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A B S T R A C T   

Regional weather and climate models play a crucial role in understanding and representing the regional water 
cycle, yet the accuracy of soil data significantly affects their reliability. In this study, we employ the fully coupled 
Weather Research and Forecasting Hydrological Modeling system (WRF-Hydro) to assess how soil hydrophysical 
properties influence regional land-atmosphere coupling and the water cycle over the southern Africa region. We 
utilize four widely-used global soil datasets, including default soil data for model from the Food and Agriculture 
Organization, and alternative datasets from the Harmonized World Soil Database, Global Soil Dataset for Earth 
System Model, and global gridded soil information system SoilGrids. By conducting convection-permitting 
coupled WRF-Hydro simulations with the Noah-MP land surface model using each of the aforementioned soil 
datasets, our benchmark analysis reveals substantial differences in soil hydrophysical properties and their sig
nificant impact on the simulated regional water cycle during the austral summer. Alterations in soil datasets lead 
to both spatial and temporal variations in surface water and energy fluxes, which in turn profoundly influence 
the atmospheric thermodynamic structure. Reduced soil water-holding capacity leads to subsequent reduction in 
soil moisture and latent heat, resulting in significant decreases in convective available potential energy and 
convective inhibition, signaling potential effects on precipitation distributions. In arid interior regions of 
southern Africa, shifts towards drier and warmer surface conditions due to soil data discrepancies are found to 
enhance atmospheric moisture convergence, suggesting a possible localized negative feedback of soil moisture on 
precipitation. Overall, the results for southern Africa indicate that soil data discrepancies exert more pronounced 
impact on terrestrial fields in dry subregions and on atmospheric fields in temperate subregions, highlighting the 
broad uncertainties in the regional water cycle reproduced within the model.   

1. Introduction 

Soil plays a vital role in Earth’s critical zone and significantly impacts 
the climatic systems of various sub-continental regions. It serves as the 

primary medium for plant growth, acting as a natural reservoir for 
carbon, nutrients, and water, and additionally, soil facilitates energy and 
water exchanges between the atmosphere and the land surface, making 
it a crucial component in Earth’s overall hydrological cycle (Hamidov 
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et al., 2018; Jost et al., 2021; Lal et al., 2017). In simulating past or 
future climate change and feedback, Earth system models and coupled 
regional land-atmosphere models are effective in predicting how the 
hydrological cycle changes globally and regionally (Dai et al., 2019; 
Gleeson et al., 2020; Lin et al., 2020; Zhang et al., 2022). Since soil layers 
predominantly influence terrestrial water variations, changes in soil 
conditions such as soil moisture content and water retention charac
teristics directly impact the atmosphere system (Verhoef and Egea, 
2014; Vogel et al., 2018; Zhou et al., 2021). Therefore, gaining a deeper 
understanding of soil characteristics is crucial for studying the hydro
logical cycle, accurately predicting the effects of climate change, and 
ensuring sustainable land resource management (Dai et al., 2019; 
Dennis and Berbery, 2022; Wang et al., 2015). 

Many soil survey projects and programs have been initiated world
wide with the goal of investigating soil properties and developing high- 
resolution soil data maps ranging from regional to global scales (Batjes 
et al., 2017; Hengl et al., 2017). Challenges exist such as the harmoni
zation of spatiotemporal complex heterogeneous data and the need to 
map geospatially accurate soil properties at different scales from indi
vidual soil profiles to territorial units and to the global scale (Batjes 
et al., 2017; Dai et al., 2019; Liakos and Panagos, 2022; Sanchez et al., 
2009). Effective estimation of physical properties and hydrological pa
rameters of soils remains challenging, as direct measurements are usu
ally profile-based, and in most cases, it is impractical to obtain sufficient 
samples to reflect spatial variation (Cosby et al., 1984; Kishné et al., 
2017). Consequently, discrepancies in soil properties are prevalent 
among different global soil datasets commonly used today. For instance, 
a comparison conducted by Dennis and Berbery (2021) between the 
widely used Food and Agriculture Organization soil database (FAO; 
FAO, 2013), the USDA State Soil Geographic Database (STATSGO; Soil 
Survey Staff (NRCS), 2017), and the Global Soil Dataset for Earth System 
Model (GSDE; Shangguan et al., 2014) revealed finer soils stipulated by 
GSDE compared to STATSGO over the U.S. Great Plains, and vice versa 
over central Mexico. Dy and Fung (2016) identified large block differ
ences in soil type between FAO and GSDE over the Tibetan area and 
southern China. Additionally, Zhang et al. (2023) highlighted substan
tial differences in alternative global soil datasets in southern Africa, 
particularly in the central region where soil profile samples were less 
numerous. 

Sophisticated land surface models (LSMs) have been validated for 
their reliable performances in reproducing individual components of the 
hydrological cycle (Liu et al., 2020; Ma et al., 2017; Wei et al., 2021; Xue 
et al., 2001), including soil moisture, evapotranspiration, runoff, as well 
as precipitation when coupled with numerical weather and climate 
models (Arnault et al., 2018; Shang et al., 2022). Two-way coupled 
land-atmosphere models integrate comprehensive processes occurring 
in terrestrial and atmospheric domains, capturing feedback mechanisms 
and providing a more holistic view of water and energy interactions, 
thus allowing for a more appropriate representation of water cycles. In 
very high-resolution modeling practices, such as convection-permitting 
modeling which considers high topographic gradients in complex 
terrain, advanced fully coupled atmosphere-hydrology models have 
been employed to better represent the joint terrestrial and atmosphere 
water cycle at watershed (Quenum et al., 2022; Rummler et al., 2019; 
Senatore et al., 2015; Zhang et al., 2019) and subcontinental scales 
(Arnault et al., 2021a; Zhang et al., 2023). Nevertheless, one important 
source of uncertainties in coupled model simulations still stems from 
land surface modeling. Most LSMs rely on parametric assumptions and a 
large number of parameters to represent soil, vegetation, and hydrology 
processes, which can affect the effectiveness and accuracy of modeling 
results. 

In most LSMs, hydrophysical properties of soil are typically pre
scribed based on soil type classifications, with empirically derived 
values from experimental investigations linked to the lookup table 
(Chen and Dudhia, 2001; Dennis and Berbery, 2021; Marthews et al., 
2022). This approach is computationally efficient, model-compatible, 

and easily transferable across different regions. But it is associated 
with deficiencies such as inaccurate regional-specific parameters and its 
dependence on soil type maps. Therefore, the uncertainties introduced 
by soil properties in LSMs are largely due to the delineation of soil types 
in the soil databases. As soil type classifications in global soil databases 
vary regionally, the choice of data can lead to significant variations in 
coupled modeling results. Some studies have concluded that modeled 
surface water and energy fluxes vary according to changes in soil type 
and associated hydrophysical parameters (e.g., Campoy et al., 2013; Gao 
et al., 2008; Pedruzzi et al., 2022; Zhang et al., 2023). Such changes may 
further affect the atmospheric and terrestrial water balance through the 
full coupling of land surface, hydrology and atmosphere modeling 
framework. Although there is extensive research on such relationships 
regarding land cover change (Jach et al., 2020; Wang et al., 2023), soil 
moisture initializing (Lin and Cheng, 2016; Schär et al., 1999), and 
surface hydrological processes (Rummler et al., 2019; Zhang et al., 
2019), there has been less attention regarding the impact of soil 
hydrophysical parameters. Results by Dennis and Berbery (2022) 
demonstrated the influence of soil types and parameters on boundary 
layer thermodynamic changes as well as their modulation of atmo
spheric water budgets in North America. However, the specific roles of 
soil properties in regional climate and water cycle require continuous 
investigation across different regions, considering variations in climate 
characteristics, water resources distribution, and land-atmosphere 
feedback mechanisms. 

Southern Africa is confronted with substantial risks arising from 
climate change and water scarcity (Engelbrecht et al., 2024; Rouault 
et al., 2024). Hydrological dynamics, such as droughts and precipitation 
patterns, are influenced by both external atmospheric factors, such as 
the El Niño Southern Oscillation (Hoell et al., 2021), and 
land-atmosphere feedback loops (Cook et al., 2006; Mwanthi et al., 
2023). Previous research on land-atmosphere coupling has identified 
that soil moisture plays a crucial role in modulating wet season pre
cipitation in various regions of southern Africa, exerting both positive 
and negative impacts (Cook et al., 2006; Yang et al., 2018; Zhou et al., 
2021). This implies that changes in soil moisture may lead to both in
crease and decrease in precipitation. Nevertheless, existing in
vestigations into these atmospheric feedback mechanisms in southern 
Africa often utilized global monitoring or modeling framework, and to a 
less extent regional coupled modeling approaches. Consequently, it 
becomes even more important to explore the impact of various feedback 
mechanisms on the regional water cycle via regionally coupled model 
simulations, taking into account the uncertainties of soil types and 
hydrophysical parameters. In this context of regional coupled modeling, 
a prior study by Zhang et al. (2023) underscored notable differences 
among global soil datasets commonly used in southern Africa and 
quantified the internal variability of simulated surface hydrometeoro
logical variables. Their findings also suggest significant potential im
plications for atmospheric modeling results. This study serves as an 
extension work of Zhang et al. (2023) by focusing specifically on the 
atmospheric thermodynamics and implications for modeling regional 
atmospheric and terrestrial water cycles. 

This study aims to address the following questions: how do changes 
in soil type and its associated hydrophysical parameters affect the 
regional water cycle? To what extent can different global soil datasets 
modulate the regional water cycle through coupled land-atmosphere 
modeling over the southern Africa region? It is hypothesized that soil 
hydrophysical properties linked to soil type will significantly impact 
surface fluxes, leading to alterations in atmospheric thermodynamic 
instability, thus affecting moisture transport and regional water budgets. 
This highlights a key difference from the study by Zhang et al. (2023), 
which did not focus on these specific dynamics and regional variations. 
To test this hypothesis, we employ different soil datasets within the fully 
coupled Weather Research and Forecasting Hydrological Modeling 
system (WRF-Hydro) for convection-permitting ensemble modeling over 
the southern Africa region. As in the approach by Zhang et al. (2023), 
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four widely used, open access, global soil datasets, respectively derived 
from the Food and Agriculture Organization (FAO), Harmonized World 
Soil Database (HWSD), Global Soil Dataset for Earth System Modeling 
(GSDE), and global gridded soil information (SoilGrids), are selected for 
this investigation based on their widespread acceptance and utilization 
in current climate and weather modeling. The coupled WRF-Hydro 
model is chosen for its capability to incorporate sophisticated land 
surface hydrological processes and lateral terrestrial water flow. This is 
crucial for modeling strategies over complex terrain areas at very high 
resolutions, like in the convection-permitting scale (<4 km). This 
investigation focuses on assessing the impact of soil type and hydro
physical properties on surface fluxes, as well as their influence on at
mospheric processes and regional water budgets. 

The subsequent sections of this article are structured as follows: 
Section 2 outlines the coupled modeling approach, experimental design, 
data, and methodology. Section 3 presents and discusses the results of 
model evaluation and comparison, while conclusions are discussed in 
Section 4. 

2. Data and methodology 

2.1. Study area and soil datasets 

The study area for our model simulations is the southmost region of 
Africa, south of 19 S◦, with a primary focus on South Africa and its 
surrounding regions (Fig. 1). This area is characterized by varied land 
cover and complex terrain topography, as well as seasonally and 
spatially variable climate. The climate exhibits considerable diversity, 
ranging from subtropical arid and semi-arid to temperate and Mediter
ranean climates, with different precipitation patterns across the region 
(Baade et al., 2024; Rouault et al., 2024). The terrain varies remarkably, 
with mountainous regions in the east and south, and relatively flat 
plateaus in the interior (Fig. 1a). The predominant land cover consists of 
grasslands, savannas and barren land, with a small portion of forests, 

wetlands and urban areas (Fig. 1b). 
Following Zhang et al. (2023), four widely utilized global soil data

sets are used in this study. The first dataset is provided by the Food and 
Agriculture Organization (FAO) of the United Nations (FAO, 2013; 
FAO-UNESCO, 1981), and developed from soil surveys and the merging 
of various soil-type datasets into a single database at a grid resolution of 
3 arc-minute (~9 km). It has been extensively utilized for decades in 
agricultural planning and environmental assessments and is still the 
default soil data for regional climate modeling applications, including 
WRF and WRF-Hydro models. 

The first alternative dataset employed is the Harmonized World Soil 
Database (HWSD) version 1.2 (FAO/IIASA/ISRIC/ISSCAS/JRC, 2012). 
The HWSD aims to harmonize soil information from diverse sources 
worldwide. It combines soil data from different national and regional 
soil databases within the FAO soil world map, creating a consistent and 
standardized dataset at a resolution of 30 arc-second (~1 km) 
resolution. 

The Global Soil Dataset for Earth System Modeling (GSDE) is another 
high-resolution global dataset primarily developed for earth system 
modeling purposes (Shangguan et al., 2014). It is also based on the FAO 
soil world map, incorporating data from HWSD, other national and 
regional soil databases, as well as local soil maps. However, GSDE uti
lizes advanced statistical methods and mapping procedures to predict 
soil parameters in unsurveyed areas. The GSDE data shares the same 
resolution as HWSD. 

Lastly, the SoilGrids (SGD) is used as an alternative source of infor
mation on soil properties. It is a recent global soil mapping project led by 
the International Soil Reference and Information Centre (ISRIC, Hengl 
et al., 2017). It employs state-of-the-art machine learning prediction 
models and a vast amount of soil observations to generate 
high-resolution maps of various soil properties. The SoilGrids data has a 
resolution of 250 m, providing the most detailed spatial estimation of 
soil distribution on a global scale. All of these datasets are open access 
and have broad applications in various environmental modeling studies. 

Fig. 1. (a) Topography map and (b) MODIS land use and land cover map depicting the WRF-Hydro model domain, encompassing the southern Africa Region.  
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2.2. Coupled WRF-Hydro model and experiment design 

The fully coupled Weather Research and Forecasting Hydrological 
Modeling system (WRF-Hydro) is employed to investigate the soil data- 
related impact on weather and climate modeling in southern Africa. This 
comprehensive modeling system comprises Weather Research and 
Forecasting (WRF) model version 4.2 (Skamarock et al., 2019) coupled 
with the Noah land surface model with multi-parameterization options 
(Noah-MP; Niu et al., 2011) and the hydrological module of WRF-Hydro 
version 5.1 (Gochis et al., 2018). 

In the model configuration, the atmospheric part in WRF-Hydro is 
based on an Arakawa-C grid with terrain-following vertical levels of 35 
up to 50 hPa. The model domain covers the study area in southern Africa 
(Fig. 1), encompassing a total of 650 × 500 horizontal grid points with a 
grid spacing of 4 km. This setup allows for convection-permitting scale 
of dynamic downscaling, enabling a more detailed representation of 
atmospheric processes. The choice of model physical parameterizations 
is informed by previous literature (Abba Omar and Abiodun, 2021; 
Arnault et al., 2021b; Crétat et al., 2012; Ratnam et al., 2013) and many 
downscaling test runs. The final selected parameterization combination 
is listed in Table 1. The model system is initialized and driven by 3 
hourly ERA5 reanalysis (Hersbach et al., 2020), and model outputs are 
saved every 3 h. The static conditions at the land surface are based on 
the land use and land cover map from MODIS, the Moderate Resolution 
Imaging Spectroradiometer (Friedl et al., 2010; Fig. 1b). Except for the 
default soil types from the FAO database, the other three global soil 
datasets described in Section 2.1 are implemented separately in coupled 
WRF-Hydro simulations, depicted as WRFH-HWSD, WRFH-GSDE, and 

WRFH-SGD in this paper. In the model preprocessing procedure, all the 
aforementioned soil data are interpolated from their native grid to the 4 
km model grid using the default nearest neighbor method. These data 
are classified into soil categories at the model grid according to the 
USDA 16-class soil classification system based on the percentages of 
sand, silt, and clay in the soil. The classified results are shown in the left 
column of Fig. 2. The soil type distributions varied significantly among 
the four global datasets and their statistical differences had been dis
cussed in Zhang et al. (2023). 

The Noah-MP LSM and the hydrological module of WRF-Hydro are 
integrated with the atmospheric modeling to account for land- 
atmosphere coupling as a lower boundary condition. Noah-MP LSM is 
renowned for its increased flexibility in model parameterization and its 
realistic representation of land surface processes, making it extensively 
used in weather and climate model simulations to dynamically represent 
energy, water, and momentum flux exchanges (Ma et al., 2017; Niu 
et al., 2011). However, it does not explicitly consider specified land 
hydrological processes, such as overland surface flow generation and 
lateral flow processes, which are critical for accurately predicting hy
drological responses in high-resolution modeling. To overcome this 
limitation, WRF-Hydro hydrological module is further coupled with 
Noah-MP LSM, explicitly representing lateral water processes through a 
distributed hydrologic model. It offers a detailed representation of land 
hydrological processes, encompassing routed surface and subsurface 
runoff, horizontal redistributed soil moisture, and streamflow modeling. 
Thus, it has gained increasing popularity in research applications. The 
land surface in WRF-Hydro is divided into four soil layers, each with 
specific soil depths of 0 to 10, 10 to 40, 40 to 100, and 100 to 200 cm, 
and water and heat exchanges are parametrized and computed within 
this 2 m soil depth. Horizontal overland and subsurface water flow is 
computed on a 400 m hydrological subgrid, based on a refined terrain 
gradient. This hydrological subgrid interacts with the 4 km WRF and 
Noah-MP grid through an aggregation-disaggregation procedure, 
rescaling the hydrological moisture condition. Therefore, this two-way 
interaction between land surface hydrological modeling and atmo
spheric modeling enhances the model’s ability to simulate water-related 
phenomena more accurately (e.g., Rummler et al., 2019; Senatore et al., 
2015; Zhang et al., 2021). 

Default physical parameterization options in Noah-MP and WRF- 
Hydro with low uncertainty are chosen in model simulations. For 
instance, parameterization of surface exchange processes with atmo
sphere uses the default Monin–Obukhov scheme with identical rough
ness lengths (Brutsaert, 1982; Chen et al., 2019). This option is selected 
over other options with tunable constant values (Chen et al., 1997) or 
vegetation-dependent values (Chen and Zhang, 2009) of Zilitinkevich 
coefficient, to reduce model complexity. It is also worth noting that the 
simulations of river streamflow require the activation of an additional 
routing module in the river channel, which requires more computational 
resources but is not the focus of this case study. Lateral hydrological 
processes in this WRF-Hydro setup only account for lateral surface and 
subsurface routing for soil moisture redistribution, like in Arnault et al. 
(2021a). Table 1 lists the combinations of physical schemes of Noah-MP 
and WRF-Hydro module adapted in the modeling. Detailed descriptions 
of the Noah-MP model and WRF-Hydro module are available at Niu et al. 
(2011) and Gochis et al. (2018) respectively. 

Soil hydrophysical parameters and routing roughness parameters are 
kept at their default values from the Noah-MP LSM and WRF-Hydro 
models, ensuring that comparisons of results relied solely on the 
description of the soil data. The soil hydrophysical parameters are pre
sented in a lookup table (Table 2), derived empirically and experimen
tally from soil surveys in the United States (Cosby et al., 1984). It is 
noted that the classified soil types with property parameters are 
location-dependent, which may inaccurately represent the true soil pa
rameters at grid scale. Nevertheless, such an approach uses only generic 
soil type maps, and is computationally inexpensive and easily transfer
able to different regions. Based on the soil type distributions and lookup 

Table 1 
Physical parameterization options of the coupled WRF-Hydro model adopted in 
the study.  

Model 
compartment 

Subject Used physical option 

WRF Microphysics WRF single-Moment 6-class 
scheme (Hong and Lim, 2006) 

Planetary boundary 
layer 

Yousei University scheme (Hong 
et al., 2006) 

Cumulus 
parameterization 

None 

Longwave radiation Rapid Radiative Transfer Model ( 
Mlawer et al., 1997) 

Shortwave radiation Dudhia scheme (Dudhia, 1989) 
Land surface model Noah-MP (Niu et al., 2011) 

Noah-MP LSM Dynamic vegetation Monthly leaf area index from 
table and vegetation fraction as 
observed maximum 

Stomatal Resistance Ball -Berry (Collatz et al., 1992) 
Soil moisture factor Noah-type using soil moisture ( 

Chen and Dudhia, 2001) 
Runoff and 
Groundwater 

Infiltration-excess-based surface 
runoff with free drainage 
subsurface runoff (Schaake et al., 
1996) 

Surface exchange 
coefficient 

Monin-Obukhov similarity 
theory 

Radiative transfer Two-stream approximation with 
dynamic vegetation 

Ground Surface Albedo Canadian land surface scheme ( 
Verseghy, 2007; Yang and 
Friedl, 2003) 

Soil Temperature lower 
boundary condition 

Fixed lowest soil temperature 
from the input 

Hydrological 
extension in WRF- 
Hydro 

Subsurface routing Distributed Hydrology Soil 
Vegetation Model (Wigmosta 
et al., 1994) 

Overland flow routing 1-Demensional (D8) diffusive 
wave (Julien et al., 1995) 

Channel routing and 
base flow 

None  
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table assignment, Figs. 2b and 2c display the spatial patterns of selected 
soil hydrophysical parameters, namely wilting point and porosity, of the 
FAO default data. The wilting point indicates the lowest soil water 
content under normal conditions, and the porosity indicates the 
water-holding capacity of the soil. The differences in these parameters 
between the three alternated soil datasets and the FAO default soil are 
further illustrated in the lower three rows of Fig. 2. In general, the three 
perturbated soil data show more heterogeneous soil hydrophysical 
properties. In the western and northern parts of the study domain, the 
wilting point is generally lower in HWSD, GSDE, and SoilGrids 
compared to the FAO default. Within the western part of South Africa 
territory, HWSD and GSDE usually have higher values of wilting point, 
while SoilGrids is similar to the FAO default (DEF). Over the Drakens
berg Mountain areas, the North-South running feature in the NE of South 
Africa (north of Eswatini), the differences in wilting points are highly 
variable. As for soil porosity, the replaced soil datasets generally have 
lower values, indicating a reduced maximum water holding capacity in 
the soil for HWSD, GSDE, and SoilGrids datasets. The distribution of 
field capacity differences follows a similar pattern to the distribution of 
wilting point differences and thus is not shown. 

Therefore, by maintaining the same atmospheric boundary forcing, 

the simulation differences offer an opportunity to reveal the role of 
altered surface boundaries on coupled land-atmosphere modeling sys
tems. The modeling simulations cover the period from January 2015 to 
March 2018, encompassing three austral summers in total. In the anal
ysis we focus on the five summer months from November to March, 
which is favorable for thermal and hydraulic variation, considering the 
presence of adequate precipitation (> 45 mm/month) and high tem
peratures over the study region (Supplementary Material, Figure S1). 
Thereby, the initial 10 months prior to October 2015 were designated as 
the model spin-up time. During this time, the simulations were contin
uously operated beyond the summer months to ensure the modeling 
system reached equilibrium in soil moisture and energy conditions 
annually. Conducting three years of simulations reduces internal vari
ability and model dispersion, thus better isolating the impacts of the 
surface conditions compared to using data from a single year. Among the 
three selected years, 2015/16 featured one of the strongest ENSO events 
on record, 2016/17 was characterized by typical La Niña year, and 
2017/18 was a normal year. By averaging ensembles from these three 
distinct climate patterns, it effectively separates the influences of asso
ciated external climate forcing from internal feedback mechanisms in 
regional climate simulations. 

Fig. 2. Dominant soil types in WRF-Hydro at 4 km horizontal resolution according to (a) the FAO default dataset (DEF) with assigned hydrophysical parameters for 
wilting point (b) and soil porosity (c). The soil types determined from perturbated soil datasets including (d) HWSD, (g) GSDE, and (j) SoilGrids (SGD), as well as the 
differences maps in assigned values of wilting point (e, h, k) and soil porosity (f, i, l) in comparison to the default soil data. 
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2.3. Observation based reference datasets 

In order to facilitate an intercomparison of different modeling ex
periments and to demonstrate the representativeness of the model 
configuration, it is essential to appropriately simulate the key hydro
meteorological variables. For this purpose, the simulated climate char
acteristics are evaluated against observation-based gridded products for 
temperature, precipitation, and evapotranspiration, generally named 
reference data (REF) in the remaining presentation. 

These gridded products used for evaluation include the Climate 
Research Unit (CRU) temperature version 4, with a 0.5◦ horizontal 
resolution (Harris et al., 2020); the Multi-Source Weighted-Ensemble 
Precipitation (MSWEP) version 2.8, with a spatial resolution of 0.1◦

(Beck et al., 2019); and the land evapotranspiration dataset of the Global 
Land Evaporation Amsterdam Model (GLEAM) version 3.6, with a 
spatial resolution of 0.25◦ (Martens et al., 2017). These datasets are 
utilized as they are all observational based and have been broadly and 
successfully used in assessment of regional modeling performance, 
including southern Africa (e.g. Arnault et al., 2021b; Zhang et al., 2024). 
In the following model evaluation and the calculation of biases and 
correlations, the simulation results are bilinearly regridded in space and 
time onto the corresponding reference dataset, allowing for the direct 
comparisons. 

2.4. Joint atmospheric-terrestrial water balance 

The water cycle at a regional scale can be characterized by the joint 
atmospheric-terrestrial water balance. The calculation of the atmo
spheric water budget is based on the balanced equation for atmospheric 
water, given as: 

∂W
∂t

= − ∇⋅Q→+ ET − P + residual (1) 

P and ET are the precipitation and evapotranspiration rate, respec
tively. W is the atmospheric water storage and − ∇⋅Q→ denotes the 
vertically integrated water convergence, and they are respectively 
calculated as follows: 

W =
1
g

∫Psfc

Ptop

q⋅dp (2)  

− ∇⋅Q→= −
1
g

∫Psfc

Ptop

(
∂u
∂x

+
∂v
∂x

)

⋅q⋅dp (3)  

with pressure (p), horizontal wind vector fields (u, v), specific humidity 
(q), and gravitational acceleration (g). The residual term also appears in 
atmospheric water budgets (Eq (1)), in response to the non-closure of 
water balance derived from the modeling system. The systematic pres
ence of residuals in numerical weather modeling is largely attributable 
to interpolation and integration of atmospheric data at pressure levels, 
numerical errors in model discretization methods and the 3-hourly 
sampling frequency, as well as imperfections in the representation of 
atmosphere processes (e.g., Kurkute et al., 2020; Roberts and Snelgrove, 
2015). 

The terrestrial water budget terms are expressed in the balance 
equation as follows: 

∂TWS
∂t

= P − ET − R (4)  

where the terrestrial water storage (TWS) includes the sum of water in 
the soil, surface ponded water and groundwater amount. R is the runoff 
from the model simulations. 

3. Results 

3.1. Model performance 

The results of the control simulation using the coupled WRF-Hydro 
model with default FAO soil data are evaluated against observation- 
based reference data. Fig. 3 presents a comparison between the 
default modeling (DEF) and reference data (REF) for 2-meter air tem
perature, precipitation, and evapotranspiration during the summer. The 
spatial patterns of the simulated variables are displayed at the 4-km 
model grid resolution, showcasing the added value of dynamic down
scaling at high resolution. The coupled modeling accurately captures the 
spatial variabilities of these variables. It distinctly represents the tem
perature gradients from the central Highveld to the Drakensberg 
Mountains and the east coast while also showing clear east-west gradi
ents for precipitation and evapotranspiration over the land surface. 

When interpolating the simulation results to the reference dataset 
grids, the statistical results for spatial correlations between the default 
WRF-Hydro and references are as follows: 0.94 for temperature, 0.89 for 
precipitation, and 0.85 for evapotranspiration. All of these correlations 
are significant, with associated p-values below 0.05. The scatter plots in 
Fig. 3 show small biases for air temperature (Fig. 3c), mostly in the range 
of − 2.6 ◦C to 0.9 ◦C, resulting in an overall cold bias of − 1.03 ◦C. Pre
cipitation is slightly overestimated in regions with high precipitation 
(Fig. 3f), leading to an overall overestimation of about 0.46 mm day− 1 

during the summer. Simulated evapotranspiration is quite comparable 
to the reference data (Fig. 3i), with an overall bias of − 0.097 mm day− 1 

during the summer. 
The simulated precipitation is further evaluated against the MSWEP 

reference data on a subdaily scale, allowing for the validation of con
vection simulation spatially. Three hourly model outputs and reference 
data are integrated at 6 hourly intervals to minimize non-precipitation 
intervals. Fig. 4 presents spatial maps of calculated correlation coeffi
cient values between the model and reference data as well as the cor
responding histograms. The simulated subdaily precipitation exhibits a 
high correlation with the reference data and is statistically significant (p 
< 0.05) over the vast majority of the area, except for very dry regions 

Table 2 
Soil hydrophysical parameters prescribed in the model lookup table, including 
parameters of porosity (θs), field capacity (θf), wilting point (θwp), saturated 
metric potential (Ψs), saturation hydraulic conductivity (Ks), and slop of reten
tion curve fitting (b).  

Soil texture θs (m3 

m− 3) 
θf (m3 

m− 3) 
θwp (m3 

m− 3) 
Ψs 

(m) 
Ks (m 
s− 1) 

b 

Sand 0.339 0.192 0.010 0.069 4.66 ×
10− 5 

2.79 

Loamy sand 0.421 0.283 0.028 0.036 1.41 ×
10− 5 

4.26 

Sandy loam 0.434 0.312 0.047 0.141 5.23 ×
10− 6 

4.74 

Silt loam 0.476 0.360 0.084 0.759 2.81 ×
10− 6 

5.33 

Silt 0.484 0.347 0.061 0.955 2.18 ×
10− 6 

3.86 

Loam 0.439 0.329 0.066 0.355 3.38 ×
10− 6 

5.25 

Sandy Clay 
Loam 

0.404 0.315 0.069 0.135 4.45 ×
10− 6 

6.77 

Silty clay 
loam 

0.464 0.387 0.120 0.617 2.03 ×
10− 6 

8.72 

Clay loam 0.465 0.382 0.103 0.263 2.45 ×
10− 6 

8.17 

Sandy clay 0.406 0.338 0.100 0.098 7.22 ×
10− 6 

10.73 

Silty clay 0.468 0.404 0.126 0.324 1.34 ×
10− 6 

10.39 

Clay 0.468 0.412 0.138 0.468 9.74 ×
10− 7 

11.55  
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such as the Namib Desert (Fig. 4a). Regions with abundant and stable 
summer precipitation, such as the Drakensberg Mountains, the Highveld 
area, and southern coastal areas, show considerably high correlation 
coefficient values (r > 0.5). The histograms of subdaily precipitation are 
also comparable, indicating similar percentile distribution functions of 
6-hourly accumulated precipitation (Fig. 4b). In terms of differences in 
precipitation intensities, in general, the numerical modeling approach 
simulates more moderate precipitation events (> 1 mm 6-hr− 1) 
compared to small precipitation events (< 1 mm 6-hr− 1). This indicates 
that the overall slight wet bias in summer precipitation is associated 
with an overestimation of moderate-intensity precipitation. Neverthe
less, the evaluation suggests that the coupled WRF-Hydro prediction 
model successfully reproduces the key water and energy variables at the 
surface over the study region. This supports the use of the coupled 
modeling approach to further examine the impact of alternative soil 
datasets. 

3.2. Impact on land-atmosphere interfaces 

Changes in the land surface conditions serve as the primary driver of 
atmospheric changes in this study. Upward moisture and heat fluxes at 
the surface contribute to atmospheric thermodynamic alterations 
through land-atmosphere feedback. Therefore, Fig. 5 illustrates the 
spatial patterns of surface latent and sensible heat fluxes and surface soil 
moisture. The patterns of heat fluxes and soil moisture exhibit a pro
nounced east–west contrast within the study region (Fig. 5a-c), with the 
highest latent heat (~ 150 W m− 2) and moisture found in the forested 
regions of the Drakensberg Mountains in the east. These heat flux pat
terns are consistent with precipitation distribution, suggesting an overall 
condition of water-limited dynamics in the study region. 

When replacing the soil dataset, surface energy and moisture 

conditions change consistently with the alteration of soil type and the 
associated hydrophysical parameters. In the central and western dryland 
areas, differences in surface soil moisture (right column of Fig. 5) are 
closely related to variations in wilting point values (middle column of 
Fig. 2). Lower wilting points correspond to drier surface soils, while 
higher wilting point corresponds with increased soil moisture. Regions 
with lower soil moisture generally correspond to lower latent heat fluxes 
and higher sensible heat fluxes. In contrast, areas with higher soil 
moisture in the western dryland in South Africa do not significantly 
affect the latent heat flux. This is because the soil moisture levels in these 
areas are extremely low, near to the soil wilting point, making it difficult 
for incoming radiation to evaporate the soil water. Consequently, dif
ferences in soil properties only slightly modify the sensible heat flux. In 
the eastern mountainous areas with moderate precipitation, differences 
in soil moisture are more related to variations in soil porosity. Relatively 
drier soils tend to correspond to higher latent heat and lower sensible 
heat fluxes (Fig. 5) due to reduced water-holding capacity linked to 
lower porosity (Fig. 2). Additional influence on other surface variables 
at land-atmosphere interfaces like soil and air temperature, air humidity 
has been analyzed in Zhang et al. (2023). 

It is worth noting that the energy flux differences shown in Fig. 5 
represent averaged values for the entire summer, which counteract 
smaller nocturnal differences. During daytime turbulent fluxes could be 
much larger, possibly reaching up to twice the values, as suggested by 
Dennis and Berbery (2022) and Lee et al. (2023). Spatial differences in 
Fig. 5 are denoted with a dashed area of significance at 95 % confidence 
level (p < 0.05). In general, the impacts of the replaced global soil data 
on surface soil moisture and latent heat are significant across almost the 
entire domain and on sensible heat in some areas. 

Comparing the simulation results, disparities exist in both overall 
values and spatial and temporal distributions. WRFH-HWSD and WRFH- 

Fig. 3. Spatial distributions and scatter plots for comparing simulated (a-c) 2-m air temperature, (d-f) precipitation, and (g-i) evapotranspiration during the sum
mertime of 2015–2018 between the observational-based reference (REF) and WRF-Hydro with FAO default soil dataset (DEF). 
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GSDE exhibit lower soil moisture values (with average differences of 
approximately − 0.015 m3 m− 3 and − 0.013 m3 m− 3, respectively) and 
lower latent heat fluxes (with average differences of about − 5.5 W m− 2 

and − 3.4 W m− 2, respectively) when compared to the WRF-Hydro 
default (WRFH-DEF). The SoilGrids experiment (WRFH-SGD) shows 
values closer to the default setup, with average differences in soil 
moisture and latent heat flux of approximately − 0.008 m3 m− 3 and 0.06 
W m− 2, respectively. Considering that the averaged values for WRFH- 
DEF are 0.16 m3 m− 3 and 44.6 W m− 2 for soil moisture and latent 
heat fluxes respectively, these differences are non-negligible, particu
larly for WRFH-HWSD and WRFH-GSDE. These differences can lead to 
significant variations in the simulated terrestrial water budget, as sub
sequently analyzed. 

The variabilities of simulated soil moisture and latent heat fluxes are 
further examined spatially and temporally in Fig. 6. Probability distri
butions for WRFH-DEF experiment, considering both time-averaged and 
spatial-averaged values, are shown in the left column of Fig. 6. These 
distributions reveal the strong interrelation of soil moisture and latent 
heat fluxes across the southern Africa region in space and time. 

The histogram distributions depicting the number of grids and days 
with differences are displayed in the right column of Fig. 6. WRFH- 
HWSD and WRFH-GSDE exhibit skewed distribution towards lower 
values of latent heat fluxes (Fig. 6a) and soil moisture (Fig. 6c) compared 
to WRFH-DEF. Notably, 99 % of differences in latent heat flux fall within 
the range of − 30 to 10 W m− 2, with the majority (86 % to 94 %) 
concentrated between − 10 and 5 W m− 2. Spatial differences for WRFH- 
SGD are overall conservative, displaying a relatively tight distribution. 
For the statistics of daily values, the average soil moisture from all three 
alternative soil datasets is lower than the WRFH-DEF throughout the 
entire summer (Fig. 6d). Averaged latent heat fluxes from WRFH-HWSD 

and WRFH-GSDE are also consistently lower each day during the entire 
summer. These histogram statistics indicate that changes in soil data, 
directly impact moisture and energy exchanges at the land-atmosphere 
interface both spatially and temporally. 

3.3. Atmospheric thermodynamic response to surface changes 

Fig. 7 presents the changes in atmospheric instability induced by 
land surface conditions. The diagnostic indicators included here are the 
convective available potential energy (CAPE), convective inhibition 
(CIN), and planetary boundary layer height (PBLH). CAPE and CIN 
characterize the degree of local instability, with higher CAPE and lower 
CIN indicating a greater likelihood of occurrence of conducive envi
ronments for moist convection. Changes in CAPE and CIN depend on the 
vertical distribution of temperature and humidity in the lower atmo
sphere and are also relevant to the PBL structures. 

Differences in moisture and energy at the lower land-atmosphere 
interface (Fig. 5) are seen to directly influence atmosphere instability 
quantities (Fig. 7). The spatial difference maps of summer-averaged 
CAPE are highly correlated with disparities in surface latent and sensi
ble heat fluxes, resulting in differences in CAPE values of − 50 to − 120 J 
kg− 1 over the central region. However, the changes in atmosphere 
instability quantities are secondary effects of the changes in soil prop
erties, making them less statistically significant compared to the surface 
fluxes (Fig. 5). The spatial pattern of differences in CIN is generally 
consistent to that of CAPE but shows additional variations. WRFH- 
HWSD, WRFH-GSDE and WRFH-SGD all simulate high sensible heat 
flux with respect to the WRFH-DEF over the central flat area (Fig. 5), i.e., 
the Kalahari Desert, therefore the overall reduction in CIN is quite 
obvious (about − 30 ~ − 40 J kg− 1) in this region. The drier and warmer 
surface conditions resulting from changes in soil properties lead to a 
reduction in CAPE in the interior region, creating unfavorable condi
tions for convection formations. Additionally, the enhancement of sen
sible heat promotes the deepening of the mixing layer depth, as seen in 
the increase in PBLH (Fig. 7). This, in turn, leads to an increase in lifting 
condensation level (LCL) height, narrowing the distance between LCL 
and the level of free convection, and ultimately reducing CIN. In the 
western part of domain area, the change in CAPE is quite small, but CIN 
decreases considerably along the coastal Namib desert and shows an 
increase over the nearby mountains (Fig. 1a). 

The eastern region, encompassing the Highveld and Drakensberg 
Mountains, experiences varying changes in the PBL depth attributed to 
changes in soil hydrophysical properties and surface conditions. Across 
most areas, WRFH-HWSD and WRFH-GSDE exhibit greater energy for 
convection inhibition compared to WRFH-DEF, resulting in increased 
CAPE by up to 20 J kg− 1. Meanwhile, the cooler surface also results in an 
increase in CIN. Such increases in CAPE and CIN indicate more energy 
for sustaining convection, yet the energy is more difficult to access. It is 
noted that the eastern region has relatively abundant moisture sources 
and precipitation. Thus, changes in atmospheric instability of a 
competing effect on convection development likely lead to alterations in 
precipitation processes and the regional water budget. For the arid 
western region, while experiencing significant atmospheric thermody
namic changes, changes in the water budgets may be less pronounced 
due to low precipitation levels. 

3.4. Joint atmospheric and terrestrial water budgets 

The atmospheric water budget terms of precipitation (P), atmo
spheric moisture convergence (CONV) and atmospheric water storage 
(AWS) are calculated according to Eq (2) and Eq (3), and the differences 
are displayed in Fig. 8. Similarly, due to varying moisture conditions 
across the region, differences in atmospheric moisture budget variables 
P and CONV also exhibit east-west and north-south gradient. In the 
north-central region of the domain with drier soil moisture and higher 
sensible heat flux due to soil properties changes (as shown in Fig. 5), the 

Fig. 4. Comparison of 6-hourly precipitation during the summertime of 
2015–2018 between the observational-based reference data (REF) and WRF- 
Hydro with FAO default soil dataset (DEF). The comparison is presented in 
(a) a map displaying correlation coefficients and (b) a histogram depicting 
spatially averaged precipitation. Dashed areas in the correlation map indicate 
high statistical significance at the 95 % confidence level. 
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atmospheric water budget primarily shows an increase in CONV, 
meanwhile the AWS experiences a slight increase across the region. 
Changes in P are somewhat dispersed over this area (Fig. 8). Addition
ally, around the area of decreased CONV, AWS mainly shows a decrease, 
reflecting moisture divergence. Over the eastern region with wetter 
conditions, spatial differences in P are more consistent with CONV, as 
CONV is one of the important factors influencing convective 
precipitation. 

Spatial differences in terrestrial water compartments (Fig. 9) show 
strong signals of changes in soil hydrophysical parameters. In general, 
evapotranspiration (ET) and terrestrial water storage (TWS) are 
remarkably reduced over the central area due to the created drier con
ditions analyzed in Section 3.2, primarily driven by differences in 
simulated soil moisture. Differences in runoff are predominantly 
observable over the eastern area and central interior. In the eastern 
mountainous region, the differences are mixed, complexly influenced by 
infiltration excess and overland flow, which depend on precipitation 
amount and intensity. In the central interior region, runoff differences 
are directly related to changes of TWS and ET. Overall, the spatial dis
tribution of runoff generally exhibits an inverse relationship to the 
variation in TWS and ET. Changes in soil properties, including a 
decrease in water holding capacity (reduced wilting point and porosity), 
result in more runoff generation with lower soil water storage and 
reduced ET. Additionally, it should be noted that the WRF-Hydro model 
enables surface runoff and subsurface water routing in a 400-m subgrid 
and the topography gradient could further influence the spatially 
generated runoff in model experiments. Nonetheless, as is evident in 

Fig. 9, the spatial distribution of runoff is substantially influenced by soil 
hydrophysical characterization. Compared to the atmospheric water 
budgets (Fig. 8), changes in terrestrial water compartments are more 
pronounced, with statistically significant differences at the 95 % level 
over most regions. It is also worth noting that for terrestrial variables, 
particularly the TWS, areas with minor spatial differences are still sta
tistically significant, suggesting further differences in temporal terms. 

Therefore, the monthly variations of joint regional water budgets are 
further investigated. Considering the wide diversity of moisture condi
tions between the eastern and western parts, the domain is divided into 
two subregions according to the IPCC climate reference regions for 
climate model data (Iturbide et al., 2020): the Eastern southern Africa 
region (ESAF) and West southern Africa region (WSAF), divided by the 
longitude of 25◦ E (illustrated in Figs. 3d and 3g). The water budget 
values for all ensemble members as well as their changes are shown in 
Fig. 10 and Fig. 11 for the two subregions. Ensemble results of all water 
budget values exhibit consistent monthly variation, owing to the 
reasonable downscaling from the identical atmospheric forcing. In the 
wetter ESAF region, differences in water budgets of P and CONV among 
the ensemble members are relatively large, with variations ranging from 
0.1 to 0.4 mm day− 1 for the monthly values. This leads to differences of 
around 5 % in P and 15 % in CONV (Fig. 10). In the drier WSAF region, 
where P is low, changes in CONV are considerably more apparent (10 to 
50 %), and overall P also changes within 5 % (Fig. 11). Changes in the 
terrestrial water budgets are evident in both subregions. ET changes in 
ESAF and WSAF are up to 0.3 mm day− 1 and 0.5 mm day− 1, respec
tively, corresponding to the order of change up to 10 % and 30 %. 

Fig. 5. Spatial distributions of simulated surface (a) latent heat flux, (b) sensible heat flux, and (c) soil moisture for WRFH-DEF experiment, as well as the difference 
between soil data perturbed experiments, including WRFH-HWSD (d-f), WRFH-GSDE (g-i), WRFH-SGD (j-l) in comparison to the WRFH-DEF during the summertime 
of 2015–2018. Dashed areas in difference maps indicate statistical significance at the 95 % confidence level. 
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Fig. 6. Histograms of (a) temporal-averaged and (b) spatial-averaged daily latent heat flux for the WRFH-DEF experiment (left column), along with the differences 
between each perturbed experiment and WRFH-DEF (right column) during the summertime of 2015–2018. (c-d) as same as (a-b) but for soil moisture. 

Fig. 7. Spatial differences in CAPE (left column), CIN (middle column), and PBLH (right column) between soil dataset-perturbed experiments of WRFH-HWSD (a-c), 
WRFH-GSDE (d-f), and WRFH-SGD (g-i) compared to WRFH-DEF during the summertime of 2015–2018. Dashed areas indicate statistical significance at the 90 % 
confidence level. 

Z. Zhang et al.                                                                                                                                                                                                                                   



Agricultural and Forest Meteorology 355 (2024) 110127

11

Changes in runoff are quite apparent in both subregions, especially 
during the latter summer months from January to March. This is mainly 
attributed to changes in overall soil water storage resulting from 
different soils, leading to the obvious change in ΔTWS in the early two 
summer months. 

4. Discussion and conclusions 

This study explored the influence of soil hydrophysical properties on 
land-atmosphere coupling and joint atmospheric-terrestrial water bud
gets through the use of coupled regional land-atmosphere modeling. 

Fig. 8. Spatial differences in the atmospheric water budgets, encompassing precipitation (P; left column), moisture convergence (CONV; middle column) and at
mospheric water storage (AWS; right column), are illustrated between soil dataset-perturbed experiments of WRFH-HWSD (a-c), WRFH-GSDE (d-f), and WRFH-SGD 
(g-i) compared to WRFH-DEF during the summertime of 2015–2018. Dashed areas indicate statistical significance at the 90 % confidence level. 

Fig. 9. Spatial differences in the terrestrial water budgets, encompassing evapotranspiration (ET; left column), terrestrial water storage (TWS; middle column) and 
runoff (right column), are illustrated between soil data-perturbed experiments of WRFH-HWSD (a-c), WRFH-GSDE (d-f), and WRFH-SGD (g-i) compared to WRFH- 
DEF during the summertime of 2015–2018. Dashed areas indicate statistical significance at the 95 % confidence level. 
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Given the diverse and great disparities among the soil data in modeling 
practice, the present study examined the impact on modeling uncer
tainty using four of the most common and widely used global soil data, 
namely, FAO, HWSD, GSDE and SoilGrids datasets. We performed 
convection-permitting fully coupled WRF-Hydro ensemble simulations 
over the southern Africa region for the austral summer months from 
2015 to 2018. The spatial patterns of soil hydrophysical properties were 
altered by varying the soil dataset and soil hydrophysical parameter 
lookup table assignment, hence modulating the regional water cycle 
through land-atmosphere feedback. 

Substantial variations in soil type distribution and soil water 
hydrophysical parameters are entailed across southern Africa when 
using these global soil datasets. In comparison to the default FAO soil 
data in the coupled modeling, significant alterations in soil water and 
turbulent fluxes partitioning are found due to changes in soil hydro
physical properties. Beyond the findings of Zhang et al. (2023), current 
investigations demonstrate that these modifications in near-surface 
water and energy distribution result in differences in atmospheric 
thermodynamic instability during the austral summer period. Specif
ically, over the central interior of the study region, shifts in soil types led 
to broad changes in soil hydrophysical parameters, i.e., a reduction in 

soil water-holding capability. This significant decrease in soil moisture 
and upward latent heat contributed to a statistically significant drop in 
averaged CAPE and overall reduction in CIN. These projected changes 
indicate that there is less energy available to sustain convection in the 
regional environment, while the energy is more readily accessible. These 
results are broadly aligned with sensitive experiments conducted by 
Dennis and Berbery (2022) over the Mideast United States and by He 
et al. (2016) over eastern China. In our study, local precipitation did not 
consistently correlate with atmospheric thermodynamic instability due 
to the rare occurrence of convection in the arid interior region. 

Changes in surface conditions related to soil hydrophysical param
eters were observed to dynamically impact both atmospheric and 
terrestrial water budgets. These effects were especially pronounced in 
terrestrial processes, where variations in average soil moisture directly 
influenced subsequent evapotranspiration, runoff generation, and 
terrestrial water storage changes. These impacts exhibited significant 
spatial variability, with overall changes exceeding 1 mm day− 1 observed 
in several areas. In contrast, the influence of soil conditions on atmo
spheric water budgets was noticeable but less significant. In the arid 
interior region, reduced soil moisture appeared to enhance atmospheric 
moisture convergence, which favors precipitation increase. Such 

Fig. 10. Boxplots depicting the variation in components of the monthly joint atmospheric-terrestrial water budgets for the Eastern southern Africa region (ESAF). 
Each panel displays the monthly budget values (upper) derived from all ensemble simulations and the changes (bottom) between perturbed experiments of WRFH- 
(HWSD, GSDE, SGD) and WRFH-DEF. 
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suggested potential negative feedback in soil moisture-atmosphere in
teractions has also been pronounced in previous modeling studies for 
southern Africa (Cook et al., 2006; New et al., 2003; Yang et al., 2018), 
indicating that dry soil in combination with surface heating, reduces 
local moisture recycling, which is however compensated by moisture 
advection and convergence. Nevertheless, our results did not consis
tently show a significant increase in precipitation, with only slight in
creases observed in some local patches. This could be attributed to the 
difficulty in triggering the increased moisture convergence due to the 
general dryness of the region. Additionally, the soil moisture perturba
tions remain relatively small, and the prescribed regional modeling 
boundaries may also constrain the internal feedback mechanisms. 
Modeling extension towards fully coupled land 
surface-hydrology-atmosphere modeling can therefore contribute to the 
understanding and characterization of land-atmosphere feedbacks in 
southern Africa. 

By using four commonly used global soil data, we identified un
certainties in the numerical climate and weather models in representing 
regional water balances. Simulated water budgets displayed consistent 
seasonal variations but were highly sensitive to perturbations in soil 
datasets. Soil description uncertainties had a more pronounced impact 

on terrestrial fields, with monthly ET changes ranging in the order of 5 to 
13 % for the wetter eastern subregion (ESAF) and 5 to 30 % for the arid 
western subregion (WSAF) separated in the simulation area. 

Acknowledging the critical role of soil hydrophysical properties in 
partitioning precipitation into surface runoff and soil infiltration, our 
findings indicate that soil type uncertainties lead to runoff differences of 
up to 90 % in arid subregions. When examining precipitation and at
mosphere water convergence, modeling uncertainties attributed to soil 
perturbation are usually within 5 % and 30 %, respectively. These soil 
data-related uncertainties have significant implications for current 
modeling practices. 

Numerous studies have shown that land cover and large-scale 
vegetation changes substantially affect regional climate, including 
regional water cycles. In African, Glotfelty et al. (2021) found that 
implementing broad classes of land cover changes in regional climate 
models resulted in precipitation rate changes mostly within 0.5 mm 
day− 1 in Sub-Saharan Africa. Similarly, Smiatek and Kunstmann (2023) 
observed that potential band reforestation over the Sahel region led to 
nonsignificant changes in wet season precipitation (<0.5 mm day− 1) 
and runoff (<4 mm day− 1). These changes in regional water budgets are 
covered by our modeling variabilities induced by soil data uncertainties. 

Fig. 11. Boxplots depicting the variation in components of the monthly joint atmospheric-terrestrial water budgets for the western southern Africa region (WSAF). 
Each panel displays the monthly budget values (upper) derived from all ensemble simulations and the changes (bottom) between perturbed experiments of WRFH- 
(HWSD, GSDE, SGD) and WRFH-DEF. 
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Therefore, our study in accordance with other research on soil data 
perturbation (Dennis and Berbery, 2022; He et al., 2016; Lin and Cheng, 
2016; Pedruzzi et al., 2022) suggests that soil data play an equally or 
even more pronounced role in regulating the regional water cycle than 
land cover changes. Notably, the effects of certain large-scale vegetation 
changes highlighted in regional climate modeling, such as the broad 
worldwide deforestation (e.g., Arnault et al., 2023; Chen and Coauthors, 
2019; Lee and Berbery, 2012; Zhang et al., 2024), and long-term vege
tation restoration and afforestation in Northern China (e.g., Yu et al. 
2020; Wang et al. 2023), have been shown to be comparable in both 
magnitude and broadness to the impacts of soil data changes presented 
in this study. These changes affect atmospheric thermodynamics and 
moisture flux convergence, as well as the terrestrial water budgets. 
Furthermore, observational studies indicate that the rate of soil moisture 
increment in response to precipitation and the occurrence of subsurface 
water flow, is highly depending on the type of vegetation cover (Cheng 
et al., 2020; Tian et al., 2019). Therefore, it is crucial to fully consider 
changes in land surface boundaries in further modeling practice. 
Emphasizing the compounding influences of soil type and hydrophysical 
properties, as well as vegetation cover and parameters, will enhance the 
accuracy and reliability of current climate and water cycle modeling. 

Lastly, it is important to highlight that the impact of the uncertainty 
in soil representation on Earth system climate modeling comprises just 
one part of the broader landscape of uncertainties inherent in the current 
modeling strategy. Soil represents only one fraction of the boundary 
conditions that attributes the variance of the model simulation. A 
multitude of other sources of uncertainty arise from structural consid
erations (Howland et al., 2022; Karypidou et al., 2023; Zheng et al., 
2021), such as the representation of unresolved physical processes and 
the design of the model itself. Moreover, internal variability, arising 
from stochasticity due to nonlinear dynamic processes inherent to the 
atmosphere, introduces further layers of uncertainty into the modeling 
process (Bassett et al., 2020; Marthews et al., 2020; Palmer, 2001; 
Quenum et al., 2022). Nevertheless, it is imperative to acknowledge that 
refined soil mapping and the accurate representation of soil properties 
are crucial in enhancing the predictive capacity of current modeling 
systems. By comprehensively considering and recognizing the 
complexity of these uncertainties, we can better understand and predict 
the intricate dynamics of the Earth’s climate system. 
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soil functions assessment employing land use and climate scenarios at regional scale. 
J. Environ. Manage. 287, 112318 https://doi.org/10.1016/j.jenvman.2021.112318. 

Julien, P.Y., Saghafian, B., Ogden, F.L., 1995. Raster-based hydrologic modeling of 
spatially-varied surface runoff. J. Am. Water Resources Assoc. 31, 523–536. https:// 
doi.org/10.1111/j.1752-1688.1995.tb04039.x. 

Karypidou, M.C., Sobolowski, S.P., Sangelantoni, L., Nikulin, G., Katragkou, E., 2023. 
The impact of lateral boundary forcing in the CORDEX-Africa ensemble over 
southern. Africa. Geosci. Model Dev. 16, 1887–1908. https://doi.org/10.5194/gmd- 
16-1887-2023. 
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Sanchez, P.A., Ahamed, S., Carré, F., Hartemink, A.E., Hempel, J., Huising, J., 
Lagacherie, P., McBratney, A.B., McKenzie, N.J., Mendonça-Santos, M.D.L., 
Minasny, B., Montanarella, L., Okoth, P., Palm, C.A., Sachs, J.D., Shepherd, K.D., 
Vågen, T.-G., Vanlauwe, B., Walsh, M.G., Winowiecki, L.A., Zhang, G.-L., 2009. 
Digital soil map of the world. Science 325, 680–681. https://doi.org/10.1126/ 
science.1175084. 

Schaake, J.C., Koren, V.I., Duan, Q.-Y., Mitchell, K., Chen, F., 1996. Simple water balance 
model for estimating runoff at different spatial and temporal scales. J. Geophys. Res. 
101, 7461–7475. https://doi.org/10.1029/95JD02892. 

Schär, C., Lüthi, D., Beyerle, U., Heise, E., 1999. The soil–precipitation feedback: a 
process study with a regional climate model. J. Climate 12, 722–741. https://doi. 
org/10.1175/1520-0442(1999)012<0722:TSPFAP>2.0.CO;2. 

Senatore, A., Mendicino, G., Gochis, D.J., Yu, W., Yates, D.N., Kunstmann, H., 2015. 
Fully coupled atmosphere-hydrology simulations for the central Mediterranean: 
impact of enhanced hydrological parameterization for short and long time scales: 
fully coupled atmosphere-hydrology model. J. Adv. Model. Earth Syst. 7, 
1693–1715. https://doi.org/10.1002/2015MS000510. 

Shang, S., Arnault, J., Zhu, G., Chen, H., Wei, J., Zhang, K., Zhang, Z., Laux, P., 
Kunstmann, H., 2022. Recent increase of spring precipitation over the three-river 
headwaters region—water budget analysis based on global reanalysis (ERA5) and 
ET-tagging extended regional climate modeling. J. Clim. 35, 7199–7217. https://doi. 
org/10.1175/JCLI-d-21-0829.1. 

Shangguan, W., Dai, Y., Duan, Q., Liu, B., Yuan, H., 2014. A global soil data set for earth 
system modeling. J. Adv. Model. Earth Syst. 6, 249–263. https://doi.org/10.1002/ 
2013MS000293. 

Skamarock, W.C., Klemp, J.B., Dudhia, J., Gill, D.O., Liu, Z., Berner, J., Wang, W., 
Powers, J.G., Duda, M.G., Barker, D.M., Huang, X.-Y., 2019. A description of the 
advanced research WRF model version 4. UCAR/NCAR. https://doi.org/10.5065/ 
1DFH-6P97. 

Smiatek, G., Kunstmann, H., 2023. Potential impact of the pan-african great green wall 
on sahelian summer precipitation: a global modeling approach with MPAS. Earth. 
Interact. 27, 220013 https://doi.org/10.1175/EI-d-22-0013.1. 

Soil Survey Staff (NRCS):, 2017. United States Department of Agriculture: web Soil 
Survey, [WWW Document]. available at: http://websoilsurvey.nrcs.usda.gov/. 

Tian, J., Zhang, B., He, C., Han, Z., Bogena, H.R., Huisman, J.A., 2019. Dynamic response 
patterns of profile soil moisture wetting events under different land covers in the 
Mountainous area of the Heihe River Watershed, Northwest China. Agric. For. 
Meteorol. 271, 225–239. https://doi.org/10.1016/j.agrformet.2019.03.006. 

Verhoef, A., Egea, G., 2014. Modeling plant transpiration under limited soil water: 
comparison of different plant and soil hydraulic parameterizations and preliminary 
implications for their use in land surface models. Agric. For. Meteorol. 191, 22–32. 
https://doi.org/10.1016/j.agrformet.2014.02.009. 

Verseghy, D.L., 2007. Class-A Canadian land surface scheme for GCMS. I. Soil model. Int. 
J. Climatol. 11, 111–133. https://doi.org/10.1002/joc.3370110202. 

Vogel, M.M., Zscheischler, J., Seneviratne, S.I., 2018. Varying soil moisture–atmosphere 
feedbacks explain divergent temperature extremes and precipitation projections in 
central Europe. Earth Syst. Dynam. 9, 1107–1125. https://doi.org/10.5194/esd-9- 
1107-2018. 

Wang, T., Franz, T.E., Zlotnik, V.A., 2015. Controls of soil hydraulic characteristics on 
modeling groundwater recharge under different climatic conditions. J. Hydrol. 521, 
470–481. https://doi.org/10.1016/j.jhydrol.2014.12.040. 

Wang, X., Zhang, Z., Zhang, B., Tian, L., Tian, J., Arnault, J., Kunstmann, H., He, C., 
2023. Quantifying the impact of land use and land cover change on moisture 
recycling with convection-permitting WRF-tagging modeling in the agro-pastoral 
ecotone of Northern China. JGR Atmospheres 128. https://doi.org/10.1029/ 
2022JD038421 e2022JD038421.  

Wei, J., Dong, N., Fersch, B., Arnault, J., Wagner, S., Laux, P., Zhang, Z., Yang, Q., 
Yang, C., Shang, S., Gao, L., Yu, Z., Kunstmann, H., 2021. Role of reservoir regulation 
and groundwater feedback in a simulated ground-soil-vegetation continuum: a long- 
term regional scale analysis. Hydrol. Process. 35 https://doi.org/10.1002/ 
hyp.14341. 

Wigmosta, M.S., Vail, L.W., Lettenmaier, D.P., 1994. A distributed hydrology-vegetation 
model for complex terrain. Water Resour. Res. 30, 1665–1679. https://doi.org/ 
10.1029/94WR00436. 

Xue, Y., Zeng, F.J., Mitchell, K.E., Janjic, Z., Rogers, E., 2001. The impact of land surface 
processes on simulations of the U.S. hydrological cycle: a case study of the 1993 
flood using the ssib land surface model in the NCEP Eta regional model. Mon. Wea. 
Rev. 129, 2833–2860. https://doi.org/10.1175/1520-0493(2001)129<2833: 
TIOLSP>2.0.CO;2. 

Yang, L., Sun, G., Zhi, L., Zhao, J., 2018. Negative soil moisture-precipitation feedback in 
dry and wet regions. Sci. Rep. 8, 4026. https://doi.org/10.1038/s41598-018-22394- 
7. 

Yang, R., Friedl, M.A., 2003. Modeling the effects of three-dimensional vegetation 
structure on surface radiation and energy balance in boreal forests. J. Geophys. Res.: 
Atmospheres 108. https://doi.org/10.1029/2002JD003109. 

Yu, L., Liu, Y., Liu, T., Yan, F., 2020. Impact of recent vegetation greening on 
temperature and precipitation over China. Agricult. Forest Meteorol. 295, 108197 
https://doi.org/10.1016/j.agrformet.2020.108197. 

Zhang, Z., Arnault, J., Laux, P., Ma, N., Wei, J., Kunstmann, H., 2021. Diurnal cycle of 
surface energy fluxes in high mountain terrain: high-resolution fully coupled 
atmosphere-hydrology modelling and impact of lateral flow. Hydrol. Processes 35, 
e14454. https://doi.org/10.1002/hyp.14454. 

Zhang, Z., Arnault, J., Laux, P., Ma, N., Wei, J., Shang, S., Kunstmann, H., 2022. 
Convection-permitting fully coupled WRF-Hydro ensemble simulations in high 
mountain environment: impact of boundary layer- and lateral flow 
parameterizations on land–atmosphere interactions. Clim. Dyn. 59, 1355–1376. 
https://doi.org/10.1007/s00382-021-06044-9. 

Zhang, Z., Arnault, J., Wagner, S., Laux, P., Kunstmann, H., 2019. Impact of lateral 
terrestrial water flow on land-atmosphere interactions in the Heihe River Basin in 
China: fully coupled modeling and precipitation recycling analysis. J. Geophys. Res.: 
Atmospheres 124, 8401–8423. https://doi.org/10.1029/2018JD030174. 

Zhang, Z., Laux, P., Baade, J., Arnault, J., Wei, J., Wang, X., Liu, Y., Schmullius, C., 
Kunstmann, H., 2023. Impact of alternative soil data sources on the uncertainties in 
simulated land-atmosphere interactions. Agric. For. Meteorol. 339, 109565 https:// 
doi.org/10.1016/j.agrformet.2023.109565. 

Zhang, Z., Laux, P., Baade, J., Moutahir, H., Kunstmann, H., et al., 2024. Regional 
land–atmosphere interactions in Southern Africa: potential impact and sensitivity of 
forest and plantation change. In: von Maltitz, G.P., et al. (Eds.), Sustainability of 
Southern African Ecosystems under Global Change. Ecological Studies. Springer, 
Cham. https://doi.org/10.1007/978-3-031-10948-5_10 vol 248.  

Zheng, Z., Zhao, L., Oleson, K.W., 2021. Large model structural uncertainty in global 
projections of urban heat waves. Nat. Commun. 12, 3736. https://doi.org/10.1038/ 
s41467-021-24113-9. 

Zhou, S., Williams, A.P., Lintner, B.R., Berg, A.M., Zhang, Y., Keenan, T.F., Cook, B.I., 
Hagemann, S., Seneviratne, S.I., Gentine, P., 2021. Soil moisture–atmosphere 
feedbacks mitigate declining water availability in drylands. Nat. Clim. Chang. 11, 
38–44. https://doi.org/10.1038/s41558-020-00945-z. 

Z. Zhang et al.                                                                                                                                                                                                                                   

https://doi.org/10.5194/hess-24-75-2020
https://doi.org/10.1029/97JD00237
https://doi.org/10.1029/97JD00237
https://doi.org/10.1007/s00382-023-06710-0
http://refhub.elsevier.com/S0168-1923(24)00242-9/sbref0066
http://refhub.elsevier.com/S0168-1923(24)00242-9/sbref0066
https://doi.org/10.1029/2010JD015139
https://doi.org/10.1002/qj.49712757202
https://doi.org/10.1002/qj.49712757202
https://doi.org/10.1016/j.atmosenv.2021.118760
https://doi.org/10.3390/w14081192
https://doi.org/10.3390/w14081192
https://doi.org/10.1175/JCLI-d-12-00645.1
https://doi.org/10.1080/07055900.2015.1029870
https://doi.org/10.1080/07055900.2015.1029870
https://doi.org/10.1007/978-3-031-10948-5_6
https://doi.org/10.1007/978-3-031-10948-5_6
https://doi.org/10.1029/2018JD029004
https://doi.org/10.1029/2018JD029004
https://doi.org/10.1126/science.1175084
https://doi.org/10.1126/science.1175084
https://doi.org/10.1029/95JD02892
https://doi.org/10.1175/1520-0442(1999)012&tnqh_x003C;0722:TSPFAP&tnqh_x003E;2.0.CO;2
https://doi.org/10.1175/1520-0442(1999)012&tnqh_x003C;0722:TSPFAP&tnqh_x003E;2.0.CO;2
https://doi.org/10.1002/2015MS000510
https://doi.org/10.1175/JCLI-d-21-0829.1
https://doi.org/10.1175/JCLI-d-21-0829.1
https://doi.org/10.1002/2013MS000293
https://doi.org/10.1002/2013MS000293
https://doi.org/10.5065/1DFH-6P97
https://doi.org/10.5065/1DFH-6P97
https://doi.org/10.1175/EI-d-22-0013.1
http://websoilsurvey.nrcs.usda.gov/
https://doi.org/10.1016/j.agrformet.2019.03.006
https://doi.org/10.1016/j.agrformet.2014.02.009
https://doi.org/10.1002/joc.3370110202
https://doi.org/10.5194/esd-9-1107-2018
https://doi.org/10.5194/esd-9-1107-2018
https://doi.org/10.1016/j.jhydrol.2014.12.040
https://doi.org/10.1029/2022JD038421
https://doi.org/10.1029/2022JD038421
https://doi.org/10.1002/hyp.14341
https://doi.org/10.1002/hyp.14341
https://doi.org/10.1029/94WR00436
https://doi.org/10.1029/94WR00436
https://doi.org/10.1175/1520-0493(2001)129&tnqh_x003C;2833:TIOLSP&tnqh_x003E;2.0.CO;2
https://doi.org/10.1175/1520-0493(2001)129&tnqh_x003C;2833:TIOLSP&tnqh_x003E;2.0.CO;2
https://doi.org/10.1038/s41598-018-22394-7
https://doi.org/10.1038/s41598-018-22394-7
https://doi.org/10.1029/2002JD003109
https://doi.org/10.1016/j.agrformet.2020.108197
https://doi.org/10.1002/hyp.14454
https://doi.org/10.1007/s00382-021-06044-9
https://doi.org/10.1029/2018JD030174
https://doi.org/10.1016/j.agrformet.2023.109565
https://doi.org/10.1016/j.agrformet.2023.109565
https://doi.org/10.1007/978-3-031-10948-5_10
https://doi.org/10.1038/s41467-021-24113-9
https://doi.org/10.1038/s41467-021-24113-9
https://doi.org/10.1038/s41558-020-00945-z

	Sensitivity of joint atmospheric-terrestrial water balance simulations to soil representation: Convection-permitting couple ...
	1 Introduction
	2 Data and methodology
	2.1 Study area and soil datasets
	2.2 Coupled WRF-Hydro model and experiment design
	2.3 Observation based reference datasets
	2.4 Joint atmospheric-terrestrial water balance

	3 Results
	3.1 Model performance
	3.2 Impact on land-atmosphere interfaces
	3.3 Atmospheric thermodynamic response to surface changes
	3.4 Joint atmospheric and terrestrial water budgets

	4 Discussion and conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	Supplementary materials
	References


