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Abstract
Light-matter interactions of molecules are very important for many technologies influencing
the daily life of human beings. Important instances are optical applications of molecular
materials such as in organic light-emitting diodes and organic solar cells. Molecular materi-
als with adjustable optical properties are of special interest for functional photonic devices.
However, finding suitable molecules for specific optical effects is often demanding as the
molecular chemical design space is very large. Simulations, which are potentially consider-
ably less expensive than experiments, mainly incorporate phenomenological descriptions of
molecules. The phenomenological description is often not sufficient for a precise quantitative
analysis.

To overcome such limitations, we present in this thesis a multi-scale approach to com-
pute the optical response of photonic devices incorporating molecules. In this context, we
connect two scientific disciplines to cover several length scales, starting at a single molecule
and finishing at an entire photonic device. In contrast to phenomenological descriptions, the
computed optical response of finite-size molecular models is based on a quantum-chemical
method, namely time-dependent density functional theory. The optical response of the pho-
tonic device is calculated using Maxwell scattering simulations. The central object of the
multi-scale approach is the transition (T-) matrix, which connects the microscopic descrip-
tion of the optical response of a molecule to the macroscopic description of the photonic
device.

We consider the optical properties of various molecules in photonic devices using the multi-
scale approach. In this context, we analyze the polarization-dependent response of molecular
monolayers on dielectric substrates. This study can potentially be of interest for the in situ
monitoring of chemical processes. Furthermore, we consider the coupling of optical cavities to
molecular films. This analysis could be potentially applied on simulating chemical reactions
inside optical cavities. We also design a metasurface of cylinders consisting of a molecular
material. The metasurface enhances the circular dichroism signal of the molecular material
that is usually very small and difficult to detect. The design of the metasurface is possible
due to a homogenization based on the T-matrix of a molecular structure inside a crystalline
lattice.

To consider the nonlinear optical response of molecules, we extend the multi-scale approach
with an object which we term the Hyper-T-matrix. The Hyper-T-matrix has a similar role for
nonlinear optical processes as the T-matrix for linear optical processes. With the extended
multi-scale approach, we analyze the second-harmonic generation response of molecular films
and enhance it with suitable photonic devices.

We emphasize that the multi-scale approach allows not only to analyze experimental mea-
surements of the optical response of molecules, but also to design photonic devices before
they are fabricated. This saves both costs and time, as the design space of the geometry
parameters can be efficiently investigated using simulations.

In this thesis, we study various carefully selected optical effects, but the multi-scale ap-
proach can be used for multiple further linear and nonlinear optical processes. An example
would be higher-order nonlinear optical effects such as third-harmonic generation.
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Zusammenfassung

Licht-Materie-Wechselwirkungen von Molekülen sind sehr wichtig für viele Technologien, die
den Alltag zahlreicher Menschen beeinflussen. Molekulare Materialien sind beispielsweise es-
sentiell für optische Anwendungen wie organische Leuchtdioden und organische Solarzellen.
Von besonderem Interesse für funktionale photonische Systeme sind molekulare Materialien
mit veränderbaren optischen Eigenschaften. Allerdings ist es oft anspruchsvoll, geeignete
Moleküle für spezifische optische Effekte zu finden, da es sehr viele Möglichkeiten für die Form
der Moleküle gibt. Simulationen, die potenziell deutlich kostengünstiger als Experimente
sind, beinhalten meist phänomenologische Beschreibungen der Moleküle. Die phänomenol-
ogische Beschreibung ist allerdings oftmals nicht ausreichend für eine präzise quantitative
Analyse.

Um solche Einschränkungen zu überwinden, präsentieren wir in dieser Dissertation einen
Multiskalen-Ansatz, um die optische Antwort photonischer Systeme zu berechnen, die moleku-
lare Struturen beinhalten. In diesem Zusammenhang verbinden wir zwei wissenschaftliche
Disziplinen, um verschiedene Längenskalen abzudecken. Wir fangen bei einem einzelnen
Molekül an und enden bei einem vollständigen photonischen System. Im Gegensatz zu
phänomenologischen Beschreibungen basiert die berechnete optische Antwort endlich großer
molekularer Modelle auf einer quantenmechanischen Methode, und zwar der zeitabhängigen
Dichtefunktionaltheorie (TD-DFT). Die optische Antwort des photonischen Systems wird
mit Maxwell Streusimulationen bestimmt. Das zentrale Objekt des Multiskalen-Ansatzes ist
die Transition (T-) matrix, die die mikroskopische Beschreibung der optischen Antwort eines
Moleküls mit der makroskopischen Beschreibung des photonischen Systems verbindet.

Wir betrachten mithilfe des Multiskalen-Ansatzes die optischen Eigenschaften verschiedenar-
tiger Moleküle innerhalb photonischer Systeme. In diesem Zusammenhang analysieren wir
die polarisationsabhängige Antwort molekularer Monoschichten auf dielektrischen Substraten.
Diese Studie kann potenziell von Interesse sein für die in situ Betrachtung chemischer
Prozesse. Weiterhin betrachten wir die Kopplung optischer Resonatoren mit molekularen
Filmen. Diese Analyse kann perspektivisch darauf angewandt werden, chemische Reaktio-
nen innerhalb optischer Resonatoren zu simulieren. Wir gestalten auch eine Metaoberfläche
von Zylindern, die aus einem molekularen Material bestehen. Die Metaoberfläche verstärkt
das Zirkulardichroismus-Signal des molekularen Materials, welches gewöhnlich sehr klein und
schwer zu messen ist. Die Gestaltung der Metaoberfläche wird durch eine Homogenisierung
ermöglicht, die auf der T-matrix einer molekularer Struktur innerhalb eines kristallinen Git-
ters basiert.

Um die nichtlineare optische Antwort von Molekülen zu bestimmen, erweitern wir den
Multiskalen-Ansatz mithilfe eines Objektes, das wir die Hyper-T-matrix nennen. Die Hyper-
T-matrix hat eine ähnliche Rolle für nichtlineare optische Prozesse inne, wie die T-matrix
für lineare optische Prozesse. Mithilfe des erweiterten Multiskalen-Ansatzes analysieren wir
die frequenzverdoppelte Antwort molekularer Filme und verstärken diese mit geeigneten
photonischen Systemen.

Wir betonen, dass der Multiskalen-Ansatz nicht nur die Analyse experimenteller Messun-
gen der optischen Antwort von Molekülen erlaubt, sondern auch die Gestaltung photonischer
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Zusammenfassung

Systeme bevor diese hergestellt werden. Dies spart sowohl Kosten als auch Zeit, da die Pa-
rameter der Geometrie effizient mit Simulationen erforscht werden können.

Wir studieren in dieser Dissertation verschiedenartige, sorgfältig ausgewählte optische
Effekte, aber der Multiskalen-Ansatz kann für viel mehr lineare und nichtlineare optische
Prozesse verwendet werden. Ein Beispiel sind nichtlineare optische Effekte höherer Ordnung
wie Frequenzverdreifachung.
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1 Introduction

Molecules are essential for multiple areas of application. The areas of application range from
processes in the human body and medical treatments [1–8], food chemistry [9–11], rubbers
and plastics that are bio-degradable, for instance [12–17], quantum-information technology
[18–20], to storage of data or other molecules [21, 22]. Optical applications are of special
interest, as molecular materials can be used for photonic devices such as organic solar cells
[23–28] and organic light-emitting diodes [29–33].

The fabrication of molecular materials advances very fast, and there is large interest in new
developments. A few instances are the fabrication of biomaterials through self-assembling
molecules [34], high-quality perovskite films for solar cells [35], color-tuned highly fluorescent
organic nanowires and nanofabrics [36], molecular junctions [37, 38], layer-by-layer assembled
metal-organic framework thin films [39], stimuli-responsive smart materials for sensors [40],
and one-dimensional aramid nanofibers [41].

Very often, however, fabrication progresses are time demanding and expensive. Due to the
very large chemical design space of molecules, an unexplored potential exists for improving
optical effects. It is also very challenging to experimentally investigate this chemical design
space. Theoretical investigations of molecules are, therefore, intrinsically important, as they
are potentially less expensive than experimental investigations.

Phenomenological descriptions of optical properties of molecules are common in several
studies. In [42, 43], for instance, the phenomenological model of a dielectric permittivity
of a molecular film leads to a very good agreement of simulated and measured spectra. A
drawback of many phenomenological descriptions is, however, that assumptions are very often
necessary for some simulation parameters. Furthermore, the experimental spectra sometimes
have to be measured beforehand to determine the molecular properties in simulations.

Optical simulations of molecules based on ab initio quantum-chemical methods, such as
(time-dependent) density functional theory ((TD)-DFT), are potentially more precise and
can be performed before the experiment. It is, therefore, possible to decide based on a
simulation, which molecule is suitable for a specific optical effect, for instance. Furthermore,
one can design experimental setups via ab initio based simulations of molecules to enhance
specific optical effects.

This thesis is centered around a multi-scale approach to compute the optical response of
photonic devices made from molecular materials. In this context, we refer to a procedure
as a multi-scale approach that starts with a description of the properties of a finite-size
molecular model and ending at the response of a macroscopic film or device. Besides their
characteristic of connecting several length scales, multi-scale approaches also often combine
several scientific disciplines. There are multiple different multi-scale approaches in literature.
We want to emphasize that the principle of a multi-scale approach starting at a finite-size
model is used for many different sciences. An instance is the spread of viruses, which covers
different size levels from individual cells, organisms, and populations [44]. Here, the hosts are
the objects which are scaled. The investigation of the British Columbia wildfires in 2017 is
another example for a multi-scale approach, in the context of which the spread of fires and the
injection of aerosol particles into the stratosphere are considered [45]. Also, the evaluation
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1. Introduction

of the vitality of the Gombe dialect of the African language Fulfulde is studied on different
scales of usage [46]. Multi-scale graph neural networks working on different geographic levels
can be used to predict COVID-19 positivity and hospitalization [47].

Focusing on molecules as objects of interest, there is also a variety of multi-scale approaches.
An instance is a molecular dynamics model discussed for strongly coupled molecules incorpo-
rating different confined light modes to gain knowledge about how cavities modify chemical
reactions in Refs. [48, 49].

In this thesis, we present a multi-scale approach to discuss the optical properties of photonic
devices that incorporate molecules. We connect ab initio quantum-chemical methods, namely
TD-DFT, to Maxwell scattering simulations. The element, which enables the combination
of these two scientific disciplines in the context of linear optical phenomena, is Waterman’s
transition (T-)matrix [50]. The T-matrix represents the scattering response of an object,
and is used in several propgramm suites such as mpGMM [51], treams [52, 53], CELES [54,
55], SMUTHI [56, 57], and MULTEM 2 [58]. It can be computed with quantum-chemical
methods such as TD-DFT [59], and is used in this thesis to obtain the optical response of
planar structures, and to calculate effective parameters of molecular materials. The material
parameters can be used to design objects of arbitrary shape. The T-matrix is, therefore,
the bridge between the microscopic and macroscopic description of the linear optical effects
discussed in this thesis.

We analyze both linear and nonlinear optical phenomena of molecules within photonic
devices. To prepare these discussions, we introduce the fundamentals of electromagnetic
phenomena in Chapter 2. This introduction includes Maxwell’s macroscopic equations and
constitutive relations used for describing linear and nonlinear optics on the device level.
Furthermore, we consider the propagation of electromagnetic waves in chiral media, introduce
Maxwell’s microscopic equations, and discuss the transition from the microscopic to the
macroscopic description of electromagnetics.

Chapter 3 explains the T-matrix formalism. In this context, we introduce the T-matrix
with the simple instance of a homogeneous sphere and explain how the optical response of
stacked two-dimensional lattices of scatterers combined with homogeneous slabs is computed.
The computation of the optical response of such a system is a major principle of the two
simulation packages mpGMM [51] and treams [52, 53] used in this thesis.

In Chapter 4, we present the fundamentals of (TD)-DFT, starting at the quantum-mechanic
description of a molecular system, the Hohenberg-Kohn theorems, and the Kohn-Sham equa-
tions. Then, we explain the principles used to compute the optical properties of finite-size
molecular models.

Chapters 5, 6, and 7 discuss topics, which originate from the work the author was involved
in.

Chapter 5 introduces a homogenization approach for molecular materials and metamate-
rials. The approach is based on an object termed “effective T-matrix”, which incorporates
lattice interactions of the building blocks of the materials. From the effective T-matrix,
material parameters are derived that do not depend on the propagation direction of an
illumination.

In Chapter 6, we introduce the T-matrix based multi-scale approach for linear optics. In the
context of linear optical phenomena, we study on the one hand the polarization dependent
response of molecular monolayers deposited on dielectric substrates. The results of these
studies can potentially play a role for the experimental consideration of chemical reactions.
On the other hand, we analyze the coupling of optical cavities to different molecular films. In
this context, we consider crystalline materials and an effective medium of randomly oriented
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molecules. Due to the different nature of the films, we gain knowledge about different coupling
regimes. Furthermore, we design a metasurface of cylinders which consist of chiral molecules.
Chiral molecules are not superimposable on their mirror image [60] and are very important
for the production of medicines such as L-Thyroxin. They show a difference of the absorption
signals related to the two different kinds of polarization handedness of light. Based on the
homogenization approach from Chapter 5, we design a metasurface to enhance this difference
of the signals. In the context of the discussion of optical phenomena, we make use of the
fact that the multi-scale approach enables the consideration of single molecules, a monolayer,
and of entire photonic devices.

Chapter 7 extends the multi-scale approach from Chapter 6 to nonlinear optical phenomena.
To describe nonlinear optical phenomena, we introduce an object termed “Hyper-T-matrix”,
which can also be obtained based on TD-DFT simulations. We use the Hyper-T-matrix
to extend the multi-scale approach for the computation of the second-harmonic generation
(SHG) signal of photonic devices incorporating molecules. In this context, we enhance the
SHG signal of a specific molecular film with an optical cavity and study the SHG response
of films consisting of a centrosymmetric molecular material. The SHG response of such
films originates from the symmetry breaking at their surface. The study of the surface SHG
response enables fascinating insights into the question, how thick the surface of the film is
that contributes to the SHG signal. We also enhance this signal with a Kretschmann-like
setup. The multi-scale approach enables, therefore, the consideration of both linear and
nonlinear optical effects of photonic devices incorporating molecules.

In Chapter 8, we conclude the thesis and give an outlook on possible future research
directions.
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2 Classical Electromagnetics

In this chapter, we discuss the fundamentals of the linear and nonlinear optical effects, which
are analyzed in this thesis. Traditionally, all these effects, and indeed the entire interaction
between light and matter, can be characterized by the relationship between the electromag-
netic fields and the polarizations they induce in the material. This relationship is called the
constitutive relations, and having a proper understanding of these constitutive relations is
key to explore the relevant effects [61]. Linear optics describes phenomena that are based on
a linear dependence of the polarization on the fields in the constitutive relations. Nonlinear
optical phenomena are based on a nonlinear relationship between them.

In this chapter, we start with the macroscopic constitutive relations for linear optics and
extend them to nonlinear optics. Understanding the nonlinear constitutive relations enables
the description of nonlinear optical effects analyzed in this thesis. While linear optics has
been discussed for many decades or even centuries, nonlinear optical effects such as second
harmonic generation [62] have gained a lot of interest only with the development of the first
laser in 1960 [63]. The invention of the laser was decisive since it provides the high intensity
necessary for observing nonlinear effects [63, 64]. The basis of both linear and nonlinear optics
are Maxwell’s equations. Together with the constitutive relations, they are used to analyze
all linear and nonlinear optical effects. In this thesis, a specific type of molecular material is
very important. It consists of molecules whose mirror image cannot be superimposed by any
means with the original molecules. Such molecules are called chiral [60]. In comparison to
materials that do not show such a property (achiral materials), electric fields and magnetic
fields are coupled in chiral media. We analyze such media with specific constitutive relations,
which we consider below.

As the constitutive relations of chiral and achiral media differ, the propagation of electro-
magnetic waves in them must be described differently. Therefore, we discuss below how the
propagation of electromagnetic waves through chiral media can be represented. Due to the
coupling between electric and magnetic fields, phenomena such as circular dichroism and op-
tical rotation occur, which are related to the absorption and the change of the polarization
state of light interacting with chiral media. Circular dichroism is a phenomenon that we
discuss in this thesis in more detail.

While the interaction between light and macroscopic objects is described with the macro-
scopic Maxwell equations and constitutive relations, the interaction between light and micro-
scopic objects, such as molecules, is described with the microscopic Maxwell equations and
induced multipole moments. Therefore, we finally introduce the microscopic Maxwell equa-
tions and explain the transition between the microscopic and the macroscopic description of
electromagnetism.

In Section 2.1, we discuss the macroscopic description of electromagnetism. In Subsec-
tion 2.1.1, Maxwell’s macroscopic equations are introduced both in the time and frequency
domain. Subsection 2.1.2 discusses the constitutive relations used in this thesis to describe
light-matter interaction. Here, we consider both linear and nonlinear constitutive relations.
In Subsection 2.1.3, we describe the propagation of electromagnetic waves in chiral media.
Section 2.2 introduces the microscopic description of electromagnetism. In this regard, we
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discuss Maxwell’s microscopic equations in Subsection 2.2.1 and the transition from the
microscopic to the macroscopic description by introducing multipolar moments in Subsec-
tion 2.2.2.

2.1. Macroscopic Electromagnetics

In this thesis, both the macroscopic and microscopic description of electromagnetics is im-
portant, as we consider both the interaction of light with entire photonic devices and single
molecules In this section, we introduce the macroscopic description of electromagnetism. This
description is used to analyze the interaction between electromagnetic waves and macroscopic
media. For macroscopic media, the number of nuclei and electrons is sufficiently large within
a volume that is small compared to any other relevant length scales, so that the oscillations
of the electromagnetic fields, produced by the nuclei and electrons, are flatted by spatial av-
eraging [61]. So instead of discussing individual molecules or atoms, the properties of matter
are considered at a continuous level.

2.1.1. Maxwell’s Macroscopic Equations

Maxwell’s equations are used to describe electromagnetic effects. In the time domain, the
macroscopic equations read [61, Eq. (I.1a)]

∇ · D̃(r, t) = ρ̃ext(r, t) ,

∇ · B̃(r, t) = 0 ,

∇× Ẽ(r, t) = − ∂

∂t
B̃(r, t) ,

∇× H̃(r, t) = J̃ext(r, t) +
∂

∂t
D̃(r, t) .

(2.1)

D̃(r, t) is the electric displacement at position r and time t, B̃(r, t) is the magnetic flux
density, Ẽ(r, t) is the electric field, and H̃(r, t) is the magnetic field. In the thesis, we
assume the absence of external charges ρ̃ext(r, t) and external currents J̃ext(r, t).

Linear optics is commonly described in frequency domain. To transfer Maxwell’s equations
from time into frequency domain, we introduce the Fourier transformation as

E(r, ω) =

∫
dtẼ(r, t)eiωt , Ẽ(r, t) =

1

2π

∫
dωE(r, ω)e−iωt , (2.2)

where E(r, ω) is the Fourier transform of the electric field Ẽ(r, t). In frequency domain,
Maxwell’s equations are [61, Eq. (6.130)]

∇ ·D(r, ω) = 0 ,

∇ ·B(r, ω) = 0 ,

∇×E(r, ω) = iωB(r, ω) ,

∇×H(r, ω) = −iωD(r, ω) .

(2.3)
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2.1. Macroscopic Electromagnetics

2.1.2. Constitutive Relations for Linear and Nonlinear Optics
To describe light-matter interactions, constitutive relations are required in addition to Max-
well’s equations. The constitutive relations link the fields in the material to each other. In
the following, we consider constitutive relations both for linear and nonlinear optics.

Linear Optics

We first consider linear, anisotropic, nonlocal, dispersive, time-invariant and achiral media.
With the general electric and magnetic response functions, Re(r, t) and Rm(r, t), we have
[61],

D̃(r, t) =
∑
i

êi
∑
j

∫
R3

dr′
∫ ∞

−∞
dt′Re

ij(r − r′, t− t′)Ẽj(r
′, t′) , (2.4)

B̃(r, t) =
∑
i

êi
∑
j

∫
R3

dr′
∫ ∞

−∞
dt′Rm

ij (r − r′, t− t′)H̃j(r
′, t′) . (2.5)

As we assume temporal causality, the response functions are zero for t′ > t. This means that
at time t, only fields prior to t enter [61]. For the Fourier transformed equations, we have
[61, Eq. (I.11)]

D(r, ω) =
∑
i

êi
∑
j

∫
R3

dr′εij(r − r′, ω)Ej(r
′, ω) ,

B(r, ω) =
∑
i

êi
∑
j

∫
R3

dr′µij(r − r′, ω)Hj(r
′, ω) ,

(2.6)

with the electric permittivity tensor ε(r, ω) and the magnetic permeability tensor µ(r, ω),
which correspond to the electric and magnetic response functions in the frequency domain.

In this thesis, we only consider local media so that the convolution kernels in Eq. (2.6)
reduce to delta distributions. We can, therefore, replace the integrals in Eq. (2.6) by tensor
products,

D(r, ω) = ε(r, ω)E(r, ω) , B(r, ω) = µ(r, ω)H(r, ω) . (2.7)

We can also extend these constitutive relations to chiral and reciprocal media. For these
media, an electromagnetic coupling occurs, which can be seen in the dependence of the
electric displacement on the magnetic field, and of the magnetic flux density on the electric
field, [65, Eqs. (1.51), (1.71)]:(

D(r, ω)
B(r, ω)

)
=

(
ε(r, ω) iκ(r, ω)

√
ε0µ0

−iκT(r, ω)
√
ε0µ0 µ(r, ω)

)(
E(r, ω)
H(r, ω)

)
. (2.8)

κ(r, ω) is the chirality tensor. For isotropic media, all material parameters are scalars.
We additionally introduce the relative permittivity εr(r, ω) = ε(r, ω)/ε0 and the relative
permeability µr(r, ω) = µ(r, ω)/µ0. ε0 is the vacuum permittivity and µ0 is the vacuum
permeability. For homogeneous media, the material tensors do not depend on r.

Equation (2.8) describes linear, anisotropic, local, dispersive, time-invariant, reciprocal,
and chiral media. According to Lord Kelvin, an object is called chiral if its mirror image
cannot be superposed with the original object [60]. Producing an entire material made out of
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many chiral objects, such as molecules in our case, gives rise to a chiral medium that requires
κ(r, ω) to describe its properties. Due to chirality, the electric displacement is coupled to
the magnetic field and the magnetic flux density is coupled to the electric field. Due to
reciprocity, the coupling is described by the same chirality tensor κ(r, ω) [65]. It shall be
noted that there are several notations of the constitutive relations used to describe chirality
in literature. These can be found in [66], for instance.

The linear light-matter interactions discussed in this thesis can be entirely described with
Maxwell’s equations in (2.3) and the constitutive relations in Eq. (2.8). For describing
nonlocal effects, we refer to the constitutive relations discussed in [67], for instance.

Second-Order Nonlinear Optics

Nonlinear optical effects are based on nonlinear light-matter interactions. In the following,
we concentrate on second-order nonlinear effects in homogeneous media. In this regard,
the polarization induced in the material depends on products of two components of the
electric field and not just on a single one. In our discussion of nonlinear optical effects,
we neglect electromagnetic coupling terms. This is based on the fact that current density-
functional theory software packages, which we use to compute optical properties of molecules,
do not provide electromagnetic coupling terms for nonlinear optics. We further assume in
the following that the considered media are homogeneous and non-magnetic.

In the context of linear optics, the electric displacement in an achiral medium can also be
expressed as [61, Eq. (I.9)]

D(r, ω) = ε0E(r, ω) + P e(r, ω) , (2.9)

where P e(r, ω) is the electric polarization in the material induced by an electromagnetic
wave. We have [64, Eq. (5.3-17), (5.3-20)]

P e(r, ω) = ε0χ(ω)E(r, ω) and ε(ω) = ε0 (13 + χ(ω)) , (2.10)

with the electric susceptibility tensor χ(ω) and the 3×3-identity matrix 13. Equation (2.10)
corresponds to a linear relationship between the polarization and the electric field.

In nonlinear optics, we add a term PNL,e for which the relation between the polarization and
electric field is nonlinear. An instance for second-order effects is second-harmonic generation
(SHG), for which a component of the polarization is proportional to the product of two
components of the electric field, i.e., PNL,e,i ∝ EjEk. In an SHG-process, an electromagnetic
wave at frequency ω does not only cause an electromagnetic wave at the same frequency, due
to the linear response of the medium, but also an electromagnetic wave at the frequency 2ω,
see Figure 2.1(a). The process occurs due to the nonlinear susceptibility χ(2). Figure 2.1(b)
shows the energy level diagram for this process. In this regard, one is considering two photons
of the fundamental electromagnetic wave at frequency ω in the nonlinear optical material,
which cause transitions to and between virtual states (dashed lines) to produce a single
photon at frequency 2ω. Virtual states can be considered as a combination of an energy
eigenstate of an atom and an energy eigenstate of a photon of the radiation field [63]. The
process starts at an atomic ground state (straight line).

To analyze the process of SHG in the more formal framework presented in Section 1.3. of
[63], for instance, we concentrate on monochromatic fields. A monochromatic field in time
domain is given by [63, Eq. (1.3.2)]

Ẽ(r, t) =
1

2

(
E(r;ω)e−iωt + c.c.

)
, (2.11)
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Figure 2.1.: Scheme (a) and energy level diagram (b) of second-harmonic generation. In this
process, an electromagnetic wave at frequency ω produces an electromagnetic
wave at frequency 2ω due to the nonlinear susceptibility χ(2) of the material.

where c.c. denotes complex conjugation of the previous term. E(r;ω) is a complex monochro-
matic field amplitude, which does not explicitly depend on the frequency ω. In this context,
ω is a parameter. One can see that products of the electric fields with the resulting mix-
ing of frequencies represent different nonlinear effects such as second-harmonic generation
(ω+ ω = 2ω) or optical rectification (ω− ω = 0), see [63]. In the case of SHG, the nonlinear
polarization is defined as [63, Eq. (1.3.11)]

P̃NL,e(r, t) =
1

2

(
PNL,e(r; Ω)e

−iΩt + c.c.
)
, (2.12)

with [63, Eq. (1.3.17)]

PNL,e(r; Ω) =
1

2
ϵ0
∑
i,j,k

êiχ
(2)
ijk(−Ω, ω, ω)Ej(r;ω)Ek(r;ω) , (2.13)

Ω = 2ω, and the second-order susceptibility χ(2)(−Ω, ω, ω), which is a third-rank tensor.
For a centrosymmetric material, we have χ(2)(−Ω, ω, ω) = 0 due to symmetry reasons [63].
SHG, therefore, vanishes in the bulk of a centrosymmetric system. We discuss in Chapter 7,
however, that an SHG signal can be produced from a spatial domain close to the surface of
the material. Via Maxwell’s equations, one can show that the polarization from Eq. (2.13),
oscillating at Ω = 2ω generates an electromagnetic wave at the SHG frequency. Note that
a factor of 1/2 is added in Eq. (2.13) in comparison to [63], as we use the real part of the
fields while [63] uses twice the real part.

To describe the interaction of light with matter in the framework of linear optics, Max-
well’s equations and the constitutive relations are the same for complex monochromatic field
amplitudes E(r;ω) and Fourier transforms E(r, ω). We use complex monochromatic field
amplitudes in nonlinear optics to avoid complicated convolutions in frequency domain, which
do not appear in linear optics for Fourier transforms. The Fourier transform of the second-
order susceptibility is given in [63, Eq. (1.6.9)], for instance.

2.1.3. Description of Electromagnetic Waves in Chiral Media
In this subsection, we consider linear, isotropic, and homogeneous media with the relative
permittivity εr(ω) and the relative permeability µr(ω). If they are additionally achiral, the
propagation of a monochromatic electromagnetic wave through such media is described with
the Helmholtz wave equation,(

∆+
ω2

c20
εr(ω)µr(ω)

)
E(r;ω) = 0 , (2.14)
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which can be derived from Maxwell’s equations and the constitutive relations [68]. c0 =
1/

√
ε0µ0 is the speed of light in vacuum. Solutions to the Helmholtz wave equation are

elliptically polarized plane waves with the electric field

E(r;ω) = E0e
ik(ω)·r . (2.15)

Linearly and circularly polarized plane waves are special cases. k(ω) is the wave vector with
the norm |k(ω)| = k(ω) = ω

c0

√
εr(ω)µr(ω), which is commonly referred to as the wavenumber.

E0 is the complex amplitude of the field, for which k(ω) ·E0 = 0 holds.
For chiral media with the chirality parameter κ(ω), we have more complicated constitutive

relations. Hence, the curl equations for the electric and magnetic fields are, in general, not
diagonal but read as [65, Eq. (3.26)](

∇×E(r;ω)
∇×H(r;ω)

)
= ω

(
κ(ω)

√
ε0µ0 iµ(ω)

−iε(ω) κ(ω)
√
ε0µ0

)(
E(r;ω)
H(r;ω)

)
. (2.16)

By diagonalizing this matrix equation, one derives fields whose polarization does not change
upon propagation through the chiral media in contrast to the electric and magnetic fields
[65, Eq. (3.28)], [69, Eq. (8.9)]. These fields are the Riemann-Silberstein vectors [70, 71]

G±(r;ω) =
1√
2

(
E(r;ω)± i

√
µr(ω)

εr(ω)
Z0H(r;ω)

)
. (2.17)

Here, we use the notation of [72, Eq. (2.36)]. Z0 =
√

µ0

ε0
is the vacuum impedance. The

matrix equation for the Riemann-Silberstein vectors reads [65, Eq. (3.29)],(
∇×G+(r;ω)
∇×G−(r;ω)

)
=

(
k+(ω) 0

0 −k−(ω)

)(
G+(r;ω)
G−(r;ω)

)
. (2.18)

The corresponding wavenumbers are

k±(ω) =
ω

c0

(√
εr(ω)µr(ω)± κ(ω)

)
. (2.19)

One can show that the helicity operator for monochromatic fields is Λ = ∇×
k(ω) [73, Eq. (2)].

We conclude, therefore, that [74, Eq. (2)],

ΛG±(r;ω) = ±G±(r;ω) . (2.20)

G±(r;ω) are the eigenvectors of the helicity operator with eigenvalues ±1. A field, which
is a superposition of left-handed circularly polarized plane waves, corresponds to G+(r;ω).
Likewise, a field, which is a superposition of right-handed circularly polarized plane waves,
corresponds to G−(r;ω) [74]. G±(r;ω) are fields of pure helicity, used for describing the
propagation of electromagnetic waves through chiral media.

In the following, we consider a chiral film in a host medium. The film is illuminated sub-
sequently by two plane waves with helicity ±1. We observe that G±(r;ω) have different
wavenumbers k±(ω) = ω

c0

(√
εr(ω)µr(ω)± κ(ω)

)
. Therefore, the two plane waves of oppo-

site helicity ±1 are absorbed differently [60]. We call this phenomenon absorption circular
dichroism [60], which is quantified in this thesis as

ACD =
A+ −A−

2
, (2.21)

10



2.2. Microscopic Electromagnetics

with the absorption

A± = 1− T± −R± (2.22)

of the respective plane waves. T± and R± are the power transmittance and power reflectance,
respectively.

In chemistry and biology, a common spectroscopic quantity is the transmission circular
dichroism in the units mdeg [75, P3],

CD(mdeg) = arctan

(√
T− −

√
T+√

T− +
√
T+

)
· 180 · 1000

π
. (2.23)

We use these two measures to quantify the circular dichroism of light interacting with chiral
molecular media and devices built thereof. Note that it is also common to abbreviate the
absorption circular dichroism with “CD” and the transmission circular dichroism with “TCD”.
As we compare our results to spectroscopic measurements, however, we use the notation from
Eqs. (2.21) and (2.23), which is more common in chemistry and biology.

Optical rotation is another important phenomenon occurring for light which interacts with
chiral media [60]. It describes the change of the polarization state of a linearly polarized plane
wave, due to the different real parts of k+(ω) and k−(ω).

2.2. Microscopic Electromagnetics
In Section 2.1, we considered the propagation of light in macroscopic media. In the following,
we introduce the microscopic description of electromagnetism to consider the interaction of
light with single molecules, for instance. Then, we perform the transition from the micro-
scopic to the macroscopic description. In this regard, we observe that the spatially averaged
response of microscopic objects can be expressed via multipole moments.

2.2.1. Maxwell’s Microscopic Equations
We follow the discussion of Section (6.6) from [61]. We discuss a system consisting of nuclei
and electrons considered as point charges. In the time domain, we describe electromagnetic
effects in such a system with Maxwell’s microscopic equations [61, Eq. (6.64)]:

∇ · ẽ(r, t) = η̃(r, t)

ε0
,

∇ · b̃(r, t) = 0 ,

∇× ẽ(r, t) = − ∂

∂t
b̃(r, t) ,

∇× b̃(r, t) = µ0j̃(r, t) +
1

c20

∂

∂t
ẽ(r, t) .

(2.24)

ẽ(r, t) is the microscopic electric field and b̃(r, t) is the microscopic magnetic flux density.
The microscopic charge density is defined as [61, Eq. (6.71)]

η̃(r, t) =
∑
j

qjδ(r − rj(t)) , (2.25)

with the position vector rj(t) of point charge qj . j̃(r, t) is the microscopic current density.
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2. Classical Electromagnetics

2.2.2. Transition from the Microscopic to the Macroscopic Description of
Electromagnetics

To perform the transition from the microscopic to the macroscopic description of electro-
magnetism, we spatially average over the microscopic quantities. Macroscopic media consist,
roughly, of 1023 nuclei and electrons per cm3 [61]. Oscillations of the microscopic quantities
in space and time are usually averaged out by measuring devices, because the corresponding
large oscillation frequencies cannot be detected. In general, time averaging is not neces-
sary after spatial averaging, as usually only the microscopic oscillations are present, which
oscillate with the frequency of the applied fields [61].

We define the spatial average of a field ẽ(r, t) with respect to a test function f(r) as [61,
Eq. (6.65)]

⟨ẽ(r, t)⟩ =
∫
R3

dr′f(r′)ẽ(r − r′, t) . (2.26)

The test function f(r) is non-zero around r = 0. One can use Gaussian functions for f(r),
but, in general, it does not have to be explicitly defined, as long as it is continuous and
sufficiently smooth [61].

Maxwell’s equations include both space and time derivatives of the fields. The derivative
of a spatially averaged quantity with respect to space is [61, Eq. (6.67)]

∂

∂ri
⟨ẽ(r, t)⟩ =

〈
∂

∂ri
ẽ(r, t)

〉
, (2.27)

and the derivative with respect to time is [61, Eq. (6.67)]

∂

∂t
⟨ẽ(r, t)⟩ =

〈
∂

∂t
ẽ(r, t)

〉
. (2.28)

The macroscopic electric field and the macroscopic magnetic flux density are spatial averages
of the respective microscopic quantities. We, therefore, define them as [61, Eq. (6.68)]

Ẽ(r, t) = ⟨ẽ(r, t)⟩ , B̃(r, t) = ⟨b̃(r, t)⟩ , (2.29)

so that two macroscopic Maxwell equations follow [61, Eq. (6.69)]:

∇ · B̃(r, t) = 0 , ∇× Ẽ(r, t) = − ∂

∂t
B̃(r, t) (2.30)

follow. Furthermore, we have [61, Eq. (6.70)]

∇ · Ẽ(r, t) =
⟨η̃(r, t)⟩
ε0

,
1

µ0
∇× B̃(r, t) = ⟨j̃(r, t)⟩+ ε0

∂

∂t
Ẽ(r, t) . (2.31)

In the following, we show that the spatially averaged charge density can be expressed as a
sum of electric multipole moments. For equation (2.31), we have to derive expressions for
the spatial average of the microcopic charge density and of the microscopic current density.
We start with the microscopic charge density. It is a sum of the free and bound charges [61,
Eq. (6.72)]

η̃(r, t) = η̃free(r, t) + η̃bound(r, t) , (2.32)

12



2.2. Microscopic Electromagnetics

where

η̃bound(r, t) =
∑
n

η̃n(r, t) , η̃n(r, t) =
∑
j(n)

qjδ(r − rj(t)) . (2.33)

η̃n(r, t) is the charge density of an object n. In the following, we assume that the object n is
a molecule. We define the position vectors rjn(t) of the charges qj of molecule n with respect
to a fixed position vector rn(t). Then, we have [61, Eq. (6.74)]

⟨η̃n(r, t)⟩ =
∑
j(n)

qjf(r − rn(t)− rjn(t)) . (2.34)

This expression can be approximated by a Taylor series with respect to the small distance
r − rn(t) [61]:

⟨η̃n(r, t)⟩ =
∑
j(n)

qj [f(r − rn(t))− rjn(t) · ∇f(r − rn(t))] + . . . . (2.35)

Here, we derived a very import finding, as the terms in the sum correspond to molecular
multipole moments [61, Eqs. (6.75), (6.76)]:

qn =
∑
j(n)

qj (2.36)

is the molecular charge, and

p̃e,n(r, t) =
∑
j(n)

qjrjn(t) (2.37)

is the molecular electric dipole moment. Here, we write down only dipoles explicitly. As
molecules are usually considerably smaller than the wavelength of the fields, this is, in general,
sufficient. For larger objects, quadrupoles, octupoles, etc. might have to be considered as
well. One can express, furthermore, the spatial average of the molecular charge density as
[61, Eq. (6.79)]

⟨η̃n(r, t)⟩ = ⟨qnδ(r − rn(t))⟩ − ∇ · ⟨p̃e,n(r, t)δ(r − rn(t))⟩+ . . . , (2.38)

so that the spatially averaged response of a molecule can be considered as a sum of point
electric multipoles.

Below, we show that the spatially averaged current density of a molecule can be expressed
as a sum of point magnetic multipoles. This is a key finding for the description of the
interaction of molecules with electromagnetic waves, as by computing the dipole moments
of a molecule, its optical response can be obtained. We continue with the transition to
the macroscopic Maxwell equations. The spatial average of the microscopic charge density
is computed by adding the contributions from all molecules and from the free charges [61,
Eq. (6.87)]

⟨η̃(r, t)⟩ = ρ̃ext(r, t)−∇ · P̃e(r, t) , (2.39)

with the macroscopic charge density [61, Eq. (6.88)]

ρ̃ext(r, t) = ⟨η̃free(r, t)⟩+
〈∑

qnδ(r − rn(t))
〉
, (2.40)

13
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and the macroscopic electric polarization [61, Eq. (6.89)]

P̃e(r, t) =

〈∑
n

p̃e,n(r, t)δ(r − rn(t))

〉
. (2.41)

Therefore [61, Eq. (6.91)],

∇ ·
[
ε0Ẽ(r, t) + P̃e(r, t)

]
= ρ̃ext(r, t) (2.42)

follows from ε0∇·Ẽ(r, t) = ⟨η̃(r, t)⟩. Comparing to the macroscopic Maxwell equations (2.1),
we have

∇ · D̃(r, t) = ρ̃ext(r, t) , (2.43)

with the electric displacement [61, Eq. (6.92)]

D̃(r, t) = ε0Ẽ(r, t) + P̃e(r, t) . (2.44)

The same principles can be used for the spatial average of j̃(r, t), which is also expressed as a
sum of a term due to the free charges and a term due to the bound charges of the molecules.
One can derive [61, Eq. (6.96)]

⟨j̃i(r, t)⟩ = J̃ext,i(r, t) +
∂

∂t

[
D̃i(r, t)− ε0Ẽi(r, t)

]
+
∑
ls

ϵils
∂

∂rl

P̃m,s(r, t)

µ0
, (2.45)

neglecting higher order terms due to the small velocities of the molecules. ϵils is the Levi-
Civita symbol. The macroscopic magnetic polarization is defined as [61, Eq. (6.98)]

P̃m(r, t) =

〈
µ0
∑
n

p̃m,n(r, t)δ(r − rn(t))

〉
, (2.46)

with the molecular magnetic dipole moment [61, Eq. (6.95)]

p̃m,n(r, t) =
∑
j(n)

qj
2
(rjn(t)× vjn(t)) . (2.47)

vjn(t) is the velocity of charge qj in molecule n. Comparing to the macroscopic Maxwell
equations (2.1), we have

∇× H̃(r, t) = J̃ext(r, t) +
∂

∂t
D̃(r, t) (2.48)

with the magnetic field [61, Eq. (6.99)]

H̃(r, t) =
1

µ0

[
B̃(r, t)− P̃m(r, t)

]
. (2.49)

We observe that the description of macroscopic media consisting of microscopic objects,
such as molecules, can be performed by considering the multipole moments of the microscopic
objects. For the description of molecules, usually electric and magnetic dipoles are sufficient.
For larger objects, the consideration has to be extended to incorporate quadrupoles, octupoles
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etc. This is an essential finding, since the computation of the electric and magnetic dipolar
response of molecules allows to calculate macroscopic quantities. We introduce in Chapter 3
the T-matrix, which describes the multipolar response of an object. In Chapter 4, we show
that the T-matrix of a molecule can be computed with density-functional theory.

In this chapter, we presented the fundamentals of linear and nonlinear optics. We intro-
duced the macroscopic Maxwell equations both in time and frequency domain. Together with
the linear constitutive relations and the addition of a nonlinear term, Maxwell’s equations
will be used to describe all linear and nonlinear optical effects in this thesis. We concluded
the chapter by considering the microscopic Maxwell equations and performing the transition
from to the microscopic to the macroscopic description. In this context, we observed that the
spatial average of the microscopic charge and current densities leads to a sum over multipole
moments.

In the next chapter, we introduce the T-matrix formalism used to obtain the optical
response of the molecular systems that we consider in this thesis. The T-matrix represents the
response of finite-size objects expanded with multipolar coefficients. It can be used, therefore,
as a bridge between the microcopic description of single molecules and the macroscopic
description of photonic devices incorporating the molecules.
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3 T-matrix Formalism for Linear Optics
The transition (T-)matrix of an object was introduced by Waterman to describe its electro-
magnetic scattering response [50]. The T-matrix relates the multipolar field coefficients of
an incident electromagnetic wave to the corresponding multipolar field coefficients of a scat-
tered electromagnetic wave. It constitutes a very comprehensive representation of the linear
optical properties of an object. Once the T-matrix of a single object is known, it can be used
to describe the optical response of macroscopic photonic materials made from many of these
objects. Two instances are the computation of the macroscopic optical response of stacked
two-dimensional periodic lattices of scatterers in combination with isotropic slabs [51, 76, 77]
and the analysis of multipolar couplings in periodic systems [78]. The T-matrix is an essential
object in this thesis by many means. For instance, the T-matrix can be used as the bridge
between the quantum-chemical and the optical scattering analysis of molecules: We see in
Subsection 2.2.2 that the transition from the microscopic to the macroscopic description of
electromagnetism is based on the multipolar moments of the microscopic objects, which make
up the macroscopic media. The T-matrix can be used to represent the scattering response
of such objects with respect to an incident field. Both the incident and the scattered fields
are expanded in vector spherical waves with corresponding multipolar coefficients. If the
microscopic object is a finite-size molecular model, the T-matrix can be computed from its
polarizability tensor. The latter can be calculated with quantum-chemical methods such as
time-dependent density functional theory. With the T-matrix of a molecule at hand, the op-
tical response of a photonic device containing this molecule can be computed with Maxwell’s
scattering simulations. The T-matrix can be considered, therefore, as the bridge between
the microscopic and macroscopic description of the electromagnetic phenomena discussed in
this thesis.

In Section 3.1, we define and analyze different properties of the T-matrix. Here, we show
the computation principle of the T-matrix of a homogeneous, isotropic, and achiral sphere,
the transformation of the T-matrix between different basis sets, and its computation from the
polarizability tensor. In Section 3.2, it is explained how the optical response of macroscopic
photonic structures made from different objects is simulated based on the T-matrix. In this
regard, we introduce some principles of the two program suites mpGMM [51] and treams [52,
53], which are used for optical simulations in this thesis.

3.1. Definition and Properties of the T-matrix
In this thesis, we use Waterman’s T-matrix [50] to characterize the electromagnetic scat-
tering off an object and to describe the optical properties of macroscopic systems. In the
following, we consider an object surrounded by a homogeneous, isotropic, and achiral environ-
ment. The environment, frequently called the host material, is described by a permittivity
εh and a permeability µh. In the remaining chapter, we do not write the frequency ω as
an explicit argument for better readability. In [69], the procedure to solve the scattering
off a homogeneous, isotropic, and achiral sphere in a homogeneous achiral environment has
been described, which we summarize in the following to demonstrate the computation of
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3. T-matrix Formalism for Linear Optics

a T-matrix for a simple case. The framework of this procedure is called Mie theory after
Gustav Mie.

In the framework of Mie theory, first, a homogeneous space is considered, in which eigen-
modes to Maxwell’s equations are seeked in spherical coordinates. Spherical coordinates are
chosen, as they are most suitable due to the spherical geometry of the considered scatterer.
Knowing the field expansions in the homogeneous space, incident, internal, and scattered
fields can be expanded correspondingly. The amplitudes of those fields are found by ex-
ploiting interface conditions. This is in complete analogy to compute the transmission and
reflection coefficients of a plane wave at planar interfaces. Due to the spherical symmetry
of the scatterer, the different modes in the expansion of the scattered and internal fields do
not couple so that explicit expressions can be found for the amplitudes. In the following, we
elaborate on this procedure in more detail.

First, we have to find elementary solutions to the vectorial Helmholtz wave equation [69,
Eq. (3.6)] (

∆+ k2
)
E(r) = 0 , (3.1)

where k is the wavenumber in the respective material.
Instead of solving the vectorial Helmholtz equation directly, we introduce a scalar function

ψ(r), solving the scalar Helmholtz equation(
∆+ k2

)
ψ(r) = 0 . (3.2)

If ψ(r) solves the scalar Helmholtz equation, the vector functions [69, Eq. (4.1)]

M(kr) = ∇× (rψ(r)) and N(kr) =
∇×M(r)

k
(3.3)

solve the vectorial Helmholtz equation. Both M(kr) and N(kr) are free of divergence. For
the generating function we choose the ansatz ψ(r, θ, φ) = R(r)Θ(θ)Φ(φ). Then, the solution
to the scalar Helmholtz equation is [69, Eqs. (4.15), (4.16)]

ψl,m(r, θ, φ) = zl(kr)Yl,m(θ, φ) , (3.4)

l ∈ N, m ∈ {−l,−l + 1, . . . , l}. Yl,m(θ, φ) are the spherical harmonics [61, Eq. (3.53)]

Yl,m(θ, φ) =

√
2l + 1

4π

(l −m)!

(l +m)!
eimφPm

l (cos(θ)) , (3.5)

with the associated Legendre polynomials Pm
l (cos(θ)) [61, Eq. (3.50)]. zl(kr) are the spher-

ical Bessel functions. M(kr) and N(kr) are computed from ψ(r) with Eq. (3.3), and they
are called vector spherical waves.

The choice of the spherical Bessel function depends on the domain of the scattering problem
in which the field is expanded. Inside the sphere, the field has to be finite at the origin. We
choose here, therefore, the Bessel function of the first kind jl(kr) to later expand the internal
field [69, Eq. (4.40)]. Outside the sphere, the field is a sum of the illumination, which also
has to be finite at the origin, and of the scattered wave. For the illumination, jl(kr) is chosen
again. For the scattered wave, we choose the Hankel function of first kind h

(1)
l (kr), which

corresponds to an outgoing spherical wave in the limit of large distances with respect to the
sphere [69, Eqs.(4.42), (4.45)].
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Once we know the fundamental expansion to the involved field, we proceed by writing the
electric field outside the illuminated scatterer as a sum of the incident and scattered fields.
Both fields are given by a multipolar expansion into vector spherical waves in the frequency
domain and the field outside the scatterer reads as [79, Eqs. (4), (14)][P4, Eq. (1)]

Eout(r) =

∞∑
l=1

l∑
m=−l

(
al,m,NN

(1)
l,m(kr) + al,m,MM

(1)
l,m(kr)

+cl,m,NN
(3)
l,m(kr) + cl,m,MM

(3)
l,m(kr)

)
.

(3.6)

Here, r is defined with respect to the origin of the object. N (1)
l,m(kr) and M

(1)
l,m(kr) correspond

to vector spherical waves, for which Bessel functions of the first kind describe the radial
dependence. N

(3)
l,m(kr) and M

(3)
l,m(kr) correspond to vector spherical waves, for which Hankel

functions of the first kind describe the radial dependence. N
(1,3)
l,m (kr) and M

(1,3)
l,m (kr) are

vector spherical waves of well-defined parity. For regular waves, N (1,3)
l,m (kr) corresponds to

transverse magnetic (TM) modes and M
(1,3)
l,m (kr) corresponds to transverse electric (TE)

modes [59].
Inside the sphere, the field is

Eins(r) =
∞∑
l=1

l∑
m=−l

(
fl,m,NN

(1)
l,m(kr) + fl,m,MM

(1)
l,m(kr)

)
. (3.7)

The corresponding magnetic fields can be computed from the electric fields with Maxwell’s
equations. The multipolar expansion coefficients al,m,N and al,m,M of the illuminating plane
wave are known. Equation (19) of [51], for instance, can be used to compute the multipolar
expansion coefficients of a plane wave of well-defined helicity. These can be used to compute
the expansion coefficients of a plane wave of well-defined parity, as we show below. To
compute the coefficients cl,m,N and cl,m,M of the scattered wave, the interface conditions at
the boundary of the sphere are enforced. They read

(
Eout(r)−Eins(r)

)
× n̂ = 0 and

(
Hout(r)−H ins(r)

)
× n̂ = 0 , (3.8)

where n̂ is the normal vector on the boundary of the sphere pointing to the outside. We note
that modes with different multipolar order are orthogonal and do not couple. Therefore, we
have sets of two coupled equations from these two interface conditions, which are independent
from each other. For each multipolar order, there is one set of two coupled equations. From
these equations, analytical terms result for the amplitude coefficients of the scattered and
the internal field. Mostly, we concentrate on the scattered field.

The T-matrix now relates the multipolar expansion coefficients al,m,N and al,m,M of the
incident field to the coefficients cl,m,N and cl,m,M of the scattered field, schematically depicted
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in Figure 3.1. For that purpose, we arrange the coefficients in column vectors [59, Eq. (3)]

a =



a1,−1,N

a1,0,N
a1,1,N
a2,−2,N

...
a1,−1,M

a1,0,M
a1,1,M
a2,−2,M

...


and c =



c1,−1,N

c1,0,N
c1,1,N
c2,−2,N

...
c1,−1,M

c1,0,M
c1,1,M
c2,−2,M

...


, (3.9)

so that

c = Ta . (3.10)

Because of the way the column vectors a and c are defined above, the T-matrix has the
shape [59, Eq. (5)]

T =

(
TNN TNM

TMN TMM

)
, (3.11)

where TNN, TNM, TMN, and TMM are block matrices consisting of sorted purely dipolar
(l = 1), quadrupolar (l = 2), octupolar (l = 3), etc. terms and multipolar coupling (l = 1 ↔
l = 2, l = 1 ↔ l = 3, etc.) terms. For spheres, the block matrices are diagonal [80] as the
vector spherical harmonics are orthogonal and do not couple.

For an arbitrary object, we also establish Eq. (3.10). In this case, however, the T-matrix
will be dense. The T-matrix T of an object depends generally on its geometry and its
material parameters but not on the incident field [65]. From the known T-matrices of single
isolated objects, one can consider a finite cluster of these objects and compute T-matrices of
the scatterers which incorporate the multi-scattering between the objects. A procedure to
compute such T-matrices for arbitrarily shaped objects is described in [52, 80].

For numerical simulations, l is a finite number so that T has finite dimensions. The
maximum value for l is chosen so that T sufficiently describes the scattering off an object.
The T-matrices of the considered molecules are purely dipolar (l = 1) as they are very small in
comparison to the wavelength of the incident light [59, P3–P8]. For larger objects, describing
their response with Maxwell’s equations, higher multipolar orders have to be considered.

In this thesis, we also consider chiral molecules. For chiral objects, an expansion using
vector spherical waves with well-defined helicity is more convenient, see [51, Eq. (14)], for
instance. These vector spherical waves of well-defined helicity read as

A
(1,3)
l,m,±(k±r) =

N
(1,3)
l,m (k±r)±M

(1,3)
l,m (k±r)√

2
, (3.12)

with the wavenumber k± for the respective helicity in the respective domain, see Eq. (2.19).
This is because A

(1,3)
l,m,±(k±r) are in contrast to N

(1,3)
l,m (k±r) and M

(1,3)
l,m (k±r) solutions to
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Figure 3.1.: Visualization of the scattering process described with the T-matrix. A plane
wave is incident, which is expanded in vector spherical waves with the multipolar
expansion coefficients arranged in a. The plane wave scatters off an object
described with the T-matrix T. The scattered light is also expanded in vector
spherical waves. Its multipolar expansion coefficients are arranged in c.

Maxwell’s equations in chiral media [51]. Outside the scatterer, we express the electric field,
therefore, as [51, Eq. (13)]

Eout(r) =
∞∑
l=1

l∑
m=−l

(
bl,m,+A

(1)
l,m,+(k+r) + bl,m,−A

(1)
l,m,−(k−r)

+dl,m,+A
(3)
l,m,+(k+r) + dl,m,−A

(3)
l,m,−(k−r)

)
.

(3.13)

Equation (3.12) describes the transition of vector spherical waves from the basis of well-
defined parity to the basis of well-defined helicity. From this follows [59, Eq. (S47)]

(
T++ T+−
T−+ T−−

)
=

1

2

(
1 1

1 −1

)(
TNN TNM

TMN TMM

)(
1 1

1 −1

)
(3.14)

for the T-matrix. T++, T+−, T−+, and T−− are the block matrices of the T-matrix THel

in the basis of well-defined helicity. Arranging the multipolar expansion coefficients of the
incident field bl,m,+ and bl,m,− and the scattered field dl,m,+ and dl,m,− in the column vectors
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[59, Eq. (8)]

b =



b1,−1,+

b1,0,+
b1,1,+
b2,−2,+

...
b1,−1,−
b1,0,−
b1,1,−
b2,−2,−

...


and d =



d1,−1,+

d1,0,+
d1,1,+
d2,−2,+

...
d1,−1,−
d1,0,−
d1,1,−
d2,−2,−

...


, (3.15)

we have

d = THelb . (3.16)

The T-matrices of a homogeneous achiral [69] and of a layered chiral sphere [81] can be
computed analytically. For more complicated objects, finite-element (FEM) based methods
can be used [82–84]. We aim on describing the scattering of molecules with the T-matrix.
The T-matrix of the molecules discussed in this thesis are computed with time-dependent
functional theory (TD-DFT) [59], which is an ab initio quantum-chemical method. Another
instance for an ab initio quantum-chemical method is Hartree-Fock theory. We show in
Chapter 4 that with quantum-chemical methods, the 3×3 dipolar polarizability tensors αee,
αem, αme, and αmm can be computed. In [59], it is shown that these matrices are equivalent
to the dipolar blocks of the T-matrix in the basis of well-defined parity. This equivalence
originates from the fact that the optical response of a microscopic object can be described via
its multipolar moments. On the one hand, the multipolar moments can be computed with the
T-matrix as it describes the scattering response of the object in a multipolar expansion. On
the other hand, we show in Chapter 4 that the dipolar moments can be also directly computed
from the dipolar polarizability tensors. The relationship between the dipolar polarizability
tensors and the dipolar blocks of the T-matrix is [59, Eq. (6)](

TNN TNM

TMN TMM

)
=
ichZhk

3
h

6π

(
C (αee)C

−1 C (−iαem/Zh)C
−1

C (iαme/ch)C
−1 C (αmm/(chZh))C

−1

)
. (3.17)

In Eq. (3.17), ch = 1/
√
εhµh is the speed of light in the host medium, Zh =

√
µh/εh is

the impedance of the host medium, and C is a 3×3 matrix describing the transition from
Cartesian to spherical coordinates. This is necessary as the polarizability tensors are usually
given in the Cartesian basis [59]. With [59, Eq. (S8)], we have

C =
1√
2

 1 i 0
0 0 1
−1 i 0

 . (3.18)

In the next chapter, we describe in detail how the dipolar polarizabilities are computed
with quantum-chemical methods.
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3.2. Simulation Principle for the Optical Response of
Macroscopic Structures with the T-matrix

To simulate the optical response of stacked two-dimensional periodic lattices of molecules
in combination with homogeneous isotropic slabs, the codes multi-layered periodic General
Mie-Method (mpGMM) [51] and treams [52, 53] by Dominik Beutel are used. mpGMM is a
software code which is written in the commercial software MATLAB [85]. For an extended
software package written in Python, we refer to treams [52, 53]. Note that in [58, 86, 87] it is
presented how to solve a system of layered lattices of spheres, while in mpGMM and treams
the scatterer can be in principle of arbitrary shape as long as its T-matrix is known. This
is of special importance for the work presented here as molecules of non-spherical shape are
discussed.

Both, mpGMM and treams, are based on the theory presented in [51, 52]. The basic
principle of both software suites utilized in this thesis is that the response of two-dimensional
lattices, slabs, and the influence of displacements between the lattices in all three dimensions
are computed first separately and then combined in a second step. This is achieved by
computing matrices relating in- and outgoing plane waves for each layer and by combining
these matrices to a single matrix. This final matrix describes the entire stack and can be
used to compute the transmittance and reflectance of plane waves with different angles of
incidence and polarizations.

We consider a structure, which is infinitely extended in two dimensions and finite in the
third dimension. The third dimension is considered as the z-axis. The structure consists of
stacked two-dimensional lattices and homogeneous layers, and is illuminated by a plane wave
propagating in positive z-direction. It has a wave vector k0,s,↑ and helicity s. A sketch of
the setup is displayed in Figure 3.2.

In general, the electric field leaving a specific layer of the structure can be expressed as a
sum of up- and downward propagating plane waves [51, Eqs. (5)]

E(r) =
∑
s=±

∑
d=↑↓

∑
g

ζg,s,dês(kg,s,d)e
ikg,s,d·r , (3.19)

with expansion coefficients ζg,s,d and polarization directions ês(kg,s,d). g is a reciprocal lattice
vector. d =↑↓ indicates, whether a plane wave is propagating in positive (↑) or negative (↓)
z-direction. Considering a finite number of diffraction orders of the two-dimensional lattices,
we arrange the expansion coefficients in vectors and relate them via Q-matrices [51, Eqs. (6)]:(

ζ2,↑
ζ1,↓

)
=

(
Q↑↑ Q↑↓
Q↓↑ Q↓↓

)(
ζ1,↑
ζ2,↓

)
. (3.20)

A layer can be a two-dimensional lattice, an interface, or a slab. In the following, we explain
how the Q-matrix of a two-dimensional lattice is computed.

In Eq. 3.10, we define the T-matrix T of a single scatterer. If that object is placed
periodically into a two-dimensional lattice, not only the primary illuminating plane wave
with multipolar coefficients b0 has to be incorporated but also the interaction between all
scatterers of the lattice. The expansion coefficients of the totally scattered field of the object
at the origin of the lattice are given by [51, Eq. (16)]

d0,tot = THel

b0 +
∑
R ̸=0

C(3)(−R)eik∥·Rd0,tot

 . (3.21)
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Figure 3.2.: Sketch of general setup of periodic lattice surrounded by homogeneous layers,
which is simulated with mpGMM and treams. The setup is illuminated from
below by a plane wave with wave vector k0,s,↑ and helicity s. It has a component
k∥, which is parallel to the lattice. The diffraction orders of the lattice have
a parallel component of k∥ + g. g is a reciprocal lattice vector. In this thesis,
not cylinders but molecules arranged in a lattice are considered. Reprinted with
permission from [51]. Copyright © 2021 Optical Society of America.

Here, the first term describes the primary illumination and the second term represents the
interaction between the scatterers placed at lattice sites R. C(3)(−R) is a matrix consisting
of translation addition coefficients transforming the scattered field coefficients eik∥Rd0,tot

of the other scatterers into field coefficients being incident on the scatterer at the origin.
The translation addition coefficients for vector spherical waves derived by [88, 89] can be
found in [90]. The component k∥ of the wave vector is parallel to the lattice. The sum in
Eq. 3.21 includes all lattice points except from the central particle whose scattering response
is computed. From Eq. (3.21) follows [51, Eq. (17)]

d0,tot =

1−THel

∑
R ̸=0

C(3)(−R)eik∥·R

−1

THelb0 , (3.22)

where the sum over the lattice points is evaluated with Ewald’s summation method [91,
92]. The advantage of this summation method is that it converges reliably much faster in
comparison to a direct summation procedure [93]. This is achieved by splitting the sum into
two parts. For small distances, the sum is evaluated in the real space. For large distances,
the sum is evaluated in the reciprocal space. For a detailed analysis of Ewald’s summation
method used to compute multi-scattering problems, we refer to [93].

By transforming the scattered vector spherical wave expansion coefficients into plane wave
coefficients [94], the totally scattered electric field can be expressed as a sum over diffracted
plane waves. The exact expression for the expansion of the fields scattered in ↓-direction and
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↑-direction is [51, Eq. (21)]

Es,d=↓↑(r) =
∑
g

∑
s=±

E
k∥+g,s
s ês(kk∥+g,s,d)e

ikk∥+g,s,d·r , (3.23)

with the diffracted plane wave expansion coefficients [51, Eq. (22)]

E
k∥+g,s
s =

∞∑
l=1

l∑
m=−l

d0,tot,l,m;s
2πγl,m

AksΓk∥+g,sil+1

(
m

sin(θ)
Pm
l (cos(θ)) + s

∂

∂θ
Pm
l (cos(θ))

)
.

(3.24)

In Eq. (3.23), kk∥+g,s,d is the wave vector of the respective diffracted plane wave with heli-
city s, and ê±(kk∥+g,s,d) is the polarization direction of the respective diffracted wave. In
Eq. (3.24), Γk∥+g,s is the z-component of the diffracted wave vector. g is a reciprocal lattice
vector. A is the area of the considered unit cell. γl,m is a normalization factor of the vector
spherical wave, and θ is the complex angle of the diffracted wave vector with respect to the
z-axis.

After adding the incident field, the coefficients Ek∥+g,s
s are arranged in the Q-matrices Qd,d′ ,

which relate the in- and outgoing diffracted plane waves of the two-dimensional lattice.
By assembling the reflection rss′(k∥+ g) and transmission coefficients tss′(k∥+ g) at inter-

faces in Q-matrices [51, Eqs. (11)-(12b)]

Qd,d;g,s;g′,s′ = δg,g′tss′(k∥ + g), (3.25)
Qd,d′;g,s;g′,s′ = δg,g′rss′(k∥ + g), d ̸= d′ , (3.26)

and the propagation through homogeneous isotropic media introducing a displacement vector
d also in Q-matrices [51, Eqs. (9)]

Qd,d′;g,s;g′,s′ = δd,d′δg,g′δs,s′e
ikg,s,d·d , (3.27)

one can combine all Q-matrices into a single Q-matrix [51, Eqs. (7), (8)]. This is espe-
cially efficient if a structure is repeated, since the combination of Q-matrices consists of
matrix multiplications. Out of this Q-matrix describing the entire macroscopic system, the
reflectance and transmittance of an incident plane wave can be computed. The procedure is
used to compute the response of various different systems such as photonic devices consist-
ing of filled cavities, see for instance [76, 77, P4]. Furthermore, the combined Q-matrix of a
two-dimensional lattice and the spacing between neighboring lattices, which are repeated in z-
direction, can be used to compute the band structure of the corresponding three-dimensional
material [51, 86].

In this chapter, we introduced the T-matrix and some of its basic properties. Based on this,
we presented how the optical response of a macroscopic system of stacked two-dimensional
lattices and slabs can be computed. This is essential for this thesis, as the procedure enables
us to obtain the optical response of stacked molecular lattices in combination with homoge-
neous slabs, for instance. In the next chapter, we show how the T-matrix is computed for
molecules with quantum-chemical ab initio methods.
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4 Density Functional Theory to Simulate
the Optical Response of Molecules

In this chapter, we discuss how the dipolar T-matrix of molecules is computed using time-
dependent density functional theory (TD-DFT). TD-DFT is an ab initio quantum-chemical
method. The optical properties of the molecules are, therefore, computed based on their
quantum-chemical properties from the Schrödinger equation.

The relationship between the quantum-chemical properties and the optical properties is
an essential part of the multi-scale approach we will discuss in Chapters 6 and 7. We showed
already in Eq. (3.17) that the dipolar T-matrix is equivalent to the dipolar polarizability
tensor of an object. The equivalence can be seen in the dipolar response of an object, which
can be computed with the T-matrix, presented in Chapter 3, but also with the polarizability
tensor. The latter is shown in this chapter. In contrast to phenomenological approaches, in
which the polarizability of a molecule or the permittivity of a molecular film is estimated,
the polarizability tensor and subsequently the T-matrix of finite molecular structures are
computed with quantum-chemical methods in our approach. Afterward, we perform the
transition from the microscopic description of a finite molecular structure to the macroscopic
description of a monolayer of molecules, a finite film of molecules, and of photonic devices.
In this regard, we use the T-matrix as described in Section 3.2. In Chapter 7, we extend
the concept and will introduce later the Hyper-T-matrix to express the nonlinear optical
response of molecular structures inside photonic devices. In analogy to the relation between
the T-matrix and the polarizability tensor, the Hyper-T-matrix can be computed from the
first hyperpolarizability tensor of a molecule. This is a quantity which can also be computed
with TD-DFT.

Generally, DFT is a powerful tool to compute quantum-chemical properties of many dif-
ferent structures. To introduce the reader to the framework of DFT as far as it is relevant
to this thesis, this chapter aims at providing a short overview about the way (TD-)DFT can
be used to obtain the optical response of molecules. For a broader overview about DFT, we
refer to [95], and for a broader overview about quantum-chemical methods in general, we
refer to [96].

In Section 4.1, we present the basic principles of DFT. This includes its general foundation,
the Hohenberg-Kohn Theorem, the Kohn-Sham equations, and a short introduction to basis
sets and functionals. In Section 4.2, we discuss how the dipolar polarizability tensor and the
first hyperpolarizability tensor of molecules are computed.

4.1. Basic Principles of Density Functional Theory

One major goal of DFT is to determine the quantum-chemical properties of structures such
as energy states. In quantum-chemistry, a structure is usually described with its Hamilton
operator and the Schrödinger equation. Here, we consider a molecular system consisting of
nuclei with mass Mk, charg Zk, and position Rk, and electrons with mass m, charge e, and
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position ri. The Hamilton operator of such a system in atomic units is [97, Eqs. (3.2)-(3.11)]

Ĥ = T̂e + T̂C + V̂e−e + V̂C−C + V̂e−C

= −
∑
i

1

2

∂2

∂r2i
−
∑
k

m

2Mk

∂2

∂R2
k

+
∑
i<j

1

|ri − rj |
+
∑
k<l

ZkZl

|Rk −Rl|
−
∑
i,k

Zk

|ri −Rk|
.

(4.1)

Note that in atomic units, all position vectors are given in units of the Bohr radius a0 [97].
The energies are given in units of E0 = me4/ℏ2 = 27.2 eV [97]. The transition from SI to
atomic units can be performed by setting e = −1 and m = a0 = ℏ = 1. In Eq. (4.1), T̂e is the
kinetic energy of the electrons, T̂C is the kinetic energy of the nuclei, V̂e−e is the interaction
potential between the electrons, V̂C−C is the interaction potential between the nuclei, and
V̂e−C is the potential between the nuclei and the electrons. To simplify the procedure of
finding the energy states of the system, for instance, the Born-Oppenheimer Approximation
is used. The Born-Oppenheimer Approximation suggests to neglect the kinetic energy of
the nuclei, as they are much heavier than the electrons. We write Ĥ = Ĥ0 + T̂C with [97,
Eqs. (3.12)]

Ĥ0 = T̂e + V̂e−e({r}) + V̂C−C({R}) + V̂e−C({r}; {R}) . (4.2)

Here, {r} is the set of the positions of the electrons, and {R} is the set of the positions of
the nuclei. Schrödinger’s stationary equation for the electrons is [97, Eqs. (3.13)]

Ĥ0ϕ({r}; {R}) = ϵ({R})ϕ({r}; {R}) , (4.3)

where the fixed positions of the nuclei ({R}) enter as parameters in the wave functions
ϕ({r}; {R}) and their energy eigenvalues ϵ({R}).

Often, one is interested in the ground-state energy E0 of the system, which is, according
to the variational principle, the infimum [95, Eqs. (1.4)]

E0 = inf
ϕ∈WNe

⟨ϕ|Ĥ0|ϕ⟩ . (4.4)

Here, WNe is the set of Ne antisymmetric electronic wave functions ϕ, which have a finite
kinetic energy. The idea of DFT is to express this variational principle using only the electron
density. The Hohenberg-Kohn theorems justify this idea [95]: It is possible to express the
energy solely by the electron density without evaluating the wave function. The first theorem
states that the energy potential is uniquely determined by the density up to a constant. The
second theorem says that the electron density can be computed by the variational principle,
as the energy of a guessed density is always larger than the exact energy of the electronic
ground state. This is a minimization problem. Kinetic and exchange energy terms including
correlation terms are, however, not known. Approximations are required for these terms that
are part of the total energy of the system [96]. This problem is simplified by the ansatz of
Kohn and Sham who re-introduced molecular orbitals [98]. The idea of Kohn and Sham is to
express the kinetic energy term via two terms from which one is exact and one corresponds to
a correction. The kinetic energy is computed from the molecular orbitals assuming that the
electrons are non-interacting. Then, one introduces the correction to the kinetic energy via
an exchange-correlation term, including interaction between the electrons. The advantage
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of the Kohn-Sham formulation is that only approximations are necessary for the exchange-
correlation energy [96].

Based on these, the Kohn-Sham equations have been derived [98, Eq. (2.8)], [95, Eq. (1.21)](
−1

2
∇2 + v̂eff(r)

)
ψi(r) = ϵiψi(r) . (4.5)

In Eq. (4.5), ϵi are the corresponding Lagrange multipliers which are the Kohn-Sham orbital
energies, v̂eff(r) is a sum of the nucleus-electron Coulomb interaction v̂e−C(r), the external
potential v̂ext(r), and the Hartree-exchange-correlation potential v̂Hxc(r) from the electron-
electron interaction,

v̂eff(r) = v̂e−C(r) + v̂ext(r) + v̂Hxc(r) . (4.6)

The Hartree-exchange-correlation potential is defined as v̂Hxc(r) =
∂ÊHxc (ρ(r))

∂ρ(r) with ÊHxc

being the unknown Hartree-exchange-correlation energy [95, Eq. (1.22)]. ψi(r) are the spatial
molecular orbitals. The sum of their squared absolute values coincides with the electron
density [96, Eq. (6.14)]

ρ(r) =

Ne∑
i=1

∣∣ψi(r)
∣∣2 . (4.7)

Note that the energy terms v̂e−C(r) and v̂Hxc(r) are expressed in terms of this electron
density.

The molecular orbitals are expanded in basis functions ξζ,n,l,m(r, θ, φ), which are called
atomic orbitals [96]. Commonly, Slater-Type Orbitals (STOs) and Gaussian-Type Orbitals
(GTOs) are used. STOs are expressed in spherical coordinates as [96, Eq. (5.1)]

ξζ,n,l,m(r, θ, φ) = NYl,m(θ, φ)rn−1e−ζr , (4.8)

where N is a normalization constant. They provide a fast convergence with growing number
of basis functions. STOs are usually used for atomic and diatomic systems and for semi-
empirical methods, where three- and four-center two-electron integrals can be neglected [96].
GTOs have the functional form of [96, Eq. (5.1)]

ξζ,n,l,m(r, θ, φ) = NYl,m(θ, φ)r2n−2−le−ζr2 . (4.9)

Note that they are also commonly expressed in Cartesian coordinates. Due to their zero
slope at the nucleus and the fast decrease of their radial part far away from the nucleus in
comparison to STOs, more GTOs are required to achieve the same accuracy as with STOs.
The required integrals for their use, however, are much easier to be computed, so that GTOs
are preferred for the sake of computational efficiency [96]. Usually GTOs are centered at the
nuclei, but it is also possible to place them at the center of a bond, for instance [96].

A basis set is referred to as Single Zeta (SZ) basis set if it only consists of the necessary
functions to minimally describe the occupied orbitals of the neutral atoms. A Double Zeta
(DZ) basis set has twice as many basis functions, while a Triple Zeta (TZ) basis set consists
of three times the number of basis functions inside the SZ basis [96]. Polarization functions
enable a more flexible description of the density beyond occupied orbitals. They lead to the
polarized split valence (SVP) and triple zeta valence (TZVP) type basis sets [96, 99].
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Above, we state that the Hatree-exchange-correlation potential is unknown, entering the
Kohn-Sham equations for the description of the considered system. There are different ap-
proximations for the exchange-correlation potential. One of the most important ones are the
generalized-gradient approximations (GGA), where the exchange-correlation potential is de-
termined by the particle density and its gradient, see [95, Eq. (1.115)]. Important instances
of GGA functionals are Becke88 (B88), Perdew-Burke-Ernzerhof (PBE), and Becke97 GGA
(B97-GGA) functionals.

Meta-GGAs describe the functional additionally in dependence of the second derivative
of the density of states [95]. Hybrid functionals include the Hartree-Fock exchange in the
exchange-correlation term. In this regard, the inclusion is optimized [95]. The Hartree-Fock
exchange is sometimes also referred to as exact exchange. In the Hartree-Fock ansatz, every
electron is exposed to the field of the nuclei and a mean field of the other electrons. Important
instances for hybrid functionals are B3LYP and PBE0.

4.2. Computation of Linear Polarizabilities and First
Hyperpolarizabilities

TD-DFT is essential for computing linear polarizabilities and first order hyperpolarizabilities
in the framework of this thesis. Both represent the response of a molecule to a monochromatic
electromagnetic wave on the microscopic level. The molecule is placed in the origin of the
coordinate system, so we do not write r explicitly as an argument. Following up the discussion
in Subsection 2.2.2, the linear optical response of the molecule is represented by the electric
dipole moment

pe(ω) = αee(ω)E(ω) +αem(ω)H(ω) , (4.10)

and the magnetic dipole moment

pm(ω) = αme(ω)E(ω) +αmm(ω)H(ω) , (4.11)

see [59, Eq. (1)]. Here, we use the 3 × 3 polarizability tensors αee, αem, αme, and αmm.
These are computed with TD-DFT as sketched below. E(ω) and H(ω) are the fields of the
electromagnetic wave.

Neglecting nonlinear electromagnetic coupling and magnetic terms, the nonlinear optical
response is represented by the electric dipole moment [100, Eq.(1)]

pNL,e(ωγ) =
1

2

∑
i,j,k

êiβijk(ωγ , ωα, ωδ)Ej(ωα)Ek(ωδ) , (4.12)

β(ωγ , ωα, ωδ) is the first hyperpolarizability, with ωγ = ωα + ωδ. For SHG, we have ωα = ωδ.
êi is a unit vector.

In the following, we sketch the calculation of the polarizability tensors. The idea is to
introduce a perturbation term to the Hamilton operator and compute transition dipole mo-
ments. In combination with the (unperturbed) Kohn-Sham equations, the coupled-perturbed
Kohn-Sham equations follow. From these, the polarizability tensors are obtained. We start
by considering the linear optical response of the system to a time-dependent electric field
Ẽ(t) of an electromagnetic wave. The Hamilton operator of the perturbed system is

Ĥ(t) = Ĥ0 + V̂e(t) , (4.13)
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where Ĥ0 is the Hamilton operator of the unperturbed system and V̂e(t) = −µ̂e · Ẽ(t) is
the perturbation with the electric dipole moment operator µ̂e [63, Eq. (3.2.3)]. With the
magnetic dipole moment operator µ̂m, one can write, correspondingly, V̂m(t) = −µ̂m · H̃(t)
for the perturbation due to a time-dependent magnetic field H̃(t). With the definition of
the electric µ̂e and magnetic dipole µ̂m operators, based on Eqs. (2.37) and (2.47), one can
derive their corresponding transition dipole moments, [P4, Eq. (9), Eq. (10)]

pepq = qe∗pq = ⟨ψp|r|ψ∗
q ⟩ , (4.14)

pmpq = qm∗
pq =

i

2c0
⟨ψp|(r −R)×∇|ψ∗

q ⟩ , (4.15)

which are collected in the vectors pν and qν , representing the external electric or magnetic
dipolar fields, with ν ∈ {e,m}. ψp and ψq are the Kohn-Sham eigenstates of the ground
state.

With the Hamilton operator of the perturbed system at hand, the coupled-perturbed Kohn-
Sham (CPKS) equations can be derived from the Kohn-Sham equations of the unperturbed
system in Eq. (4.5), see [101]. The linear optical response to a time-dependent perturbation
of the system by the electromagnetic wave is described with the CPKS equations that read
as [102, Eq. (13)], [101, Eq. (25)], [103, Eq. (1)], [P4, Eq. (7)],

|xν(ω),yν(ω)⟩ = −(Λ(ω)− ω∆)−1|pν , qν⟩ , (4.16)

with the frequency ω of the perturbation. Λ(ω) and ∆ are 2× 2 supermatrices,

∆ =

(
1 0
0 −1

)
, Λ(ω) =

(
A(ω) B(ω)
B∗(ω) A∗(ω)

)
. (4.17)

Here, A(ω) and B(ω) are coupling matrices, forming the Hessian of the Kohn-Sham matrix
[102, 104]. The terms for A(ω) and B(ω) for an electromagnetic wave as perturbation can be
found in [101, Eq.(27)], [103, Eqs.(2), (3)], [105, Eqs.(17a), (17b)], and [P4, Eqs. (11), (12)].
xν(ω) and yν(ω) are perturbation coefficients that represent the response of the ground-state
density of the molecular orbitals ψi to the perturbation denoted by ν [P4, 101].

Having solved the CPKS equations, one can use xν(ω) and yν(ω) to compute the polariz-
ability tensor [101, Eq.(31)], [P4, Eq. (17)]

ανν′(ω) = ⟨pν , qν |(Λ(ω)− ω∆)−1|pν′ , qν
′⟩ = ⟨xν(ω),yν(ω)|pν′ , qν

′⟩ . (4.18)

For a single frequency, three equations have to be solved for each ανν′(ω), due to the three
Cartesian axes. The frequency ω is in general complex, representing the finite lifetime of
the excited states [P4]. With Eq. (3.17), one can derive the dipolar T-matrix from the
polarizability tensor.

We move on to the nonlinear optical response. In comparison to the calculation of the
polarizability tensors, we extend the analysis to a second-order response equation. From this
equation, the hyperpolarizability tensor is obtained. For better readability, the superscripts α,
δ, and γ refer in the following to the frequencies ωα, ωβ, and ωγ as arguments. To obtain the
electric hyperpolarizability tensor, which relates the product of two electric field components
to the electric dipole moment, see Eq. (4.12), we consider the second-order response equation
[101, Eq. (43)], [105, Eq. (27)]

|x(αδ),y(αδ)⟩ = (Λγ − (ωα + ωδ)∆)−1 |p(αδ), q(αδ)⟩ . (4.19)
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The expressions for the external fields p(αδ) and q(αδ) can be found in [101, Eq. (39)] and
[105, Eqs. (28a), (28b)]. Having solved Eq. (4.19), we obtain the electric hyperpolarizability
[101, Eq. (43)], [105, Eq. (22)]

βγαδ = Tr
(
v̂(γ)K(αδ)

)
+ ⟨pγ , qγ |x(αδ),y(αδ)⟩ , (4.20)

with the unrelaxed density matrices [101, Eq. (38)], [105, Eq. (24a), (24b)]

K
(αδ)
ij = −

∑
a

(
x
(α)
ja y

(δ)
ia + y

(α)
ia x

(δ)
ja

)
(4.21)

and

K
(αδ)
ab =

∑
i

(
y
(α)
ib x

(δ)
ia + x

(α)
ia y

(δ)
ib

)
. (4.22)

Here, the first order quantities xα, yα, pγ , and qγ , and the solution vectors x(αδ), y(αδ)

of Eq. (4.19) occur. The indices i and a refer to occupied and virtual orbitals. v̂(γ) is the
time-independent coefficient of the time-dependent external potential v̂(t) =

∑
γ v̂

(γ)e−iωγt +

v̂(−γ)eiωγt [105, Eq. (4)].
In Chapter 7, we will introduce an object termed “Hyper-T-matrix”. The Hyper-T-matrix

can be directly calculated from the first hyperpolarizability tensor, similar to the T-matrix
which can be computed from the polarizability tensor.

In this chapter, the basic principles of (TD-)DFT were summarized. The principle of the
computation of polarizability tensors and first hyperpolarizability tensors with TD-DFT was
introduced. These are used to compute T-matrices and Hyper-T-matrices of molecules which
are considered in this thesis to design and analyze photonic devices. The latter are used to
discuss linear and nonlinear optical effects of molecules. Note that starting at Eq. (4.13),
only electronic transitions are discussed. To include vibrational transitions to the dipolar
polarizabilities, see [106].

In the next chapter, we discuss a homogenization approach for materials consisting of
a three-dimensional periodic arrangement of scatterers based on their T-matrix. We use
this homogenization procedure mainly to obtain effective material parameters of molecular
materials. The T-matrix of the underlying finite-size molecular models is computed with the
methods presented in Chapter 4.
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5 Homogenization Approach Based on the
Effective T-matrix

The homogenization of an arrangement of discrete scatterers has been of interest for many
decades to obtain effective material parameters [107–135]. This is because with the effective
material parameters of a material at hand, the computation of the optical response of a system
consisting of this material is considerably simplified. A typical homogenization theory is that
of Clausius-Mosotti [61], Bruggeman [136], or Maxwell-Garnett [113].

By homogenizing a lattice of discrete scatterers, one aims at replacing the discrete granular
material by a homogeneous medium characterized by effective material parameters that ap-
pear in a constitutive relation supposedly representing the material. Combining the effective
material parameters via the constitutive relations with specific interface conditions, one can
compute the optical response of an arbitrarily shaped object consisting of the homogenized
material. Homogenization is an essential tool to analyze and design photonic devices con-
sisting of molecular materials. For macroscopic objects, which consist of molecular materials
and are more complicated than films, the effective parameters of the molecular materials can
be used to compute their optical response. An instance are cylinders consisting of a chiral
molecular material, which we consider in Chapter 6.

There is a very important requirement for the computation of the optical response of
an arbitrarily shaped object consisting of a homogenized material: The effective material
parameters are not allowed to depend on the direction of the wave vector of the incident
wave, but only on its absolute value [P5]. If the effective material parameters depend on the
propagation of the incident wave, it would not be clear which material parameters determined
the scattering of light off an object which is more complicated than a planar slab [P5].

Other restrictions to various homogenization approaches, such as the Clausius-Mosotti
theory [114], are the assumptions of small inclusion volumes and small lattice constants in
comparison to the wavelength of light. In this context, higher multipoles of the scattering
objects are neglected, and the lattice interaction of the scatterers is only computed in the
long wavelength limit.

We discuss in this chapter a homogenization approach which is based on the effective T-
matrix of the considered three-dimensional lattice of scatterers. The effective T-matrix and
the homogenization approach are discussed in [P5].

The effective T-matrix describes the scattering off an object inside the lattice. In the
context of the discussed transition from the microscopic to the macroscopic description of
electromagnetics in Subsection 2.2.2, the effective T-matrix enables the computation of an ef-
fective polarization of the lattice of scatterers. It takes into account the exact multi-scattering
between the scatterers inside the lattice without long wavelength approximations. Addition-
ally, the effective T-matrix is independent of the Bloch phase so that the effective material
parameters, obtained from the effective T-matrix, can be used to describe the optical response
of objects illuminated by plane waves with different propagation directions.

In Chapters 6 and 7, we use the effective T-matrix based homogenization approach pre-
sented in [P5] to compute the effective material parameters of molecular materials. With
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these effective material parameters at hand, one can design more complicated structures than
planar films. Such structures are metasurfaces of molecular materials, for instance. The con-
cept of the effective T-matrix and the homogenization approach have been developed in coop-
eration with Ramakrishna Venkitakrishnan, Dominik Beutel, and Ivan Fernandez-Corbaton.
The DFT computations, used to homogenize molecular materials, have been prepared and
performed by Marjan Krstić and Christof Holzer. The optical simulations have been per-
formed by the author.

The chapter is structured as follows. Section 5.1 discusses the effective T-matrix and its
properties and presents the derivation of the material parameters in terms of the effective
T-matrix. Section 5.2 explains the workflow of the homogenization approach. Sections 5.3
and 5.4 demonstrate the homogenization approach with the instances of a molecular material
and two metamaterials, respectively.

5.1. Definition of the Effective T-matrix and Derivation of
Effective Material Parameters

The effective T-matrix of a three-dimensional lattice of scatterers is the central object of the
presented homogenization approach. We see below that it incorporates the complete multipo-
lar lattice interaction of the scatterers and enables the computation of effective polarizations,
representing the effective optical response of the material. From these macroscopic polar-
izations, we derive effective material parameters. We emphasize that in contrast to other
approaches used to homogenize metamaterials, we do not use any fitting techniques in the
homogenization procedure. We express the effective material properties explicitly once the
T-matrix of the unit cell is obtained and the lattice is defined for its arrangement.

In the following, we start by deriving the effective T-matrix which does not depend on the
Bloch phase. This guarantees that we can use the effective material parameters, obtained
from the effective T-matrix, for computing the optical response of objects illuminated by
different plane waves.

5.1.1. Definition of the Effective T-matrix
In Eq. (3.22), we define the expansion coefficients of the totally scattered field of an object
at the origin of a two-dimensional lattice. The matrix relating the incident field coefficients
to the totally scattered field coefficients can be considered as a renormalized T-matrix [78].
Equivalently to the two-dimensional lattice discussed in [78], we define a renormalized T-
matrix of the three-dimensional lattice as [P5, Eq. (1)]

T̃ren,Hel(k) =

1−THel

∑
R ̸=0

C(3)(−R)eik·R

−1

THel . (5.1)

Here, we consider a three-dimensional lattice of identical scatterers represented by their T-
matrix THel, which are placed at lattice sites R. The lattice sum in Eq. (5.1) can be computed
with treams [52, 53]. The scalar product of the Bloch wave vector k and the lattice sites
R defines the Bloch phase. As in Eq. 3.21, C(3)(−R) is a matrix consisting of translation
addition coefficients to transform scattered field coefficients from one particle into incident
field coefficients on another particle. While T̃ren,Hel(k) can be used to compute the response
of the three-dimensional lattice with respect to a specific plane wave with wave vector k, it
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5.1. Definition of the Effective T-matrix and Derivation of Effective Material Parameters

is not suitable to compute effective material parameters. This is because the matrix depends
on the Bloch wave vector. In [P5], two methods are presented to obtain an effective T-matrix,
which does not depend on the Bloch wave vector.

The first method is based on the computation of the T-matrix with the finite-element
method from [82]. The idea behind the method is that first, the scattering solutions are
found for a sufficiently large set of incident plane waves considering their own renormalized
T-matrices T̃ren,Hel(k), and then these solutions are inversely used to obtain an effective
T-matrix, which does not depend on the Bloch wave vector. Note that we operate in the
following in the basis of well-defined helicity. We compute the scattering coefficients [P5,
Eq. (2)]

d̃k
λ = T̃ren,Hel(k)b

k
λ (5.2)

for a finite number 2K of incident plane waves with wave vector k, helicity λ = ±1, and
multipolar expansion coefficients bkλ. Note that we select K different wave vectors and use
every wave vector twice due to the two different helicities. Then, we define the Bloch wave
vector independent effective T-matrix Teff,Hel as [P5, Eq. (3)]

(d̃k1
λ=1, d̃

k1
λ=−1, . . . , d̃

kK
λ=1, d̃

kK
λ=−1) = Teff,Hel(b

k1
λ=1, b

k1
λ=−1, . . . , b

kK
λ=1, b

kK
λ=−1) , (5.3)

so that Teff,Hel responds to an incident plane wave with wave vector k in the same way as
T̃ren,Hel(k). In contrast to T̃ren,Hel(k), the matrix Teff,Hel satisfies this effect for all incident
plane waves simultaneously. By solving Eq. (5.3), the effective T-matrix is obtained. Note
that the total number of incident plane waves 2K has to be sufficiently larger than the rank
of the effective T-matrix [82].

The second method represents a rigorous derivation of the effective T-matrix. We define
an operator ˆ̃Tren,Hel(k̂) for the renormalized T-matrix [P5, Eq. (7)],

ˆ̃Tren,Hel(k̂)|k̂, λ⟩ =
∑
l̃,m̃,λ̃

d̃l̃,m̃,λ̃(k̂, λ)|l̃, m̃, λ̃⟩ . (5.4)

Here k̂ is the direction of the Bloch wave vector, and k its absolute value, k = kk̂. The
incident plane wave with propagation direction k̂ and helicity λ = ±1 is here represented
by |k̂, λ⟩. |l̃, m̃, λ̃⟩ are specific vector spherical waves of the wave scattered into the far-field.
d̃l̃,m̃,λ̃(k̂, λ) are the corresponding expansion coefficients.

We expand the incident vector spherical waves in plane waves according to [P5, Eq. (8)]

|l,m, λ⟩ =
∫

dk̂ξl,m,λ(k̂)|k̂, λ⟩ =
∫ π

0
dθk̂ sin θk̂

∫ π

−π
dφk̂ξl,m,λ(k̂)|k̂, λ⟩ , (5.5)

with θk̂ = arccos kz/k and φk̂ = arctan ky/kx. Based on [94, Eqs. (37a) and (37b)] and [51,
Eq. (S3c)], the plane wave expansion coefficients for Bessel functions are [P5, Eq. (9)]

ξl,m,λ(k̂) =
γl,m
4πil+1

(
m

sin θk̂
P l
m(cos θk̂) + λ

∂

∂θk̂
P l
m(cos θk̂)

)
eimφk̂ . (5.6)

In Eq. (5.6), we have [51, Eq. (S3d)]

γl,m = i

√
2l + 1

4π

(l −m)!

l(l + 1)(l +m)!
(5.7)
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and the associated Legendre polynomials P l
m(cos θk̂).

We define an element of the direction independent effective T-matrix as ⟨λ̄, m̄, l̄|T̂eff,Hel|l,m, λ⟩.
With Eq. (5.5) and the requirement that T̂eff,Hel responds in the same way as ˆ̃Tren,Hel(k) to
a plane wave with wave vector k, the identity

⟨λ̄, m̄, l̄|T̂eff,Hel|l,m, λ⟩ =
∫

dk̂ξl,m,λ(k̂)⟨λ̄, m̄, l̄| ˆ̃Tren,Hel(k̂)|k̂, λ⟩ (5.8)

follows. With Eq. (5.4), we have [P5, Eq. (11)]

⟨λ̄, m̄, l̄|T̂eff,Hel|l,m, λ⟩ =
∑
l̃,m̃,λ̃

∫ π

0
dθk̂ sin θk̂

∫ π

−π
dφk̂ξl,m,λ(k̂)d̃l̃,m̃,λ̃(k̂, λ)⟨λ̄, m̄, l̄|l̃, m̃, λ̃⟩

=

∫ π

0
dθk̂ sin θk̂

∫ π

−π
dφk̂ξl,m,λ(k̂)d̃l̄,m̄,λ̄(k̂, λ) ,

(5.9)

which follows from ⟨λ̄, m̄, l̄|l̃, m̃, λ̃⟩ = δl̄,l̃δm̄,m̃δλ̄,λ̃. To compute the Bloch wave vector indepen-
dent effective T-matrix with Eq. (5.9), d̃l̄,m̄,λ̄(k̂, λ) is obtained for a finite but yet sufficiently
large number of propagation directions with Eq. (5.4). The wave vectors for the specific
directions in both procedures are computed with a method from [137]. They correspond to
evenly spaced points on the surface of a sphere. Due to this fact, the last integral in Eq. (5.9)
can be evaluated as a Riemann sum of equally weighted terms.

We use the first method to obtain the direction independent effective T-matrix for all
instances in this thesis. In Section 5.4, we show for a specific structure that both methods
lead to effective T-matrices whose difference is negligible.

The effective T-matrix incorporates all multipolar lattice interactions between the scat-
terers and is, therefore, most suitable for a homogenization approach. We note that the
effective T-matrix is, in principle, valid for all multipolar orders which are also used for the
T-matrix of the single scatterer. The effective material parameters that we consider here are,
however, only computed from the dipolar part of the effective T-matrix. They incorporate
the coupling of dipoles to all higher order multipoles, but not the quadrupole-quadrupole
coupling, for instance.

5.1.2. Derivation of Effective Material Parameters
In the following, we derive effective material parameters in terms of the effective T-matrix
of a three-dimensional lattice of scatterers. The effective material parameters, which are
computed from the dipolar part of the effective T-matrix, are the tensorial effective elec-
tric permittivity εeff(r, ω) = ε0εr,eff(r, ω), the effective magnetic permeability µeff(r, ω) =
µ0µr,eff(r, ω), and the effective chirality κeff(r, ω). εr,eff(r, ω) and µr,eff(r, ω) are the relative
permittivity and permeability, respectively. These material parameters are commonly also
called local material parameters as they relate fields at a point r to fields at the same point
r. For non-local material parameters, which relate fields at different points to each other, we
refer to [67, 125], for instance. As the effective material parameters represent homogeneous
media, we omit r as argument in the following.

The derivation is based on the macroscopic effective polarization of the three-dimensional
lattice, which can be directly obtained from the effective T-matrix. Similar to Subsec-
tion 2.2.2, we find, therefore, a transition from the optical response of a microscopic scat-
terer to the optical response of the macroscopic material. The scatterers are placed in an

36



5.1. Definition of the Effective T-matrix and Derivation of Effective Material Parameters

achiral host medium with permittivity εh, magnetic permeability µ0, and wave impedance
Zh =

√
µ0/εh. The speed of light is ch = 1/

√
εhµ0, and the wave number is kh = ω

√
εhµ0.

We start at the anisotropic and chiral constitutive relations from Eq. (2.8), relating the
monochromatic fields(

D(ω)
B(ω)

)
=

(
εeff(ω) iκeff(ω)

√
ε0µ0

−iκT
eff(ω)

√
ε0µ0 µeff(ω)

)(
Eint(ω)
Hint(ω)

)
. (5.10)

We introduced the relation between the displacement field and the magnetic flux density on
the one hand and the polarizations of a macroscopic medium on the other hand in Eqs. (2.44)
and (2.49). Now, we relate D(ω) and B(ω) to the effective electric polarization Peff,e(ω) and
the effective magnetic polarization Peff,m(ω) of the lattice via [P5, Eq. (16)](

D(ω)
B(ω)

)
=

(
εh13 0
0 µ013

)(
Eint(ω)
Hint(ω)

)
+

(
Peff,e(ω)
Peff,m(ω)

)
. (5.11)

The effective polarizations of the lattice can be directly expressed through the dipolar part of
the effective T-matrix Tl,l′=1,1

eff,Cart of a scatterer in the parity basis and in Cartesian coordinates.
Equivalently to Eq. (3.17), the effective T-matrix is transferred from the spherical to the
Cartesian basis with the matrix C from Eq. (3.18). The effective T-matrix describes that
the effective polarizations are induced by the externally applied electric Eext(ω) and magnetic
fields Hext(ω) [P5, Eq. (12)]:(

Peff,e(ω)
Peff,m(ω)

)
= nq

(
Tl,l′=1,1

eff,NN,Cart iZhT
l,l′=1,1
eff,NM,Cart

−iZhT
l,l′=1,1
eff,MN,Cart Z2

hT
l,l′=1,1
eff,MM,Cart

)(
Eext(ω)
Hext(ω)

)
. (5.12)

In Eq. (5.12), n is the concentration of the scatterers per unit cell and q = −i6π
chZhk

3
h
, see [59,

Eq. (S15)].
Inside a unit volume of the homogenized material, the fields are not equal to the externally

applied fields, as the material responds to them with depolarization fields given by the
depolarization matrix L and the effective polarizations. The internal fields are [P5, Eq. (14)](

Eint(ω)
Hint(ω)

)
=

(
Eext(ω)
Hext(ω)

)
−

(
1
εh
L 0

0 1
µ0
L

)(
Peff,e(ω)
Peff,m(ω)

)
. (5.13)

For a cubic unit volume, we have L = 1/313, for cuboids one can find a formula for L in
[138, 139]. We rewrite Eq. (5.13) to obtain(

Eext(ω)
Hext(ω)

)
=

(
Eint(ω)
Hint(ω)

)
+

(
1
εh
L 0

0 1
µ0
L

)(
Peff,e(ω)
Peff,m(ω)

)
, (5.14)

so that one can replace the external fields in Eq. (5.12) to derive a relationship between the
polarizations and the internal fields,(

Peff,e(ω)
Peff,m(ω)

)
= nq

(
Tl,l′=1,1

eff,NN,Cart iZhT
l,l′=1,1
eff,NM,Cart

−iZhT
l,l′=1,1
eff,MN,Cart Z2

hT
l,l′=1,1
eff,MM,Cart

)

×

[(
Eint(ω)
Hint(ω)

)
+

(
1
εh
L 0

0 1
µ0
L

)(
Peff,e(ω)
Peff,m(ω)

)]
.

(5.15)
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Equation (5.15) can be rewritten to express the polarizations in terms of the internal fields.
Then, the polarizations are inserted into Eq. (5.11). From the comparison with the constitu-
tive relations in Eq. (5.10), we derive the effective material parameters [P5, Eq. (17)](

εeff(ω) iκeff(ω)
√
ε0µ0

−iκT
eff(ω)

√
ε0µ0 µeff(ω)

)

=

(
εh13 0
0 µ013

)
+ n

(
16 − nq

(
1
εh
Tl,l′=1,1

eff,NN,CartL ichT
l,l′=1,1
eff,NM,CartL

−iZh
εh
Tl,l′=1,1

eff,MN,CartL chZhT
l,l′=1,1
eff,MM,CartL

))−1

× (5.16)

× q

(
Tl,l′=1,1

eff,EE,Cart iZhT
l,l′=1,1
eff,EM,Cart

−iZhT
l,l′=1,1
eff,ME,Cart Z2

hT
l,l′=1,1
eff,MM,Cart

)
.

In comparison to classical theories such as Clausius-Mosotti [61] or Lorentz-Lorenz theory
[113], which also have the concept of an effective polarization, the interaction between the
scatterers is not introduced via the depolarization tensor, but by the effective T-matrix. The
effective T-matrix and effective material parameters derived in this section are at the heart
of the homogenization approach that we present in the following.

5.2. Workflow for the Homogenization Approach
In this section, we outline the workflow of the effective T-matrix based homogenization
approach depicted in Figure 5.1. We start by computing the T-matrix of the single object,
and defining the lattice vectors ax, ay, and az. For spheres, the T-matrix can be computed
with Mie theory. For more complicated structures, one can use the finite-element method
(FEM) [82, 83]. For the molecular structures analyzed in this thesis, TD-DFT is used, see
Chapter 4.

The next step discusses the essential question, whether the lattice of scatterers is homog-
enizable. We note that the effective material parameters describing a homogeneous effective
medium cannot depend on the Bloch wave vector. The material properties of the medium
exist and are independent of the characteristics of a specific field probing for the material
properties. If a material shows, for instance, Bragg reflections, the effective material pa-
rameters cannot be independent of the propagation direction of the propagating wave. This
implies that the material is not homogenizable [140]. Bragg reflections occur as the light
explicitly probes the periodicity of the underlying medium that, therefore, cannot be con-
sidered as homogeneous. In a homogeneous medium, Bragg reflections do not occur. By
considering the band structures λ(kz) or f(kz) of the lattice of scatterers, one can deduce
whether the material is homogenizable in the considered spectral domain [P5, 140]. λ is the
wavelength and f is the frequency of the considered light in vacuum. kz is the effective wave
number in the material. In the discussion of band structures, we restrict ourselves to this
z-component for the sake of simplicity. In the case of weak anisotropy, this is sufficient. In
general, one would have to consider all spatial dimensions.

Bragg reflections occur close to the edge of the Brillouin zone, where the effective propa-
gation constant equals kz = π/a for a cubic lattice. a is the lattice constant of the material.
Due to the constructive interference between the waves reflected off consecutive layers of scat-
terers, broad reflection bands occur when probed with an external field. These are related to
regions in the energy band structures in which propagation is not allowed inside the material.
For an instance below, we will see that the influence of the Bragg gap is already visible in
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Figure 5.1.: Workflow of the presented homogenization approach starting at computing the
T-matrix of the single unit cell and defining the lattice constants of the three-
dimensional lattice. The band structure is inspected to decide whether the mate-
rial is homogenizable. If it is homogenizable, the direction independent effective
T-matrix Teff,Hel is obtained. If Teff,Hel is mainly dipolar, the effective permit-
tivity εeff , permeability µeff , and chirality κeff are computed from its dipolar
part in the parity basis and Cartesian coordinates. These quantities can be used
in a finite-element method based solver, for instance, to calculate the optical re-
sponse of an arbitrarily shaped object consisting of the material. Adapted with
permission from [P5]. Copyright © 2022 John Wiley and Sons.

the band structure for propagation constants smaller than π/a. This influence manifests in
a bending of the dispersion curves.

For the instances and spectral domains which we consider, we analyze whether the band
structure becomes d2f

dk2z
= 0 close to the edge of the Brillouin zone, assuming that there is

one material resonance at lower frequencies [P5]. If the band structure does not show such a
point close to the edge of the Brillouin zone, we deduce that the material is homogenizable in
the considered frequency range. In the frequency range, in which the Bragg effect influences
the light propagation, the material is not homogenizable.
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Figure 5.2.: Band structure of a chiral Zn-L-camphoric acid-dabco SURMOF for real (a) and
imaginary part of the effective propagation constant kz (b). The band structure
is not close to the Brillouin edge. Therefore, the material is homogenizable. The
finite-size molecular model of the SURMOF, created by Marjan Krstić, is shown
in the inset of (a). Adapted with permission from [P5]. Copyright © 2022 John
Wiley and Sons.

We emphasize that to ultimately deduce whether a material is homogenizable, one would
have to analyze it in a more complicated way. For our instances, however, the criterion
discussed above is sufficient to clarify whether the material is homogenizable.

At smaller frequencies where the material is homogenizable, we continue in the next step
by computing the frequency dependent but direction independent effective T-matrix, as
described in the previous section. The lattice sum in Eq. (5.1) is computed with treams [52,
53]. It was mentioned above that only effective material parameters are considered which
are computed from the dipolar part of Teff,Hel. They only describe the optical response
of the material sufficiently, if Teff,Hel is mainly dipolar, i.e. higher multipolar orders are
negligible. To check this for a given material, we construct an object Tdip

eff,Hel that consists
of the effective dipole-dipole part of Teff,Hel and has the same dimensions. Except from the
dipole-dipole part, all other entries of Tdip

eff,Hel are zero. For determining the contribution of
higher multipolar orders, we define the quantity [P5, Eq. (6)]

τ (Teff,Hel) =

√√√√√√ Tr

{(
Tdip

eff,Hel −Teff,Hel

)† (
Tdip

eff,Hel −Teff,Hel

)}
2
(
Tr
{
Tdip

eff,Hel

†
Tdip

eff,Hel

}
+Tr

{
T†

eff,HelTeff,Hel

}) , (5.17)

where τ (Teff,Hel) ∈ [0, 1]. The quantity measures essentially how dipolar the effective T-
matrix is. If τ (Teff,Hel) = 0, Teff,Hel is purely dipolar. The larger the value is, the stronger the
impact of higher-order multipolar components in the effective T-matrix. In case τ (Teff,Hel)
is sufficiently close to zero, εeff(ω), µeff(ω), and κeff(ω) are computed. The latter quantity
is only non-zero, if the material is chiral. These effective material parameters can be used
in FEM based program suites such as COMSOL Multiphysics [141] or JCMsuite [142] to
compute the optical response of an arbitrarily shaped object. We stress that a strict criterion
of what exactly means close to zero cannot be given.
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5.3. Homogenization of a Chiral Zn-L-Camphoric Acid-Dabco
SURMOF

We demonstrate the presented workflow at the example of the chiral Zn-L-camphoric acid-
dabco SURMOF [P5]. A MOF is a crystalline metal-organic framework consisting of metal
atoms connected to each other by organic linkers. A SURMOF is a surface-mounted (or
anchored) MOF. For a more detailed description of MOFs and SURMOFs, their preparation,
and their applications, see [143–147], for instance. The SURMOF material is chosen here as
an instance for which the homogenization approach is safely applicable and because of its
chiral properties. A finite-size molecular model of the Zn-L-camphoric acid-dabco SURMOF
is depicted in the inset of Figure 5.2(a). It consists of zinc paddle wheels, which are connected
by chiral L-camphoric acid linker molecules in the xy-plane. In the z-direction, the layers
are connected by dabco pillar linkers. The T-matrix of the finite-size molecular model is
computed with TD-DFT with the development version of the TURBOMOLE code [148, P9].
In these calculations, the CAM-B3LYP functional [149] and the def2-SVP basis set [99] are
used. The lattice constants in the xy-plane are ax = ay = 2.079 nm, and az = 1.922 nm in
the z-direction. For such a small molecular unit, it is sufficient to restrict the consideration
to dipoles. The steps to obtain the dipole polarizability tensor of a finite molecular model
with TD-DFT are discussed in Chapter 6 in more detail.

In the next step, the band structure is computed with mpGMM [51] from the combined
Q-matrix of the two-dimensional lattice and the vacuum spacing between the lattices. Their
individual Q-matrices are characterized by Eqs. (3.24) and (3.27). The band structure is
depicted in Figure 5.2(a) and (b) for the real and imaginary part of the propagation constant
kz. We observe that the dispersion bands are far away from the edge of the Brillouin zone
so that Bragg reflections do not occur. The material is perfectly homogenizable. Here, only
εr,eff(ω) and κeff(ω) are of interest, as the material does not show a magnetic response. The
diagonal entries of the relative permittivity and of the chirality are depicted in Figure 5.3(a)
and (b). We observe especially in the chirality that the object is anisotropic.

In the following, we verify the reliability of our homogenization by studying the optical
response of a slab once at the level of the effective properties and once at the level of the
individual molecules forming the material. If the agreement is sufficiently good, the correct-
ness of the approach is indicated. Therefore, the effective material parameters are used to
compute the absorption of a normal incident left-circularly polarized plane wave and the
absorption circular dichroism of a 77 nm thick slab in COMSOL [141]. The slab is schemat-
ically shown in the inset of Figure 5.3(c). For the reference spectra, mpGMM [51] is used
to solve the multi-scattering problem as described in Chapter 3 in a direct manner based
on the T-matrix of the finite-size molecular model. In Figure 5.3(c), the reference spectra
are depicted as solid lines and the spectra obtained with COMSOL are depicted as dashed
lines. We observe a perfect agreement. These results support the use of the homogenization
approach for multi-scale approach analyses of molecular structures in the Chapters 6 and 7.
It is, however, also insightful to apply the homogenization procedure to materials that are
more demanding to homogenize.

5.4. Homogenization of Metamaterials
In this section, we consider two different metamaterials to demonstrate the applicability of
the homogenization approach. First, we analyze gold spheres arranged in a cubic lattice.
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Figure 5.3.: Diagonal entries of effective permittivity (a) and effective chirality (b). Both
quantities are anisotropic. (c) Absorption of normal incident left-circulary po-
larized plane wave and absorption circular dichroism of a slab of a 77 nm thick
slab. The results obtained directly with the full-wave solver mpGMM and the
results obtained with COMSOL based on the effective T-matrix agree perfectly.
(b) and (c) are adapted with permission from [P5]. Copyright © 2022 John
Wiley and Sons.

This is still a material which can be considered as rather safe to homogenize. Afterward, we
study a system of cut-plate pairs that are more macroscopic in size.

5.4.1. Gold Spheres in Cubic Lattice

With the first instance, we demonstrate how important it is for specific materials to take
the multipolar lattice interaction into account to homogenize the material accurately. The
considered material consists of gold spheres with a radius of R = 1nm, separated by each
other with a lattice constant of a = 2.05 nm. The spheres are surrounded by a host medium
with a permittivity of εr,h = 2.25. The host material is isotropic [P5, 150]. For gold, the
material parameters from [151] are used. We emphasize that this example is of illustrative
character to show the influence of lattice interactions. In fact, the spheres tend to be at the
limit to be describable with bulk material parameters and are so close to each other that
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Figure 5.4.: Band structure of a cubic lattice of gold spheres for real (a) and imaginary part
(b) of the propagation constant kz. The lattice is depicted in the inset of (a).
As the band structure does not show a resonance close to the Brillouin edge,
the material is homogenizable. (c) The quantity τ is used as a measure for the
non-dipolar part of the effective T-matrix. As τ is close to zero, the dipolar part
of the effective T-matrix is sufficient to describe the material. Panel (d) shows
the ratio between the effective electric dipolar part |Tl,l′=1,1

eff,NN | and the electric
dipolar part |Tl,l′=1,1

NN | of the single sphere. For the effective electric dipolar part,
up to N = 1, up to N = 3, and up to N = 5 multipoles are incorporated. For
N = 3 and N = 5, a resonance is observable, which shifts and is more intense
for N = 5. It is, therefore, important to incorporate enough multipolar orders
in order to accurately describe the optical response of the material. (a)-(c) are
adapted with permission from [P5]. Copyright © 2022 John Wiley and Sons.

electron tunneling and electron spill-out could occur. These effects are not taken into account
here. This has, however, no impact on the liability of the homogenization procedure.

The T-matrix of a single sphere is computed with Mie theory. For the computation, up
to N = 5 multipolar orders are incorporated. We emphasize upfront that these higher
order multipoles have to be included to correctly describe the interaction of the particle in
the lattice. In Figures 5.4(a) and (b), the band structure of the material is depicted. As
Bragg gaps do not occur in this frequency range, the material is perfectly homogenizable.
Additionally, we observe in Figure 5.4(c) that higher multipolar orders in the effective T-
matrix are negligibly small. In Figure 5.4(d), the ratios are shown between the absolute
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Figure 5.5.: Effective material parameters and optical response of a cubic lattice of gold
spheres. Panel (a) depicts the relative permittivity of the material. The per-
mittivity shows a sharp resonance. Panels (b) and (c) show the reflection co-
efficient of a 2.15 mm thick slab of the material for a plane wave under normal
incidence and under oblique incidence with an angle of incidence of 75◦, respec-
tively. The agreement between the spectra obtained directly with the full-wave
solver mpGMM and the spectra obtained with the material parameters from
the effective T-matrix is perfect. Panel (d) depicts the reflection coefficient for
incorporating up to N = 1, N = 3, and N = 5 multipoles in the calculation
of the T-matrix for the full-wave solver and for the effective T-matrix. The
agreement between the different methods is perfect in each case. It is, however,
not sufficient to incorporate only dipoles (N = 1), as the spectrum shifts by
incorporating higher multipoles. Adapted with permission from [P5]. Copyright
© 2022 John Wiley and Sons.

value of the effective electric dipolar entry |Tl,l′=1,1
eff,NN | and the electric dipolar entry of a

single sphere |Tl,l′=1,1
NN |, taking into account up to N = 1, up to N = 3, and up to N = 5

multipolar orders in the effective T-matrix, respectively. We observe that the ratios differ
considerably from each other, demonstrating the strong lattice interaction due to higher
multipoles renormalizing the dipoles [P5].

In the next step, we consider the effective permittivity computed from the direction in-
dependent effective T-matrix. The other material parameters are not of interest since the
material does not show a magnetic optical response and is achiral. The isotropic effective
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permittivity is shown in Figure 5.5(a). We observe both a strong resonant and dispersive
character. The observed resonance originates from the plasmonic resonance of the individual
gold nanoparticles shifted to longer wavelengths due to lattice interaction.

Now, we consider a macroscopic sample. It is a film of the stacked lattices in a vacuum,
which is illuminated by a TM-polarized plane wave. TM-polarization of a normal incident
plane wave propagating in positive z-direction corresponds in this thesis to a linear polariza-
tion along the x-axis. TE-polarization of a normal incident plane wave corresponds to a linear
polarization along the y-axis. For oblique incidence of the plane wave, both polarizations are
rotated correspondingly.

In Figure 5.5(b) and (c), the absolute values of the reflection coefficients of a 2.15 mm
thick slab are shown for normal and for oblique incidence of a TM-polarized plane wave.
The propagation direction for the oblique incidence is k̂inc = [sin(θ), 0, cos(θ)]T with θ = 75◦.
The transmission coefficient is not shown, as it is negligibly small due to the large thickness
of the film.

For both normal and oblique incidence, we observe a perfect agreement between the ref-
erence solutions computed with mpGMM and the spectra based on the effective material
parameters. In Figure 5.5(d), we additionally display the reflection coefficients for normal
incidence, taking into account N = 1, N = 3, and up to N = 5 multipolar orders, respec-
tively. We observe that the reference solution and the solution based on the effective material
parameters agree always perfectly. Taking into account higher multipoles is, however, nec-
essary as the spectrum shifts and a second peak appears for N = 5. The multipolar lattice
interaction is for this instance very pronounced. This is due to the small distance between
the spheres. Their small distance causes their evanescent fields to overlap close to plasmonic
resonances leading to mode hybridization [P5, 152].

We conclude that this instance clearly demonstrates that homogenization approaches ex-
clusively based on the consideration of dipole-dipole interactions cannot describe the optical
response of such a material sufficiently, as they do not take into account the renormalization
of the dipoles due to higher-order multipoles. The material is, however, perfectly homoge-
nizable and is a prototypical instance for a metamaterial.

5.4.2. Cut-Plate Pairs in Cubic Lattice
With the last instance, we show the limits of the presented homogenization approach and of
homogenization in general [P5]. The considered material consists of cut-plate pairs arranged
in a cubic lattice with a lattice constant of a = 200 nm. The structure is surrounded by
air. The cut-plate pairs have a radius of R = 90nm and consist of two gold plates with the
thickness of 30 nm, separated by a 5 nm thick dielectric layer with εr,Diel = 2.25 [153]. For the
gold plates, the material parameters from [154] are taken. The lattice of the cut-plate pairs
is schematically shown in the inset of Figure 5.6(a). The T-matrix of the single object is
computed with JCMsuite [142], taking into account up to N = 7 multipoles. For this instance,
we use frequencies f = ω/2π for the spectra instead of wavelengths. This is because for this
material a Bragg gap appears and the dispersive details are better observable when displayed
as a function of the frequency. When plotted as a function of the wavelength, the response
appears to be compressed and stretched at shorter and longer wavelengths, respectively.

The band structure of the material is depicted in Figures 5.6(a) and (b). The disper-
sion band starts to bend at 240 THz, due to the Bragg gap which occurs between 300 THz
and 550 THz. We conclude, therefore, that the material is not homogenizable for frequen-
cies larger than 240 THz for which d2f

dk2z
= 0 is approximately satisfied, illustrated with a
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gray shade. To demonstrate the impact of the Bragg gap on the accuracy of the results of
the homogenization approach, we nevertheless continue to compute the effective material
parameters.

In Figure 5.6(c) and (d), the xx-components of the effective permeability and effective
permittivity are shown, which are the only relevant components for a propagation along the
z-direction, as the xx- and yy-components are the same. We observe a magnetic and an
electric resonance at different frequencies. The resonance of the relative permittivity occurs,
however, in the non-homogenizable range. The material shows both a magnetic and electronic
resonance due to the symmetric/anti-symmetric behavior of the modes of the cut-plate pairs
[153, 155].

As an instance for a macroscopic sample, we are now considering a slab of nine layers corre-
sponding to a thickness of 1800 nm in a vacuum. The transmission and reflection coefficients
are displayed in Figure 5.6(e) and (f), respectively. As illumination, a TM-polarized plane
wave under normal incidence is chosen. We observe that the spectra, obtained directly with
mpGMM and based on the effective material parameters, agree well in the homogenizable
range but strongly disagree in the non-homogenizable range. This is also observable for the
dispersion bands in Figure 5.6(a) and (b) computed with the effective propagation constant
kz = ω

c

√
εr,xxµr,xx. As expected, the reflection of the material shows a Bragg band in the

non-homogenizable range. The discrepancies in the homogenizable range are mainly related
to the fact that τ (Teff,Hel) depicted in Figure 5.6(f) is not sufficiently small, so that higher
multipoles are not negligible in this frequency range. We emphasize that no homogenization
approach would lead to reliable effective material parameters in the frequency range of the
Bragg resonance, as the material is not homogenizable in this regime. The disagreement we
see is, therefore, not a problem of our approach but of homogenization in general. One might
improve the situation by using non-local constitutive relations in the homogenized material
but this will not solve the problem that the material is simply not homogenizable.

Above, two methods were described to compute the effective T-matrix. For this example
of cut-plate pairs, the difference of the effective T-matrices obtained with both methods is
studied in the following. We evaluate the difference between between the effective T-matrix
Teff,Hel,Eq, computed with the first method, and the effective T-matrix Teff,Hel,An, computed
with the second method, by

∆(Teff,Hel,Eq,Teff,Hel,An) =

√√√√√ Tr
{
(Teff,Hel,Eq −Teff,Hel,An)

† (Teff,Hel,Eq −Teff,Hel,An)
}

2
(
Tr
{
T†

eff,Hel,EqTeff,Hel,Eq

}
+Tr

{
T†

eff,Hel,AnTeff,Hel,An

}) ,
(5.18)

where ∆(Teff,Hel,Eq,Teff,Hel,An) ∈ [0, 1]. For ∆(Teff,Hel,Eq,Teff,Hel,An) = 0, the matrices are
perfectly identical. In Figure 5.7, the difference of the effective T-matrices is depicted. It is
negligibly small so that we conclude that both methods lead to reliable results.

We discussed in this chapter a homogenization approach based on the propagation direc-
tion independent effective T-matrix for a molecular material and for two more convential
metamaterials. The effective T-matrix completely describes the optical response of a given
material incorporating its multipolar lattice interaction. The dipolar part of the effective
T-matrix is renormalized by higher-order multipolar contributions, and it is used to compute
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Figure 5.6.: Homogenization of a cubic lattice of cut-plate pairs. Panels (a) and (b) show
the band structure of the lattice of cut-plate pairs for the real and imaginary part
of the propagation constant, respectively. The material is schematically shown
in the inset of (a). The cut-plate pairs consist of two gold plates separated by
a thin insulator. The band structure shows a Bragg gap beginning at 300 THz.
From 240 THz on, the band starts to bend, due to the influence of the Bragg gap.
In this frequency range, the material is not homogenizable which is indicated by
the gray shade. Beginning at 240 THz, the band structure computed with the
full-wave solver mpGMM differs from the band structure obtained with the ma-
terial parameters from the effective T-matrix. Panels (c) and (d) depict the
effective permeability and permittivity of the material, respectively. Both show
resonances in different frequency ranges. There are two main observations for
the transmission (e) and reflection coefficients (f) of a thin film, obtained with
mpGMM and with the material parameters from the effective T-matrix. First,
the spectra agree well in the homogenizable range. In this range, discrepancies
can be related to non-negligible higher-order multipoles shown in red in (f). Sec-
ond, one observes in both spectra the Bragg band starting at 300 THz. Adapted
with permission from [P5]. Copyright © 2022 John Wiley and Sons.
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Figure 5.7.: Difference between the effective T-matrices of the three-dimensional lattice of cut-
plate pairs, computed with the two methods presented in this chapter. Adapted
with permission from [P5]. Copyright © 2022 John Wiley and Sons.

effective material parameters. We showed that in the case of large lattice interactions, it is
very important to take the multipolar interactions into account. In the frequency range, in
which a material exhibits Bragg resonances, the homogenization approach cannot be reliably
used, as the effective material parameters are not independent of the propagation direction
of the illuminating plane wave.

In the following chapter, we use the homogenization method to compute the effective
material parameters of molecular nanomaterials in order to analyze and design more complex
photonic devices, such as a metasurface of cylinders consisting of molecular structures. Here
we use that the effective material parameters are independent of the illumination direction.
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6 Linear Optical Response of Molecules in
Photonic Devices

In this chapter, we apply the presented techniques to analyze and enhance linear optical
phenomena of molecules in different photonic devices. In this regard, we follow a specific
multi-scale approach presented in [P4].

To analyze and enhance specific optical phenomena of molecules in a photonic device,
such as the circular dichroism, the optical properties of the molecular material have to be
obtained first. These properties can then be used to compute the optical response of simple
structures, such as molecular thin films. In a further step, photonic devices can be designed
to enhance specific optical effects. This analysis has to cope with two main challenges.
First, multiple different length scales are involved. Considering single molecules and finite
molecular clusters, one is analyzing structures of the order of some Ångströms up to a few
nanometers [P4]. Macroscopic photonic devices can have spatial dimensions in the order of
millimeters. A suitable multi-scale approach should, therefore, bridge several length scales,
so that photonic devices can be designed on the basis of the optical response of a single
molecule or finite molecular cluster.

The second challenge concerns the fact that different scientific disciplines are connected
in a multi-scale simulation approach for the analysis of molecules [P4]. Properties of the
finite-size molecular models, such as their polarizability, are computed with TD-DFT on the
basis of electronic transitions, see Chapter 4, or on the basis of vibrational transitions, see
[106], for instance. Maxwell scattering theory is used to calculate the optical response of
finite-size molecular models and of the entire photonic device.

A multi-scale approach solving the two challenges concerning different length scales and
disciplines is not only suitable to explain experimental measurements. Before a measurement,
it is also helpful to predict results and design photonic devices accurately to avoid demanding
and expensive experiments.

In Section 6.1, such a multi-scale approach is discussed. In the following sections, we
demonstrate the transition from single molecules, over monolayers and thin films, to entire
photonic devices. The T-matrix from Chapter 3 serves as bridge between the microscopic
and macroscopic description of the optical response of the molecules. In Section 6.2, we con-
sider the polarization-dependent optical response of finite molecular islands and monolayers
on dielectric substrates. In Section 6.3, different molecules inside photonic cavities are ana-
lyzed, namely two crystalline molecular films and a mixture of randomly oriented molecules.
Here, we consider the coupling between optical modes of the cavities and resonances of the
molecular film, which is very important for several applications as we discuss below. In
Section 6.4, we analyze a metasurface of cylinders consisting of a chiral molecular material.
The metasurface is designed to enhance the circular dichroism of the molecular material.
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6.1. Multi-Scale Approach to Compute the Linear Optical
Response of Molecules

In this section, we outline the multi-scale workflow presented in [P4]. It has been developed in
close cooperation with Marjan Krstić, Dominik Beutel, Christof Holzer, Carsten Rockstuhl,
and Ivan Fernandez-Corbaton, and is based on a former cooperation between Ivan Fernandez-
Corbaton and Wim Klopper [59]. The multi-scale workflow is shown in Figure 6.1. It
combines (TD)-DFT computations (green boxes) and Maxwell scattering simulations (blue
boxes). The first step of the approach is the characterization of structural properties of
the molecular material. For periodic crystalline materials such as metal-organic frameworks
(MOFs), for instance, the structure of a unit cell of the material is optimized with a periodic
DFT code such as CP2K [156]. In this step, also the lattice vectors of the unit cell are defined.
Here, the results can be compared to experimental spectra such as X-ray diffraction (XRD)
results, if available.

In the next step, one selects a molecular model of finite size, which is analyzed with TD-
DFT to obtain dynamic polarizabilities, see Chapter 4. This is because software packages
such as TURBOMOLE [P9] can only be used to compute the polarizabilities of finite-size

Figure 6.1.: Workflow of the presented multi-scale approach. The top row concerns the DFT
simulations. First, the geometry of the molecular material is optimized. Then,
a finite-size model is chosen to perform TD-DFT simulations to compute the
polarizability tensor. The bottom row concerns the multi-scattering simulations.
From the polarizability tensor, the T-matrix is computed, which can be used for
the multi-scattering simulations to compute the optical response of molecules
within photonic devices. Created in cooperation with Marjan Krstić and Ivan
Fernandez-Corbaton. Reprinted with permission from [P4]. Copyright © 2022
John Wiley and Sons.
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models but not of periodic systems. In the choice of the finite-size model, some restrictions
apply. First, the size of the model has to be large enough to sufficiently incorporate the
electronic or vibrational interactions between the molecules. The size, however, cannot be
chosen arbitrarily large, due to the computational costs of TD-DFT. These increase with the
size of the model. Second, the unit cell of the molecular film should be cubic, if possible. This
is a requirement to avoid a large overlap of the smallest circumscribing spheres of neighboring
unit cells. The smallest circumscribing spheres are called Rayleigh spheres. For a detailed
discussion of the Rayleigh hypothesis, see [157], for instance. The applied computational
methods, see Chapter 3, assume that the Rayleigh spheres of neighboring unit cells do not
overlap [80, 158]. If the overlap is sufficiently small, the optical response of the global
structure can still be computed accurately [159]. The possible overlap of the Rayleigh spheres
of neighboring molecular unit cells, however, can be considered as a drawback of the presented
approach.

With TD-DFT, the dynamic polarizability tensors of the finite-size molecular model are
calculated. From the polarizability tensors, the T-matrix is obtained with Eq. (3.17). The
T-matrix is used to compute the optical response of a film inside a cavity, for instance, with
mpGMM [51] or treams [52, 53]. Here, the methods presented in Chapter 3 are used. The
T-matrix is also used to calculate effective material parameters with the methods described
in Chapter 5. These can be used to design a metasurface of the molecular material, for
instance. The T-matrix is, therefore, the connection between the microscopic description of
a finite-size molecular model via its dipole moments and the macroscopic description of entire
photonic devices. In the following sections, we apply the multi-scale approach on different
instances. Here, we make use of the fact that the multi-scale approach enables the transfer
from single molecules, over monolayers, to macroscopic films and devices.

6.2. Polarization-Dependent Optical Response of Molecular
Islands on Dielectric Substrates

In this section, we consider the optical response of molecular islands and monolayers which
are deposited on a dielectric substrate. This analysis is published in [P8]. The DFT com-
putations for this study have been prepared and performed by Marjan Krstić and Christof
Holzer. The three-/four layer model studies have been performed by Thomas G. Mayerhöfer.
Shuang Chen, Zairan Yu, Alexei Nefedov, Yuemin Wang, and Christof Wöll have been re-
sponsible for the experimental measurements. The concept of including both electric and
vibrational contributions to the T-matrix has been developed in cooperation with Markus
Nyman, Marjan Krstić, Christof Holzer, and Carsten Rockstuhl. The optical simulations
have been performed by the author with treams [52, 53].

In this section, we analyze the transition from the response of one molecule, over islands
of finite size, to the response of infinite adsorbate layers. In this regard, we demonstrate
that the presented multi-scale approach can be used to describe the systems across different
length scales and the transition between them. The major interest of the study concerns the
variation of the dip and peak positions in reflectance spectra of TE- and TM-polarized light.

Experimentally, these spectra are measured with infrared reflection-absorption spectroscopy
(IRRAS) [160–163]. For Si-H on Si(100) substrates, Chabal and colleagues measured such
shifts [164]. Yang et al. measured shifts for CO [42] and for N2O on ceria [43], which amount
to 20 cm−1 in the latter case.
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The experimentally measured curves in [42, 43] have been accompanied by simulations
based on a three-layer model of the setup. The purpose of this model is to explain the
experimentally obtained difference in the dip and peak positions measured in TE- and TM-
polarization. In the three-layer study, the molecular layer has been modeled using a dielectric
permittivity of the molecular layer. Details about three-layer model studies can be found in
[42, P8], for instance. For oblique illumination of the film on a substrate with TM-polarized
plane waves, the TM-polarized electric field has a vertical and a parallel component with
respect to the substrate. Both, the parallel component of the TM-polarized electric field
and the TE-polarized electric field, have to be continuous at the interfaces of vacuum/film
and film/substrate. The experimentally measured spectra show for TM- and TE-polarization
extrema, which can be related to the coupling of the electric fields to the molecular resonances
[42, 43]. In the study [42], it has been shown, that the different behavior of the vertical
component of the TM-polarized and the TE-polarized electric field leads to a shift between
the extrema of the spectra. The film was in this previous study represented by a dielectric
permittivity. Yang et al. explain in [42] that the wavenumber of maximum reflectance of
the vertical component of the TM-polarized electric field with respect to the substrate is
connected to the maximum of the imaginary part of the inverse of the dielectric permittivity
associated to the molecular axis. The maximum reflectance of the TE-polarized light is
connected to the maximum of the imaginary part of the permittivity. Since these maxima
appear at two different wavenumbers, the experimentally observed shift in the spectra could
be explained.

Such a phenomenological description via a dielectric permittivity model of the monolayer is
not suitable for finite-sized molecular islands, since they cannot be represented by a dielectric

Figure 6.2.: CO (a) and CO2 (b) molecule, aligned along the z-axis. The geometries are
optimized with DFT. The respective resonance frequencies of their vibrational
modes (yellow arrows) are indicated. Created by Marjan Krstić. Reprinted with
permission from [P8]. Copyright © 2024 The PCCP Owner Societies.
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Figure 6.3.: Absorption cross sections of a CO (a) and a CO2 molecule (b) in the gas phase.
The absorption cross sections show a resonance with respect to a plane wave
with an electric field polarized along the z-axis. Adapted with permission from
[P8]. Copyright © 2024 The PCCP Owner Societies.

permittivity. This is because the finite islands are considerably smaller than the wavelength
of the illumination. Strictly speaking, only the response of media infinitely extended into
space can be represented by a dielectric permittivity, see Eq. (1) of [P1]. To discuss the optical
response of finite-size islands, one can apply the presented ab initio multi-scale approach. We
consider molecular islands of CO and CO2 which are deposited on dielectric substrates of
ceria and Al2O3.

(TD)-DFT Simulations
With TD-DFT, the polarizabilities of single CO and CO2 molecules are computed, see Chap-
ter 4, and used to obtain their T-matrices, corresponding to the first row of the multi-scale
approach in Figure 6.1. The T-matrix is further used to perform multi-scale simulations.
These steps correspond to the second row in Figure 6.1. First, the geometries of the molecules
are optimized to reach the minimum on the potential energy surface of the ground electronic
state. Both are shown in Figure 6.2, together with their vibrational resonance frequencies.
With TD-DFT, the vibrational and electronic polarizabilities are computed with the develop-
ment version of TURBOMOLE [P9, 165]. The functional used for the TD-DFT computations
is the hybrid PBE0 exchange-correlation functional [166, 167]. The basis set is def2-TZVP
[99], see Chapter 4.

Optical Response of Islands of CO and CO2 on Dielectric Substrates
We continue by considering the optical response of the molecules on dielectric substrates.
We are analyzing the optical response of the molecules at infrared wavelengths. Therefore,
a vibrational contribution Tvib and an electric contribution Tel to the T-matrix have to be
included [P8, Eq. (1)]:

T = Tvib +Tel . (6.1)

Tel includes the less-dispersive contribution of electronic transitions in the visible and the
UV wavelength range. It is incorporated to correctly obtain the intensity of the simulated
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Figure 6.4.: Schematic IRRAS setup. Panel (a) shows the setup considered in the simulations
and in the measurements. The reflectance is evaluated for plane waves with
fields being TE- and TM-polarized. The TM-polarized electric field can be split
in a part, which is vertical to the surface, and a part, which is tangential to
the surface. The plane waves are oblique incident with an angle α on the 2D
adsorbate layers and the molecular islands. Panel (b) depicts an infinite 2D
adsorbate layer deposited on a dielectric substrate. The molecular model was
created by Marjan Krstić. Adapted with permission from [P8]. Copyright ©
2024 The PCCP Owner Societies.

curves. In Figures 6.3(a) and (b), the absorption cross sections of CO and CO2 in the gas
phase are shown with respect to a plane wave with a z-polarized electric field. The absorption
cross sections are computed by

Cabs = Cext − Csca , (6.2)

with the extinction cross section [168, Eq. (5.18b)]

Cext = − 1

k2

1∑
m=−1

Re
(
a1,m,Nc

∗
1,m,N + a1,m,Mc

∗
1,m,M

)
, (6.3)

and the scattering cross section [168, Eq. (5.18a)]

Csca =
1

k2

1∑
m=−1

(
|c1,m,N|2 + |c1,m,M|2

)
, (6.4)

where a1,m,N, a1,m,M and c1,m,N, c1,m,M are the multipolar expansion coefficients of the inci-
dent and the scattered fields, respectively, see Chapter 3. They are related by the T-matrix
T via Eq. (3.10). As the molecules are aligned along the z-axis, the response to a plane wave
with a z-polarized electric field shows a resonance.

We consider in the following the optical response of the molecules deposited on dielectric
substrates. For the multi-scale simulations, treams [52, 53] is used. In Figure 6.4(a), the
setup for the simulations is shown. In Figure 6.4(b), an infinite 2D adsorbate layer is
schematically displayed. This resembles the situation from the experimental measurements
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Figure 6.5.: Optical response of CO molecules on a ceria substrate. Panel (a) depicts the mea-
sured IRRAS spectra (dots and crosses) of an adsorbate layer of CO molecules
deposited on a ceria substrate. Panels (b), (c), and (d) show the simulated
spectra of a 2D adsorbate layer, of a single molecule, and of islands with increas-
ing size deposited on a ceria substrate, respectively. Panel (e) depicts the shift
between the dips of the TE- and the TM-spectra. The shift increases with the
size of the island. (a) is adapted with permission from [42] under a CC BY-NC
3.0 Deed license. Copyright © 2020 The PCCP Owner Societies. (b)-(e) are ad-
pated with permission from [P8]. Copyright © 2024 The PCCP Owner Societies.

of CO and CO2 monolayers adsorbed on dielectric substrates. Analogous to the experimental
studies [42, 43], we consider as illumination a plane wave that is either TE- or TM-polarized.
The angle of incidence is α = 80◦. The TM-polarized electric field of the oblique illumination
can be separated into a component ETM,v vertical to the film and a component ETM,t

tangential to the film. As we stated above, these components satisfy different continuity
conditions concerning an electric field at the interface of two different media. Here, the
vertical component ETM,v is of special interest, since it leads to a different reflectance behavior
in comparison to the TE-polarized plane wave [42]. Both ETM,t and ETE are tangential to
the substrate and have to be continuous. As ETE and ETM,t have to be continuous and ETM,v

not, their reflectance spectra are, on a macroscopic level, determined by the inverse of the
molecular film permittivity and the permittivity itself, respectively [42]. As the permittivity
and its inverse are in general shifted to each other, the peaks/dips of the reflectance spectra
related to ETM,v and related to ETE and ETM,t are shifted to each other.

Besides the infinite 2D adsorbate layers, which can be also described by a phenomenological
permittivity, we also consider square superlattices of finite molecular islands and infinite 2D
adsorbate layers. The lattice constant of the superlattice is set to 500 nm to guarantee that
the molecules of neighboring islands are not interacting with each other and that diffraction
does not occur. A superlattice deposited on an infinite substrate has to be considered as
we cannot simulate a single finite cluster deposited on a subtrate with treams [52, 53]. We
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Figure 6.6.: Optical response of CO2 molecules on ceria and Al2O3 substrates. Panel (a)
shows the measured IRRAS spectra of CO2 deposited on a ceria substrate, and
panels (b) and (c) show the corresponding spectra for an Al2O3 substrate, re-
spectively. The measured IRRAS spectra in (b) and (c) (red, blue, and green
lines) are accompanied by phenomenological four-layer model studies (black
lines). In (b) and (c), the spectra are displayed for different coverage rates
of the substrate. Panel (d) depicts the spectra for both substrates simulated
with the multi-scale approach. The agreement of the position of the dips and
peaks between experiment and multi-scale simulations is good. The spectra of
finite islands with their respective shifts are shown in (e) for ceria and in (f) for
Al2O3, respectively. The shift increases with the size of the island and gets close
to the result of the monolayer. (a)-(c) have been originally created by Yuemin
Wang. Adapted with permission from [P8]. Copyright © 2024 The PCCP Owner
Societies.

emphasize, however, that the optical response originates from the individual islands, as they
do not interact with each other due to the large lattice constant of the superlattices. The
finite-size molecular islands are of specific interest as they show the strength of the multi-scale
approach covering different length scales.

First, we concentrate on CO molecules on a ceria substrate. Considering the properties
of the CO molecules, as in [42], a tilt angle of the molecular axis of 46◦ is assumed with
respect to the z-axis, which can be partly a consequence of thermally occupied frustrated
rotations. The T-matrix is averaged across the azimuthal angles, as the azimuthal orientation
is assumed to be random [42]. The dielectric permittivity of ceria is set to 5.31 [42]. The
distance between the molecules inside an island and inside the infinite 2D adsorbate layers is
set to 0.5 nm. A square arrangement is also assumed for the molecules inside the islands. For
the distance between the center of mass of the CO molecules and the surface of the substrate,
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a value of 0.3446 nm is estimated. This is based on the distance between the center-of-mass
of the molecule and the atom connected to the surface, and on the distance between the
surface and this atom.

First, we analyze the optical response of the infinite 2D adsorbate layer of CO molecules,
which we directly compare to the experimental and theoretical three-layer studies from [42].
In Figure 6.5(a), the measured spectra from [42] are displayed. For the spectra, we consider
the negative logarithm of the reflectance R of the molecules on the substrate divided by the
reflectance Rsubs of the uncovered substrate, − log10

(
R

Rsubs

)
. This quantity corresponds to

the experimentally measured absorbance, see [P8]. In Figure 6.5(b), the simulated spectra
are shown for TE- and TM-polarized incident light. The position of the dips and their
shift agrees very well between the experiment and our simulations. This demonstrates that
the multi-scale approach is very useful to accompany experimental results with theoretical
simulations, and motivates us to predict results, which are more demanding to measure but
yet important to estimate the influence of finite-size effects.

In the next step, we make use of the fact that within our multi-scale approach, finite islands
of molecules can be considered with treams [52, 53]. We analyze the spectra for islands of one
molecule and up to 441 CO molecules on a ceria substrate in Figures 6.5(c) and (d). The
corresponding shifts of the TE and TM-spectra are displayed in Figure 6.5(e). For a single
molecule, one does not observe a shift. For an island of four molecules (0.5 nm x 0.5 nm),
the shift is 0.9 cm−1. For an island of 441 molecules (10 nm x 10 nm), the shift is 2.6 cm−1

which is close to the shift of 3 cm−1 for an infinite 2D adsorbate layer. As we observe a shift
for all islands except of the single molecule, we conclude that the shift between the TE- and
TM-spectra occurs on a macroscopic level due to the interaction between the molecules on
the microscopic level. This interaction is not present for a single molecule. With increasing
island size, the interaction of the dipole moments of the molecules can be captured by means
of a dielectric permittivity. This represents the transition from finite islands to monolayers.

Next, we concentrate on CO2 molecules deposited on ceria and Al2O3. For Al2O3, the
dielectric permittivity is set to 3.075 [169]. The tilt angle of the CO2 molecules is set to
60◦. For the distance between the center of mass of the CO2 molecule and the substrate, we
estimate a value of 0.3581 nm. All the other parameters are the same as for CO.

The experimental spectra for ceria and Al2O3 are displayed in Figure 6.6(a), (b), and
(c), respectively. We observe for Al2O3 in Figure 6.6(b) and (c) that the dips and peaks
of the absorbance spectra shift for different values of the coverage of the substrate by the
molecules. The simulated spectra of the infinite 2D lattice are shown in Figure 6.6(d) for both
substrates. The agreement of the positions of the dips and peaks measured in the experiment
and computed in the simulations is good. In the simulations, the shift between the TE- and
TM-spectra is 15.87 cm−1. This is a larger value in comparison to the value observed for CO
molecules. Slight disagreements between the dips and peaks observed in the experiments
and the simulations can be related to the influence of the coverage of the substrate by
the molecules, which shift the dips and peaks of the absorbance in the experiments, see
Figure 6.6(b) and (c).

A prominent feature of the spectra is that we observe one dip and one peak for the TM-
spectra in comparison to CO molecules. The dip is related to the component vertical to
the substrate, and the peak is related to the parallel component [P8, 170, 171]. Their
occurrence can be also explained with the continuity relation for an electric field at the
interface of two media. Similar to the TE-polarized field, the reflectance of the parallel
component is determined by the permittivity and not its inverse. Since the signs of the
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imaginary parts of the permittivity and its inverse are different, those two extrema have
different signs. For CO, the shift between the extrema of the vertical and parallel component
is so small that the extremum of the parallel component is overlayed by the extremum of the
vertical component. While the discussion of this effect relies for monolayers on the model
of a dielectric permittivity, the same explanation applies for the islands, considering the
interaction of their dipole moments, which emerges as a dielectric permittivity in the case of
a monolayer.

In Figure 6.6(e) and (f), the finite size study for ceria and Al2O3 is displayed. Here,
we again observe that the shift of the TM and TE dips is zero for a single molecule and
increases with the size of the 2D island. For islands consisting of considerably more than 441
molecules, we can, therefore, exclude the influence of finite size effects. This study shows
that the presented ab initio multi-scale approach exhibits considerable predictive power, and
can be used to examine scenarios difficult to study in an experiment. These experimental
studies can be supported beforehand by such prior theoretical simulations.

6.3. Coupling of Molecular Films to Photonic Cavities

In this section, we consider the optical response of molecular films inside photonic cavities.
For this analysis, the discussion of multi-layered systems is important. We perform, therefore,
a transition from the response of a finite-size molecular model, computed with TD-DFT, to
the response of a photonic device containing a macroscopic film. The photonic cavities
consist of two metallic mirrors. The coupling of both the filling medium and the cavity is
of large interest for many applications, since the optical response of the filled cavity is often
considerably different from the response of the filling medium, see [172–181], for instance.

Figure 6.7.: Experimentally measured absorption spectra of Zn-SiPc-SURMOF-2 on a silver
substrate (a), and inside a cavity of silver mirrors (b). For the SURMOF on
the substrate, three absorption peaks are visible at 1.67 eV, at 1.8 eV, and close
to 1.9 eV. For the SURMOF with a thickness of 400 nm inside the cavity, the
absorption spectrum (red) shows two peaks at 1.52 eV and 1.87 eV, centered
around 1.67 eV. Adapted with permission from [172] under a CC BY-NC 3.0
Deed license. Copyright © 2020 The PCCP Owner Societies.
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The different applications range from modifying chemical reactions [176–178], over quantum-
electrodynamical phenomena [172], to exciton polaritons [181].

6.3.1. Zn-SiPc-SURMOF-2

The first instance, which we consider, is a Zn-SiPc-SURMOF-2. We recall that SURMOFs
are surface-mounted metal-organic frameworks. A SURMOF-2 consists of two-dimensional
planar layers with isoreticular structure. These are connected to each other by weak van der
Waals interactions in the third dimension [182]. SURMOFs are of large interest for us, since
they can be represented by stacked two-dimensional lattices of molecules. This is a major
application of our multi-scale approach. In [172], the optical response of the SURMOF on
a substrate and inside a cavity has been experimentally considered. Three absorption peaks
are measured of a thin film of the SURMOF deposited on a silver substrate. These are
located at 1.67 eV, at 1.8 eV, and close to 1.9 eV, see the green line in Figure 6.7(a). The
peak at 1.67 eV is the most dominant one. In the next step, Haldar et al. consider the film
with a thickness of 400 nm inside a cavity [172]. The cavity consists of a silver mirror of a
thickness of 10 nm at the illumination side and a silver mirror of a thickness of 30 nm on the
other side of the film. The absorption spectrum of this cavity shows two separated peaks
at 1.52 eV and 1.87 eV, which are centered around 1.67 eV, see Figure 6.7(b). In contrast
to the situation before, a minimum of the intensity is observed at this energy. In [172], it
is concluded that the most dominant absorption peak of the film on the substrate is split
for the filled cavity, due to the coupling between the optical modes of the cavity and the

Figure 6.8.: Scheme of the simulated setup of the Zn-SiPc-SURMOF-2 inside a cavity (a).
Both mirrors consist of silver thin films. The top mirror has a thickness of 10 nm.
The bottom mirror has a thickness of 30 nm. The cavity is illuminated from above
with a normal incident plane wave propagating in −z-direction. Panel (b) shows
the finite-size model used for the TD-DFT simulations of the polarizability tensor
of the Zn-SiPc-SURMOF-2. Originally created by Marjan Krstić. Adapted with
permission from [P4]. Copyright © 2022 John Wiley and Sons.
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absorption resonance of the SURMOF. This is commonly referred to as Rabi splitting and
strong coupling [172, 183].

Motivated by these experimental findings, the optical response of the SURMOF inside
the cavity is theoretically analyzed in [P4]. This serves as a demonstrating instance for an
application of our approach and to gain knowledge about the coupling nature between the
cavity and the SURMOF. The filled cavity is schematically shown in Figure 6.8(a). It is
analyzed with the presented workflow in Figure 6.1. The DFT computations for this analysis
have been prepared and performed by Marjan Krstić and Christof Holzer. The mode analysis
of the filled cavity has been developed by Ivan Fernandez-Corbaton. The optical simulations
have been performed by the author with mpGMM [51].

(TD)-DFT Simulations

The first step of the analysis is the optimization of the geometry parameters with CP2K
[156] of a unit cell within the periodic material. Here, the lattice constants are defined by
experiments with 1.1 nm in the x-direction and 2.1 nm in the y- and z-directions [172].

To perform TD-DFT calculations, a cluster-like finite-size molecular model is chosen. It
consists of three Zn-paddle wheels and three SiPc linkers in the horizontal and vertical
direction, see Figure 6.8(b). As the finite-size model corresponds to three unit cells along
the x-direction, the lattice constants for the optical simulations are ax = 3.3 nm, ay = 2.1 nm,
and az = 2.1 nm. The polarizability tensors are computed as described in Chapter 4 by means
of the ωB97x-d DFT functional [184] and the def2-TZVP basis set [99]. The computation is
performed with a development version of the TURBOMOLE package [148, P9].

Figure 6.9.: Orientationally averaged absorption cross sections computed directly with TD-
DFT and obtained from the polarizability tensor of the finite-size model in Fig-
ure 6.8(b). Both absorption spectra agree perfectly with each other and show
peaks between 1.7 eV and 1.9 eV. The positions agree well with the peaks from
the experimentally measured spectrum in Figure 6.7(a). Created by Marjan
Krstić. Adapted with permission from [P4]. Copyright © 2022 John Wiley and
Sons.
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We can already compare the response of the finite-size molecular model to the experiment
by means of TD-DFT: The orientationally averaged absorption cross sections computed from
the polarizabilities and directly with TD-DFT are shown in Figure 6.9. We observe that the
positions and the shape of the absorption peaks agree well with the experimental spectrum.
In Appendix A, we consider a second finite-size molecular model, which leads to similar
results concerning the spectra of the film in a vacuum and inside a cavity, which we discuss
in the following. This supports the assumption that the model analyzed here is suitable to
sufficiently describe the optical response of the film with the multi-scale approach.

Optical Response of the SURMOF Film in a Vacuum and Inside a Cavity

To obtain the macroscopic optical response of the film in a vacuum and the filled cavity,
we compute the interaction in one layer, and the stacked layers are coupled as described in
Chapter 3. Figure 6.10(a) shows the absorption spectrum of the SURMOF film in a vacuum

Figure 6.10.: Simulated absorption spectra of the thin film of the Zn-SiPc-SURMOF-2 in a
vacuum. The illumination is a normal incident plane wave, which is left-handed
circularly polarized (a), TE-polarized (b), and TM-polarized (c), respectively.
All spectra show broad absorption between 1.7 eV and 1.9 eV. The spectra in
(b) and (c) differ from each other since the molecular material does not exhibit
a C4-symmetry with respect to the z-axis. Adapted with permission from [P4].
Copyright © 2022 John Wiley and Sons.
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Figure 6.11.: Simulated absorption spectra of the thin film of the Zn-SiPc-SURMOF-2 in
the cavity. The illumination is a left-handed circularly polarized (a), a TE-
polarized (b), and a TM-polarized plane wave (c). For all spectra, the straight
absorption lines of the cavity are bent close to the energy range between 1.7 eV
and 1.9 eV, in which the SURMOF material shows absorption resonances. Due
to the anisotropy of the material, all absorption lines appear twofold. For the
TE- and TM-polarized plane wave, one of the absorption lines is always less
intensive. Adapted with permission from [P4]. Copyright © 2022 John Wiley
and Sons.

for different wavelengths of a plane wave and different values of the thickness of the film. The
thickness is increased by adding a corresponding number of molecular layers in the simulation.
The plane wave is normal incident and left-handed circularly polarized. We observe a broad
range of large absorption between 1.7 eV and 1.9 eV. This agrees with the absorption spectrum
in Figure 6.9 computed with DFT and the experimentally measured spectra in Figure 6.7,
which show three absorption peaks in this energy range. Here, circularly polarized light is
used to simulate the situation of unpolarized light considered in [172]. In Figures 6.10(b)
and (c), the absorption spectra of TE- and TM-polarized plane waves are depicted. As
the molecular crystal does not have a C4-symmetry with respect to the z-axis, both spectra
differ from each other. We recall that for normal incidence, TE-polarization corresponds to
a polarization along the y-axis and TM-polarization corresponds to a polarization along the
x-axis.
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Figure 6.12.: Effective refractive index and mode analysis (a) and absorption spectrum of
the cavity filled with the Zn-SiPc-SURMOF-2 (b), plotted with a modified
version of [185]. The computed cavity modes agree well with the lines of large
absorption. Differences can be related to neglecting the anisotropy for the
computation of the refractive index. At the thickness of 400 nm (dashed white
line), which is also considered in the experiment in [172], two different cavity
modes are observed. This is due to the considerable dispersion of the refractive
index.

In the next step, we analyze the response of the filled cavity. Figures 6.11(a), (b), and
(c) display the absorption spectra for a left-circularly, TE-, and TM-polarized incident plane
wave, respectively. There are three main observations for the spectrum in Figure 6.11(a).
First, there are straight absorption lines which are bent in the region between 1.7 eV and
1.9 eV, where the SURMOF shows broad absorption. The straight absorption lines are the
cavity modes, as we show below. The cavity modes are bent, due to the coupling to the
SURMOF. This implies that the presence of the SURMOF strongly influences the nature of
the propagation of the light inside the cavity. Second, at the thickness of the cavity of 400 nm
used in the experimental measurements from [172] and indicated with a white dashed line
in Figure 6.11(a), two dominant absorption peaks can be observed at approximately 1.6 eV
and 1.9 eV. The positions of these peaks agree well with the positions of the absorption peaks
measured in the experiment. These two peaks are analyzed in detail below. Third, every
absorption line consists of two closely neighboring lines. Since the spectra for linearly polar-
ized plane waves in Figures 6.11(b) and (c) always show one of both lines more pronounced,
we deduce that the twofold occurrence is caused by the anisotropy of the SURMOF mate-
rial. We also observe both lines for the two linear polarizations, as the x- and y-axis of the
SURMOF material are not its principal axes.

Mode Analysis of the Filled Cavity

To further characterize the optical response of the filled cavity and, more specifically, the
peaks at approximately 1.6 eV and 1.9 eV, the refractive index nS(ω) =

√
εr,effµr,eff of the film

is computed with the homogenization method described in Chapter 5. As the mode analyis
is restricted to scalar values of the refractive index, the four blocks of the T-matrix of the
finite-size molecular model are rotationally averaged. The lattice constants are also averaged.
As we are mainly interested in a qualitative interpretation of the absorption spectrum, this
simplified method is sufficient for the further analysis. With the refractive index of the
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material at hand, we perform a mode analysis of the absorption spectrum. The cavity modes
are obtained by solving the phase-matching condition for coherently forming a mode, which
reflects off the interfaces between the molecular film and the mirrors. It is given by [P4,
Eq. (5)]

2
∣∣Real{kz(ω)}∣∣L(ω) + ϕ1(ω) + ϕ2(ω) = 2πl . (6.5)

As we consider normal incidence in z-direction, the real part of the z-component of the wave
vector is |Real{kz(ω)}

∣∣ = ωReal{nS(ω)}
c0

. L(ω) is the thickness of the film, l ∈ Z denotes the
mode index, and ϕ1(ω) and ϕ2(ω) correspond to the phases of the reflection coefficients at
the two mirrors. As the phases of the reflection coefficients can be computed with mpGMM
[51], one can determine the necessary thickness L(ω) of the cavity for a specific mode at a
frequency ω. It is given by [P4, Eq. (6)]

L(ω) =
c0

ωReal{nS(ω)}

(
πl − ϕ1(ω) + ϕ2(ω)

2

)
. (6.6)

Both the refractive index and the cavity modes are shown together with the absorption
spectrum of the cavity filled with the SURMOF in Figures 6.12(a) and (b). First, we

Figure 6.13.: Optimized unit cell of the UiO-67-R-BINOL MOF (a). In panel (b), the sim-
ulated and measured XRD out-of-plane diffractograms are depicted. Panel (c)
shows the finite-size molecular model used for the TD-DFT and multi-scale
simulation. Panels (d) and (e) depict the top- and side-view SEM images of
the MOF film deposited on a glass substrate, respectively. Created by Marjan
Krstić. Reprinted with permission from [P3]. Copyright © 2023 John Wiley
and Sons.
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observe a good agreement between the cavity modes and the absorption lines of the cavity.
Discrepancies are due to the negligence of the anisotropy of the material in the computation
of the modes. Second, we consider the film thickness of 400 nm more closely. Here, we
observe that the two absorption peaks at 1.6 eV and 1.9 eV correspond to two different cavity
modes. This is a surprising result as usually one observes a single split cavity mode, see [183].
We relate this observation to the large dispersion of the refractive index of the SURMOF
material, which varies between 0.4 and 3.4 for the two energy regions. The strong dispersion
has the following effect: For energies around 1.9 eV, the refractive index is very low, so that
here the first cavity mode is present at a thickness of 400 nm. For energies around 1.6 eV, the
refractive index is considerably larger. Here, the second cavity mode occurs at a thickness
of 400 nm. With the next two instances of molecular materials, we take a close look on the
occurrence of split cavity modes and compare the results to each other.

6.3.2. Chiral UiO-67-BINOL MOF

In the next example, we consider a chiral UiO-67-BINOL metal-organic framework. We recall
that chiral molecules cannot be superimposed on their mirror image. This leads to interesting
optical phenomena. One instance is circular dichroism which is equal to the difference of the
absorption of left- and right-handed circularly polarized plane waves. Note that the circular
dichroism signal is in the considered wavelength range related to electronic transitions [P3]. It
is also commonly referred to as electronic circular dichroism. In the infrared wavelength range,
chiral molecules show a circular dichroism signal related to vibrational transitions. This is
commonly referred to as vibrational circular dichroism, see [106]. The optical properties of
the UiO-67-BINOL MOF have been analyzed both theoretically and experimentally in [P3].
The DFT computations for this analysis have been prepared and performed by Marjan Krstić
and Christof Holzer. Chun Li, Simon Oßwald, Jochen Bürck, and Lars Heinke have been the
main responsible persons for the experimental studies. The optical simulations have been
performed by the author with mpGMM [51].

The MOF is a Zirconium-based UiO-67 type MOF. The organic linkers are chiral [1,1’-
Binaphtalene]-2,2’-diol (BINOL) molecules. For the experimental measurements, a film of
this MOF is grown via vapor-assisted conversion [186] on a quartz substrate. This enables a
precise control of the thickness of the final film.

(TD)-DFT Simulations

The dipolar polarizability tensor and the T-matrix are computed with the same workflow as
for the previous example of the Zn-SiPc-SURMOF-2. First, the periodic DFT code CP2K
is used to optimize the material [156]. As the BINOL likers are chiral, an R-version and a
S-version of the MOF exist. All size dimensions are the same for both enantiomers. The
dimensions of the unit cell, depicted in Figure 6.13(a), are computed to be the same in all
directions with a = 2.7647106 nm. With DFT, the X-ray diffraction pattern is calculated.
It is depicted in Figure 6.13(b) together with the experimentally measured out-of-plane
diffractogram of the UiO-67-S-BINOL MOF thin film. Due to the good agreement, we
deduce that the geometry parameters of the simulated model represent the structure of the
grown film. In the next step, the finite-size molecular model of the optimized material is
selected. In comparison to the unit cell considered in CP2K, the difference is that the finite-
size molecular model used for the computation of the T-matrix does not exhibit cut molecules
or broken bonds. The latter is achieved by saturating the bonds with hydrogen atoms. The
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finite-size molecular model of the UiO-67-R-BINOL version is depicted in Figure 6.13(c). It
consists of 1074 atoms. In Figures 6.13(d) and (e), we show scanning electron microscopy
images of the experimentally grown thin MOF film. It covers the substrate and shows several
crystallites.

The dipolar polarizability and the T-matrix of the finite-size molecular model are com-
puted with TURBOMOLE [148, P9] as described in Chapter 4. Here, the PBE functional
[187, 188] and the def2-SVP basis set [99] are used. The T-matrix of the S-version, which
corresponds to the mirror image of the MOF, is obtained by mirroring the T-matrix of the
R-version. The trace of the imaginary part of the electric-electric tensor αee and the trace
of the real part of the electric-magnetic tensor αem can be used to compute the absorption
and electronic circular dichroism (ECD) spectra of the orientationally averaged molecular
models, respectively. Both quantities are in arbitrary units. They are shown together with
the respective experimentally measured values in Figures 6.14(a) and (b). The ECD spectra
computed from the polarizability tensors are scaled so that the intensities of the simulated
and measured peaks agree at 334 nm. The agreement of the position of the peaks is good
for all spectra. In this study, we plot the spectra over varying wavelengths and not energies,
since this is more common in the context of discussing circular dichroism of chiral molecules.

Optical Response of the Chiral MOF Film on a Substrate and Inside a Cavity

The T-matrices obtained with TD-DFT are used to compute the optical response of a macro-
scopic thin film on a glass substrate and inside an optical cavity consisting of two aluminum
mirrors. Both setups are depicted in Figure 6.15. In the case of the film on the glass substrate,
the substrate is assumed to extend into the entire upper half-space to avoid an influence of a
finite thickness. The scanning electron microscope images of the thin film in Figure 6.13 show
various crystalline domains of the film, which are differently oriented with respect to each
other. Therefore, the four block matrices of the T-matrix of the finite-size molecular model

Figure 6.14.: Orientationally averaged absorption (a) and circular dichroism spectra (b) of
the finite-size molecular model of the UiO-67-R-BINOL MOF obtained with
TD-DFT. The spectra are compared to experimental measurements of a thin
film. The circular dichroism spectra computed with TD-DFT are normalized
to match the intensity of the peaks at 334 nm. The shape and position of the
peaks agree well. Created by Marjan Krstić. Reprinted with permission from
[P3]. Copyright © 2023 John Wiley and Sons.
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Figure 6.15.: Schematic setups for the simulations of the UiO-67-BINOL MOF thin film. In
panel (a), the UiO-67-BINOL MOF is deposited on a glass substrate. Panel
(b) shows the thin film inside a cavity made of aluminum mirrors. The bottom
mirror has a thickness of 10 nm, the top mirror has a thickness of 30 nm. Both
setups are illuminated with a normal incident plane wave from below, which
propagates in z-direction. The molecular model was created by Marjan Krstić.
Adapted with permission from [P3]. Copyright © 2023 John Wiley and Sons.

are rotationally averaged. This is also motivated by the fairly good qualitative agreement
between the DFT computed spectra and the experimentally measured spectra.

We consider three different quantities to characterize the optical response of the macro-
scopic photonic devices, which are illuminated from below with a normal incident circularly
polarized plane wave. First, we analyze the absorption A± of left-handed (+) and right-
handed (−) circularly polarized plane waves, defined in Eq. (2.22). Second, we consider the
absorption circular dichroism ACD, defined in Eq. (2.21). Third, the transmission circular
dichroism CD in “mdeg” is analyzed. We use its definition from Eq. (2.23). All quantities
are computed with mpGMM [51].

We first concentrate on the repsonse of the MOF thin films on a glass substrate with a
dielectric permittivity of εr = 2.25. The thickness of the film is modified by varying the
number of layers in z-direction. In Figure 6.16, the absorption of a left-handed circularly
polarized plane wave ((a) and (b)), the ACD ((c) and (d)), and the CD spectra ((e)
and (f)) are depicted for different wavelengths of the illumination and different values of
the thickness of both the UiO-67-R-BINOL and UiO-67-S-BINOL films, respectively. The
circular dichroism spectra of the two enantiomers are perfect mirror images with respect

67



6. Linear Optical Response of Molecules in Photonic Devices

Figure 6.16.: Absorption (a),(b), ACD (c),(d), and CD spectra (e),(f) of a thin film of a
UiO-67-R-BINOL MOF and a UiO-67-S-BINOL MOF in vacuum, respectively.
The circular dichroism spectra of the two mirrored versions of the MOF are
perfect mirror images of each other. The circular dichroism changes its sign for
different wavelengths. Adapted with permission from [P3]. Copyright © 2023
John Wiley and Sons.

to each other. Similar to the circular dichroism spectra obtained with DFT, the circular
dichroism spectra in Figure 6.16 show different signs for varying wavelengths, showing the
dispersive nature of the chiral optical response of the molecules.

68



6.3. Coupling of Molecular Films to Photonic Cavities

For a more conclusive analysis of the dependence of the optical properties on the thickness
of the film and a better comparison to the experimentally measured CD spectra, we select
three different values of the thickness, namely 250 nm, 500 nm, and 1000 nm. The respective
absorption, ACD, and CD spectra are shown in Figure 6.17. Each row corresponds to
a specific thickness. The experimentally measured CD spectra are additionally shown in
Figure 6.17(f), since the thickness of the film in the experiment is in the range between
500 nm and 1000 nm. We observe that the absorption increases with growing film thickness
in the entire wavelength range, because the interaction between light and material is increased.
The ACD declines since the transmission signal decreases for larger values of the thickness. In
contrast to the ACD, the CD increases with the thickness since the denominator in Eq. (2.23)
decreases. The simulated and experimentally measured CD spectra for a thickness of 500 nm
in Figure 6.17(f) agree well, considering both the position and the intensity of the peaks. This
demonstrates the performance of the presented multi-scale approach and the good quality of
the prepared film. Discrepancies concerning the intensities of the spectra can be related to
possible differences between the thickness chosen in the simulations and the thickness of the
actually experimentally characterized thin film. This is also supported by the observation
that the agreement between the experimentally measured and the theoretically simulated
spectra is better for a thin film of a thickness of 250 nm.

In the next step, we continue with our discussion about the optical coupling of molecular
materials to a metallic optical cavity. For this purpose, we consider the optical cavity depicted
in Figure 6.15(b), which is filled with the UiO-67-R-BINOL MOF. The cavity consists of
two aluminum mirrors with a thickness of 10 nm (bottom) and 30 nm (top). The material
parameters of aluminum are taken from [189]. We repeat the mode analysis, which we
described above, to gain more knowledge about the propagation of the light inside the cavity.
In Figure 6.18(a), the effective refractive index is shown together with the modes of the filled
cavity. The refractive index is computed with the homogenization approach from Chapter 5.
The absorption of the filled cavity for a normal incident left-handed circularly polarized
plane wave is depicted in Figure 6.18(b) for different wavelengths and different values of the
thickness of the film. We observe that the bright regions of high absorption agree very well
with the modes of the optical cavity. Especially for low thicknesses, we also see a splitting of
the cavity modes, due to the coupling of the cavity and the MOF material. For this MOF,
two cavity modes do not occur for the same thickness in the considered wavelength range,
provided that the thickness is sufficiently small. This can be related to the small dispersion
of the refractive index in comparison to the Zn-SiPc-SURMOF-2. In the discussion of the
third instance of a molecular material, we analyze this different coupling behavior more in
detail.

Now, we pick a specific thickness to demonstrate the splitting of the absorption peak of
the MOF into two peaks due to the coupling to the cavity. In Figure 6.18(c), we show the
absorption for a thickness of the film of 47 nm, both in a vacuum and inside the cavity. We
observe that the absorption peak of the film in a vacuum is split due to the coupling to the
cavity. This is commonly referred to as Rabi splitting and strong coupling [172, 183]. Ref.
[172] also suggests to use such a coupling for quantum-electro-dynamical phenomena.

Furthermore, we consider the influence of the cavity on the ACD. The ACD of the filled
cavity is depicted in Figure 6.18(d) together with the cavity modes. Overall, the ACD
exhibits considerably smaller values than the thin film on the substrate. This can be related
to two aspects. First, with each reflection off the planar mirrors, the helicity of the plane
wave is flipped [190]. The ACD signal cancels, therefore, with each reflection to some extent.
Second, a larger absorption, connected to the cavity modes, leads also to a smaller ACD
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Figure 6.17.: Absorption (a),(d),(g), ACD (b),(e),(h), and CD spectra (c),(f),(i) for the
chiral UiO-67-BINOL MOF film with a thickness of 250 nm (a)-(c), 500 nm (d)-
(f), and 1000 nm (g)-(i). For a thickness of 500 nm (f), also the experimentally
measured values of the CD are shown. The agreement of the resonances is very
good. The intensity of the peaks agrees well. Adapted with permission from
[P3]. Copyright © 2023 John Wiley and Sons.

signal. The ACD signal is at the cavity modes, however, larger than in the other parameter
range since destructive interference leads to a cancellation of the signal.

In comparison to the Zn-SiPc-SURMOF-2, there is a main advantage providing a larger
range of applications: The UiO-67-R-BINOL-MOF is chiral, providing an additional degree
of freedom to the split energy states, as the absorption of the energy states depends on the
polarization of the incident light.

6.3.3. TDBC J-Aggregates Embedded in a Polyvinyl Alcohol Polymer

As a third instance, we consider a film of randomly oriented 5,6-dichloro-2-[[5,6-dichloro-
1-ethyl-3-(4-sulphobutyl)benzimidazol-2-ylidene]propenyl]-1-ethyl-3-(4-sulphobutyl) benzim-
idazolium hydroxide (TDBC) J-aggregates, embedded in a polyvinyl alcohol (PVA) polymer.
For the molecular film inside a metallic cavity, time-resolved spectroscopic measurements
have been performed [183], showing a clear experimental evidence for Rabi splitting and

70



6.3. Coupling of Molecular Films to Photonic Cavities

Figure 6.18.: Analysis of the coupling between the cavity and the UiO-67-R-BINOL-MOF
thin film. Panel (a) shows the refractive index of UiO-67-R-BINOL-MOF and
the mode analysis of the filled cavity. In panel (b), the absorption of the cavity
is depicted, filled with the UiO-67-R-BINOL-MOF. We observe for small values
of the thickness that the respective two branches of high absorption belong to
the same split cavity mode. Panel (c) shows the absorption of the filled cavity
for a thickness of 47 nm. The absorption peak of the bare film in a vacuum is
split into two peaks within the cavity. In panel (d), the ACD spectrum of the
filled cavity is depicted. We observe that the ACD is influenced by the cavity
modes. In the entire parameter range, the values of the ACD are smaller in
comparison to the film without cavity. Panels (b), (c), and (d) are adapted
with permission from [P3]. Copyright © 2023 John Wiley and Sons.

strong coupling. In [183], an absorption peak of the thin film of TDBC J-aggregates on a
substrate is observed at 2.14 eV. In comparison to the two systems above, the film of ran-
domly oriented TDBC J-aggregates is not crystalline. With this instance, we demonstrate
that the presented multi-scale approach is not limited to periodic structures.

The optical response of the thin film inside a cavity is analyzed in [P4]. Marjan Krstić
and Christof Holzer have prepared and performed the DFT computations for this analysis.
Ivan Fernandez-Corbaton has developed the mode analysis of the filled cavity. The optical
simulations have been performed by the author with mpGMM [51].
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Figure 6.19.: Monomer (a), “2× 4” (b), “2× 6” (c), and “3× 4” (d) model of the cluster of
the TDBC J-aggregates, used for the TD-DFT simulations. Originally created
by Marjan Krstić. Adapted with permission from [P4]. Copyright © 2022 John
Wiley and Sons.

(TD)-DFT Simulations

As the system is not crystalline, periodic DFT simulations are not used to optimize the system
but a neutral cis-TDBC molecule is optimized with a polarizable continuum implicit solvation
model. For the solvation model, a mixture of 95/5 wt% of PVA/H2O with a refractive index
of nh = 1.4727 is assumed. The cis-TDBC monomer is shown in Figure 6.19(a). For the
optimization, the Gaussian 16 code [191] with the hybrid PBE0 functional [166, 167] and
the def2-TZVP basis set [99, 192] are used. Three different models are constructed from the
optimized monomer. They are in one plane and are denoted by “2× 4”, “2× 6”, and “3× 4”,
shown in Figure 6.19(b)-(d). They correspond to different numbers and arrangements of
the monomer.

To compute the polarizability tensors of the molecular models inside the host medium, the
TDBC J-aggregates are considered in a conductor-like screening model (COSMO) PVA/H2O
implicit surrounding [193]. Here, the PBE functional is used [187, 188]. In Figure 6.20, the
rotationally averaged absorption spectra of the models are shown computed from TD-DFT
calculations. Comparing to the experimental measurement of the absorption of the thin film
in [183], one can deduce that the agreement improves if the simulated model increases in size,
both in x- and y-direction. For the model “3× 4”, the absorption peak is at approximately
2.3 eV, which agrees well with the experimentally measured value of 2.14 eV.

Optical Response of the Film of J-Aggregates Inside a Cavity

We continue with the multi-scale simulations of a thin film of TDBC J-aggregates. Here, we
focus on the “3× 4” model. In Appendix B, we also analyze the “2× 4” and “2× 6” models,
which show a very good agreement to the results for the “3×4” model. The agreement of the
spectra demonstrates that the chosen model is suitable for the multi-scale analysis. Based on
the estimated concentration of the J-aggregates in the film from [183], the concentration for
the “3× 4” model is set to 1

1210
20 cm−3. The polarizability tensors are rotationally averaged

to obtain a scalar value for each of the four tensors. Then, with the Lorentz-Lorenz formulas
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Figure 6.20.: Orientationally averaged absorption cross sections of the different molecular
models from Figure 6.19, computed with TD-DFT. Originally created by Mar-
jan Krstić. Adapted with permission from [P4]. Copyright © 2022 John Wiley
and Sons.

from [113], the effective permittivity and permeability of the material are computed. Here,
Lorentz-Lorenz formulas are used since the material consists of randomly oriented molecular
clusters in a solution, that do not form a periodic lattice. The thin film is considered within
a cavity of two planar silver mirrors. Both have a thickness of 30 nm, equivalently to the
experimental setup in [183]. Figure 6.21(a) shows the refractive index, obtained from the
effective material parameters, and the mode analysis. In (b) the absorption spectrum of the
filled cavity is depicted. For a thickness of 145 nm used in the experiment [183], we observe
two absorption lines, which correspond to the same split cavity mode. Figures 6.22(a) and
(b) show the absorption spectra of the thin film in a vacuum and the filled cavity for a
film thickness of 145 nm and 120 nm, respectively. We observe in both spectra that the
single absorption peak of the film in vacuum is split into two absorption peaks, when placed
into the cavity. For a thickness of 120 nm, the peaks are symmetrically arranged on both
sides of the resonance of the thin film in a vacuum. Here, we clearly observe the behavior,
demonstrated experimentally in [183]. The Rabi splitting energy of 250 meV is smaller than
the experimentally observed value of 350 meV [183]. The differences of the chosen thickness
and the Rabi splitting energy in comparison to the experimental measurements can be related
to inaccuracies of the DFT simulations and the estimation of the concentration of the TDBC
J-aggregates in the solution.

In contrast to the first instance of the Zn-SiPc-SURMOF-2, the refractive index of the ma-
terial of TDBC J-aggregates is far less dispersive, as we see in Figure 6.21(a). This is similar
to the case of the UiO-67-R-BINOL MOF. Increasing the concentration artificially by a factor
of five, a refractive index, cavity modes, and an absorption spectrum are obtained, which are
shown in Figure 6.23. In Figure 6.23, we also observe in some regions for a specific thickness
that two different split cavity modes occur, similar to the case of the Zn-SiPc-SURMOF-2.
The dispersion of the refractive index is in this case also comparable to the dispersion of the
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Figure 6.21.: Mode analysis of a cavity filled with TDBC J-aggregates in a PVA polymer.
Panel (a) depicts the effective refractive index and the mode analysis. Panel
(b) shows the absorption spectrum. The model “3 × 4” is used. All cavity
modes are separated from each other in the sense that for each specific value
of the thickness only one cavity mode is observed. The cavity modes show the
coupling between the cavity and the molecular material resonances between
2.3 eV and 2.4 eV. Adapted with permission from [P4]. Copyright © 2022 John
Wiley and Sons.

Figure 6.22.: Absorption spectra of the thin film of TDBC J-aggregates in the PVA polymer
and of the cavity. Panels (a) and (b) depict the absorption spectra for a
thickness of the film of 145 nm and 120 nm, respectively. For a thickness of
120 nm, the absorption peak of the thin film in vacuum is split into two peaks
which are symmetrically positioned around the peak of the thin film in a vacuum.
Adapted with permission from [P4]. Copyright © 2022 John Wiley and Sons.

refractive index of the Zn-SiPc-SURMOF-2. From all three examples we conclude, therefore,
that increasing the concentration of the filling medium is not necessarily beneficial to increase
the Rabi splitting, if one is considering a specific energy range. A concentration which is
too large causes large dispersion of the refractive index, and consequently that two different
split cavity modes are observed for a set value of the thickness. If one is able, however, to
detect the absorption signal of the cavity filled with the Zn-SiPc-SURMOF-2 for energies
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Figure 6.23.: Optical properties of a cavity filled with the TDBC J-aggregates in the PVA
polymer. Panel (a) shows the effective refractive index and the mode analysis.
Panel (b) depicts the absorption spectrum with the modes of the filled cavity.
The model “3×4” is used, but the concentration of the J-aggregates is artificially
increased by a factor of five. In this case, for larger values of the thickness, two
different cavity modes are observed for the same value of the thickness, similar
to the Zn-SiPc-SURMOF-2. This is due to the large dispersion of the refractive
index of the molecular material. Adapted with permission from [P4]. Copyright
© 2022 John Wiley and Sons.

beyond 2 eV and for small thicknesses in the range of 100 nm, one might be able to observe
a splitting of the same cavity mode.

6.4. Metasurface of a Structured Molecular Film
In this section, we demonstrate that the multi-scale approach can be used to design photonic
devices of higher complexity than planar, layered structures. We consider a metasurface
consisting of a structured molecular film, analyzed in [P3]. It is a metasurface of cylinders,
made of the chiral UiO-67-R-BINOL MOF, discussed in Section 6.3. Figure 6.24 displays
a single cylinder and a metasurface of cylinders. The goal of the design is to enhance the
ACD and CD signals of the MOF material. The calculation of the optical response of the
metasurface is performed with the finite-element method in COMSOL Multiphysics [194].

The circular dichroism signal of molecules is an essential spectroscopic quantity to distin-
guish two enantiomers, which have a different effect in the human body, for instance. It
is usually very small, and, therefore, difficult to detect. There are multiple approaches to
increase the circular dichroism signal. A large group of them are based on strong near-fields
of plasmonic structures or dielectric structures made of materials with a high refractive index
such as silicon, for instance [195–204]. To quantify the enhancement of the circular dichroism
signal by near-fields, a very common measure is the optical chirality density at the position
r of the molecule [205]. In our notation it reads as [74, Eq. (4)], [199, Eq. (4)]

C(r;ω) = −εhω
2

Im{E†(r;ω)B(r;ω)} , (6.7)

where E(r;ω) and B(r;ω) are the fields at the position of the molecule. From Eq. (7) in
[199], one can deduce that the enhancement of the optical chirality density by an achiral
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Figure 6.24.: Single cylinder with radius rcyl and height hcyl (a) and a metasurface of cylin-
ders (b). The cylinders consist of the UiO-67-R-BINOL MOF. The metasurface
is illuminated from below with normal incident plane waves, which are circu-
larly polarized. Created in cooperation with Marjan Krstić. Adapted with
permission from [P3]. Copyright © 2023 John Wiley and Sons.

nano-scatterer is proportional to the enhancement of the circular dichroism signal. The
enhancement of the optical chirality density is computed by comparing the optical chirality
density to the case, for which the achiral nano-scatterer is not present. The optical chirality
density is averaged over the volume of the molecules.

If the electric and magnetic dipole resonances of a nanostructure overlap, the optical chi-
rality density is considerably increased [199, 200, 202]. This is due to two aspects. First, the
left- and right-handed circularly polarized plane waves do not change their polarization upon
interaction with the structure. Second, in such a situation, the field strength is considerably
enhanced [199]. For metasurfaces, not only the single scatterer but also the design of the
lattice dimensions is very important, as lattice resonances can modify and couple multipole
moments [201, 203, 204].

In comparison to more traditional setups of a nanostructure enhancing the circular dichro-
ism response of the surrounding molecules, the cylinders consisting of the MOF are designed
to increase their own signal inside the metasurface. They simultaneously represent both the
nanostructure enhancing the circular dichroism response and the molecules whose circular
dichroism signal is enhanced. Additionally, the MOF material is of far more complexity,
compared to silicon or other commonly used materials.

6.4.1. Design of the Metasurface

The design approach for the metasurface to enhance the circular dichroism signal is structured
as follows. First, the effective material parameters of the UiO-67-R-BINOL-MOF material are
computed with the homogenization approach from Chapter 5. Here, the effective permittivity
and chirality are of major interest. They are both depicted in Figure 6.25. In the second
step, a specific wavelength is chosen, for which we aim on enhancing the circular dichroism
response. The design wavelength is set to 334 nm. Close to this wavelength, the ACD and
CD spectra of the thin film in Figure 6.17 show maxima. Next, a metasurface of cylinders is
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Figure 6.25.: Effective permittivity (a) and chirality (b) of the UiO-67-R-BINOL-MOF.
Adapted with permission from [P3]. Copyright © 2023 John Wiley and Sons.

designed to maximize the optical chirality density enhancement, averaged over the volume of
the cylinders. In this context, the radius rcyl and the aspect ratio rcyl/hcyl of the cylinders
inside the lattice are varied. hcyl is the height of the cylinders. Analogously to the study of
achiral structures surrounded by chiral molecules, see [199, 200, 202], we neglect the chirality
of the molecular material in this step. In this case, for nanostructures surrounded by chiral
molecules, the enhancement of the optical chirality density is directly proportional to the
enhancement of the circular dichroism. The lattice constant is set to a = 325.65 nm, which is
very close to the design wavelength. This enables the occurrence of lattice resonances. The
lattice resonances can be studied in detail with the methods presented in [78, 206].

Figure 6.26(a) shows the enhancement of the optical chirality density averaged over the vol-
ume of the cylinders for different radii and aspect ratios. We observe the largest enhancement
of 2.7 for an aspect ratio of 0.475, which is chosen for the further studies. We continue by
incorporating the chirality κ(ω) to the FEM simulations, and compute the ACD for different
radii. It is depicted in Figure 6.26(b). We observe a peak at 78.91 nm, which is close to the
maximum enhancement of the optical chirality density. The inset in Figure 6.26(b) shows
that the enhancement of both quantities is related to large near-fields. For the following
studies, the radius is set to rcyl = 78.91 nm.

6.4.2. Circular Dichroism Signal of the Metasurface for Varying Wavelengths
Based on these obtained design parameters, the ACD and CD spectra are computed for dif-
ferent wavelengths. Here, also the dispersion of the effective material parameters of the MOF
is incorporated. Figures 6.26(c) and (d) display the ACD and CD spectra. Additionally,
we show their enhancement with respect to a slab of the same volume. All quantities show a
peak at the design wavelength of 334 nm. The ACD has a value of 6.94 ·10−5 and is enhanced
by −1.24 at 334 nm. The CD has a value of 4.45mdeg, and is enhanced by −2.22.

To explain the nature of the enhancement, we compute the renormalized T-matrix of
the two-dimensional lattice of cylinders for normal incidence, analogously to Eq. (5.1) for
the three-dimensional case. For this purpose, the T-matrix of a cylinder is computed with
JCMsuite [207]. Figure 6.27(a) compares the electric and magnetic dipolar components of
the T-matrix of the single cylinder and of the renormalized T-matrix. We only consider the
components which are in the polarization plane of the incident electric field. Figure 6.27(b)
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Figure 6.26.: Optical response of metasurface of cylinders. The cylinders consist of the chiral
UiO-67-R-BINOL MOF. Panel (a) shows the enhancement of the optical chira-
lity density averaged over the volume of the cylinder at the design wavelength
of 334 nm. In panel (b), the ACD spectrum is displayed for an aspect ratio
of rcyl/hcyl = 0.475. Panels (c) and (d) depict the ACD and CD spectra for
rcyl/hcyl = 0.475 and rcyl = 78.91 nm. For the chosen aspect ratio, for which
the enhancement of the optical chirality density shows its largest values in (a),
the ACD shows a maximum at the radius rcyl = 78.91 nm in (b). This is re-
lated to large near-fields shown in the inset. Choosing this radius, the ACD
and CD exhibit large values close to the design wavelength in the shape of a
Fano resonance in (c) and (d). Adapted with permission from [P3]. Copyright
© 2023 John Wiley and Sons.

depicts the negative real part of the electromagnetic coupling term of the respective T-
matrices. This term is proportional to the imaginary part of the chirality, see [P5, Eq. (17)],
which is mainly determining the circular dichroism signal. We observe that all entries of the
renormalized T-matrix show spectrally narrow resonances close to the design wavelength of
334 nm. This is in contrast to the dipolar coefficients of the T-matrix of the single cylinder.
The observation indicates that not only the shape of the cylinder but also the arrangement
in the two-dimensional lattice is essential for enhancing the near-fields, the ACD, and the
CD spectra.
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Figure 6.27.: Electric and magnetic dipolar entries (a) and negative real part of the electro-
magnetic coupling dipolar entries of the T-matrix of the single cylinder and of
the renormalized T-matrix of the two-dimensional lattice (b). All renormalized
entries show a resonance close to the design wavelength of 334 nm. This indi-
cates that the circular dichroism and the near-fields are enhanced due to lattice
effects. Adapted with permission from [P3]. Copyright © 2023 John Wiley and
Sons.

The ACD and CD spectra have the shape of an asymmetric Fano resonance. This can be
related to the interference of different competing response tracks, which are influenced by the
chiral response of the MOF material, the dipole moments of the single MOF cylinder, and
the coupling of the cylinders. They determine whether the lattice resonance is left- or right-
handed polarized [203]. Due to the influence of all these effects, the ACD and CD spectra are
reversed at the design wavelength in comparison to a single cylinder and the material. We
therefore relate the sign reversal of the circular dichroism signal to the collective multipolar
lattice coupling.

For longer wavelengths around 344 nm, the enhancement of the ACD and CD spectra are,
with values of 2.6 and 3.1, larger than at the design wavelength. The design wavelength
of 334 nm has been chosen, as the circular dichroism of both the MOF material and the
slab show a maximum at this wavelength, so that the quantities are easier to detect in a
measurement than at the wavelength around 344 nm. We observe in Figure 6.27(b), however,
that the electric-magnetic coupling term of the T-matrix of the single cylinder is larger
around 344 nm. At this wavelength, the near-fields and optical chirality density are also
strong. Due to the dispersion of the MOF material and effects dependent on the geometry of
the cylinder, we observe a larger enhancement around the wavelength 344 nm than around
the design wavelength. Nevertheless, the designed structure enhances the circular dichroism
signal considerably also at the design wavelength.

In this chapter, we presented a multi-scale approach to compute the linear optical response
of molecules. It combines quantum-chemical and optical scattering methods. The approach
can be used to design photonic devices for enhancing specific linear optical effects of the
molecules. We demonstrated the workflow with several instances: First, we analyzed the
polarization-dependent optical response of finite molecular islands and monolayers deposited
on dielectric substrates. Then, we considered the coupling of different kinds of molecular films
to photonic cavities. In the last section, a metasurface of cylinders was designed, consisting
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of chiral molecules, which enhance their own circular dichroism signal. This demonstrates
the wide area of applications of our multi-scale approach. In all studies, we made use of
the fact that our multi-scale approach enables the analysis of single molecules, of finite-size
molecular models, and of entire photonic devices. It is covering, therefore, the entire design
space.

In the next chapter, we extend the multi-scale approach to include nonlinear optical effects.
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7 Nonlinear Optical Response of
Molecules in Photonic Devices

In this chapter, we discuss how to simulate the nonlinear optical response of molecules and of
photonic devices incorporating them. For this purpose, we introduce a multi-scale approach
that transfers the nonlinear optical response of a finite-size molecular model to the response
of a photonic device. This is in complete analogy to the multi-scale approach for linear
optical effects presented in Chapter 6. Due to the ongoing research efforts in laser technology
and the connected increase of achievable laser power, nonlinear optical effects have become
essential for many photonic technologies. Some important instances are direct-write 3D laser
lithography [208], high-speed data transmission [209–211], opto-electronic-signal processing
in wireless THz networks [212], high-precision frequency metrology [213, 214], electro-optic
modulators [215], and quantum optics information processing and second-harmonic efficiency
enhancement using nanostructured nonlinear optical materials [216–218].

Molecular materials are very important for linear and nonlinear optical effects [219]. This is
based on their large chemical design space. Instances for applications of molecular materials
for nonlinear optical effects are multiphoton absorption [220], two-photon absorption of metal-
assisted chromophores [221], second-harmonic generation (SHG) by SURMOFs [222], and
the modification of the refractive index of organic chromophore-containing polymers [223].
Usually, qualitative and quantitiative knowledge about the nonlinear optical properties of
these molecular materials is essential [P6]. Qualitatively, it is very important to know which
entries of the tensor are non-zero describing the anisotropic nonlinear optical properties. In
this regard, the polarization and the incidence angle of the fundamental waves can be adapted.
Quantitatively, the size of these entries is important to predict the nonlinear optical response
of a molecule. Both the qualitative and quantitative knowledge, however, is rather sparse.

It is very common to describe photonic devices showing nonlinear optical effects with Max-
well’s equations and the nonlinear polarization introduced in Section 2.1.2. For this purpose,
the materials involved in the devices are macroscopically described by a nonlinear optical
susceptibility tensor [224], see also Eq. (2.13). The nonlinear optical susceptibility tensor is
either computed based on phenomenological grounds, as we see below, or obtained experimen-
tally [225–227]. These techniques, however, suffer from several limitations. For molecular
materials, for instance, an experimental analysis of the large chemical design space cannot
be performed efficiently. There is, therefore, a need for a multi-scale approach to accurately
compute the nonlinear optical properties of the molecular materials. These properties can
be used to compare different molecules to choose the most suitable candidate and to design
photonic devices providing specific nonlinear optical effects.

In Section 4.2, we showed that the first-order hyperpolarizability tensor of a finite-size
molecular model can be computed with ab initio quantum-chemical methods such as TD-
DFT. Based on this microscopic quantity [228], the second-order nonlinear optical suscepti-
bility of crystalline molecular materials has been computed in [100, 229–238], for instance.
Urea is, in general, a very important example in such SHG studies, see also [239, 240], for
instance. Computing the second-order nonlinear optical susceptibility tensor is, however,
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often connected to approximations for the interaction between the molecules and to the as-
sumption that the molecular material is infinitely extended in all three dimensions, as we
see below. Surface nonlinear optical effects, which are originating mainly from a thin region
close to the surface of the material, cannot be sufficiently described by such an approach.

In Section 7.1, we present a multi-scale approach that does not suffer from this limitation,
transferring the nonlinear optical response of a single molecule to the response of a two-
dimensional layer, and finally to a stack of layers forming a thin film. For this purpose, we
introduce the Hyper-T-matrix. Similar to the dipolar T-matrix, which can be computed
from the dipolar polarizability tensor, the Hyper-T-matrix is computed from the first-order
hyperpolarizability tensor. We concentrate in this chapter on the SHG response of molecular
materials. The approach, however, is general and can be adapted to other second-order and
higher-order nonlinear optical effects. With the example of the SHG response of an urea thin
film on a substrate and inside a metallic cavity, we demonstrate the multi-scale approach
and its applicability.

In Section 7.2, we analyze the surface SHG response of a molecular film with the multi-
scale approach. This is an application of the approach, which cannot be suitably performed
by an effective medium theory, as each layer’s response is different.

The multi-scale approach to compute the second-harmonic generated response of molecular
bulk material, discussed in Section 7.1, has been introduced in [P6]. The source code to
calculate the SHG response of molecular materials has been developed in cooperation with
Dominik Beutel and is an extension of mpGMM [51]. Marjan Krstić and Christof Holzer
have prepared and performed the DFT computations for the studies in Section 7.1 and [P6].
The surface SHG response of molecular films, discussed in Section 7.2, has been analyzed in
[P7]. Marjan Krstić, Alejandro Luna Díaz, and Christof Holzer have developed and used the
concept to compute the surface SHG of finite molecular materials with DFT. The concept
of the Hyper-T-matrix has been developed and the optical simulations have been performed
by the author.

7.1. Multi-Scale Approach to Compute the Nonlinear Optical
Response of Molecules

In this section, we introduce a multi-scale approach to compute the nonlinear optical response
of molecular materials and devices thereof. We concentrate in this regard on their SHG
response. The essential requirement for the multi-scale approach is that it translates the
SHG response of a finite-size molecular model to an entire photonic device, covering all
intermediate length scales. We introduce the Hyper-T-matrix of a finite-size molecular model
and use it to obtain the SHG response of a molecular material. Similar to the T-matrix,
which is the bridge between the microscopic and macroscopic description of linear effects,
the Hyper-T-matrix is the bridge between the microscopic and macroscopic description of
nonlinear effects. First, we use the multi-scale approach to analyze the SHG response of a
crystalline urea thin film in a vacuum. In this context, we compare the computed SHG field
amplitudes to results obtained with COMSOL Multiphysics [241]. The latter are based on
effective medium theory. Finally, we design a metallic cavity to enhance the SHG response
of the urea thin film.
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7.1.1. The Hyper-T-Matrix and its Role for the Multi-Scale Approach
The standard T-matrix for linear scattering phenomena describes the relationship between
multipolar incident and multipolar scattered field coefficients of an object. In [242, 243] the T-
matrix formalism is extended to obtain the SHG signal of finite clusters of objects, describing
them with second-order susceptibilities. Here, we present an approach to obtain the nonlinear
optical response of molecular systems based on their ab initio computed quantum-chemical
properties. We use the Hyper-T-matrix from [P6] to compute the SHG response in a similar
way as the T-matrix for linear effects. In analogy to the T-matrix, the Hyper-T-matrix
relates the multipolar field coefficients of two incident fields at the fundamental frequency to
the multipolar field coefficients of the scattered field at the SHG frequency. As we showed
in Eq. (3.17), the dipolar T-matrix of a finite-size molecular model can be computed from
its dipolar polarizability tensor. In the following, we derive how the Hyper-T-matrix can be
computed from the first hyperpolarizability tensor of a finite-size molecular model. Note that
in present implementations of DFT software packages such as TURBOMOLE [P9, 165], for
instance, only the purely electric dipolar components of the first hyperpolarizability tensor
are available. We, therefore, restrict the considerations to this case. Our procedure, however,
can be extended to the case that a magnetic response is involved.

We start the derivation by expressing the dipole moment of a finite-size molecular model
at the SHG frequency by the first hyperpolarizabiliy tensor. Then we relate this dipole
moment to the multipolar field coefficients of a scattered SHG field. The multipolar field
coefficients are expressed by the Hyper-T-matrix. This results in an equation relating the
Hyper-T-matrix to the first hyperpolarizability tensor. In analogy to [59], we consider a
finite-size molecular model located at the origin, r = (0, 0, 0)T. We, therefore, omit in the
following the spatial dependence as argument. We consider two monochromatic incident
electric fields at the fundamental frequency ω with the complex field amplitudes E1(ω) and
E2(ω). The nonlinear optical response of the finite-size model is represented by the first
hyperpolarizability β(−Ω, ω, ω). Due to the SHG interaction of the fields with the molecular
model, a polarization and an electric field are generated at the frequency Ω = 2ω. In the
Cartesian basis, one can express a component of the induced electric dipole moment of a
single finite-size molecular model at the SHG frequency as [100, Eq.(1)]

pNL,e,i(Ω) =
1

2

∑
j,k

βijk(−Ω, ω, ω)E1j(ω)E2k(ω) . (7.1)

Equation (S11) from [59] gives a relationship between the electric dipolar expansion coeffi-
cients cω of the scattered field and the electric dipole moment at the fundamental frequency,cω1,−1,N

cω1,0,N
cω1,1,N

 =
ch(ω)Zh(ω)(kh (ω))

3

√
6π

pe(ω) . (7.2)

Analogously, we find the relationship at the SHG frequency [P6, Eq. (3)]cΩ1,−1,N

cΩ1,0,N
cΩ1,1,N

 =
ch(Ω)Zh(Ω)(kh (Ω))

3

√
6π

pNL,e(Ω) . (7.3)

We define the Hyper-T-matrix THyper(−Ω, ω, ω) in the spherical vector basis as third-rank
tensor, connecting the two incident field coefficients aω1;1,r,N and aω2;1,s,N at the fundamental
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frequency to the scattered field coefficients at the SHG frequency [P6, Eq. (4)],

cΩ1,m,N =
∑
r,s

THyper
mrs (−Ω, ω, ω)aω1;1,r,Na

ω
2;1,s,N . (7.4)

The multipolar expansion coefficients of the incident fundamental fields can be computed
from [59, Eq. (S9)],

E1,2(ω) = i

√
2

12π

1∑
r=−1

aω1,2;1,r,Nêr , (7.5)

so that [P6, Eq. (6)]

aω1,2;1,r,N = −i

√
12π

2
ê†r ·E1,2(ω) . (7.6)

Here, êr is a spherical basis vector, and r, s correspond to angular momentum indices. Fur-
thermore, † denotes complex conjugation and transposition. With Eq. (7.6), we replace
aω1;1,r,N and aω2;1,s,N in Eq. (7.4) by E1(ω) and E2(ω). From this, we compute cΩ1,m,N, which
is inserted into Eq. (7.3). The dipole moment pe(Ω) on the right-hand side of Eq. (7.3) is
replaced by Eq. (7.1). Finally, we derive [P6, Eq. (7)]

−6πC−1
∑
m,r,s

êmTHyper
mrs (−Ω, ω, ω)ê†r ·E1(ω)ê

†
s ·E2(ω)

=
ch(Ω)Zh(Ω)(kh (Ω))

3

2
√
6π

∑
i,j,k

êiβijk(−Ω, ω, ω)E1j(ω)E2k(ω) ,
(7.7)

with the unit vector êi in the Cartesian basis. C−1 transforms a vector from the spherical
to the Cartesian basis [59], see Eq. (3.18). In the process of solving Eq. (7.7), one computes
the Hyper-T-matrix from the known first hyperpolarizability tensor. In this procedure, the
incident electric fields cancel out.

Now we consider the procedure to compute the SHG response of a molecular lattice and
a film. Note that we assume the undepleted pump approximation in the sense that the
fundamental waves are not influenced by the SHG wave. The program suite mpGMM [51]
can be used to obtain the linear response of a stack of two-dimensional molecular lattices.
To extend mpGMM to obtain also the SHG signal of such a stack, one has to compute
the SHG response of each lattice. The linear interactions between the lattices, occurring
at the fundamental and at the SHG frequency, are still described with the Q-matrices from
Chapter 3.

To compute the nonlinear optical response of a stack of molecular layers, we use the
following approach. First, one solves the linear optical multi-scattering problem for the
incident electric fields at the fundamental frequency with the methods presented in Chapter 3.
For each two-dimensional lattice of finite-size molecular models, we compute the electric
fields incident on a model in the origin of this lattice. Here, the multi-scattering at the
fundamental frequency is incorporated. Second, we use these fields to compute the nonlinear
optical response cΩ of a finite-size molecular model with Eq. (7.4). We transform the SHG
field expansion coefficients cΩ into the basis of well-defined helicity according to Eq. (3.12),
obtaining the expansion coefficients dΩ. Then, we use Eq. (3.22) from Chapter 3 to compute

84



7.1. Multi-Scale Approach to Compute the Nonlinear Optical Response of Molecules

the multipolar expansion coefficients of the scattered electric field at the SHG frequency,
incorporating the lattice interactions at the SHG frequency:

dΩ
0,tot =

1−TSHG
Hel

∑
R ̸=0

C(3)(−R)eik∥(Ω)·R

−1

dΩ . (7.8)

Here, k∥(Ω) is the parallel component of the zeroth diffraction order of the SHG wave with
respect to the two-dimensional lattice. TSHG

Hel is the T-matrix for linear scattering at the
SHG frequency. Analogously to Chapter 3, we insert dΩ

0,tot into Eqs. (3.23) and (3.24) to
obtain the SHG scattered electric field of the two-dimensional lattice expanded in diffracted
plane waves. Furthermore, Q-matrices are used to describe the linear interaction at the SHG
frequency, enabling the same possibilities for the simulations of SHG processes of photonic
devices, which are offered for linear processes. These Q-matrices have the same shape as for
the fundamental frequency and are defined in Section 3.2.

7.1.2. SHG Signal of a Crystalline Urea Thin Film in a Vacuum

We discuss in this subsection the instance of a crystalline urea molecular film in a vacuum.
As we stated above, urea crystalline films are a very common example in SHG studies, so we
use this instance for a proof of principle. The SHG response of the film computed with the
presented multi-scale approach is compared to results obtained with COMSOL Multiphysics
[241]. For the latter simulations, we describe the molecular film with effective medium tensors
that are also obtained based on TD-DFT. The effective medium tensors for the linear response
are computed with the homogenization approach from Chapter 5. Here, only the effective
permittivity is important.

For the SHG response, we compute the effective second-order susceptibility tensor with

χ
(2)
ijk(−Ω, ω, ω) =

1

ε0V
fi(Ω)fj(ω)fk(ω)βijk(−Ω, ω, ω) , (7.9)

see [244, Eq. (1.1)] and [100, Eq. (5)]. In this equation, we assume that the finite-size
molecular model’s axes correspond to the axes of the crystal. V is the unit cell’s volume.
With [100, Eq. (6)], we have the local field factors

fi(ω) =
(nii(ω))

2 + 2

3
. (7.10)

Here, nii(ω) is the refractive index corresponding to the axis i of the molecular crystal. Sim-
ilar to [100], we neglect the imaginary part of nii(ω) to compute χ(2)(−Ω, ω, ω), because in
this frequency range, the absorption of urea is very small. Equation (7.9) for χ(2)(−Ω, ω, ω) is
neglecting the nonlinear interaction between the finite-size molecular models building up the
molecular crystal. In the presented multi-scale approach, the optical interactions between
the finite-size molecular models are entirely incorporated, while the finite-size molecular
model should be chosen large enough so that the chemical interactions are sufficiently rep-
resented. Similar to the case of the linear response, one aims at a perfect combination of
both procedures to obtain accurate results for the nonlinear optical response. Note that
in the pioneering work of [237], the intermolecular chemical interactions are analyzed and
incorporated for urea.
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With [100, Eq. (4)], we compute the nonlinear SHG polarization

PNL,e,i(Ω) =
1

2
ε0
∑
j,k

χ
(2)
ijk(−Ω, ω, ω)E1j(ω)E2k(ω) , (7.11)

which is used within COMSOL Multiphysics to obtain the SHG response of a thin film.

Figure 7.1.: Different views (a) and (b), and one-photon absorption cross section (c) of the
finite-size molecular model of urea. The one-photon absorption cross section is
computed from the polarizability tensor. There are no resonances present. Orig-
inally created by Marjan Krstić. Adapted with permission from [P6]. Copyright
© 2024 John Wiley and Sons.
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Figure 7.2.: Dominating components of the first hyperpolarizability tensor (a), and scheme
of the hyperpolarizability (b) and Hyper-T-matrix of urea at the fundamental
wavelength of 1064 nm (c). The tensors are contracted to their first respective
entry. Created in cooperation with Marjan Krstić. Adapted with permission
from [P6]. Copyright © 2024 John Wiley and Sons.

(TD)-DFT Simulations

To compute the SHG response of the urea thin film, the polarizability tensors at the funda-
mental frequency, the polarizability tensors at the SHG frequency, and the first hyperpolariz-
ability tensors have to be obtained via TD-DFT with the methods presented in Chapter 4.2.
Similar to Chapter 6, a finite-size model of the urea crystal is chosen first. It consists of
2 × 2 × 2 unit cells depicted in Figures 7.1(a) and (b). It is extracted from [245]. In
Appendix C, a study on the influence of the size of the molecular model on the hyperpolariz-
ability tensor is presented. There, models with two, 16, 54, and 128 molecules are compared.
It is observed that the model corresponding to 2×2×2 unit cells shows sufficient convergence,
and it is computationally considerably less demanding than the larger models. Note that in
comparison to the (linear) polarizabilities, the computation of hyperpolarizabilities is much
more expensive.

The chosen functional is the hybrid B3LYP exchange-correlation functional [246, 247].
Additionally, the def2-TZVP basis set is chosen [99, 192]. In Figure 7.1(c), the one-photon
absorption cross section is depicted. It is computed from the polarizability tensor. Here, the
wavelength range of ±100 nm around 1064 nm is covered for the fundamental wavelength.
This is a typical wavelength of a laser used for SHG studies in experiments, see [100], for
instance. The corresponding SHG wavelength range is 482 nm to 582 nm.

The one-photon absorption cross section shows the long-range tail of electronic transitions
below 300 nm, both for the fundamental wavelengths (red) and the SHG wavelengths (blue).
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Figure 7.3.: (a) Diagonal entries of the permittivity tensor, and (b) selected entries of the
second-order susceptibility tensor. The upper x-axis refers to the wavelength
of the SHG wave and the lower x-axis refers to the wavelength of the incident
fundamental waves. Adapted with permission from [P6]. Copyright © 2024 John
Wiley and Sons.

They exhibit a Lorentzian line shape. In the spectral windows of the fundamental and the
SHG wavelength range, resonances do not occur. Figure 7.2(a) displays the dominating com-
ponents of the purely electric first hyperpolarizability tensor. We observe that the dispersion
is very low. Figures 7.2(b) and (c) display the absolute values of the hyperpolarizability
tensor and of the Hyper-T-matrix at the fundamental wavelength of 1064 nm in their respec-
tive basis and contracted to the first entry. Both matrices are anisotropic, showing that it
is very important to include all their entries in the computation of the SHG response of the
molecular material.

SHG Response of the Thin Film

We consider the SHG response of an urea thin film with a thickness of 94 nm, corresponding
to 100 two-dimensional lattices. The finite-size molecular model of urea is periodically ar-
ranged in these lattices. For the COMSOL simulations, we use the effective medium model
described above. Figure 7.3(a) shows the diagonal entries of the permittivity tensor, and (b)
displays selected entries of the second-order susceptibility tensor. As expected from the DFT
simulations, the dispersion of all quantities is low, because no resonances occur in this rather
narrow wavelength range. The entries of the effective second-order susceptibility tensor can
be compared to experimentally measured values from [100, 240, 248]. At the fundamental
wavelength of 1064 nm, the relative difference in |dExp14 | = 1/2

∣∣χ(2),Exp
xzy

∣∣ = 1.2− 1.4 pmV−1 is
21-41 %, in comparison to the value obtained with the effective medium theory. The relative
difference can be related to possible inaccuracies in the DFT simulations, in the refractive
index, and in Eq. (7.9) used to compute the second-order susceptibility. The refractive index
is obtained from the presented homogenization approach, assuming a perfect periodic ar-
rangement of the finite-size molecular models, which might not be the case in a experimental
measurement. The homogenization approach incorporates also possible lattice interactions.
The refractive index is used to compute the second-order susceptibility tensor in Eq. (7.9).
This equation, however, neglects the nonlinear interaction between the molecules.
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Figure 7.4.: (a) Thin film of the urea molecular crystal in a vacuum, and (b) in a cavity
of silver mirrors. Both setups are illuminated from below with fundamental
plane waves propagating in positive z-direction. For the cavity, the upper mirror
has a thickness of 30 nm, and the lower mirror has a thickness of 10 nm. The
molecular model was created by Marjan Krstić. Adapted with permission from
[P6]. Copyright © 2024 John Wiley and Sons.

Figure 7.4(a) displays the thin film of the urea crystal in a vacuum. It is illuminated by
plane waves at the fundamental frequency from below, which propagate in positive z-direction.
Throughout the remaining chapter, the two electric field amplitudes of the illuminating plane
waves are set to 1 V/m. In Figures 7.5(a)-(c), we show the electric field amplitudes of the
SHG plane wave which propagate in positive z-direction (“Co”) and in negative z-direction
(“Counter”). For Figure 7.5(a), the fundamental plane waves are normal incident and TM-
polarized. For (b), both plane waves are normal incident, but one is TM- and one is TE-
polarized. For (c), the TM-polarized plane wave has an angle of incidence of 60◦, and the
TE-polarized plane wave has an angle of incidence of −25◦ in the yz-plane.

For all cases, we compare the results obtained with the presented multi-scale workflow
(solid lines) to the results obtained with COMSOL Multiphysics (dashed lines). The max-
imum relative difference is 16.86 %, which can be related to two restrictions of both used
methods [P6]. First, the effective medium theory used for the COMSOL simulations ne-
glects the nonlinear interaction of the molecular unit cells. Second, both methods suffer
from the fact that the Rayleigh spheres of neighboring unit cells overlap in all three dimen-
sions. We mentioned the problem of overlapping Rayleigh spheres in Section 6.1. The
overlap in z-direction is worse than in x- and y-direction. For the homogenization approach,
the overlap in all dimensions is a restriction to the accuracy, as it is a three-dimensional
approach, for which the interaction of the molecules is evaluated with vector spherical waves.
For the multi-scale approach, the interaction in z-direction is described by plane waves for
which the restrictions connected to the Rayleigh sphere overlap do not apply. Here, only the
overlap in x- and y-directions is a restriction to the accuracy.

To satisfy all assumptions of the approaches, we artificially double the lattice constants in
all three dimensions. Both the Rayleigh sphere overlap and the interaction of the molecules
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are decreased by this measure. In Figure 7.5(d), the spectra are depicted for this case. We
observe an excellent agreement.

In this subsection, we showed the principles of the multi-scale approach by introducing
the Hyper-T-matrix and explaining the computation of the nonlinear optical response of a
finite-size molecular model, a two-dimensional lattice, and a molecular film. The approach is
demonstrated and compared to a more traditional effective medium model for a crystalline
urea thin film. We emphasize that different polarizations and angles of incidence of the
fundamental plane waves can be considered to make use of the anisotropy of the nonlinear
optical materials. Additionally, large wavelength ranges can be analyzed which might be
accessible by future light sources.

7.1.3. Coupling of a Urea Thin Film to a Photonic Cavity

In the following, we show an application of the multi-scale approach. In [P6], an optical cavity
is designed to enhance the SHG response of the urea thin film at a fundamental wavelength of
1064 nm. The cavity depicted in Figure 7.4(b) consists of two mirrors. The top mirror has a
thickness of 30 nm, and the bottom mirror, which is illuminated from below, has a thickness
of 10 nm. For the fundamental illumination, we choose a normal incident TM-polarized plane
wave. The mirrors are separated by the urea thin film, and we aim on increasing its SHG
signal. The enhancement of the usually small SHG signal by cavity modes has been analyzed
in many theoretical and experimental studies [249–255].

First, we analyze the linear optical interaction inside the cavity. For this purpose, we
consider the transmission of an incident plane wave, both at the fundamental and the SHG
wavelengths. Figures 7.6(a) and (c) show the transmittance spectra for varying values of
the thickness and varying values of the fundamental and SHG wavelengths, respectively. We
additionally consider the mode analysis described in Chapter 6, where we use the refractive
index related to the x-axis. The anisotropy of the film is neglected for the mode analysis.

It can be seen that for the SHG wavelengths, twice the number of cavity modes occur,
as the SHG wavelengths are half as long compared to the fundamental wavelengths. Every
second cavity mode at the SHG wavelengths coincides with a cavity mode at the fundamental
wavelengths. This is due to the low dispersion of the refractive index. For the analysis of the
field amplitude of the generated co- and counter-propagating SHG plane waves, we choose two
values of the thickness. First, we select a thickness of 478 nm, for which a cavity mode only
occurs at the SHG wavelength of 532 nm, which corresponds to the design wavelength. The
second thickness is 665 nm, for which additionally a cavity mode occurs for the fundamental
wavelength at 1064 nm. The cavity is, in this case, double resonant. Figures 7.6(b) and (d)
display the field amplitudes of the SHG plane waves and their respective enhancement with
respect to a thin film in a vacuum for both thicknesses. In contrast to the single resonant
cavity, the double resonant cavity shows maxima of the enhancement close to the design
wavelength of 1064 nm. For the field of the co-propagating wave, we observe an enhancement
by a factor of 3.11, and for the counter-propagating wave, an enhancement of 12.75. For
the single resonant cavity, destructive interference occurs for the illuminating plane waves at
the fundamental wavelength, leading to a decreased field strength. For the double resonant
cavity, also the fields at the fundamental wavelength show constructive interference, leading
to an increased field strength.
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Figure 7.5.: Field amplitudes of the SHG plane waves leaving the molecular film in positive
(“Co”) and negative (“Counter”) z-direction. The illumination are normal inci-
dent TM-polarized plane waves (a), one normal incident TM- and one normal
incident TE-polarized plane wave (b), one TM-polarized plane wave with an
angle of incidence of 60◦ and one TE-polarized plane wave with an angle of in-
cidence of −25◦, and for two normal incident TM-polarized plane waves (d) for
an artificially diluted crystal. In the latter case, the lattice constants of the urea
crystal are doubled. We recall that for normal incidence, TM-polarization corre-
sponds to a polarization along the x-axis and TE-polarization corresponds to a
polarization along the y-axis. In all subfigures, spectra are compared that are ob-
tained with the presented multi-scale approach (“Hyper T”) and with COMSOL
Multiphysics based on effective material parameters (“Eff.”). Due to inaccuracies
concerning the evaluation of the interaction of the molecular unit cells inside the
crystal in both methods, there are discrepancies in spectra (a)-(c). In the case
of the diluted crystal (d), the agreement is very good, as these inaccuracies are
considerably decreased. Adapted with permission from [P6]. Copyright © 2024
John Wiley and Sons.
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Figure 7.6.: Linear transmittance of the cavity filled with the urea molecular crystal for
an incident plane wave at the fundamental (a) and at the SHG wavelength
(c). The white dashed lines indicate two values of the thickness of 478 nm and
665 nm, respectively. For 478 nm, a cavity mode occurs only at the SHG wave-
length. For 665 nm, cavity modes occur both at the fundamental and at the
SHG wavelengths. Panels (b) and (d) show the SHG field amplitudes and their
enhancement for a thickness of 478 nm and a thickness of 665 nm, respectively.
We observe that only for the double-resonant case, the SHG field amplitudes
are increased. For all spectra, the fundamental plane wave is normal incident
and TM-polarized. Adapted with permission from [P6]. Copyright © 2024 John
Wiley and Sons.

7.2. Surface SHG Signal of Centrosymmetric Molecular
Crystalline Materials

In this section, we discuss the surface SHG signal of films consisting of centrosymmetric
molecular crystalline materials. Bloembergen and Pershan state in [256], that a SHG signal
originating from electric dipoles cannot be produced by centrosymmetric materials, due to
their inversion symmetry. For a centrosymmetric calcite crystal, however, a SHG signal has
been observed [257]. Later, Bloembergen et al. theoretically prove that the SHG signal
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originates from the surface [258]. Phenomenologically, one can state that at the surface of
the material, the inversion symmetry of the bulk is broken. To quantify the phenomenon to
some extent, one can describe the emergence of this surface SHG signal by a surface tensor
at the material interface [259], which can be retrieved from experiments.

In [P7], the surface SHG signal of centrosymmetric molecular crystalline films is studied
based on an ab initio analysis. As mentioned above, Zyss and Berthier analyzed and incorpo-
rated intermolecular chemical interactions for urea [237]. In this regard, they placed Coulom-
bian point-charge potentials around the molecules inside the crystal and thereby changing
the nonlinear optical response. In [P7], the surrounding of a unit cell is analogously consid-
ered via partial charges. Such an approach results in the computation of layer-dependent first
hyperpolarizabilities, as the surrounding of each unit cell is different. The procedure enables
qualitative and quantitative explanations on a molecular and on a macroscopic level. The
hyperpolarizabilities are subsequently used to compute the Hyper-T-matrix of a finite-size
molecular model of each layer and finally to obtain the optical response of a stack of layers.
This is possible since the multi-scale approach treats each layer individually in contrast to
homogenization approaches. It also enables us to distinguish contributions originating from
the bulk and the surface. First, we explain the DFT approach for the instance of the cen-
trosymmetric 7,9- Dibromobenzo[h]quinolin-1 molecular crystal. Based on this, we consider
the SHG response of the film and the enhancement thereof by a Kretschmann-like setup. We
note that quadrupoles can also cause a SHG signal in the case of centrosymmetric materials,
see [260–262]. These contributions are not taken into account here. For thin layers, how-
ever, we expect that the surface SHG dominates. Furthermore, it is of high interest how
many layers at the surface have to be taken into account to compute the surface SHG signal
accurately.

7.2.1. (TD)-DFT Simulations

In this subsection, we explain the DFT approach from [P7] to compute the SHG response of
a centrosymmetric molecular crystal. For this purpose, the centrosymmetric
7,9- Dibromobenzo[h]quinolin-1 molecular crystal [263] is analyzed. A finite number of
stacked layers is considered. For each layer, the first hyperpolarizability of a finite-size
molecular model is computed individually. Partial charges are used to describe the presence
of the molecules in the other layers. At the top surface, only the lower region is occupied
by partial charges. At the bottom surface, the upper region is occupied by partial charges.
In the bulk, the molecular model is symmetrically surrounded by partial charges in +z- and
−z-direction. The difference between bulk and surface is expected to lead to a SHG signal,
which can be quantified and connected to the spatial domain from which it originates [P7].

Figures 7.7(a)-(d) shows the finite-size molecular model of the crystal. The model consists
of 384 atoms. In the following, we refer to the considered finite-size molecular model of a
specific layer as quantum region. The stack, which is analyzed, consists of 31 layers. The
considered quantum region is embedded into the partial charge field from all other molecules
above and below the corresponding layer in z-direction. For this purpose, the atoms of the
molecules are replaced by partial charges, except of the considered quantum region.
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Figure 7.7.: Four unit cells of 7,9-Dibromobenzo[h]quinolin-10-ol crystal as seen from different
directions (a)-(d). This corresponds to the quantum region. Panel (e) displays
a scheme of the stack of 31 molecular layers. To compute the polarizability
and hyperpolarizability of a respective layer, the quantum region is moved to
this respective layer and embedded into the partial charge field from all other
molecules. These are stacked in positive and negative z-direction. The only
layer which is surrounded by a symmetric partial charge field is the bulk layer
“0”. Created by Marjan Krstić. Reprinted with permission from [P7]. Copyright
© 2024 John Wiley and Sons.
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Figure 7.8.: Panel (a) depicts the electrostatic potential of the finite-size molecular model of
the crystal. Panels (b)-(h) display the total electron density difference between
different models with respect to the bulk model “0”. Yellow indicates a negative
difference and green indicates a positive difference. Created by Marjan Krstić.
Reprinted with permission from [P7]. Copyright © 2024 John Wiley and Sons.
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The situation is depicted in Figure 7.7(e). Model “0” corresponds to the bulk layer. The
layers are counted from “-15” (bottom layer) to “15” (top layer). Note that each quantum
region is also surrounded by two partial charge unit cells in x- and y-direction. Therefore,
the partial charge field has a total size of 3 × 3 × 31 quantum regions. The hybrid PBE0
functional [166, 167] and the def2-TZVP basis set [99, 192] are used to compute the individual
first hyperpolarizabilities.

Table 7.1 shows the dominating component of the hyperpolarizability tensor of the different
layers at a fundamental wavelength of 1064 nm. We observe that the surface layers exhibit
the largest values of the hyperpolarizability. Already after five layers approaching the bulk,
the contribution of the remaining layers is smaller than 1 %. This shows that the main
contribution to the SHG signal originates from the five top and bottom layers. Considering
the partial charges, the centrosymmetry is broken the most at the surface.

On the quantum level, the origin of the SHG signal can be explained with the total electron
density difference between the respective layer and the bulk layer “0”. In Figures 7.8(b)-(h),
we observe that the difference between layers “5” and “1” with respect to “0” is rather small,
since they are very close to the bulk. Approaching the top surface, however, the difference
from layers “11” to “15” with respect to “0” increases considerably. From this observation,
one can deduce that in the case of the layers close to the top surface, the total electron
density of the molecules is additionally polarized by the lower layers, leading to the surface
SHG signal. For the bottom layer, it is the other way round, in the sense that the sign of
the total electron density is reversed.

One observes, therefore, the largest absolute values of the hyperpolarizabilities for the
surface layers and values close to zero for the layers in the bulk. The sign of the hyperpolar-
izabilities of the surface layers is reversed with respect to each other, similar to the change
of the total electron density.

7.2.2. Surface SHG Signal of a Finite Film of the Molecular Crystal in a
Vacuum and on a Substrate

To analyze the surface SHG signal originating from a film of the 7,9- Dibromobenzo[h]quinolin-
1 molecular crystal, infinitely extended into the x- and y-direction and finite in the z-direction,
we use the multi-scale approach from Section 7.1. For each layer, the Hyper-T-matrix is com-
puted from the first hyperpolarizability tensor. In comparison to the DFT analysis, we
additionally vary the number of the bulk layers “0”.

The thin film is illuminated from below under normal incidence with a TE-polarized plane
wave propagating in the positive z-direction. The considered fundamental wavelength is
1064 nm. First, we set the number of bulk layers to one. This corresponds to the situation
analyzed with DFT. The absolute values of the electric field amplitudes of the SHG plane
waves are displayed in Figure 7.9(a), with respect to the layer from which they originate.
We distinguish plane waves co-propagating with respect to the illumination, corresponding
to plane waves which leave the film in positive z-direction, from counter-propagating plane
waves, leaving the film in negative z-direction.

We observe, especially on the logarithmic scale, that the contribution of the surface layers
is several orders of magnitude larger than the contribution originating from the bulk layer.
Considering the layers between the surfaces and the bulk, one deduces that the change of the
SHG response occurs rather rapidly agreeing very well with the DFT analysis. Figure 7.9(b)
displays the electric field amplitudes of the SHG waves for different numbers of the bulk
layer, resulting in different values of the thickness of the entire film. Additionally, the linear
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absorption of the incident field at the fundamental wavelength and of a field at the SHG
wavelength are shown. One observes for all quantities Fabry-Perot resonances, as all present
waves are reflected off the interfaces between vacuum and the crystalline molecular film.

In an experimental measurement, the molecular film is not placed in a vacuum but usually
deposited on top of a substrate. In [P7], it is analyzed how the rather small surface SHG

Table 7.1.: Dominating component of the first hyperpolarizability tensors of the finite-size
molecular models of the different layers of 7,9-Dibromobenzo[h]quinolin-10-ol.
The values are given in atomic units. The values in brackets indicate in per-
centage how large the hyperpolarizability of the respective layer is in comparison
to the surface layers. Adapted with permission from [P7]. Copyright © 2024 John
Wiley and Sons.

Model Re(βyyy) Im(βyyy)
15 -2389.0(100.0) -160.3(100.0)
14 -273.5(11.4) -12.2(7.6)
13 -115.7(4.8) -5.1(3.2)
12 -58.1(2.4) -2.5(1.6)
11 -32.0(1.3) -1.4(0.9)
10 -19.8(0.8) -0.9(0.5)
9 -12.1(0.5) -0.5(0.3)
8 -7.1(0.3) -0.3(0.2)
7 -5.8(0.2) -0.3(0.2)
6 -3.5(0.1) -0.1(0.1)
5 -2.4(0.1) -0.1(0.1)
4 -0.6(0.0) 0.0(0.0)
3 -1.4(0.1) -0.1(0.0)
2 -0.2(0.0) 0.0(0.0)
1 0.2(0.0) 0.0(0.0)
0 0.0(0.0) 0.0(0.0)

-1 -0.2(0.0) 0.0(0.0)
-2 0.2(0.0) 0.0(0.0)
-3 1.4(0.1) 0.1(0.0)
-4 0.6(0.0) 0.0(0.0)
-5 2.4(0.1) 0.1(0.1)
-6 3.5(0.1) 0.1(0.1)
-7 5.8(0.2) 0.3(0.2)
-8 7.1(0.3) 0.3(0.2)
-9 12.1(0.5) 0.5(0.3)

-10 19.8(0.8) 0.9(0.5)
-11 32.0(1.3) 1.4(0.9)
-12 58.1(2.4) 2.5(1.6)
-13 115.7(4.8) 5.1(3.2)
-14 273.5(11.4) 12.2(7.6)
-15 2389.0(100.0) 160.3(100.0)
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signal of the molecular film on top of a dielectric substrate can be enhanced by choosing a
specific angle of incidence and making use of Fabry-Perot modes. Figure 7.10(a) shows this
situation. The dielectric substrate is ceria, for which a relative permittivity of εr,subs = 5.57 is
assumed for the entire wavelength range, corresponding to a refractive index of nsubs = 2.36
[264]. The angle of incidence is varied in the xz-plane. Again, a TE-polarized plane wave at
the fundamental wavelength of 1064 nm is chosen for the illumination.

There are two angles of incidence which are of higher importance. The first angle is
the angle of incidence, for which total internal reflection occurs at the interface between
the molecular film and vacuum. This corresponds to θc,1 = arcsin (1/nsubs) = 25◦. The
second set of angles of incidence are θc,2,fund = arcsin (nfilm,yy,fund/nsubs) and θc,2,SHG =
arcsin (nfilm,yy,SHG/nsubs) for which total reflection occurs at the interface between the sub-
strate and the molecular film at the fundamental and the SHG wavelength, respectively.
Neglecting off-diagonal entries of the permittivity tensor, we compute the refractive in-
dex of the crystalline molecular film with the homogenization approach from Chapter 5
to nfilm,yy,fund = 1.79 and nfilm,yy,SHG = 1.88. We have, therefore, θc,2,fund = 49◦ and
θc,2,SHG = 53◦.

In the next step, we consider the linear reflection of a TE-polarized plane wave, which is
incident under varying angles at the fundamental and at the SHG wavelength, respectively.
Besides the angle of incidence, we also vary the thickness of the film. Figures 7.10(b) and
(c) display the corresponding spectra. Close to the regions in which total reflection occurs,

Figure 7.9.: SHG field amplitudes of the plane waves originating from the different layers
of the crystalline molecular film of 7,9-Dibromobenzo[h]quinolin-10-ol (a). They
are co- and counter-propagating with respect to the normal incident fundamental
TE-polarized plane wave, which illuminates the crystalline molecular film. The
film consists of the model shown in Figure 7.7(e), which is periodically repeated
in the xy-plane. We observe that the contribution from the surface layers (“15”
and “−15”) is significantly larger than from the other layers. Panel (b) depicts
the SHG field amplitudes originating from the film and the linear absorption at
the fundamental and the SHG wavelength with respect to different values of the
film thickness. The thickness is varied by changing the number of bulk layers
“0”. We observe Fabry-Perot resonances for all quantities, due to the reflection
off the interfaces. Adapted with permission from [P7]. Copyright © 2024 John
Wiley and Sons.
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Figure 7.10.: Schematic setup of the molecular crystalline film on top of a ceria substrate
(a). The film is illuminated from below by a fundamental TE-polarized plane
wave under oblique incidence in the yz-plane. Due to the nonlinear optical in-
teraction between the fundamental wave and the molecular film, a SHG signal
is produced. Panels (b) and (c) show the linear reflectance of the film at the
fundamental wavelength 1064 nm and at the SHG wavelength 532 nm, respec-
tively, for different angles of incidence and different values of the film thickness.
Due to two different angles of incidence, for which total reflection occurs at the
interfaces between film and vacuum and film and substrate, respectively, there
are two regimes in which the reflectance changes considerably. Fabry-Perot
modes are observable between those areas. The molecular model was created
by Marjan Krstić. Adapted with permission from [P7]. Copyright © 2024 John
Wiley and Sons.

the reflection rapidly changes. For the regions at angles of incidence corresponding to the
total reflection off the interface between the substrate and the film, there is a deviation with
respect to the predicted values, as we have neglected the anisotropy of the film in calculating
these values. We observe in the spectra Fabry-Perot modes between θc,1 and θc,2,fund/θc,2,SHG.
In this regime, the light is reflected off both interfaces, but the reflection off the interface
between molecular film and vacuum is total.

In the following, the most suitable angle of incidence is determined to enhance the SHG
signal with respect to the case of a thin film with a specific thickness in a vacuum for normal
incidence of the illuminating wave. The thickness of the film is set to 631 nm. For this thick-
ness, the field amplitudes of the co- and counter-propagating SHG waves show a maximum
in Figure 7.9(b) for normal incident illumination. Figure 7.11(a) displays the SHG field
amplitudes and the linear reflection both at the fundamental and the SHG wavelength for
different angles of incidence. For an angle of incidence of 31◦, the counter-(downward) propa-
gating SHG field shows a maximal amplitude. This is the field which shall be detected, as in
this regime the co-propagating SHG wave leaving the film in upward direction is evanescent.

The field amplitude of the counter-propagating SHG wave is enhanced in this regime, as
the Fabry-Perot modes occurring in the linear regime increase the light-matter interaction.
As total internal reflection occurs at the top surface, the finesse of the modes is considerably
increased and constructive interference of the SHG fields is possible. The resulting enhance-
ment is in agreement with our observation from above that Fabry-Perot modes of a cavity
can enhance the SHG signal. We relate shifts between the maxima of the SHG waves and
the linear reflectance spectra to effects such as the phase relation between the incident and
the SHG wave vectors, which also depend on the angle of incidence.
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Figure 7.11.: SHG field amplitudes and linear reflectance spectra of the molecular crystalline
film for different angles of incidence of the fundamental TE-polarized plane
wave (a). The thickness of the film is set to 631 nm. For an angle of incidence
of 31◦, a maximum of the amplitude of the counter-propagating SHG wave
can be observed. Panel (b) displays the SHG field amplitudes for an angle of
incidence of 31◦. The film thickness is varied. For the counter-propagating SHG
wave, a maximum field enhancement of 33 is achieved. The enhancement of the
corresponding intensity is 1089. Adapted with permission from [P7]. Copyright
© 2024 John Wiley and Sons.

In the last step, the angle of incidence is set to 31◦, and the thickness is varied again.
We note that the Fabry-Perot mode condition changes with the thickness and the angle
of incidence. Therefore, one would have to optimize the angle of incidence for each thick-
ness. However, the angle of incidence of 31◦ supports several Fabry-Perot modes and for all
thicknesses it is suitable for total internal reflection. In Figure 7.11(b), we show the SHG
amplitudes and their respective enhancement compared to a thin film with the same thick-
ness under normal incident illumination. For the counter-propagating SHG wave, we observe
a maximum enhancement of 33 for a thickness of 285 nm. This corresponds to an increase
of the intensity by 332 = 1089. Such a significant enhancement demonstrates that with our
multi-scale approach not only surface SHG signals can be detected and attributed to the
layers from which they originate. Also, simple Kretschmann-like setups can be designed to
considerably enhance these signals.

To sum up, we introduced in this chapter the concept of the Hyper-T-matrix and pre-
sented a multi-scale approach, which can be used to compute the nonlinear optical response
of photonic devices. For these photonic devices, the Hyper-T-matrix is used to describe
the nonlinear properties of a finite-size model of the molecules that serve as functional enti-
ties. We demonstrated the applicability of the workflow with the design of a cavity and a
Kretschmann-like setup to enhance the SHG signal of molecular films. For the latter instance,
the surface SHG of the molecular film and its physical origin were studied.
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In this thesis, we present a multi-scale approach to analyze different molecules in photonic
devices. The multi-scale approach connects ab initio quantum-chemical methods, such as
TD-DFT, to classical Maxwell scattering simulations. In this regard, it is possible to com-
pute the optical response of molecules based on their ab initio obtained quantum-chemical
properties. This enables the consideration of single molecules, finite-size molecular models,
a two-dimensional lattice of molecules, molecular films, and, finally, entire photonic devices.
Therefore, the entire spatial scale from Ångströms to millimeters is covered, and size effects
on the optical response can be analyzed. The multi-scale approach supports fast advancing
fabrication techniques, as complicated experimental setups can be accurately simulated.

Conclusions
In Chapters 2, 3, and 4, we introduce the theoretical framework of classical electromagnetics
for linear and nonlinear optics, the transition (T-) matrix formalism for linear optics, and
the basics of (time-dependent) density functional theory (TD)-DFT to simulate the optical
response of finite-size molecular models. We note that the T-matrix is the bridge between
the microscopic description of the optical response of molecules, based on TD-DFT, and
the macroscopic description, based on Maxwell scattering simulations. These three chapters
provide the basis for the main part of the thesis.

To analyze the optical properties of molecular materials and to simulate the signal of
macroscopic devices which are more complicated than planar films, effective parameters of
the molecular materials are required. In Chapter 5, a homogenization approach is presented
to obtain effective properties of materials based on their effective T-matrix. We introduce
the effective T-matrix of a three-dimensional lattice of scatterers as an object, which does
not depend on the propagation direction of the illumination. Based on this quantity, it is
possible to obtain propagation-independent effective material parameters.

We demonstrate the workflow of the homogenization approach for the instances of a
Zn-L-camphoric acid-dabco surface-mounted metal-organic framework (SURMOF), a three-
dimensional lattice of gold spheres, and a three-dimensional lattice of cut-plate pairs. In this
regard, we deduce that lattice interactions can significantly modify the optical response of
the material. In contrast to traditional homogenization approaches, they are incorporated
in the effective T-matrix. We also inspect band diagrams to decide whether a material is
homogenizable at all. Such an analysis can always be performed before the material is ho-
mogenized. The material parameters obtained with the presented homogenization approach
are used in Chapters 6 and 7 to inspect the optical modes of filled cavities and to design a
metasurface of a structured molecular film. The design of the metasurface relies on the fact
that the derived effective material parameters do not depend on the illumination direction.

In Chapter 6, we introduce a multi-scale approach to analyze linear optical phenomena of
photonic devices incorporating molecular materials. We use the T-matrix of the finite-size
molecular models, obtained with TD-DFT, to compute the optical response of the devices.
First, we consider monolayers of CO and CO2 molecules deposited on dielectric substrates. In
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this regard, we compare the polarization dependence of the optical response of the monolayers
to experimental spectra. The good agreement supports the predictive power of our approach.

In the second step, we analyze two-dimensional islands of one, four, and up to 441 molecules.
The latter corresponds to an island size of 10 nm×10 nm. The multi-scale approach enables in
this regard the transition from the optical response of a single molecule to the monolayer. For
the considered systems, we conclude that finite-size effects are not important for structures
with more than 441 molecules. This is an essential finding for the experimental investigation
of structures smaller than molecular monolayers. A perspective application is the monitoring
of chemical processes with infrared reflection-absorption spectroscopy.

Next, we perform the transition from the response of a monolayer to the optical response of
molecular films. In this regard, we consider a Zn-SiPc-SURMOF-2, a chiral UiO-67-BINOL
MOF, and randomly oriented TDBC J-aggregates embedded in a polyvinyl alcohol polymer.
We compare the response of the film in a vacuum or on a substrate, and inside a photonic
cavity. In this context, the splitting of the cavity modes, occurring due to their coupling to the
molecular material, is observed, analyzed, and compared to measurements. In the analysis
of the coupling between the cavity and the materials, we present how the properties of the
molecular material, such as their concentration, influence the optical response. We show
that high concentrations, leading to a large dispersion of the refractive index, can cause two
different splitted cavity modes at the same thickness of the filling medium. The occurrence
of two different splitted cavity modes at the same thickness might not be preferable for the
experimental design and can be predicted beforehand with the multi-scale approach. In this
context, it is also possible to explore different kinds of molecules to find a suitable candidate
for applications.

For the case of the chiral UiO-67-BINOL MOF, the investigation is additionally focused
on the circular dichroism spectra of thin films. The circular dichroism spectra show a very
good agreement to experimental findings. We finalize Chapter 6 by designing a metasurface
of cylinders consisting of the chiral MOF material to enhance the circular dichroism signal
of the material. In this regard, we obtain suitable geometry parameters for the metasurface,
which can be used for a future experimental investigation.

In Chapter 7, we introduce a multi-scale approach to simulate nonlinear optical phenomena
of molecular materials inside photonic devices. Here, we concentrate on second-harmonic
generation (SHG), but the approach can be extended to consider other nonlinear optical
effects. Equivalently to linear optical phenomena, the nonlinear optical response of molecules
is obtained based on properties computed with TD-DFT. An object is introduced, which
is termed Hyper-T-matrix and serves as pendant to the T-matrix. We apply the multi-
scale approach to compute the SHG response of an urea thin film and design a cavity to
considerably enhance the signal. This is very important for an experimental investigation,
since the SHG signal is usually low. We conclude Chapter 7 by studying the SHG response of
the surface of a centrosymmetric molecular material. Here the multi-scale approach enables
us to differentiate the contributions of different layers, observing that the surface layers cause
a contribution that is several orders of magnitude larger than the contribution from the bulk.
We also design a Kretschmann-like setup to enhance the surface SHG response.

Outlook

Future investigations can focus on several aspects of the thesis. The applications of the
presented homogenization approach go far beyond the scope of this thesis. While we focus
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on molecular materials which are in general always homogenizable, due to their small size,
the approach can be used for various different kinds of metamaterials. As the band diagrams
of such materials can be computed before the homogenization, it is not only possible to clarify
whether a material is homogenizable, but also to design the material so that it satisfies the
necessary requirement that its band diagram is not close to the edge of the first Brillouin
zone.

The insights into the coupling of optical cavities and molecular films, obtained with the
presented multi-scale approach, can be used to study the influence of cavities on chemical
reactions. In this regard, we see the potential of inserting the optical information of the filled
cavity into the TD-DFT computations.

While we demonstrate a considerable enhancement of the circular dichroism signal in the
ultraviolet wavelength range caused by cylinders consisting of a chiral MOF, the infrared
wavelength range can potentially be of more interest. As the geometry parameters of the
structures are smaller than the considered design wavelengths, the fabrication of devices to
enhance the signal in the ultraviolet wavelength range is very demanding. Devices, which
enhance the circular dichroism signal in the infrared wavelength range, have considerably
larger structures size and are, therefore, easier to produce.

The multi-scale approach for the computation of the SHG signal of molecules can be
extended to other second-order nonlinear optical effects, such as sum-frequency generation,
and also to higher-order effects, such as third-harmonic generation. In this context, it is also
possible to study the change of the optical response by structuring a molecular film into a
metasurface. The simulation can be enabled by a homogenization approach for nonlinear
optics or by extending a feature of treams [52, 53], which currently allows to compute the
linear optical response of a superlattice of islands consisting themselves of a finite number
of molecules, see Section 6.2. Such an extension of the multi-scale approach can potentially
lead to a broad range of applications in the field of metasurfaces and metamaterials.
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A Results for Three-Linker Model of
Zn-SiPc-SURMOF-2

In the following, we discuss a second finite-size model of the Zn-SiPc-SURMOF-2. In com-
parison to the first model, analyzed in Section 6.3, it is approximately half as large because
it consists only of three linkers. In the context of the TD-DFT simulations, the unit cell is
optimized with CP2K first [156]. Then the functional CAM-B3LYP [149] and the def2-TZVP
basis set [99] are used to obtain the polarizability tensors. Figure A.1 displays the orienta-
tionally averaged absorption cross sections, computed directly with TD-DFT and obtained
from the polarizabilities of the finite-size molecular model. The absorption cross sections
show two instead of three peaks, which are observed for the first model in Figure 6.9. This
can be related to the fact that the second model is considerably smaller so that the TD-DFT
results are not perfectly converged. In the next step, the optical response is computed of
the thin film in a vacuum and inside the cavity from Figure 6.8. To construct a unit cell for
the scattering simulations with mpGMM [51], the T-matrix from the three-linker model in
Figure A.1 is combined with the T-matrix from a π

2 -rotated version of the model. With [52,
Eq.(22)], the global T-matrix of the unit cell is obtained, which is periodically arranged in
two dimensions and stacked in z-direction to build a film as described in Section 3.2. Fig-
ure A.2 shows the absorption spectra of the thin film in a vacuum and inside the cavity for
a normal incident left-handed circularly polarized plane wave. We observe that although a

Figure A.1.: Orientationally averaged absorption cross sections (left) computed directly with
TD-DFT and obtained from the polarizability tensor of the finite-size model
of the Zn-SiPc-SURMOF-2 (right). The finite-size molecular model is half as
large as compared to the finite-size model in Figure 6.8(b). Originally created
by Marjan Krstić. Adapted with permission from [P4]. Copyright © 2022 John
Wiley and Sons.
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A. Results for Three-Linker Model of Zn-SiPc-SURMOF-2

Figure A.2.: Absorption spectra of the Zn-SiPc-SURMOF-2 for the second finite-size model
in Figure A.1. (a) Spectrum of the SURMOF in a vacuum. (b) Spectrum of
the filled cavity. The agreement to the spectra for the first model in Figure 6.10
and Figure 6.11 is good. Adapted with permission from [P4]. Copyright © 2022
John Wiley and Sons.

peak is missing in the absorption cross sections obtained with TD-DFT, the spectra are very
similar to the spectra computed for the first model, see Figures 6.10(a) and 6.11(a).
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B Results for Different Molecular Models
of TDBC-J-Aggregates in a PVA Polymer

In Section 6.3, we consider the coupling of a cavity and a molecular film of TDBC-J-
aggregates in a PVA polymer. We show in Figures 6.19 and 6.20 different molecular models
of the material and their corresponding orientationally averaged absorption cross sections.
For the simulation of the optical response of the molecular film within the cavity in Sec-
tion 6.3, we concentrate on the “3× 4” model. In the following, we also analyze the “2× 4”
and “2×6” models. We obtain the effective material parameters with the Lorentz-Lorenz for-
mulas from [113] based on the TD-DFT obtained polarizabilities, setting the concentrations
to 1

8 · 1020 cm−3 and 1
12 · 1020 cm−3, respectively. Figures B.1 and B.2 display the refractive

indices, the mode analysis, and the absorption spectra of the filled cavities. We observe a
very good agreement to the results for the “3× 4” model shown in Figure 6.21.

Figure B.1.: Mode analysis of a cavity filled with TDBC J-aggregates in a PVA polymer,
using the “2×4” model. In panel (a), the effective refractive index and the model
analysis are shown. Panel (b) depicts the absorption spectrum of the filled
cavity. The spectrum agrees well with Figure 6.21(b), showing the absorption
spectrum for the “3× 4” model. Adapted with permission from [P4]. Copyright
© 2022 John Wiley and Sons.
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B. Results for Different Molecular Models of TDBC-J-Aggregates in a PVA Polymer

Figure B.2.: Mode analysis of a cavity filled with TDBC J-aggregates in a PVA polymer,
using the “2 × 6” model. Panel (a) shows the effective refractive index and
the model analysis. In Panel (b) the absorption spectrum of the filled cavity
is displayed which agrees well with the spectrum for the “3 × 4” model in Fig-
ure 6.21(b). Adapted with permission from [P4]. Copyright © 2022 John Wiley
and Sons.
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C Study of Different Finite-Size Molecular
Models of the Urea Crystal

In Section 7.1, we consider a finite-size molecular model of the urea crystal consisting of 16
molecules (128 atoms). Figure C.1 displays the xyz-component of the first hyperpolarizability
per molecule for different models, obtained with TD-DFT. The xyz-component is one of the
most dominating components of the first hyperpolarizability. The models consist of two, 16,
54, and 128 molecules. We observe that the value for 16 molecules, used in the multi-scale
simulations, is sufficiently close to the values for the larger models considering also that the
computational time is 17 times faster than for the next larger model and 155 times faster
than for the largest model [P6].

Figure C.1.: Component of the first hyperpolarizability of differently sized molecular models
of the urea crystal. The model considered in Section 7.1 consists of 16 molecules.
The convergence is sufficiently good. Created by Marjan Krstić. Reprinted with
permission from [P6]. Copyright © 2024 John Wiley and Sons.
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