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A B S T R A C T

For the stochastic heat equation with multiplicative noise we consider the problem of estimating
the diffusivity parameter in front of the Laplace operator. Based on local observations in space,
we first study an estimator, derived in Altmeyer and Reiß (2021) for additive noise. A stable
central limit theorem shows that this estimator is consistent and asymptotically mixed normal.
By taking into account the quadratic variation, we propose two new estimators. Their limiting
distributions exhibit a smaller (conditional) variance and the last estimator also works for
vanishing noise levels. The proofs are based on local approximation results to overcome the
intricate nonlinearities and on a stable central limit theorem for stochastic integrals with respect
to cylindrical Brownian motion. Simulation results illustrate the theoretical findings.

1. Introduction

We consider estimation of the diffusivity parameter 𝜗 > 0 in the stochastic heat equation with multiplicative noise

⎧

⎪

⎨

⎪

⎩

𝑑𝑋(𝑡) = 𝜗𝛥𝑋(𝑡) 𝑑𝑡 + 𝜎(𝑋(𝑡)) 𝑑𝑊 (𝑡), 0 < 𝑡 ≤ 𝑇 ,
𝑋(0) = 𝑋0,
𝑋(𝑡)|𝜕𝛬 = 0, 0 < 𝑡 ≤ 𝑇 .

(1.1)

Here, 𝑊 is a cylindrical Brownian motion with values in 𝐿2(𝛬), where 𝛬 is an open bounded interval in R, 𝑑𝑊 (𝑡)∕𝑑𝑡 is also referred
to as space–time white noise. The function 𝜎 ∶ R → R+ generates a multiplicative noise, see Section 2 for precise assumptions.
Multiplicative noise appears naturally in stochastic partial differential equations (SPDEs) as a scaling limit or to ensure positivity of
the solution, see e.g. the examples given in [17,18] or [4].

Diffusivity estimation has emerged as a benchmark inference problem for SPDEs. The spectral estimation approach, initiated
by [12], has been shown to give reliable estimation results even for more general semi-linear equations like the stochastic Navier–
Stokes equation [8], yet always assuming additive noise. In [9] a specific case of multiplicative noise has been treated which leads
to geometric Brownian motions in the spectral decomposition of the Laplacian. In [6] also Bayesian estimators have been developed
and analysed in this setting.
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Similarly, discrete observations of the solution 𝑋 in time and space give rise to realised 𝑝-variation estimators for quite general
classes of SPDEs. Most notably, in [18] a precise convergence analysis of 𝑝-variation of 𝑋(𝑡, 𝑥) in space 𝑥 with 𝑝 = 2 and in time

with 𝑝 = 4 is given, which leads to a consistent diffusivity estimator in the multiplicative noise case, while convergence rates or
symptotic normality are not considered. Estimation of the multiplicative noise function 𝜎(⋅) from discrete observations is treated
n [7] with intriguing phenomena arising in central limit theorems for 𝑝-variations.

Recently, methods for local observations in space have provided a new methodology for linear and semi-linear SPDEs with
dditive noise [2,3]. This has enabled the estimation of diffusivity in a stochastic cell motility model from experimental data [1].
he underlying SPDE with additive noise describes chemical concentrations, for which, however, a multiplicative noise structure
ight be more natural as well as more in line with the empirical data than additive noise.

Starting point of our work is the question whether the additive noise estimator (ANE) derived in [3] for local observations of a
tochastic heat equation with additive noise is robust against a multiplicative noise misspecification the same way, as it is against
onlinear reaction terms [2]. Technically, we cannot use a splitting technique to separate the nonlinear from the linear part and
e must derive new tools to analyse the estimation error. This is achieved by a stepwise disentanglement and localisation of the

tatistics, carried out in Proposition 5.7 below. The result is that the estimator has the same rate as for additive noise, but it is
symptotically mixed normal under stable convergence with a suboptimal conditional variance for varying 𝜎(⋅).

Therefore we improve the ANE by taking into account the varying quadratic variation of the martingale term in the ANE.
he multiplicative noise estimator (MNE) obtained this way satisfies a central limit theorem with smaller variance provided the
ultiplicative noise 𝜎(⋅) is bounded away from zero. Since in many cases it is natural that 𝜎(⋅) vanishes at some boundary values,
e improve the MNE to the stabilised multiplicative noise estimator (SMNE), satisfying a stable central limit theorem with small

onditional variance even when 𝜎(⋅) vanishes sometimes.
The exact setting is introduced in Section 2. The construction of the estimators, the main asymptotic results and an application

o confidence intervals are presented in Section 3. In Section 4 we discuss the implementation of the estimators and their behaviour
or three fundamentally different noise specifications. The detailed proofs are delegated to Section 5. The stable convergence results
equire a martingale representation theorem in terms of cylindrical Brownian motion and rely on asymptotic orthogonality of
artingales by spatial localisation, which might be of independent interest. This material is therefore gathered in Section 6.

. The model

.1. Notations

We write R+ ∶= [0,∞), 𝑎 ∧ 𝑏 ∶= min(𝑎, 𝑏) and 𝑎 ∨ 𝑏 ∶= max(𝑎, 𝑏). By 𝐴𝛿 ≲ 𝐵𝛿 we mean that there exists some constant 𝐶 > 0 such
hat 𝐴𝛿 ≤ 𝐶𝐵𝛿 for all values 𝛿 under consideration. Here, we work with 𝛿 ∈ (0, 1) or with the convergence 𝛿 → 0. Convergence in
robability and convergence in distribution are denoted by

P
→ and

𝑑
→, respectively. The symbol

𝑠𝑡𝑎𝑏𝑙𝑦
←←←←←←←←←←←←←←←←←←←←←←→ denotes stable convergence,

ee e.g. [13], Chapter VIII. Section 5. We say that 𝑋𝛿
𝑠𝑡𝑎𝑏𝑙𝑦
←←←←←←←←←←←←←←←←←←←←←←→ 𝑋 holds on an event 𝐺 if 𝑋𝛿𝟏𝐺

𝑠𝑡𝑎𝑏𝑙𝑦
←←←←←←←←←←←←←←←←←←←←←←→ 𝑋𝟏𝐺. The symbol 𝐴𝛿 = 𝑂P(𝐵𝛿) for

andom variables 𝐴𝛿 , 𝐵𝛿 means that 𝐴𝛿∕𝐵𝛿 is tight, that is, sup𝛿 P(|𝐴𝛿| > 𝐶|𝐵𝛿|) → 0 as 𝐶 → ∞. The notation 𝐴𝛿 = 𝑜P(𝐵𝛿) stands for

𝛿∕𝐵𝛿
P
→ 0 as 𝛿 → 0.

Let 𝛬 be an open bounded interval in R and consider the space 𝐿2(𝛬) equipped with the usual 𝐿2-norm ‖ ⋅‖ ∶= ‖ ⋅‖𝐿2(𝛬) and the
calar product ⟨⋅, ⋅⟩ ∶= ⟨⋅, ⋅⟩𝐿2(𝛬). The space 𝐶𝑏(R) of all continuous bounded functions on R is equipped with the supremum norm
⋅ ‖∞. 𝐻𝑠(𝛬) denotes the 𝐿2-Sobolev space of order 𝑠 on 𝛬 and 𝐻1

0 (𝛬) the space of all 𝑓 ∈ 𝐻1(𝛬) with 𝑓 (𝑥) = 0 for 𝑥 ∈ 𝜕𝛬. We use
he standard Laplace operator notation 𝛥𝑧 = 𝑧′′ for 𝑧 ∈ 𝐻2(R), even in the simple one-dimensional case.

.2. The stochastic heat equation

Let (𝛺,ℱ , (ℱ𝑡)0≤𝑡≤𝑇 ,P) be a stochastic basis equipped with the cylindrical Brownian motion 𝑊 taking values in 𝐿2(𝛬). The
iltration (ℱ𝑡)0≤𝑡≤𝑇 is assumed to be generated by the cylindrical Brownian motion and augmented by P-null sets. We study the
tochastic heat equation (1.1) with multiplicative noise. The initial value 𝑋0 ∈ 𝐿2(𝛬) is supposed to be deterministic and continuous
n �̄�. We require throughout the following two assumptions.

ssumption (S). The function 𝜎 ∶ R → R+ is continuous.

The stochastic term 𝜎(𝑋(𝑡)) 𝑑𝑊 (𝑡) is therefore understood as 𝐵(𝑋(𝑡)) 𝑑𝑊 (𝑡) with the multiplicative Nemytskii operators 𝐵(𝑢) ∶
2(𝛬) → 𝐿2(𝛬), defined by

(𝐵(𝑢)𝑣) (𝑥) = 𝜎(𝑢(𝑥))𝑣(𝑥), 𝑥 ∈ 𝛬, 𝑢 ∈ 𝐶(�̄�), 𝑣 ∈ 𝐿2(𝛬),

oting that 𝜎(𝑢(⋅)) ∈ 𝐿∞(𝛬) holds for continuous and thus bounded functions 𝑢 ∈ 𝐶(�̄�).

ssumption (X). The stochastic partial differential equation (1.1) admits a unique weak solution (𝑋(𝑡), 0 ≤ 𝑡 ≤ 𝑇 ) taking
alues in 𝐿2(𝛬), which is continuous in both (time and space) variables, i.e., 𝑋 ∈ 𝐶([0, 𝑇 ];𝐶(�̄�;R)) P-a.s., and satisfies for any
∈ 𝐻1

0 (𝛬) ∩𝐻2(𝛬) and 𝑡 ∈ [0, 𝑇 ]

⟨𝑋(𝑡), 𝑧⟩ = ⟨𝑋0, 𝑧⟩ + 𝜗
𝑡
⟨𝑋(𝑠), 𝛥𝑧⟩ 𝑑𝑠 +

𝑡
⟨𝑧, 𝜎(𝑋(𝑠)) 𝑑𝑊 (𝑠)⟩ , P − 𝑎.𝑠. (2.1)
2

∫0 ∫0
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Sufficient conditions for Assumption (X) will be discussed in Example 3.7. In our setup a weak solution is also a mild solution
see e.g. Theorem 6.5 in [10]). If (𝑆𝜗(𝑡), 𝑡 ≥ 0) is the strongly continuous semigroup on 𝐿2(𝛬) generated by 𝜗𝛥, then the solution
(𝑋(𝑡), 0 ≤ 𝑡 ≤ 𝑇 ) to Eq. (1.1) is given by the variation-of-constants formula

𝑋(𝑡) = 𝑆𝜗(𝑡)𝑋0 + ∫

𝑡

0
𝑆𝜗(𝑡 − 𝑠)𝜎(𝑋(𝑠)) 𝑑𝑊 (𝑠), P − 𝑎.𝑠. (2.2)

2.3. The observation scheme

As motivated in [1,3], we observe the solution process (𝑋(𝑡, 𝑥), 𝑡 ∈ [0, 𝑇 ], 𝑥 ∈ 𝛬) only locally in space around some point 𝑥0 ∈ 𝛬.
hat point 𝑥0 as well as the terminal time 𝑇 ∈ (0,∞) remain fixed.

More precisely, the observations are given by a spatial convolution of the solution process with a kernel 𝐾𝛿,𝑥0 , localising at 𝑥0
as the resolution 𝛿 tends to zero. This kernel might for instance model the point spread function in microscopy.

For 𝑧 ∈ 𝐿2(R) and 𝛿 ∈ (0, 1) introduce the scalings

𝛬𝛿,𝑥0 ∶= 𝛿−1
(

𝛬 − 𝑥0
)

= {𝛿−1(𝑥 − 𝑥0) ∶ 𝑥 ∈ 𝛬},

𝑧𝛿,𝑥0 (𝑥) ∶= 𝛿−1∕2𝑧
(

𝛿−1(𝑥 − 𝑥0)
)

, 𝑥 ∈ R.

Throughout this paper, 𝐾 ∈ 𝐻2(R) denotes a fixed function of compact support in 𝛬1,𝑥0 , called kernel. The compact support ensures
that 𝐾𝛿,𝑥0 is localising around 𝑥0 as 𝛿 → 0 and that 𝐾𝛿,𝑥0 ∈ 𝐻1

0 (𝛬) ∩ 𝐻2(𝛬). The scaling with 𝛿−1∕2 simplifies calculations due to
‖𝐾𝛿,𝑥0‖ = ‖𝐾‖𝐿2(R), while the basic estimators are invariant with respect to kernel scaling.

Local measurements of (1.1) at the point 𝑥0 with resolution level 𝛿 ∈ (0, 1) are described by the real-valued processes (𝑋𝛿,𝑥0 (𝑡), 0 ≤
𝑡 ≤ 𝑇 ) and (𝑋𝛥

𝛿,𝑥0
(𝑡), 0 ≤ 𝑡 ≤ 𝑇 ) given by

𝑋𝛿,𝑥0 (𝑡) =
⟨

𝑋(𝑡), 𝐾𝛿,𝑥0

⟩

, (2.3)

𝑋𝛥
𝛿,𝑥0

(𝑡) =
⟨

𝑋(𝑡), 𝛥𝐾𝛿,𝑥0

⟩

. (2.4)

he process (𝑋𝛿,𝑥0 (𝑡), 0 ≤ 𝑡 ≤ 𝑇 ) satisfies 𝑋𝛿,𝑥0 (0) =
⟨

𝑋0, 𝐾𝛿,𝑥0

⟩

and by partial integration

𝑑𝑋𝛿,𝑥0 (𝑡) = 𝜗𝑋𝛥
𝛿,𝑥0

(𝑡) 𝑑𝑡 +
⟨

𝜎(𝑋(𝑡))𝐾𝛿,𝑥0 , 𝑑𝑊 (𝑡)
⟩

. (2.5)

. Estimation methods and main results

.1. The additive noise estimator

We study first the augmented maximum likelihood estimator �̂�𝛿 from [3], derived for the stochastic heat equation with additive
pace–time white noise.

efinition 3.1. The additive noise estimator (ANE) �̂�𝛿 of the parameter 𝜗 > 0 is defined as

�̂�𝛿 =
∫ 𝑇
0 𝑋𝛥

𝛿,𝑥0
(𝑡) 𝑑𝑋𝛿,𝑥0 (𝑡)

∫ 𝑇
0 (𝑋𝛥

𝛿,𝑥0
(𝑡))2 𝑑𝑡

. (3.1)

According to (2.5), the numerator ∫ 𝑇
0 𝑋𝛥

𝛿,𝑥0
(𝑡) 𝑑𝑋𝛿,𝑥0 (𝑡) equals

𝜗∫

𝑇

0

(

𝑋𝛥
𝛿,𝑥0

(𝑡)
)2

𝑑𝑡 + ∫

𝑇

0
𝑋𝛥

𝛿,𝑥0
(𝑡)

⟨

𝜎(𝑋(𝑡))𝐾𝛿,𝑥0 , 𝑑𝑊 (𝑡)
⟩

and the fundamental error decomposition is given by

𝛿−1(𝜗𝛿 − 𝜗) =
𝛿

1∕2
𝛿

⋅

(

𝛿2𝛿
)1∕2

𝛿2𝛿
, (3.2)

here

𝛿 = ∫

𝑇

0
𝑋𝛥

𝛿,𝑥0
(𝑡)

⟨

𝜎(𝑋(𝑡))𝐾𝛿,𝑥0 , 𝑑𝑊 (𝑡)
⟩

,

𝛿 = ∫

𝑇

0
‖𝜎(𝑋(𝑡))𝐾𝛿,𝑥0‖

2
(

𝑋𝛥
𝛿,𝑥0

(𝑡)
)2

𝑑𝑡,

𝛿 = ∫

𝑇

0

(

𝑋𝛥
𝛿,𝑥0

(𝑡)
)2

𝑑𝑡.

he term 𝛿 is incorporated because it gives the quadratic variation of the martingale 𝛿 in time. It turns out that 𝛿2𝛿 converges in
probability to the limit (2𝜗)−1‖𝐾 ′

‖

2
‖𝐾‖

2 ∫ 𝑇 𝜎4(𝑋(𝑡, 𝑥 )) 𝑑𝑡 as 𝛿 → 0, while 𝛿2 converges to (2𝜗)−1‖𝐾 ′
‖

2 ∫ 𝑇 𝜎2(𝑋(𝑡, 𝑥 )) 𝑑𝑡,
3

𝐿2(R) 𝐿2(R) 0 0 𝛿 𝐿2(R) 0 0
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compare Proposition 5.10 for bounded 𝜎(⋅). Since the quadratic variation 𝛿 does not become asymptotically deterministic, we cannot
rely on a standard martingale central limit theorem (e.g. Theorem 1.19 in [15]) to prove asymptotic normality of 𝛿∕

1∕2
𝛿 .

Therefore we employ the concept of stable convergence, which is stronger than convergence in distribution and allows to
formulate mixed normal limits and to derive feasible confidence intervals, see e.g. [13] for a general introduction. In Section 6 we
prove a general martingale representation theorem and a stable limit theorem for martingales with respect to cylindrical Brownian
motion filtrations. As a consequence, we obtain the following result, when specialising Corollary 6.3 to our setting involving the
kernels 𝐾𝛿,𝑥0 :

Proposition 3.2. Let (𝑌𝛿(𝑡), 0 ≤ 𝑡 ≤ 𝑇 ) for 𝛿 ∈ (0, 1) be 𝐿2(𝛬)-valued processes, progressively measurable with respect to the cylindrical
Brownian filtration (ℱ𝑡)0≤𝑡≤𝑇 and satisfying ∫

𝑇
0 ‖𝑌𝛿(𝑡)‖2 𝑑𝑡 < ∞. If

C1) ∫ 𝑇
0 ‖𝑌𝛿(𝑡)‖2 𝑑𝑡

P
→ ∫ 𝑇

0 𝑠2(𝑡) 𝑑𝑡 as 𝛿 → 0 for some progressively measurable real-valued process (𝑠(𝑡), 0 ≤ 𝑡 ≤ 𝑇 ) with ∫ 𝑇
0 𝑠2(𝑡) 𝑑𝑡 < ∞,

C2’) the support inclusion supp(𝑌𝛿(𝑡)) ⊆ supp(𝐾𝛿,𝑥0 ) holds Lebesgue-almost everywhere in 𝛬 for all 𝑡 ∈ [0, 𝑇 ],

then a stable limit theorem for the stochastic integrals holds as 𝛿 → 0:

∫

𝑇

0
⟨𝑌𝛿(𝑡), 𝑑𝑊 (𝑡)⟩

𝑠𝑡𝑎𝑏𝑙𝑦
←←←←←←←←←←←←←←←←←←←←←←→ ∫

𝑇

0
𝑠(𝑡) 𝑑𝐵(𝑡)

with an independent scalar Brownian motion (𝐵(𝑡), 0 ≤ 𝑡 ≤ 𝑇 ) (on an extension of the original filtered probability space).

The main point of this result is that the limiting Brownian motion 𝐵 becomes independent because the support of 𝑌𝛿(𝑡) shrinks
asymptotically to the point 𝑥0. Here we shall apply the proposition with 𝑌𝛿(𝑡) = 𝛿𝑋𝛥

𝛿,𝑥0
(𝑡)𝜎(𝑋(𝑡))𝐾𝛿,𝑥0 . Our first main result is that

the additive noise estimator �̂�𝛿 satisfies a stable central limit theorem with rate 𝛿.

Theorem 3.3. Grant Assumptions (S) and (X). Then the ANE �̂�𝛿 satisfies on the event {∫
𝑇
0 𝜎2(𝑋(𝑡, 𝑥0)) 𝑑𝑡 > 0}

𝛿−1(�̂�𝛿 − 𝜗)
𝑠𝑡𝑎𝑏𝑙𝑦
←←←←←←←←←←←←←←←←←←←←←←→

(2𝜗)1∕2‖𝐾‖𝐿2(R)

‖𝐾 ′
‖𝐿2(R)

⋅
(∫ 𝑇

0 𝜎4(𝑋(𝑡, 𝑥0)) 𝑑𝑡)1∕2

∫ 𝑇
0 𝜎2(𝑋(𝑡, 𝑥0)) 𝑑𝑡

⋅𝑍 (3.3)

s 𝛿 → 0, where 𝑍 ∼ 𝑁(0, 1) is independent of ℱ𝑇 .

roof. The detailed proof is deferred to Section 5.4. □

This result establishes a very desirable robustness property of the ANE �̂�𝛿 : Even though it was designed for estimation in the
tochastic heat equation with additive noise, the ANE still converges with the same rate 𝛿 to the true parameter under multiplicative
oise. This is analogous to the ordinary least squares estimator in linear regression with heteroskedastic noise, which still attains
ptimal rates, yet loses in the variance due to the variability in noise levels. An efficient regression estimator is obtained by a
oise-level weighted least squares method, which provides an analogy for our next estimators.

.2. The multiplicative noise estimator

We aim at improving the ANE by adjusting the estimator in such a way that the denominator contains already the quadratic
ariation of the martingale part in the numerator. To that end, we need to incorporate the term ‖𝜎(𝑋(𝑡))𝐾𝛿,𝑥0‖

2 that is not observed
irectly, but is still attainable from the data. The quadratic variation of the observed semi-martingale (𝑋𝛿,𝑥0 (𝑡), 0 ≤ 𝑡 ≤ 𝑇 ) equals

⟨

𝑋𝛿,𝑥0

⟩

𝑡
= ∫

𝑡

0
‖𝜎(𝑋(𝑠))𝐾𝛿,𝑥0‖

2 𝑑𝑠, 𝑡 ∈ [0, 𝑇 ]. (3.4)

o we have access to ‖𝜎(𝑋(𝑡))𝐾𝛿,𝑥0‖
2 by differentiation of the realised quadratic variation. For discrete time data, sampled at high-

requency, some spot volatility estimators from the field of mathematical finance can be used to access this term, see Section 4. This
ay we obtain a second estimator, taking into account the multiplicative noise in the stochastic heat equation.

efinition 3.4. The multiplicative noise estimator (MNE) �̃�𝛿 of the parameter 𝜗 > 0 is defined as

�̃�𝛿 =
∫ 𝑇
0

𝑋𝛥
𝛿,𝑥0

(𝑡)

‖𝜎(𝑋(𝑡))𝐾𝛿,𝑥0 ‖
2 𝑑𝑋𝛿,𝑥0 (𝑡)

∫ 𝑇
0

(𝑋𝛥
𝛿,𝑥0

(𝑡))2

‖𝜎(𝑋(𝑡))𝐾𝛿,𝑥0 ‖
2 𝑑𝑡

. (3.5)

Let us remark that the MNE �̃�𝛿 can also be derived like the ANE �̂�𝛿 in [3], maximising a corresponding pseudo-likelihood in the
multiplicative noise case. An alternative interpretation is that we regress the increment 𝑑𝑋𝛿,𝑥0 (𝑡) on 𝑋𝛥

𝛿,𝑥0
(𝑡) and weight it by the

nverse squared noise level ‖𝜎(𝑋(𝑡))𝐾𝛿,𝑥0‖
−2, exactly as in weighted least squares for regression. Since this is done under the correct

odel specification, we expect better estimation properties.
4
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Using the representation of 𝑑𝑋𝛿,𝑥0 (𝑡) from (2.5), we obtain

�̃�𝛿 − 𝜗 =
∫ 𝑇
0

𝑋𝛥
𝛿,𝑥0

(𝑡)

‖𝜎(𝑋(𝑡))𝐾𝛿,𝑥0 ‖
2 ⟨𝜎(𝑋(𝑡))𝐾𝛿,𝑥0 , 𝑑𝑊 (𝑡)⟩

∫ 𝑇
0

(𝑋𝛥
𝛿,𝑥0

(𝑡))2

‖𝜎(𝑋(𝑡))𝐾𝛿,𝑥0 ‖
2 𝑑𝑡

=∶
̃𝛿

̃𝛿
. (3.6)

ince ‖𝜎(𝑋(𝑡))𝐾𝛿,𝑥0‖
2 appears in the denominators, we require a lower bound on 𝜎(⋅) in the following theorem.

heorem 3.5. Grant Assumption (S), (X) and assume 𝜎 = inf𝑥∈R 𝜎(𝑥) > 0. Then as 𝛿 → 0

𝛿−1(�̃�𝛿 − 𝜗)
𝑑
→ 𝑁

(

0,
2𝜗‖𝐾‖

2
𝐿2(R)

𝑇 ‖𝐾 ′
‖

2
𝐿2(R)

)

. (3.7)

roof. The proof is deferred to Section 5.4. □

.3. The stabilised multiplicative noise estimator

The lower bound 𝜎 > 0 on 𝜎(⋅) required for the MNE �̃�𝛿 can be restrictive. For instance, when the random field 𝑋(𝑡, 𝑥) shall not
take negative values, models usually require that lim𝑥↓0 𝜎(𝑥) = 0. To cover this case as well, we stabilise the denominators in the
integrands of Eq. (3.5) by adding a number 𝜀2𝛿 which tends to zero slowly as 𝛿 → 0.

Definition 3.6. Let 𝜀𝛿 = 𝜀(𝛿) be a real function satisfying for any 𝜂 > 0

𝜀𝛿 → 0, 𝜀−1𝛿 𝛿𝜂 → 0 (3.8)

as 𝛿 → 0. Then the stabilised multiplicative noise estimator (SMNE) 𝜗⋆𝛿 of the parameter 𝜗 > 0 is defined as

𝜗⋆𝛿 =
∫ 𝑇
0

𝑋𝛥
𝛿,𝑥0

(𝑡)

‖𝜎(𝑋(𝑡))𝐾𝛿,𝑥0 ‖
2+𝜀2𝛿

𝑑𝑋𝛿,𝑥0 (𝑡)

∫ 𝑇
0

(𝑋𝛥
𝛿,𝑥0

(𝑡))2

‖𝜎(𝑋(𝑡))𝐾𝛿,𝑥0 ‖
2+𝜀2𝛿

𝑑𝑡
. (3.9)

Condition (3.8) says that 𝜀𝛿 tends to zero more slowly than any polynomial. It is satisfied for 𝜀𝛿 = 1
log(𝛿−1) . To analyse the

asymptotic properties of the SMNE 𝜗⋆𝛿 , we need to strengthen Assumptions (S) and (X) slightly.

Assumption (S’). The function 𝜎(⋅) is 𝛽𝜎 -Hölder continuous, i.e., for some 𝛽𝜎 ∈ (0, 1] there exists a constant 𝐶 > 0 such that

∀𝑥, 𝑦 ∈ 𝛬 ∶ |𝜎(𝑥) − 𝜎(𝑦)| ≤ 𝐶|𝑥 − 𝑦|𝛽𝜎 .

Assumption (X’). Assumption (X) is satisfied and moreover the solution 𝑋 is in quadratic mean 𝛽𝑥-Hölder continuous in the space
variable and 𝛽𝑡-Hölder continuous in the time variable, i.e., for some 𝛽𝑥, 𝛽𝑡 ∈ (0, 1] there is a constant 𝐶 > 0 with

∀𝑡, 𝑠 ∈ [0, 𝑇 ], 𝑥, 𝑦 ∈ 𝛬 ∶ E(𝑋(𝑡, 𝑥) −𝑋(𝑠, 𝑦))2 ≤ 𝐶
(

|𝑡 − 𝑠|2𝛽𝑡 + |𝑥 − 𝑦|2𝛽𝑥
)

. (3.10)

Example 3.7. If 𝜎(⋅) is Lipschitz continuous and the initial condition 𝑋0 is continuous, then standard contraction arguments for
the stochastic convolution and the regularity of the Green function for the heat equation yield Assumption (X), see e.g. [5]. Even
Assumption (X’) holds with 𝛽𝑥 = 1∕2 and 𝛽𝑡 = 1∕4, provided 𝜎(⋅) is Lipschitz continuous and the initial condition 𝑋0 is 1∕2-Hölder
ontinuous. In fact, standard proofs for pathwise Hölder regularity go via the Kolmogorov–Chentsov theorem and thus establish
3.10), compare Theorem 2.1 in [18] or Corollary 3.4 in [20] for a slightly more involved case on an unbounded domain.

The intriguing questions of weak existence, regularity and pathwise uniqueness for the stochastic heat equation with 𝛽𝜎 -Hölder
ontinuous multiplicative noise 𝜎(⋅) have so far only found partial answers. We refer to Theorem 1.3 in [17], which yields our
ssumption (X) in case 𝛽𝜎 > 3∕4 in case of an unbounded domain. For their continuity result the authors assert that the results

n [19], formulated for coloured noise in space, work analogously for the space–time white noise case. Equations (10) and (19)
n [19] then establish Hölder regularity of 𝑋 in the sense of Assumption (X’).

We turn to the analysis of the stabilised multiplicative noise estimator. The error decomposition for the SMNE 𝜗⋆𝛿 follows from
2.5) and (3.9):

𝛿−1
(

𝜗⋆𝛿 − 𝜗
)

=
⋆

𝛿

(⋆
𝛿 )

1∕2
⋅
(𝛿2⋆

𝛿 )
1∕2

𝛿2 ⋆
𝛿

(3.11)

ith

⋆
𝛿 = ∫

𝑇 𝑋𝛥
𝛿,𝑥0

(𝑡)

2 2

⟨

𝜎(𝑋(𝑡))𝐾𝛿,𝑥0 , 𝑑𝑊 (𝑡)
⟩

,

5

0 ‖𝜎(𝑋(𝑡))𝐾𝛿,𝑥0‖ + 𝜀𝛿
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w
t

⋆
𝛿 = ∫

𝑇

0

‖𝜎(𝑋(𝑡))𝐾𝛿,𝑥0‖
2

(‖𝜎(𝑋(𝑡))𝐾𝛿,𝑥0‖
2 + 𝜀2𝛿)

2

(

𝑋𝛥
𝛿,𝑥0

(𝑡)
)2

𝑑𝑡,

 ⋆
𝛿 = ∫

𝑇

0

(𝑋𝛥
𝛿,𝑥0

(𝑡))2

‖𝜎(𝑋(𝑡))𝐾𝛿,𝑥0‖
2 + 𝜀2𝛿

𝑑𝑡.

The term ⋆
𝛿 is the quadratic variation of the martingale part ⋆

𝛿 . The limits of ⋆
𝛿 and  ⋆

𝛿 for 𝛿 → 0 involve a (in general
random) time length 𝑇 ⋆ during which 𝜎(𝑋(𝑡, 𝑥0)) does not vanish, compare Proposition 5.10 below. So, we use again the stable
limit theorem of Proposition 3.2 and derive a central limit theorem for the SMNE 𝜗⋆𝛿 with rate 𝛿, without assuming a lower bound
on 𝜎(⋅).

Theorem 3.8. Grant Assumptions (S’) and (X’) with (3.8). Introduce

𝑇 ⋆ = ∫

𝑇

0
𝟏
(

𝜎(𝑋(𝑡, 𝑥0)) ≠ 0
)

𝑑𝑡.

Then as 𝛿 → 0 on the event {𝑇 ⋆ > 0}

𝛿−1
(

𝜗⋆𝛿 − 𝜗
) 𝑠𝑡𝑎𝑏𝑙𝑦
←←←←←←←←←←←←←←←←←←←←←←→

(2𝜗)1∕2‖𝐾‖𝐿2(R)

(𝑇 ⋆)1∕2‖𝐾 ′
‖𝐿2(R)

⋅𝑍, (3.12)

where 𝑍 ∼ 𝑁(0, 1) is independent of ℱ𝑇 .

Proof. The proof is deferred to Section 5.4. □

Remark 3.9. From the series of inequalities

(∫ 𝑇
0 𝜎4(𝑋(𝑡, 𝑥0)) 𝑑𝑡)1∕2

∫ 𝑇
0 𝜎2(𝑋(𝑡, 𝑥0)) 𝑑𝑡

≥ 1
√

𝑇 ⋆
≥ 1

√

𝑇
(3.13)

e infer that the (conditional) asymptotic variance of the SMNE lies between those of the ANE and the MNE. Remember, however,
hat the asymptotics for the MNE were derived under the condition 𝜎 > 0, implying 𝑇 ⋆ = 𝑇 . The extreme case 𝜎(⋅) ≡ 0 leads to the

deterministic heat equation, which for the initial condition 𝑋0 = 0 remains zero all the time and does not allow for inference on 𝜗.
This type of degeneracy is excluded for the SMNE by the condition 𝑇 ⋆ > 0.

3.4. Confidence intervals

The asymptotic (mixed) normality of the three estimators allows us to prescribe asymptotic confidence intervals for the parameter
𝜗. The asymptotic conditional variances depend on quantities unknown to the statistician. Yet, in all three error decompositions (3.2),
(3.6) and (3.11) it is shown in the proofs (see Section 5.4 for the details) that the martingale term divided by the square root of its
quadratic variation is asymptotically standard Gaussian. Dividing each error decomposition by the respective second factor on the
right-hand side directly gives an asymptotic confidence statement.

Corollary 3.10. Let 𝛼 ∈ (0, 1). Based on the three estimators �̂�𝛿 , �̃�𝛿 and 𝜗⋆𝛿 the confidence intervals for 𝜗

𝐼1−𝛼 =
[

�̂�𝛿 −
1∕2
𝛿
𝛿

⋅ 𝑞1−𝛼∕2, �̂�𝛿 +
1∕2
𝛿
𝛿

⋅ 𝑞1−𝛼∕2
]

,

𝐼1−𝛼 =
[

�̃�𝛿 −
1

̃1∕2
𝛿

⋅ 𝑞1−𝛼∕2, �̃�𝛿 +
1

̃1∕2
𝛿

⋅ 𝑞1−𝛼∕2
]

,

𝐼⋆1−𝛼 =
[

𝜗⋆𝛿 −
(⋆

𝛿 )
1∕2

 ⋆
𝛿

⋅ 𝑞1−𝛼∕2, 𝜗
⋆
𝛿 +

(⋆
𝛿 )

1∕2

 ⋆
𝛿

⋅ 𝑞1−𝛼∕2
]

with the standard Gaussian (1−𝛼∕2)-quantile 𝑞1−𝛼∕2 have each asymptotic coverage 1−𝛼 as 𝛿 → 0 under the assumptions of Theorems 3.3,
3.5 and 3.8, respectively.

Note that the confidence intervals only rely on the observation processes (𝑋𝛥
𝛿,𝑥0

(𝑡), 0 ≤ 𝑡 ≤ 𝑇 ), (𝑋𝛿,𝑥0 (𝑡), 0 ≤ 𝑡 ≤ 𝑇 ) and the
quadratic variation of the latter. Even the kernel 𝐾 and the resolution level 𝛿 need not be known. In the next section we shall see
how the estimation methods can be implemented when only data is available that is discretely sampled in time.

4. Implementation and simulation results

We illustrate the main results in a setting similar to the experimental setup in [1], where the diffusivity parameter 𝜗 was estimated
in a concrete stochastic model for cell repolarisation.
6
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Fig. 1. Realisation of the stochastic heat equation with multiplicative noise 𝜎2(𝑥) = 0.20 × |𝑥|0.8 + 0.01 (left) and 𝜎3(𝑥) = 10𝑒−10|𝑥−2| + 10𝑒−10|𝑥−4| (right). The
horizontal lines indicate the support of the kernel 𝐾𝛿,𝑥0 .

Consider the stochastic heat equation (1.1) with 𝛬 = (0, 𝐿) for 𝐿 = 20, 𝑇 = 30, 𝜗 = 0.05. The initial condition 𝑋0 is a smooth
approximation of the function 𝑓 (𝑥) = 4 × 𝟏[𝐿∕4,3𝐿∕4](𝑥) + 2 × 𝟏(0,𝐿∕4)∪(3𝐿∕4,𝐿)(𝑥). We present the results for three different functions 𝜎:

𝜎1(𝑥) = 0.20,

𝜎2(𝑥) = 0.20 × |𝑥|0.80 + 0.01,

𝜎3(𝑥) = 10 × exp(−10 × |𝑥 − 2|) + 10 × exp(−10 × |𝑥 − 4|).

We have chosen 𝜎2(⋅) to have Hölder regularity 0.8 in line with Example 3.7 and not to vanish completely at zero so that all
three estimators are applicable. 𝜎3(⋅) generates strong noise level fluctuations so that the quality of the estimators should differ
significantly.

An approximate solution is computed on a regular time–space grid {(𝑡𝑗 , 𝑦𝑘) ∶ 𝑡𝑗 = 𝑇 𝑗∕𝑁, 𝑦𝑘 = 𝐿𝑘∕𝑀, 𝑗 = 0,… , 𝑁, 𝑘 = 0,… ,𝑀}
with 𝑁 = 48 000 and 𝑀 = 800 by the Euler–Maruyama scheme. For the drift part, we use the finite difference approximation of 𝛥 that
is applied implicitly, while 𝜎(⋅) in the stochastic term is applied to the current state of the solution explicitly, compare Algorithm 10.8
in [16]. The mesh sizes fulfil 𝑇 ∕𝑁 ≍ (𝐿∕𝑀)2, ensuring the Courant–Friedrichs–Lewy (CFL) condition for stable simulations [16].
Heat maps for typical realisations with multiplicative noise 𝜎2(𝑋(𝑡)) and 𝜎3(𝑋(𝑡)) are displayed in Fig. 1. Under 𝜎2(⋅) we see that
fluctuations are larger for higher temperature levels, while at the boundary it cools down to zero almost deterministically. Under
𝜎3(⋅) excitations by strong noise at the interface values 2 and 4 are counteracted by the diffusion, which leads to almost noiseless
inner regions with strong fluctuations of the interfaces in time. The spatial gradient at the interfaces is very large, which is no
numerical artefact, but due to expulsion by noise.

As in [1] we employ the smooth compactly supported kernel

𝐾(𝑥) =
�̃�(𝑥)

‖�̃�‖𝐿2(R)
with �̃�(𝑥) = exp

(

− 10
1 − 𝑥2

)

𝟏[−1,1](𝑥), 𝑥 ∈ R,

and we localise around the central point 𝑥0 = 𝐿∕2 with 𝛿 = 0.03 × 𝐿. Based on these local measurements, the estimators �̂�𝛿 (ANE),
�̃�𝛿 (MNE) and 𝜗⋆𝛿 (SMNE) are computed.

The term 𝑌 (𝑡) ∶= ‖𝜎(𝑋(𝑡))𝐾𝛿,𝑥0‖
2 is accessed by the following procedure. In view of (3.4), 𝑌 (𝑡) presents the spot squared volatility

of 𝑋𝛿,𝑥0 at time 𝑡, which we estimate by

𝑌 (𝑡𝑛) =
1

𝑛 ∧𝐷

𝑛
∑

𝑗=(𝑛−𝐷+1)∨1

𝑁
𝑇
(𝑋𝛿,𝑥0 (𝑡𝑗 ) −𝑋𝛿,𝑥0 (𝑡𝑗−1))

2, 𝑛 = 1,… , 𝑁,

i.e., by taking the average disintegrated realised quadratic variation over the past 𝐷 = 800 values (= 0.5 time units). It is a kernel type
estimator of spot squared volatility that follows classical methods, see e.g. [11], Section 2, for a description and further references.
The one-sided estimation kernel is employed so that only historical data are used in the construction and the averaging acts as a
smoothing, putting the same weights on the past 𝐷 values.

Finally, we choose the stabilising value 𝜀2𝛿 = 0.001
log(10∕𝛿) such that it satisfies condition (3.8) and lies within the range of typical

values of ‖𝜎(𝑋(⋅))𝐾𝛿,𝑥0‖
2. The possible issue could be that if the term 𝜀2𝛿 was much smaller than ‖𝜎(𝑋(⋅))𝐾𝛿,𝑥0‖

2, the SMNE would
practically become the MNE. On the other hand, if the term 𝜀2𝛿 dominated ‖𝜎(𝑋(⋅))𝐾𝛿,𝑥0‖

2, then the SMNE would practically coincide
with the ANE. So, in practice we recommend to estimate the spot volatility first and then to adjust 𝜀2𝛿 accordingly.

Fig. 2 displays simulation results for the estimators of the parameter 𝜗 obtained after 1 000 Monte Carlo runs for each of the
functions 𝜎1, 𝜎2 and 𝜎3. The red lines in the histograms indicate the asymptotic distribution, obtained as a mixture of 1 000 Gaussian
densities that (individually, for each run) follow the theoretical results established in Theorems 3.3, 3.5 and 3.8. Monte Carlo mean
and standard deviation for every case are stated in Table 1.

In the additive noise case 𝜎1 all three estimators perform similarly well. In this case we have equalities in (3.13) and the resulting
asymptotic distributions coincide. In the ‘‘Hölder’’ multiplicative noise case 𝜎2, the estimator ANE performs slightly worse than the
two alternatives. Since 𝜎2(⋅) ≥ 0.01 > 0, we have 𝑇 ⋆ = 𝑇 and the estimators MNE and SMNE deliver similar results.

For 𝜎3 the histogram of the ANE in Fig. 2 (bottom, left) is much more spread out, but has not yet entered the asymptotic regime
with a very flat asymptotic density. There are, however, quite a few outliers (12.6%) outside the interval [0, 0.1], which are not
7
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Fig. 2. Histograms of the estimators with red lines depicting the asymptotic densities. From left to right: ANE �̂�𝛿 ; MNE �̃�𝛿 ; SMNE 𝜗⋆𝛿 . From top to bottom: 𝜎1;
𝜎2; 𝜎3.

Fig. 3. log10-log10 plot of RMSE for the estimators ANE �̂�𝛿 and SMNE 𝜗⋆𝛿 under multiplicative noise 𝜎2(⋅) and 𝜎3(⋅). The purple line with slope 1 is added as
reference. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 1
Monte Carlo mean and standard deviation of estimators for different 𝜎(⋅).
Mean (SD) ANE �̂�𝛿 MNE �̃�𝛿 SMNE 𝜗⋆𝛿
𝜎1 0.050183 (0.0104) 0.050057 (0.0104) 0.050059 (0.0104)
𝜎2 0.050632 (0.0111) 0.050163 (0.0104) 0.050163 (0.0104)
𝜎3 0.052085 (0.0522) 0.050115 (0.0115) 0.050232 (0.0135)

shown and which are caught pretty well by the tails of the asymptotic density. Note also that the corresponding empirical standard
deviation in Table 1 is very high with about half the length of the interval [0, 0.1]. The estimators MNE and SMNE give a significant
improvement here with an error distribution that is almost unchanged with respect to the cases 𝜎1 and 𝜎2. It is worth noting that
the assumption 𝜎 > 0 from Theorem 3.5 for the MNE is violated by 𝜎3 and we also had 𝑇 ⋆ < 𝑇 , but with a minor difference only.
In the discrete numerical setting we use the threshold 10−6 to determine whether 𝜎(𝑋(𝑡, 𝑥0)) is zero or not.

Simulation results for varying 𝛿 confirm the convergence rate 𝛿 as 𝛿 → 0. Fig. 3 shows a log10-log10 plot of root mean squared
estimation errors for the estimators ANE �̂�𝛿 and SMNE 𝜗⋆𝛿 obtained after 100 Monte Carlo simulations for each 𝛿 based on the
multiplicative noise 𝜎2 and 𝜎3. The estimator MNE �̃�𝛿 is omitted here, because under the noise 𝜎2 the differences between MNE and
SMNE are minimal and the assumption 𝜎 > 0 for the MNE is again violated by 𝜎3. The estimation errors are significantly smaller in
the ‘‘Hölder’’ multiplicative noise case 𝜎2 and the SMNE provides a very substantial improvement in the 𝜎3 case. The errors are very
well aligned with the asymptotic standard error as predicted by Theorems 3.3 and 3.8. The reference line with slope 1 is added to
compare with the theoretical convergence rate 𝛿. Note that the spatial discretisation for reliable simulations must always be much
finer than 𝛿. In our setup with 𝛿 = 0.6 and 𝐿∕𝑀 = 0.025, the localised kernel 𝐾 was evaluated discretely on 48 grid points.
8
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Further unreported simulations show that the performance of the estimators is not influenced by the location of the central
bservation point 𝑥0, unless 𝑥0 is located very close to the boundary. In fact, if several local measurements (localised around points

{𝑥𝑗0 ∶ 𝑗 = 1,… , 𝐽}) are available, it is possible to combine local estimators, see [1], where such approach is explained and used.
In conclusion, the two newly proposed estimators MNE and SMNE performed as well as the ANE or even better than the ANE

nd their asymptotic distribution matches the results obtained in Section 3. The ANE provides good estimation accuracy also under
ultiplicative noise, but its accuracy suffers under strongly varying 𝜎(⋅).

. Proofs

First we shall establish all results under the additional condition

𝜎 ∶= sup
𝑥∈R

𝜎(𝑥) < ∞. (5.1)

sing the continuity of the solution 𝑋(𝑡, 𝑥), we shall then get rid of this assumption in the last step of the proofs of central limit
theorems in Section 5.4.

5.1. Fundamental asymptotics

We need some properties of the rescaled operators and semigroups. Let (𝑆𝜗,𝛿,𝑥0 (𝑡), 𝑡 ≥ 0) be the strongly continuous semigroup
enerated by 𝜗𝛥 with Dirichlet boundary conditions on 𝐿2(𝛬𝛿,𝑥0 ) and note that both semigroups (𝑆𝜗(𝑡), 𝑡 ≥ 0) and (𝑆𝜗,𝛿,𝑥0 (𝑡), 𝑡 ≥ 0),
re self-adjoint. We cite Lemma 3.1 from [3]:

emma 5.1. For 𝛿 ∈ (0, 1) the following holds:

(i) If 𝑧 ∈ 𝐻1
0 (𝛬𝛿,𝑥0 ) ∩𝐻2(𝛬𝛿,𝑥0 ), then 𝛥𝑧𝛿,𝑥0 = 𝛿−2 (𝛥𝑧)𝛿,𝑥0 .

(ii) If 𝑧 ∈ 𝐿2(𝛬𝛿,𝑥0 ), then 𝑆𝜗(𝑡)𝑧𝛿,𝑥0 =
(

𝑆𝜗,𝛿,𝑥0 (𝛿
−2𝑡)𝑧

)

𝛿,𝑥0
, 𝑡 ≥ 0.

The deterministic flow of the initial condition will become negligible due to the next result.

emma 5.2. For an initial condition 𝑋0 ∈ 𝐶(�̄�) we have

∫

𝑇

0

⟨

𝑆𝜗(𝑡)𝑋0, 𝛥𝐾𝛿,𝑥0

⟩2
𝑑𝑡 = 𝑂(𝛿−11∕6) = 𝑜(𝛿−2) as 𝛿 → 0.

roof. Lemma A.7(ii) in [3] shows for 𝑋0 ∈ 𝐿𝑝(𝛬), 𝑝 ≥ 2, that

𝛿4 ∫

𝑇

0

⟨

𝑆𝜗(𝑡)𝑋0, 𝛥𝐾𝛿,𝑥0

⟩2
𝑑𝑡 ≲ ‖𝑋0‖

2
𝐿𝑝(𝛬)𝛿

(7𝑝−2)∕(3𝑝).

ecause of 𝑋0 ∈ 𝐶(�̄�) ⊆ 𝐿∞(𝛬) we may choose 𝑝 = 4 and obtain the result. □

emma 5.3. Grant Assumption (S) with (5.1) and (X). For any 𝑡 ∈ [0, 𝑇 ],

‖𝜎(𝑋(𝑡))𝐾𝛿,𝑥0‖
2 → 𝜎2(𝑋(𝑡, 𝑥0))‖𝐾‖

2
𝐿2(R)

holds as 𝛿 → 0. The limit holds true for any 𝜔 ∈ 𝛺, i.e., surely.

Proof. For any 𝑡 ∈ [0, 𝑇 ], we have by the continuity of 𝜎 and 𝑋, provided by Assumptions (S) and (X),

‖𝜎(𝑋(𝑡))𝐾𝛿,𝑥0‖
2 = ∫𝛬

𝜎2(𝑋(𝑡, 𝑥))𝐾2
𝛿,𝑥0

(𝑥) 𝑑𝑥 = ∫R
𝜎2(𝑋(𝑡, 𝛿𝑦 + 𝑥0))𝐾2(𝑦)𝟏𝛬𝛿,𝑥0

(𝑦) 𝑑𝑦 ⟶
𝛿→0 ∫R

𝜎2(𝑋(𝑡, 𝑥0))𝐾2(𝑦) 𝑑𝑦.

ere the dominated convergence theorem is applied with integrable majorant 𝜎2𝐾2(⋅). □

We will need an inequality for the rescaled semigroup 𝑆𝜗,𝛿,𝑥0 . It encapsulates essentially the hypercontractivity of the heat
emigroup.

emma 5.4. For 𝛼 ∈ [0, 2], 𝛿 ∈ (0, 1) and 0 ≤ 𝑣 ≤ 𝛿−2𝑇 we have

‖|𝑥|𝛼𝑆𝜗,𝛿,𝑥0 (𝑣)𝛥𝐾‖𝐿2(𝛬𝛿,𝑥0 )
≲ (1 + 𝑣)3(𝛼−1)∕4.

Proof. For 𝛼 = 0 we apply Lemma A.6(ii) from [3] with 𝑤 = 𝛥𝐾, 𝛼′ = 1 and 𝑑 = 1. The involved constant depends only on 𝑇 and
𝐾, which are fixed here.

For 𝛼 = 2 we combine Proposition 3.5(i) in [3] and the second inequality from Lemma A.2(iii) in [3] such that

‖|𝑥|2𝑆 (𝑣)𝛥𝐾‖ ≲ (1 ∨ 𝑣)(1 ∧ 𝑣−1∕4)‖(1 + |𝑥| + |𝑥|2)𝛥𝐾‖ ≲ (1 + 𝑣)3∕4
9

𝜗,𝛿,𝑥0 𝐿2(𝛬𝛿,𝑥0 ) 𝐿1∩𝐿2(R)



Stochastic Processes and their Applications 175 (2024) 104385J. Janák and M. Reiß

w

L

i

P

N

t

t

with ‖𝑧‖𝐿1∩𝐿2(R) ∶= ‖𝑧‖𝐿1(R) + ‖𝑧‖𝐿2(R), using that 𝐾 ∈ 𝐻2(R) has compact support and is fixed throughout.
For 𝛼 ∈ (0, 2) we use the Hölder inequality with weight function 𝑤(𝑥) = (𝑆𝜗,𝛿,𝑥0 (𝑣)𝛥𝐾)(𝑥)2 and 𝑝 = 2∕𝛼 to obtain

‖|𝑥|𝛼𝑆𝜗,𝛿,𝑥0 (𝑣)𝛥𝐾‖

2
𝐿2(𝛬𝛿,𝑥0 )

≤
(

∫𝛬𝛿,𝑥0

|𝑥|4(𝑆𝜗,𝛿,𝑥0 (𝑣)𝛥𝐾)(𝑥)2 𝑑𝑥
)𝛼∕2(

∫𝛬𝛿,𝑥0

(𝑆𝜗,𝛿,𝑥0 (𝑣)𝛥𝐾)(𝑥)2 𝑑𝑥
)1−𝛼∕2

= ‖|𝑥|2𝑆𝜗,𝛿,𝑥0 (𝑣)𝛥𝐾‖

𝛼
𝐿2(𝛬𝛿,𝑥0 )

‖𝑆𝜗,𝛿,𝑥0 (𝑣)𝛥𝐾‖

2−𝛼
𝐿2(𝛬𝛿,𝑥0 )

≲ (1 + 𝑣)3𝛼∕4(1 + 𝑣)−(6−3𝛼)∕4 = (1 + 𝑣)3(𝛼−1)∕2,

here we used the first two parts of the proof. □

In the sequel, we need a uniform bound on the second and fourth centred moment of 𝑋𝛥
𝛿,𝑥0

(𝑡).

emma 5.5. Grant Assumption (S) with (5.1) and (X). For 𝛿 → 0 we have

sup
0≤𝑡≤𝑇

E
(

𝑋𝛥
𝛿,𝑥0

(𝑡) − E𝑋𝛥
𝛿,𝑥0

(𝑡)
)4

= 𝑂(𝛿−4),

n particular we have Var(𝑋𝛥
𝛿,𝑥0

(𝑡)) = 𝑂(𝛿−2) uniformly over 𝑡 ∈ [0, 𝑇 ].

roof. By (2.2) and (2.4) we have

𝑋𝛥
𝛿,𝑥0

(𝑡) − E𝑋𝛥
𝛿,𝑥0

(𝑡) = ∫

𝑡

0

⟨

𝜎(𝑋(𝑠))𝑆𝜗(𝑡 − 𝑠)𝛥𝐾𝛿,𝑥0 , 𝑑𝑊 (𝑠)
⟩

.

The Burkholder–Davis–Gundy inequality yields with a constant 𝐶4 ≥ 1

E
(

∫

𝑡

0
⟨𝑔(𝑡0, 𝑠), 𝑑𝑊 (𝑠)⟩

)4
≤ 𝐶4E

(

∫

𝑡

0
‖𝑔(𝑡0, 𝑠)‖2 𝑑𝑠

)2
(5.2)

for 𝑔(𝑡0, 𝑠) = 𝜎(𝑋(𝑠))𝑆𝜗(𝑡0 − 𝑠)𝛥𝐾𝛿,𝑥0 . With 𝑡0 = 𝑡 we obtain

E
(

𝑋𝛥
𝛿,𝑥0

(𝑡) − E𝑋𝛥
𝛿,𝑥0

(𝑡)
)4

≤ 𝐶4E
(

∫

𝑡

0

‖

‖

‖

𝜎(𝑋(𝑠))𝑆𝜗(𝑡 − 𝑠)𝛥𝐾𝛿,𝑥0
‖

‖

‖

2
𝑑𝑠

)2
≤ 𝐶4𝜎

4
(

∫

𝑡

0

‖

‖

‖

𝑆𝜗(𝑡 − 𝑠)𝛥𝐾𝛿,𝑥0
‖

‖

‖

2
𝑑𝑠

)2

≤ 𝐶4𝜎
4
(

𝜗−1 ∫

∞

0
⟨𝑆𝜗(2𝑣)𝜗𝛥𝐾𝛿,𝑥0 , 𝛥𝐾𝛿,𝑥0 ⟩ 𝑑𝑣

)2

= 𝐶4𝜎
4(2𝜗)−2⟨−𝐾𝛿,𝑥0 , 𝛥𝐾𝛿,𝑥0 ⟩

2 = 𝐶4𝜎
4(2𝜗)−2𝛿−4‖𝐾 ′

‖

4
𝐿2(R). (5.3)

ote that inequality (5.3) holds uniformly over 𝑡 ∈ [0, 𝑇 ] and gives the result. The second part follows via Jensen’s inequality. □

5.2. Approximation of quadratic variations and related terms

We are ready to study the asymptotic behaviour of the terms 𝛿 , 𝛿 , ̃𝛿 ,  ⋆
𝛿 and ⋆

𝛿 . We will analyse them simultaneously, using
heir common generalisation 𝛿 .

First, let for any 𝛿 ∈ (0, 1), 𝑓𝛿 ∶ 𝐿2(𝛬) → R be a continuous (and possibly non-linear) functional of the state, satisfying one of
he following:

(F1) There exists 𝐶 > 0 such that for any 𝑧, 𝑦 ∈ 𝐿2(𝛬), 𝛿 ∈ (0, 1)

|𝑓𝛿(𝑧)| ≤ 𝐶,

|𝑓𝛿(𝑧) − 𝑓𝛿(𝑦)| ≤ 𝐶‖(𝜎(𝑧) − 𝜎(𝑦))𝐾𝛿,𝑥0‖,

(F2) There exists 𝐶 > 0 such that for any 𝑧, 𝑦 ∈ 𝐿2(𝛬), 𝛿 ∈ (0, 1)

|𝑓𝛿(𝑧)| ≤ 𝐶𝜀−4𝛿 ,

|𝑓𝛿(𝑧) − 𝑓𝛿(𝑦)| ≤ 𝐶𝜀−8𝛿 ‖(𝜎(𝑧) − 𝜎(𝑦))𝐾𝛿,𝑥0‖,

where (𝜀𝛿) is satisfying (3.8).

Lemma 5.6. Grant Assumption (S) with (5.1).

(i) Functionals 𝑓𝛿(⋅) ∈ {1, ‖𝜎(⋅)𝐾𝛿,𝑥0‖
2, ‖𝜎(⋅)𝐾𝛿,𝑥0‖

−2} satisfy condition (F1), provided 𝜎 > 0 in the last case.

(ii) Functionals 𝑓𝛿(⋅) ∈ { 1
‖𝜎(⋅)𝐾𝛿,𝑥0 ‖

2+𝜀2𝛿
,

‖𝜎(⋅)𝐾𝛿,𝑥0 ‖
2

(‖𝜎(⋅)𝐾𝛿,𝑥0 ‖
2+𝜀2𝛿 )

2 } satisfy condition (F2).

Proof. (i). For 𝑓𝛿(⋅) ≡ 1 the statement is trivial.
For 𝑓𝛿(⋅) = ‖𝜎(⋅)𝐾𝛿,𝑥0‖

2 we have a uniform upper bound 𝜎2‖𝐾‖

2
𝐿2(R)

. Moreover, for any 𝑧, 𝑦 ∈ 𝐿2(𝛬) and 𝛿 ∈ (0, 1) we have

|𝑓 (𝑧) − 𝑓 (𝑦)| = |‖𝜎(𝑧)𝐾 ‖

2 − ‖𝜎(𝑦)𝐾 ‖

2
| ≲ |‖𝜎(𝑧)𝐾 ‖ − ‖𝜎(𝑦)𝐾 ‖| ≤ ‖(𝜎(𝑧) − 𝜎(𝑦))𝐾 ‖,
10

𝛿 𝛿 𝛿,𝑥0 𝛿,𝑥0 𝛿,𝑥0 𝛿,𝑥0 𝛿,𝑥0
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where we used |𝐴2 − 𝐵2
| = |𝐴 − 𝐵||𝐴 + 𝐵| together with the upper bound 2𝜎‖𝐾‖𝐿2(R) in the first inequality and then we followed

up with the reverse triangle inequality.
For 𝑓𝛿(⋅) = ‖𝜎(⋅)𝐾𝛿,𝑥0‖

−2, there is a uniform upper bound 𝜎−2‖𝐾‖

−2
𝐿2(R)

. Moreover, for any 𝑧, 𝑦 ∈ 𝐿2(𝛬) and 𝛿 ∈ (0, 1) we have

|

|

|

1
‖𝜎(𝑧)𝐾𝛿,𝑥0‖

2
− 1

‖𝜎(𝑦)𝐾𝛿,𝑥0‖
2
|

|

|

= |

|

|

‖𝜎(𝑦)𝐾𝛿,𝑥0‖
2 − ‖𝜎(𝑧)𝐾𝛿,𝑥0‖

2

‖𝜎(𝑧)𝐾𝛿,𝑥0‖
2
‖𝜎(𝑦)𝐾𝛿,𝑥0‖

2
|

|

|

≲ |‖𝜎(𝑦)𝐾𝛿,𝑥0‖
2 − ‖𝜎(𝑧)𝐾𝛿,𝑥0‖

2
|.

Therefore the proof is finished as in the previous case.
(ii). For 𝑓𝛿(⋅) =

1
‖𝜎(⋅)𝐾𝛿,𝑥0 ‖

2+𝜀2𝛿
, its upper bound 𝜀−2𝛿 is smaller than 𝜀−4𝛿 . To prove the second part, we use |𝐴2 − 𝐵2

| = |𝐴 + 𝐵||𝐴 − 𝐵|,
he upper bound 𝜎‖𝐾‖𝐿2(R) to ‖𝜎(⋅)𝐾𝛿,𝑥0‖ and the reverse triangle inequality to obtain

|𝑓𝛿(𝑦) − 𝑓𝛿(𝑧)| =
|

|

|

‖𝜎(𝑦)𝐾𝛿,𝑥0‖
2 − ‖𝜎(𝑧)𝐾𝛿,𝑥0‖

2

(‖𝜎(𝑧)𝐾𝛿,𝑥0‖
2 + 𝜀2𝛿)(‖𝜎(𝑦)𝐾𝛿,𝑥0‖

2 + 𝜀2𝛿)
|

|

|

≤ 𝜀−4𝛿
|

|

|

‖𝜎(𝑦)𝐾𝛿,𝑥0‖
2 − ‖𝜎(𝑧)𝐾𝛿,𝑥0‖

2|
|

|

≲ 𝜀−4𝛿 |‖𝜎(𝑦)𝐾𝛿,𝑥0‖ − ‖𝜎(𝑧)𝐾𝛿,𝑥0‖| ≤ 𝜀−4𝛿 ‖ (𝜎(𝑦) − 𝜎(𝑧))𝐾𝛿,𝑥0‖.

For 𝑓𝛿(⋅) =
‖𝜎(⋅)𝐾𝛿,𝑥0 ‖

2

(‖𝜎(⋅)𝐾𝛿,𝑥0 ‖
2+𝜀2𝛿 )

2 , there is a uniform upper bound 𝜎2‖𝐾‖

2
𝐿2(R)

𝜀−4𝛿 . Similarly to the previous case, algebraic calculations
ield

|𝑓𝛿(𝑦) − 𝑓𝛿(𝑧)| ≲ 𝜀−8𝛿
|

|

|

‖𝜎(𝑦)𝐾𝛿,𝑥0‖
2 − ‖𝜎(𝑧)𝐾𝛿,𝑥0‖

2|
|

|

,

hich finishes the proof. □

Introduce

𝛿 = ∫

𝑇

0
𝑓𝛿(𝑋(𝑡))

(

𝑋𝛥
𝛿,𝑥0

(𝑡) − E𝑋𝛥
𝛿,𝑥0

(𝑡)
)2

𝑑𝑡

= ∫

𝑇

0
𝑓𝛿(𝑋(𝑡))

(

∫

𝑡

0

⟨

𝑆𝜗(𝑡 − 𝑠)𝛥𝐾𝛿,𝑥0 , 𝜎(𝑋(𝑠))𝑑𝑊 (𝑠)
⟩)2

𝑑𝑡. (5.4)

In the following proposition we present different expressions that are equal to 𝛿 up to terms that are of lower order than 𝛿−2. This
is the major ingredient for the proofs of the main results, noting that the techniques developed in [3] cannot be used here due to
the multiplicative noise structure.

Proposition 5.7. Grant Assumption (S) with (5.1), (X) and let 𝑓𝛿 satisfy condition (F1) or grant Assumption (S’) with (5.1), (X’) with
(3.8) and let 𝑓𝛿 satisfy condition (F2). Then 𝛿 from (5.4) equals up to additive terms of order 𝑜P(𝛿−2) for 𝛿 → 0:

(i) (𝑖)
𝛿 = ∫ 𝑇

𝛿 𝑓𝛿(𝑋(𝑡))(𝑋𝛥
𝛿,𝑥0

(𝑡) − E𝑋𝛥
𝛿,𝑥0

(𝑡))2 𝑑𝑡,
(ii) (𝑖𝑖)

𝛿 = ∫ 𝑇
𝛿 𝑓𝛿(𝑋(𝑡 − 𝛿))(𝑋𝛥

𝛿,𝑥0
(𝑡) − E𝑋𝛥

𝛿,𝑥0
(𝑡))2 𝑑𝑡,

(iii) (𝑖𝑖𝑖)
𝛿 = ∫ 𝑇

𝛿 𝑓𝛿(𝑋(𝑡 − 𝛿))(∫ 𝑡
0 𝜎(𝑋(𝑠, 𝑥0))⟨𝑆𝜗(𝑡 − 𝑠)𝛥𝐾𝛿,𝑥0 , 𝑑𝑊 (𝑠)⟩)2 𝑑𝑡,

(iv) (𝑖𝑣)
𝛿 = ∫ 𝑇

𝛿 𝑓𝛿(𝑋(𝑡 − 𝛿))(∫ 𝑡
𝑡−𝛿 𝜎(𝑋(𝑠, 𝑥0))⟨𝑆𝜗(𝑡 − 𝑠)𝛥𝐾𝛿,𝑥0 , 𝑑𝑊 (𝑠)⟩)2 𝑑𝑡,

(v) (𝑣)
𝛿 = ∫ 𝑇

𝛿 𝑓𝛿(𝑋(𝑡 − 𝛿))𝜎2(𝑋(𝑡 − 𝛿, 𝑥0))(∫
𝑡
𝑡−𝛿⟨𝑆𝜗(𝑡 − 𝑠)𝛥𝐾𝛿,𝑥0 , 𝑑𝑊 (𝑠)⟩)2 𝑑𝑡,

(vi) (𝑣𝑖)
𝛿 = ∫ 𝑇

𝛿 𝑓𝛿(𝑋(𝑡 − 𝛿))𝜎2(𝑋(𝑡 − 𝛿, 𝑥0))E(∫
𝑡
𝑡−𝛿⟨𝑆𝜗(𝑡 − 𝑠)𝛥𝐾𝛿,𝑥0 , 𝑑𝑊 (𝑠)⟩)2 𝑑𝑡.

(vii) (𝑣𝑖𝑖)
𝛿 = (2𝜗)−1‖𝐾 ′

‖

2
𝐿2(R)

𝛿−2 ∫ 𝑇
0 𝑓𝛿(𝑋(𝑡))𝜎2(𝑋(𝑡, 𝑥0)) 𝑑𝑡.

Remark 5.8. The overall idea is to achieve the representation (𝑣𝑖𝑖)
𝛿 via slight consecutive alterations. In point (i) we shorten the

outer integral to the interval [𝛿, 𝑇 ], in (ii), we present a slight time shift of the solution in the functional, i.e., 𝑓𝛿(𝑋(𝑡− 𝛿)). In point
(iii) the function 𝜎(𝑋(𝑠, ⋅)) is fixed in the space-point 𝑥0, in (iv) the stochastic integral is shortened, in (v) the function 𝜎(𝑋(𝑠, 𝑥0)) is
fixed at the time-point 𝑡− 𝛿. In (vi) the expectation of the squared stochastic integral is implemented via conditional independence.
Finally, in (vii) the expectation is approximated and the integral extended again.

Proof. We present the proof with Assumption (S’) with (5.1), (X’) with (3.8) and 𝑓𝛿 satisfying condition (F2). The other case is
analogous and much simpler, mostly because it does not use the function 𝜀𝛿 at all. The proof of (ii) is shown for both cases. The
order 𝑂(𝜀−4𝛿 ) for |𝑓𝛿| is used frequently as the first step of the proof.

(i). Compute

E |

|

|

𝛿 − (𝑖)
𝛿
|

|

|

= E||
|∫

𝛿

0
𝑓𝛿(𝑋(𝑡))

(

𝑋𝛥
𝛿,𝑥0

(𝑡) − E𝑋𝛥
𝛿,𝑥0

(𝑡)
)2

𝑑𝑡||
|

(5.5)

≲ 𝜀−4𝛿 ∫

𝛿

0
Var

(

𝑋𝛥
𝛿,𝑥0

(𝑡)
)

𝑑𝑡 ≲ 𝜀−4𝛿 𝛿𝛿−2,

using Lemma 5.5. Therefore, the remainder term is of order 𝑜P(𝛿−2) due to 𝜀−4𝛿 𝛿 → 0 by (3.8).
(ii). By the Cauchy–Schwarz inequality, we have

| (𝑖) (𝑖𝑖)|
11

|

|

𝛿 − 𝛿 |

|
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≤ ∫

𝑇

𝛿
|

|

𝑓𝛿(𝑋(𝑡)) − 𝑓𝛿(𝑋(𝑡 − 𝛿))|
|

(

𝑋𝛥
𝛿,𝑥0

(𝑡) − E𝑋𝛥
𝛿,𝑥0

(𝑡)
)2

𝑑𝑡

≤
(

∫

𝑇

𝛿

(

𝑓𝛿(𝑋(𝑡)) − 𝑓𝛿(𝑋(𝑡 − 𝛿))
)2 𝑑𝑡

)1∕2(

∫

𝑇

𝛿

(

𝑋𝛥
𝛿,𝑥0

(𝑡) − E𝑋𝛥
𝛿,𝑥0

(𝑡)
)4

𝑑𝑡
)1∕2

. (5.6)

Lemma 5.5 gives E ∫ 𝑇
𝛿 (𝑋𝛥

𝛿,𝑥0
(𝑡)−E𝑋𝛥

𝛿,𝑥0
(𝑡))4 𝑑𝑡 = 𝑂(𝛿−4) so that the second factor is of order 𝑂P(𝛿−2). Hence, it suffices to establish

∫ 𝑇
𝛿 (𝑓𝛿(𝑋(𝑡)) − 𝑓𝛿(𝑋(𝑡 − 𝛿)))2𝑑𝑡 = 𝑜P(1).

When we consider Assumption (S’), (X’), condition (5.1) and 𝑓𝛿 satisfying condition (F2), we obtain

E∫

𝑇

𝛿

(

𝑓𝛿(𝑋(𝑡)) − 𝑓𝛿(𝑋(𝑡 − 𝛿))
)2 𝑑𝑡

≲ 𝜀−16𝛿 ∫

𝑇

𝛿
E‖ (𝜎(𝑋(𝑡)) − 𝜎(𝑋(𝑡 − 𝛿)))𝐾𝛿,𝑥0‖

2𝑑𝑡 ≲ 𝜀−16𝛿 𝛿2𝛽𝑡𝛽𝜎𝑇 ‖𝐾‖

2
𝐿2(R)

by the Hölder continuity of 𝜎 and 𝑋(⋅, 𝑥) and by ‖𝐾𝛿,𝑥0‖ = ‖𝐾‖𝐿2(R). This upper bound converges to zero by (3.8).
When we consider Assumption (S), (X), condition (5.1) and 𝑓𝛿 satisfying condition (F1), we have

(

𝑓𝛿(𝑋(𝑡)) − 𝑓𝛿(𝑋(𝑡 − 𝛿))
)2 ≲ ‖ (𝜎(𝑋(𝑡)) − 𝜎(𝑋(𝑡 − 𝛿)))𝐾𝛿,𝑥0‖

2

= ∫𝛬
(𝜎(𝑋(𝑡, 𝑥)) − 𝜎(𝑋(𝑡 − 𝛿, 𝑥)))2 𝐾2

𝛿,𝑥0
(𝑥) 𝑑𝑥

= ∫R

(

𝜎(𝑋(𝑡, 𝛿𝑦 + 𝑥0)) − 𝜎(𝑋(𝑡 − 𝛿, 𝛿𝑦 + 𝑥0))
)2 𝐾2(𝑦) 𝑑𝑦. (5.7)

The integrand in (5.7) converges to zero by the continuity of 𝑋 and 𝜎 (i.e., Assumptions (S) and (X)). The integrable majorant
4𝜎2𝐾2(⋅) serves for the 𝑑𝑦-integral in (5.7) as well as for the 𝑑𝑡-integral in (5.6). The proof that the second factor converges almost
surely to zero is accomplished by the dominated convergence theorem.

(iii). By the upper bound on |𝑓𝛿|, we have

E |

|

|

(𝑖𝑖)
𝛿 − (𝑖𝑖𝑖)

𝛿
|

|

|

≲ 𝜀−4𝛿 E∫

𝑇

𝛿

|

|

|

(

∫

𝑡

0

⟨

𝑆𝜗(𝑡 − 𝑠)𝛥𝐾𝛿,𝑥0 , 𝜎(𝑋(𝑠))𝑑𝑊 (𝑠)
⟩)2

−

−
(

∫

𝑡

0

⟨

𝑆𝜗(𝑡 − 𝑠)𝛥𝐾𝛿,𝑥0 , 𝜎(𝑋(𝑠, 𝑥0))𝑑𝑊 (𝑠)
⟩)2

|

|

|

𝑑𝑡. (5.8)

Denoting

𝐹±(𝑡) ∶=
|

|

|∫

𝑡

0

⟨

𝑆𝜗(𝑡 − 𝑠)𝛥𝐾𝛿,𝑥0 ,
(

𝜎(𝑋(𝑠)) ± 𝜎(𝑋(𝑠, 𝑥0))
)

𝑑𝑊 (𝑠)
⟩

|

|

|

, (5.9)

using |𝐴2 − 𝐵2
| = |𝐴 + 𝐵||𝐴 − 𝐵| and the Cauchy–Schwarz inequality, we may follow up (5.8) with

E |

|

|

(𝑖𝑖)
𝛿 − (𝑖𝑖𝑖)

𝛿
|

|

|

≲ 𝜀−4𝛿 E∫

𝑇

𝛿
𝐹+(𝑡)𝐹−(𝑡) 𝑑𝑡

≤ 𝜀−4𝛿
(

E∫

𝑇

𝛿
𝐹 2
+(𝑡) 𝑑𝑡

)1∕2(
E∫

𝑇

𝛿
𝐹 2
−(𝑡) 𝑑𝑡

)1∕2
. (5.10)

We start with the first factor after 𝜀−4𝛿 . Itô’s isometry yields

E∫

𝑇

𝛿
𝐹 2
+(𝑡) 𝑑𝑡 = E∫

𝑇

𝛿 ∫

𝑡

0

‖

‖

‖

(

𝜎(𝑋(𝑠)) + 𝜎(𝑋(𝑠, 𝑥0))
)

𝑆𝜗(𝑡 − 𝑠)𝛥𝐾𝛿,𝑥0
‖

‖

‖

2
𝑑𝑠 𝑑𝑡

≲ ∫

𝑇

𝛿 ∫

𝑡

0

‖

‖

‖

𝑆𝜗(𝑡 − 𝑠)𝛥𝐾𝛿,𝑥0
‖

‖

‖

2
𝑑𝑠 𝑑𝑡,

and this is of order 𝑂(𝛿−2), compare (5.3). The second factor is given by

E∫

𝑇

𝛿
𝐹 2
−(𝑡) 𝑑𝑡 (5.11)

= E∫

𝑇

𝛿 ∫

𝑡

0

‖

‖

‖

(

𝜎(𝑋(𝑠)) − 𝜎(𝑋(𝑠, 𝑥0))
)

𝑆𝜗(𝑡 − 𝑠)𝛥𝐾𝛿,𝑥0
‖

‖

‖

2
𝑑𝑠 𝑑𝑡

= 𝛿−2 ∫

𝑇

𝛿 ∫

𝛿−2𝑡

0
E
‖

‖

‖

‖

(

𝜎(𝑋(𝑡 − 𝛿2𝑣)) − 𝜎(𝑋(𝑡 − 𝛿2𝑣, 𝑥0))
)

(

𝑆𝜗,𝛿,𝑥0 (𝑣)𝛥𝐾
)

𝛿,𝑥0

‖

‖

‖

‖

2
𝑑𝑣 𝑑𝑡

= 𝛿−2 ∫

𝑇

𝛿 ∫

𝛿−2𝑡

0
E ‖

‖

‖

(

𝜎(𝑋(𝑡 − 𝛿2𝑣, 𝛿 ⋅ +𝑥0)) − 𝜎(𝑋(𝑡 − 𝛿2𝑣, 𝑥0))
)

𝑆𝜗,𝛿,𝑥0 (𝑣)𝛥𝐾
‖

‖

‖

2

𝐿2(𝛬𝛿,𝑥0 )
𝑑𝑣 𝑑𝑡.

Using Assumptions (S’) and (X’), we have
( 2 2 )2 2𝛽𝑥𝛽𝜎 2𝛽𝑥𝛽𝜎
12

E 𝜎(𝑋(𝑡 − 𝛿 𝑣, 𝛿𝑥 + 𝑥0)) − 𝜎(𝑋(𝑡 − 𝛿 𝑣, 𝑥0)) ≲ 𝛿 |𝑥|
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and consequently for the integrand in (5.11)

E ‖

‖

‖

(

𝜎(𝑋(𝑡 − 𝛿2𝑣, 𝛿 ⋅ +𝑥0)) − 𝜎(𝑋(𝑡 − 𝛿2𝑣, 𝑥0))
)

𝑆𝜗,𝛿,𝑥0 (𝑣)𝛥𝐾
‖

‖

‖

2

𝐿2(𝛬𝛿,𝑥0 )

≲ 𝛿2𝛽𝑥𝛽𝜎 ‖‖
‖

|𝑥|𝛽𝑥𝛽𝜎𝑆𝜗,𝛿,𝑥0 (𝑣)𝛥𝐾
‖

‖

‖

2

𝐿2(𝛬𝛿,𝑥0 )
. (5.12)

Without loss of generality assume 𝛽𝑥𝛽𝜎 ∈ (0, 1) and 𝛽𝑥𝛽𝜎 ≠ 1∕3 (otherwise decrease 𝛽𝑥 or 𝛽𝜎 slightly). Using Lemma 5.4, we
obtain from (5.12)

∫

𝛿−2𝑡

0
E ‖

‖

‖

(

𝜎(𝑋(𝑡 − 𝛿2𝑣, 𝛿 ⋅ +𝑥0)) − 𝜎(𝑋(𝑡 − 𝛿2𝑣, 𝑥0))
)

𝑆𝜗,𝛿,𝑥0 (𝑣)𝛥𝐾
‖

‖

‖

2

𝐿2(𝛬𝛿,𝑥0 )
𝑑𝑣

≲ 𝛿2𝛽𝑥𝛽𝜎 ∫

𝛿−2𝑇

0
(1 + 𝑣)3(𝛽𝑥𝛽𝜎−1)∕2 𝑑𝑣 ≲ 𝛿2𝛽𝑥𝛽𝜎

(

1 + 𝛿−2(3𝛽𝑥𝛽𝜎∕2−1∕2)
)

.

Since the bound applies uniformly to all 𝑡 ∈ [0, 𝑇 ], we deduce from (5.11)

𝜀−4𝛿 E∫

𝑇

𝛿
𝐹 2
−(𝑡) 𝑑𝑡 ≲ 𝜀−4𝛿 𝛿−2(𝛿2𝛽𝑥𝛽𝜎 + 𝛿1−𝛽𝑥𝛽𝜎 ) = 𝑜(𝛿−2)

in view of (3.8), which remained to be proved.
(iv). We obtain, using the Cauchy–Schwarz inequality,

E |

|

|

(𝑖𝑖𝑖)
𝛿 − (𝑖𝑣)

𝛿
|

|

|

≲ 𝜀−4𝛿 E∫

𝑇

𝛿

|

|

|

(

∫

𝑡

0
𝜎(𝑋(𝑠, 𝑥0))

⟨

𝑆𝜗(𝑡 − 𝑠)𝛥𝐾𝛿,𝑥0 , 𝑑𝑊 (𝑠)
⟩)2

−

−
(

∫

𝑡

𝑡−𝛿
𝜎(𝑋(𝑠, 𝑥0))

⟨

𝑆𝜗(𝑡 − 𝑠)𝛥𝐾𝛿,𝑥0 , 𝑑𝑊 (𝑠)
⟩)2

|

|

|

𝑑𝑡

≤ 𝜀−4𝛿 E∫

𝑇

𝛿

(

∫

𝑡−𝛿

0
𝜎(𝑋(𝑠, 𝑥0))

⟨

𝑆𝜗(𝑡 − 𝑠)𝛥𝐾𝛿,𝑥0 , 𝑑𝑊 (𝑠)
⟩)2

𝑑𝑡+

+ 2𝜀−4𝛿
(

E∫

𝑇

𝛿

(

∫

𝑡−𝛿

0
𝜎(𝑋(𝑠, 𝑥0))

⟨

𝑆𝜗(𝑡 − 𝑠)𝛥𝐾𝛿,𝑥0 , 𝑑𝑊 (𝑠)
⟩)2

𝑑𝑡
)1∕2

×

×
(

E∫

𝑇

𝛿

(

∫

𝑡

𝑡−𝛿
𝜎(𝑋(𝑠, 𝑥0))

⟨

𝑆𝜗(𝑡 − 𝑠)𝛥𝐾𝛿,𝑥0 , 𝑑𝑊 (𝑠)
⟩)2

𝑑𝑡
)1∕2

=∶ (𝐼) + (𝐼𝐼). (5.13)

In the analysis of (𝐼), we use Itô’s isometry, the scaling properties from Lemma 5.1 and Lemma 5.4 with 𝛼 = 0. We obtain

(𝐼) = 𝜀−4𝛿 ∫

𝑇

𝛿 ∫

𝑡

𝛿
E
(

𝜎2(𝑋(𝑡 − 𝑣, 𝑥0))
)

‖𝑆𝜗(𝑣)𝛥𝐾𝛿,𝑥0‖
2
𝐿2(𝛬)

𝑑𝑣 𝑑𝑡

≤ 𝜀−4𝛿 𝛿−2𝜎2𝑇 ∫

∞

𝛿−1
⟨𝑆𝜗,𝛿,𝑥0 (2𝑣)𝛥𝐾, 𝛥𝐾⟩𝐿2(𝛬𝛿,𝑥0 )

𝑑𝑣

= 𝜀−4𝛿 𝛿−2𝜎2𝑇 (2𝜗)−1⟨−𝑆𝜗,𝛿,𝑥0 (2𝛿
−1)𝐾, 𝛥𝐾⟩𝐿2(𝛬𝛿,𝑥0 )

≲ 𝜀−4𝛿 𝛿−2(1 + 2𝛿−1)−3∕4 = 𝑜(𝛿−2)

due to (3.8). Given the result for (𝐼), the term (𝐼𝐼) is also of order 𝑜(𝛿−2) because the squared second factor is of order 𝑂(𝛿−2):

E∫

𝑇

𝛿

(

∫

𝑡

𝑡−𝛿
𝜎(𝑋(𝑠, 𝑥0))

⟨

𝑆𝜗(𝑡 − 𝑠)𝛥𝐾𝛿,𝑥0 , 𝑑𝑊 (𝑠)
⟩)2

𝑑𝑡

≤ 𝑇 �̄�2 ∫

∞

0
‖𝑆𝜗(𝑣)𝛥𝐾𝛿,𝑥0‖

2𝑑𝑣 ≲ 𝛿−2,

using Itô isometry and arguing as in (5.3).
(v). Denoting

𝐺±(𝑡) ∶= ∫

𝑡

𝑡−𝛿

(

𝜎(𝑋(𝑠, 𝑥0)) ± 𝜎(𝑋(𝑡 − 𝛿, 𝑥0))
)

⟨

𝑆𝜗(𝑡 − 𝑠)𝛥𝐾𝛿,𝑥0 , 𝑑𝑊 (𝑠)
⟩

,

we compute

E|(𝑖𝑣)
𝛿 − (𝑣)

𝛿 |

≲ 𝜀−4𝛿 E∫

𝑇

𝛿

|

|

|

(

∫

𝑡

𝑡−𝛿
𝜎(𝑋(𝑠, 𝑥0))

⟨

𝑆𝜗(𝑡 − 𝑠)𝛥𝐾𝛿,𝑥0 , 𝑑𝑊 (𝑠)
⟩)2

−

−
(

∫

𝑡

𝑡−𝛿
𝜎(𝑋(𝑡 − 𝛿, 𝑥0))

⟨

𝑆𝜗(𝑡 − 𝑠)𝛥𝐾𝛿,𝑥0 , 𝑑𝑊 (𝑠)
⟩)2

|

|

|

𝑑𝑡

≲ 𝜀−4𝛿 E∫

𝑇

𝛿
|𝐺+(𝑡)𝐺−(𝑡)| 𝑑𝑡 ≤ 𝜀−4𝛿

(

E∫

𝑇

𝛿
𝐺2
+(𝑡) 𝑑𝑡

)1∕2(
E∫

𝑇

𝛿
𝐺2
−(𝑡) 𝑑𝑡

)1∕2
. (5.14)
13
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𝑡
o

a

Itô’s isometry yields

E𝐺2
±(𝑡) = E∫

𝛿

0
(𝜎(𝑋(𝑡 − 𝑣, 𝑥0)) ± 𝜎(𝑋(𝑡 − 𝛿, 𝑥0)))2

‖

‖

‖

𝑆𝜗(𝑣)𝛥𝐾𝛿,𝑥0
‖

‖

‖

2
𝑑𝑣.

Hence, E ∫ 𝑇
𝛿 𝐺2

+(𝑡) 𝑑𝑡 = 𝑂(𝛿−2) follows from the boundedness of 𝜎 (i.e., condition (5.1)) and the argument in (5.3).
For the term with 𝐺− we have from Assumptions (S’) and (X’) that E(𝜎(𝑋(𝑡 − 𝑣, 𝑥0)) − 𝜎(𝑋(𝑡 − 𝛿, 𝑥0)))2 ≲ 𝛿2𝛽𝑡𝛽𝜎 uniformly over

and 𝑣. The same argument thus gives here E ∫ 𝑇
𝛿 𝐺2

−(𝑡) 𝑑𝑡 = 𝑂(𝛿2𝛽𝑡𝛽𝜎−2). Insertion into (5.14) and noting condition (3.8) yields the
verall rate 𝑜(𝛿−2).

(vi). Introduce for 𝑡 ∈ [𝛿, 𝑇 ]

𝐻(𝑡) =
(

∫

𝑡

𝑡−𝛿

⟨

𝑆𝜗(𝑡 − 𝑠)𝛥𝐾𝛿,𝑥0 , 𝑑𝑊 (𝑠)
⟩)2

, �̃�(𝑡) = 𝐻(𝑡) − E𝐻(𝑡)

nd compute

E
(

(𝑣)
𝛿 − (𝑣𝑖)

𝛿

)2
= E

(

∫

𝑇

𝛿
𝑓𝛿(𝑋(𝑡 − 𝛿))𝜎2(𝑋(𝑡 − 𝛿, 𝑥0))�̃�(𝑡) 𝑑𝑡

)2

= 2E∫

𝑇

𝛿 ∫

𝑇

𝑢
𝑓𝛿(𝑋(𝑡 − 𝛿))𝑓𝛿(𝑋(𝑢 − 𝛿))×

× 𝜎2(𝑋(𝑡 − 𝛿, 𝑥0))𝜎2(𝑋(𝑢 − 𝛿, 𝑥0))�̃�(𝑡)�̃�(𝑢) 𝑑𝑡 𝑑𝑢. (5.15)

We analyse the integral on two sets: (a) 𝑡 > 𝑢 + 𝛿 and (b) 𝑢 + 𝛿 > 𝑡 > 𝑢.
(a) 𝑡 > 𝑢 + 𝛿. We condition on 𝑡−𝛿 and obtain

∫

𝑇−𝛿

𝛿 ∫

𝑇

𝑢+𝛿
E
(

E
[

𝑓𝛿(𝑋(𝑡 − 𝛿))𝑓𝛿(𝑋(𝑢 − 𝛿))×

× 𝜎2(𝑋(𝑡 − 𝛿, 𝑥0))𝜎2(𝑋(𝑢 − 𝛿, 𝑥0))�̃�(𝑡)�̃�(𝑢)||
|

𝑡−𝛿

])

𝑑𝑡 𝑑𝑢

= ∫

𝑇−𝛿

𝛿 ∫

𝑇

𝑢+𝛿
E�̃�(𝑡)E

(

𝑓𝛿(𝑋(𝑡 − 𝛿))𝑓𝛿(𝑋(𝑢 − 𝛿))×

× 𝜎2(𝑋(𝑡 − 𝛿, 𝑥0))𝜎2(𝑋(𝑢 − 𝛿, 𝑥0))�̃�(𝑢)
)

𝑑𝑡 𝑑𝑢

= 0,

using that �̃�(𝑡) is independent of 𝑡−𝛿 with E�̃�(𝑡) = 0 and that the other factors are 𝑡−𝛿-measurable.
(b) 𝑢 + 𝛿 > 𝑡 > 𝑢. In this case, we use the upper bounds for 𝜎 and 𝑓𝛿 and bound (5.15) (up to a positive constant) by

𝜀−8𝛿 ∫

𝑇

𝛿 ∫

(𝑢+𝛿)∧𝑇

𝑢
E|�̃�(𝑡)�̃�(𝑢)| 𝑑𝑡 𝑑𝑢 ≤ 𝜀−8𝛿 𝑇 𝛿 sup

𝑡∈[𝛿,𝑇 ]
E�̃�2(𝑡), (5.16)

where the last step involves the Cauchy–Schwarz inequality. The analogous calculations to (5.3) yield

E�̃�2(𝑡) ≤ E𝐻2(𝑡) = 𝑂(𝛿−4)

uniformly over 𝑡 ∈ [𝛿, 𝑇 ]. We conclude (E((𝑣)
𝛿 − (𝑣𝑖)

𝛿 )2)1∕2 ≲ 𝜀−4𝛿 𝛿−3∕2, implying |(𝑣)
𝛿 − (𝑣𝑖)

𝛿 | = 𝑜P(𝛿−2) due to (3.8).
(vii). By translating the integrand in (𝑣𝑖𝑖)

𝛿 and by Itô’s isometry we have

(𝑣𝑖)
𝛿 − (𝑣𝑖𝑖)

𝛿 = ∫

𝑇

𝛿
𝑓𝛿(𝑋(𝑡 − 𝛿))𝜎2(𝑋(𝑡 − 𝛿, 𝑥0)) 𝑑𝑡×

×
(

∫

𝛿

0
‖𝑆𝜗(𝑣)𝛥𝐾𝛿,𝑥0‖

2 𝑑𝑣 − (2𝜗)−1‖𝐾 ′
‖

2
𝐿2(R)𝛿

−2
)

− (2𝜗)−1‖𝐾 ′
‖

2
𝐿2(R)𝛿

−2
∫

𝑇

𝑇−𝛿
𝑓𝛿(𝑋(𝑠))𝜎2(𝑋(𝑠, 𝑥0)) 𝑑𝑠

By the uniforms bounds on 𝑓𝛿 and 𝜎 the last term is of order 𝑂(𝛿−2𝛿𝜀−4𝛿 ).
Next, we compute by the scaling properties in Lemma 5.1 and by partial integration

∫

𝛿

0
‖𝑆𝜗(𝑣)𝛥𝐾𝛿,𝑥0‖

2𝑑𝑣 = 𝛿−2 ∫

𝛿−1

0
⟨𝑆𝜗,𝛿,𝑥0 (2𝑣)𝛥𝐾, 𝛥𝐾⟩𝐿2(𝛬𝛿,𝑥0 )

𝑑𝑣

= 𝛿−2(2𝜗)−1⟨(𝑆𝜗,𝛿,𝑥0 (2𝛿
−1) − 𝐼)𝛥𝐾,𝐾⟩𝐿2(𝛬𝛿,𝑥0 )

= 𝛿−2(2𝜗)−1
(

‖𝐾 ′
‖

2
𝐿2(R) + ⟨𝑆𝜗,𝛿,𝑥0 (2𝛿

−1)𝛥𝐾,𝐾⟩𝐿2(𝛬𝛿,𝑥0 )

)

.

Now, bounding the scalar product by the Cauchy–Schwarz inequality and Lemma 5.4 with 𝛼 = 0, we see that it is of order 𝑂(𝛿3∕4).
Using the upper bounds for 𝑓𝛿 and 𝜎 again, we thus obtain

(𝑣𝑖)
𝛿 − (𝑣𝑖𝑖)

𝛿 = 𝑂P(𝜀−4𝛿 𝛿−2𝛿3∕4 + 𝜀−4𝛿 𝛿−2𝛿) = 𝑜P(𝛿−2)
14

by (3.8). □
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5.3. Asymptotics of quadratic variations and related terms

While Proposition 5.7 has treated the centred process 𝑋𝛥
𝛿,𝑥0

(𝑡) − E𝑋𝛥
𝛿,𝑥0

(𝑡), we shall now consider the terms

̃𝛿 = ∫

𝑇

0
𝑓𝛿(𝑋(𝑡))

(

𝑋𝛥
𝛿,𝑥0

(𝑡)
)2

𝑑𝑡. (5.17)

aving achieved the representation (𝑣𝑖𝑖)
𝛿 , we are now ready to determine the limit of 𝛿2̃𝛿 as 𝛿 → 0.

orollary 5.9. Grant Assumption (S) with (5.1), (X) and let 𝑓𝛿 satisfy condition (F1) or grant Assumption (S’) with (5.1), (X’) with (3.8)
nd let 𝑓𝛿 satisfy condition (F2). Suppose as 𝛿 → 0

∫

𝑇

0
𝑓𝛿(𝑋(𝑡))𝜎2(𝑋(𝑡, 𝑥0)) 𝑑𝑡

P
←←←←←←←→ 𝛹

or some random variable 𝛹 . Then ̃𝛿 from (5.17) satisfies for 𝛿 → 0

𝛿2̃𝛿
P
→

‖𝐾 ′
‖

2
𝐿2(R)

2𝜗
𝛹.

Proof. The corresponding convergence for 𝛿2𝛿 , based on the centred process 𝑋𝛥
𝛿,𝑥0

(𝑡) − E𝑋𝛥
𝛿,𝑥0

(𝑡), follows directly from part (vii)
f Proposition 5.7.

For ̃𝛿 note that

𝛿2(̃𝛿 − 𝛿) = 𝛿2 ∫

𝑇

0
𝑓𝛿(𝑋(𝑡))

⟨

𝑆𝜗(𝑡)𝑋0, 𝛥𝐾𝛿,𝑥0

⟩2
𝑑𝑡

+ 2𝛿2 ∫

𝑇

0
𝑓𝛿(𝑋(𝑡))

(

𝑋𝛥
𝛿,𝑥0

(𝑡) − E𝑋𝛥
𝛿,𝑥0

(𝑡)
)⟨

𝑆𝜗(𝑡)𝑋0, 𝛥𝐾𝛿,𝑥0

⟩

𝑑𝑡. (5.18)

e apply the upper bound to |𝑓𝛿| from condition (F1) (respectively (F2)) to the first term and obtain its convergence to zero by
emma 5.2 using 𝜀−4𝛿 𝛿−11∕6 = 𝑜(𝛿−2) due to (3.8) in the second case. The second term converges to zero in probability using the
auchy–Schwarz inequality and 𝛿2𝛿 = 𝑂𝑃 (1) from above. This gives the result for 𝛿2̃𝛿 . □

Proposition 5.10. The following holds as 𝛿 → 0:

(i) under Assumptions (S) with (5.1) and (X):

𝛿2𝛿
P
→

‖𝐾 ′
‖

2
𝐿2(R)

2𝜗 ∫

𝑇

0
𝜎2(𝑋(𝑡, 𝑥0)) 𝑑𝑡,

(ii) under Assumptions (S) with (5.1) and (X):

𝛿2𝛿
P
→

‖𝐾 ′
‖

2
𝐿2(R)

‖𝐾‖

2
𝐿2(R)

2𝜗 ∫

𝑇

0
𝜎4(𝑋(𝑡, 𝑥0)) 𝑑𝑡,

(iii) under Assumptions (S) with (5.1) and (X) and assuming 𝜎 > 0:

𝛿2̃𝛿
P
→

𝑇 ‖𝐾 ′
‖

2
𝐿2(R)

2𝜗‖𝐾‖

2
𝐿2(R)

,

(iv) under Assumptions (S’) with (5.1) and (X’) with (3.8):

𝛿2 ⋆
𝛿

P
→

𝑇 ⋆
‖𝐾 ′

‖

2
𝐿2(R)

2𝜗‖𝐾‖

2
𝐿2(R)

,

(v) under Assumptions (S’) with (5.1) and (X’) with (3.8):

𝛿2⋆
𝛿

P
→

𝑇 ⋆
‖𝐾 ′

‖

2
𝐿2(R)

2𝜗‖𝐾‖

2
𝐿2(R)

.

Proof. We apply Corollary 5.9 to the functionals proposed in Lemma 5.6. (i). We use 𝑓𝛿(𝑋(𝑡)) = 1 so that 𝛹 = ∫ 𝑇
0 𝜎2(𝑋(𝑡, 𝑥0)) 𝑑𝑡

and the result follows.
(ii). We use 𝑓𝛿(𝑋(𝑡)) = ‖𝜎(𝑋(𝑡))𝐾𝛿,𝑥0‖

2. Since 𝑓𝛿(𝑋(𝑡)) → 𝜎2(𝑋(𝑡, 𝑥0))‖𝐾‖

2
𝐿2(R)

by Lemma 5.3, the limit 𝛹 = ∫ 𝑇
0 𝜎4(𝑋(𝑡, 𝑥0))‖𝐾‖

2
𝐿2(R)

𝑑𝑡 follows by dominated convergence because 𝜎4‖𝐾‖

2 is an integrable majorant.
15

𝐿2(R)
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(iii). We use 𝑓𝛿(𝑋(𝑡)) = ‖𝜎(𝑋(𝑡))𝐾𝛿,𝑥0‖
−2. Since 𝑓𝛿(𝑋(𝑡))𝜎2(𝑋(𝑡, 𝑥0)) → ‖𝐾‖

−2
𝐿2(R)

, we obtain the limit 𝛹 = 𝑇 ‖𝐾‖

−2
𝐿2(R)

. The integrable

majorant for the 𝑑𝑡-integral over 𝑓𝛿(𝑋(𝑡))𝜎2(𝑋(𝑡, 𝑥0)) can be taken as 𝜎2

𝜎2‖𝐾‖

2
𝐿2(R)

(up to a multiplicative constant).

(iv). We use 𝑓𝛿(𝑋(𝑡)) = 1
‖𝜎(𝑋(𝑡))𝐾𝛿,𝑥0 ‖

2+𝜀2𝛿
. Since we have only an upper bound to 𝜎(⋅) in this case, obtaining an integrable majorant

to 𝜎2(𝑋(𝑡,𝑥0))
‖𝜎(𝑋(𝑡))𝐾𝛿,𝑥0 ‖

2+𝜀2𝛿
is not so straightforward. We use |𝐴2 − 𝐵2

| = |𝐴 + 𝐵||𝐴 − 𝐵|, the upper bound 𝜎 and Assumptions (S’) and (X’)
to obtain

E|‖𝜎(𝑋(𝑡))𝐾𝛿,𝑥0‖
2 − 𝜎2(𝑋(𝑡, 𝑥0))‖𝐾‖

2
𝐿2(R)|

≤ ∫𝛬
E|𝜎2(𝑋(𝑡, 𝑥)) − 𝜎2(𝑋(𝑡, 𝑥0))|𝐾2

𝛿,𝑥0
(𝑥) 𝑑𝑥

≲ ∫𝛬
|𝑥 − 𝑥0|

𝛽𝑥𝛽𝜎𝐾2
𝛿,𝑥0

(𝑥) 𝑑𝑥

= ∫R
|𝛿𝑦|𝛽𝑥𝛽𝜎𝐾2(𝑦) 𝑑𝑦 ≲ 𝛿𝛽𝑥𝛽𝜎 . (5.19)

This gives the uniform majorant in 𝛿 and 𝑡

E
𝜎2(𝑋(𝑡, 𝑥0))

‖𝜎(𝑋(𝑡))𝐾𝛿,𝑥0‖
2 + 𝜀2𝛿

≲ E
‖𝜎(𝑋(𝑡))𝐾𝛿,𝑥0‖

2

‖𝐾‖

2
𝐿2(R)

(‖𝜎(𝑋(𝑡))𝐾𝛿,𝑥0‖
2 + 𝜀2𝛿)

+ 𝛿𝛽𝑥𝛽𝜎
‖𝐾‖

2
𝐿2(R)

𝜀2𝛿

≤ 2
‖𝐾‖

2
𝐿2(R)

for sufficiently small 𝛿 due to (3.8). Next, we determine the pointwise limit of the 𝐿1(P)-distance. In view of (5.19) and 𝛿𝛽𝑥𝛽𝜎 𝜀−2𝛿 → 0
due to (3.8) it suffices to note for all 𝑡

E||
|

𝜎2(𝑋(𝑡, 𝑥0))
𝜎2(𝑋(𝑡, 𝑥0))‖𝐾‖

2
𝐿2(R)

+ 𝜀2𝛿
− 1

‖𝐾‖

2
𝐿2(R)

𝟏(𝜎2(𝑋(𝑡, 𝑥0)) ≠ 0)||
|

⟶
𝛿→0

0.

We conclude that the integral converges in 𝐿1(P) and thus in probability to

𝛹 = ∫

𝑇

0

1
‖𝐾‖

2
𝐿2(R)

𝟏(𝜎2(𝑋(𝑡, 𝑥0)) ≠ 0) 𝑑𝑡 = ‖𝐾‖

−2
𝐿2(R)𝑇

⋆.

(v). We use 𝑓𝛿(𝑋(𝑡)) =
‖𝜎(𝑋(𝑡))𝐾𝛿,𝑥0 ‖

2

(‖𝜎(𝑋(𝑡))𝐾𝛿,𝑥0 ‖
2+𝜀2𝛿 )

2 . An integrable majorant in 𝑡 is given by 2‖𝐾‖

−2
𝐿2(R)

and the limit 𝛹 = ‖𝐾‖

−2
𝐿2(R)

𝑇 ⋆ is
determined as in the previous case. □

5.4. Proof of the main theorems

Proof of Theorem 3.3. Assume first in addition the boundedness (5.1) of 𝜎(⋅). Consider the error decomposition (3.2). The
asymptotic properties of 𝛿2𝛿 and 𝛿2𝛿 are established in Proposition 5.10(i),(ii), therefore the second factor converges in probability
to the random variable

(2𝜗)1∕2‖𝐾‖𝐿2(R)

‖𝐾 ′
‖𝐿2(R)

⋅
(∫ 𝑇

0 𝜎4(𝑋(𝑡, 𝑥0)) 𝑑𝑡)1∕2

∫ 𝑇
0 𝜎2(𝑋(𝑡, 𝑥0)) 𝑑𝑡

.

For the first factor, let 𝑌𝛿(𝑡, 𝑥) ∶= 𝛿𝑋𝛥
𝛿,𝑥0

(𝑡)𝜎(𝑋(𝑡, 𝑥))𝐾𝛿,𝑥0 (𝑥) and check the two conditions of Proposition 3.2. Since

∫

𝑇

0
‖𝑌𝛿(𝑡)‖2 𝑑𝑡 = 𝛿2𝛿

P
→

‖𝐾 ′
‖

2
𝐿2(R)

‖𝐾‖

2
𝐿2(R)

2𝜗 ∫

𝑇

0
𝜎4(𝑋(𝑡, 𝑥0)) 𝑑𝑡

by Proposition 5.10(ii), condition (C1) is satisfied with 𝑠(𝑡) =
‖𝐾′

‖𝐿2(R)‖𝐾‖𝐿2(R)
(2𝜗)1∕2

𝜎2(𝑋(𝑡, 𝑥0)). The support condition (C2’) follows directly

from the definition of 𝑌𝛿(𝑡) as a multiple of 𝐾𝛿,𝑥0 . Proposition 3.2 thus shows 𝛿𝛿
𝑠𝑡𝑎𝑏𝑙𝑦
←←←←←←←←←←←←←←←←←←←←←←→ ∫ 𝑇

0 𝑠(𝑡) 𝑑𝐵(𝑡) as 𝛿 → 0 with an independent

calar Brownian motion 𝐵. On the event {∫ 𝑇
0 𝜎2(𝑋(𝑡, 𝑥0)) 𝑑𝑡 > 0} we infer 𝛿𝛿

𝛿1∕2𝛿

𝑠𝑡𝑎𝑏𝑙𝑦
←←←←←←←←←←←←←←←←←←←←←←→ 𝑍 where 𝑍 ∼ 𝑁(0, 1) is independent of the

𝜎-algebra ℱ𝑇 . We conclude by applying Slutsky’s lemma.
If 𝜎(⋅) is continuous, but unbounded, then consider the events 𝛺𝑅 = {max𝑡∈[0,𝑇 ],𝑥∈�̄�|𝑋(𝑡, 𝑥)| ≤ 𝑅} and set 𝜎𝑅(𝑦) ∶= 𝜎(𝑦) ∧ 𝑅 for

𝑅 > 0. By Assumption (X) 𝑋 is continuous in time and space such that P(𝛺𝑅) ↑ 1 follows for 𝑅 → ∞. Moreover, by uniqueness 𝑋
equals on 𝛺𝑅 the solution 𝑋𝑅 P-a.s. of the SPDE (1.1) in terms of 𝜎𝑅 and also the estimators �̂�𝛿 , based on observations from 𝑋 and
𝑋𝑅, respectively, agree on 𝛺𝑅. The stable limit theorem for 𝑋𝑅 with bounded 𝜎𝑅(⋅) thus yields

𝛿−1(�̂�𝛿 − 𝜗)𝟏𝛺𝑅

𝑠𝑡𝑎𝑏𝑙𝑦
←←←←←←←←←←←←←←←←←←←←←←→

(2𝜗)1∕2‖𝐾‖𝐿2(R)

‖𝐾 ′
‖

⋅
(∫ 𝑇

0 𝜎4(𝑋(𝑡, 𝑥0)) 𝑑𝑡)1∕2

𝑇 2
𝟏𝛺𝑅

⋅𝑍.
16

𝐿2(R) ∫0 𝜎 (𝑋(𝑡, 𝑥0)) 𝑑𝑡
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Since this holds for all 𝑅 ∈ N, it is also true for the limit lim𝑅→∞ 𝟏𝛺𝑅
= 𝟏 P-a.s. This gives the proof in the case of unbounded

ontinuous 𝜎. □

roof of Theorem 3.5. Assume first in addition the boundedness (5.1) of 𝜎(⋅). The decomposition of the error follows from (3.6):

𝛿−1(�̃�𝛿 − 𝜗) =
̃𝛿

̃1∕2
𝛿

⋅
1

(𝛿2̃𝛿)1∕2
.

A standard continuous martingale central limit theorem (e.g., [15], Theorem 1.19) provides the convergence of the first factor
to 𝑁(0, 1) in distribution.

Proposition 5.10(iii) yields the convergence

𝛿2̃𝛿
P
→

𝑇 ‖𝐾 ′
‖

2
𝐿2(R)

2𝜗‖𝐾‖

2
𝐿2(R)

nd the result follows by applying Slutsky’s lemma.
If 𝜎(⋅) is continuous, but unbounded, we use 𝛺𝑅, 𝜎𝑅 and 𝑋𝑅 as in the proof of Theorem 3.3 and write 𝑍𝛿 = 𝛿−1(�̃�𝛿−𝜗) and 𝑍𝛿,𝑅 =

𝛿−1(�̃�𝛿,𝑅−𝜗) with the MNE �̃�𝛿,𝑅 based on observations from 𝑋𝑅. We check weak convergence to 𝑍 ∼ 𝑁(0, 2𝜗‖𝐾‖

2
𝐿2(R)

∕(𝑇 ‖𝐾 ′
‖

2
𝐿2(R)

))
for test functions 𝑓 ∈ 𝐶𝑏(R) via

lim sup
𝛿→0

|E[𝑓 (𝑍𝛿)] − E[𝑓 (𝑍)]|

≤ lim sup
𝛿→0

(

|E[𝑓 (𝑍𝛿,𝑅)] − E[𝑓 (𝑍)]| + E[|𝑓 (𝑍𝛿,𝑅) − 𝑓 (𝑍𝛿)|𝟏𝛺𝐶
𝑅
]
)

≤ 0 + 2‖𝑓‖∞P(𝛺𝐶
𝑅) for any 𝑅 > 0.

Letting 𝑅 → ∞, the limit is zero and the general result follows. □

Proof of Theorem 3.8. Exactly as for Theorem 3.3 we argue first for bounded 𝜎(⋅) and then extend to unbounded continuous 𝜎(⋅).
Consider the error decomposition (3.11). The asymptotic properties of 𝛿2⋆

𝛿 and 𝛿2 ⋆
𝛿 are established in Proposition 5.10(iv),(v).

Therefore the second factor converges in probability to the random variable

(2𝜗)1∕2‖𝐾‖𝐿2(R)

(𝑇 ⋆)1∕2‖𝐾 ′
‖𝐿2(R)

on {𝑇 ⋆ > 0}.

For the first factor, let 𝑌𝛿(𝑡, 𝑥) ∶=
𝛿𝑋𝛥

𝛿,𝑥0
(𝑡)𝜎(𝑋(𝑡,𝑥))𝐾𝛿,𝑥0 (𝑥)

‖𝜎(𝑋(𝑡))𝐾𝛿,𝑥0 ‖
2+𝜀2𝛿

and check the two conditions of Proposition 3.2. Since

∫

𝑇

0
‖𝑌𝛿(𝑡)‖2 𝑑𝑡 = 𝛿2⋆

𝛿
P
→

‖𝐾 ′
‖

2
𝐿2(R)

2𝜗‖𝐾‖

2
𝐿2(R)

∫

𝑇

0
𝟏(𝜎(𝑋(𝑡, 𝑥0)) ≠ 0) 𝑑𝑡

by Proposition 5.10(v), condition (C1) is satisfied with 𝑠(𝑡) =
‖𝐾′

‖𝐿2(R)
(2𝜗)1∕2‖𝐾‖𝐿2(R)

𝟏(𝜎(𝑋(𝑡, 𝑥0)) ≠ 0). The support condition (C2’) follows
gain directly by definition of 𝑌𝛿(𝑡).

Proposition 3.2 thus yields 𝛿⋆
𝛿

𝑠𝑡𝑎𝑏𝑙𝑦
←←←←←←←←←←←←←←←←←←←←←←→ ∫ 𝑇

0 𝑠(𝑡) 𝑑𝐵(𝑡) with an independent scalar Brownian motion 𝐵. Hence, 𝛿⋆
𝛿

𝛿(⋆𝛿 )
1∕2

𝑠𝑡𝑎𝑏𝑙𝑦
←←←←←←←←←←←←←←←←←←←←←←→ 𝑍

olds on {𝑇 ⋆ > 0} with 𝑍 ∼ 𝑁(0, 1) independent of the 𝜎-algebra ℱ𝑇 . The proof is concluded by applying Slutsky’s lemma and
pproximating possibly unbounded 𝜎 by the truncated versions 𝜎𝑅. □

. A stable limit theorem for cylindrical Brownian martingales

Let 𝐻 be a separable Hilbert space and (𝑒𝑘)𝑘≥1 a complete orthonormal system in 𝐻 . Let (𝑊𝑘(𝑡), 𝑡 ≥ 0)𝑘≥1 be a sequence
f independent real-valued standard Brownian motions. Then 𝑊 (𝑡) =

∑

𝑘≥1 𝑊𝑘(𝑡)𝑒𝑘 is an 𝐻-valued cylindrical Brownian motion
e.g., Proposition 4.11 in [10]). Consider the filtered probability space (𝛺,ℱ , (ℱ𝑡)𝑡≥0,P), on which (𝑊𝑘(𝑡), 𝑡 ≥ 0)𝑘≥1 are defined and
here the Brownian filtration (ℱ𝑡)𝑡≥0 is the filtration generated by (𝑊𝑘(𝑡), 𝑡 ≥ 0)𝑘≥1 and augmented by P-null sets.

We start with a Hilbert space-valued Brownian martingale representation theorem, which follows by approximation from the
inite-dimensional version, but does not seem readily available in the literature.

roposition 6.1. Let (𝑀(𝑡), 𝑡 ≥ 0) be a square-integrable real-valued martingale with respect to (ℱ𝑡)𝑡≥0 and with càdlàg paths, 𝑀(0) = 0.
hen there exist progressively measurable processes (𝐹𝑘(𝑡), 𝑡 ≥ 0)𝑘≥1 satisfying

∑∞
𝑘=1 ∫

𝑇
0 E𝐹 2

𝑘 (𝑡) 𝑑𝑡 < ∞ for all 𝑇 > 0 and P-a.s. (with
2(P)-convergence)

𝑀(𝑡) =
∞
∑

𝑘=1
∫

𝑡

0
𝐹𝑘(𝑠) 𝑑𝑊𝑘(𝑠) = ∫

𝑡

0
⟨𝐹 (𝑠), 𝑑𝑊 (𝑠)⟩ , 𝑡 ≥ 0,

∑∞
17

here 𝐹 (𝑠) ∶= 𝑘=1 𝐹𝑘(𝑠)𝑒𝑘.
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(
(

T

w

(

Proof. Define the subfiltrations (ℱ (𝐾)
𝑡 )𝑡≥0 generated by (𝑊𝑘(𝑡), 𝑡 ≥ 0)1≤𝑘≤𝐾 and consider

𝑀 (𝐾)(𝑡) ∶= E[𝑀(𝑡) |ℱ (𝐾)
𝑡 ].

By the tower property for 𝑠 < 𝑡, we have

E[𝑀(𝑡) |ℱ (𝐾)
𝑠 ] = E[E[𝑀(𝑡) |ℱ𝑠] |ℱ (𝐾)

𝑠 ] = 𝑀 (𝐾)(𝑠)

and another application of the tower property yields

E[𝑀 (𝐾)(𝑡) |ℱ (𝐾)
𝑠 ] = E[𝑀(𝑡) |ℱ (𝐾)

𝑠 ] = 𝑀 (𝐾)(𝑠).

We conclude that (𝑀 (𝐾)(𝑡), 𝑡 ≥ 0) forms an 𝐿2(P)-martingale with respect to the 𝐾-dimensional Brownian filtration (ℱ (𝐾)
𝑡 )𝑡≥0. By

standard martingale theory (e.g., Theorem 1.3.13 in [14]) we may choose a càdlàg version of (𝑀 (𝐾)(𝑡), 𝑡 ≥ 0), which we shall do
henceforth.

Theorem 3.4.15 in [14] therefore shows that there are (𝐹𝑘(𝑡), 𝑡 ≥ 0)1≤𝑘≤𝐾 satisfying ∑𝐾
𝑘=1 ∫

𝑇
0 E𝐹 2

𝑘 (𝑡) 𝑑𝑡 < ∞ for all 𝑇 > 0 and P-a.s.

𝑀 (𝐾)(𝑡) =
𝐾
∑

𝑘=1
∫

𝑡

0
𝐹𝑘(𝑠) 𝑑𝑊𝑘(𝑠), 𝑡 ≥ 0.

The uniqueness result of that theorem also shows that for each 𝐾 the 𝐹𝑘, 𝑘 = 1,… , 𝐾, can be chosen to not depend on 𝐾 because
by independence of 𝑊𝐾 from (𝑊𝑘, 1 ≤ 𝑘 ≤ 𝐾 − 1), 𝐾 ≥ 2, we have

E
[

∫

𝑡

0
𝐹𝐾 (𝑠) 𝑑𝑊𝐾 (𝑠)

|

|

|

ℱ (𝐾−1)
𝑡

]

= 0.

Since ℱ𝑡 is generated by ⋃

𝐾≥1 ℱ
(𝐾)
𝑡 , the 𝐿2-martingale convergence theorem gives lim𝐾→∞ 𝑀 (𝐾)(𝑡) = 𝑀(𝑡) in 𝐿2(P)-convergence

for every 𝑡 ≥ 0. Hence, also ∑𝐾
𝑘=1 ∫

𝑡
0 𝐹𝑘(𝑠) 𝑑𝑊𝑘(𝑠) converges in 𝐿2(P) for 𝐾 → ∞. By Itô’s isometry this shows that the 𝐿2(P)-norms

converge: ∑∞
𝑘=1 ∫

𝑡
0 E𝐹 2

𝑘 (𝑠) 𝑑𝑠 < ∞. The limit ∑∞
𝑘=1 ∫

𝑡
0 𝐹𝑘(𝑠) 𝑑𝑊𝑘(𝑠) = ∫ 𝑡

0 ⟨𝐹 (𝑠), 𝑑𝑊 (𝑠)⟩ is then well defined as an element of 𝐿2(P).
Moreover, it equals the limit of 𝑀 (𝐾)(𝑡) whence

𝑀(𝑡) =
∞
∑

𝑘=1
∫

𝑡

0
𝐹𝑘(𝑠) 𝑑𝑊𝑘(𝑠) = ∫

𝑡

0
⟨𝐹 (𝑠), 𝑑𝑊 (𝑠)⟩

holds P-a.s. for each fixed 𝑡 ≥ 0. Using the càdlàg path versions on each side, this entails equality for all 𝑡 ≥ 0 with probability
one. □

Theorem 6.2. Let (𝑌𝛿(𝑡), 𝑡 ≥ 0) for 𝛿 > 0 be progressively measurable 𝐻-valued processes on (𝛺,ℱ , (ℱ𝑡)𝑡≥0,P) with ∫ 𝑇
0 ‖𝑌𝛿(𝑡)‖2 𝑑𝑡 < ∞

and all 𝑇 ≥ 0 (or 𝑇 ∈ [0, 𝑇𝑚𝑎𝑥]). Assume for all 𝑇 :

C1) ∫ 𝑇
0 ‖𝑌𝛿(𝑡)‖2 𝑑𝑡

P
→ ∫ 𝑇

0 𝑠2(𝑡) 𝑑𝑡 as 𝛿 → 0 for some progressively measurable real-valued process (𝑠(𝑡), 𝑡 ≥ 0) with ∫ 𝑇
0 𝑠2(𝑡) 𝑑𝑡 < ∞,

C2) ∫ 𝑇
0 ⟨𝑌𝛿(𝑡), 𝐹 (𝑡)⟩ 𝑑𝑡

P
→ 0 as 𝛿 → 0 for all progressively measurable 𝐻-valued processes (𝐹 (𝑡), 𝑡 ≥ 0).

hen the following stable limit theorem for stochastic integrals holds:
(

∫

𝑇

0
⟨𝑌𝛿(𝑡), 𝑑𝑊 (𝑡)⟩ , 𝑇 ≥ 0

) 𝑠𝑡𝑎𝑏𝑙𝑦
←←←←←←←←←←←←←←←←←←←←←←→

(

∫

𝑇

0
𝑠(𝑡) 𝑑𝐵(𝑡), 𝑇 ≥ 0

)

ith an independent scalar Brownian motion (𝐵(𝑡), 𝑡 ≥ 0) (on an extension of the original filtered probability space).

Proof. Since 𝑀𝛿(𝑇 ) ∶= ∫ 𝑇
0 ⟨𝑌𝛿(𝑡), 𝑑𝑊 (𝑡)⟩ is a continuous martingale with quadratic variation 𝐶𝛿(𝑇 ) = ∫ 𝑇

0 ‖𝑌𝛿(𝑡)‖2 𝑑𝑡, we can apply
Theorem IX.7.3(b) in [13] with the trivial processes 𝑍𝑡 = 0, 𝐵𝑡 = 0 (in that Theorem), so that it remains to check for all 𝑇 :

(i) 𝐶𝛿(𝑇 )
P
→ ∫ 𝑇

0 𝑠2(𝑡) 𝑑𝑡,
(ii) ⟨𝑀𝛿 , 𝑁⟩𝑇

P
→ 0 for all bounded càdlàg-martingales 𝑁 on (𝛺,ℱ , (ℱ𝑡)𝑡≥0,P) with 𝑁(0) = 0.

Condition (i) is satisfied by assumption (C1). For condition (ii) we use the Brownian martingale representation from Proposi-
tion 6.1 to represent 𝑁(𝑇 ) = ∫ 𝑇

0 ⟨𝐹 (𝑡), 𝑑𝑊 (𝑡)⟩ with progressively measurable coordinates (𝐹𝑘(𝑡), 𝑡 ≥ 0)𝑘≥1 and ∑∞
𝑘=1 ∫

𝑇
0 E𝐹 2

𝑘 (𝑡) 𝑑𝑡 < ∞
for all 𝑇 ≥ 0. Then ⟨𝑀𝛿 , 𝑁⟩𝑇 = ∫ 𝑇

0 ⟨𝑌𝛿(𝑡), 𝐹 (𝑡)⟩ 𝑑𝑡 holds and condition (ii) follows from Assumption (C2). □

Corollary 6.3. Theorem 6.2 holds for 𝐻 = 𝐿2(𝛬) if condition (C2) is replaced by the following support condition:

C2’) There exist deterministic Borel sets 𝐴(𝛿) ⊆ [0, 𝑇 ] × 𝛬 with supp(𝑌𝛿′ ) ⊆ 𝐴(𝛿) Lebesgue-almost everywhere for all 0 < 𝛿′ ≤ 𝛿 and
𝜆(𝐴(𝛿)) → 0 as 𝛿 → 0, where 𝜆 denotes Lebesgue measure on [0, 𝑇 ] × 𝛬.

Proof. Set 𝐹𝛿(𝑡) = 𝐹 (𝑡)𝟏𝐴(𝛿)𝐶 for 𝐹 (⋅) in condition (C2) of Theorem 6.2. Then by 𝜆(𝐴(𝛿)) → 0 and dominated convergence, 𝐹𝛿 → 𝐹
holds in 𝐿2([0, 𝑇 ] × 𝛬) for each 𝜔 ∈ 𝛺. Clearly, for each 𝛿 > 0 the support property gives

𝑇
⟨𝑌𝛿′ (𝑡), 𝐹𝛿(𝑡)⟩ 𝑑𝑡

P
→ 0 as 𝛿′ → 0.
18

∫0
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By the triangle and the Cauchy–Schwarz inequality and using condition (C1), we obtain

lim
𝛿′→0

|

|

|∫

𝑇

0
⟨𝑌𝛿′ (𝑡), 𝐹 (𝑡)⟩ , 𝑑𝑡||

|

≤ lim inf
𝛿→0

lim
𝛿′→0

(

|

|

|∫

𝑇

0
⟨𝑌𝛿′ (𝑡), 𝐹 (𝑡) − 𝐹𝛿(𝑡)⟩ 𝑑𝑡

|

|

|

+ |

|

|∫

𝑇

0
⟨𝑌𝛿′ (𝑡), 𝐹𝛿(𝑡)⟩ 𝑑𝑡

|

|

|

)

≤ lim
𝛿′→0

(

∫

𝑇

0
‖𝑌𝛿′ (𝑡)‖2 𝑑𝑡

)1∕2
lim inf
𝛿→0

(

∫

𝑇

0
‖𝐹 (𝑡) − 𝐹𝛿(𝑡)‖2 𝑑𝑡

)1∕2
+ 0

=
(

∫

𝑇

0
𝑠2(𝑡) 𝑑𝑡

)1∕2
× 0 = 0

with convergence in probability. □

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgements

We are grateful to Randolf Altmeyer for very helpful discussions, in particular bringing up the ideas for Proposition 5.7.
Insightful comments and questions by Gregor Pasemann, Eric Ziebell, Pavel Kříž and two anonymous referees have lead to several
improvements. This research has been funded by Deutsche Forschungsgemeinschaft (DFG) - SFB1294/2 - 318763901.

References

[1] R. Altmeyer, T. Bretschneider, J. Janák, M. Reiß, Parameter estimation in an SPDE model for cell repolarisation, SIAM/ASA J. Uncert. Quantif 10 (2022)
179–199.

[2] R. Altmeyer, I. Cialenco, G. Pasemann, Parameter estimation for semilinear SPDEs from local measurements, Bernoulli 29 (2023) 2035–2061.
[3] R. Altmeyer, M. Reiß, Nonparametric estimation for linear SPDEs from local measurements, Ann. Appl. Probab. 31 (2021) 1–38.
[4] J. Blath, M. Hammer, F. Nie, The stochastic Fisher–KPP equation with seed bank and on/off branching coalescing Brownian motion, Stoch. PDE: Anal.

Comp. (2022) 1–46.
[5] S. Cerrai, Stochastic reaction–diffusion systems with multiplicative noise and non-Lipschitz reaction term, Prob. Th. Rel. Fields 125 (2) (2003) 271–304.
[6] Z. Cheng, I. Cialenco, R. Gong, Bayesian estimations for diagonalizable bilinear SPDEs, Stochastic Process. Appl. 130 (2020) 845–877.
[7] C. Chong, High-frequency analysis of parabolic stochastic PDEs with multiplicative noise: Part I, 2019, Preprint, arXiv:1908.04145.
[8] I. Cialenco, N. Glatt-Holtz, Parameter estimation for the stochastically perturbed Navier–Stokes equations, Stochastic Process. Appl. 121 (2011) 701–724.
[9] I. Cialenco, S. Lototsky, Parameter estimation in diagonalizable bilinear stochastic parabolic equations, Stat. Infer. Stoch. Proc. 12 (2009) 203–219.

[10] G. Da Prato, J. Zabczyk, Stochastic equations in infinite dimensions, second ed., in: Encyclopedia of Mathematics and Its Applications, vol. 152, Cambridge
University Press, 2014.

[11] J. Fan, J. Jiang, C. Zhang, Z. Zhou, Time-dependent diffusion models for term structure dynamics, Statist. Sinica 13 (2003) 965–992.
[12] M. Huebner, B. Rozovskii, On asymptotic properties of maximum likelihood estimators for parabolic stochastic PDEs, Prob. Th. Rel. Fields 103 (1995)

143–163.
[13] J. Jacod, A. Shiryaev, Limit theorems for stochastic processes, second ed., in: A Series of Comprehensive Studies in Mathematics, vol. 288, Springer, 2013.
[14] I. Karatzas, S.E. Shreve, Brownian motion and stochastic calculus, second ed., in: Graduate Texts in Mathematics, vol. 113, Springer, 1998.
[15] Y.A. Kutoyants, Statistical inference for ergodic diffusion processes, in: Springer Series in Statistics, 2004.
[16] G.J. Lord, C.E. Powell, T. Shardlow, An introduction to computational stochastic PDEs, Cambridge University Press, 2014.
[17] L. Mytnik, E. Perkins, Pathwise uniqueness for stochastic heat equations with Hölder continuous coefficients: the white noise case, Prob. Th. Rel. Fields

149 (2011) 1–96.
[18] J. Pospíšil, R. Tribe, Parameter estimates and exact variations for stochastic heat equations driven by space–time white noise, Stoch. Anal. Appl. 25 (2007)

593–611.
[19] M. Sanz-Solé, M. Sarrà, Hölder continuity for the stochastic heat equation with spatially correlated noise, in: R.C. Dalang, M. Dozzi, F. Russo (Eds.), in:

Seminar on Stochastic Analysis, Random Fields and Applications III. Progress in Probability, vol. 52, Birkhäuser, 2002, pp. 259–268.
[20] J.B. Walsh, An introduction to stochastic partial differential equations, in: Lect. Notes Math., vol. 1180, Springer, 1986, pp. 265–439.
19

http://refhub.elsevier.com/S0304-4149(24)00091-7/sb1
http://refhub.elsevier.com/S0304-4149(24)00091-7/sb1
http://refhub.elsevier.com/S0304-4149(24)00091-7/sb1
http://refhub.elsevier.com/S0304-4149(24)00091-7/sb2
http://refhub.elsevier.com/S0304-4149(24)00091-7/sb3
http://refhub.elsevier.com/S0304-4149(24)00091-7/sb4
http://refhub.elsevier.com/S0304-4149(24)00091-7/sb4
http://refhub.elsevier.com/S0304-4149(24)00091-7/sb4
http://refhub.elsevier.com/S0304-4149(24)00091-7/sb5
http://refhub.elsevier.com/S0304-4149(24)00091-7/sb6
http://arxiv.org/abs/1908.04145
http://refhub.elsevier.com/S0304-4149(24)00091-7/sb8
http://refhub.elsevier.com/S0304-4149(24)00091-7/sb9
http://refhub.elsevier.com/S0304-4149(24)00091-7/sb10
http://refhub.elsevier.com/S0304-4149(24)00091-7/sb10
http://refhub.elsevier.com/S0304-4149(24)00091-7/sb10
http://refhub.elsevier.com/S0304-4149(24)00091-7/sb11
http://refhub.elsevier.com/S0304-4149(24)00091-7/sb12
http://refhub.elsevier.com/S0304-4149(24)00091-7/sb12
http://refhub.elsevier.com/S0304-4149(24)00091-7/sb12
http://refhub.elsevier.com/S0304-4149(24)00091-7/sb13
http://refhub.elsevier.com/S0304-4149(24)00091-7/sb14
http://refhub.elsevier.com/S0304-4149(24)00091-7/sb15
http://refhub.elsevier.com/S0304-4149(24)00091-7/sb16
http://refhub.elsevier.com/S0304-4149(24)00091-7/sb17
http://refhub.elsevier.com/S0304-4149(24)00091-7/sb17
http://refhub.elsevier.com/S0304-4149(24)00091-7/sb17
http://refhub.elsevier.com/S0304-4149(24)00091-7/sb18
http://refhub.elsevier.com/S0304-4149(24)00091-7/sb18
http://refhub.elsevier.com/S0304-4149(24)00091-7/sb18
http://refhub.elsevier.com/S0304-4149(24)00091-7/sb19
http://refhub.elsevier.com/S0304-4149(24)00091-7/sb19
http://refhub.elsevier.com/S0304-4149(24)00091-7/sb19
http://refhub.elsevier.com/S0304-4149(24)00091-7/sb20

	Parameter estimation for the stochastic heat equation with multiplicative noise from local measurements
	Introduction
	The model
	Notations
	The stochastic heat equation
	The observation scheme

	Estimation methods and main results
	The additive noise estimator
	The multiplicative noise estimator
	The stabilised multiplicative noise estimator
	Confidence intervals

	Implementation and simulation results
	Proofs
	Fundamental asymptotics
	Approximation of quadratic variations and related terms
	Asymptotics of quadratic variations and related terms
	Proof of the main theorems

	A stable limit theorem for cylindrical Brownian martingales
	Declaration of competing interest
	Acknowledgements
	References


