KIT | KIT-Bibliothek | Impressum | Datenschutz

Ultra-high-granularity detector simulation with intra-event aware generative adversarial network and self-supervised relational reasoning

Hashemi, Baran ; Hartmann, Nikolai; Sharifzadeh, Sahand; Kahn, James ORCID iD icon 1; Kuhr, Thomas
1 Scientific Computing Center (SCC), Karlsruher Institut für Technologie (KIT)

Abstract:

Simulating high-resolution detector responses is a computationally intensive
process that has long been challenging in Particle Physics. Despite the ability of
generative models to streamline it, full ultra-high-granularity detector simu-
lation still proves to be difficult as it contains correlated and fine-grained
information. To overcome these limitations, we propose Intra-Event Aware
Generative Adversarial Network (IEA-GAN). IEA-GAN presents a Transformer-
based Relational Reasoning Module that approximates an event in detector
simulation, generating contextualized high-resolution full detector responses
with a proper relational inductive bias. IEA-GAN also introduces a Self-
Supervised intra-event aware loss and Uniformity loss, significantly enhancing
sample fidelity and diversity. We demonstrate IEA-GAN’s application in gen-
erating sensor-dependent images for the ultra-high-granularity Pixel Vertex
Detector (PXD), with more than 7.5 M information channels at the Belle II
Experiment. Applications of this work span from Foundation Models for high-
granularity detector simulation, such as at the HL-LHC (High Luminosity LHC),
... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000171935
Veröffentlicht am 24.06.2024
Originalveröffentlichung
DOI: 10.1038/s41467-024-49104-4
Scopus
Zitationen: 3
Web of Science
Zitationen: 2
Dimensions
Zitationen: 4
Cover der Publikation
Zugehörige Institution(en) am KIT Scientific Computing Center (SCC)
Publikationstyp Zeitschriftenaufsatz
Publikationsdatum 08.06.2024
Sprache Englisch
Identifikator ISSN: 2041-1723
KITopen-ID: 1000171935
Erschienen in Nature Communications
Verlag Nature Research
Band 15
Heft 1
Seiten Art.-Nr.: 4916
Nachgewiesen in Dimensions
Web of Science
Scopus
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page