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Abstract
For an element a of a Banach algebra (scaled to spectral radius 1) we prove that
the spectral radius is contained in the spectrum, if the sequence of powers (ak) is
asymptotically not too far from a normal cone.
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1 Introduction

In this paper we give sufficient conditions for the property r(a) ∈ σ(a) where a is
an element of a Banach algebra A with spectrum σ(a) and spectral radius r(a). That
the spectral radius belongs to the spectrum is an aspect of what is usually subsumed
under the term “Perron–Frobenius theory”, classically for positive matrices on R

n or
positive linear operators on Banach lattices. More general, we consider here elements
of a Banach algebra that is ordered by a cone. We fix the relevant notation.

LetA be a complex Banach algebra with unit 1. A set ∅ �= K ⊆ A is called a cone
if K is closed, K +K ⊆ K , λK ⊆ K (λ ≥ 0) and K ∩ (−K ) = {0}. By setting a ≤ b
:⇔ b − a ∈ K we obtain a partial order on A.

In the following we always assume that K is a normal cone, that is

∃γ ≥ 1 ∀a, b ∈ A : 0 ≤ a ≤ b ⇒ ‖a‖ ≤ γ ‖b‖,

and we fix a γ with this property.
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Following the notation in Raubenheimer and Rode [10] we call K an algebra cone
if K satisfies in addition 1 ∈ K and

a, b ∈ K ⇒ ab ∈ K .

In contrast to the usual definition of ordered Banach algebras we do not assume in
general that K is an algebra cone, that is in our setting A is a Banach algebra and A
is an ordered Banach space.

The problem of developing a Perron–Frobenius theory in Banach algebras ordered
by a cone that is not fully invariant under multiplication was also addressed byMouton
and Muzundu in [7, 9]: In a Commutatively Ordered Banach Algebra (COBA) one
only assumes that 1 ∈ K and that

a, b ∈ K , ab = ba ⇒ ab ∈ K .

This includes the important special case of aC∗-algebra ordered by the cone of positive
semidefinite self-adjoint elements.

Let σ(a), ρ(a) and r(a) denote the spectrum, resolvent set and spectral radius of
a ∈ A, respectively. For r(a) > 0, the property r(a) ∈ σ(a) is invariant under scaling
and we can always resort to r(a) = 1 by considering a/r(a). Following the notation
in [4] also in our setting, we call a ∈ A asymptotically positive if r(a) > 0 and

lim
k→∞ dk(a) = 0 where dk(a) := dist

(
ak

r(a)k
, K

)
(k ∈ N0).

Let us call a condition C(a) a Perron–Frobenius condition if C(a) implies r(a) ∈
σ(a) for all a ∈ A with r(a) > 0. Note that C(a) =[a ∈ K for a normal cone K ]
is not a Perron–Frobenius condition, as can be seen by the trivial example A = C,
K = {λi : λ ≥ 0} and a = i .

There are many known Perron–Frobenius conditions in matrix algebras, operator
algebras and Banach algebras. Without claiming completeness we refer to

1. C(a) = [a ≥ 0], i.e. a is positive, for general Banach algebras ordered by an
algebra cone, see Raubenheimer and Rode [10, Theorem 5.2],

2. C(a) = [∃k0∀k ≥ k0 : ak ≥ 0], i.e. a is eventually positive, for matrix algebras
ordered by the cone of matrices with nonnegative entries, see Chaysri and Noutsos
[2, Theorem 2.5],

3. C(a) = [limk→∞ dk(a) = 0], i.e. a is asymptotically positive, for operator algebras
on ordered Banach lattices, see Glück [4, Theorem 4.1],

4. C(a) = [limk→∞
√
kdk(a) = 0], i.e. a is asymptotically positive with a rate of

convergence, for general Banach algebras ordered by an algebra cone, see [5],

and the references given in the cited literature. Note that the setting in [5] comprises
the one in [4].

For a survey on spectral theory in ordered Banach algebras we refer to the paper of
Mouton and Raubenheimer [8].
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Our main result generalizes the above mentioned results from [4] and [5] in two
ways. First, we relax the condition that K is an algebra cone, which already gives a new
result for the matrix case. Second, we relax the condition of asymptotic positivity by
showing thatC(a) = [lim supk→∞ dk(a) is “sufficiently small”] is aPerron–Frobenius
condition in our setting.

2 Results

Theorem 1 Let a ∈ A with r(a) > 0 such that

lim sup
k→∞

dk(a) <
1

πγ + 1
.

Then r(a) ∈ σ(a).

Remark 1 An inspection of the proof1 shows, that the weaker but less manageable
condition on Abel means of the sequence (dk(a))k∈N0 ,

AM(a) := lim sup
t→1+

(t − 1)
∞∑
k=0

dk(a)

tk+1 <
1

πγ + 1
,

is still sufficient for r(a) ∈ σ(a). This condition is weaker by Lemma 3.

Aiming at optimality of the constant in Remark 1 we can define τ(A) as the
maximum of all τ > 0 such that

∀a ∈ A : r(a) > 0, AM(a) < τ �⇒ r(a) ∈ σ(a).

Remark 1 shows τ(A) ≥ (πγ +1)−1. For a = −1we have 1 = r(a) /∈ σ(a) = {−1}
and, for any cone K , we have dist(±1, K ) ≤ 1, hence AM(−1) ≤ 1. This gives the
trivial bound τ(A) ≤ 1. If either 1 ∈ K or −1 ∈ K , then

dk(−1) = dist((−1)k1, K )

is alternatingly 0 and ≤ 1. Thus AM(−1) ≤ 1/2 and we have τ(A) ≤ 1/2.
As an introductory example consider the matrix-algebraA = C

m×m endowed with
the row-sum norm ‖ · ‖∞ and ordered by the algebra cone K := [0,∞)m×m of all
matrices with nonnegative entries. Here γ = 1. Thus, for A ∈ C

m×m , Theorem 1
reads

lim sup
k→∞

dk(A) <
1

π + 1
⇒ r(A) ∈ σ(A),

1 Look at the very end of the proof.
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and we have

∀m ∈ N : 0, 2415 ≈ 1

π + 1
≤ τ(Cm×m) ≤ 1

2
.

For the matrix

A = 1

2

(−1 1
1 −1

)
∈ C

2×2

we have σ(A) = {−1, 0} and dk(A) = 1/2 (k ∈ N). Hence

lim sup
k→∞

dk(A) = AM(A) = 1

2
.

In case m = 1 we have for a ∈ C that r(a) = 1 if and only if a = eit for some
t ∈ [0, 2π). For t ∈ (0, 2π) one can check that

lim sup
k→∞

dk(e
it ) = 1, AM(eit ) ≥ 1

2
.

In particular τ(C) = 1/2.
The matrix

A = 1

5 + 2
√
5

(
9 −2

−2 1

)
∈ C

2×2

is an example where, in this setting, A is not asymptotically positive but Theorem 1
applies. We have

lim
k→∞ Ak =

⎛
⎝

1
2 + 1√

5
− 1

2
√
5

− 1
2
√
5

1
2 − 1√

5

⎞
⎠ ,

thus

lim
k→∞ dk(A) = 1

2
√
5

<
1

π + 1
,

and 1 ∈ σ(A).

3 Proof

We will use the following lemmas. For Lemma 1 see, e.g., [1, Theorem 3.3.5.]. A
result related to Lemma 2, though with the worse constant 4γ , can be found in the
preprint [6, Lemma 4.6] by Huang, Jaffe, Liu, and Wu.
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Lemma 1 Let a ∈ A. Then

r((λ1 − a)−1) = 1

dist(λ, σ (a))
(λ ∈ ρ(a)).

Lemma 2 Let (ak)k∈N0 and (λk)k∈N0 be sequences in K andC, respectively, such that
the series

∞∑
k=0

λkak

is absolutely convergent. Then we have

∥∥∥∥∥
∞∑
k=0

λkak

∥∥∥∥∥ ≤ πγ

∥∥∥∥∥
∞∑
k=0

|λk |ak
∥∥∥∥∥ .

Proof W.l.o.g. we may first assume λk �= 0 (k ∈ N0) and then |λk | = 1 (k ∈ N0) since
the modulus of λk can be absorbed into the vector ak . Set S1 := {z ∈ C : |z| = 1} and
let h : S1 → R be defined as

h(z) =
{
1, �(z) ≥ 0
0, �(z) < 0

.

First note that

∀z ∈ S1 : z = 1

2

∫ π

−π

h(ze−i t )eit dt .

Thus, for l ≥ 0,

∥∥∥∥∥
l∑

k=0

λkak

∥∥∥∥∥ = 1

2

∥∥∥∥∥
l∑

k=0

(∫ π

−π

h
(
λke

−i t
)
eit dt

)
ak

∥∥∥∥∥
= 1

2

∥∥∥∥∥
∫ π

−π

(
l∑

k=0

h
(
λke

−i t
)
eit ak

)
dt

∥∥∥∥∥
≤ 1

2

∫ π

−π

∥∥∥∥∥
l∑

k=0

h
(
λke

−i t
)
eit ak

∥∥∥∥∥ dt

= 1

2

∫ π

−π

∥∥∥∥∥
l∑

k=0

h
(
λke

−i t
)
ak

∥∥∥∥∥ dt

≤ γ

2

∫ π

−π

∥∥∥∥∥
l∑

k=0

ak

∥∥∥∥∥ dt = πγ

∥∥∥∥∥
l∑

k=0

ak

∥∥∥∥∥ .

Now l → ∞ proves the desired inequality. ��
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Lemma 3 Let (tn)n∈N be a sequence in (1,∞) with limit 1, and let (βk)k∈N0 be a
bounded sequence in [0,∞) and s := lim supk→∞ βk . Then

lim sup
n→∞

(tn − 1)
∞∑
k=0

βk

tk+1
n

≤ s.

Proof Let ε > 0. Then we find k0 ∈ N0 such that βk < s + ε (k > k0). Thus, for
n ∈ N,

(tn − 1)
∞∑
k=0

βk

tk+1
n

≤ (tn − 1)
k0∑
k=0

βk

tk+1
n

+ (s + ε)(tn − 1)
∞∑

k=k0+1

1

tk+1
n

≤ (tn − 1)
k0∑
k=0

βk

tk+1
n

+ (s + ε)
(tn − 1)

tn

∞∑
k=0

1

tkn

= (tn − 1)
k0∑
k=0

βk

tk+1
n

+ s + ε.

We obtain

lim sup
n→∞

(tn − 1)
∞∑
k=0

βk

tk+1
n

≤ s + ε,

and ε → 0+ proves the assertion. ��
Proof of Theorem 1 We may assume r(a) = 1. Let λ0 ∈ σ(a) with |λ0| = 1. By
assumption there is a sequence (bk)k∈N0 in A such that ak + bk ≥ 0 (k ∈ N0) and

s := lim sup
k→∞

‖bk‖ <
1

πγ + 1
.

For |λ| > 1 we have

(λ1 − a)−1 =
∞∑
k=0

ak

λk+1 .

We choose a sequence (tn) in (1,∞) with limit 1. Now Lemma 2 yields

‖((tnλ0)1 − a)−1‖ =
∥∥∥∥∥

∞∑
k=0

ak

(tnλ0)k+1

∥∥∥∥∥ ≤
∥∥∥∥∥

∞∑
k=0

ak + bk
(tnλ0)k+1

∥∥∥∥∥ +
∥∥∥∥∥

∞∑
k=0

bk
(tnλ0)k+1

∥∥∥∥∥
≤ πγ

∥∥∥∥∥
∞∑
k=0

ak + bk

tk+1
n

∥∥∥∥∥ +
∥∥∥∥∥

∞∑
k=0

bk
(tnλ0)k+1

∥∥∥∥∥
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≤ πγ

∥∥∥∥∥
∞∑
k=0

ak

tk+1
n

∥∥∥∥∥ + πγ

∥∥∥∥∥
∞∑
k=0

bk

tk+1
n

∥∥∥∥∥ +
∥∥∥∥∥

∞∑
k=0

bk
(tnλ0)k+1

∥∥∥∥∥
= πγ ‖(tn1 − a)−1‖ + πγ

∥∥∥∥∥
∞∑
k=0

bk

tk+1
n

∥∥∥∥∥ +
∥∥∥∥∥

∞∑
k=0

bk
(tnλ0)k+1

∥∥∥∥∥
≤ πγ ‖(tn1 − a)−1‖ + (πγ + 1)

∞∑
k=0

‖bk‖
tk+1
n

.

By Lemma 3 with βk := ‖bk‖ (k ∈ N0) we have

lim sup
n→∞

(tn − 1)
∞∑
k=0

‖bk‖
tk+1
n

≤ s <
1

πγ + 1
.

Moreover, by Lemma 1,

(tn − 1)‖((tnλ0)1 − a)−1‖ ≥ (tn − 1)r(((tnλ0)1 − a)−1)

= tn − 1

dist(tnλ0, σ (a))
= 1.

If we now assume that 1 /∈ σ(a) we obtain

1 ≤ lim sup
n→∞

(tn − 1)‖((tnλ0)1 − a)−1‖

≤ lim sup
n→∞

(tn − 1)

[
πγ ‖(tn1 − a)−1‖ + (πγ + 1)

∞∑
k=0

‖bk‖
tk+1
n

]

= (πγ + 1) lim sup
n→∞

(tn − 1)
∞∑
k=0

‖bk‖
tk+1
n

< 1,

a contradiction. ��

4 Applications

1. LetA be a Banach algebra and let φ : A → C be a continuous linear functional on
A (with ‖φ‖ ≥ 1 to avoid the trivial case). Then

K := {c ∈ A : ‖c‖ ≤ �(φ(c))}

is a normal cone with γ = ‖φ‖. By application of Theorem 1 we get the following
corollaries.
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Corollary 1 Let a ∈ A with r(a) = 1. If there exists a sequence (ck) in A and k0 ∈ N

with

∀k ≥ k0 : ‖ck‖ ≤ �(φ(ck)), lim sup
k→∞

‖ak − ck‖ <
1

π‖φ‖ + 1
,

then 1 ∈ σ(a).

A special case of the situation in Corollary 1 is that (ak) is eventually in K . Then
we can eventually choose ck = ak , and obtain:

Corollary 2 Let a ∈ A with r(a) = 1. If

∃k0 ∈ N ∀k ≥ k0 : ‖ak‖ ≤ �(φ(ak)),

then 1 ∈ σ(a).

2. Let A be a C∗-algebra and let

K := {c ∈ A : c = c∗, σ (c) ⊆ [0,∞)}.

Then K is a normal cone with γ = 1 [3, 1.6.9] and we have the following.

Corollary 3 Let a ∈ A with r(a) = 1. If

lim sup
k→∞

∥∥∥∥a2k − 1

4
(ak + (a∗)k)2

∥∥∥∥ <
1

π + 1

then σ(a) ∩ {−1, 1} �= ∅.
Proof Since (b + b∗)2 ≥ 0 for each b ∈ A we have

dk(a
2) ≤

∥∥∥∥a2k − 1

4
(ak + (a∗)k)2

∥∥∥∥ (k ∈ N0).

Application of Theorem 1 to a2 yields 1 ∈ σ(a2), hence σ(a) ∩ {−1, 1} �= ∅. ��
Remark 2 Of course, other quite natural assumptions are possible, such as

lim sup
k→∞

∥∥∥a2k − (aa∗)k
∥∥∥ <

1

π + 1

or

lim sup
k→∞

∥∥∥∥a2k − 1

2
(ak(a∗)k + (a∗)kak)

∥∥∥∥ <
1

π + 1
.

However, numerical experiments with random matrices indicate that the assumption
in Corollary 3 is fulfilled more easily.
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3. Let a ∈ A with r(a) = 1. Assume that {ak : k ∈ N} is relatively compact, and
that the sequence (ak) has a finite number of accumulation points b1, . . . , bm which
are linearly independent. To apply Theorem 1 set

K :=
⎧⎨
⎩

m∑
j=1

α j b j : α j ≥ 0 ( j = 1, . . . ,m)

⎫⎬
⎭ .

Then K is a cone since b1, . . . , bm are linearly independent, and K is normal since it is
contained in a finite dimensional subspace ofA. Now a is asymptotically positive with
respect to this cone, hence 1 ∈ σ(a). Without the assumption of linear independence
this is trivially wrong as can be seen by considering a = −1.
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