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A B S T R A C T

As a diffusionless phase transformation, martensite evolves at the speed close to sound, with its kinetics
and morphology dominated by the mechanical energy. However, the mechanism of martensitic phase
transformation with the consideration of inertia is rarely investigated. This paper presents a multiphase-field
model, where the transformation strain in martensite performs as the mechanical wave source, and in return
the kinetic energy contributes to the driving force for phase transformation. As a result, the mechanical fields,
i.e., the stress and the velocity, are derived according to the increment of the transformation strain. The
propagation direction of the mechanical wave is corrected by considering the growth of the martensitic nucleus.
With the 1D and 2D analysis, as well as the comparison against 2D static case, the mechanism of martensitic
phase transformation is investigated, and the advantage of mechanical model accounting for inertia effects is
illustrated.
1. Introduction

Martensitic steel is often used in industrial production, medical
treatment and shipping, due to its advantages in terms of strength,
hardness and corrosion resistance [1–5]. Martensite is formed from
austenite during quenching, which results in a diffusionless phase
transformation. This is a rapid displacive phase transformation that
takes place close to the speed of sound [6–8]. Clapp [9] pointed out
that the kinetics and morphology of the martensitic phase transfor-
mation are dominated by the mechanical energy and defined that ‘‘A
martensitic transformation involves a cooperative motion of a set of atoms
across an interface causing a shape change and sound.’’. In a macroscopic
specimen subjected to impact loading, Xiao et al. [10] found that the
initial transformation front propagated at a speed of about 2.3 km∕s,
i.e., the elastic wave speed in austenite, and decreased to 0.7 km∕s
and finally to 0.58 km∕s. Planes et al. [11] collected and analyzed
the acoustic emission resulting from the sudden local displacement at
the transformation front, during the martensitic phase transformation.
Schwabe et al. [12] reported that martensitic phase transformation
completed within hundreds of ns for a film with the thickness of 500 nm,
during which the limitation of heat dissipation exists. From the time
scale perspective, a mechanical model accounting for inertia effects can
be established in which the martensitic phase transformation acts as a
mechanical wave source and, in turn, the kinetic energy contributes to
the driving force for the phase transformation.
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In Kashchenko et al. [13,14], a dynamic model with a control wave
process was proposed to analyze the formation of martensitic crystals.
Molecular Dynamics (MD) simulation was used to observe the marten-
sitic transformation after a compressive shock wave [15,16]. Wei et al.
[17] also used the MD method to simulate high-speed martensitic phase
transformation. The phase-field modeling, which derives the driving
force for the evolution of order parameters based on the free energy
functions, has been developed rapidly in recent decades, due to its
great advantages in reducing the large amount of effort in tracking
the interface [18–23]. This material microstructure modeling approach
is widely used in the simulation of solidification [24–26], flow [27–
29], fracture [30–32], composite material [33–35], battery [36–38],
and so on. Martensitic phase transformation is also widely investigated
by the phase-field modeling. Basak and Levitas [39], Tuma et al. [40]
and Babaei and Levitas [41] simulated martensitic phase transfor-
mation with finite strain. The interfacial tension during multivariant
martensitic phase transformation is also studied [42–44]. Xu and Kang
[45], Xu et al. [46] investigated the superelasticity property of NiTi
alloy during the martensitic phase transformation. Ahluwalia et al.
[47], Zhang et al. [48] and Mo et al. [49] analyzed the plasticity
induced by martensitic phase transformation. The phase-field modeling
is also used to simulate the different stages of phase transformation
for shape memory alloy under different loading conditions [50–54].
Furthermore, the martensitic phase transformation is also studied to-
gether with magnetics [55–57]. Jafarzadeh et al. [58] investigated
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the interaction between martensitic phase transformation and fracture
through analyzing the surface energy. Amirian et al. [59] presented the
evolution of twinning and fracture by solving the Ginzburg–Landau-
based phase-field theory and the mechanical equilibrium equation with
the finite element method. Cui et al. [60] reported the influence of
grain size on the martensitic morphology by considering the strain
accommodation. Rezaee-Hajidehi and Stupkiewicz [61] studied the
size effect in nano-indentation during multivariant martensitic phase
transformation through analyzing the interfacial energy. Cho et al.
[62] and Idesman et al. [63] analyzed the influence of inertial forces
on martensitic phase transformation, and proved that the occurring
of martensitic phase transformation is of the order of magnitude of
1 ps. However, to the authors’ knowledge, a detailed analysis of the
mechanism for martensitic phase transformation and an insight into
the interaction between martensitic phase transformation and kinetic
energy are still missing.

For the phase-field modeling involving solid mechanics, several
homogenization methods have been proposed to interpolate the me-
chanical fields at the diffuse interface. The most commonly used meth-
ods are the Voigt/Taylor (VT) model [64,65], the Reuss/Sachs (RS)
model[66,67] and the Khachaturyan (KH) model [68,69]. The VT and
RS models respectively assume identical strains and stresses across
the diffuse interface, while the KH model can be considered as a
combination of the VT and RS models [70]. However, excess interfacial
energy is generated by all these three methods [71]. In order to correct
the interfacial energy, Schneider et al. [72] derived the formula for the
effective stiffness matrix and the stress tensor according to the balance
conditions at the sharp interface. Schöller et al. [73] and Herrmann
et al. [74] have applied this balance-condition-based homogenization
scheme to simulate crack propagation. Herrmann et al. [75] utilized it
to study the elasto-plasticity property during martensitic phase trans-
formation. Liu et al. [76] further developed this derivation procedure
for dynamic mechanics and carried out the corresponding parameter
study in Liu et al. [77]. The dynamic mechanical model in Liu et al.
[76] is further developed in this paper, where the martensitic phase
transformation acts as a mechanical wave source and the kinetic energy
in return contributes to the driving force for the phase transformation.

The remaining part of this paper is organized as follows. The
multiphase-field model is presented in Section 2, where the order
parameter 𝜙𝛼 for each phase/grain evolves according to the partial
erivative of the total free energy and the noise. Section 3 introduces
he mechanical model accounting for inertia effects within the frame-
ork of multiphase-field method. Specifically, it presents the governing
quation for mechanical wave, derives the increment of the stress,
he elastic strain and the velocity fields, and corrects the formula for
he mechanical fields by considering the direction of the mechanical
ave propagation. Numerical validations in 1D and 2D are analyzed

n Section 4 to verify the phase-field modeling coupled with dynamic
echanics. The 2D results are also compared with those from phase-

ield modeling in conjunction with static mechanics. Last but not least,
onclusions are addressed in Section 5.

. Multiphase-field model

In the multiphase-field model, the order parameter 𝜙𝛼 represents
the volume fraction of the phase/grain 𝛼. For a system with 𝑁 order
parameters, the constraint ∑𝑁

𝛼 𝜙𝛼 = 1
(

0 ≤ 𝜙𝛼 ≤ 1
)

should be satisfied
from the physical point of view. With the 𝑁-tuples 𝝓 =

(

𝜙1, 𝜙2,… , 𝜙𝑁
)

,
the total free energy  is expressed as [78,79]:

 = ∫𝑉

(

𝜖𝑎 (𝛁𝝓) + 1
𝜖
𝜔 (𝝓) + 𝑓𝑐ℎ𝑒𝑚 (𝝓) + 𝑓𝑑 (𝝓, 𝜺, 𝒗)

)

d𝑉 , (1)

where ∇ is the gradient operator and 𝑉 denotes the total volume of the
imulated domain.
2

According to Steinbach and Pezzolla [80], supposing 𝛾𝛼𝛽 is the 𝛼−𝛽
nterfacial energy, the gradient energy density 𝑎 (𝛁𝝓) reads:

(𝛁𝝓) = −
∑

𝛼,𝛽>𝛼
𝛾𝛼𝛽∇𝜙𝛼∇𝜙𝛽 , (2)

nd the potential energy density 𝜔 (𝝓) takes the form [78]:

(𝝓) = 16
𝜋2

∑

𝛼,𝛽>𝛼
𝛾𝛼𝛽𝜙𝛼𝜙𝛽 . (3)

Nestler et al. [78] added the high-order term 𝛾𝛼𝛽𝛿𝜙𝛼𝜙𝛽𝜙𝛿 to Eq. (3)
to avoid the appearance of the artificial third phase in the two-phase
region. Daubner et al. [81] proved that the combination of Eqs. (2)
and (3) can also suppress the occurrence of the artificial third phase.
In the multiphase-field model, the sharp interface between different
phases/grains is approximated by the diffuse interface. 𝜖 is a parameter
related to the thickness of the diffuse interface. If only the interfacial
energy is considered, i.e., 𝑎 (𝛁𝝓) and 𝜔 (𝝓), it can be deduced that the
diffuse interfacial width in the equilibrium state is 𝐿 = 𝜖𝜋2∕4.

In Eq. (1), 𝑓𝑐ℎ𝑒𝑚 (𝝓) is the chemical energy density, which is equal to
𝑓 𝛼
𝑐ℎ𝑒𝑚 in the bulk region 𝜙𝛼 = 1 and is continuously interpolated across

the diffuse interface region 0 < 𝜙𝛼 < 1. Thus, 𝑓𝑐ℎ𝑒𝑚 (𝝓) is calculated as:

𝑓𝑐ℎ𝑒𝑚 (𝝓) =
∑

𝛼
𝑓 𝛼
𝑐ℎ𝑒𝑚ℎ

(

𝜙𝛼
)

, (4)

where ℎ
(

𝜙𝛼
)

is a continuous interpolation function, which satisfies the
requirement ∑

𝛼 ℎ
(

𝜙𝛼
)

= 1 (0 ≤ ℎ
(

𝜙𝛼
)

≤ 1). ℎ
(

𝜙𝛼
)

can be calculated
with 𝝓 in different ways, as shown in Schneider et al. [79]. In this
paper, ℎ

(

𝜙𝛼
)

= 𝜙𝛼 , and 𝑓 𝛼
𝑐ℎ𝑒𝑚 is constant for each phase 𝛼.

With 𝜺 and 𝒗 respectively representing the infinitesimal strain ten-
sor in the Voigt notation and the material particle velocity vector,
𝑓𝑑 (𝝓, 𝜺, 𝒗) in Eq. (1) denotes the kinetic energy density, which is
divided into two parts, i.e., the elastic energy density 𝑓𝜀 (𝝓, 𝜺) and
the kinetic energy density 𝑓𝑣 (𝝓, 𝒗). Similar to 𝑓𝑐ℎ𝑒𝑚 (𝝓), 𝑓𝑑 (𝝓, 𝜺, 𝒗) is
xpressed as an interpolation of all phase contributions:

𝑑 (𝝓, 𝜺, 𝒗) =
∑

𝛼
𝑓 𝛼
𝑑 (𝜺𝛼 , 𝒗𝛼)ℎ

(

𝜙𝛼
)

=
∑

𝛼
𝑓 𝛼
𝜀 (𝜺𝛼)ℎ

(

𝜙𝛼
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑓𝜀(𝝓,𝜺)

+
∑

𝛼
𝑓 𝛼
𝑣 (𝒗𝛼)ℎ

(

𝜙𝛼
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑓𝑣(𝝓,𝒗)

.

(5)

The derivation of 𝑓𝑑 (𝝓, 𝜺, 𝒗) and its contribution in the process of phase
transformation will be presented in detail in Sections 3 and 4.

Based on Eq. (1), the evolution process of each phase/grain 𝛼 can
be simulated through the evolution of the order parameter 𝜙𝛼 , which
is derived as [82]:

𝜕𝜙𝛼

𝜕𝑡
= − 1

�̃�𝜖

�̃�
∑

𝛽
𝑀𝛼𝛽

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝛿𝑖𝑛𝑡𝑓

𝛿𝜙𝛼
−

𝛿𝑖𝑛𝑡𝑓

𝛿𝜙𝛽
+

8
√

𝜙𝛼𝜙𝛽

𝜋

(

𝛿𝑏𝑢𝑙𝑘

𝛿𝜙𝛼
−

𝛿𝑏𝑢𝑙𝑘

𝛿𝜙𝛽

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐼

+𝜖𝛥�̂�𝛼𝛽

⎤

⎥

⎥

⎥

⎥

⎥

⎦

+
𝜕𝜁
𝜕𝜙𝛼

, (6)

where 𝑡 denotes the time variable, while �̃� is the number of local active
phases. 𝑀𝛼𝛽 is the mobility for the 𝛼−𝛽 interface.  = 𝑖𝑛𝑡𝑓 +𝑏𝑢𝑙𝑘, with
𝑖𝑛𝑡𝑓 referring to the volumetric integration of the interfacial energy
𝑎 (𝛁𝝓) and 𝜔 (𝝓), while 𝑏𝑢𝑙𝑘 contains the volumetric integration of the
bulk energy 𝑓𝑐ℎ𝑒𝑚 (𝝓) and 𝑓𝑑 (𝝓, 𝜺, 𝒗).

In Eq. (6), 𝛿𝑖𝑛𝑡𝑓∕𝛿𝜙𝛼 is calculated as:

𝛿𝑖𝑛𝑡𝑓

𝛿𝜙𝛼
=
(

𝜕
𝜕𝜙𝛼

− ∇ ⋅
𝜕

𝜕∇𝜙𝛼

)

(

𝜖𝑎 (𝛁𝝓) + 1
𝜖
𝜔 (𝝓)

)

, (7)

where ∇⋅ represents the divergence operator. A similar operation ap-
lies to 𝛿𝑖𝑛𝑡𝑓∕𝛿𝜙𝛽 , 𝛿𝑏𝑢𝑙𝑘∕𝛿𝜙𝛼 and 𝛿𝑏𝑢𝑙𝑘∕𝛿𝜙𝛽 in Eq. (6). Steinbach

[82] pointed out that part I in Eq. (6) can result in correct interfacial
kinetics, when using the obstacle-type potential energy, i.e., Eq. (3)
together with ℎ

(

𝜙
)

= 𝜙 .
𝛼 𝛼
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In Eq. (6), the term 𝜖𝛥�̂�𝛼𝛽 = 𝜖
(

�̂�
(

∇𝜙𝛼
)

− �̂�
(

∇𝜙𝛽
))

is inserted, with

�̂�
(

∇𝜙𝛼
)

= 𝛾𝑐𝛼

(

∇2𝜙𝛼 − |∇𝜙𝛼|∇ ⋅
∇𝜙𝛼
|∇𝜙𝛼|

)

. (8)

where 𝛾𝑐𝛼 is a parameter to numerically stabilize the interface, and does
not contribute to the interfacial driving force. For detailed derivation
and discussion please refer to Selzer [83] and Schoof et al. [84].

For a correct interaction between gradient and potential energy
density, the interfacial energy 𝛾𝛼𝛽 in Eq. (3) should be corrected to �̂�𝛼𝛽 =
𝛾𝛼𝛽+𝛾𝑐𝛼 . Since martensite transforms from austenite through quenching,
the difference in the chemical energy density between austenite and
martensite is so great that the energetic barrier only occurs when 𝛾𝑐𝛼 ≫
𝛾𝛼𝛽 , as shown by Schoof et al. [84]. Therefore, for the 1D simulation of
the martensitic phase transformation, it is necessary to set 𝛾𝑐𝛼 ≫ 𝛾𝛼𝛽 to
create an energetic barrier between the austenite and the martensite,
even if there is no interfacial curvature.

In Eq. (6), 𝜁 refers to the noise at the interface, which is expressed
as:

𝜁 =

{

∑

(𝛼,𝛽>𝛼) 𝜙𝛼𝜙𝛽 ⋅ 𝐴𝜁
(

𝑡 % 𝑡𝜁 = 0
)

0
(

𝑡 % 𝑡𝜁 ≠ 0
)

,
(9)

where 𝐴𝜁 is the noise amplitude, % denotes the modulo operator, and 𝑡𝜁
represents the time interval for the application of the noise. It should be
noted that the constraint ∑𝑁

𝛼 𝜙𝛼 = 1
(

0 ≤ 𝜙𝛼 ≤ 1
)

applies when there
is noise at the interface. If the growth of a new phase is energetically
favorable, autocatalytic nucleation occurs. Otherwise, the new phase
will disappear after several time steps.

3. Dynamic mechanics in the multiphase-field model

For the mechanical model accounting for inertia effects, the gov-
erning equation for mechanical wave is presented in Section 3.1. Based
on the evolution of martensite and the transformation strain, the in-
crement of the stress and the elastic strain is derived in Section 3.2,
and the velocity field is then obtained in Section 3.3. Considering
the growth pattern of the martensitic variants, the formula for the
mechanical fields is corrected in Section 3.4, by taking the direction
of the mechanical wave propagation into account.

3.1. Governing equation

Supposing that 𝒘 = {𝑤1, 𝑤2, 𝑤3}𝖳 denotes the displacement, 𝜌 is
the effective mass density [76], 𝝈𝑚 = {𝝈𝑚

1 ,𝝈
𝑚
2 ,𝝈

𝑚
3 } represents the stress

tensor in the matrix notation, 𝒙 = {𝑥1, 𝑥2, 𝑥3}𝖳 constructs the global
Cartesian coordinate system, and 𝒇 = {𝑓1, 𝑓2, 𝑓3}𝖳 describes the wave
source, the wave equation is expressed as:

𝜕2𝒘
𝜕𝑡2

= 1
𝜌

( 𝜕𝝈𝑚
1

𝜕𝑥1
+

𝜕𝝈𝑚
2

𝜕𝑥2
+

𝜕𝝈𝑚
3

𝜕𝑥3

)

+ 𝒇 . (10)

ith 𝝈 as the stress tensor in the Voigt notation, 𝜺 as the infinitesimal
lastic strain tensor in the Voigt notation, and 𝑲 as the 6 × 6 effective
tiffness tensor [76], the constitutive equation reads:

= 𝑲𝜺. (11)

Based on Eqs. (10) and (11), the governing equation for dynamic
mechanics is expressed by 𝝈 and 𝒗 as:
𝜕𝒖
𝜕𝑡

= 𝑪1
𝜕𝒖
𝜕𝑥1

+ 𝑪2
𝜕𝒖
𝜕𝑥2

+ 𝑪3
𝜕𝒖
𝜕𝑥3

+ 𝒔, (12)

where 𝒖 = {𝝈, 𝒗}𝖳 and 𝒔 represents the wave source. 𝑪1, 𝑪2 and 𝑪3 are
he coefficient matrices and can be found in the Appendix A.

The method used in the multiphase-field to solve Eq. (12) has
een presented in detail in Liu et al. [76]. It should be pointed out
hat the displacement 𝒘 and the velocity 𝒗 correspond to the elastic
eformation.
3

t

3.2. Derivation of stress and elastic strain

With the unit vectors {𝒏, 𝒔, 𝒕}={
(

𝑛1, 𝑛2, 𝑛3
)𝖳 ,

(

𝑠1, 𝑠2, 𝑠3
)𝖳 ,

(

𝑡1, 𝑡2, 𝑡3
)𝖳}

constructing the local Cartesian coordinate system, and 𝒏 as the vector
normal to the diffuse interface, the stress tensor 𝝈 is transformed into
the local coordinate system and divided into the normal components
𝝈𝑛 = {𝜎𝑛𝑛, 𝜎𝑛𝑡, 𝜎𝑛𝑠}𝖳 and the tangential components 𝝈𝑡 = {𝜎𝑡𝑡, 𝜎𝑠𝑠, 𝜎𝑡𝑠}𝖳,
respectively. The same operation is applied to the elastic strain tensor
𝜺, which results in the local elastic strain tensor with the normal
components 𝜺𝑛 = {𝜀𝑛𝑛, 𝜀𝑛𝑡, 𝜀𝑛𝑠}𝖳 and the tangential components 𝜺𝑡 =
{𝜀𝑡𝑡, 𝜀𝑠𝑠, 𝜀𝑡𝑠}𝖳. Correspondingly, for the phase/grain 𝛼, the local stiffness
tensor 𝛼

𝐵 , which satisfies {𝝈𝛼
𝑛 ,𝝈

𝛼
𝑡 }

𝖳 = 𝛼
𝐵{𝜺

𝛼
𝑛 , 𝜺

𝛼
𝑡 }

𝖳, is divided into four
3 × 3 submatrices:

𝛼
𝐵 =

(

𝛼
𝑛𝑛 𝛼

𝑛𝑡
𝛼
𝑡𝑛 𝛼

𝑡𝑡

)

. (13)

Liu et al. [76] proved that the normal components 𝝈𝑛 and the tan-
gential components 𝜺𝑡 are continuous across the sharp interface. When
considering the transformation strain �̃� on the basis of the derivation
procedure in Liu et al. [76], it is easy to conclude that the tangential
components 𝜺𝑡 of the total strain 𝜺 = 𝜺 + �̃� are continuous across the
harp interface. Therefore, the derivation procedure for the stress 𝝈

in Schneider et al. [72] can be adopted in this work, which results in:

𝝈 = 𝑲𝜺 − �̃��̃� = 𝑲𝜺 +𝑴𝖳
𝜀

⎛

⎜

⎜

⎝


−1
𝑛𝑛 O


𝖳

𝑛𝑡
−1
𝑛𝑛 −I

⎞

⎟

⎟

⎠

(

�̃�𝑛
�̃� 𝑡

)

, (14)

where �̃� is defined as the analogous stiffness matrix corresponding to
the transformation strain contribution �̃� =

(

�̃�𝑛, �̃� 𝑡
)𝖳. O and I are the

null matrix and the identity matrix, respectively. The transformation
matrix 𝑴𝜀 is derived from {𝒏, 𝒔, 𝒕} and is shown in the Appendix A.
The matrices  𝑛𝑛 and  𝑛𝑡 are obtained from the local stiffness tensor
𝛼
𝐵 and the interpolation function ℎ

(

𝜙𝛼
)

as:

 𝑛𝑛 = −
∑

𝛼

(

𝛼
𝑛𝑛
)−1 ℎ

(

𝜙𝛼
)

, (15)

 𝑛𝑡 =
∑

𝛼

(

𝛼
𝑛𝑛
)−1 𝛼

𝑛𝑡ℎ
(

𝜙𝛼
)

. (16)

�̃�𝑛 and �̃� 𝑡 are the transformation strain contribution in the normal
direction and in the tangential direction, respectively, which are ex-
pressed as follows:

�̃� =
(

�̃�𝑛
�̃� 𝑡

)

=
⎛

⎜

⎜

⎝

∑

𝛼

[

�̃�𝛼𝑛 +
(

𝛼
𝑛𝑛
)−1 𝛼

𝑛𝑡�̃�
𝛼
𝑡

]

ℎ
(

𝜙𝛼
)

∑

𝛼

[

𝛼
𝑡𝑡 − 𝛼

𝑡𝑛
(

𝛼
𝑛𝑛
)−1 𝛼

𝑛𝑡

]

�̃�𝛼𝑡 ℎ
(

𝜙𝛼
)

⎞

⎟

⎟

⎠

=
∑

𝛼
�̂�𝛼ℎ

(

𝜙𝛼
)

, (17)

where �̂�𝛼 =
(

�̃�𝛼𝑛 +
(

𝛼
𝑛𝑛
)−1 𝛼

𝑛𝑡�̃�
𝛼
𝑡 ,
[

𝛼
𝑡𝑡 − 𝛼

𝑡𝑛
(

𝛼
𝑛𝑛
)−1 𝛼

𝑛𝑡

]

�̃�𝛼𝑡
)𝖳

is the anal-
ogous transformation strain for the phase/grain 𝛼.

Since martensite evolves at a high transformation rate, for each time
step, it is assumed that the increment of the total strain induced by
the phase transformation is zero, i.e., 𝛥𝜺 (𝛥𝝓) = 𝛥𝜺 (𝛥𝝓) + 𝛥�̃� (𝛥𝝓) = 𝟎,

here 𝛥 represents the increment of the corresponding variable within
he current time step. This means that 𝛥𝜺 (𝛥𝝓) = −𝛥�̃� (𝛥𝝓). Therefore,
ccording to Eq. (14), the increment of the stress 𝝈 within the current
ime step is calculated as:

𝝈 = −�̃�𝛥�̃� . (18)

Based on Eq. (17), the increment of the transformation strain con-
ribution is:

�̃� =
∑

𝛼
�̂�𝛼𝛥ℎ

(

𝜙𝛼
)

. (19)

Since the sharp interface is replaced by the diffuse interface in the
ultiphase-field modeling, a proof of the equivalent increase of the

ransformation strain contribution is presented in Appendix B. 𝛥𝝈 is

hen inserted as the wave source into the total stress tensor 𝝈.
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According to Eq. (11), the increment of the elastic strain tensor 𝛥𝜺
is equivalent to:

𝛥𝜺 = 𝑲−1𝛥𝝈. (20)

By referring to the derivation procedure of the effective stiffness matrix
𝑲 in Liu et al. [76], Eq. (20) is rewritten as:

𝛥𝜺 = 𝑀−1
𝜀

⎛

⎜

⎜

⎝

−I  𝑛𝑡
−1
𝑡𝑡

O −
−1
𝑡𝑡

⎞

⎟

⎟

⎠

𝛥�̃� , (21)

here the matrix  𝑡𝑡 is also derived from the local stiffness tensor 𝛼
𝐵

and the interpolation function ℎ
(

𝜙𝛼
)

:

 𝑡𝑡 =
∑

𝛼

(

𝛼
𝑡𝑡 − 𝛼

𝑡𝑛
(

𝛼
𝑛𝑛
)−1 𝛼

𝑛𝑡

)

ℎ
(

𝜙𝛼
)

. (22)

3.3. Derivation of velocity

According to the definition of velocity, 𝒗 = {𝑣1, 𝑣2, 𝑣3}𝖳 = 𝒘∕𝑡, it
can be obtained that:

𝛥𝒘 = 𝒗𝛥𝑡. (23)

Since the displacement is induced by the transformation strain and
𝛥𝜺 (𝛥𝝓) = −𝛥�̃� (𝛥𝝓), the elastic strain tensor in the matrix notation
s expressed as 𝜀𝑚𝑖𝑗 = − 1

2

(

𝑤𝑖∕𝑥𝑗 +𝑤𝑗∕𝑥𝑖
)

(𝑖, 𝑗 = 1, 2, 3). Similarly, the
infinitesimal elastic rotation tensor is 𝛾𝑚𝑖𝑗 = − 1

2

(

𝑤𝑖∕𝑥𝑗 −𝑤𝑗∕𝑥𝑖
)

. There-
ore, the following can be derived:

𝑤𝑖 = −
3
∑

𝑗=1

(

𝜀𝑚𝑖𝑗 + 𝛾𝑚𝑖𝑗
)

𝛥𝑥𝑗𝑖, (24)

where 𝛥𝑥𝑖𝑗 represents the movement of 𝑤𝑗 in the direction of 𝑥𝑖.
herefore, based on Eqs. (23) and (24), it can be concluded that:

𝑖 = −
3
∑

𝑗=1

(

𝜀𝑚𝑖𝑗 + 𝛾𝑚𝑖𝑗
)

𝑉𝑖𝑗 , (25)

here 𝑉𝑖𝑗 = 𝑉𝑃 (𝑖 = 𝑗) and 𝑉𝑖𝑗 = 𝑉𝑆 (𝑖 ≠ 𝑗) respectively are the
ropagation velocities of the P-wave (primary wave or longitudinal
ave) and the S-wave (secondary wave or transverse wave), which are

alculated as:

𝑃 =

√

𝐾11
𝜌

, (26)

𝑆 =

√

𝐾44
𝜌

. (27)

During the martensitic phase transformation, it is assumed that the
igen-rotation tensor is equal to zero, i.e., �̃�𝑚 = 𝟎. Hence, the corre-
pondingly induced elastic rotation tensor is equal to zero, i.e., 𝜸𝑚 = 𝟎.
hus, according to Eq. (25), the increase of the velocity 𝒗 in the current
ime step is calculated as:

𝑣𝑖 = −
3
∑

𝑗=1
𝛥𝜀𝑚𝑖𝑗𝑉𝑖𝑗 , (28)

where the increment of the elastic strain tensor 𝛥𝜀𝑚𝑖𝑗 can easily be
btained from Eq. (21). 𝛥𝒗 is then inserted into the total velocity vector
as the wave source, similar to 𝛥𝝈.

.4. Direction of mechanical wave propagation

A 2D example is shown in Fig. 1 to schematically discuss the
irection of mechanical wave propagation caused by the transformation
train. An aqua-colored nucleus is predefined in the center of the
omain. In order to simplify the analysis, the transformation strain of

( )
4

he aqua-colored phase is assumed as �̃�11, 0, 0, 0, 0, 0 , with �̃�11 > 0, p
nd the Poisson’s ratio 𝜈 = 0. The nucleus grows into the fuchsia-
olored area, as shown in Fig. 1(a). Figs. 1 (b) and (c) respectively
how the increment of the stress 𝛥𝜎11 and the velocity 𝛥𝑣1, calculated
y Eqs. (18) and (28), where the colors blue and red denote negative
nd positive values, respectively. It is observed that Figs. 1 (a), (b)
nd (c) are incompatible. In Fig. 1(a), the grown nucleus compresses
ts surroundings in the direction 𝑥1, which means that the left side of
he nucleus should move to the left and the right side to the right. As
or the top and bottom sides, they should stay there and not compress
he surroundings, which is due to the symmetrical property and the
oisson’s ratio 𝜈 = 0. However, Figs. 1 (b) and (c) show that the entire
uchsia-colored area is compressed in the direction 𝑥1 and moves to
he right. This is not only inconsistent with the phase transformation
n Fig. 1(a), but also non-physical.

It is worth analyzing the growth of the nucleus within the blue
ircle in Fig. 1(a), which is enlarged in Fig. 1(d). The nucleus develops
unit growth to the top right, with an angle 𝜃 to the direction 𝑥1.

t can be divided into a growth of cos𝜃 in the direction 𝑥1 and sin𝜃
n the direction 𝑥2. Therefore, the increment of the stress should be
𝜎11 = 𝐾11𝛥𝜀11|𝑛1|, and the increment of the velocity 𝛥𝑣1 = −𝑉𝑃𝛥𝜀11𝑛1,
here 𝛥𝜀11 is calculated from Eq. (21). The stress and velocity corrected

by considering the direction of nucleus growth are shown in Figs. 1 (e)
and (f). This means that the fuchsia area is compressed in the direction
𝑥1 and moves outwards, but the amplitude decreases from the vertical
center to the upper/lower area. This analysis procedure also applies
to the other elements of the strain tensor, resulting in the following
correction for the increase in stress and velocity:

(𝛥𝝈)𝑐 = 𝑲
(

𝛥𝜺
)𝑐 , (29)

𝛥𝑣𝑐𝑖 = −
3
∑

𝑗=1

(

𝛥𝜀𝑚𝑖𝑗
)𝑐

𝑉𝑖𝑗 , (30)

where the corrected elastic strain tensor in the matrix notation is
alculated as:
(

𝛥𝜀𝑚𝑖𝑗
)𝑐

= 𝜀𝑚𝑖𝑗𝑛𝑗 . (31)

orrespondingly, the corrected elastic strain tensor in the Voigt nota-
ion is:

𝜀𝑐𝑖𝑗 =

{

𝜀𝑚𝑖𝑖 |𝑛𝑖| (𝑖 = 𝑗)
𝜀𝑚𝑖𝑗 |𝑛𝑗 | + 𝜀𝑚𝑗𝑖|𝑛𝑖| (𝑖 < 𝑗) .

(32)

The local time iteration in the mechanical model accounting for
nertia effects and the global solver loop are provided in Appendix C.

. Numerical simulation

The mechanical model accounting for inertia effects is validated
n Section 4.1 using a 1D example, where the formation process of
he martensitic morphology is analyzed along with the change in total
echanical energy, stress and velocity, as well as the velocity range

or the transformation front. In Section 4.2, the model is applied to
D simulations with one martensitic nucleus and multiple martensitic
uclei. For comparison, 2D modeling with static mechanics is also
resented. It is concluded that the mechanical model accounting for
nertia effects is more accurate for simulating the rapid displacive phase
ransformation.

.1. 1D validation

A 1D example is shown in Fig. 2, where there are three different
hases, i.e., the austenite (A), the first martensite variant (M1) and the

second martensite variant (M2). The simulation setup and the material
roperties are shown in Tables 1 and 2. It should be pointed out that
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Fig. 1. Correction of the stress and the velocity, according to the growth of the nucleus. (a) The growth of the nucleus. (b) The stress and (c) the velocity fields calculated by
Eqs. (18) and (28), which is not only inconsistent with the phase transformation in (a), but also non-physical. (d) Local analysis of the nucleus growth. (e) The corrected stress
and (f) the corrected velocity fields based on the local analysis in (d).
Table 1
Simulation setup.
𝜖 𝐴𝜁 𝑡𝜁 (ps) 𝛥𝑡 (ps) 𝜏𝐴𝑀 𝜏𝑀1𝑀2

𝛾𝛼𝛽
(

J∕m2) 𝛾𝑐𝛼
(

J∕m2) Boundary

4 0.02 0.5 0.01 0.00039∕𝑉𝑃 ∞ 0.01 0.9 Non-reflective [76]
Table 2
Material properties.

Phase 𝜌
(

kg∕m3) 𝐸 (GPa) 𝜈 𝑓 𝛼
𝑐ℎ𝑒𝑚

(

J∕m3) �̃�

A
7800 200 0

0 (0,0,0,0,0,0)
M1 −5.89 × 108 (0.03,0,0,0,0,0)
M2 −5.89 × 108 (−0.03,0,0,0,0,0)

only 28.0% of the transformation strain is used to generate the kinetic
energy that contributes to the driving force of the martensitic phase
transformation, while the mechanical energy induced by the residual
72.0% of the transformation strain is to be consumed in other processes,
such as plastic deformation. Unless explicitly stated, these parameters
also apply to the 2D simulations in this section.

A martensitic nucleus M1 is predefined in the parent austenite grain
A, at the time 𝑡 = 0 ps. At this time, there is no stress and no velocity.
As the nucleus grows, the stress 𝜎11 and the velocity 𝑣1 propagate
and accumulate, which are plotted in Fig. 2(b) in red and blue color,
respectively, at the time 𝑡 = 5 ps. Accordingly, the kinetic energy 𝑓𝑑
increases, which counteracts the difference in chemical energy between
austenite and martensite, until it is energetically favorable for a new M2
to grow. When the new M starts to grow, it releases the kinetic energy
5

2

accumulated by the previous M1, through reducing the absolute values
of stress and velocity. As M2 continues to grow, the absolute values of
stress and velocity increase again, but with a different sign, as shown in
Figs. 2 (a) and (b) at the time 𝑡 = 24 ps. Then it becomes energetically
favorable for a new M1 to grow. This process repeats and causes the
total kinetic energy to alternately increase and decrease, as well as the
maximum absolute values of stress and velocity, as shown in Figs. 2 (c)
and (d). According to Bekker et al. [85] and Amini et al. [86], there is
only an elastic wave if the stress is below the critical value that triggers
the stress-induced phase transformation. If the stress is greater than the
critical value, but less than the plastic yield limit, both elastic wave and
phase transformation occur. If the stress is above the plastic yield limit,
the phase transformation is followed by plastic deformation.

In Fig. 2(b), it can be seen that there are evolving as well as
fixed stresses and velocities. The evolving stress and velocity are at
the front of the martensitic phase transformation. Their profiles and
values change due to the transformation strain induced by the progres-
sive martensitic phase transformation. Moreover, the fixed stress and
velocity are overtaken by the front of the martensitic phase transfor-
mation. While propagating, their profiles and values are not affected
by the martensitic phase transformation, except for those close to the
transformation front, which is due to the fact that the velocity of the
transformation front (VTF) is not exactly the same as the velocity of
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Fig. 2. 1D martensitic phase transformation. Evolution of (a) the martensitic variants and the corresponding (b) stress and velocity fields. Development of (c) the total kinetic
energy and (d) the maximum/minimum values of stress and velocity in solid red and blue lines, respectively. (e) Velocities of the transformation front and the mechanical wave.
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the mechanical wave (VMW), as shown in Fig. 2(e). The VMW is fixed
at 5.06 km∕s, according to Eq. (26), while the VTF fluctuates between
2 km∕s and 10 km∕s, with an average value of 5.49 km∕s. This coincides
with the phenomenon that the minimum total mechanical energy in
Fig. 2(c) is greater than zero, except at 𝑡 = 0 ps. In Fig. 2(b), the
first fixed stress and velocity waves appear wider and higher than
others, which is caused by the initial setting of the stress and velocity
values. For the sake of simplicity, the initial stress and velocity in
the simulation are set to zero, which should have approximately the
profiles of the evolving stress and velocity at 𝑡 = 65 ps. It can be seen
that the following waves of the fixed stress and velocity are quite small.

In Fig. 2(e), the VTF decreases from 𝑡 = 0 ps, since the driving force
decreases due to the increment of the kinetic energy. When a new M2
starts to grow, the VTF increases dramatically to around 10 km∕s, since
both the chemical energy and the kinetic energy contribute positively
to the growth of the new M2. The VTF then gradually decreases to
round 2 km∕s until a new M1 occurs. This process repeats periodically
nd generates M1 and M2 variants alternately. The periodic variation
f the VTF is also indicated by the change in the total kinetic energy in
ig. 2(c). It takes about 4 ps for the mechanical energy to increase from
he minimum value to the maximum value, with the mechanical energy
ounteracting the chemical energy and reducing the driving force of the
ransformation, while the mechanical energy decreases by about 2 ps,
ith the mechanical energy having a positive effect on the nucleation
nd initial growth of a new martensite variant. In Amini et al. [86], it
6

s

as reported that the VTF of the stress-induced phase transformation
ncreases when the loading rate is increased.

.2. 2D analysis

Two 2D examples are studied, i.e., with one M1 nucleus at the
enter as shown in the first row and first column in Fig. 3, and with
wo M1 and one M2 nuclei at the boundary or corner as shown in the
irst row and fourth column in Fig. 3. For both cases, the simulation
imension is 500 nm × 500 nm. Compared to the 1D validation, 𝜏𝐴𝑀 =

0.00036∕𝑉𝑃 , 𝜈 = 0.3, and the respective transformation strains �̃� for the
M1 and M2 variants are (0.03,−0.03, 0, 0, 0, 0) and (−0.03, 0.03, 0, 0, 0, 0).

ith the setting of the transformation strain �̃�, a martensitic phase
ransformation without volumetric dilatation [84] is considered.

The simulation results are shown in Figs. 3 and 4. In Fig. 3, the
irst three columns correspond to the example with one M1 nucleus.
he last two columns correspond to the results from the second 2D
xample. The M1 and M2 variants are observed to nucleate alternately
n the 𝑥1 and 𝑥2 directions, which is similar to the 1D case. Due to
he restriction to 2D, both the M1 and M2 variants grow at an angle of
5◦ to the horizontal direction, which corresponds to the observation
n Schoof et al. [84]. With the growth of martensite, the values of
elocity and stress fluctuate between positive and negative. In the first
hree columns, the values of 𝜎11 on the left and right have the same
ign. It is the same for the values of 𝜎 at the bottom and top, while
22
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Fig. 3. 2D evolution of the martensitic variants, the velocity (km∕s), the stress (GPa) and the mechanical energy (J∕m3) fields. The color legend for each row is at the right side,
and the time for each column is at the bottom. In the first row and first column, the black circle at the center represents the initial M1 nucleus. In the first row and fourth column,
the black semicircle at the left boundary and the quarter circle at the upper-right corner are the initial M1 nuclei, while the quarter circle at the lower-right corner is the initial
M2 nucleus.
they are opposite for the values of 𝑣1 and 𝑣2. This ensures that the
martensite grows through a physical interaction with its environment,
as analyzed in Section 3.4. In the last row, there is also some kinetic
energy left from the transformation front, as the VTF does not exactly
match the VMW, and the averaged VTF is slightly larger than the VMW,
i.e., 6.03 km∕s versus 5.31 km∕s. This is similar to the observation in
the 1D case. In the last two columns, the three nuclei start to grow
at the boundary and stop when they meet. Meanwhile, the mechanical
7

wave continues to propagate and overlap, causing the maximum kinetic
energy density to reach 2.2 ×109 J∕m3 at 𝑡 = 50 ps. It is much higher than
the maximum kinetic energy density in the first four columns, which is
1.1 ∼ 1.3 × 109 J∕m3.

The profile of 𝜙M1
over several cross-sections is plotted in Fig. 4.

The value of 𝜙M1
smoothly shifts between 0 and 1, with a finite diffuse

interface. There are some places where 𝜙M1
reaches neither 0 nor 1,

such as in the middle of Figs. 4 (a) and (c), and at the side of Figs. 4
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Fig. 4. Profile of 𝜙M1
at different cross-sections, where each profile corresponds to the cross-section with the same color. (a) to (d) for the first 2D example and (e) to (h) for the

second 2D example.
(b), (f) and (g), because the cross-section is tangential to the diffuse
interface. Compared to all interfaces in Fig. 4(d) and the left-sided
interfaces in Fig. 4(e), the length of the diffuse interface appears slightly
longer in other cross-sections, which is because these cross-sections are
not perpendicular to the interfaces. On the right-hand side of Fig. 4(e),
the value of 𝜙M1

fluctuates slightly around 0.5. This is because the
growth from the upper corner M1 meets that from the lower corner
M2 at 𝑥2 = 250 nm, and both stop growing here. This phenomenon also
leads to sharp jumps in 𝜙M1

, as shown in Figs. 4 (f), (g) and (h).
For the purpose of comparison, the 2D example with one M1 nucleus

at the center is also used to simulate martensitic phase transformation
under static mechanics. In the static case, the displacement in the
normal direction is fixed to zero, while it is free in the tangential
direction. The transformation strains �̃� for the M1 and M2 variants are
changed to (0.1,−0.1, 0, 0, 0, 0) and (−0.1, 0.1, 0, 0, 0, 0), respectively. The
noise amplitude 𝐴𝜁 is reset to 0.1. The results at 𝑡 = 26 ps and 45 ps are
presented in Fig. 5.

Compared to the dynamic case, the absolute value of the non-
zero transformation strain and the noise amplitude are larger, because
the mechanical energy in the static case is distributed over the entire
simulated domain in the equilibrium state and the dynamic effect is
eliminated. The mechanical energy density around the transformation
front decreases. Therefore, a higher percentage of the mechanical en-
ergy induced by the transformation strain and a higher noise amplitude
are used to trigger nucleation and stimulate the growth of a new
8

martensitic variant. On the other hand, the strongly utilized transforma-
tion strain, about 93.5%, restricts the width of the martensite, i.e., from
about 32 nm to about 22 nm. Broader martensitic variants can be
obtained with a smaller absolute value of the non-zero transformation
strain. As a consequence, the VTF should also be reduced to produce
a correct morphology of the martensite, which is not consistent with
the intrinsic character of martensitic phase transformation, i.e., a rapid
displacive phase transformation which is dominated by mechanical
energy and which produces sound.

Even with the current settings, the averaged VTF in the static case
is less than half of the VMW, i.e., 2.58 km∕s compared to 5.31 km∕s.
In addition, it is much lower than that of the dynamic case, which
is 6.03 km∕s. This phenomenon can be observed from the results at
𝑡 = 45 ps in Figs. 3 and 5. It is caused by the distribution pattern of
the mechanical energy, as shown in the last row of Figs. 3 and 5. In the
static case, the mechanical energy in the central horizontal/vertical line
is in a state of equilibrium. This means that the difference in mechanical
energy between the different phases is much smaller compared to the
dynamic case. As a result, the static mechanical energy not only slows
down the growth of the current martensitic variant, but also hardly
contributes to the nucleation of a new martensitic variant. However,
the stress concentration at the martensitic boundary generates a greater
gradient of mechanical energy near the central horizontal/vertical line.
Therefore, it is energetically favorable to introduce a new martensitic

variant to reduce the mechanical energy gradient and stimulate the
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Fig. 5. Martensitic phase transformation with static mechanics. (a) and (b) are the evolution of the martensitic variants. (c) and (d) are the corresponding mechanical energy 𝑓𝑠
(J∕m3).
phase transformation at these positions. This is confirmed by Figs. 5 (a)
and (b), in which the nuclei appear at the boundary near the central
horizontal/vertical line, rather than at the position of high interfacial
curvature as in the dynamic case. Then the nuclei grow towards the
central line and stop after they have met.

In summary, although the martensitic morphology is similar in
the dynamic and static mechanical models, the martensitic variants
nucleate and grow in different ways, due to the different mechanical
phenomena. However, if the time scale is taken into account, the
mechanical model accounting for inertia effects is more accurate in
reproducing the process of the rapid displacive phase transformation.

5. Conclusions

In this paper, a mechanical model accounting for inertia effects
is proposed to simulate and analyze the process of martensitic phase
transformation.

In the simulation results, the martensitic variants are generated
alternately. Since the mechanical model accounting for inertia effects is
established based on the observation that martensitic phase transforma-
tion takes place close to the speed of sound, the VTF is compared with
the VMW. When the driving force contributed by the kinetic energy
plays a positive role in the growth of one martensitic variant, the VTF
increases up to 10 km/s. While it decreases to 2 km/s, when the kinetic
energy becomes energetically favorable to introduce another marten-
sitic variant. As a result, the averaged VTF is slightly larger than the
VMW. The direction of mechanical wave propagation is determined by
9

the process of martensitic phase transformation, and in return strongly
affects the morphology of martensite. With the signs of the stresses and
velocities displayed in the 2D analysis, the formula for the mechanical
fields derived in Section 3.4 is verified by the correct martensitic
morphology. At different cross-sections, the profile of the phase state
of M1 is plotted to demonstrate the uniform shift of the corresponding
order parameter 𝜙M1

. Due to the non-perpendicular angle between the
cross-section and the diffuse interface or the encounter of different
variants, 𝜙M1

does not reach 0/1 or jumps at some positions. The 2D
results are also compared with those of static mechanics. Although the
dynamic and static mechanical models produce a similar martensitic
morphology, the martensitic variants nucleate and grow in different
ways, due to different mechanical phenomena. In the dynamic case,
nucleation occurs at the central horizontal/vertical line and grows at
an angle of 45◦ to the horizontal direction, since the non-zero trans-
formation strain is normal strain and the kinetic energy accumulates
during propagation. While in the static case, nucleation starts near the
central horizontal/vertical line and develops along the boundary of
the adjacent martensitic variant, because of the stress concentration.
From the time scale perspective, the mechanical model accounting for
inertia effects is more accurate for simulating the rapid displacive phase
transformation.

In this paper, a preliminary study on martensitic phase transfor-
mation, using the proposed mechanical model accounting for inertia
effects, was presented. In the future, simulations considering other fac-
tors should be investigated, such as different Young’s moduli and Pois-

son’s ratios for different phases, different absolute values of non-zero
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transformation strain in different directions, nucleation and growth of
martensitic variants at the interface between two different austenitic
grains, martensitic phase transformation in a 3D domain, and so forth.
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ppendix A. Coefficient matrices and transformation matrix

According to Eqs. (10) and (11), the coefficient matrices 𝑪1, 𝑪2 and
𝑪3 in Eq. (12) are expressed as:

𝑪1 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 0 0 0 0 0 𝐾11 0 0
0 0 0 0 0 0 𝐾21 0 0
0 0 0 0 0 0 𝐾31 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 𝐾55
0 0 0 0 0 0 0 𝐾66 0
1
𝜌 0 0 0 0 0 0 0 0
0 0 0 0 0 1

𝜌 0 0 0
0 0 0 0 1

𝜌 0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (A.1)

2 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

0 0 0 0 0 0 0 𝐾12 0
0 0 0 0 0 0 0 𝐾22 0
0 0 0 0 0 0 0 𝐾32 0
0 0 0 0 0 0 0 0 𝐾44
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 𝐾66 0 0
0 0 0 0 0 1

𝜌 0 0 0
0 1

𝜌 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

, (A.2)
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⎝ 𝜌 ⎠
3 =
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⎜

⎜

⎜

⎜
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⎜

⎜

⎜
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⎝

0 0 0 0 0 0 0 0 𝐾13
0 0 0 0 0 0 0 0 𝐾23
0 0 0 0 0 0 0 0 𝐾33
0 0 0 0 0 0 0 𝐾44 0
0 0 0 0 0 0 𝐾55 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 1

𝜌 0 0 0 0
0 0 0 1

𝜌 0 0 0 0 0
0 0 1

𝜌 0 0 0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (A.3)

The transformation matrix 𝑴𝜀 in Eq. (14) is given by the unit
ectors {𝒏, 𝒔, 𝒕} as:

𝑴𝜀 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝑛1𝑛1 𝑛2𝑛2 𝑛3𝑛3 𝑛2𝑛3 𝑛1𝑛3 𝑛1𝑛2
2𝑛1𝑡1 2𝑛2𝑡2 2𝑛3𝑡3 𝑛2𝑡3 + 𝑛3𝑡2 𝑛1𝑡3 + 𝑛3𝑡1 𝑛1𝑡2 + 𝑛2𝑡1
2𝑛1𝑠1 2𝑛2𝑠2 2𝑛3𝑠3 𝑛2𝑠3 + 𝑛3𝑠2 𝑛1𝑠3 + 𝑛3𝑠1 𝑛1𝑠2 + 𝑛2𝑠1
𝑠1𝑠1 𝑠2𝑠2 𝑠3𝑠3 𝑠2𝑠3 𝑠1𝑠3 𝑠1𝑠2
𝑡1𝑡1 𝑡2𝑡2 𝑡3𝑡3 𝑡2𝑡3 𝑡1𝑡3 𝑡1𝑡2
2𝑠1𝑡1 2𝑠2𝑡2 2𝑠3𝑡3 𝑠2𝑡3 + 𝑠3𝑡2 𝑠1𝑡3 + 𝑠3𝑡1 𝑠1𝑡2 + 𝑠2𝑡1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

(A.4)

Appendix B. Equivalent increment of transformation strain con-
tribution

In order to prove the equivalent increment of the transformation
strain contribution 𝛥�̃� , Fig. B.1 shows a 1D example to illustrate the
proof procedure.

First, the case of the sharp interface in Fig. B.1(a) is analyzed. From
Eq. (17), the transformation strain contribution from the phase/grain 𝛼
is �̃�𝛼 = �̂�𝛼 . When the sharp interface moves by 𝛥𝑥, the total increment
of �̃�𝛼 becomes:

𝛥�̃�𝛼
sharp = ∫

𝑥𝑒

𝑥𝑠
�̃�𝛼d𝑥 = �̂�𝛼𝛥𝑥, (B.1)

where 𝑥𝑠 and 𝑥𝑒 are the position of the interface at the start and end
of the movement 𝛥𝑥, respectively.

For the diffuse interface case in Fig. B.1(b), the transformation strain
contribution from the phase/grain 𝛼 is �̃�𝛼 = �̂�𝛼ℎ

(

𝜙𝛼
)

. When the diffuse
interface moves by 𝛥𝑥, the increment of the interpolation function
ℎ
(

𝜙𝛼
)

is calculated as:

𝛥ℎ
(

𝜙𝛼
)

=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

0
(

𝑥 ≤ 𝑥1
)

1 − ℎ𝑠
(

𝜙𝛼
) (

𝑥1 < 𝑥 ≤ 𝑥1 + 𝛥𝑥
)

ℎ𝑒
(

𝜙𝛼
)

− ℎ𝑠
(

𝜙𝛼
) (

𝑥1 + 𝛥𝑥 < 𝑥 ≤ 𝑥2
)

ℎ𝑒
(

𝜙𝛼
) (

𝑥2 < 𝑥 < 𝑥2 + 𝛥𝑥
)

0
(

𝑥 ≥ 𝑥2 + 𝛥𝑥
)

,

(B.2)

where ℎ𝑠
(

𝜙𝛼
)

and ℎ𝑒
(

𝜙𝛼
)

are the respective interpolation functions at
the beginning and end of the interface movement 𝛥𝑥, while 𝑥1 and 𝑥2
are the beginning and end of the diffuse interface with the interpolation
function ℎ𝑠

(

𝜙𝛼
)

. Supposing that 𝐻
(

𝜙𝛼
)

is the antiderivative of the in-
terpolation function ℎ

(

𝜙𝛼
)

, the total increment of �̃�𝛼 is then calculated
as:

𝛥�̃�𝛼
diffuse = ∫

𝑥2+𝛥𝑥

𝑥1
�̂�𝛼𝛥ℎ

(

𝜙𝛼
)

d𝑥 = �̂�𝛼
(

𝛥𝑥 +𝐻𝑒
(

𝜙𝛼
)

|

𝑥2+𝛥𝑥
𝑥1+𝛥𝑥

−𝐻𝑠
(

𝜙𝛼
)

|

𝑥2
𝑥1

)

.

(B.3)

From Fig. B.1, it is easy to conclude that 𝐻𝑒
(

𝜙𝛼
)

|

𝑥2+𝛥𝑥
𝑥1+𝛥𝑥

= 𝐻𝑠
(

𝜙𝛼
)

|

𝑥2
𝑥1 .

Therefore, Eq. (B.4) is equal to:

𝛥�̃�𝛼
diffuse = �̂�𝛼𝛥𝑥. (B.4)
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Fig. B.1. Propagation of the interface. (a) and (b) respectively are the sharp and diffuse interface cases.
Fig. C.1. Numerical scheme for simulation. (a) to (c) are the local time iteration in the mechanical model accounting for inertia effects. (d) Global solver loop.
From Eqs. (B.1) and (B.4), it can be concluded that the increment of
the transformation strain contribution is equivalent in the case of the
sharp interface and in the case of the diffuse interface.

Appendix C. Local time iteration in mechanical model accounting
for inertia effects and global solver loop

The implementation of dynamic mechanics is described as shown
in Figs. C.1 (a)–(c), where a 1D case is illustrated as an example. In
each time step, the kinetic energy density 𝑓 𝑡

𝑑 is plotted according to
the current state of the order parameters, as shown in Fig. C.1(a). In
the following time interval 𝛥𝑡, the order parameters evolve under the
driving force, which comes from the interfacial energy, the chemical
energy and the kinetic energy, as shown in Fig. C.1(b). The kinetic
energy density 𝑓 𝑡

𝑑 then propagates under the updated state of the order
parameters. Assuming that the increment of the order parameters is 𝛥𝝓,
he increment of the kinetic energy density 𝛥𝑓 𝑡

𝑑 is calculated and added
o the total kinetic energy density 𝑓 𝑡

𝑑 , resulting in the updated kinetic
nergy density 𝑓 𝑡+𝛥𝑡

𝑑 . Therefore, at the end of the current time step as
hown in Fig. C.1(c), both the order parameters and the kinetic energy
11

ensity are updated, which form the initial state of the next time step.
Based on the derivations in Sections 2 and 3, the solver loop for
the multiphase-field model is demonstrated in Fig. C.1(d). The program
begins by solving the evolution equation for each order parameter,
i.e., Eq. (6). A numerical solution of the governing equation for the
mechanical wave follows, i.e., Eq. (12), but without considering the
source term 𝒔. This means that the mechanical wave propagates over
the domain with the updated order parameters. Then 𝛥𝝓 is calculated
by comparing the values in the current time step with those in the pre-
vious time step to determine whether a wave source is present or not.
More precisely, if 𝛥𝝓 ≠ 𝟎, the increments of the stress tensor 𝛥𝝈 and
the velocity vector 𝛥𝒗 are calculated according to Eqs. , respectively.
Otherwise, both increments are set to 𝟎. Then the mechanical fields are
updated by adding the propagated and the increased stress and velocity
fields. Finally, the number of calculated loops 𝑛 is compared with the
predefined number of loops 𝑛max to determine whether the solver loop
continues to run or not.
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