This is a preprint of the paper submitted and accepted at ECSA Research Paper Track 2024.
The final version will be published in the conference proceedings by Springer LNNCS.

Modeling and Analyzing Zero Trust Architectures
Regarding Performance and Security

Nicolas Boltz*, Larissa Schmid*, Bahareh Taghavi*,
Christopher Gerking, and Robert Heinrich

Karlsruhe Institute for Technology (KIT)
firstname.lastname@kit.edu

Abstract. Zero Trust is considered a powerful strategy for securing
systems by emphasizing distrust of all resource access requests. There
are different approaches to integrating ZTAs into a system, differing
in their components, assembly, and allocation. Early evaluation and
selection of the right approach can reduce the costs of resources. In
this paper, we propose a novel zero trust architecture (ZTA) metamodel
based on literature and industry applications. We introduce our proposed
metamodel elements and provide a model instance using the Palladio
Component Model (PCM). We describe the requirements for enabling
two existing approaches to performance simulation and security data
flow analysis on the architectural level and outline how we realize them
in our PCM-based implementation. Our evaluation demonstrates the
applicability of our ZTA metamodel. It can represent real-world ZTA
approaches in various domains, enabling the simulation of performance
impact and analysis of the correct implementation of zero trust principles
at the architectural level.

1 Introduction

The advancement of the Internet of Things, 5G networks, and cloud technologies
has allowed systems and critical infrastructures to shift to more distributed
architectures. This shift allows for increased efficiency, for example, by introducing
virtual power plants [5] that integrate multiple distributed power-generating
components, energy-storing units, and management systems. In the business
sector, work from home has become a widely accepted practice, implying that
business resources must be accessed off-site and through various devices. Both
these trends lead to a larger attack surface of the systems and consequently to
an increased number of cyber attacks [20].

A widely adopted approach to coping with such security problems is to
separate the system using different access interfaces, firewalls, and intrusion
detection systems. However, once an adversary manages to infiltrate the internal
domain of the system, they can escalate their privileges and gain access to critical
system components and resources. To prevent internal attacks and malicious

* The main authors contributed equally.

2 N. Boltz, L. Schmid, B. Taghavi, et al.

access, the zero trust paradigm requires per-request access control for non-public
resources, limiting access for unauthorized entities and enforcing granular access
control. Contextual factors like the identity of the requesting subject and the
environmental context determine access. Factors can be provided by several
security mechanisms, like identity and event management systems. Zero trust also
upholds the Principle of Least Privilege (PoLP), ensuring subjects are granted
only the necessary permissions for resource access, preventing unauthorized
propagation within the system. Zero Trust Architectures (ZTAs) incorporate
principles of the zero trust cybersecurity paradigm. Existing research shows,
that ZTAs can be applied to enhance security in virtual power plants [1], smart
healthcare [7], smart manufacturing industries [26], and other more general
business domains [7, 16, 38]. While standards regarding ZTA exist [11, 24, 30,
40], an approach that unifies the ZTA structure is missing.

Designing a new system incorporating ZTA or migrating an existing system to
use ZTA is not straightforward [36]. The architecture introduces new components
and requires additional authentication and authorization checks. How ZTA
should be integrated and to what extent is highly dependent on the system
under consideration [30]. Moreover, integrating ZTA into the system may lead
to overhead due to additional user authentication and authorization, potentially
causing performance and availability issues. However, as ZTA covers the entire
system, the design and testing of alternatives are complex and may not be viable
for systems in active use. Software architecture simulators enable the simulation of
a system’s quality attributes, such as performance and access control violations, at
design-time [6, 28]. However, it is unclear if architecture simulators are applicable
to ZTAs and if their predictions regarding quality attributes are accurate.

In this paper, we present our approach to modeling and analyzing ZTAs at
the architectural level. We utilize existing technologies to check for performance
and security issues. Our main contributions are:

C1 We propose a ZTA metamodel derived from literature and real-world appli-
cations.

C2 We provide reusable modeling templates for ZTA architectures.

C3 We enable analysis of multiple quality attributes for our ZTA models.

Our ZTA metamodel (C1) aligns different abstract approaches with the
terminology provided by the zero trust architecture standard of the National
Institute of Standards and Technology (NIST) [30]. The model templates of
C2 are instances of our ZTA metamodel and are created using the Palladio
Component Model (PCM) [28]. Compared to other approaches we can simulate
the performance impact of integrating the ZTA components into a system, while
at the same time analyzing the system for security violations that indicate an
improper or insufficient implementation of ZTA.

2 Background
In this section we provide an overview of the background on which our approach

is based. It focuses on approaches to modeling and performing analyses, as well
as the meaning of ZTA.

Modeling and Analysing Zero Trust Architectures 3

2.1 Software Architecture Quality Predictions

Palladio is a tool-supported software architecture simulation approach, that is
used to predict a modeled software’s Quality of Service (QoS) properties. The
Palladio Component Model (PCM) is a metamodel of component-based software
architectures [28]. The software architect defines components and their interfaces
as reusable system building blocks in the repository model. Additionally, the
architect describes how instances of the components from the repository model
are connected to form a system in the assembly model. A software developer
uses so-called Service Effect Specifications (SEFFs) to provide a coarse-grained
execution logic of the services offered by the components in the repository model.
The deployment expert adds information about available hardware in the resource
environment model and describes the deployment of the component instances of
the assembly model in the allocation model. Different usage profiles and workloads
for types of users are defined by a domain expert in the usage model. Using this
information, Palladio allows for the simulation of a modeled system’s behavior
under load [4]. Using a variety of measuring points, performance metrics such
as response time and hardware utilization can be simulated. Based on these
metrics, performance bottlenecks, scalability issues, and reliability threats can
be identified and counteracted.

Data Flow Diagrams (DFDs) [12] are unidirectional graphs representing the
data flow and processing in systems. Graph nodes are Actors, Processes, or
Stores, connected by data flows. DFDs are widely used to analyze various types
of security aspects [2, 32, 34, 37] and represent an established way of modeling
software architecture. To enable a more general analysis of information security,
an extended notation [6, 32] integrates node behavior and labels as first-class
entities. Labels represent security-relevant properties, that can be assigned to
nodes, and are grouped into label types according to semantic commonalities.
Node behavior defines how labels are propagated along the data flow. Security
analyses use the node behavior to propagate labels and iterate the resulting DFD
to check constraints, e.g., if security-relevant labels can reach certain nodes, or
if different labels flow together in a node. In addition, Seifermann et al. [32]
define model annotations for the PCM, enabling label and behavior definition for
various PCM elements, allowing for the extraction of data flows and subsequent
security analysis of PCM instances. Building upon these concepts, Boltz et al.
[6] provide an extensible data flow analysis framework for information security.
While these analyses have been successfully applied to check information security
properties, like confidentiality and privacy [6, 32], they have not yet been applied
to check alignment to zero trust principles.

2.2 Zero Trust Architecture

The National Institute of Standards and Technology (NIST) defines zero trust
Architectures (ZTAs) as architectures that apply the concepts of zero trust (see
Section 1) in their structure and functionality [30]. To control access to resources,
ZTAs contain two core elements: The Policy Enforcement Point (PEP) and the

4 N. Boltz, L. Schmid, B. Taghavi, et al.

Policy Decision Point (PDP), as shown in Figure 1. The PEP is respounsible for
intercepting the access request and forwarding the requests to the PDP. It also
monitors the access to resources and, if access is not granted, terminates the
connection. The PDP evaluates static policies and the context of the request and
creates required access credentials.

Services

Threat Data Access ID
Intelligence Policy Management

v

*
Policy Enforcement Point
untrusted
0O (@

Applications Users Allow Deny MFA

Policy Decision Point ’

trusted

Data Applications

Fig. 1: Overview of ZTA elements [30].

Besides the NIST standard, several other approaches to ZTA exist: Microsoft
outlines zero trust strategies, which include similar principles regarding zero trust
[23]. They also describe logical components of a ZTA, that can be mapped to
the PEP, PDP and context providers of the NIST standard. BeyondCorp is a
real-world zero trust solution of Google aimed at enterprise applications [38, 16].
Similar to the NIST standard, the BeyondCorp ZTA includes Data Sources which
provide contextual information, Access Intelligence components which handle
the access control and policies, Gateways such as network switches and web
proxies, and the protected resources [25]. The Software Defined Perimeter (SDP)
of the Cloud Security Alliance [39, 40] is an approach to granular access control
and follows zero trust principles. SDP provides a way to segment the network
using software-defined perimeters and hide resources, by the use of policy-based,
identity-centric access control to prevent unauthorized access to segments.

3 ZTA Metamodel

We propose a metamodel of ZTA based on literature and real-world approaches [24,
30, 38, 40]. As it provides the most abstract description of ZTA, we align our
terminology and overall workflow with the terminology and workflow used in
the NIST standard (see Subsection 2.2). Some elements in the NIST standard,
such as requests, policies, and contexts, are less formally specified. To be able to
capture all relevant information on the architectural level, however, we include
them as first-class entities in our model. Figure 2 shows our proposed metamodel.

An access Request is sent by a subject that wants to access a Resource
(1). The PolicyEnforcementPoint (PEP) intercepts requests for the resources
that the PEP is responsible for (2) and forwards the request to a PolicyEngine
(PE) of its PolicyAdministrator (PA). A PE is responsible for assessing the
access request (3). To do so, the PE checks the context of the request based
on Contezts provided by ContextProviders (4). ContextProviders are systems
for which different solutions exist, e.g. identity management systems and device
databases. These systems are also used outside of a ZTA but are integrated into

Modeling and Analysing Zero Trust Architectures 5

a ZTA to provide context information that covers zero trust principles. The NIST
standard also defines so-called trust algorithms as special ContextProviders, that
provide trust rating to the PE, based on other contexts. ContextEvaluator is a
specialized ContextProvider that evaluates contexts from other providers before
providing a context resulting from the evaluation. An example can be the prior
aggregation of multiple contexts. Using the context information, the PE evaluates
static Policies provided by its available PolicyProviders (5) and decides whether
the request should be granted. If granted, the PE provides instructions to the PA,
including the exact authorization level. The PA is responsible for managing and
creating corresponding access credentials for the request, such as access tokens
(6). If access is denied, the PA is also responsible for signaling to the PEP to
terminate the connection. An extended discussion of the metamodel is provided
in the master’s thesis [9].

. . L.* . . 1.* .
Cz)PolicyEnforcementPoint PolicyEngine W%LPohcyProwder Srovides Policy

1.* |1
responsible 0.% : 1
managedBy checks ContextProvider ———>{ Context

T
| enforces

responsible

@ provides
| 1) ZF 1.
8 evaluates
PolicyAdministrator ContextEvaluator
Pollicy Enforcement Point Policy Engine Policy Administrator Context Provider

Fig. 2: Structure of our proposed ZTA metamodel.
4 Modeling Templates

To aid software architects in designing or migrating systems with zero trust
in mind, we provide instances of our proposed metamodel (see Section 3) that
follow three general ZTA approaches. These instances represent reusable modeling
templates that include components, interfaces, and some assembly information.
We provide templates for three approaches: the NIST standard regarding ZTA [30],
the BeyondCorp approach of Google [16, 38], and the Software-Defined Perimeter
(SDP) [40] (see Subsection 2.2). We use the PCM (see Subsection 2.1) as a
component-based architectural design language for creating the instances. Several
elements from our metamodel can be directly mapped to components, while other
elements like Request, Context, and Policy are encapsulated in interfaces (e.g.
IRequest, IContext, IPolicy) that can be used to connect the components. For the
sake of brevity, we only discuss the most important components and interfaces
in this description of our templates. Components, interfaces, and data types that
are solely required for the technical realization have been omitted. Please refer
to our dataset (see Section 9) for a full overview of the PCM instances.

As we have followed the terminology and workflow of the NIST ZTA standard
[30] when creating our metamodel, the template directly follows the structure
of our metamodel. As shown in Figure 3a, the PEP, PolicyAdministrator, and
PolicyEngine are connected by requiring and providing the IRequest interface.
This interface defines services that, for each component, continue to process an

6 N. Boltz, L. Schmid, B. Taghavi, et al.

O— PEP E
IRequest

Wansze & (J\mequesl IContext Q IRequest HJ Comext \TJ
: oy
AccessProxy {l SingleSignOn {l
PolicyAdministrator TrustAlgorithm {l
rJ\ &) Manage O, 1Context
O 1ot Q" IRequest klj k|J
Q IRequest \TJ IContext
—C AccessControlEngine {l |—CO— T {l
PolicyEngine O— ContextEvaluator ustinteriace
e E IContext il)_
IContext -

Q" rpolicics O 1Content ontex (Jq\lt.omcm
PolicyProvider {l Authenticator {l UserGroupDB {l DevicelnventoryDB {l
(a) NIST template assembly (b) BeyondCorp template assembly

ControllerInternalAuthentication {l
IContext : : | ContextEvaluator {l O— Authenticator {l
37 &
d) IContext

IRequest

o0—|
IRg‘; AcceptingHost {l i}_\()— PolicyEngine {l —C

an: TPolicy
[Manage O, Request
H PolicyAdministrator {l ‘

(c) SDP template assembly

PEP Policy Administrator

Policy Engine Context Provider

Fig. 3: Overview of assembly of modeling template components.

incoming request. The PolicyProvider component provides the IPolicy interface
that the PolicyFEngine requires. In our NIST standard template, there is always
a ContextFEvaluator component that aggregates context information of authenti-
cation and a trust algorithm for the PolicyEngine component. The Authenticator
component represents a subject authentication using some form of credentials.
The TrustAlgorithm component is also an instance of ContextEvaluator from
our metamodel. It aggregates several other contexts from the system. While
the kind of context providers and trust calculation logic must be fitted to the
system under consideration, we provide some generic components for context
providers mentioned in the NIST standard, e.g., device authentication, a security
information and event management system, an ID management system, and an
activity log system.

The BeyondCorp ZTA defines an access proxy that intercepts requests for
resources and an access control engine that manages the requests and access
policy checking. The AccessProzxy is an instance of the PEP of our metamodel
and mirrors the PEP component in our NIST template. The AccessControlEngine
component combines the behavior of the PolicyAdministrator, PolicyEngine, and
PolicyProvider. In our template, we model this by creating a composite component
and encapsulating the corresponding components from our NIST template. In
their concrete implementation, the BeyondCorp architecture of Google includes
two databases, one for device registration and one for user and role management.
In our template, we have added components for both databases as instances of
ContextProvider that are connected to the TrustInterface. BeyondCorp also uses
a single-sign-on system to authenticate subjects using multi-factor authentication.
We include a SingleSignOn component that is an instance of ContextEvaluator

Modeling and Analysing Zero Trust Architectures 7

of our metamodel. By reusing two Authenticator components from our NIST
template, one for each of its required interfaces, we can model two-factor au-
thentication. The components can be further customized to the specific type of
authentication required for the system under consideration. Similar to our NIST
templates, contexts are always evaluated by an instance of ContextEvaluator
before providing the result to the PolicyEngine. In the BeyondCorp ZTA, this
component is called TrustInterface. It calculates a trust context based on the con-
texts provided by the connected ContextProviders, similar to the TrustAlgorithm
in the NIST standard. However, it also takes into account the authentication
context of the SingleSignOn component.

SDP defines Accepting Host (AH), Initiating Host (IH), and Controller
elements. AHs evaluate requests for resources based on policies provided by the
Controller prior to the request, while IHs represent the subjects making a request.
The Controller authenticates each requesting IH and deploys access instructions
to the AHs of the requested resources. While not following the terminology
of the NIST standard, the components and functionality that make up SDP
can be mapped to our metamodel and components from the NIST template
shown in Figure 3a. Figure 3¢ shows the allocation of our SDP template. AHs
represent the PEPs in the NIST ZTA due to their similar functionality. Since the
controller authenticates the IHs and decides which resources to allow access to,
the Controller represents a combination of Policy Administrator, PolicyEngine,
and PolicyProvider, similar to the BeyondCorp template. However, the SDP
specification includes the authentication as part of the Controller. Figure 3c shows
the resulting composite component that makes up the Controller. To evaluate
and authorize the TH, the controller may gather information from other services,
such as identity and device management systems, geolocation services, or host
validation services. Like for the NIST and BeyondCorp templates, these services
represent ContextProviders in our metamodel. As they match, we can simply
reuse the context provider components we described for the NIST template.
While the SDP template might look more straightforward than the NIST or
BeyondCorp templates, one central aspect of SDP is that many AHs are used
to define very small perimeters and that each AH is either deployed with the
resources it is responsible for or on the direct path to them.

5 Analyzing Quality of Zero-Trust Architectures

Using various analysis tools within a modeling environment involves defining
the interaction (tool orchestration) between them. There are different types of
orchestration strategies [18], but none of them exactly fits our purpose. Therefore,
based on those strategies, we developed a new strategy called Separate Multiple
Quality Analysis. This strategy allows tools to run completely independently
within a modeling environment to analyze two or more specific quality attributes.
In this strategy, the modeling environment provides input to a first analysis
tool. By applying a transformation and adding additional requirements to the
input, it is then transformed into the inputs of specific tools included in the same
workbench. The outputs of these analyses demonstrate the results of different

8 N. Boltz, L. Schmid, B. Taghavi, et al.

quality attribute assessments. For performing quality analyses on the software
architecture models created with the PCM (see Section 2.1), the system architect
needs to assemble the modeled components into an application. Besides this
assembly model, the performance simulation and security analysis have additional
requirements. The analyses themselves are independent of each other but work on
the same model artifacts. In this section, we describe these requirements and how
we extend our ZTA metamodel or modeling templates to meet the requirements
for the performance analysis (see Section 5.1) and the security analysis (see
Section 5.2).

5.1 Enabling Performance Analysis

While our ZTA model templates contain components needed to model ZTA along
with their service effect specification (SEFF), component developers need to add
resource demands to the specifications to instantiate components for a concrete
system and implementation [4]. The SEFFs describe how the provided services of
a component relate to its required services, modeling their implementation on an
abstract level. The component developers specify the resource usage of internal
actions, possibly depending on the parameters the service is called with. How
often an internal action is executed can depend on loop iterations and branch
transitions. As all of our ZTA components are regular PCM components, the
performance simulation fully supports their execution logic.

Additionally to the assembly model, the performance simulation requires a
resource environment model, an allocation model, and a usage model. While the
resource environment model is not specific to the application, it specifies the
hardware used and its processing power, whereas the allocation model specifies
where components are deployed. The simulation of the models starts from usage
models that contain different usage scenarios, describing how many users are
expected to interact with the system in what way, i.e., which services they call.

5.2 Enabling Data Flow Security Analysis

We want to ensure that the security analysis can check that the modeled system
aligns with the zero trust principles. As described in Subsection 2.1, the data
flow analysis is based on the propagation and annotation of security labels. To
align with the principles, we need to define label types and labels that represent
if a request is authorized and whether a subject of a request is authenticated and
trusted. For authentication, we enable checking of multi-factor authentication
by defining the subject authentication label type, which contains labels that
represent different authentication factors. As it is a common requirement for ZTA
[24, 30], we define two labels (first factor and second factor) to represent 2-factor
authentication. When applying our metamodel and modeling templates to other
systems with higher authentication requirements, the subject authentication label
type can be extended or adapted to the needs of the system under consideration.
To represent different kinds of authorization, we define label types for the subject
authentication level, device authentication, and trust. For the device authentication

Modeling and Analysing Zero Trust Architectures 9

and trust label types, we each define the label authenticated that represents either
the successful authentication of a device or signals a successful trust calculation.
We define four abstract authorization levels Level 0, Level 1, Level 2, Level 3,
each representing a higher authorization level in ascending order. Similarly to the
authentication factors, these labels can be adapted to the particular system under
consideration, for example, to map to organizational roles for role-based access
control [14]. The corresponding labels are used for the label types that represent
the rights of the subject (SubjectAuthorization), the authorization needed to
access a resource (ResourceRequiredAuthorization), and the authorization that
has been assigned to the request of a subject (RequestAuthorization). Using the
same labels allows the security analysis to check if a label is set and to compare
two labels of different types with each other.

Understanding the behavior of our proposed ZTA components in handling
our defined labels is crucial for effective security analysis. The behavior defines
whether and how a component alters the labels and, in turn, how they are
propagated along the data flow. For the sake of simplicity, we only describe the
behavior in natural language. A complete definition can be found in the PCM
instance in our dataset (see Section 9). For our ZTA components introduced
in Section 3, we define the following behavior: The DeviceAuthenticator and
TrustAlgorithm each alter their respective label type. In our implementation,
both set the label authenticated if they execute successfully, e.g., when data flows
through them. The Authenticator components alter the SubjectAuthentiaction
label type, depending on the used authenticator and the number of authentication
factors. The PolicyEngine alters the labels of the SubjectAuthorization label type.
To align with the PoLP, it considers the rights of the subject and dependencies
of the requested resource. Most other components do not change labels; they
simply forward all labels that flow into them. Our other implementations of ZTA
approaches like BeyondCorp [38], and SDP [40] follow the same principles, labels,
and label types, based on the mapping described in Subsection 2.2.

6 Evaluation

In this section, we evaluate our approach regarding applicability and ability to
simulate performance and security impact of integrating zero trust components
into the software architecture. We investigate the following Research Questions:
RQ1 How applicable is our ZTA metamodel when modeling systems based around
the principles of zero trust?
RQ2 Can we simulate the performance impact induced by ZTA elements and
different execution flows?
RQ3 Can we identify security violations based on principles of zero trust?
We answer RQ1 with a discussion on the applicability of our proposed ZTA
metamodel to represent different real-world approaches from related work. For
RQ2 and RQ3 we use a Media Store case study from literature. We answer
RQ2 by comparing response times of simulations of different scenarios with
varying integration of ZTA elements. We answer RQ3 by calculating precision
and recall values for different scenarios with manually added violations of zero
trust principles.

10 N. Boltz, L. Schmid, B. Taghavi, et al.

6.1 Case Study: Media Store

We use the Media Store system [35] that has been widely used for software
architecture research [4, 17, 19] to illustrate and evaluate our approach. The
Media Store models a file-hosting system to which users can upload and download
audio files. It provides basic media management, as well as file encoding and
watermarking. The Media Store model does not include any security measures
as-is.

Original MediaStore $:] PoliciesProvider $:] DeviceAuthenticator $:] Authenticator SecondFactor g:]

IMcdm\‘[anagcmcm lPoIic\es \JI)J IContext \(ll)JlConlex(
MediaStore PEP @ —© PolicyAdministrator @ O— PolicyEngine @ —(O— ContextEvaluator $:] ——(©— Authenticator FirstFactor $:]
IRequest’ IRequest IContext IContext
IContext
IMediaManagementProtected . . ?
oo PEP Policy Administrator
_) Trust Algorithm @ ——(O— SIEM System
.’- Policy Engine Context Provider g IContext = g:]

Fig. 4: Overview of the integration of ZTA components into the MediaStore.

We integrate ZTA into the Media Store following the steps presented in the
Zero Trust Guide provided by the United Kingdom National Cyber Security
Center (NCSC) [24]. Figure 4 shows an overview of our ZTA integration. First,
we identify the upload and download functionality and the file access as assets to
protect, all provided by the IMediaManagement interface of the original MediaS-
tore. To protect them, we have to intercept requests to them. We therefore place
the MediaStore PEP in front of the original MediaStore component. To consider
the behavior of users when making decisions, we instantiate the TrustAlgorithm
component that queries data about previous requests by the user from the Secu-
rity Information and Event Management (SIEM) system for decision-making. We
instantiate both components from our NIST model template. Next, we integrate
policies and policy evaluation into the system. While a PolicyEngine is added to
evaluate policies, a PolicyAdministrator creates the configurations based on the
decisions and manages the PEP. We use the PoliciesProvider component as policy
source for the PolicyEngine. Further, we connect a ContextEvaluator component
to the PolicyEngine and supply the device and user authentication as well as
the trust algorithm to its required IContext roles. As the NCSC guide requires
multi-factor authentication for users, we instantiate our Authenticator component
twice and connect them to each other. Also, we instantiate a DeviceAuthenticator
component, for device authentication.

We extend the already existing resource environment, consisting of two con-
tainers for the ApplicationServer and DatabaseServer, with a third container for
the ClientDevice. We allocate all databases to the DatabaseServer, the Credential-
sProvider to the ClientDevice, and all other components to the ApplicationServer.

6.2 RQI1: Applicability

To evaluate applicability, we focus on two different aspects: First, the ability of
our proposed ZTA metamodel to represent different real-world approaches from
related work. Second, we discuss the effort needed to integrate ZTA principles in

Modeling and Analysing Zero Trust Architectures 11

an existing software architecture model using our ZTA model templates. We also
discuss the quality of ZTA after integration using the CISA maturity model [11].
Representation of ZTA approaches using our metamodel: BeyondCorp [38] and
SDP [40] presented in Subsection 2.2 represent the most prominent real-world
approaches. Especially BeyondCorp seems to have found widespread use, as it
is offered as part of the Google Cloud for enterprises [16]. We already show
that our metamodel can represent systems based on both approaches with the
reusable modeling templates we provide in Section 4. Several other approaches
exist in the literature beyond the typical enterprise scenarios for zero trust. Paul
et al. [26] propose a zero trust model for industrial IoT ecosystems. While they
focus on the production domain and, for example, include cyber-physical systems
on the architecture level, the approach is largely comparable to BeyondCorp’s.
Therefore, our metamodel can be easily applied. Ramezanpour et al. [27] propose
a ZTA for 5G/6G networks that integrates machine learning in some of their
proposed components. While this offers new capabilities during runtime, on the
architectural level, the introduced ’intelligent’ components only represent two
new context providers when mapped to our ZTA metamodel. Chen et al. [8] also
propose a software-defined ZTA for 6G networks. Their approach focuses more on
the elastic scalability of the architecture while allowing adaptive collaborations
among control domains. Similar to the approach of Ramezanpour et al. [27],
their introduced components for trust calculation, like a Vulnerability Database
(VDB), Cybersecurity Event Ledger (CEL) and Anomalous Behaviour Detector
(ABD) represent different context providers in our ZTA model. Figure 5 shows
an excerpt of the resulting architecture using our ZTA metamodel and already
defined components of our modeling templates. Lee et al. [22] propose situational

)— Security Policy Engine E —CO— Context Evaluator E —CO— Authenticator E
IRequest J} IContext IContext

TRequest .|.
! C VDB E
? IContext IContext

)— Access Control Proxy E Trust Evaluation E O— CEL E
IPolicies
IContext
|— ABD 3 |

Fig. 5: Excerpt of architecture of Chen et al. [8] mapped to our ZTA components.

Policy Engine PEP Context Provider

awareness-based risk adaptable access control for enterprise networks, which
follows the general zero trust principles. Their proposed elements can all be
mapped to components of our modeling templates, e.g., the ContextHandler from
the SDP template. Thus our metamodel can be applied. We provide an in-depth
description of how we modeled these systems in our dataset (see Section 9).

Integration of ZTA into existing software architecture: We specified a rather
broad defense perimeter for our case study (see Subsection 6.1). Compared to the
original media store case study, only minimal changes to the system were required
to make it compatible with our ZTA components. When trying to define finer
defense perimeters, more changes would be required. However, when integrating

12 N. Boltz, L. Schmid, B. Taghavi, et al.

a specific overarching concept, like zero trust, into a system that was originally
designed without this concept in mind, more extensive changes are to be expected.
When assessing the maturity of our implemented ZTA integration based on the
CISA Zero Trust Maturity Model [11], a maturity model that defines requirements
to achieve increasingly demanding levels of maturity of ZTA-relevant aspects, we
conclude that most aspects of our integration have an initial or advanced rating.
A thorough description of our maturity rating and a discussion on how certain
aspects can be improved is included as part of the dataset (see Section 9).

6.3 RQ2: Simulating Performance Impact of ZTA Components

We evaluate our model’s ability to simulate the ZTA components’ performance
impact and the different execution flows of the request evaluation process. To
get deterministic results, we define the usage of the system so that every user
requests the download of four files at a time, each with a size of 40,568,000. We
use the Media Store system without ZTA as baseline (S0) and evaluate different
scenarios with ZTA. In Scenario S1, all requests are policy-authorized but not
context-authorized. This implies that the complete path is executed, with each
part of the context being evaluated for every request. Each request should pass the
evaluation and be forwarded to the initial Media Store components. In Scenario
S2, we turn off usage of the trust algorithm, assuming all subjects accessing the
system have the same level of trust.

To obtain accurate performance predictions, component developers need to
add resource demands to the model according to the component implementa-
tion (see Section 5.1). As we do not add new types of components to the model,
we can assume that their simulation behavior is accurate [3]. Therefore, our eval-
uation focuses on relative differences introduced by the ZTA components rather
than the correctness of the absolute response time values. We expect S1 to show
the slowest response times as the configuration of ZTA requires the execution of
the complete path for every request, thus adding the most overhead. S2 should
show better performance than S1 as it does not use the trust algorithm, skipping
some parts of the execution process, which results in less overhead and faster
response time. Lastly, we expect the baseline S0 to have the fastest response
times as there is no ZTA integrated, and requests are directly passed to the
MediaManagement component of the MediaStore.

Figure 6 shows the response times of the different evaluation scenarios after
simulating their execution for 15.000 time units each. The results confirm our
expectations: S0 is fastest with a median response time of 27.25s. S1 adds the
most overhead, resulting in a median response time of 28.57s. While S2 still adds
overhead to S0, it is faster than S1 with a median response time of 28.38s due to
the disabling of the trust algorithm.

6.4 RQ3: Analyzing Security Violations

We evaluate our model’s ability to be analyzed for security violations. The data
flow analysis of Boltz et al. [6] is already able to analyze sufficiently well-specified

Modeling and Analysing Zero Trust Architectures 13

N
©
<}

285

Response Time [s]
N
fee]
=

N
~
[}

-

27.0
Baseline S1 S2
Scenario

Fig. 6: Performance results of different evaluation scenarios.

models for violations of access control policies. However, zero trust principles go
beyond traditional access control, e.g. by enforcing the PoLP. For our evaluation,
we focus on violations of zero trust principles that indicate faulty or insufficient
implementation of ZTA. Using the labels defined in Subsection 5.2, we define four
independent reusable constraints. The constraints cover correct authorization,
adherence to the PoLLP, subject authentication, and trust calculation.

We use these constraints and compare if the data flow analysis can correctly
identify violations. The evaluation is based on a manually created gold standard
based on our media store case study system with ZTA. We define a baseline S0
without violations and four violation scenarios, each containing a violation of
a core zero trust principle (see Section 1). As violations, we introduce a flow
with unauthorized access (S7), a flow violating the PoLP (52), a flow skipping
subject authentication (S3), and two flows with a lack of trust calculation based
on the context (54). Using our constraints, the analysis correctly identified the
introduced violations for all scenarios without any false positives. This results in
a precision, recall, and F} score of 1.0.

6.5 Threats to Validity

We discuss the validity and reliability of our evaluation as characterized by
Runeson et al. [31]. Our main threat to external validity is the limited generaliz-
ability due to the case study-based evaluation. We mitigate this threat by using
a well-known case study from literature. Our main threat to internal validity
lies in the design decisions about the elements included in our metamodel. We
mitigate this threat by basing most of our metamodel on the descriptions of
the NIST standard [30]. Regarding construct validity, our evaluation does not
comprehensively cover all aspects of zero trust. We cannot fully mitigate this
threat but have chosen the examined aspects based on the commonalities and
general understanding of the principles described in related work.

7 Related Work

ZTA models have been proposed for various systems, such as for smart industry
systems [26], next generation networks [27], and 6G networks based on communi-
ties of user equipment [8]. Jung et al. [21] propose a ZTA for blocking malicious
access to enterprise resources. Three components form the architecture — a PDP,

14 N. Boltz, L. Schmid, B. Taghavi, et al.

PEP, and an Authentication Server Function. Lee et al. [22] incorporate security
situational awareness into Risk Adaptable Access Control. Ghate et al. [15] de-
scribe an architecture based on automated policy generation definition to achieve
low-cost fine-grained network access control. These works primarily discuss how a
ZTA could be modeled for various systems and implemented, without considering
a model suitable for performance and security analysis.

Furthermore, there is research focusing on the modeling of systems for perfor-
mance and security analysis. Fernandez et al. [13] analyze ZTAs and evaluate
security architectures using security patterns. The authors propose a Security
Reference Architecture of a ZTA and extract elements from different security pat-
terns to form a concept model of a ZTA. They evaluate some proposed ZTAs by
answering questions about its performance and security. The evaluation, however,
depends only on experiences since there are no quantitative measures of ZTA
systems, and the proposed model is simply a concept. Rodigari et al. [29] study
the performance of communication between microservices in terms of latency and
physical resources with enabling Zero Trust in a multi-cloud environment. Sharma
et al. [33] employ Discrete Time Markov Chains to model software systems and
predict performance, security, and reliability based on its software architecture.
Cortellessa et al. [10] introduce a framework for modeling the performance and
security aspects of software architecture. They create a UML library, which mod-
els the basic security mechanisms of encryption, decryption, signature generation,
and verification. This is followed by a modeling of composite security mechanisms.
Despite some attempts to model ZTA for quality requirements analysis, there is
a lack of an approach to modeling a reusable ZTA model while evaluating the
impact of integrating the proposed ZTA model into other systems.

8 Conclusion

In this paper, we present our approach to modeling and analyzing ZTAs regarding
their performance impact and security. We discuss several principles of zero trust
and provide an overview of general approaches to ZTA. Based on these approaches,
we devise a ZTA metamodel. By creating instances of our metamodel with the
Palladio Component Model (PCM), we provide reusable modeling templates
based on the NIST [30], BeyondCorp [38], and SDP [40] architectures. We outline
the requirements for enabling PCM performance simulation as well as data flow-
based security analysis, and describe how we extend our ZTA model instances to
meet these requirements. Based on existing literature, we show that our ZTA
metamodel can represent several real-world approaches to ZTA from different
domains. Moreover, we show that by using different quality checks, we can
simulate the performance impact of integrating ZTA components and identify
security problems resulting from an incorrect implementation of ZTA in a system.

9 Data Availability

We provide a data set! containing all code artifacts, PCM instances of our ZTA
modeling templates, and the used case study model instances.
! https://doi.org/10.5281/zenodo. 11580654

https://doi.org/10.5281/zenodo.11580654

Modeling and Analysing Zero Trust Architectures 15

Acknowledgements

This publication is partially based on the research project SofDCar (19521002), which
is funded by the German Federal Ministry for Economic Affairs and Climate Action.
This work was also supported by funding from the pilot program Core Informatics at
KIT (KiKIT) and the topic Engineering Secure Systems of the Helmholtz Association
(HGF), KASTEL Security Research Labs, and the German Research Foundation (DFG)
under project number 499241390 (FeCoMASS).

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

. Alagappan, A., Venkatachary, S.K., Andrews, L.J.B.: Augmenting zero trust network

architecture to enhance security in virtual power plants. Energy Reports 8, 1309—
1320 (2022)

. Alshareef, H. et al.: Precise Analysis of Purpose Limitation in Data Flow Diagrams.

In: ARES (2022)

. Becker, M., Becker, S., Meyer, J.: Simulizar: Design-time modeling and performance

analysis of self-adaptive systems. (2013)

. Becker, S., Koziolek, H., Reussner, R.: Model-Based performance prediction with

the palladio component model. In: WOSP, pp. 54-65 (2007)

. Bhuiyan, E.A. et al.: Towards next generation virtual power plant: Technology

review and frameworks. Renewable and Sustainable Energy Reviews 150 (2021)

. Boltz, N. et al.: An Extensible Framework for Architecture-Based Data Flow

Analysis for Information Security. In: ECSA (2024)

. Chen, B. et al.: A security awareness and protection system for 5G smart healthcare

based on zero-trust architecture. IEEE IoT Journal 8(13), 10248-10263 (2020)

. Chen, X. et al.: Zero trust architecture for 6G security. IEEE Network (2023)
. Cholakov, E.: Modelling and Analysing Zero-Trust-Architectures Regarding Perfor-

mance and Security, https://doi.org/10.5445/IR/1000171583 (2024). Master’s
Thesis.

Cortellessa, V. et al.: An architectural framework for analyzing tradeoffs between
software security and performance. In: Architecting Critical Systems: First Interna-
tional Symposium, ISARCS, pp. 1-18 (2010)

Cybersecurity and Infrastructure Security Agency (CISA), CISA Zero Trust Ma-
turity Model, (2023). https://www.cisa.gov/sites/default/files /2023~
04/zero_trust_maturity_model_v2_508.pdf (visited on 02/23/2024)

DeMarco, T.: Structure analysis and system specification. In: Pioneers and Their
Contributions to Software Engineering, pp. 255-288 (1979)

Fernandez, E.B., Brazhuk, A.: A critical analysis of Zero Trust Architecture (ZTA).
Computer Standards & Interfaces 89, 103832 (2024)

Ferraiolo, D.F. et al.: Proposed NIST standard for role-based access control. TISSEC
4(3), 224-274 (2001)

Ghate, N. et al.: Advanced zero trust architecture for automating fine-grained access
control with generalized attribute relation extraction. IEICE Proceedings Series
68(C1-5) (2021)

Google Cloud: BeyondCorp, (2024-03-26). http://cloud.google.com/beyondcorp
Gorsler, F., Brosig, F., Kounev, S.: Controlling the Palladio Bench using the
Descartes Query Language. In: KPDAYS, pp. 109-118 (2013)

Heinrich, R. et al.: Composing Model-Based Analysis Tools. Springer (2021)

https://doi.org/10.5445/IR/1000171583
https://www.cisa.gov/sites/default/files/2023-04/zero_trust_maturity_model_v2_508.pdf
https://www.cisa.gov/sites/default/files/2023-04/zero_trust_maturity_model_v2_508.pdf
http://cloud.google.com/beyondcorp

16

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.
36.

37.

38.

39.

40.

N. Boltz, L. Schmid, B. Taghavi, et al.

Heinrich, R. et al.: The palladio-bench for modeling and simulating software archi-
tectures. In: ICSE-C, pp. 37-40 (2018)

IoT — Market data analysis and forecasts. https://de.statista.com/statistik/
studie/id/109209/dokument/internet-der-dinge-market-outlook-report/
Jung, B.G. et al.: ZTA-based Federated Policy Control Paradigm for Enterprise
Wireless Network Infrastructure. In: APCC, pp. 1-5 (2022)

Lee, B. et al.: Situational awareness based risk-adapatable access control in enterprise
networks. arXiv preprint arXiv:1710.09696 (2017)

Microsoft Corporation, Evolving Zero Trust, (2021). https://query.prod.cms.rt.
microsoft.com/cms/api/am/binary/RWJJAT (visited on 02/23/2024)

National Cyber Security Centre UK, ZTA design principles, https://www.ncsc.
gov.uk/collection/zero-trust-architecture (visited on 02/23/2024)

Osborn, B. et al.: Beyondcorp: Design to deployment at google. USENIX Association:
;login: Magazine (2016)

Paul, B., Rao, M.: Zero-trust model for smart manufacturing industry. Applied
Sciences 13(1), 221 (2022)

Ramezanpour, K., Jagannath, J.: Intelligent ZTA for 5G/6G networks: Principles,
challenges, and the role of machine learning in the context of O-RAN. Computer
Networks 217, 109358 (2022)

Reussner, R.H. et al.: Modeling and simulating software architectures: The Palladio
approach. MIT Press (2016)

Rodigari, S. et al.: Performance analysis of zero-trust multi-cloud. In: 2021 IEEE
14th International Conference on Cloud Computing (CLOUD), pp. 730-732 (2021)
Rose, S. et al.: Zero Trust Architecture. NIST Special Publication (2020). https:
//doi.org/10.6028/NIST.SP.800-207

Runeson, P. et al.: Case Study Research in Software Engineering: Guidelines and
Examples. John Wiley & Sons (2012)

Seifermann, S. et al.: Detecting violations of access control and information flow
policies in data flow diagrams. Journal of Systems and Software 184, 111138 (2022)
Sharma, V.S., Trivedi, K.S.: Quantifying software performance, reliability and
security: An architecture-based approach. Journal of Systems and Software (2007)
Sion, L. et al.: Solution-aware data flow diagrams for security threat modeling. In:
SAC, pp. 1425-1432 (2018)

Strittmatter, M., Kechaou, A.: The Media Store 3 Case Study System. KIT (2016)
Teerakanok, S., Uehara, T., Inomata, A.: Migrating to zero trust architecture:
Reviews and challenges. Security and Communication Networks (2021)

Tuma, K., Scandariato, R., Balliu, M.: Flaws in Flows: Unveiling Design Flaws via
Information Flow Analysis. In: ICSA, pp. 191-200 (2019)

Ward, R., Beyer, B.: Beyondcorp: A new approach to enterprise security. USENIX
Association: ;login: Magazine (2014)

WG: SDP and Zero Trust, Integrating SDP and DNS Enhanced Zero Trust Policy
Enforcement. CSA (2022). https://cloudsecurityalliance . org/artifacts/
integrating-sdp-and-dns-enhanced-zero-trust-policy-enforcement/

WG: SDP and Zero Trust, SDP Specification v2.0. CSA (2022). https://cloud
securityalliance.org/artifacts/software-defined-perimeter-zero-trust-
specification-v2/

https://de.statista.com/statistik/studie/id/109209/dokument/internet-der-dinge-market-outlook-report/
https://de.statista.com/statistik/studie/id/109209/dokument/internet-der-dinge-market-outlook-report/
https://query.prod.cms.rt.microsoft.com/cms/api/am/binary/RWJJdT
https://query.prod.cms.rt.microsoft.com/cms/api/am/binary/RWJJdT
https://www.ncsc.gov.uk/collection/zero-trust-architecture
https://www.ncsc.gov.uk/collection/zero-trust-architecture
https://doi.org/10.6028/NIST.SP.800-207
https://doi.org/10.6028/NIST.SP.800-207
https://cloudsecurityalliance.org/artifacts/integrating-sdp-and-dns-enhanced-zero-trust-policy-enforcement/
https://cloudsecurityalliance.org/artifacts/integrating-sdp-and-dns-enhanced-zero-trust-policy-enforcement/
https://cloudsecurityalliance.org/artifacts/software-defined-perimeter-zero-trust-specification-v2/
https://cloudsecurityalliance.org/artifacts/software-defined-perimeter-zero-trust-specification-v2/
https://cloudsecurityalliance.org/artifacts/software-defined-perimeter-zero-trust-specification-v2/

