benchmark for unsupervised
domain adaptation in the automated driving domain for adverse weather con-
ditions. As previously stated, the CS dataset is an automotive semantic seg-
mentation dataset collected during daytime and dry weather conditions in
different German, Swiss and French cities. The ACDC dataset is collected
during different adverse weather conditions and divided into four different
subsets: Night, Rain, Fog and Snow.  ACDC and CS share the same 19 classes,
so the changes between the tasks are only based on the domain differences.
To study how features are reused or adapted in each adverse weather condi-
tion, four different scenarios are investigated, all starting with the same CS
model: CS → Night, CS → Rain, CS → Snow and CS → Fog. The setup is also
illustrated in Fig. 6.7.
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ACDCCityscapes

Country: Germany
Time: day
Weather: cloudy

Night

Rain

Fog

Snow

Figure 6.7: The four different domain-incremental setups all starting from a model trained on
Cityscapes and then are either adapted to Rain, Night, Fog or Snow subsets.

Models

In the following experiments, the widely adopted DeepLabV3+ [Che18] with
a ResNet-50 backbone is used, as DeepLabV3+ is a commonly used architec-
ture in domain adaptation. Similarly to Sec. 6.1, the findings in this section
are confirmed with different architecture in Sec. 6.2.9, because architectural
choices can have a significant impact on continual learning [Mir22b]. In the
majority of the experiments, the models are initialized with random weights
for training on the first task, as pre-training is suspected to increase robust-
ness to catastrophic forgetting [Gal21, Meh21] by enabling low-level feature
reuse, as Sec. 6.2.5 will demonstrate. 

Optimization Strategy

The models are optimized with SGD with momentum of 0.9, weight decay
of 3 × 10−3 and a batch size of 8. The learning rate is set according to a
polynomial learning rate schedule with power 0.9 and starts CS training with
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a 0.07 learning rate. The models are trained for 200 epochs on Cityscapes and
then fine-tuned for 150 epochs on ACDC. During optimization on ACDC the
optimizer starts with a reduced learning rate of 5 × 10−3.  The images are
cropped to 512 × 1024 and are randomly flipped and scaled during training.
Unless stated otherwise, no other augmentations are used. During testing,
the images are used without any scaling or cropping.¹

6.2.3 Activation Drift after Incremental Adaptation

To understand the extent of activation drift that occurs in CNN models when
naively adapting to different adverse weather conditions, DeepLabV3+ is first
trained on Cityscapes and subsequently fine-tuned individually on each of the
four ACDC subsets. The results are displayed in Tab. 6.6.

Table 6.6: Results on CS → ACDC in mIoU (%) for each subset of ACDC. While the zero-shot
performance for Night is the worst, after the fine-tuning to Night, it is least affected
by forgetting.

Task 1 Task 2
Task 2 mIoU𝐶𝑆 mIoU𝑇2 mIoU𝐶𝑆 mIoU𝑇2 forgetting
Rain 72.0 30.4 38.8 57.7 33.2
Night 72.0 10.5 45.9 43.6 26.1
Snow 72.0 23.1 42.2 62.3 29.8
Fog 72.0 33.4 44.0 69.0 28.0

As one would expect, the zero-shot performance on domains that are visually
more similar to Cityscapes, such as Fog and Rain, is significantly better than
for dissimilar domains such as Snow andNight, withNight, displaying the low-
est performance at only 10.4% mIoU0,1. This is explained by the obvious dif-
ferences between the domains, with the day-to-night shift and snow-covered
landscape representing a larger shift from Cityscapes than the wet environ-
ment or foggy conditions [Sak21]. However, after fine-tuning the models on

¹ Detailed information about implementations, pre-training and the used augmentations can be
found in Appendix C
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the adverse subsets, it can be observed that the better zero-shot performance
on Rain and Fog does not indicate less forgetting when compared to Snow and
Night.  Most strikingly, forgetting is the lowest after adapting to Night.

To understand the cause of this, it is necessary to determine how the individ-
ual models in these settings are affected by activation drift and what specific
layers are most affected. The activation drift is measured with layer stitch-
ing between the model before and after learning the second task. The setup
explained in Sec. 5.3.1 is utilized so that the activations of the layer 𝑛 under
examination 𝑓1 are directly propagated to the layer 𝑛 + 1 in 𝑓0. The resulting
network 𝑓𝑛1,0 is then evaluated on Cityscapes. The mIoU relative to the initial
performance on the first task is illustrated in Fig. 6.8.

Figure 6.8: Activation drift between models 𝑓1 to 𝑓0 measured by relative mIoU on the first
task of the models stitched together at specific layers (horizontal axis). The layers of
the encoder are marked in the gray area, the decoder layers in the white area. The
dashed grey lines indicate the start of a ResNet block. Layer-stitching reveals that
during domain-incremental learning, changes in low-level features are a major cause
of forgetting. With an improved training scheme, combining simple augmentations,
exchanging normalization layers and using pre-training, the model is optimized to
reuse low-level features during incremental learning, leading to significant reduction
of catastrophic forgetting.
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Remarkably, Fig. 6.8 shows that activation drift predominantly affects the first
few layers of the network, which differs from class-incremental learning set-
tings where early layers tend to remain stable, as it was also observed in
Sec. 6.1. Specifically, the low-level features of the models tuned to Fog and
Snow cannot be reused by the initial model, indicating significant activation
drift in the shallow layers of the network.

However, after this initial drop in relative mIoU, a substantial increase is no-
ticeable after the first ResNet block, suggesting that later features are indeed
reused by the Cityscapes model. At that point, it is likely that features are
more abstract and, consequently, more useful for the model trained on CS.
After the second ResNet block a gradual decline in relative mIoU until the
decoder layers is observed.

It is important to note that once the representations have shifted, subsequent
layers are unlikely to regain similarity, as their representations are based on
the output of the previous layer.  The changing image distribution is likely
responsible for the initial feature disparity observed.  Thus, the next section
analyzes the pixel-level image distribution in the respective domains.

6.2.4 Analysis of Image Statistics

To explain the significant representation changes observed in the early lay-
ers, the domains are first compared based on their corresponding pixel mean
and standard deviation for each HSV channel. The results are displayed in
Tab. 6.7. It is evident that there are substantial differences between the do-
mains, particularly with Rain, Snow, and Fog being noticeably brighter com-
pared to Cityscapes. These variations in brightness can contribute to shifts in
low-level features within the network.

Additionally, as the generalization ability of CNNs can be negatively affected
by the exploitation of mid- to high-frequency components in images [Wan20,
Abe21], the Fourier amplitude spectra in the frequency domain of the differ-
ent training tasks are also illustrated in Fig. 6.9. It is observed that the domains
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exhibit similarity in the low- tomid-frequency ranges, but Snow and Rain con-
tain significantly more high-frequency components. This discrepancy in the
frequency domain could potentially lead to overfitting on high-frequency fea-
tures when the model is trained on these domains, consequently amplifying
the catastrophic forgetting.

Figure 6.9: Fourier amplitude spectra of Cityscapes, augmented CS and the ACDC subsets. In
the frequency domain Cityscapes is much more similar to Night than to any other of
the ACDC subsets, specifically in the high-frequent components of the images. Blur
is efficiently removing high frequency components of the image.

Table 6.7: The mean and standard deviations for the HSV channels of each subset. There is a
severe color shift between the domains in overall brightness of the images.

Mean Standard DeviationDataset Hue Saturation Value Hue Saturation Value
Rain 86 32 110 62 35 78
Snow 104 19 132 55 21 62
Night 64 122 60 66 64 46
Fog 93 20 131 60 23 64
Cityscapes 59 49 83 18 22 49

110



6.2 Principles of Catastrophic Forgetting in Domain-Incremental Learning

6.2.5 Adjusting Low-Level Features

Prior studies have highlighted the importance of low-level feature reuse for
successful transfer learning [Ney20] and demonstrated that pre-training can
mitigate forgetting [Gal21, Meh21]. The following series of experiments
demonstrates that low-level feature reuse not only facilitates knowledge
transfer to subsequent tasks but also plays a critical role in preventing
catastrophic forgetting.

To validate this claim, the model 𝑓0 is initialized with various pre-training
and augmentation protocols on Cityscapes that should facilitate more gener-
alized features, with the expectation that those features will be reused when
the model is adapted to the different ACDC subsets, leading to reduced acti-
vation drift and decreased catastrophic forgetting. It should be noted that the
model is fine-tuned on the ACDC subsets without augmentations or contin-
ual learning algorithms.

To examine how augmentations and pre-training impact the model’s feature
reuse and reduce forgetting, they are examined separately. For studying the
impact of different pre-training strategies, the ResNet-50 model is initial-
ized with weights trained on ImageNet either fully-supervised or using the
self-supervised learning (SSL) methods DINO [Car21], MoCo v3 [Che21a],
SwAV [Car21] and BarlowTwins [Zbo21]. For the augmentation experiments,
the following strategies are employed:

• Using AutoAlbument (AutoAlbum) [Bus20], to learn an image augmen-
tation policy from the CS dataset using Faster AutoAugment [Hat20].

• Learning color-invariant features by intensive color jittering and ran-
domly rearranging input image channels. This combination is denoted
as Distortion (Distort).

• Learning features tuned for mid- to low-frequencies by Gaussian blur-
ring or adding Gaussian noise to remove high-frequency information.
Changes to the spectrum are displayed in Fig. 6.9.

Finally, the experiments also include an offline pre-trained model that is
trained jointly on the CS and ACDC subsets and then fine-tuned on the
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target task.  Offline pre-training allows to establish an upper bound on
feature reuse, as the model should have learned features that are the joint
optimum for both tasks.

Table 6.8: Results on CS → ACDC in mIoU (%) for each subset of ACDC: Night, Rain, Snow and
Fog using different pre-training and augmentation strategies (Augment.). While pre-
training significantly improves learning accuracy, it does not improve zero-shot per-
formance, but still gives moderate improvements in reducing forgetting. Augmen-
tations lead to slightly improved performance on the target set, improved zero-shot
performance and significantly reduced forgetting for all weather conditions.

Cityscapes Night Rain Fog Snow
Test Zero Test Zero Test Zero Test Zero TestMethod
mIoU Shot mIoU forg. Shot mIoU forg. Shot mIoU forg. Shot mIoU forg.

FT 72.0 10.5 43.6 26.1 30.4 57.7 33.2 33.4 69.0 28.0 23.1 62.3 33.2
AutoAlb. 72.2 24.2 47.3 15.1 42.8 59.4 10.7 50.1 68.2 14.7 37.2 63.8 10.7
Distort 71.7 19.8 46.5 16.2 38.9 60.9 19.0 46.5 68.3 15.2 32.8 62.3 19.0
Gaus 69.1 8.1 46.3 23.0 26.9 60.0 26.7 26.9 65.4 28.3 15.8 64.7 26.5Au

gm
en

t.

Noise 69.8 9.6 46.7 21.3 27.8 60.6 25.2 27.5 69.3 30.2 21.3 63.2 30.2
ImageNet 73.9 6.3 47.5 19.1 27.3 60.9 22.5 21.8 68.8 23.8 25.8 66.2 28.8
MOCO 75.2 14.0 48.3 17.3 32.6 63.5 26.8 41.9 72.3 22.3 30.3 66.3 33.8
DINO 75.0 11.6 49.7 18.7 28.2 64.4 23.4 35.2 72.4 19.6 27.3 67.0 27.1
BarlowT. 73.9 14.3 47.3 17.1 34.8 65.7 22.5 41.6 71.4 14.4 31.8 65.4 22.0
SwAV 76.4 15.8 48.1 17.8 31.0 62.4 24.5 40.9 71.7 32.8 28.0 66.4 27.8

Pr
e-

Tr
ai
ni
ng

Offline - 46.1 47.4 3.2 59.0 59.1 0.5 67.5 66.9 3.2 62.4 62.9 3.3

The results displayed in Tab. 6.8 suggest that both pre-training and augmen-
tations during CS training can lead to better transfer to subsequent tasks and
reduced forgetting on CS. However, while pre-training improves transfer to
new tasks, it only moderately enhances zero-shot capabilities compared to
the model without pre-training. On the other hand, Distortion and AutoAl-
bum enhance zero-shot performance but exhibit slightly worse performance
on the ACDC tasks compared to the pre-trained models. This finding indi-
cates that better zero-shot performance does not always translate to better
transfer performance.

Nevertheless, these augmentations prove to be the most effective in mitigat-
ing forgetting for all tasks. Augmentations that focus on removing high-
frequency components are less effective in reducing forgetting or, in the case
of Fog, even lead to a further decrease in mIoU on the previous task. It should
be noted that for the domains Rain and Snow, which contain more high-
frequency components than CS, the addition of noise and blurring is more
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effective than for Fog and Night.
So far, the results indicate two things: (1) pre-trained features are less suscep-
tible to forgetting and lead to a better transfer to future tasks, (2) augmenta-
tions significantly improve generalization and produce more general features
in the early layers.

Figure 6.10: The influence of pre-training on the activation drift between 𝑓1 to 𝑓0 measured
with layer stitching at specific layers (horizontal axis). The dashed grey lines in-
dicate the start of a ResNet block. The activations up until the first ResNet block
undergo drastic changes. After the first block the activations can again be reused
by 𝑓0 leading to an mIoU increase. However, throughout the remaining encoder
layers of the network the activations of 𝑓1 further deviate from 𝑓0.
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To understand the effect on the internal representations, the layer stitching
plots in Figs. 6.10 and 6.11 display the activation drift that the models are
subjected to. The pre-trained models, displayed in Fig. 6.10, have a reduced
initial drop in similarity at the first layer than randomly initialized models
(fine-tuning). Furthermore, the similarity of activations in intermediate layers
also remains notably higher compared to fine-tuning. Interestingly, even the
offline pre-trained model experiences a noticeable drop in similarity at the
first layer for Snow and Fog, as well as a moderate drop for Rain and Fog. 
Later experiments will confirm that this is largely due to the biased population
mean and standard deviation of the BN layers.
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Figure 6.11: The influence of augmentations on the activation drift between 𝑓1 to 𝑓0 measured
with layer stitching at specific layers (horizontal axis). The dashed grey lines in-
dicate the start of a ResNet block. The activations up until the first ResNet block
undergo drastic changes. After the first block the activations can again be reused
by 𝑓0 leading to an mIoU increase. However, throughout the remaining encoder
layers of the network the activations of 𝑓1 further deviate from 𝑓0.

Most notably, the models trained with color augmentation during training do
not encounter this initial drop in similarity, despite undergoing the same op-
timization process for the second task as the offline and pre-trained models,
which can be seen in Fig. 6.11. The fact that this does not occur indicates
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that when training with augmentations, the first convolutional layers extract
features that are more domain-invariant than the features of the pre-trained
models. The domain-invariant features that the models trained with augmen-
tation extract will also reduce the bias in the population statistics of the fol-
lowing batch normalization layer to the most recent task, which is often a
cause of catastrophic forgetting [Lom20]. This is the most likely explanation
for the improved robustness towards catastrophic forgetting and already indi-
cates that more general features in the early layers will reduce the activation
drift in the network and consequently reduce forgetting.

6.2.6 Impact of Batch Normalization on Forgetting

The results in Sec. 6.2.5 suggest that the changing BN population statistics
are a major cause of early layer representation changes. To verify this, the
BN layer population statistics are re-estimated on the combined dataset of CS
and the specific ACDC subset without changing any parameters, using the
BN re-estimation proposed in Sec. 5.4.1. Afterwards, the updated model is
evaluated on the CS dataset and the performance of the re-estimated model
is reported as mIoU𝐵𝑁 and the change in mIoU as ΔmIoU𝐵𝑁 . The results are
displayed in Tab. 6.9.

Table 6.9: Performance in mIoU (%) on CS of the model 𝑓1 after re-estimating all BN layer pop-
ulation statistics. FT is most affected by changing population statistics, while models
trained with augmentation are least affected.

Night Rain Fog SnowMethod mIoU𝑅 ↑ ΔmIoU mIoU𝐵𝑁 ↑ ΔmIoU𝐵𝑁 mIoU𝐵𝑁 ↑ ΔmIoU𝐵𝑁 mIoU𝐵𝑁 ↑ ΔmIoU𝐵𝑁
FT 58.6 12.7 58.2 19.4 49.7 5.8 51.3 9.1
AutoAlb. 59.8 2.7 62.0 0.5 54.4 -3.1 53.9 -2.1
Distort 59.2 3.7 59.1 6.5 52.0 -4.5 54.0 0.0
ImageNet 61.7 7.4 59.6 8.1 51.7 2.1 54.7 9.7
MOCO 63.5 5.6 62.5 14.0 55.1 2.2 57.4 16,0
DINO 64.0 7.7 63.8 12.2 57.8 2.4 61.9 14.0
BarlowT 65.4 8.6 65.2 13.9 60.6 8.7 59.4 0.0
Img+Dis 62.5 4.3 63.0 -0.6 55.3 -4.4 59.0 0.3
Offline 68.3 -0.2 70.3 -0.8 68.8 -0.4 69.2 0.4
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The results demonstrate that most methods benefit significantly from re-
estimating population statistics, with the fine-tuning (FT) model benefiting
the most. Furthermore, it is observed that pre-trained models improve only
moderately compared to FT, meaning that they are less influenced by biased
population statistics. Interestingly, models trained with augmentations show
only slight improvement after BN re-estimation, and even exhibit a decrease
in the CS → Fog setting. The fact that they are much less affected by the
biased population statistics of the BN layers reinforces the claim that they
learn domain-invariant features in the early layers. This effect is likely
caused by an invariance to low-level properties of the images such as hue,
saturation and brightness that the first CNN layer of the models trained with
augmentations has to learn in order to cope with the augmentation scheme.
Consequently, the extracted features become invariant to these properties,
causing subsequent batch normalization layers to be less affected by the
distribution shift.
However, the fact that only re-estimating batch normalization layers without
changing the initial layers leads to such a significant improvement for the
remaining methods demonstrates that the adjusted population statistics can
normalize the variance between the domains.

To study which batch normalization layer is most affected by the changing
population statistics, the BN statistics are re-estimated for one layer at a time. 
Figure 6.12 reveals that the first batch normalization layer has the greatest
impact on forgetting and that the last BN layer in the first block of each stage
(e.g. layer2.0.downsample.1) has a comparable impact when the remaining
batch normalization layers are not adjusted.  These specific layers coincide
with blocks that were identified as critical layers by Zhang et al. [Zha19b].
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Figure 6.12: Change in mIoU on the first task after re-estimation of the population statistics of
specific BN layers (horizontal axis). Re-estimation mostly affects the first BN layer
and the last BN layers in each block’s first layer.

Overall, this means that batch normalization is a major contributor to forget-
ting in the domain-incremental setting, but forgetting is also precipitated by
low-level features that are tuned to their specific domain, which lead to a ma-
jor change in population statistics in the batch normalization layers. These
findings are validated by exchanging all batch normalization layers with con-
tinual normalization (CN) layers [Pha22]. The layer-stitching plots in Fig. 6.13
and the results in Tab. 6.10 confirm that CN greatly reduces forgetting on
CS, but the initial discrepancy in low-level features remains similar as for
the models with batch normalization in the CS → Fog setting. However, due
to the combination of group and batch normalization the changing low-level
features are normalized across the channel dimensions before affecting the
population statistics of batch normalization.

118



6.2 Principles of Catastrophic Forgetting in Domain-Incremental Learning

Figure 6.13: Comparing the activation drift between models trained with batch normalization
and continual normalization on Night and Fog. CN effectively reduces forgetting
by mitigating the biased population in statistics in early BN layers.

Table 6.10: Results on CS → ACDC in mIoU (%) with BN and CN. By reducing the biased popu-
lation statistics in early BN layers, CN effectively reduces forgetting.

Normalization
CS Night Fog
Test Zero Test Zero Test
mIoU Shot mIoU forgetting Shot mIoU forgetting

BN 72.0 10.5 43.6 26.1 33.4 69.0 28.0
CN 71.2 10.3 44.2 21.2 34.4 67.1 19.1

6.2.7 Layer Freezing Experiments

Previous experiments have shown that a major cause of forgetting is the rep-
resentation shift in the early layers of the model. So the question arises: what
happens if the early layers of the models are simply frozen and the population
statistics are fixed during training on the ACDC subsets? Therefore, in a set
of experiments, an increasing number of layers are frozen during training on
the Night and Rain subsets, starting from the very first layer. 
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Table 6.11: Performance and forgetting in mIoU (%) on CS and the ACDC subsets Night and
Rain, when the early layers of the models are frozen during fine-tuning to the new
task.

Night Rain
Frozen Cityscapes Night Cityscapes RainModel
until mIoU mIoU Forgetting mIoU mIoU Forgetting
— 45.9 43.6 26.1 38.8 57.8 33.2
1 43.6 44.5 28.4 38.5 57.5 33.5
5 47.7 42.7 24.3 42.9 56.2 29.1
10 48.9 39.0 23.1 50.4 52.6 21.6D

ee
p-

La
bV

3+

15 53.1 32.5 18.9 59.1 47.0 12.9
— 37.1 41.7 31.3 31.9 53.7 36.5
1 38.8 41.3 29.6 28.6 54.6 39.8
5 36.8 37.7 31.6 26.3 52.9 42.1ER

FN
et

10 44.9 36.6 23.5 49.6 48.8 18.8

The results in Tab. 6.11 show that freezing the first few layers of the encoder
has only a minor effect on reducing forgetting or inhibiting learning on the
new task. Only when freezing a larger number of layers in the encoder, the
model is less affected by forgetting, but in turn it is also inhibited from adapt-
ing to the new task.

The reason why the effect is not as prominent for early layers can be seen in
the layer stitching plots in Fig. 6.14. The representational shift of the initial
layers is shifted to specific later layers, where the similarity drops down to the
level of the non-frozen model. The layers where this representation shift oc-
curs coincide with the layers that were most affected by the BN re-estimation.
These results indicate that the low-level feature change cannot be addressed
by freezing early layers, as it will inhibit learning the new task and shift the
activation drift to later layers.
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Figure 6.14: Activation drift between 𝑓1 to 𝑓0 measured by relative mIoU on the first task of
the models stitched together at specific layers (horizontal axis). During training on
Night the layers of ERFNet and DeepLabV3+ are frozen starting from the indicated
blocks. The results demonstrate that freezing layers during training on the new task
shifts the initial representation shift to later layers.

6.2.8 Combining the Findings

Previous experiments are repeated while making incremental changes to the
training process in CS by sequentially adding pre-training with DINO, then
AutoAlbum and replacing BN with CN layers. The results in Tab. 6.12 demon-
strate that these changes complement each other as they dramatically reduce
forgetting on CS. This is evident when comparing the layer stitching plots
in Fig. 6.15, which show that pre-training with DINO alone increases feature
reuse only after layer1.0 compared to fine-tuning. However, when combined
with augmentations and CN, the representation drift before layer1.0 is signif-
icantly reduced as well, leading to a significant reduction of activation drift
throughout the entire model. This indicates that pre-training and training
with augmentations enable feature reuse at different layers of the network
depending on the task at hand. Specifically, augmentations seem to primarily
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reduce activation drift in the first layer that is known to extract low-level fea-
tures such as edges, corners and colors, whereas pre-trainingmitigates activa-
tion drift in intermediate layers that extract more abstract features, which po-
tentially correspond to more complex patterns or object parts [Ola17].  There-
fore, when combining pre-training, CN and augmentation, feature reuse is in-
creased in all domains, reducing forgetting without any additional continual
learning algorithm, which is demonstrated in Fig. 6.8.

Table 6.12: Forgetting and Learning accuracy on CS → ACDC with incremental additions that
increase the feature reuse, significantly reduces forgetting.

Night Rain Fog Snow
lrn. lrn. lrn. lrn.Method
acc. forg. acc. forg. acc. forg. acc. forg.

FT 57.8 26.1 64.9 33.2 70.5 28.0 67.2 29.8
+ DINO 62.3 18.7 69.7 23.4 73.7 19.6 71.0 27.1
+ AutoAlb. 62.2 13.5 71.2 8.2 73.9 11.7 71.2 13.1
+ CN 61.3 9.1 71.0 8.0 75.4 7.3 70.9 10.5

Figure 6.15: Comparison of the activation drift between models trained on Night and Fog with
sequentially adding pre-training with DINO, AutoAlb. and CN.
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6.2.9 Ablation Studies

Comparison to Continual Learning Algorithms

So far, no explicit continual learning strategies like regularization or replay
have been used. Therefore, Tab. 6.13 compares the proposed training strategy
to replay and EWC and how they perform when combined with these ap-
proaches. Interestingly, achieving low-level feature reuse outperforms regu-
larization methods even when using the same initialization with DINO. How-
ever, the proposed training regime is outperformed by naive replay. While
EWC significantly improves when combined with CN and AutoAlbum, re-
play does not benefit from these adjustments. For replay only pre-training
leads to a significant increase in learning accuracy and a minor reduction in
forgetting. A likely explanation is that the model trained with replay is able
to learn domain-invariant features due to the batch construction during re-
play, in which half of the mini-batch consists of replay samples from previ-
ous tasks. This would also explain why replay has been shown to be sample
efficient in Ch. 4.

Table 6.13: Forgetting and learning accuracy on Night and Rain with EWC and replay. The pro-
posed training scheme outperforms EWC on this benchmark and can be added to
existing CL methods to improve learning accuracy and reduce forgetting.

Night Rain
lrn. lrn.Method
acc. forg. acc. forg.

EWC 52.8 18.0 61.4 21.2
+ DINO 58.1 10.0 66.0 11.3
+ AutoAlb + CN 58.5 4.8 69.1 4.9
Replay 58.2 5.6 64.2 2.9
+ DINO 62.4 4.2 70.8 2.1
+ AutoAlb + CN 61.8 4.1 69.9 3.8
DINO + AutoAlb + CN 62.1 7.9 71.0 8.0

Effect of Different Architectures

In order to verify if the obtained results can be applied to other architec-
tures, the previous experiments are repeated with SegFormer-B2 [Xie21] and
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ERFNet [Rom18], which are pre-trained on ImageNet. SegFormer-B2was cho-
sen as it has a similar amount of parameters as DeepLabV3+, but is a recently
introduced vision transformer that utilizes self-attention layers instead of con-
volutional layers. The much smaller ERFNet is chosen as it is known to be
more susceptible to forgetting due to its size, as it was confirmed in initial
experiments in Sec. 4.2.

Table 6.14: Forgetting and learning accuracy of different SegFormer-B2, DeepLabV3+ and
ERFNet trained on CS → ACDC in mIoU (%) for each subset of ACDC.

Night Rain Fog Snow
lrn. lrn. lrn. lrn.Model
acc. forg. acc. forg. acc. forg. acc. forg.

SegFormer-B2 [Xie21] 59.4 16.2 69.1 11.1 71.6 11.8 70.4 14.3
DeepLabV3+ [Che18] 60.5 19.1 67.4 22.5 71.1 23.8 70.0 28.8
ERFNet [Rom18] 56.6 29.0 63.2 36.2 67.5 30.1 64.5 59.5

The results in Tab. 6.14 show that transformer-based SegFormer-B2 is much
less affected by catastrophic forgetting than its CNN counterparts, even with-
out any augmentations. A likely explanation is that the different architecture
of SegFormer-B2 enables the model to learn more general features, which are
more robust to distribution changes, even without any changes to the training
scheme. This would also explain why SegFormer-B2 does not improve as sig-
nificantly as DeepLabV3+ with the addition of pixel-level augmentations, as
shown Tab. 6.15. However, it is unclear whether this is an inherent feature of
the self-attention mechanism, a result of training recipes [Bai21], or a result
of architectural choices such as using layer instead of batch normalization.

Table 6.15: Forgetting and learning accuracy in mIoU (%) of SegFormer-B2 with different aug-
mentations. SegFormer-B2 improves less than DeepLabV3+ + using augmentations,
suggesting it is less affected by color-dependent features.

Night Rain Fog Snow
lrn. lrn. lrn. lrn.Augment.
acc. forg. acc. forg. acc. forg. acc. forg.

— 59.4 16.2 69.1 11.1 71.6 11.8 70.4 14.3
Distort. 59.6 14.0 68.8 9.6 72.6 10.1 70.3 10.9
AutoAlb. 59.7 14.2 68.3 8.5 72.2 7.9 70.8 10.5
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The experiments on the effect of pre-training and augmentation are also
repeated on several different CNN architectures, namely ERFNet [Rom18],
BiSeNet V2 [Yu21] and HRNetV2-W48 [Wan19]. The results are displayed
in Tabs. 6.16 to 6.18. Similar to before, the networks are selected as they
have very distinct architectures compared to DeepLabV3+, HRNetV2-W48
and BiSeNet V2 use multiple parallel branches, ERFNet has a significantly
lower number of parameters.

Overall, the results confirm observations made for DeepLabV3+, by which
augmentations and pre-training significantly reduce forgetting also for those
selected architectures. Specifically, the combination of pre-training and Au-
toAlbum leads to significant improvements for all models across all datasets.
However, ERFNet and BiSeNet V2 are much more affected by catastrophic
forgetting, most likely due to their much smaller size.

Besides this difference, the general observations remain similar, as Distortion
and AutoAlbum are the most effective methods to enforce effective feature
reuse and thus a reduction of forgetting. Moreover, ImageNet pre-training
again leads to higher mIoU on the target dataset but is not as effective at re-
ducing forgetting compared to the models trained with augmentation. The
only noticeable difference between the results of BiSeNet V2, ERFNet and
DeepLabV3+ is the worse performance on Snow, which is drastically worse
than the performance of the different subsets, although the same training
regime is used. These results, combined with the observation that SegFormer-
B2 is less affected by the domain shift, demonstrate that while the results
are applicable to different CNN architectures using batch normalization, the
severity of catastrophic forgetting significantly varies between architectures,
as previous work has indicated [Mir22b].  Chapter 7 analyzes these findings
in more depth.
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Table 6.16: Results of ERFNet [Rom18] on CS → ACDC in mIoU (%) for each subset of ACDC
using different pre-training and augmentations strategies (Augment.). Compared
to DeepLabV3+, ERFNet is much more affected by forgetting, specifically on Snow.
However, augmentations and pre-training show the same effects as for the previous
experiments.

ERFNet
Cityscapes Night Rain Fog Snow

Test Zero Test Zero Test Zero Test Zero TestMethod
mIoU Shot mIoU forg. Shot mIoU forg. Shot mIoU forg. Shot mIoU forg.

FT 68.4 8.2 41.7 31.3 19.5 53.7 36.5 15.2 58.0 35.3 9.8 57.1 57.4
AutoAlb. 64.0 14.4 42.6 18.9 30.5 54.4 14.7 32.9 56.4 16.4 22.7 55.7 25.1
Distort 65.7 17.7 42.7 19.3 31.0 52.5 18.0 34.9 58.5 19.4 25.3 55.7 22.6
Gaus 65.0 6.1 40.4 27.3 17.3 54.2 41.4 14.1 57.8 28.4 8.1 56.0 43.2
Noise 65.4 3.6 42.7 27.8 20.8 51.8 37.7 18.6 55.6 32.9 15.6 56.4 49.8
ImageNet 70.4 10.7 42.8 29.0 25.7 56.1 36.2 26.1 64.6 30.1 17.8 58.6 59.5
MOCO 71.8 10.2 43.0 28.4 21.7 55.8 34.9 21.3 61.7 30.4 14.0 60.4 38.4
DINO 70.1 7.6 43.3 26.3 24.3 56.6 45.8 20.8 58.9 30.7 15.6 59.6 46.9
CN 70.4 9.6 40.4 21.7 27.5 52.7 15.4 27.8 61.9 17.9 12.2 59.5 20.8
Combined 69.8 11.6 43.2 15.0 37.6 57.5 8.0 44.3 65.5 11.3 32.7 59.8 17.2
Replay 68.4 8.2 39.3 8.8 19.5 53.9 7.7 15.2 58.7 8.0 9.8 58.1 7.2
Offline 40.1 43.1 15.6 50.5 55.1 19.9 58.1 61.5 14.9 53.6 55.8 23.3

Table 6.17: Results of BiSeNet V2 [Yu21] onCS→ACDC inmIoU (%) for each subset of ACDCus-
ing different pre-training and augmentations strategies. Compared to DeepLabV3+,
BiSeNet V2 is more affected by forgetting.

BiSeNet V2
Cityscapes Night Rain Fog Snow

Test Zero Test Zero Test Zero Test Zero TestMethod
mIoU Shot mIoU forg. Shot mIoU forg. Shot mIoU forg. Shot mIoU forg.

FT 67.5 4.9 41.2 33.7 18.8 52.1 40.7 14.7 57.3 39.4 9.3 58.1 58.9
AutoAlb. 66.6 12.8 41.0 26.2 35.5 53.5 23.5 39.3 60.2 33.8 27.1 56.6 46.1
Distort 68.2 14.8 42.4 29.7 32.9 52.9 35.3 38.0 58.1 29.2 23.0 58.3 35.8
Gaus 67.1 3.8 40.8 34.2 17.6 52.9 41.2 13.9 59.4 48.1 11.0 59.1 58.9
ImageNet 69.5 7.0 42.1 35.7 20.2 54.7 49.9 14.0 60.8 46.3 13.7 57.9 62.8
CN 68.7 5.4 37.0 26.9 30.4 51.5 18.0 25.5 54.8 23.1 18.7 54.4 25.4
Combined 68.0 13.6 38.6 21.7 36.7 53.2 13.7 44.0 58.8 17.5 29.6 53.2 22.2
Replay 67.5 4.9 40.0 10.7 18.8 51.6 6.2 14.7 50.7 8.3 9.3 58.5 8.3
Offline 39.7 43.8 17.4 52.3 52.4 13.0 59.8 62.9 21.1 56.8 60.3 56.8
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Table 6.18: Results of HRNetV2-W48 [Wan19] on CS → ACDC in mIoU (%) for each subset of
ACDC using different pre-training and augmentations strategies. HRNetV2-W48
performs similar to DeepLabV3+ on Cityscapes, but overall is more impacted by for-
getting. The combination of ImageNet pre-training, AutoAlbum and continual nor-
malization (Combined) leads to a significant reduction of forgetting.

HRNetV2-W48
Cityscapes Night Rain Fog Snow

Test Zero Test Zero Test Zero Test Zero TestMethod
mIoU Shot mIoU forg. Shot mIoU forg. Shot mIoU forg. Shot mIoU forg.

FT 70.7 6.1 42.1 38.0 22.8 59.7 37.2 19.9 67.0 36.2 15.7 62.7 44.1
AutoAlb. 72.4 19.6 44.8 33.1 43.0 58.1 12.6 55.4 68.2 15.2 37.5 61.8 20.4
Distort 70.4 15.7 44.8 21.7 33.3 58.9 13.0 38.6 64.3 11.7 24.5 62.9 18.1
Gaus 69.4 7.8 45.1 28.8 24.3 59.6 32.4 24.5 66.9 26.6 15.7 61.6 40.8
ImageNet 71.1 6.9 46.2 26.2 26.0 58.6 31.9 26.0 66.2 25.8 19.8 60.4 51.0
CN 70.5 9.8 41.9 17.0 29.9 57.0 13.1 28.1 65.9 17.1 19.7 58.0 21.8
Combined 71.8 17.7 41.9 10.4 46.3 60.4 9.3 56.9 66.6 11.1 41.3 62.1 11.3
Replay 70.7 6.1 45.2 9.8 22.8 59.2 3.3 19.9 68.9 4.4 15.7 63.3 5.9
Offline 44.8 45.6 32.5 57.9 57.9 2.4 62.0 68.8 2.4 58.2 63.1 4.3

Longer Task Sequences

Until this point, the effect of feature reuse was only demonstrated on a train-
ing sequence of two tasks. To determine if the effects still persist in longer
task sequences, the training schemes are also evaluated on a multi-step do-
main increment with CS, Rain and Night, where augmentations are only used
during training on CS. Table 6.19 shows that pre-training and augmentation
can decrease forgetting in longer task sequences, reducing forgetting not only
for the initial task, but for the intermediate task as well.  This indicates that
once general low-level features are learned, their benefits remain even after
the model is fine-tuned on a new domain without the additional augmenta-
tions. However, it should be noted that the interaction between these domains
can be intricate, as a reduction in forgetting on CS is observed after the model
was trained onNight when no augmentations are used. Furthermore, Nguyen
et al. [Ngu19] have already identified that the order or similarity of the tasks
in continual learning further impact the severity of forgetting.
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6 Principles of Catastrophic Forgetting in Continual Semantic Segmentation

Table 6.19: Results for CS → Rain→ Night with DeepLabV3+. Pre-training with DINO, Au-
toAlbum and continual normalization (denoted as Combined) drastically decreases
forgetting even in longer task sequences.

CS Rain Night
Test CS Test CS Rain TestMethod
mIoU forg. mIoU forg. forg. mIoU

FT 72.0 33.2 57.7 27.8 24.9 45.3
AutoAlb. 72.2 10.7 59.4 15.2 18.2 47.4
Distort 71.7 19.0 60.9 20.8 26.6 47.5
ImageNet 73.9 22.5 60.9 26.1 23.4 46.1
MOCO 75.2 26.8 63.5 18.2 20.1 47.2
DINO 75.0 23.4 64.4 18.3 21.1 49.7
CN 71.2 12.7 58.6 21.1 25.9 43.4
Combined 73.7 6.4 67.8 9.4 16.7 49.8

6.2.10 Conclusion

This section demonstrated that the major cause of catastrophic forgetting in
domain-incremental learning is a severe drift of representations in the early
layers that is affecting the first convolution layer and the population statistics
of subsequent BN layers. This feature drift is precipitated by the change in
low-level image statistics between the domains, which the model adapts to
when trained on the new domain.

To address this problem, various pre-training schemes and pixel-level aug-
mentationswere utilized to facilitate features in early layers that can be reused
in upcoming tasks. The experiments in this section showed that these meth-
ods were effective in reducing representation shift, with augmentations sta-
bilizing the first layers and pre-training primarily stabilizing the representa-
tions after the first BN layer.

The findings suggest that training with augmentation strategies like Distor-
tion or AutoAlbum encourages the model to learn features that are invariant
to low-level image statistics such as hue, saturation and brightness that vary
between the domains. Thereby, during optimization on the new domain, those
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features are not affected, leading to a significant reduction in forgetting. Inter-
estingly, it was found that pre-trained models struggle to learn such features
in the early layers, but they still reduce forgetting notably compared to ran-
domly initialized models. This suggests that pre-training on ImageNet leads
to more generalized features throughout the network. In the experiments,
self-supervised pre-training outperformed supervised ImageNet pre-training
on all domains, which suggests that SSL pre-training might not only be a vital
tool for classification [Gal21], but also for continual semantic segmentation.

Therefore, as pre-training and augmentations enforce feature reuse in differ-
ent layers of the network, combining them leads to a significant reduction in
catastrophic forgetting. In the experiments, the improved training scheme led
to an average reduction of forgetting of around 20 % mIoU across the ACDC
domains compared to simply fine-tuning. Overall, these results highlight that
an important component of continual learning can be found in methods that
extract generalized features from the initial task instead of only mitigating the
effects of catastrophic forgetting during training on new data. These general-
ized features will ease adaptation to new tasks while at the same time reduc-
ing the effects of catastrophic forgetting. The importance of good initializa-
tion can also be linked to the observed critical learning periods of deep neural
networks, during which a disturbance of low-level image statistics such as
blurring leads to an irreversible deficiency in the performance of the trained
network [Kle23, Ach19].  

6.3 Differences in Domain- and
Class-Incremental Learning

Figure 6.16 shows a comparison of the activation drift for class- and domain-
incremental learning. It is apparent that the activation drift in the domain-
incremental setting mostly affects the first layers of the network, while in
class-incremental learning later layers are affected. However, in these exper-
iments the task increments were chosen so that the model increments were
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6 Principles of Catastrophic Forgetting in Continual Semantic Segmentation

either pure domain or class increments. In reality, those task increments will
entail a mix of changes in the input and output distributions at the same time.

(a) Class-Incremental (b) Domain-Incremental

Figure 6.16: Comparison of the activation drift a model is subjected to when it is simply fine-
tuned in (a) class-incremental and (b) domain-incremental learning.

Therefore, it can be assumed that the activation drift in mixed settings will
likely affect layers near the input as well as layers close to the output of the
neural network, so that potential continual learning algorithms should not
focus on either class- or domain-incremental settings but should provide a
more holistic approach that is able to address distribution changes in the input
and output space, as for example class-incremental approaches that are based
on knowledge-distillation on the output layers cannot account for the severe
activation drift that can arise in some domain-incremental settings.

Furthermore, Sec. 6.2 found that an important ingredient to improve the per-
formance in continual learning in both stability and plasticity is a good initial-
ization for the first task that enables to learn more general features that enable
feature reuse.  While Sec. 6.1 discovered in the class-incremental setting that
without any form of replay the model is not able to effectively distinguish
between all classes as it suffers from inter-task confusion, a similar limitation
could not be found in domain-incremental learning.
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Finally, in both settings the choice of architecture also affected the sever-
ity of catastrophic forgetting as well as how and where the activation drift
manifests itself in the layers of the neural network.  Especially the vision
transformer-based methods seemed to be more robust against catastrophic
forgetting. Therefore, the next chapter will further analyze the effect that the
architecture choice has on the performance in continual learning.
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7 Effects of Architecture in
Continual Learning

The vast majority of ongoing research in continual semantic segmentation
is focused on developing new learning algorithms to mitigate the effects of
catastrophic forgetting, while using largely similar CNN architectures. In
contrast, previous chapters have indicated that the effects of catastrophic for-
getting vary notably between different architectures. The results in Ch. 4 indi-
cate that models with a higher number of parameters are more robust towards
catastrophic forgetting; Sec. 6.1 demonstrated that inputs from multiple en-
coder stages increase the activation drift in early layers of the model, which
precipitates catastrophic forgetting. Finally, the ablation studies in Sec. 6.2
suggest that recent VTs are potentially more robust to catastrophic forgetting,
as they learn more general features without any additional augmentations
and that normalization layers can have adverse effects on the performance in
continual learning.

Therefore, this chapter studies how the recent developments in computer vi-
sion models such as VTs, modern CNNs, hybrid models, new normalization
layers and different decoder architectures affect catastrophic forgetting in
continual semantic segmentation and how the architecture influences the ef-
fects discovered in previous chapters.
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7.1 Related Works

7.1.1 Differences between CNNs and Vision
Transformers

With the well-established CNN and the rise of the VT, there are currently
two competing architectures in the field of computer vision, each with very
distinct properties. Prior and ongoing research extensively studies how the
performance of these architectures differs on various computer vision tasks.
Recent work claims that VTs aremore robust than CNNs, specifically to severe
domain shifts [Zha22, Li22a], adversarial attacks [Nas21, Pau22] or perturba-
tions like blurring or noise [Bho21, Xie21]. At the same time Bai et al. [Bai21]
have shown that results in previous work has been distorted because of differ-
ently used training regimes in prior comparisons and claim that when similar
training regimes are used that CNNs can match the adversarial robustness of
VTs, but that VTs achieve better generalization capabilities when pre-trained
on large datasets.   Wang et al. [Wan22a] identify that the improved general-
ization capability of VTs is not solely a property of the self-attention layer, but
is to a large degree caused by other architecture differences between CNNs
and VTs.

Other related works discuss the distinct properties of VTs and CNNs.  It was
discovered that CNNs have a texture bias, while VTs have a shape bias [Gei19,
Nas21] and that self-attention layers in VTs aggregate local information in
early layers similar to convolutions in CNNs, but also utilize global informa-
tion much earlier than their CNN counterparts [Rag21].

7.1.2 Architectures in Continual Learning

Previouswork on architectures for continual learning optimized themodel de-
sign using neural architecture search to efficiently share or expand the model
for continual learning [Xu18, Mun21].

Mirzadeh et al. [Mir22b] investigate the role of architectures in continual
learning, but they only investigate at nominal recognition tasks rather than
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semantic segmentation tasks. Furthermore, they conduct their study on
simply stacked convolutional layers rather than a backbone architecture.
While they include ViT [Dos20] in their study, they do not consider other
VTs or hybrid architectures. A report from the ICCV 2021 Challenge SSLAD-
Track3B suggests that that the recent Swin Transformer suffers less from
forgetting than its CNN counterparts and thus performs better in continual
learning [Li22b].

7.2 Experiments

This chapter examines how different neural network architectures and nor-
malization layers perform in continual semantic segmentation.  The experi-
ments are conducted in a class- and a domain-incremental setting, as previ-
ous chapters have shown that catastrophic forgetting affects neural networks
differently in these scenarios.
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7.2.1 Experimental Setup

RGB Image Output
W x H x 3 W x H

CNN:
• ResNet
• ConvNeXt*
Transformers:
• Swin
• MiT
Hybrid:
• NAT

Normalization Layers:

• Batch Norm (BN)

• Instance Norm (IN)

• Group Norm (GN)

• Layer Norm (LN)

• Batch Norm (BRN)

• Continual Norm (CN)

Decoder Heads

• UperNet-Head*

• ASPP

• Segformer-Head

• PSP-Head

• FCN-Head

• FPN-Head

Encoder Decoder

Figure 7.1: Experimental setup and architecture choices to measure the effect of architecture on
catastrophic forgetting. The default choices are marked with *. In the experiments
on the encoder architecture, the same UPerNet decoder head is used and only the
backbone is exchanged with different VT, CNN and hybrid architectures. The impact
of the decoder is evaluated on top of a ConvNeXt backbone.

Architectures

To evaluate the influence of different architecture design choices in continual
learning, the following experiments separately evaluate the impact of differ-
ent encoders, decoders and normalization layers. The selection of encoders,
decoders and normalization layers is illustrated in Fig. 7.1.

In the experiments that evaluate the effect of different backbone architectures
for continual semantic segmentation, only the encoder is exchanged while the
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same UPerNet [Xia18] decoder head is used. For the encoder different back-
bones are selected from various types of CNNs, VT and hybrid architectures
to compare the effect of the inherent architectural differences for continual
learning. 

The following architectures are chosen. As representative for CNNs:

• ResNet-50 [He16]: the most widely used CNN backbone architecture
that introduced the residual connections that enabled deeper neural
networks. It was until recently the widely used backbone for contin-
ual semantic segmentation.

• ConvNeXt-T [Liu22]: an modernized version of ResNet that improves
the ResNet architecture with design decisions from VTs.

As representative for the VTs:

• Swin Transformer [Liu21]: a computationally more efficient version of
ViT [Dos20] that was identified to be less affected by catastrophic for-
getting than the CNN counterparts in a recent continual learning chal-
lenge [Li22b].

• MiT-B2 [Xie21]: the backbone architecture that was introduced with
the SegFormer – which contrary to the other backbones – was specifi-
cally designed for segmentation tasks. 

Finally, for the hybrid architectures:

• NAT [Has23]: the neighborhood attention transformer (NAT) that in-
troduces inductive biases similar to CNN using overlapping windows
and applies attention within the window using a novel attention mech-
anism called neighborhood attention.

The backbone architectures are chosen to have a similar number of parameters
to ensure a fair comparison between them. The selected architectures are
summarized in Tab. 7.1 along with the type of architecture and number of
parameters in the network. 
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Table 7.1: Overview of the selected encoder architectures with their respective top-1 ImageNet
accuracy in (%)

Type Name #params FLOPs Top-1
ResNet-50 23M 4.1G 78.8CNN ConvNeXt-T 29M 4.5G 82.1
Swin-T 28M 4.5G 81.3Transformer MiT-B2 25.2M 4.0G 81.6

Hybrid NAT-T 30M 4.3G 83.2

Sec. 6.1 has shown that in the class-incremental setting, forgetting occurs
primarily in the decoder stages of a model. Therefore, the effect of differ-
ent decoder architectures is investigated separately, without changing the
ConvNeXt-T backbone.  Specifically, UPerNet, FPN and SegFormer-Head are
chosen as decoders that receive input from multiple stages of the encoder and
ASPP, FCN and PSPNet are chosen as decoders that only receive input from
the last stage of the encoder. An overview of the different decoders is dis-
played in Tab. 7.2. It should be noted that contrary to the chosen encoders,
the decoders vary greatly in their number of parameters.

Table 7.2: Overview of the selected decoder architectures with the number of parameters.

Decoder Multi-Stage Input #params
UperNet-Head yes 31.4M
FPN-Head yes 1.4M
SegFormer-Head yes 1.8M
FCN-Head no 11.8M
PSPNet-Head no 14.6M
ASPP no 23.2M

Finally, the choice of the normalization layers is evaluated, as the previous
chapter has highlighted that batch normalization layers also significantly con-
tribute to catastrophic forgetting. In this set of experiments, the batch nor-
malization layers of ResNet-50 are replaced with continual [Pha22], group
[Wu18b], instance [Uly16], layer normalization or batch renormalization lay-
ers [Iof17] that were introduced in Sec. 2.2.1.
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Datasets

Similarly, to previous chapters, the experiments are conducted in a class- and
domain-incremental setting. In the class-incremental setting, the models are
trained on the overlapped Pascal-15-5 split that was introduced in Sec. 6.2. 

In the domain-incremental experiments, the models are adapted from good
to adverse weather conditions using the incremental Cityscapes (CS) [Cor16]
to ACDC [Sak21] setup. Contrary to the setup in Sec. 6.2, the subsets Night,
Rain, Snow and Fog are combined into one task.

Optimization Strategy

To achieve a fair comparison, the models are all trained using the AdamW
[Los19] optimizer with a batch size of 6 and a base learning rate of 1 × 10−4,
which is tuned for the different backbone architectures. During an initial
warm-up phase of 1500 iterations, the learning rate is slowly increased to the
target learning rate. After the warm-up phase, a linearly decaying learning
rate schedule is utilized. Themodels are trained for 120 epochs in the domain-
incremental setting and 40 epochs in the class-incremental setting. The images
are scaled and cropped to the size of 769 × 769 for the domain-incremental
setting and 512 × 512 for the class-incremental setting. During training, the
images are randomly flipped and scaled and Distortion is utilized.

The models are evaluated on the individual validation sets without using
any scaling or cropping.   As Sec. 6.1 has demonstrated that in the class-
incremental learning setting fine-tuning the model to new classes leads
to a severe background bias, the models are trained with the unbiased
cross-entropy loss (UNCE) [Cer20] in the class-incremental setting.

7.2.2 Domain-Incremental Learning

The results of the domain-incremental experiments for the different backbone
architectures are displayed in Tab. 7.3, for different decoders in Tab. 7.5 and
for different normalization layers in Tab. 7.4.
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Table 7.3: Comparison of the performance of different backbone architectures in domain-
incremental learning. Results are in mIoU (%).

Task 1 Task 2 learning averageMethod Cityscapes ACDC Cityscapes ACDC accuracy forgetting
ResNet-50 78.0 ± 0.6 36.8 ± 1.5 60.4 ± 0.3 71.9 ± 0.6 74.9 17.6
ConvNeXt-T 80.2 ± 0.6 51.3 ± 0.5 71.6 ± 0.6 72.1 ± 0.2 76.1 8.6
Swin-T 78.2 ± 0.5 44.8 ± 0.5 65.2 ± 0.6 68.8 ± 0.7 73.5 13.0
MiT-B2 78.5 ± 0.2 44.6 ± 0.9 68.1 ± 2.4 67.2 ± 0.5 72.9 10.4
NAT-T 80.2 ± 0.6 45.6 ± 1.7 68.7 ± 1.0 68.7 ± 0.9 74.4 11.5

The results for the different encoder architectures in Tab. 7.3, allow two main
observations: (1) CNNs and NAT-T outperform the vision transformers in
terms of learning accuracy, (2)  ResNet (the default choice in most continual
learning experiments) is most affected by catastrophic forgetting. The trans-
former backbones MiT-B2 and Swin-T significantly mitigate the effects of for-
getting, but in turn suffer a moderate drop in learning accuracy. This could
potentially be explained by the fact that they are known to require more data
to achieve better performance than their CNN counterparts [Dos20]. The hy-
brid model NAT-T shows good performance for both learning accuracy and
forgetting, as it re-introduces the inductive bias found in convolutional layers
and therefore is not required to learn those biases in the early layers [Rag21,
Has23].

Most strikingly, the CNN-based ConvNeXt-T achieves the best overall re-
sults in both highest learning accuracy and lowest forgetting, which indicates
that the improved robustness of the transformer backbones towards forget-
ting might not be an inherent feature of the self-attention layer, but could be
potentially attributed to other architectural changes.
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Figure 7.2: Activation drift in domain-incremental learning for different encoders and decoders.

The layer stitching plot in Sec. 7.2.2 shows the activation drift at the very
first layer of each block of the different encoders.  As in all experiments the
Distort augmentation is utilized, the high initial feature discrepancy that was
observed in Sec. 6.2 is not visible. However, it is notable that ResNet-50 is
most affected by the activation drift in the domain-incremental setting. Even
the very first block of ResNet-50 suffers from a notably increased activation
drift compared to the remaining backbones. The remaining encoders are less
affected by activation drift, which indicates that they learned more general
features in the first task that are reused for the second task.  However, as this
is not only true for the VTs, but also for the CNN-based ConvNeXt-T and
NAT-T, this is most likely not only due to the self-attention layers. The cause
for the improved generalization capability will be further discussed in Sec. 7.3.
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Table 7.4: Comparison of the performance of different decoder architectures in domain-
incremental learning. Results are in mIoU (%).

Task 1 Task 2 learning averageMethod Cityscapes ACDC Cityscapes ACDC accuracy forgetting
Batch Norm. (BN) 78.0 ± 0.6 36.8 ± 1.5 60.4 ± 0.3 71.9 ± 0.6 74.9 17.6
Continual Norm (CN) 77.9 ± 1.0 47.3 ± 0.6 65.2 ± 1.0 72.1 ± 1.2 75.0 12.7
Batch Remorm. (BRN) 76.6 ± 1.2 39.4 ± 1.1 59.5 ± 1.8 70.0 ± 2.1 73.3 17.1
Group Norm. (GN) 71.9 ± 0.6 38.5 ± 1.0 58.4 ± 1.1 66.6 ± 0.8 69.2 13.5
Instance Norm. (IN) 74.2 ± 0.2 47.5 ± 0.9 61.1 ± 0.1 69.7 ± 0.6 71.9 13.1
Layer Norm. (LN) 71.4 ± 0.8 34.5 ± 06 55.4 ± 08 65.4 ± 0.8 68.4 16.0

Next, the impact of the different normalization layers is evaluated for domain-
incremental learning in Tab. 7.4. The results show that the batch normaliza-
tion layer of ResNet-50 is most affected by forgetting while also being the
best at adapting to the new domains. As demonstrated in the previous chap-
ter, this is likely caused by a severe bias of the changing population mean
and variance of the batch normalization layer for the most recent task. Batch
re-normalization alleviates the discrepancy between the changing population
statistics, but still reduces forgetting only very slightly. Channel normaliza-
tion layers such as group and instance normalization are most effective in
mitigating forgetting in the domain-incremental setting, but at the same time
lead to reduced learning accuracy.  Layer normalization, which is also used in
the selected transformer backbones, also improves performance on previous
tasks, but degrades performance on new tasks.  As a whole, CN is the most
effective since it matches the learning accuracy of BN while also significantly
reducing forgetting. This is because CN combines the benefits of batch- and
group normalization by first normalizing along the channel dimension and
then normalizing along the mini-batch dimension, achieving both flexibility
and stability.
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Table 7.5: Comparison of the performance of different decoder architectures in domain-incre-
mental learning. Results are in mIoU (%).

Task 1 Task 2 learning averageMethod Cityscapes ACDC Cityscapes ACDC accuracy forgetting
UPerNet-Head 80.9 ± 0.6 51.6 ± 0.5 71.9 ± 0.6 72.1 ± 0.2 76.1 9.0
FPN-Head 78.6 ± 0.2 47.0 ± 0.6 69.9 ± 0.3 66.3 ± 0.3 72.5 8.8
SegFormer-Head 78.7 ± 0.2 48.1 ± 0.3 69.5 ± 0.6 69.8 ± 0.4 74.2 9.2
FCN-Head 74.6 ± 0.2 44.7 ± 0.5 66.2 ± 0.6 62.0 ± 0.5 68.3 8.4
PSPNet-Head 73.8 ± 0.6 44.5 ± 08 66.1 ± 0.4 62.5 ± 0.1 68.2 7.7
ASPP 74.4 ± 0.3 45.5 ± 0.4 67.0 ± 0.6 63.2 ± 0.1 68.8 7.4

Finally, Tab. 7.5 lists the results for various decoder architectures on top of the
ConvNeXt backbone. Overall, it is apparent that the decoder has only a negli-
gible impact on forgetting compared to the encoder in the domain-incremental
setting. However, it should be noted that the decoders that receive input from
multiple stages of the encoder, such as UPerNet, FPN, and the SegFormer-
Head, achieve a much higher learning accuracy.

7.2.3 Class-Incremental Learning

Similar as for the domain-incremental setting the results for the class-incre-
mental setting for different encoders are displayed in Tab. 7.6, for the different
normalization layers in Tab. 7.7 and for the decoders in Tab. 7.8.

Table 7.6: Comparison of the performance of different backbone architectures in class-incre-
mental learning. Results are in mIoU (%).

Task 1 Task 2 learning averageMethod 0-15 0–15 16–20 all accuracy forgetting
ResNet-50 75.6 ± 0.8 24.7 ± 1.3 32.4 ± 1.1 26.5 ± 0.8 54.0 50.9
ConvNeXt-T 80.7 ± 0.4 47.6 ± 2.6 44.1 ± 0.9 46.8 ± 2.1 62.4 33.1
Swin-T 78.4 ± 0.3 38.6 ± 1.8 37.4 ± 1.0 38.3 ± 1.2 57.9 40.4
MiT-b2 81.2 ± 0.5 25.7 ± 6.7 39.1 ± 1.7 28.9 ± 5.0 60.2 62.5
NAT-T 80.4 ± 0.4 34.9 ± 1.9 39.2 ± 1.2 35.9 ± 1.2 59.8 42.9
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As already demonstrated in previous chapters, it can be observed in Tab. 7.6
that forgetting in the class-incremental setting is much more severe than
in the domain-incremental setting. Similar to the results in the domain-in-
cremental setting, Swin-T and NAT-T, are more effective at reducing for-
getting than ResNet-50. MiT-B2 is surprisingly most affected by forgetting
and achieves highly deviating results on the prior classes. This is poten-
tially caused by the small number of parameters compared to the remain-
ing decoders. ConvNeXt performs the best in the class-incremental setting,
with significant improvements compared to ResNet-50 in both learning new
classes and mitigating the forgetting of old classes. Contrary to the domain-
incremental results, it is observed that VTs have a higher learning accuracy
than ResNet in the class-incremental setting.

(a) ResNet-50 (b) Swin-T (c) ConvNeXt-T

Figure 7.3: Confusion matrices after training on PascalVoc-15–5. The confusion matrix for
ResNet-50 shows a severe bias to the background class and classes of the recent task
(16–20). Using Swin-T or ConvNeXt as backbone with the same decoder head de-
creases the bias for the new classes and the background class.

The confusion matrices in Sec. 7.2.3 demonstrate that even when using the
UNCE loss, there is still a severe bias for the background class and new classes,
especially for ResNet-50. However, ConvNeXt and the transformer-based
models significantly reduce this bias, which indicates that the features of the
VTs and ConvNeXt are more useful for the decoder to discriminate between
the different classes. Furthermore, it should be noted that the only classes that
ConvNeXt struggles to learn correctly are cow and bus, which are mistaken
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for the new classes sheep and train, respectively. This effect, known as inter-
task confusion, was already described in Sec. 6.1 and is likely a limitation in
class-incremental learning without any form of replay.

Figure 7.4: Activation drift in domain-incremental learning for different encoders and decoders.

The layer stitching plot in Sec. 7.2.3 confirms the previous finding that the
highest activation drift in class-incremental learning is observed in the later
decoder layers, regardless of the chosen backbone architecture. However,
ConvNeXt still notably reduces the activation drift in the encoder layers of
the network, which in turn reduces catastrophic forgetting.

When comparing the different normalization layers in the class-incremental
learning in Tab. 7.7, we observe that batch normalization, batch renormal-
ization and continual normalization have higher learning compared to chan-
nel normalization layers, which again confirms that normalizing along the
mini-batch dimension improves the forward transfer capability. However,
unlike in the domain-incremental setting, continual normalization does not
mitigate forgetting compared to the batch normalization or methods that nor-
malize across the channel dimension. This is likely caused by the fact that in
the class-incremental setting, the population statistics of the encoder are not
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changing as much, as the input data distribution is much more similar than
in the domain-incremental setting. 

Table 7.7: Comparison of the performance of different normalization layers in class-incremental
learning. Results are in mIoU (%).

Task 1 Task 2 learning averageMethod 0–15 0–15 16–20 all accuracy forgetting
Batch Norm. (BN) 75.6 ± 0.8 24.7 ± 1.3 32.4 ± 1.1 26.5 ± 0.8 54.0 50.9
Continual Norm (CN) 73.2 ± 0.5 20.9 ± 2.0 28.4 ± 1.6 22.7 ± 1.1 50.8 52.3
Batch Re-Norm. (BRN) 74.2 ± 0.6 19.2 ± 0.5 30.9 ± 2.0 21.9 ± 0.1 52.5 55.0
Group Norm. (GN) 61.6 ± 0.6 13.8 ± 2.2 23.6 ±2.2 14.9± 1.1 42.6 47.8
Instance Norm. (IN) 65.5 ± 1.0 19.2 ± 0.6 23.6 ± 3.2 23.5 ± 4.4 44.5 46.4
Layer Norm. (LN) 65.5 ± 1.6 15.6 ± 0.7 27.2 ± 1.1 18.4 ± 0.8 45.8 48.8

Previous results indicated that in the class-incremental setting, forgetting oc-
curs primarily in the decoder stages of a model. Therefore, Tab. 7.8 displays
the performance of various decoder architectures in the class-incremental
stetting when using the same ConvNeXt-T backbone. Most strikingly, it is
notable that the decoder heads using multi-stage input from the encoder, such
as UPerNet, FPN and the SegFormer-Head, achieve higher learning accuracy
but in turn suffer from more severe forgetting than decoders that only use the
output from the final encoder layer.  Previous work noted that representations
of layers close to the output are primarily affected by a change of the training
objective [Kor21]. Therefore, it can be assumed that the use of multi-stage
input also leads to more severe changes in earlier stages of the encoder, as the
earlier stages of the encoder are closer connected to the output layer when
using input from earlier stages. The increased activation drift in early layers
will in turn also affect subsequent layers, which leads to increased forgetting.
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Table 7.8: Results in mIoU (%) for the class-incremental setting with different decoder heads.

Task 1 Task 2 learning averageMethod 0–15 0–15 16–20 all accuracy forgetting
UPerNet 80.7 ±0.4 47.6 ± 2.6 44.1 ± 0.9 46.8 ± 2.1 62.4 33.1
FPN 78.9 ± 0.6 36.0 ± 5.7 41.8 ± 1.4 37.4 ± 1.4 60.4 43.0
SegFormer 78.6 ± 0.1 48.6 ± 2.6 40.9 ± 1.6 46.8 ± 2.3 59.8 30.1
FCN 74.6 ± 0.3 43.7 ± 1.2 41.8 ± 0.9 43.3 ± 0.8 58.2 30.9
PSPNet 75.5 ± 0.3 50.8 ± 2.2 41.1 ± 1.3 48.5 ± 1.9 58.3 24.7
ASPP 75.6 ± 0.3 51.6 ± 1.2 41.7 ± 2.1 49.3 ± 1.5 58.6 24.0

The layer stitching plot in Sec. 7.2.3 on the right confirms this hypothesis
for FPN and the SegFormer-Head, as increased activation drift is observed
in the encoder when using these decoders. Additionally, the results indicate
that decoders with a higher number of parameters prevent changes in the en-
coder with their higher learning capacity, so that forgetting is less prominent
in models with more parameters. Interestingly, models that use a moderate
amount of parameters and single-stage input such as PSPNet-Head and ASPP
are best at mitigating catastrophic forgetting. The results also highlight the
more efficient decoder design of Segformer-Head, as it achieves a comparable
performance to the UPerNet-Head while having only 1/20ᵗʰ of its parameters.

7.3 Ablation on ConvNeXt

The previous experiments demonstrate that the robustness towards catas-
trophic forgetting of SegFormer (observed in Sec. 6.2) might not be only
caused by the self-attention layer, but also different architectural changes, as
the performance of the CNN-based ConvNeXt clearly indicates. The following
experiment aims at revealing which of the changes to ResNet-50 architecture
leads to the increased performance in continual learning. Therefore, the
architectural changes that were applied to convert ResNet-50 into ConvNeXt
are evaluated individually and incrementally without reversing the previous
changes. Table 7.9 lists the architectural changes in the order they will be
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applied. The resulting models are trained in the domain-incremental setting,
without pre-training and starting from the same random initialization.

Table 7.9: Architectural changes in the ablation study ResNet-50 → ConvNeXt inspired by Liu
et al. [Liu22].

No. Name Description

1 stage ratio change the number of blocks in each stage from (3, 4, 6, 3)
to (3, 3, 9, 3)

2 patchify stem stem cell was replaced with a patchify layer with
non-overlapping 4 × 4 stride 4 convolutional layers

3 increase width Change width from 64 to 96

4 inverted bottleneck Change the channels in the block from (64, 64, 256)
to (96, 384, 96)

5 sep. d.s. conv Use depth-wise separable convolutions to reduce
computation as a trade-off for using large kernels

6 increase kernel size Change kernel size from [3 × 3] to [7 × 7]
7 ReLU to GeLU Change the activation layer from ReLU to GeLU

8 1 norm Reduce the number of normalization layers by removing
two out of three BN layers

9 BN to LN Change the normalization layer form batch normalization
to layer normalization

The learning accuracy and forgetting for the individual and incremental
changes are reported in Fig. 7.5. Some individual changes, like increasing
the width from 64 to 96, inverting the bottleneck and reducing the number
of normalization layers to 1 (1 norm), improve learning accuracy but also
increase forgetting. Increasing the kernel size from [3×3] to [7×7] is the only
individual change that increases learning accuracy and decreases forgetting.
The larger kernel size in ConvNeXt attempts to replicate the global receptive
field that is an inherent property of the self-attention layer of VTs, so that
the network is able to capture long-range dependencies more easily. Prior
work by Wang et al. [Wan22a] has demonstrated that the increased kernel
size leads to increased robustness to out-of-distribution samples. Therefore,
it is hypothesized that the increased kernel size leads to more generalized
features in the network that are reused during incremental training, which
leads to a reduction of forgetting.
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Figure 7.5: Forgetting and learning accuracy for ResNet→ConvNeXt individual vs. incremental
changes. Hatched light blue bars indicate changes that are made individually on
ResNet, while solid blue bars include all previous changes. The sequence of changes
is from top to bottom.

However, when the changes are made incrementally, not only does the in-
creased kernel size lead to a reduction in forgetting but also to a slight im-
provement in learning accuracy. One of the interesting findings is that indi-
vidually, the reduction of normalization layers from 3 to 1 (1 norm) leads to an
increase in forgetting of +2.5 mIoU, but when done incrementally, it leads to
an improvement in forgetting of -2.1 mIoU. For the incremental changes, the
most effective additionswere: patchify stem, increasing kernel size and 1 norm. 
These changes coincide with architectural changes Wang et al. [Wan22a] pro-
posed tomake CNNs as robust to out-of-distribution samples as VTs. This fur-
ther strengthens the claim that the ability of the model to mitigate forgetting
depends on its ability to learn general and robust features.

Overall, this experiment concludes that the global receptive field of the VTs
is a major reason for the increased robustness towards forgetting.  This prop-
erty can be imitated by increasing the kernel size of the convolutional layers
in CNNs, which leads to similar robustness towards forgetting.  Furthermore,
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these experiments confirm that reducing the number of normalization layers
and replacing the batch normalization layers is also vital for continual learn-
ing, which was already discussed in the previous chapter. Other changes of
ConvNeXt only have minor impact on the performance in continual learning,
but mainly decrease the number of computations required that are introduced
with larger kernel sizes. 

7.4 Conclusion

This chapter evaluated the effect of the choice of encoders, decoders and nor-
malization layers on neural networks for continual semantic segmentation.  It
was found that the choice of architecture has a significant impact on perfor-
mance in terms of learning accuracy and mitigating the effects of catastrophic
forgetting. While traditional CNNs have demonstrated higher plasticity than
their VT counterparts, they are more susceptible to catastrophic forgetting.
However, the modernized ConvNeXt shows that this increased robustness
can be replicated in CNNs by increasing the kernel size in convolutional lay-
ers, reducing the number of normalization layers, replacing batch normaliza-
tion layers and by patchifying the input.  These changes enable the network
to learn more generalized features that, similar to those in the previous chap-
ter, reduce catastrophic forgetting as features are reused for subsequent tasks.
Even in class-incremental learning, where forgetting occurs primarily in de-
coder layers, the choice of the encoder architecture has a significant impact on
forgetting. Additionally, the experiments demonstrate that input into the de-
coder from various backbone stages improves learning accuracy but increases
forgetting because early layers are more susceptible to activation drift.

Overall, this chapter demonstrates the importance of architecture in the de-
velopment of algorithms for continual learning and lays the groundwork for
future research into architectures tailored to continual semantic segmenta-
tion.
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8.1 Conclusion

This thesis investigated the principles of catastrophic forgetting for deep neu-
ral networks in continual learning, with a focus on continual learning for
scene perception in the context of automated driving. Rather than concen-
trating on incremental improvements to continual learning procedures, this
thesis investigates concrete causes of catastrophic forgetting and their corre-
sponding effects on neural networks, aiming to establish principles that hold
true across various scenarios to further the understanding of the underlying
mechanics of forgetting in deep continual learning.

A core aspect of this investigation is the development and analysis of methods
that allow for quantitative measurement of activation drift and other effects
of forgetting. Therefore, several existing methods and two newly proposed
methods, namely layer stitching and decoder retraining, were compared in
their ability to measure the effects of forgetting. It was found that layer stitch-
ing, which measures the functional similarity for each layer in a neural net-
work, provides the most meaningful and interpretable insights, but that other
methods such as BN re-estimation, decoder retraining and CKA should be
used in complementary ways to infer more specific causes. These methods
provide an important step towards a deeper understanding of the effects of
catastrophic forgetting.

Using these methods, the main part of this thesis explored how catastrophic
forgetting manifests in neural networks in class- and domain-incremental
learning and how it affects their performance. In class-incremental learn-
ing, the semantic shift of the background class is identified as a major cause
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of catastrophic forgetting. Layer stitching reveals that this is caused by a se-
vere functional shift of the activations in the decoder layers, in which features
that were evidence for old classes in the first task are interpreted as features
for the background class after training on new classes. This effect is substan-
tially reduced when the semantic shift of the background class is avoided in
the proposed full disjoint setting. The experiments also indicate that contin-
ual learning methods that neither replay samples containing old classes nor
utilize knowledge distillation fail to learn discriminating features for classes
that are learned in different tasks and thus suffer from inter-task confusion.

In the domain-incremental setting, it is found that a major cause of forgetting
is the shift of low-level representations in the first convolution layer that ad-
versely affects the population statistics of the following batch normalization
layer.  To reduce this feature discrepancy in the initial layers of the model,
augmentations are utilized that induce color-invariant features during train-
ing on the first task. These features are reused in subsequent tasks, which
significantly reduces the activation drift in early layers and thus catastrophic
forgetting. Finally, it is observed that while these augmentations stabilize
features in the early layers, pre-training on ImageNet using self-supervised
methods such as SwAV or DINO stabilizes intermediate representations.

Furthermore, the effect of various architecture choices is evaluated, as the
previous findings already indicated that the recent VTs might be more re-
silient towards catastrophic forgetting. However, the experiments conclude
that while VTs are more resilient than previous CNNs, such as ResNet or
ERFNet, this robustness can be replicated in CNNs by increasing the kernel
size of the convolution layers, reducing the normalization layers, exchanging
batch normalization layers and patchifying the input. These changes precip-
itate more general features in the encoder so that the layers of the encoder
are less affected by activation drift, which significantly reduces forgetting in
class- and domain-incremental learning.

Overall, these results highlight that the principles and effects of catastrophic
forgetting are nuanced as they result from a complex interplay of architectural
decisions of the model, the order in which tasks are presented, and especially
whether the model is adapted for new classes or new domains. The insights of
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this thesis are intended to aid in the development ofmore robust and adaptable
perceptionmodels, which will be essential for the widespread adoption of safe
and reliable autonomous vehicles in the future and likely other applications
of continual learning in autonomous and automated systems.

Finally, the insights of this thesis can be condensed into the following advice
for the development of future continual learning algorithms:

• Continual learning algorithms should not be developed completely
task-agnostic, but instead need to be tailored to the task at hand. For
example in semantic segmentation it is sensible to make use of the
reappearing classes in the background with knowledge distillation.

• Models used in continual learning should start from a general initial-
ization that enables future task to reuse features from previous tasks.
This can significantly avoid activation drift within the model, leading
to a reduction of catastrophic forgetting.

• Continual learning algorithms should use some form of replay to avoid
inter-task confusion, which is potentially a limitation of rehearsal-free
continual learning.

• Random data selection for replay can be improved by balancing the
classes in the buffer and choosing samples to approximate the data dis-
tribution in the embedding space of the model.

• Model architectures should be taken into consideration when designing
a machine learning system for continual learning.

– Input from multiple stages from the encoder increases the per-
formance on the most recent task, but in turn leads to increased
forgetting.

– Architectures that achieve better out-of-distribution performance
are less likely to be affected by catastrophic forgetting.

– Batch normalization layers should be avoided and can be replaced
by layer normalization or continual normalization.
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8.2 Outlook

Increasing the task variety

The experiments in this thesis are conducted on specific class- and domain-
incremental benchmarks that will not conclusively prove universal proper-
ties for continual semantic segmentation. The investigations in the domain-
incremental setting are limited to incremental semantic segmentation in ad-
verse weather conditions for scene perception in automated driving. This set-
ting introduces very distinct domain changes that were found to primarily
affect the first layers of the network; it is likely that other, more abstract do-
main changes will affect different layers. For example, when adapting a model
from German driving scenarios to Canadian driving scenarios, the class bike
lane, changes from a red to a green color. This change will likely not require
a change in early features, but adjustments in later layers in which the color
green in the context of a street would need to be associated with the class
bike lane. Therefore, future work could investigate how different domain
changes affect catastrophic forgetting. Similarly, in the class-incremental
setting, the experiments were conducted solely on the two-task incremental
benchmark PascalVoc-15-5. These benchmarks could be expanded to differ-
ent datasets with longer task sequences and a higher number of semantically
diverse classes to study whether the observed effects increase in intensity. Fi-
nally, as class and domain increments will in practice often occur at the same
time, future work could further investigate how this combined setting would
affect deep neural networks.

Measure Catastrophic Forgetting During Training

While the tools used in this thesis are capable of providing deeper insights into
catastrophic forgetting, there are still some limitations in their expressiveness
as well as in their application. First of all, methods like layer stitching and Dr.
Frankenstein help to gain insights into the activation drift of the specific lay-
ers; however, these methods are focused on evaluating the model after it has

154



8.2 Outlook

been trained in a continual manner. There is currently limited work on mea-
suring catastrophic forgetting during incremental training. However, it could
potentially increase the understanding of phenomena such as the stability gap
[De 22] and expose other unexpected training dynamics that continual learn-
ing introduces. Therefore, a potential extension of this work could investigate
how the activation drift materializes during the continual training process.

Outlook on continual learning

The findings and methodologies explored in this thesis are intended to pave
the way for future research directions and applications in the field of contin-
ual learning. Especially at this point in time, with the emerging foundation
models that potentially mark a lasting shift for the field of continual learning.

These foundation models are trained on a vast quantity of data at scale, often
using self-supervised learning. They are intended to be universal feature ex-
tractors that can produce useful features for a large number of downstream
tasks. They are often trained in a contrastive manner using only images or
image-text pairs. A prime example is CLIP [Rad21], which is trained on 400
million image-text pairs using a contrastive learning approach that aims to
predict the correct image-text pairing. The resulting model has an incredible
rich feature space that can be used for zero-shot image classification, image-
text retrieval and is even utilized as a prompting interface for several image
generators such as Stable Diffusion [Rom22]. Asmodels like CLIP often do not
even require task-specific training data and can be utilized and adjusted via
prompting, it often raises the question whether the existence of these models
would make continual learning obsolete. In fact, the results of Sec. 6.2 already
demonstrate that even when the models would require any fine-tuning, the
fact that they already have such general features means that they are even
less affected by catastrophic forgetting.

Nonetheless, this does not render continual learning obsolete, as our chang-
ing environment demands that foundation models require continued adjust-
ment to remain relevant and accurate. However, foundation models definitely
change the focus of the field. Research in continual learning will now center
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on models that do not require starting from random initialization. Instead,
the challenge now lies in developing novel continual learning approaches that
can capitalize on these foundation models’ general features while fine-tuning
them for specific tasks and adapting to new information.

There are already recent works that, instead of modifying the pre-trained en-
coder directly, propose to utilize a small number of insert-able model instruc-
tions, called prompts [Smi23, Wan22c, Wan22b].  These prompts are gener-
ated based on the input image and then inserted into various layers of the
encoder to extract task-specific features from the foundation model that are
then utilized in the classifier. In this setting, the encoder remains completely
fixed and only prompt keys and the classifier layers are expanded. Therefore,
future work could utilize the tools proposed in this thesis to measure where
these foundation models would be most affected by activation drift to indicate
the layers inwhich these prompts should be inserted, as especially in the class-
incremental setting, early layers are often not affected by activation drift.

Additionally, at the moment, the limitations of these foundation models are
still unclear, so it will be furthermore important to study under which cir-
cumstances these models would be affected by catastrophic forgetting and
how this would be different from the observations made in this thesis.
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CDA continual domain adpation

CE cross entropy loss

CiSS class-incremental semantic segmentation

CKA centered kernal alignment

CN continual normalization

CNN convolutional neural network

CS Cityscapes

DiSS domain-incremental semantic segmentation

DNN deep neural network

EWC Elastic Weight Consolidation

FE feature extraction

FT fine-tuning
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Acronyms

GAN Generative Adversarial Network

GN group normalization

GSS gradient-based sample selection

IN instance normalization

LN layer normalization

LwF Learning without Forgetting

MAS Memory Aware Synapses

mIoU mean intersection over union

RSS representation-based sample selection

SGD stochastic gradient descent

SSL self-supervised learning

UNCE unbiased cross entropy loss

VT vision transformer
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A Confusion Matrices for the
Pascal-15-5 Overlapped Setting

The confusion matrices in Figs. A.1a to A.1f for models trained in the over-
lapped setting show similar biases towards the background class and the most
recent classes than models trained in the disjoint setting.

Overlapped

(a) Fine-Tuning

1 - 15 16 - 200

(b) MAS (c) EWC

(d) LwF (e) Replay (f) Offline

ID Name
0 background
1 aeroplane
2 bicycle
3 bird
4 boat
5 bottle
6 bus
7 car
8 cat
9 chair
10 cow
11 dining table
12 dog
13 horse
14 motorbike
15 person
16 potted plant
17 sheep
18 sofa
19 train
20 monitor

Figure A.1: Confusion matrices after training on PascalVoc-15-5 overlapped. The confusion ma-
trix for a) Fine-Tuning shows a severe bias to the background class and the classes
of the most recent task (16-20). EWC [Kir15] and MAS [Alj18] decrease the bias
in exchange for worse accuracy on the most recent classes. Replay and LwF [Li18]
reduce the bias towards new classes and the background.
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B Reproducibility of Sec. 6.1

B.1 Training Protocol

The experiments in Sec. 6.1 follow the same evaluation protocol with the same
train, test and validation splits as proposed by Cermelli et al. [Cer20]. The
weights for ERFNet start from the same random initialization in all experi-
ments, instead of using ImageNet pre-trained weights. The hyperparameters
for the experiments are listed in Tab. B.1. The implementations for the aug-
mentations are taken from Albumentations [Bus20].

Table B.1: Hyperparameters for the experiments of Sec. 6.1. Parameters in the middle column
are for training on the first task, parameters in the right column for second task.
Parameters in bold in the right column are changed compared to the first task.

Parameter Pascal-15-5 (Task 1) Pascal-15-5 (Task 2)

Optimizer SGD(weight_decay=0.0003,
momentum: 0.9)

SGD(weight_decay=0.0003,
momentum: 0.9)

Learning rate 0.07 0.0005

Learning rate scheduler ReduceLROnPlateau(patience=8,
factor=0.5)

ReduceLROnPlateau(patience=8,
factor=0.5)

Batch size 16 16
Epochs 100 100

Training Augmentations
HorizontalFlip(p=0.5)
RandomSizedCrop(h=512, w=512)
Normalize()

HorizontalFlip(p=0.5)
RandomSizedCrop(h=512, w=512)
Normalize()

B.2 Continual Hyperparameter Selection

The hyperparameters for the continual learning methods are selected accord-
ing to the Continual Hyperparameter Framework of [De 19]. Therefore, in a
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B Reproducibility of Sec. 6.1

first step the learning rate is selected so that the model achieves the highest
accuracy on the new task. In the second step the specific continual learning
hyperparameters are tuned. This lead to the following hyperparameters for
the respective methods:

• EWC¹: 𝜆 = 10000
• MAS: 𝜆 = 5000
• LwF: 𝜆 = 6, 𝜏 = 2
• MiB: 𝜆 = 25, 𝛼 = 1

In the experiments with UNCE and Weight Normalization the exact same hy-
perparameters are used.

¹ In order to use such a high value for 𝜆 we clip the gradient norm at a value of 10 to avoid
exploding gradients.
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C Reproducibility of Sec. 6.2

C.1 Training Protocol

The hyperparameters for the experiments are listed in Tab. C.1. The learning
rate for the experiments in this section is tuned by running experiments with
learning rates of LR ∈ {0.1, 0.05, 0.01, 0.005, 0.001, 0.0005}. Additionally, inter-
mediate learning rates are tested between the best and second-best LR. For the
pre-trained and augmentation models, the same LR is selected for optimiza-
tion on Cityscapes.  The parameters for fine-tuning and EWC are determined
using the Continual Hyperparameter Framework [De 19].

Table C.1: Hyperparameters for the experiments of Sec. 6.2. Parameters in the middle column
are for training on the Cityscapes, parameters in the right column for training on the
ACDC subsets. Parameters in bold in the right column are changed compared to the
first task.

Parameter Cityscapes ACDC (subset)

Optimizer SGD(weight_decay=0.0003,
momentum: 0.9)

SGD(weight_decay=0.0003,
momentum: 0.9)

Learning rate LR ∈0.1, 0.05, 0.01, 0.005, 0.001, 0.0005 0.005
Learning rate scheduler PolynomialLR(power=0.9) PolynomialLR(power=0.9)
Batch size 8 8
Epochs 200 120

Training Augmentations
HorizontalFlip(p=0.5)
RandomSizedCrop(h=512, w=1024)
Normalize()

HorizontalFlip(p=0.5)
RandomSizedCrop(h=512, w=1024)
Normalize()
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C Reproducibility of Sec. 6.2

C.2 Models and Weights

The models and experiments are all implemented in PyTorch in combination
with Pytorch Lightning. The PyTorch implementation of ERFNet is based on
the code provided by [Rom18], which can be found at: github.com/Eromera
/erfnet_pytorch, the DeepLabV3+ [Che18] implementation is adapted from
Segmentation Models PyTorch [Iak19] and the SegFormer-B2 [Xie21] imple-
mentation from Hugging Face Transformers [Wol20]. The weights for the pre-
trained ResNet-50 [He16] backbones are taken from:

• DINO [Car21]: github.com/facebookresearch/dino
• MoCo v3 [Che21a]: github.com/facebookresearch/moco-v3
• BarlowTwins [Zbo21]: github.com/facebookresearch/barlowtwins
• SwAV [Car20]: github.com/facebookresearch/swav

The weights of ERFNet pre-trained with DINO and MoCo v3 can be found on
github.com/tobiaskalb/feature-reuse-css.

C.3 Augmentations

The augmentation schemes and their specific configurations that were used in
the experiments are shown in Tab. C.2. The resulting augmentation scheme
of AutoAlbum can be found at: github.com/tobiaskalb/feature-reuse-css.

Table C.2: List of augmentations used to increase feature reuse with there specified arguments
and classes of Albumentations [Bus20].

Method Albumentations Parameters

Distortion ColorJitter(brightness=0.2, contrast=0.5, saturation=0.5, hue=0.2)
ChannelShuffle(p=0.5)

Gaussian Blur GaussianBlur(blur_limit=(3, 5))
Gaussian Noise GaussNoise(var_limit=(30, 60))

AutoAlbument Augmentation Config from
github.com/tobiaskalb/feature-reuse-css
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D Reproducibility of Ch. 7

D.1 Training Protocol

The hyperparameters for the experiments of Ch. 7 are listed in Tab. D.1.

Table D.1: Hyperparameters for the experiments of Ch. 7. Parameters in the middle column are
for training on the domain-incremental setting, parameters in the right column for
training on the class-incremental setting. Parameters in bold in the right column are
changed compared to the first task.

Parameter Domain-Incremental Class-Incremental
Optimizer AdamW AdamW
Learning rate 0.0001 0.0001
Learning rate scheduler PolynomialLR(power=0.9) PolynomialLR(power=0.9)
Batch size 6 6
Epochs 120 40

Training Augmentations

HorizontalFlip(p=0.5)
RandomSizedCrop(h=769, w=769)
Distortion()
Normalize()

HorizontalFlip(p=0.5)
RandomSizedCrop(h=512, w=512)
Distortion()
Normalize()

D.2 Models and Weights

The experiments of Ch. 7 are conducted within the PyTorch-based MMSeg-
mentation Framework [Con20]. Therefore, the implementations of the mod-
els and the ImageNet weights are directly taken fromMMSegmentation. Only
the implementation of NAT-T is directly adapted from [Has23].
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Current deep learning algorithms excel at extracting complex patterns 
from large datasets and have been successful in fields such as computer 
vision and natural language processing. However, their application in dy-
namic environments, like automated driving, is hindered by catastrophic 
forgetting – the tendency to forget previously learned information when 
trained on new data. This work investigates the causes and effects of 
catastrophic forgetting in class- and domain-incremental learning for  
real-world semantic segmentation. Through analyzing real-world se-
mantic segmentation scenarios in automated driving, it reveals how 
class- and domain-incremental learning impact neural network layers. A 
developed toolset quantitatively measures forgetting, highlighting that 
semantic shifts in classes and changes to low-level features are key con-
tributors. This work demonstrates how strategies like image augmen-
tation, pre-training, and architectural adaptations mitigate catastrophic 
forgetting. These insights pave the way for creating more reliable and 
adaptable AI systems essential for real-world applications.
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