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Virus-like particles (VLPs) are a promising class of biopharmaceuticals for
vaccines and targeted delivery. Starting from clarified lysate, VLPs are typically
captured by selective precipitation. While VLP precipitation is induced by step-
wise or continuous precipitant addition, current monitoring approaches do not
support the direct product quantification, and analytical methods usually require
various, time-consuming processing and sample preparation steps. Here, the
application of Raman spectroscopy combined with chemometric methods may
allow the simultaneous quantification of the precipitated VLPs and precipitant
owing to its demonstrated advantages in analyzing crude, complex mixtures. In
this study, we present a Raman spectroscopy-based Process Analytical
Technology (PAT) tool developed on batch and fed-batch precipitation
experiments of Hepatitis B core Antigen VLPs. We conducted small-scale
precipitation experiments providing a diversified data set with varying
precipitation dynamics and backgrounds induced by initial dilution or spiking
of clarified Escherichia coli-derived lysates. For the Raman spectroscopy data,
various preprocessing operations were systematically combined allowing the
identification of a preprocessing pipeline, which proved to effectively eliminate
initial lysate composition variations as well as most interferences attributed to
precipitates and the precipitant present in solution. The calibrated partial least
squares models seamlessly predicted the precipitant concentration with R2 of
0.98 and 0.97 in batch and fed-batch experiments, respectively, and captured the
observed precipitation trends with R2 of 0.74 and 0.64. Although the resolution of
fine differences between experiments was limited due to the observed non-linear
relationship between spectral data and the VLP concentration, this study provides
a foundation for employing Raman spectroscopy as a PAT sensor for monitoring
VLP precipitation processes with the potential to extend its applicability to other
phase-behavior dependent processes or molecules.
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1 Introduction

Virus-like particles (VLPs) as non-viral vectors have emerged as
class of protein nanoparticles for vaccines, surface antigen
presentation and targeted delivery (Qian et al., 2020). VLPs are
composed of viral protein subunits mimicking the structure of the
virus they descend from (Chackerian, 2007; Zeltins, 2013). Since
VLPs lack the active viral genome, they are considered safer than
other viral nanoparticles such as adeno-associated virus or lentivirus
(Chackerian, 2007; Nooraei et al., 2021). The recombinant
production of VLPs in eukaryotic or prokaryotic cells (Kushnir
et al., 2012) lead to process material of high variability and
complexity, which is even more pronounced for intracellular
production as a lysis step is required (Effio and Hubbuch, 2015).
Hence, in early downstream processing (DSP), the removal of the
majority of process-related host cell impurities is particularly
advised (Effio and Hubbuch, 2015). Native precipitation was
found highly selective for VLPs and is induced by addition of a
precipitation agent, using either polyethylene glycol (Tsoka et al.,
2000; Koho et al., 2012) or ammonium sulfate (AMS) (Kim et al.,
2010; Zahin et al., 2016; Kazaks et al., 2017). Whereas steric
exclusion is typically associated with polyethylene glycol (Iverius
and Laurent, 1967; Poison, 1977), the effect of protein surface charge
predominates for precipitation induced by AMS as sulphate is
strongly kosmotropic (Curtis et al., 1998). The protein surface
charge is in turn affected by its structural properties, which may
impact the precipitation behaviour (Hämmerling et al., 2017) and
hence, the precipitation agent concentration required for
precipitation.

The Hepatitis B core Antigen (HBcAg) VLP, a recombinantly
produced internal protein capsid of the Hepatitis B virus, is subject
to intensive research for diverse medical purposes (Cooper and
Shaul, 2005; Porterfield et al., 2010; Klamp et al., 2011; Mobini et al.,
2020; Moradi Vahdat et al., 2021; Petrovskis et al., 2021; Hassebroek
et al., 2023). In previous capture studies, the AMS-induced
precipitation of HBcAg VLPs was found highly selective
(Valentic et al., 2022), while co-precipitation of impurities was
only observed for higher AMS concentrations (Wegner and
Hubbuch, 2022). Moreover, the required AMS concentration for
precipitation was found to be dependent on the surface properties
comparing HBcAg VLPs with and without foreign epitopes rather
than on internal structural differences comparing various lengths of
nucleic acid binding sites (Hillebrandt et al., 2020; Valentic et al.,
2022). In the context of process development, the conventional
centrifugation-based HBcAg VLP capture has been replaced by an
innovative setup involving fed-batch precipitation and diafiltration-
based wash and redissolution steps (Hillebrandt et al., 2020). This
development aimed to establish a size-based platform process
applicable to various protein nanoparticles. However, the
development of a standardized platform process for protein
nanoparticle DSP remains uncommon, primarily due to their
extensive variety, which presents significant challenges in
processing (Moleirinho et al., 2020).

To be able to operate such a capture platform process for
different protein nanoparticles, the implementation of Process
Analytical Technology (PAT) for process monitoring is crucial.
Since 2004, the FDA has underscored the importance of real-
time process monitoring for its role in enhancing process

understanding, ensuring process robustness, and guaranteeing
product safety within the biopharmaceutical industry (FDA,
2004; Rathore et al., 2010; Glassey et al., 2011). Besides the
optical spectroscopic techniques ultraviolet-visible (UV/Vis) and
infrared (IR) spectroscopy, Raman spectroscopy coupled with
chemometrics has found extensive applications in monitoring
various processes for biopharmaceutical products, including raw
material testing (Li et al., 2010), cell culture (Abu-Absi et al., 2011;
Berry et al., 2015; Golabgir and Herwig, 2016), chromatography
(Feidl et al., 2019; Rolinger et al., 2021; Wang et al., 2023), filtration
(Rolinger et al., 2023), freezing (Roessl et al., 2014; Weber and
Hubbuch, 2021), or formulation (Wei et al., 2022). For VLPs in
particular, recent studies demonstrated the real-time monitoring of
a baculovirus cultivation for the production of rabies VLPs
(Guardalini et al., 2023a; b; c) as well as the cross-flow filtration-
based polishing operations such as dis- and reassembly of the
HBcAg-VLPs (Rüdt et al., 2019; Hillebrandt et al., 2022). Despite
the broad applicability of spectroscopic methods in
biopharmaceutical processing, their application to precipitation
processes is rather unexplored. While multiple studies have used
near-infrared (NIR) spectroscopy for monitoring of acid (Sun et al.,
2020) or alcohol precipitation (Li et al., 2014; Huang and Qu, 2018;
Sun et al., 2018), Raman spectroscopy has only been used to track a
precipitation polymerization reaction (Meyer-Kirschner et al., 2016)
and monoclonal antibody precipitation (Lohmann and Strube,
2021). A major challenge when working with precipitate-
containing solutions is the turbidity of the media, which was
reported to affect the overall signal intensity of Raman spectra
(Van Brink et al., 2002; Sinfield and Monwuba, 2014; Meyer-
Kirschner et al., 2016). The loss in signal intensity may either be
corrected by isolated Raman bands (Sinfield and Monwuba, 2014;
Meyer-Kirschner et al., 2016) or be directly used for correlation to a
target quality attribute (Meyer-Kirschner et al., 2016). Similarly,
Zelger et al. (2016) have used a turbidity sensor for monitoring
protein precipitation, foregoing the molecular information that
could have been attained through the utilization of spectroscopic
techniques.

Among the available spectroscopic techniques, Raman
spectroscopy stands out for its selectivity to monitor multiple
quality attributes (Santos et al., 2018; Wei et al., 2022; Wang
et al., 2023) as well as its capability to analyze complex solutions
such as fermentation broths (Abu-Absi et al., 2011; Berry et al., 2015;
Goldrick et al., 2020) or clarified cell lysates (Genova et al., 2018;
Hassoun et al., 2018). However, Raman spectroscopy comes with a
set of challenges, such as low signal intensity and strong background
interferences requiring extensive data preprocessing and model
optimization (Rinnan et al., 2009; Bocklitz et al., 2011; Gautam
et al., 2015). Due to this sensitivity, undesired data variability can
arise by changes in process material or sample processing,
compromising comparability and accuracy in the recorded data.
Popular approaches for the removal of undesirable systematic
variation include signal corrections, filtering, or variable selection
(Rinnan et al., 2009; Bocklitz et al., 2011; Mehmood et al., 2012).
Most commonly, baseline (He et al., 2014; Zhang et al., 2020),
background (Wold et al., 1998; Trygg andWold, 2002; Boelens et al.,
2004), and scatter (Martens et al., 2003; Kohler et al., 2008; Liland
et al., 2016) correction methods are employed to eliminate
interferences caused by contaminating species or scattering
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effects such as fluorescence or Mie scattering. Since the direct
subtraction of reference spectra as a basic approach for
background correction might result in insufficient- or over-
corrections (Boelens et al., 2004), multiple approaches have been
proposed to identify and remove the undesirable background
variation (Lorber, 1986; Wold et al., 1998; Trygg and Wold,
2002; Ben-David and Ren, 2005). Among those the most
commonly applied algorithm is the orthogonal projection to
latent structures (OPLS) as proposed by Trygg and Wold (2002)
effectively removing systematic background variation not correlated
with the target quality attribute (Passos et al., 2010; Abdallah et al.,
2019). To further optimize model performance, additional steps like
spectral cropping, derivative filtering, or filter-based variable
selection may be used (Gautam et al., 2015; Santos et al., 2018).
In principle, the sequence of preprocessing operations, or
preprocessing pipeline, should be designed to remove irrelevant
variations from the recorded data and provide the multivariate
model with consistent information to enable robust and accurate
real-time monitoring. Finally, a careful evaluation of the extracted
information by the preprocessing pipeline and the selected
multivariate model is demanded by the regulatory agencies
(FDA, 2015). For linear models, such as partial least squares
(PLS), multiple approaches such as variable importance in
projection (VIP)-based feature importance (Mehmood et al.,
2012) have been proposed to perform this quality check.

In this study, we present a PAT approach based on Raman
spectroscopy for a precipitation-based capture process of VLPs.
Based on multiple small-scale precipitation experiments with
material from various lysate batches and spiking materials, we
evaluate the suitability of Raman spectroscopy for analyzing
precipitate-containing lysates. By introducing a pretreatment
strategy for the UV/Vis reference measurements and identifying
a suitable preprocessing pipeline for Raman spectroscopy data, we
demonstrate the reduction of variance in both the Raman and the
reference data and enable the prediction of the precipitated VLPs
from precipitate-containing lysates. We systematically combine
numerous preprocessing operations and isolate the effects of the
included operations on model performance. Eventually, we transfer
this approach to a fed-batch precipitation process, ensuring its
adaptability and effectiveness across different
operational paradigms.

2 Materials and methods

2.1 Experiments

2.1.1 Virus-like particles
In this study, Cp149, a C-terminally truncated wild-type HBcAg

protein (Zlotnick et al., 1996) was used, for which the plasmid was
kindly provided by Prof. Adam Zlotnick (Indiana University, US).
The intracellular expression of Cp149 in Escherichia coli (E. coli), cell
harvest, cell lysis, and lysate clarification were conducted as
previously described by Hillebrandt et al. (2020). Clarified lysate
solutions (hereinafter termed lysate) were thawed, 0.2 μm-filtered,
directly used raw or conditioned by dilution or spiking depending
on the precipitation experiment, and adjusted to 0.25% (v/v)
polysorbate 20.

To systematically diversify the lysate for the precipitation
experiments, different lysate batches were used and initial lysate
conditioning was performed by dilution and spiking for eight batch
experiments B1-B8 and three fed-batch experiments F1-F3. Raw
lysates of two lysate batches were used for batch experiments B1 and
B4, while a third lysate batch served as lysate for all fed-batch
experiments. Dilution of the lysates introduced further changes in
initial lysate concentration (B2-B3, F1, F3), which is expressed as
volume percent lysate content and was simply measured as 280 nm
absorbance (A280L) due to the lysates complexity.

To establish a foundation for systematic spiking, the initial
composition of raw lysate was first estimated in pre-experiments
(data not shown) to estimate a VLP content despite the lysates
complexity. For this pre-experiment, selective VLP precipitation was
conducted by adjusting raw lysate to 1.1 M AMS and the
supernatant was analyzed by reference analytics. The difference
between the ultraviolet (UV) absorbance at 280 nm of the initial
lysate (A280L) and the volume-corrected supernatant after
precipitation (A280S) account for the absorbance of selectively
precipitated VLP (A280VLP). The calculated ratio A280VLP/A280L
expressing the estimated VLP content resulted in approximately
10% VLP present in the raw lysate. This ratio served as foundation
for experimental spiking design under the assumption of purified
VLP- or host-cell protein (HCP)-enriched spiking material. While
the estimated VLP content with 10% remained constant using raw
lysate (B1, B4) or during lysate conditioning by dilution (B2-B3, F1,
F3) or spiking with salt (B8), the estimated VLP content was
systematically varied by VLP- or HCP-spiking (B5-B7, F2). Note
that spiking the lysates also resulted in a form of dilution; however,
the primary focus was here on systematically adjusting the lysate
composition. The final lysate conditioning settings of lysate batch,
lysate content, and estimated VLP content are summarized for all
batch experiments B1-B8 and fed-batch experiments F1-F3 in
Tables 1, 2, respectively.

More details on preparation and composition of buffers,
solutions, and VLP- and HCP-enriched spiking material are
stated in Supplementary Section 1.1.

2.1.2 Batch precipitation experiments
Conditioned lysate varied in lysate batch, concentration or

composition across the eight batch VLP precipitation
experiments as summarized in Table 1. For each experiment,
eleven solutions were prepared in 1,040 μL-scale with precipitant
concentrations in the range of 0–1.2 MAMS. In general, the solution
compositions were designed to maximize the lysate content under
the limitation of 4 M AMS stock solution to set the highest target
AMS concentration of 1.2M, resulting in 728 μL lysate and 312 μL
4 M AMS stock solution. Maintaining 728 μL lysate to prevent a
dilution effect within the experiments in batch mode, the remaining
312 μL was composed of proportionally 4 M AMS stock solution
and ultrapure water to cover the other precipitant concentrations
below 1.2 M AMS. Solutions were incubated at 22°C on a thermo-
shaker ThermoMixer Comfort (Eppendorf, Hamburg, DE) at
500 rpm for 30 min. For Raman measurements, 200 μL samples
of the turbid precipitate solutions were taken and immediately
analyzed. To enable measuring the particulate-free supernatants,
the remaining turbid precipitate solutions were centrifuged at
12,000 rcf for 8 min in a Pico 17 tabletop centrifuge (Thermo
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Fisher Scientific Inc., Waltham, US). The supernatants were
analyzed via Raman spectroscopy and UV reference analytics.

2.1.3 Fed-batch precipitation experiments
The setup for fed-batch VLP precipitation consisted of a stirred

reservoir equipped with a Minipuls 3 peristaltic pump (Gilson,
Villiers le Bel, FR) for a 4 M AMS feed. For online monitoring, a
second peristaltic pump (Gilson), a SLS-1500 flowmeter (Sensirion),
and a flow cell for Raman measurements were connected with PEEK
capillaries with an inner diameter of 0.25 mm in an on-line
loop. The on-line loop flow rate was adjusted to 1.4 mL/min.
Fed-batch precipitation experiments were performed with 12 mL
conditioned lysate. The lysate and processing conditions are listed in
Table 2. During fed-batch precipitation, 200 μL samples were taken
at each time step of in total 30 time steps, from which 22 selected
samples were centrifuged at 12,000 rcf for 3 min facilitating UV
reference analytics of the supernatants. For each time step, lysate and
AMS content were calculated considering drawn sample volume and
a mean feed volume, which was based on a mean feed flow rate
considering total AMS amount and feed density.

2.1.4 Raman spectroscopy
The Raman BioReactor BallProbe inserted in the FlowCell

Adapter (both MarqMetrix, Seattle, US) was connected to a
HyperFluxTM PRO Plus 785 with the software SpectralSoft 3.2.6

(Tornado Spectral Systems, Toronto, CA). All measurements were
performed in the flow cell with a laser power of 495 mW and with
50 acquisitions per spectrum. For precipitate and supernatant
samples, the exposure time was set to 275 ms and 185 ms,
respectively, as with precipitate being present, a higher exposure
was necessary to achieve a similar intensity level due to the
dampening effect of the precipitates in solution. The entire
spectral range from 200 to 3300 cm-1 was recorded with a
spectral resolution of 1 cm-1. For each of the eleven AMS
conditions per experiment, the 50 recorded Raman spectra were
averaged. For the fed-batch experiments, the 50 recorded spectra
closest to the sampling time point were averaged.

2.1.5 Reference analytics
All supernatant samples were analyzed via UV spectroscopy

with a high performance liquid chromatography (HPLC) system
equipped with a RS diode array detector and controlled by
Chromeleon 6.8 (Dionex Ultimate 3000 RS, Sunnyvale, US). A
0.5 μm pre-column filter catridge (OPTI-SOLV EXP, Supelco,
Bellefonte, US) but no column was installed. A buffer containing
50 mM Tris, 100 mM NaCl at pH 8.0 was used as mobile phase
with a flow rate of 50 μL min-1 and an injection volume of 20 μL.
Samples were diluted 100-fold in triplicates in lysis buffer and
UV spectra in the wavelength range from 220 to 400 nm
were recorded.

TABLE 1 Overview of the eight batch precipitation experiments B1-B8 comprising parameters for initial lysate conditioning and the final, curve fit-derived,
apparent concentration of precipitated VLPs.

Batch Condition Lysate conditioning Precipitated VLP

Batch Lysate content Estimated VLP content g L-1

- % (v/v) % (A280VLP/A280L)

B1 raw lysate 1 100 10 4.35

B2 dilution 52.5 10 2.96

B3 dilution 35 10 2.06

B4 raw lysate 2 100 10 3.92

B5 VLP spike 50 15 4.15

B6 VLP spike 50 13 4.16

B7 HCP spike 31 6 1.49

B8 NaCl spike 80 10 4.69

TABLE 2 Overview of the three fed-batch precipitation experiments F1-F3 comprising parameters for initial lysate conditioning and fed-batch processing.
Lysate batch 3 was used for all experiments.

Fed-batch Condition Lysate conditioning Processing

Lysate content Estimated VLP content Time Feed rate

% (v/v) % (A280VLP/A280L) min mLmin-1

F1 dilution 43 10 30 0.16

F2 VLP spike 32 23 30 0.16

F3 dilution 45 10 20 0.30

Frontiers in Bioengineering and Biotechnology frontiersin.org04

Dietrich et al. 10.3389/fbioe.2024.1399938

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2024.1399938


2.2 Data analysis and computation

Data analysis and computation was performed in Python 3.8.

2.2.1 Reference data pretreatment
Several pretreatments steps for the UV reference data were

conducted in order to transform the scattered data into reliable
reference data for the chemometric modeling. The pretreatment
comprised scatter correction, scaling, precipitation curve estimation,
outlier removal, and a final conversion to the apparent precipitated
VLP concentration. Scatter correction for the 280 nm peak areas
(A280) was performed to remove nucleic acid contributions
according to Porterfield and Zlotnick (2010), whereas AMS
content-dependent scatter correction was not required due to the
100-fold sample dilution.

Each batch experiment consisted of A280-triplicates for 11 AMS
conditions, resulting in 33 data points. To reduce the effect of outliers
in the data within one experiment, a robust least squares fit of the
precipitation curve using the Boltzmann function was performed.
This model-based approximation assumes that the precipitation can
be divided into three distinct phases, namely an initial plateau until
the onset of the precipitation, a sigmoidal decrease, and a final plateau
once all target molecules have been precipitated. In particular, the
optimization problem was set up as Eq. 1

minx � 0.5∑N
i�1

δ f cAMS,i, x( ) − yi( )2 (1)

where yi denote the discrete UV measurements at a certain
concentration of AMS i and f (cAMS,i, x) being the Boltzmann
function given as Eq. 2

f cAMS,i , x( ) � x2 − x4

1 + exp − x1cAMS,i + x2( )( ) + x3. (2)

The parameter vector x is defined as (x1, x2, x3, x4)T. By
employing the non-linear transformation of the squared residuals
z, a smooth approximation of the absolute value loss by δ(z) �
2( ������(1 + z)√ − 1) was generated to effectively reduce the impact of
outliers. To generalize the problem where the threshold between
inliers and outliers is different from 1, the formula δ̂(r2) �
C2δ((r/C)2) was used with C being a scaling factor that
determines the threshold between outliers and inliers in the data
set. In our case, Cwas set to 5 for robust parameter estimation across
all batch and fed-batch experiments.

The generated Boltzmann fits were used to remove outliers in
each experiment. The distribution of the residuals between the
Boltzmann curves and the original measurements were analyzed.
Data points with residuals outside of the interval [p0.25 – 1.5IQR;
p0.75 + 1.5IQR] were excluded from the data set with the interquartile
range IQR being defined as p0.75 − p0.25 (Wilcox, 2005) and p0.25 and
p0.75 the 25% and 75% percentiles.

Within one experiment, the conversion to apparent precipitated
VLP concentration was done by subtracting the minimum observed
A280 mean from all data points, taking the absolute values, and
scaling by HPLC device parameters and the theoretical extinction
coefficient of the VLP at 280 nm of 1.764 L g−1 cm−1 as provided by
the ProtParam tool (Gasteiger et al., 2005). This procedure assumes
that solely VLP is precipitating under given precipitation conditions

as discussed in Wegner and Hubbuch (2022) and the absorption is
only caused by VLP in solution. Under consideration of other HCPs
and nucleic acids in the solution, this procedure is biased and hence
the derived VLP content is termed apparent precipitated VLP
concentration.

2.2.2 Spectral data processing
Spectral data processing of averaged spectra was done in order to

reduce unwanted differences in the collected Raman data and
covered spectral outlier removal, turbidity correction, baseline
correction, background correction, difference spectra, derivative
and smoothing, and cropping. Multiple combinations of the
listed operations were screened to find the optimal configuration.
Hence, the individual operations will be explained in detail.

2.2.2.1 Spectral outlier removal
Spectral outlier were removed manually based on visual

inspection regarding defective spectra. Defective spectra were
found for experiment B2 corresponding to conditions 1.0,
1.1 and 1.2 M AMS and occurred mainly due to sample handling
and hence the inclusion of air bubbles in the flow cell.

2.2.2.2 Turbidity correction
To remove interfering Raman effects caused by turbidity, the

spectra were turbidity-corrected by normalization at 3299 cm-1.

2.2.2.3 Baseline correction
All spectra were baseline-corrected using a Whittaker filter

employing the adaptive smoothness penalized least squares
(asPLS) according to Zhang et al. (2020) and implemented in
pybaselines (v. 1.0.0). The λ parameter was determined manually
by visual inspection of the estimated baseline. The optimal λ value of
6 × 10−7 was chosen based on themost consistent baseline estimation
over the entire spectral range across all samples. Furthermore, a
second-order difference matrix, a maximum number of iterations of
100, and a tolerance of 10–3 were used.

2.2.2.4 Background correction
To remove the interfering Raman effects of the buffer system

and the precipitating agents, two different background correction
methods were evaluated. The first one which we will refer to as
scaled substraction (SS) uses reference measurements of the buffer
system at the respective concentration levels of AMS. The reference
spectra were scaled to the Raman spectra collected in the
precipitation experiments by normalization at 750 cm-1. As the SS
method can only be applied when reference measurements are
available, a second background correction method was evaluated,
namely the OPLS as described in Trygg andWold (2002). The OPLS
method extracts the orthogonal systematic variation in the spectral
data which is not correlated to the target quality attribute and was
used as implemented in pyopls (v 20.02) using 3 latent variables.

2.2.2.5 Difference spectra
Since only the precipitated material contributes to the changes in

Raman intensity, difference spectra were computed per experiment
by subtracting the first spectrum of each experiment. This is
analogous to using the autozero function of other spectroscopic
detectors at the beginning of the experiments. In essence, this is
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supposed to remove the varying background effects of the lysate
matrix of which the exact composition is unknown.

2.2.2.6 Derivative and smoothing
Derivative and smoothing was applied using the Savitzky-Golay

filter (SGF) (Savitzky and Golay, 1964). Unless stated otherwise, the
SGF was used with a second-degree polynomial and a window size of
11 as implemented in scipy (v. 1.11.4).

2.2.2.7 Cropping
Spectra were cropped to reduce the influence of fluorescent

background, scattering, buffers, and precipitant. Multiple intervals
were evaluated to study the effect of individual contributions. The
selected intervals for cropping of the Raman spectra were 800–1800,
1020–1800 and 1200–1500 cm-1, which were motivated by the
exclusion of residual baseline variance, the largest sulfate
contribution and the majority of buffer interference.

2.2.2.8 Preprocessing pipeline
The individual preprocessing operations are used in sequence as

presented above. In some cases, a differing order may be viable,
however the authors decided to keep the order fixed for this study in
order to maintain comparability of the different approaches. The
preprocessing pipeline configuration identified as optimal for the
batch data was utilized for the fed-batch experiments.

2.2.2.9 Quantitative evaluation
To compare preprocessing operations quantitatively without the

need to calibrate a multivariate regression model, the metric signal-
to-noise ratio (SNR) was used to evaluate the correlation between
individual variables with the target quantity. Here, we define the
SNR as

SNR � Var xλβ̂( )
σ̂2

(3)

with β̂ being the regression coefficients of a univariate linear model
of type y = xλ β + ε with normally distributed errors ε and σ̂2 being
the residual variance of linear model for wavenumber λ according to
Soch and Allefeld (2018). To calculate SNR for the Raman
spectroscopy data using Eq. 3, a linear model was built for each
wavenumber individually. The SNR was used to compare multiple
combinations of preprocessing operations. All combinations were
applied to the precipitate and supernatant data sets. A preprocessing
operation is considered beneficial if the metric at a certain variable
increases compared to the un-preprocessed state. Further, the
variable is considered predictive if it shows high SNR in
precipitate and supernatant samples among all experiments.

2.2.3 Regression modelling
2.2.3.1 Data splitting

To make maximum use of the recorded data, the batch data (B1-
B8) were split using a nested cross-validation scheme. The eight
experiments are divided into six training and two test experiments
according to a Leave-Two-Experiments-Out cross-validation scheme
which serves as the outer cross-validation. In total, this results in 8!/
(2!p6!) = 28 independent test sets on which the calibrated models are
evaluated. For the inner cross-validation, the six training

experiments are further rotated using a Leave-One-Experiment-
Out cross-validation scheme to perform hyperparameter
optimization in each of the iterations of the outer cross-
validation. The fed-batch data were split in two training
experiments (F1, F3) and one independent test experiment (F2).
Here, the hyperparameters were optimized using a randomized split
of the training set with eleven validation data points.

2.2.3.2 Regression models
For the comparison of different combinations of preprocessing

operations, two model types were evaluated as multivariate
regressors for the quantification of the apparent precipitated VLP
concentration, namely multiple linear regression (MLR) and PLS
models as implemented in scikit-learn (v. 1.3.2). The different model
types were selected to resolve potential differences between the
working principles of these models with regard to preprocessing
pipelines. For the MLR models, six wavenumbers of all observed
wavenumbers were selected which were known to be protein-related
but were not affected by AMS, namely 830, 850, 1241, 1314,
1341 and 1617 cm-1 (Spinner, 2003; Maiti et al., 2004; Rygula
et al., 2013). PLS models were trained using the NIPALS
algorithm (Wold et al., 2001) and the number of latent variables
was optimized using a grid-search in the range of 2–10 based on the
inner cross-validation. Before being passed to the regression models,
all spectral data were mean-centered and column-wise scaled to unit
variance. PLS models for quantification of AMS were built based on
a pipeline including turbidity correction, baseline correction,
difference spectra and no further optimization was performed.

2.2.3.3 Error metrics
Accuracy of the calibrated models was assessed using the root

mean squared error (RMSE) and the coefficient of determination R2.
For the inner cross-validation, the RMSE was calculated using the
left-out experiments. When PLS models were used, the RMSE was
scaled by the number of latent variables according to Wold et al.
(2001). The importance of individual wavenumbers in PLS models
was assessed quantitatively by VIP scores. The VIP score vj
(Mehmood et al., 2012) is defined as Eq. 4

vj �

����������������������������������
N∑A

a�1
q2at

T
a ta( ) waj/ wa‖ ‖( )2[ ]/∑A

a�1
q2at

T
a ta( )√√

, (4)

for the individual wavenumber j ∈ [1, N], where N denotes the total
number of wavenumbers. The loading weights, the y-loadings, and
the score vector corresponding to the PLS component a ∈ [1, A] are
given by wa, qa, and ta, respectively.

3 Results

3.1 Spiking diversifies experimental data

Experiments in batch and fed-batch mode were conducted in
1 mL and 12 mL scale, respectively. To generate variance in
precipitation data, multiple lysate batches and defined spiking
solutions were used. In total, eight batch experiments and 3 fed-
batch experiments were conducted (see Tables 1, 2) and samples,
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taken at different concentrations of AMS, were analyzed by Raman
spectroscopy and reference analytics. To extract the apparent
precipitated VLP concentration from the reference UV
absorbance measurements, the UV data were treated as described
in 2.2.1. The UV pretreatment procedure is schematically depicted
in Figures 1A–D. Figure 1A shows the scatter-corrected UV data for
experiment B1 over the precipitation range from 0 to 1.2 MAMS. To
approximate the precipitation trend, a Boltzmann function which is
shown in Figure 1B was fitted to the displayed data points. Based on
the residuals between the Boltzmann fit and the observed data,
outliers were excluded which reduced the spread of observed data as
visible in Figure 1C. Finally, the UV data were converted to the
apparent precipitated VLP concentration as presented in Figure 1D.
The resulting outlier-corrected UV absorbance progression and the

corresponding apparent VLP concentration are shown for all
experiments in Figure 2. For the batch experiments, three distinct
groups are illustrated, as the experimental conditions were induced
by different methodologies. For each experiment, the outlier-
corrected absorbance measurements are displayed with one
standard deviation and the fitted Boltzmann functions. While the
Boltzmann functions aligned well with the UV absorbance for all
experiments, the height of the final plateau for the precipitated VLP
concentration was underestimated in the case of B3 and B7.
Experiments B1 to B3 are shown in Figures 2A, E and were
generated by diluting the lysate material using lysis buffer. For
these curves over the course of the AMS concentration, the
reductions of the total UV absorbance as well as the amount of
precipitated VLP indicate the reduced concentration of all

FIGURE 1
Illustration of pretreatment of the UV absorbance measurements. The UV absorbance at 280 nm is exemplarily shown over precipitant
concentration for selected pretreatment steps for experiment B1. Raw triplicate UV measurements are shown as black crosses (A) and the fitted
Boltzmann function is shown as a solid black line (B). The detected outliers are represented by red circles (C). The converted precipitated VLP
concentrations are shown as black crosses with one standard deviation from averaging the three replicates per condition (D).

FIGURE 2
Comparison of pretreated UV absorbance data and VLP precipitation curves. Total UV absorbance at 280 nm after scatter- and outlier correction
(A–D) and converted precipitation curves (E–H) are shown for batch experiments B1-B8 and fed-batch experiments F1-F3. Solid lines represent the fitted
Boltzmann functions for outlier detection. The experiments are grouped according to the mode of spiking, where B1-B3, B4-B7 and B8 show the
influence of lysate dilution, protein-composition regarding or salt content, respectively. For B2, the data points above 0.95 M were excluded due to
defective Raman spectra in the precipitate samples.
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components by dilution. Experiments B1 and B4 used lysate
material from different batches and showed comparable total UV
absorbance and precipitated amounts of VLP. Compared to B4,
experiments B5-B7 (cf. Figures 2B, F) were generated by specifically
enriching the VLP or HCP content in the lysate materials by adding
spiking material. This resulted in varying total UV absorbance and
precipitated amounts of VLP for these individual curves. While a
maximum of 2 gL−1 of precipitated VLP was reached in B7, the
remaining experiments showed precipitated amounts of VLP up to
5 gL−1. In contrast to B4, experiments B5-B7 varied in the range of
125 and 150 mAU total UV absorbance. In experiment B8 (cf.
Figures 2C, G), the NaCl concentration was increased to 270 mM,
which caused a lower UV absorbance compared to B4 which was
based on the same lysate material and reached a maximum amount
of precipitated VLP of over 4 gL−1. The final, apparent
concentrations of precipitated VLPs derived from the fitted
Boltzmann functions are listed in Table 1.

In the fed-batch experiments (cf. Figures 2D, H), the differences
in the precipitation trends were induced by dilution, adding VLP-
enriched spiking material and modulating the feeding rate of the
precipitant solution (cf. Table 2). Here, similar trends to the batch
experiments were observed in terms of varying UV absorbance
ranges. Note that the observed data include the dilution caused by
the addition of the precipitant and hence a more gradual increase in
the precipitated VLP concentration is expected compared to the
batch experiments. Moreover, the AMS content calculation for
F3 revealed a higher mean AMS flow rate than expected,
exceeding the initially chosen final concentration of 1.3 M AMS.

In summary, the generated precipitation data provide insights
into the precipitation dynamics in the presence of varying
backgrounds induced by the addition of spiking material or
buffer solution and serve as a diverse data set for chemometric
model development.

3.2 Raman spectra are affected by
precipitant and precipitates

Raman spectra are commonly affected by the matrix, buffers and
other components present in the sample. Before using the collected
Raman data for chemometric modeling, the data require

preprocessing to properly evaluate potential interferences from
buffers or excipients. A schematic illustration of the effect of the
employed preprocessing operations is presented in Figure 3. From
left to right, the schematic pipeline shows the averaged raw Raman
spectra for each sample in experiments B1, the turbidity- and
baseline-corrected spectra using the 3299 cm-1-normalization and
asPLSWhittaker filter, the SS-background-corrected spectra and the
difference spectra. The combination of turbidity correction with the
Whittaker filter removed turbidity effects and baseline drifts reliably
over the whole spectral range (cf. Figures 3A, B). The SS-background
correction subtracts the contribution of the AMS, which caused the
AMS-related band at 980 cm-1 to become negative and the protein-
related bands to show larger variations (cf. Figure 3C). Finally, the
difference spectra operation sets the Raman intensity in the
beginning of the experiments to 0 and caused negative bands in
the wavenumber region 1200–1700 cm-1 (cf. Figure 3D). For a visual
interpretation of the difference spectra, the reader is advised to
regard positive and negative bands as substances being added and
being removed from the solution, respectively. For evaluating the
interferences of the precipitant, buffers or excipients, the Raman
spectra were firstly treated by turbidity- and baseline
correction only.

Figure 4 presents a comparison of the collected Raman spectra in
precipitant-containing buffer samples, supernatant samples,
precipitate samples from batch experiment B1 without and with
turbidity correction (cf. Section 2.2.2) from top to bottom. Figure 4A
shows the raw Raman spectra and Figures 4B–D show the baseline-
corrected data within selected wavenumber regions. In the raw
spectra (cf. Figure 4A), different baseline effects are visible
between all sets of spectra with the precipitate data showing the
strongest baseline variations. Baseline variations in the precipitate
data were less pronounced for the turbidity-corrected spectra. At
low concentrations of AMS, the baseline increased while at high
AMS concentrations, the baseline decreased again. This effect was
accompanied by the increasing contributions of AMS in the Raman
spectra with the most prominent Raman band being located at
980 cm-1. Additionally, the increasing AMS contents are visible in
the Raman bands at 450, 618 and 1106 cm-1 (cf. Figures 4B, C) as
well as near 1435 and 1693 cm-1 (cf. Figure 4D), which can be
attributed to sulphate and ammonium ions, respectively (Spinner,
2003; Fontana et al., 2013). Additional components of the lysis

FIGURE 3
Illustration of the preprocessing of the Raman spectra. The preprocessing procedure is exemplarily depicted for experiment B1. The normalized raw
Raman spectra (A) and selected preprocessing steps (B–D) are shown. The spectra are colored according to the AMS concentration with brighter colors
denoting higher concentrations.
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buffer which were contained in all samples can be traced to the
bands at 1249 and 1470 cm-1 indicative for Tris and EDTA (Socrates,
2004). These bands remained roughly constant over the course of a
precipitation experiment as only the AMS concentration was
gradually increasing. As expected, the sapphire bands at 379,
418, 430, 450, 577 and 750 cm-1 (Watson et al., 1981), the band
of molecular oxygen at 1556 cm-1 (Weber et al., 1967) and the
broad water band at 1650 cm-1 (Spinner, 2003) remained roughly
constant as well. Protein-related contributions are located between
600–880 cm-1 and 1200–1800 cm-1 with amide bands, CH2-
deformation bands and bands of aromatic amino residues
(Maiti et al., 2004; Rygula et al., 2013). Amide III and I bands
are visible near 1241 and 1660 cm-1, respectively. Tyrosine (Tyr)
bands appear at 830, 850, 1205 and 1617 cm-1 and the bands
originating from tryptophan (Trp) and phenylalanine (Phe)
appear at 1340 and 1605 cm-1, respectively. CH2-deformations
are visible at 1314, 1340 and 1448 cm-1. While these protein-
related contributions were largely unaffected by the AMS or
lysis buffer induced Raman activity, the precipitant interfered
with the protein-related contributions in several locations (cf.
620, 643, 1004, and 1127 cm-1). Tyr, Phe, and C-C stretching
can be associated with these bands at 643 cm-1, 620 and
1004 cm-1, and 1127 cm-1, respectively (Peticolas, 1995; Maiti
et al., 2004; Rygula et al., 2013). In addition to the protein-
related contributions, the bands at 724 and 781 cm-1 are
indicative for the presence of nucleic acids (Peticolas, 1995).

To study the effect of the precipitates in solution formed during
the precipitation experiment, the baseline-corrected Raman spectra
from precipitate and supernatant samples were compared. In
general, similar bands are visible in both the precipitate and the
supernatant spectra. The protein bands showed a decreasing trend
with increasing AMS concentrations. This effect was more
pronounced in the precipitate spectra compared to the
supernatant spectra indicating an overall protein band-specific
intensity decrease caused by the precipitates in solution.
Similarly, the nucleic acid bands at 724 and 781 cm-1 were visibly
decreasing with increasing concentrations of AMS. By introducing
the turbidity correction, the overall intensity decrease was reduced
in all mentioned wavenumber regions, effectively making the
precipitate spectra more comparable to the supernatant spectra,
especially in the bands of the nucleic acids. However, individual
Raman bands were adversely effected such as the sapphire band at
750 cm-1, showing minor overcorrection.

3.3 Raman data reveal structural differences
between species

To investigate whether structural differences between the target
molecules and the other species in the lysates are observable via
Raman spectroscopy, the Raman spectra from the VLP- and HCP-
enriched spiking materials were compared. Normalized Raman

FIGURE 4
Comparison of collected Raman spectra in precipitant-containing buffer, supernatant and precipitate samples. Precipitate and supernatant data are
exemplarily shown for batch experiment B1. Full raw spectra (A), and baseline-corrected spectra of selected wavenumber regions (B–D) are illustrated.
Spectra with incorporated turbidity correction are shown in the bottom row for the precipitate samples. The spectra are normalized in each row and
subfigure for visual purposes and colored according to the AMS concentration with brighter colors representing higher concentrations.
Wavenumber regions indicated by arrows correspond to buffer-, protein- and nucleic acid (NA)-related contributions. Sapphire bands are marked with
an asterisk.
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spectra of the lysis buffer and the purified VLP- and the HCP-
enriched spiking solutions are presented in Figure 5A after baseline-
correction and water blank subtraction. Both solutions exhibited
distinct Raman bands in the protein fingerprint region between
800 and 1800 cm-1 with slight differences in the shape of the most
prominent peaks between 1000–1100 cm-1, 1200–1300 cm-1 and
1600–1700 cm-1. Additionally, the nucleic acid-related Raman
band at 781 cm-1 and the precipitant-related Raman band at
980 cm-1 were observed for the HCP spiking solution. As the
HCP spiking solution was prepared by recovering the
precipitation supernatant and subsequent dialysis, it contained
both HCPs and host cell nucleic acids, which was further
underlined by a260/A280 ratio of 1.88. The AMS contribution
was caused by the residual amounts of AMS after buffer
exchange. As the peak profiles of the two spiking solutions in the
protein fingerprint region differed slightly from one another and the
amide bands are commonly used Raman markers for higher-order
structures (Socrates, 2004), the ratio of selected amide bands are
presented in Figures 5B–C for selected batch and fed-batch
experiments, respectively. The data indicated a shift in the ratio
of 1341 and 1660 cm-1 over the course of a precipitation experiment
depending on the initial conditions of the respective experiment.
Exemplarily, the VLP-spike experiments (B6, B7, F2) exhibited
slightly lower ratios than the experiments with similar lysate
compositions (B4, F1, F3). To compare the intensity decrease

observed for the nucleic acid and protein-related bands, the ratio
of 781 and 1341 cm-1 is shown for batch and fed-batch experiments
over increasing AMS content in Figures 5E–F. The curves show a
sigmoidal increase indicating a stronger decrease of protein-related
Raman bands than observed for the bands associated with nucleic
acids. A comparable trend was observed in the A260/A280 ratio for
supernatant samples of the batch experiments as presented in
Figure 5D. In summary, the differences in protein-associated
Raman bands of the two spiking solutions underline structural
differences between VLPs and HCPs. Selected band ratios could
be used to track these spectral changes over the course of the
precipitation, suggesting the selective precipitation of specific
molecular species, namely the VLP.

3.4 Background correction removes
interferences

The batch experiment data were used to evaluate the suitability
of preprocessing pipelines with regard to their universal applicability
to all experiments, and their capacity for removing background
effects such as buffer and precipitant interferences. Figures 6A–C
present the difference spectra after turbidity and baseline correction,
incorporated SS-background correction or incorporated OPLS-
background correction, respectively, for the precipitate samples of

FIGURE 5
Raman spectra of the spiking solutions and comparison of selected wavenumber ratios. Normalized Raman spectra of lysis buffer and VLP- and
HCP-enriched spiking materials after baseline-correction and subtraction of water blank are illustrated in (A). The protein-band ratio 1341/1660 is
depicted over the course of AMS for batch experiments B4, B6, B7 differing in the protein composition of the lysate batch (B) and all fed-batch
experiments (C). The UV absorbance-derived A260/A280 ratio (D) is shown alongside the band ratio 781/1341 comparing the nucleic acid-
associated Raman band with the protein-associated Raman band for batch experiments B4, B6, B7 (E) and fed-batch experiments (F). All ratios were
calculated with turbidity- and baseline-corrected Raman spectral data. The ratios for fed-batch experiments were calculated using a moving average of
10 spectra to smooth the signal. Dashed lines are only shown for visual purposes.
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all batch experiments B1-B8. In Figures 6D–F, the SNR is presented
to quantify the effect of the baseline and background correction
methods on the correlation with the precipitated amount of VLP.
The turbidity- and baseline-corrected spectra showed evolving
negative bands between 1200 and 1400 cm-1 and 1500 and
1700 cm-1. These negative bands exhibited SNR values below 0.5.
The Raman bands between 1020 and 1200 cm-1 and between
1700 and 1720 cm-1 showed a clear trend with increasing levels
of AMS. The SNR confirmed this observation with the highest values
close to 1 for these intervals. Similar trends was observed between
1400 and 1500 cm-1 with SNR values up to 0.9. By subtracting the
reference spectra comprising solely buffers and precipitants, an
additional negative band between 1020 and 1200 cm-1 was
unveiled and the peak around 1700 cm-1 was removed (cf.
Figures 6A, B), while the wavenumber region between 1200 and
1400 cm-1 remained largely unaffected. The SNR confirmed these
observations and showed a strong correlation of the bands between
1020 and 1200 cm-1 and 1550 and 1750 cm-1, where protein-related
Raman bands are located. Bands between 1400 and 1500 cm-1 also
showed elevated correlation according to SNR compared to sole
baseline correction. By incorporating an OPLS-based background
correction, the spectra mostly retained positive bands between
1020 and 1200 cm-1 and the peaks around 1450 and 1700 cm-1

(cf. Figure 6C). However, the SNR revealed that the correlation
increase in the range from 1020 to 1200 cm-1 and from 1550 to
1750 cm-1 is lower than for SS-background correction. Almost no
correlation increase was observed near 1600 cm-1. Despite the visual
differences between the SS- and OPLS-background correction, the
SNR assessment showed a similar profile with correlations between
1020 and 1200 cm-1, near 1450 cm-1 and near 1700 cm-1. An
analogous illustration of difference spectra and corresponding
SNR for the supernatant samples can be found in the
Supplementary (Supplementary Figure S1), where comparable but
substantially less pronounced trends were observed.

3.5 Systematic pipeline optimization
improves model accuracy

Upon retrieving information about correlative structures in the
collected Raman spectra, the data were used to build multivariate
regression models taking the Raman spectra as inputs and
predicting the apparent precipitated VLP concentration.
Multiple combinations of preprocessing operations and MLR or
PLS models were screened with the aim to find the optimal pipeline
configuration with respect to model accuracy and robustness.

FIGURE 6
Comparison of the effects of preprocessing operations on Raman spectra in precipitate samples for the wavenumber region 1020–1800 cm-1. In
(A–C), difference spectra for all batch experiments B1-B8 are shown after turbidity and baseline correction, with incorporated SS-background correction,
or with incorporated OPLS-background correction, respectively. The spectra are colored according to the AMS concentration with brighter colors
denoting higher concentrations. In (D–F), the SNR for the respective preprocessing operations are shown. Gray shaded areas indicate protein-
related Raman regions according to literature (Maiti et al., 2004; Rygula et al., 2013).
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While a strong focus lied on evaluating previously assessed
operations such as SS and OPLS-based background correction,
their combinations with cropping and derivative filters were also
evaluated in this Section. In Figure 7A, the distributions of RMSE
of the held-out test sets are shown for all tested model and pipeline
configurations, sorted by the mean of the RMSEs. Figures 7B–G
additionally show the direct comparison of selected model
configurations and aim to emphasize the effect of individual
changes to the model and preprocessing pipeline on model
performance. While the best models achieved RMSE values of
approx. 0.8 g L-1 on average, the errors increased to up to approx.
2.0 g L-1 on average. Model configurations with higher average
errors also showed larger variance. Among the four best

performing model configurations (cf. Figure 7A), all pipelines
included SS or OPLS-background correction, second order SGFs
and PLS regression models. While the best and the model ranking
4th used cropping to 800–1800 cm-1, the remaining used the full
wavenumber range. The PLS model applied to turbidity- and
baseline-corrected difference spectra achieved better
performance than MLR (cf. Figure 7B). In general, PLS models
benefited from using background correction method with the
lowest average RMSE and variance being achieved when
applying the OPLS method (cf. Figure 7C). For both SS- and
OPLS-corrected data, increasing the order of derivative from 0 to
2 marginally improved the median RMSE and reduced variance
(cf. Figure 7D). Cropping the Raman spectra generally showed

FIGURE 7
Comparison of preprocessing pipelines and model types. The distributions of RMSE of the outer cross-validation are presented and ranked by the
mean of the RMSEs for all tested model configurations (A). All tested model configurations comprised turbidity correction, baseline correction, and
difference spectra. The solid lines within the boxes represent the median of the obtained performances. Outliers were characterized by errors surpassing
1.5 times the interquartile range and are symbolized by diamonds. RMSEs of selected model configurations are illustrated separately, namely for
comparison of model types (B), background correction methods (C), SGF derivative (D), spectral cropping (E), sample origin (F), and models with and
without incorporated turbidity correction (G).
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adverse effects on model accuracy using OPLS-corrected data (cf.
Figure 7E). As pointed out above, this was not true for all pipeline
configurations but may be pointed out as a general tendency in this
case study. To validate that the identified pipelines can not only be
applied to Raman spectra recorded from the precipitate-
containing samples, but also to the particulate-free supernatant
samples, separate models were calibrated on the supernatant
Raman spectra as shown in Figure 7F. While the PLS and
MLR models achieved similar accuracy after turbidity and
baseline correction in precipitate and supernatant samples,

OPLS-background-corrected models showed considerably increased
RMSE on average in the supernatant samples. In Figure 7G,
separate models were calibrated without turbidity correction to
verify that model performance benefit from the incorporated
turbidity correction. Although MLR and PLS models achieved
comparable performance when applied to solely baseline-
corrected difference spectra, MLR performed worse than PLS
models when combined with turbidity correction. All tested
model and pipeline configurations without turbidity correction can
be found in Supplementary Figure S2.

FIGURE 8
PLS model predictions with regard to precipitated VLP for batch and fed-batch experiments and the corresponding VIP scores for both models. For
the batch experiments B4 (A) and B6 (B), the predicted and observed precipitated VLP concentrations are shown over increasing AMS concentrations. For
visual purposes, solid lines are shown to linearly connect the PLS model predictions. For the fed-batch experiments F1-F3 (C–E), the observed apparent
VLP concentrations are shown as symbols with their respective assignment to calibration, validation and test data. Model predictions from the real-
time data after baseline correction and difference spectra are presented as solid lines. The VIP scores are illustrated for both batch (F) and fed-batch (G)
models in the wavenumber region 800–1800 cm-1.
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3.6 Model pipeline captures
precipitation trends

The previously identified best model and preprocessing pipeline
PLS(BS-OPLS-800/1800-SG2) was finally evaluated on a
representative split of batch data and further transferred to the
fed-batch data. Figure 8 presents PLS model predictions for the
batch test set (B4, B6) and fed-batch experiments F1-F3 as well as
VIP scores for both calibrated models. Despite having different VLP
to impurity ratios in the starting material (cf. Table 1), the PLS
model predictions for batch experiments B4 and B6 aligned well
with the experimental data (cf. Figures 8A, B) with an R2 of 0.83.
Error metrics for calibration, cross-validation and test sets are
presented in Supplementary Figure S3. Alternatively, PLS model
predictions for all calibration runs are shown over AMS content in
Supplementary Figure S4. While for B4, the sigmoidal shape of the
precipitation curve was represented in the model predictions, the
model predicted an early onset of the VLP precipitation for B6 and
saturate at lower final concentration of approx. 3.5 g L-1, effectively
smoothing out the sigmoidal shape. For the calibration experiments
(cf. Supplementary Figure S4), the sigmoidal shape and onset of the
precipitation were predicted accurately while predictions for the
initial plateau differed from the observations. Most of the
predictions, however, lay within the range of one standard
deviation of the observed data points.

In Figures 8C–E, the predictions of the calibrated PLS model are
shown for fed-batch experiments F1, F2 and F3 as symbols with their
respective assignment to calibration, validation and test sets.
Supplementary Figure S5 presents error metrics for all data sets.
The real-time data used for prediction were not averaged and hence
the model predictions were scattered around the observed data
points and were available in between reference measurements.
While the trajectories of the expected precipitation curves were
well represented in the predictions for the training experiments
F1 and F3, the trajectory for F2 was underestimated in the range
from 15 to 25 min which corresponded to approx. 0.5–1 M AMS.
Using the averaged Raman spectra, this yielded an R2 of 0.64 (cf.
Supplementary Figure S5). For F1, the predictions for the spectra
during the first 3 min strongly scattered and deviated from the
expected values. Similar spikes for individual spectra were observed
in the start-up phase for F2 and F3. In all cases, the effect reduced
over the first 1–3 min after which constant scatter can be observed
for all experiments until the end of the precipitation process. To
evaluate the origin of these scatter, a step-wise visualization of the
Raman spectra for all fed-batch experiments is presented in
Supplementary Figure S8. The affected Raman spectra show
slight distortions to lower intensity in the protein-related and
water Raman bands, which are subsequently enhanced through
the sequence of preprocessing operations. Towards the end of the
process, no plateauing of the predictions based on the Raman data
was observed whereas the observed data signals tended to stabilize
with individual spikes being present.

Finally, Figures 8F, G present the VIP-based feature importance
for the PLS models based on batch and fed-batch data, respectively,
in the wavenumber range between 800 and 1800 cm-1. Both models
relied on multiple wavenumber regions as indicated by elevated VIP
scores. Most prominently, the interval between 950 and 1000 cm-1

originating from the sulfate ions contributed to the model

predictions. Additionally, local maxima appeared at wavenumber
intervals of 800–900, 1050–1150, 1400–1500 and 1550–1650 cm-1

for both the batch and the fed-batch models, mainly encoding
protein-related information.

PLS models were further used to quantify the AMS
concentration in batch and fed-batch using the same
methodology as laid out for the precipitated VLP
concentration. In the case of AMS the preprocessing only
included turbidity and baseline correction and the formation
of difference spectra. The predictions for the batch and fed-batch
data are presented in Supplementary Figures S6, S7, respectively.
For both data sets, the models showed almost perfect alignment
for the test sets with R2 of 0.98 and 0.97 over the concentration
range from 0 to 1.2 M. For the fed-batch runs deviations from the
expected values were observed above AMS concentrations
of 1.2 M.

4 Discussion

4.1 Effects of data diversification

Data diversification is crucial for generating representative data
sets for developing chemometric sensors suitable for PAT in
biomanufacturing. The precipitation experiments were designed
to mimic multiple sources of experimental variance which may
arise in process development studies or manufacturing campaigns.
Data were diversified using different lysate batches and conditioning
of the lysates by dilution, salt addition, or spiking with purified VLP
or HCP solutions. Similar strategies for data diversification were
employed in the literature by spiking purified monoclonal
antibodies with mock solutions to mimic complex feedstocks
(Großhans et al., 2019), spiking with nutrients during cell culture
(Santos et al., 2018), spiking with cells during inoculum maturation
(Guardalini et al., 2023b) or mixing available samples (Wang et al.,
2023). In general, diversification strategies were reported to improve
model robustness and interpretability (Santos et al., 2018) or enlarge
the experimental data set (Wang et al., 2023). Alternative strategies
may include synthetic enlargement of the available data sets by data
augmentation (Schiemer et al., 2024) or the collection of data from
multiple products, formulation components and sensors (Wei et al.,
2022) for the diversification of experimental data sets.

In essence, the diversification strategy in this study yielded
versatile precipitation experiments covering different precipitation
trajectories, varying levels of total concentration of precipitated VLP
and impurity content. However, the UV absorbance data exhibited
high variance for the triplicate measurements which was enhanced
by the conversion to the apparent precipitated VLP concentration,
resulting in difficulties in determining the precipitation trajectories.
Particularly, samples in the plateau region of the precipitation curves
showed unexpected fluctuations. The variance between replicates or
individual data points within one experiments, i.e. variable onsets of
the precipitation or the initial and final plateau concentration, may
be attributed to the precipitation procedure, sampling procedure
and sample handling. Since the batch experiments involved the
manual addition of the precipitant as well as sampling of the
precipitate-containing solution, the heterogeneity of the
precipitate solution may introduce analytical variance between
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data points. Moreover, inadequate mixing during precipitant
addition or during the subsequent incubation time could also
contribute to variance within a batch experiment. Variance
between replicates and individual data points were less
pronounced for fed-batch than batch experiments, which can be
attributed to the inherent continuity of the fed-batch approach as
well as effective mixing in the reservoir, thus, supporting uniform
precipitate formation while avoiding co-precipitation of other
species (Pons Royo et al., 2022).

Eventually, the observed variances led to the employment of a
pretreatment strategy based on experiment-based curve fitting using
the Boltzmann function. This strategy assumed the selective
precipitation of VLPs which has been shown for AMS
concentrations below approx. 1.3 M (Wegner and Hubbuch,
2022). The pretreatment strategy was shown to effectively reduce
single-point variation by removing outliers and resolving differences
between the precipitation experiments. Treatment of the reference
data is uncommon in chemometrics but certainly improved the
quality of the data in this study and enabled more robust model
calibration (data not shown).

In summary, it is crucial to manage data variance within
individual experiments, e.g. by increasing the number of
replicates or incorporating a physically-motivated pretreatment,
while highly diversifying data across experiments, as the obtained
batch and fed-batch data sets served as basis for the development of a
chemometric modeling pipeline for the quantification of
precipitated VLPs.

4.2 Effects of preprocessing operations on
Raman data

The Raman spectra are affected by the composition of the lysate,
the addition of the precipitant and the formation of precipitates in
solution causing multiple independent changes in the Raman
spectra to occur simultaneously. While the addition of the
precipitant induced the emergence of the sulfate and
ammonium-associated Raman bands, the formation of
precipitates reduced the overall intensity due to turbidity of the
solution. Turbidity is commonly observed in particulate-containing
separation processes such as crystallization (Moreno et al., 2000;
Grön et al., 2003; Harner et al., 2009; Liu et al., 2014) or precipitation
(Meyer-Kirschner et al., 2016; Zelger et al., 2016). While Zelger et al.
(2016) directly used the turbidity measurements for monitoring the
precipitation progress, Meyer-Kirschner et al. (2016) demonstrated
that a simple correction using the OH-stretching Raman band is
feasible. Since regulatory agencies (FDA, 2015) recommend
rigorous qualification of PAT sensors, the authors consider the
use of Raman spectroscopy in combination with turbidity
correction a viable PAT sensor for monitoring protein
precipitation processes. Here, normalization at the OH-
stretching Raman band reliably compensated for turbidity in
the raw spectra. However, it was also pointed out that the
turbidity correction adversely affects other wavenumber
regions in the herein recorded, baseline-corrected spectra such
as the sapphire band at 750 cm-1. This may be connected to the
non-linear correlation between turbidity and Raman intensity
decrease (Sinfield and Monwuba, 2014).

After turbidity and baseline correction, the variation in the
protein-associated Raman bands was comparable to what has
been observed for the supernatant spectra while the inexplicable
decrease in nucleic acid-associated bands was eliminated. This
supports the assumption of selectivity of the precipitation process
for VLPs. A direct quantification of the amount of HCPs was not
possible due to the unavailability of quantitative reference
measurements in this study. The spectral data of the HCP- and
VLP-enriched solutions, however, suggest that the VLPs are
structurally different from the HCPs contained in the clarified
cell lysate which is supported by different amide band ratios at
the start and the end of a precipitation experiment.

While this study was performed using HBcAg VLPs, the
applicability of Raman spectroscopy for HBcAg variants or other
types of VLPs is expected. To apply the presented workflow to other
VLP systems, the generation of new experimental data is strictly
necessary. Furthermore, by incorporating additional reference
analytics such as HCP-enzyme-linked immunosorbent assay
(ELISA) as done in Großhans et al. (2019), the prediction of
HCP content via Raman spectroscopic measurements may hence
be facilitated. However, the prediction of HCPs using chemometric
methods has only rarely been reported (Capito et al., 2015; Chen
et al., 2024), most likely due to the diversity of species classified as
HCPs (Falkenberg et al., 2019). The same applies to nucleic acids
and endotoxins, which might affect VLP precipitation, but their
analysis exceed the scope of this study.

To prepare spectral data for multivariate modeling, turbidity,
baseline and background correction followed by the difference
spectra operation were evaluated for their correlation with the
amount of precipitated VLP and their capacity to eliminate
interferences in the Raman spectra caused by the addition of
precipitant. Baseline correction of turbidity-corrected spectra
proved to remove baseline drifts reliably across the entire
wavenumber range. As the applied asPLS combines baseline
estimation with smoothing of the estimated function while
preserving the underlying features of interest (Zhang et al., 2020),
baseline drifts caused by both sample compounds and instrumental
noise can be addressed.

The SNR-based correlation analysis of the baseline-corrected
spectra suggested that next to protein-associated Raman bands,
wavenumber regions encoding buffer and precipitant-associated
information were also correlated with the amount of precipitated
VLP. As the increase in precipitated VLP is expected to follow a
sigmoidal curve (Valentic et al., 2022; Wegner and Hubbuch, 2022),
the precipitant concentration in the solution and the amount of
precipitated VLP is not linearly correlated. Hence, the contributions
of the precipitant should be removed from Raman spectra via
background correction. The SS-background correction reliably
removed the background signal from the Raman spectra, while
overcorrections were visible for samples with AMS concentrations
above 0.6 M (cf. Figure 3). This is caused by the discrepancy with
regards to the turbidity between the precipitate spectra and the
reference spectra where the solution remains clear even at the
highest AMS concentrations of 1.2 M. The OPLS method as
proposed by Trygg and Wold (2002) demonstrated improved
correlations by removing the non-correlated systematic variation
in the Raman spectra without the need for reference measurements.
However, also the OPLS-treated spectra showed residual

Frontiers in Bioengineering and Biotechnology frontiersin.org15

Dietrich et al. 10.3389/fbioe.2024.1399938

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2024.1399938


contributions in the dominant 980 cm-1 sulfate band and hence
could not fully remove the precipitant-associated effects. As the
OPLS method extracts the non-correlated variation with respect to
the target variable (Trygg andWold, 2002), it is likely that the AMS-
associated information was partially contained due to its correlation
with the amount of precipitated VLP as mentioned before.
Alternatively background variations may be modeled using
indirect hard modeling (IHM) (Alsmeyer et al., 2004; Kriesten
et al., 2008; Meyer-Kirschner et al., 2016). Furthermore, the
extended multiplicative signal correction (EMSC) algorithm
supports the removal of an interferent spectrum (Martens and
Stark, 1991). However, Liland et al. (2016) reported its
propensity for overfitting and its implementation has been found
ineffective in this study (data not shown).

Finally, all Raman data were treated using the difference spectra
operation by subtracting the first Raman spectrum in each
experiment. Difference spectra are a common method to
emphasize temporal changes in spectroscopic data (Andris et al.,
2018) or differences between individual samples (Gautam et al.,
2015; Zhou et al., 2015). The difference spectra operation was shown
to effectively remove all variations in the initial composition of the
studied lysate using different conditioning approaches. This
improved comparability between experiments and specificity of
the Raman signals for the amount of precipitated VLPs which is
crucial for generating robust chemometric models (Santos
et al., 2018).

In summary, the preprocessing pipeline comprising turbidity and
baseline correction, a background correction technique and difference
spectra contributes to the overall quality of the precipitate Raman
data, improvingmodel building. The identified preprocessing pipeline
may further be transferable to other precipitants such as polyethylene
glycol (PEG). In the case of PEG-based systems, it may be more
challenging to resolve the differences between the precipitants and
protein-related signals due to organic Raman contributions of the
PEG polymers (Kuzmin et al., 2020).

4.3 Effects of preprocessing pipeline on
model performance

Chemometric models based on Raman spectroscopy data often
employ multiple preprocessing operations in sequence and require
optimization of the associated hyperparameters (Bocklitz et al.,
2011; Gerretzen et al., 2015; Brunel et al., 2021). To study the
effect of individual preprocessing operations on model performance,
multiple pipeline configurations were screened and evaluated using
a nested cross-validation approach. The nested cross-validation
enabled the comparison of the pipeline configurations, not only
with regard to the overall accuracy, but also their robustness when
permuting the training and test sets. By further incorporating
interval-based cropping of the Raman spectra and the
comparison of MLR with PLS models, the understanding for the
relevance of specific features in the Raman data could be increased.

In general, PLS models showed considerably better performance
and lower variance in cross-validated test sets than MLR models.
This may be explained by the high complexity of Raman data and
the experimental variance which was observed for the batch data set.
The MLR models solely rely on VLP-associated Raman bands and

hence require high-quality data. The PLS models may also use other
correlative information available in the Raman spectra (Santos et al.,
2018; Goldrick et al., 2020) which is not necessarily specific for the
precipitation of VLPs such as the turbidity or precipitant markers.
Nevertheless, the comparison with MLR as a benchmark is a useful
strategy as in less complex cases, the relevant information may be
reliably contained in a few individual variables (Hillebrandt
et al., 2022).

As anticipated from the SNR analysis, both background
correction approaches improved the performance of the PLS
models due to the removal of precipitant-related Raman bands.
As the AMS contribution dominated the Raman spectra and was
recovered in the first latent variables of the PLS models, models
without prior background correction may rely too strongly on
background information and hence not robustly predict the
precipitated amount of VLP. Recent studies with
biopharmaceuticals often rely on standardization, derivative
filtering or baseline correction (Santos et al., 2018; Wei et al.,
2022; Rolinger et al., 2023; Wang et al., 2023). Others performed
background corrections by subtracting blank spectra but did not
further investigate the importance of the respective features on
model predictions (Großhans et al., 2019; Rolinger et al., 2021;
Weber and Hubbuch, 2021). Alternatively, Wang et al. (2023)
performed blank chromatography runs with the elution buffer
system and appended the recorded data to the calibration data set.

To assess whether the focus on spectral regions of interest
improves model predictions, multiple cropping intervals were
explored within this study. Cropping the spectra to 800–1800 cm-1

generally improved model performance, whereas further cropping
decreased the overall accuracy of the PLS models. While most of
spectral information is still contained in the 800–1800 cm-1 region,
narrowing the wavenumber region to 1200–1500 solely focused on
the protein-related information (Maiti et al., 2004; Rygula et al.,
2013). The narrow bandwidth was not suitable to reliably predict
precipitated VLP concentrations and notably broadened the
distribution of RMSE while increasing the mean error by over
50%. This may be explained by the strong variances in the sensor
data between experiments leading to non-linear correlations
between the spectral data and the amount of precipitated VLP.
When using B4 and B6 as the hold-out test set, a RMSE of 0.74 gL-1

was reached, supporting the VLP-associated information being
stored in the respective wavenumber regions. Because the stated
RMSE lies in the center of the RMSE distribution of the held-out test
sets (cf. Figure 7), the data split is considered representative.

The optimal performance in the permuted batch data was found
for the PLS model for the combination of turbidity, baseline, and
OPLS-based background corrections with cropping to
800–1800 cm-1 and second derivative filtering. When applied to
the representative splits of the batch and fed-batch data, the
identified model pipeline recovered the observed trends in the
experimental data but lacked to resolve the correct sigmoidal
shape for experiments B7 and F2. While the pipeline proved
robust against background variations induced by lysate
conditioning and spiking, the sigmoidal shape of the VLP
precipitation trajectories and the height of the final plateau were
not exactly met. Due to the overlaying effects occurring in the
Raman spectra, the insufficient removal of the background
contributions by the OPLS method and the high single-point

Frontiers in Bioengineering and Biotechnology frontiersin.org16

Dietrich et al. 10.3389/fbioe.2024.1399938

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2024.1399938


variance in the reference data, the relationship between the VLP-
related Raman bands and the target variable is considered to be non-
linear. By inspecting the importance of different wavenumber
regions through VIP, the model’s reliance on residual precipitant
information and the VLP-associated bands became apparent.
Moreover, the VIP scores suggested a strong influence of noise in
the spectra on the model predictions as no Raman band is clearly
recovered. Despite being robust to background variations, the
preprocessing pipeline may also be influenced by unforeseen
changes in the Raman spectra due to equipment failure or other
experimental factors. In the case of the fed-batch experiments, the
scattered predictions for the spectra during the first 3 min are likely due
to a combination of factors. These include experimentally introduced
air bubbles or large flocculates, which can distort the Raman signal, and
overcorrections from preprocessing operations that may perform
differently when the Raman spectra show unforeseen changes. Local
concentration gradients due to possible heterogeneities in precipitant
concentration could also cause scattered predictions, but there is no
evidence for this in the AMS-related Raman bands.

To further study the effect of noise on the model, perturbation
studies (Wang et al., 2023) could be employed or the distribution of
PLS weights could be assessed (Cui and Fearn, 2018). To effectively
reduce the noise in the model, a larger data set preferably from fed-
batch experiments would be required. Eventually, due to the non-
linear relationship of the Raman spectra and the VLP concentration,
non-linear regression models should be evaluated such as kernel-
based methods (Thissen et al., 2004; Barman et al., 2010; Zavala-
Ortiz et al., 2020; Schiemer et al., 2023) or neural networks (Cui and
Fearn, 2018; Wang et al., 2023; Schiemer et al., 2024).

5 Conclusion and outlook

In conclusion, we present a Raman spectroscopy-based PAT for
real-time monitoring of VLP precipitation from clarified E. coli-
derived lysate as well as the precipitant concentration. The generated
precipitation data provide a challenging data set with varying
precipitation dynamics and backgrounds which were induced by
spiking and are desirable for robust PAT sensor development. High
experimental variance is successfully managed by employing a
pretreatment approach for the UV absorbance data. The
preprocessing pipeline including turbidity, baseline and OPLS-
based background correction, difference spectra, cropping and
derivative filtering is identified as optimal for removing all
variations in the initial composition of the studied lysates as well
as most interferences caused by precipitates and precipitant in
solution. The final PLS models recover the observed trends in the
batch and fed-batch data but lack to resolve fine differences between
experiments owing to the non-linear relationship between spectral
data and the precipitated VLP concentration. Additionally, the
Raman data reveal structural differences between VLPs and
HCPs and qualitatively support the selective precipitation of
VLPs while nucleic acids and HCPs remain in solution. Overall,
the developed preprocessing pipeline provides a foundation for
integrating Raman spectroscopy as a PAT sensor for monitoring
particulate-containing bioprocesses and bears the potential to be
applied to other phase behavior-dependent processes for protein
purification.
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