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Abstract
Several computational models have been introduced in recent years to yield
comprehensive insights into microstructural evolution analyses. However, the
identification of the correct input parameters to a simulation that corresponds to
a certain experimental result is a major challenge on this length scale. To com-
plement simulation results with experimental data (and vice versa) is not trivial
since, e.g. simulation model parameters might lack a physical understanding or
uncertainties in the experimental data are neglected. Computational costs are
another challenge mesoscale models always have to face, so comprehensive
parameter studies can be costly. In this paper, we introduce a surrogate model
to circumvent continuum dislocation dynamics simulation by a data-driven
linkage between well-defined input parameters and output data and vice versa.
We present meaningful results for a forward surrogate formulation that predicts
simulation output based on the input parameter space, as well as for the inverse
approach that derives the input parameter space based on simulation as well
as experimental output quantities. This enables, e.g. a direct derivation of the
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input parameter space of a continuum dislocation dynamics simulation based
on experimentally provided stress–strain data.

Keywords: plasticity, continuum dislocation dynamics, surrogate modelling,
inverse modelling, microstructure prediction, machine learning, data science

1. Introduction

Plasticity in crystalline materials is a result of its underlying microstructure evolution. Plastic
deformation arises from dislocation motion and dislocation interaction [1, 2]. Various compu-
tational models have been established to study dislocation-based plasticity at different length
scales, such as molecular dynamics (MD), discrete dislocation dynamics (DDD), continuum
dislocation dynamics (CDD) and crystal plasticity (CP) [3]. Besides comparing different
length and time scales with each other or combining them in a multi-scale model, the compar-
ability between simulation and experiment is of essential importance [4]. Experiments yield
essential input parameters for simulations on the meso- and macroscale. They have to be taken
into account to validate simulation results in order to apply simulations to predictive analyses
or enable simulation-assisted interpretation of experiments.

Figure 1 shows a common process of combining simulation and experiment. One derives
the input for a simulation from experiments, conducts the simulation and validates the output of
a simulation again with experiments [5–7]. A challenge in this procedure is that often several
input parameters for the simulation are unknown and have to be estimated since they can-
not be derived from the experiment itself or from additional experimental methods [5]. This
is, e.g. the case for microstructural parameters such as the initial dislocation microstructure
or dislocation reaction coefficients. Thus, the identification of the correct and distinct input
for a simulation of the microstructure evolution from experiments is a major challenge [6].
Although, advanced experimental methods have been developed such as transmission elec-
tron microscopy, electron backscatter diffraction (EBSD) or digital image correlation (DIC),
the methods are often limited to a two dimensional representation of the microstructure [5,
8, 9]. Thus, simulations are necessary to capture the three dimensional microstructure evol-
ution. Ultimately, complementing simulation and experimental data leads to insights into the
fundamental material behavior.

In materials mechanics, a simple and self-evident way to set up a simulation is to compare
the mechanical behavior based on the stress–strain curve between simulation and experiment.
Since each elastic-plastic stress–strain curve arises from its underlying microstructure evolu-
tion, the correct stress–strain behavior indicates that a possibly correct microstructure repres-
entation has been processed in the simulation. However, there might be several microstructural
representations that yield the same overall stress–strain behavior and it is not clear which one
is the correct one with respect to the considered experiment.

The stress–strain behavior depends on the initial dislocation microstructure and the applied
boundary conditions. In simulations, further numerical parameters are required, while bound-
ary conditions can usually be set in good agreement with an experiment for simple loading
scenarios, e.g. tension, compression or bending [10]. Initial conditions and simulation para-
meters for a specific specimen to be experimentally tested can not be extracted directly in
most cases [11]. Statistical scattering of parameters has to be taken into account. Often, the
choice of numerical parameters is not explicitly discussed in many publications, which limits
the understanding of their impact. Thus, simulation domain knowledge and parameter studies
are employed to approach the desired stress–strain curve. This leads to time-consuming trial
and error approaches without guarantee of completeness and undetermined conclusions.
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Figure 1. Process of validation of simulations and predictive analysis.

In recent years, statistical and machine learning approaches yielded strategies to systemat-
ically identify fundamental material parameters and properties. Various strategies for mater-
ials design from simulation or experimental databases are applicable [12, 13]. An overview
of machine learning and data mining methods applied in material science is given by Bock
et al [14]. An overview onmore sophisticated deep learningmethods is provided byChoudhary
et al [15]. Frequently, optimization concepts are utilized to iteratively achieve a certain result.
For dislocaiton dynamics, in 2D DDD simulations, e.g. a machine learning approach is used
by Barros de Moraes et al [16] to estimate parameters of the probability density function of a
transport model for dislocations. In 3D DDD simulations, Steinberger et al [17] evaluate the
relevance of different dislocation densities for dislocation density evolution using a Bayesian
algorithm. Formultiscale crystal plasticitymodels, Kuhn et al [18] use a Bayesian optimisation
based on a Gaussian process to inversely identify material parameters.

In parallel to optimization methods, surrogate modelling has been of growing interest to
reduce the computational cost by deriving an approximation of the result space [19]. Alizadeh
et al [20] provide a study of common approaches to build surrogate models for simulations
in a variety of physical applications. In a review of more than 200 papers, they order them by
methods, and compare the accuracy and computational costs of the surrogate models and their
corresponding simulations. A surrogate model is a ‘stand-alone’ model that mimics a simu-
lation and directly interconnects input and output on a data-driven manner. Such a surrogate
model concept predicts a simulation output from a simulation input, which is called ‘forward
surrogate model’, or the model can predict the simulation input from the simulation output,
which is called ‘inverse surrogate model’ [21].

Forward surrogate models are applicable, for example, in multiscale materials modelling to
informmodels on a larger length scale by surrogate models based on a smaller length scale [22,
23]. Fernandez et al [24] apply an artificial neural network (ANN) surrogate to model the con-
stitutive behavior of grain boundaries by using a MD database. Mudunuru et al [25] show that
the estimation of failure in brittle materials is several orders of magnitude faster by a k-nearest
neighbor (kNN) surrogate model compared to high-fidelity simulations. Liang et al [26] pro-
pose an encoder-decoder surrogate model to directly predict stress distributions on the material
surface based on finite element analysis. A long short-term memory (LSTM) surrogate model
is proposed, e.g. to predict crystal orientations in crystal plasticity simulations using fcc mater-
ials under uniaxial tension [27] or to predict phase-field simulations based microstructure evol-
ution [28].

Inverse surrogate models can approximate the solution of inverse problems. Ktari et al [29]
identify material parameters based on force-displacement curves by an inverse ANN surrogate
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model. The applicability to solve inverse problems has been recently demonstrated based on
physics-informed neural networks that take into account underlying physical equations to the
loss function of the considered neural network [30–33]. Parameter identification by connect-
ing simulation and experiment results is subject of ongoing research [34–36]. A prominent
example for the fusion of simulation and experiment is showcased for the plastic deformation
of indentation by a neural network based parameter identification from finite element sim-
ulations [37] and experimental validation of the parameters [38]. Recently, frameworks for
forward and inverse predictions between microstructure properties and mechanical behavior
from simulative and experimental data are demonstrated, e.g. for indentation of metals based
on a neural network trained on finite element simulations [39] or for compression of architec-
tured materials based on a LSTM trained on MD simulations [40].

Taking into account the recent progress in forward and inverse surrogate modelling, in this
paper, we want to address the fundamental challenge of coupling experimental and simulation
approaches in dislocation based plasticity. We want to answer the question whether there is a
meaningful approach to estimate the input parameter space for continuum dislocation dynam-
ics simulations based on easily accessible experimental data? It is investigated to what extent a
surrogate model can represent the microstructural evolution in continuum dislocation dynam-
ics without oversimplifying the complex physical interactions.

The paper is structured as follows: In section 2, we introduce the methodology of the con-
sidered continuum dislocation dynamics formulation and propose a concept of a coupled for-
ward and inverse surrogate model. We demonstrate the generation of the simulation database
and describe the considered parameter space. We formulate potential surrogate model candid-
ates and metrics for comparing their performance. In section 3, the results of the comparison
of the surrogate model candidates are presented. We demonstrate the predictive capability of a
forward surrogate model as well as of the inverse formulation by identifying input parameter
spaces based on experimental stress–strain curves. Finally, we discuss the sensitivity of the
input parameters on the mechanical behavior and its implications for the generation of a sur-
rogate model in section 4. Here, we also discuss uncertainties and limitations of the presented
surrogate concept. Section 5 gives a conclusion and outlook.

2. Methods

2.1. Methodology

In this work, we present a surrogate model concept for a dislocation based continuum (CDD)
model of crystal plasticity simulation. Figure 2 depicts the concept of coupling a forward sur-
rogate model and an inverse surrogate model approach for CDD simulation. Here, the forward
surrogate model aims to map the simulation input to a mechanical behavior. The inverse sur-
rogate model aims to map an arbitrary mechanical behavior to the corresponding simulation
input parameter space.

The following three key components of the surrogate approach will be addressed: (i) gen-
eration of a simulation database of CDD simulations representing statistical parameter spaces;
(ii) evaluation of the possibilities to circumvent the CDD simulation by a forward surrogate
model; (iii) potential of an inverse surrogate model, that enables the prediction of input para-
meter spaces, e.g. based on stress–strain curves. These components are summarized in figure 3
and the respective procedures are outlined in more detail in the following.

(i) First, we generate a representative database based on CDD simulations. As simulation
input, we systematically vary a set of input parameters within a chosen parameter space. The
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Figure 2. Concept of the surrogate model approach including forward and inverse sur-
rogate for CDD modelling.

Figure 3. Components of the coupled forward and inverse surrogate approach.

parameter space is described in detail in 2.3. In this work, we include various parameters such
as crystal orientation, elastic properties, initial dislocationmicrostructure, reaction constants as
well as numerical simulation parameters. For simplicity, we do not vary the loading scenario,
the specimen size and the boundary conditions. As simulation output, we obtain themechanical
behavior in terms of a stress–strain curve as well as the dislocation density evolution.

(ii) Second, a forward surrogatemodel is trained based on the generated simulation database
with the objective to investigate the potential of a surrogate to mimic CDD on a data-driven
manner. The forward surrogate model circumvents CDD and predicts a mechanical beha-
viour (output) based on a well-defined set of simulation input parameters (input). Different
surrogate model candidates are evaluated to discuss the suitability for this use case. Different
aspects are taken into account such as the accuracy, the amount of data needed and the com-
putational costs. Furthermore the interpolation capability within the parameter space as well
as the feature importance is studied for the forward surrogate model.

(iii) Third, we introduce an inverse surrogate model for the prediction of the simulation
input parameter space (output) from stress–strain curves (input). We identify most suitable
model candidates and an appropriate evaluation metric. We evaluate the limits of the inverse
prediction of input parameters based on cross-validation to provide not only the prediction
of the best input parameters, but a probability estimation of the input parameter space. The
identification of simulation input parameters from experimental stress–strain curves is chosen
to discuss the approach.
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2.2. Continuum dislocation dynamics

The CDD formulation for fcc crystalline materials employed in this study is based on the
framework presented in [41]. In general, the CDD model is a direct homogenization of
three-dimensional DDD for fcc crystals [42–44]. The formulation incorporates two interlinked
problems: the elastic (external) problem that computes the elastic stress field for a given
deformation state based on a discontinuous Galerkin method, and the internal problem that
describes the microstructure evolution under a given stress field leading to plastic deformation.
The two problems are coupled by the plastic shear strain. For the internal problem, the dislo-
cation microstructure is characterized by dislocation densities on each slip system, specifying
the dislocation line length per averaging volume as well as the dislocation curvature density.
Following the approaches outlined by Sudmanns et al [43], we distinguish betweenmobile and
network dislocation densities. The mobile dislocation density can be decomposed again into
statistically stored dislocation density and geometrically necessary dislocation (GND) densit-
ies accounting for screw and edge character. The network dislocation density comprises the
density of Lomer junctions and a stabilized dislocation density that captures the dislocation
density attached to Lomer junctions. The model considers dislocation nucleation [44], dislo-
cation multiplication processes such as glissile reaction and cross-slip [42], as well as disloca-
tion stabilization and annihilation, such as Lomer and collinear reactions [43]. The governing
equations including stress interaction and reaction terms are given in appendix A. Regarding
the physical consistency, the considered CDD model has been evaluated by comparison to
three-dimensional DDD simulations [42–44] as well as to experiments [44–46] showing phys-
ically meaningful microstructural evolution results.

2.3. Database

Using the three-dimensional CDD formulation, we conducted simulations with varying input
parameters of an uniaxial tensile test of a cubic (5 µm)3 specimen mimicking a face centered
cubic single crystal. To ensure the numerical reliability of the simulation results, we conduc-
ted temporal and spatial convergence studies. The simulation is carried out with a constant
strain rate of ε̇= 5000 s−1 up to a total strain ε= 1.0%. The database is set up consisting
of simulation inputs and corresponding simulation outputs. The input is the set of simulation
input parameters. The output is a time series, i.e. a data series at certain strain states. Here, we
exemplarily choose two data series: stress over strain data and dislocation density over strain
data.

2.3.1. Parameter space. For the generation of the simulation database, we focus on a
selection of parameters that are varied with respect to the CDD model. We examine eleven
input parameters considering the elastic material properties and crystal orientation, disloca-
tion microstructure as well as reaction and interaction constants that are varied as shown and
specified in table 1. The variation leads to an overall number of 5832 simulations of permutated
input parameters. Values that are varied exclusively as tuples are described by the tuple spe-
cifications and are shown in brackets () in table 1. The parameter space is described in more
detail in the following:

MaterialWe apply the elastic properties of three materials (Al, Au, Cu) with isotropic material
properties. Each material is defined by the Young’s modulus E, the Poisson’s ratio ν and the
Burgers vector b.
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Table 1. Parameter space of the simulation input parameters considered in CDD.
The values that are exclusively varied as tuples, are indicated by brackets () in the
specification.

Parameter Specifications Values (sets of values)

Mesh size M [-] 125, 1000

Material
(material, E, ν, b) ([-], [GPa],
[-], (µm))

(Cu, 117,0.35,0.254)
(Al, 72,0.347,0.254)
(Au, 78,0.440,2.870)

Dislocation
distribution

(ρitot,0,ρ
i
mob,0,ρ

i
sta,0,ρ

i
lom,0)

([ 1
µm2 ], [

1
µm2 ], [

1
µm2 ], [

1
µm2 ])

(0.1,0.1,0.0,0.0)
(0.1,0.05,0.025,0.025)
(0.1,0.0,0.05,0.05)
(1.0,1.0,0.0,0.0)
(1.0,0.5,0.25,0.25)
(1.0,0.0,0.5,0.5)
(10,10,0.0,0.0)
(10,5.0,2.5,2.5)
(10,0.0,5.0,5.0)

Crystal orientation CO [-] ⟨100⟩, ⟨110⟩, ⟨123⟩

Source constant Cfr [-] 1.5,2.0

Curvature constant Cfr,multi [-] 0,0.1,0.5

Reaction constants
(Clom,Ccol) ([-], [-]) (0.032,0.016)

(0.064,0.032)
(0.128,0.064)

Cross-slip constant

(Cu, 0.028,300)
(Cu, 0.028,42.0)

(material, τIII,Vact)
([–], [GPa], [b3])

(Al, 0.005,300)
(Al, 0.005,1.7)
(Au, 0.01,300)
(Au, 0.01,17.2)

Crystal Orientation Based on the crystal orientation, different resolved shear stresses result
on the slip systems having significant impact on the microstructural evolution. Therefore, we
exemplarily consider the three different crystal orientations ⟨100⟩, ⟨111⟩ and ⟨123⟩.

Initial dislocation density configuration The initial dislocation density configuration affects
the microstructure evolution with a direct impact on the stress–strain behaviour. We vary the
initial dislocation density and its distribution based on different dislocation density quantities.
Here, the total initial dislocation density ρtot,0 is calculated as the sum of each total disloca-
tion density per slip system ρitot,0. Each total dislocation density per slip system can consist
of mobile dislocation density ρimob,0 and network dislocation density ρinet,0 . The network dis-
location density consists of Lomer dislocation density ρilom,0 and stabilized dislocation dens-
ity ρista,0, which leads to
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ρtot,0 =
12∑
i=1

(
ρimob,0 + ρilom,0 + ρista,0

)
. (1)

We assume the initial Lomer dislocation density to be equal to the initial stabilized disloca-
tion density such that ρilom,0 = ρista,0. This simplification is based on the assumption that each
stabilised dislocation density is always part of connected Lomer dislocation density [47]. To
describe the variation of the initial dislocation distribution, we introduce a parameter ηd that
is defined as

ηd =
ρlom,0 + ρsta,0

ρtot,0
. (2)

The parameter describes the proportion of the dislocation density that is mobile or bound in the
network, i.e. as a Lomer or stabilised dislocation density, in the total dislocation density. Based
on the initial dislocation density distribution, we calculate the yield stress τ iy based on [48].
For the CDD formulation, we define the yield stress as

τ iy = µbi

√√√√√ 12∑
j=1

aji ·


(
ρilom,0

)
, aji = alom(

ρimob,0 + ρista,0

)
, else

(3)

with the interaction coefficients aji derived from DDD simulations [49].

Dislocation nucleationThe dislocation nucleation is incorporated by a formulation of a homo-
genized dislocation source model [44]. The source model is activated when the resolved shear
stress τ ires on a slip system exceeds a critical shear stress τ icrit, which is defined as

τ icrit =max

(
1
Cfr

µb
√

ρitot, τCRSS

)
. (4)

The constant Cfr is set to control the critical shear stress for activating the source model, µ the
shear modulus and τCRSS is a reference value for the critical shear stress in case of vanishing
dislocation densities.

Dislocation cross-slip Modelling the cross-slip of screw dislocation density is carried out by
considering a probability term based on Verdier et al [50]. Incorporating the term in CDD
according to [42], the cross-slip probability Pcs within a simulation time step enters as a para-
meter in the evolution equation of the cross-slip model and is given as

Pcs = f(exp(Vact) ,exp(τIII)) . (5)

Vact denotes the activation volume and τ III defines the shear stress at the transition to stage
III hardening. Both parameters are material-dependent and are varied in accordance to the
chosenmaterial. Furthermore, the model includes the generation of the curvature density based
on dislocation multiplication due to cross-slip. It occurs if the resolved shear stress τ ires on a
slip system exceeds the critical shear stress τ icrit of the source model. The parameter Cfr,multi

is a constant between 0 and 1, which captures the shape of the bow-out of the cross-slipped
dislocation [44].

Reaction model We consider dislocation reactions of dislocation on different slip systems on
a continuum level [43, 51]. Here, we consider the input parameters for collinear and Lomer
reactions. Collinear as well as Lomer reactions affect the mobile as well as the network dislo-
cation density. The dislocation reaction model is formulated according to [43] as

∂t
(
ρkmob,r+ ρksta,r

)
=−Cr

(
1
b
∂tγ

i
√
ρjmob + ρjsta +

1
b
∂tγ

j
√
ρimob + ρista

)
, (6)
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where Cr corresponds to a collinear coefficient Ccol or a Lomer coefficient Clom, which leads
to reactions of mobile ρkmob,r and stabilized ρksta,r dislocation density of reaction r. The two
interacting slip systems i and j yield a reaction on slip system k. It has to be remarked that k
can be identical to i or j or represent a third slip system [51]. Furthermore, Lomer reactions
lead to the generation of Lomer dislocation density ρklom, which is given as

∂tρ
k
lom =−∂t

(
ρkmob,lom + ρksta,lom

)
. (7)

It accounts for the transfer of mobile and stabilized to Lomer dislocation density.

Mesh Size To control the impact of the spatial discretization of the simulations setup two dif-
ferent mesh sizes are chosen. The cubic sample has been analyzed for a total element number
of 125 hexahedrons (5× 5× 5) with an edge length of 1.0 µm and a number of 1000 hexahed-
rons (10× 10× 10) with an edge length of 0.5 µm.

2.3.2. Exploration of database. To obtain an understanding of the simulation output based
on the variation of input parameters, the generated simulation database is statistically evalu-
ated. Figure 4(a) depicts the stress–strain behaviour of the three different elastic material prop-
erties considered. A higher mean yield stress and larger hardening are visible for Cu compared
to those of Al and Au. The stress deviation is increasing with ongoing plastic deformation and
is overall larger for Cu than for Al and Au.

Focusing exemplarily on the subset of the database for Al, figure 4(b) depicts the stress–
strain behaviour for the three considered crystal orientations. Here, the material parameters
are equal for each crystal orientation. It can be observed that plastic yielding starts at lower
stresses for ⟨100⟩ orientation. Thus, the transition from elastic to plastic deformation occurs at
an earlier strain state. Higher mean stresses are obtained for ⟨111⟩ and ⟨123⟩ orientation. The
deviation of stress during plastic deformation occurs to be comparable for each crystal orient-
ation. Figure 4(c) shows the influence of the initial dislocation density. The mean yield stress
is found to be largest for the highest initial dislocation density. A low dislocation density of
1.2 µm−2 exhibits a similar yield stress compared to an initial dislocation density of 12 µm−2.
Simulations with initial dislocation densities of 1.2 µm−2 exhibit slight fluctuations for the
stress–strain behavior. Simulations of larger initial dislocation density do rarely show this
effect. Figure 4(d) depicts the stress–strain behaviour of the three considered Lomer reaction
coefficients. Lower coefficients lead to lower mean stress–strain curves. The stress deviation
is similar for each Lomer reaction coefficient.

The CDD model distinguishes between mobile and network dislocation density. Since the
initial dislocation density has a significant impact on the macroscopic response, as shown
in figure 4(c), we analyse the influence of the distribution of initial dislocation density using ηd.
We study three initial cases, i.e. only mobile dislocation density with ηd = 0, equally dis-
tributed mobile and network dislocation density with ηd = 0.5 and only network density
with ηd = 1. To analyze this effect in the dataset, we use the subset of the database for Al with
an initial dislocation density of 10 µm−2 per slip system. Figure 5(a) displays the stress–strain
behaviour. The case ηd = 1 shows an increased mean stress during plastic deformation. The
hardening behaviour and the deviation of stress is similar for each case. Figure 5(b) displays
the mobile dislocation density evolution over strain. During elastic deformation, the mobile
dislocation density stays constant. After the transition from elastic to plastic deformation, a
significant dependency of the mobile dislocation density evolution on ηd can be observed.
ηd = 0 leads to a reduction of mobile dislocation density. In contrast, the presence of ini-
tial network density leads to a generation of mobile dislocation density. An overall decrease
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Figure 4. Mean and standard deviation of the stress–strain behavior with respect to
different parameters settings.

is observed for the mean mobile dislocation density evolution. However, the deviation of the
mobile dislocation density evolution increases while straining, whereby the deviation increases
larger for simulations with lower initial network dislocation density.

To better understand the correlations between input parameters and simulation output, the
Pearson correlations between input and output are calculated. We analyze the following mater-
ial characteristics, which are derived from the stress and the dislocation density evolution: res-
ulting overall yield stress σy, calculated local yield stress τ y, maximal stress σmax, stress at total
strain σεmax , hardening θσ = (σ(εtot)−σy), maximum of dislocation density ρmax, dislocation
density at total strain ρεmax , change of mobile dislocation density θρ = (ρmob(εtot)− ρmob,0).
Figure 6(left) depicts all Pearson correlations between input and material characteristics. It can
be observed that the initial total dislocation density correlates strongly with the yield stress as
well as with the maximal mobile dislocation density. The initial dislocation density, which is
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Figure 5. Dependence of the distribution of initial dislocation density based on factor
ηd for simulations mimicking Al and having a initial dislocation density of 10 µm−2

per slip system based on the mean and standard deviation.

Figure 6. Pearson correlation of input vs output parameters (left) and of output
parameters themselves (right).

mobile, Lomer or stabilized density, exhibits a similar correlation. For the initial densities, a
negative correlation with the change of dislocation density θρ is found. Other correlations are
less pronounced. Complementary, figure 6(right) shows the Pearson correlation between all
material characteristics. The diagonal is 1 as expected for self correlation. The overall yield
stress and the calculated local yield stress show a strong correlation. σmax and σεtot correl-
ate strongly as well. σy exhibits a negative correlation with θσ or θρ. With this analysis, the
Pearson correlation provides a first insight into the simulation data. However, it has to be
remarked that it only reveals the correlation between two parameters. This first evaluation of
the database shows that the input parameter variation yields a reasonable database that can be
applied in the following for surrogate modelling.
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2.4. Forward and inverse surrogate model

The mathematical formulation and the numerical methods comprised in the CDD approach are
based on the solution of partial differential equations. To solve these equations comes along
with high computational costs. To overcome this computational effort, we introduce a surrogate
model that replaces the solution of the partial differential equations by a data-driven approach
that mimics a simulation by a data-based linkage between input and output. We distinguish
between a forward surrogate model, which predicts output from input and an inverse surrogate
model, which predicts the input parameter space based on simulative or experimental output
quantities. Surrogate models can be constructed by a variety of machine learning approaches,
including neural networks and decision trees. Here, the primary objective is to identify a sur-
rogate model that facilitates rapid and accurate predictions for the linkage of input and output
in the context of CDD simulations. We distinguish between two categories of models: one for
deriving individual point-wise predictions and another for deriving sequential predictions. In
the following the potential model candidates are introduced. Detailed information about each
surrogate model candidate is provided in appendix B.

Point-wise prediction A point-wise approach predicts one data point for each point in time,
which, e.g. can be the strain state for a stress–strain curve. In this work we investigate three
point-wise prediction model candidates known to show good performance for regression prob-
lems. First, we use a kNN model, which identifies the k samples from the training set most
similar to the input and then predicts the average of the selected series. Second, we use a
response surface method (RSM) model, which is an optimization heuristic to find minima in
response functions. Here, the response function is the latent function given by the simulation,
i.e. the relation between our input features and target. Third, we include Gradient Boosting
Trees (GBTs). Tree-based models like GBT are well known to deliver strong performance
across various applications, especially when dealing with small data sets.

Sequence prediction A sequence approach predicts an output sequence from an input
sequence. We choose methods based on Recurrent Neural Networks (RNNs) and include
LSTM Network models. Since our input is not a sequence but static data, we employ different
techniques to transform the static input to a sequence input. A straightforward approach is to
couple a LSTM with Repeated Inputs (RepInLSTM). It integrates static data into the LSTM
by feeding the static data as a LSTM input at each strain state together with the previous pre-
dictions. Another approach is to use a LSTM with Raw Hidden State (RawInLSTM), which
passes the static data as a hidden state into the LSTM at each strain state. The previous predic-
tion is fed again as a LSTM input. A third approach is the consideration of a hybrid model. It is
a combination of a point-wise GBT and a sequence-wise LSTM (GBT+LSTM) and combines
the advantages of both approaches. A step-wise prediction using the GBT model in addition
to LSTM yields a sequence-to-sequence mapping of the predictions of the GBT.

To train each surrogate model candidate based on the simulation database, the database
must be preprocessed. Non-floating point input parameters such as material, crystal orientation
and mesh size are treated as categorical variables and transformed into floating point input
parameters. Then, all input parameters are normalized between 0 and 1. For the evaluation
of the surrogate model candidates, we normalize also the simulation output between 0 and
1. The simulation input can be described as a parameter vector X ∈ R1×P consisting of all
input parameters P. The simulation output is a data series Y ∈ R1×T with T data points. The
forward surrogate model predicts the output YSM based on the input X. The inverse surrogate
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model predicts the input XSM based on the output Y. Formally, for the total number N of all
simulations, we receive an input matrix X ∈ RN×P and an output matrix Y ∈ RN×T.

To evaluate the model performance of the data-driven predictions, a variety of error meas-
ures are established in literature based on the comparison of ground truth and predicted
data [52]. In this work, we apply the commonly used metrics to evaluate the performance of
regression models: All are commonly used metrics to evaluate the performance of regression
models.

The root mean square error (RMSE) measures the average magnitude of the residuals
between predicted and actual values, defined as

RMSE=

√√√√1
n

n∑
i=1

(yi − ŷi)
2
. (8)

The mean absolute percentage error (MAPE) quantifies the percentage difference between
predicted and actual values, calculated by

MAPE=
1
n

n∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣ . (9)

The absolute percentage error (APE) is the percentage difference between each predicted and
actual value given as

APE=

∣∣∣∣yi − ŷi
yi

∣∣∣∣ . (10)

The coefficient of determination (R2) indicates the proportion of the variance in the dependent
variable that is predictable from the independent variables. It can be written as

R2 = 1−
∑n

i=1 (yi − ŷi)
2∑n

i=1 (yi − ȳ)2
. (11)

For each error measure, yi represents the actual values, ŷi represents the predicted values and
ȳ is the mean of the actual values.

To evaluate the surrogate model candidates, we perform k cross-validations to increase the
validity of our results.We apply a train-test split of k−1

k / 1
k for each cross-validation.We receive

k error estimations based on the considered error measure and compare the model candidates
based on these cross-validation scores. We compute the mean and the standard deviation of the
considered error measure of all k cross-validation folds. The expected generalization capability
corresponds to the mean of the cross-validation scores [53]. Since the model performance can
strongly depend on the appropriate hyperparameter choices, we conducted the hyperparameter
tuning as described in appendix C.

3. Results

3.1. Surrogate model candidate selection

To select the most suitable surrogate model candidate for the forward and inverse surrogate
modelling approach, we evaluate the proposed model candidates based on their accuracy. For
the forward surrogate model approach, each model candidate is trained and evaluated for the
stress and dislocation density evolution defined as targets, based on a 10-fold cross-validated
RMSE. Table 2 displays the performance of each forward model candidate with respect to
each target and to each considered material. The results showing the lowest RMSE are marked
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Table 2. Comparison of accuracy of forward surrogate model candidates based on mean
and standard deviation of the RMSE measure.

Model
Target Dislocation density Stress

Material Al Au Cu Al Au Cu

kNN
mean 0.109 0.104 0.117 0.099 0.076 0.090
std ±0.011 ±0.010 ±0.019 ±0.011 ±0.006 ±0.008

RSM
mean 0.035 0.036 0.040 0.038 0.031 0.042
std ±0.002 ±0.004 ±0.003 ±0.003 ±0.002 ±0.003

GBT
mean 0.031 0.022 0.033 0.015 0.012 0.027
std ±0.002 ±0.002 ±0.004 ±0.002 ±0.003 ±0.003

RawInLSTM
mean 0.041 0.067 0.045 0.015 0.011 0.040
std ±0.057 ±0.043 ±0.052 ±0.005 ±0.001 ±0.029

RepInLSTM
mean 0.047 0.052 0.036 0.012 0.009 0.034
std ±0.048 ±0.042 ±0.053 ±0.008 ±0.002 ±0.021

GBT+LSTM
mean 0.063 0.033 0.055 0.019 0.030 0.051
std ±0.061 ±0.034 ±0.056 ±0.014 ±0.006 ±0.031

in bold. It is found that the point-wise baseline model candidates kNN and RSM give higher
RMSE values than GBT across all data sets. Based on the comparison of the RMSE values,
the GBT performs best for the dislocation density predictions of the considered materials. For
the stress prediction, no model strictly outperforms the others. However, the sequence-wise
RepInLSTMgives the best results for the stress prediction in Al andAu. For Cu, GBT performs
slightly better than the other models. It can be observed that the RawInLSTM has overall a
slightly worse performance compared to the RepInLSTM. The hybrid approach exhibits less
accurate results compared to each individual point-wise and sequence-wise constituent. To
summarize, the point-wise GBT demonstrates an overall low mean MSE and small standard
deviations for the forward surrogate model for both targets. Thus, we identify the GBT to be
most appropriate for the forward surrogate model for the subsequent evaluations.

Considering the inverse surrogate model approach, we follow a similar procedure. We eval-
uate the model candidates based on the prediction accuracy of a simulation input parameter
set based on stress–strain data. The results of the RMSE values for the inverse investigation
of our data are given in table 3. It can be observed that the GBT exhibits the highest over-
all accuracy compared to the other candidates. The results show that the hybrid approach has
a smaller mean RMSE than the sequence-wise approaches. Within the two sequence-wise
approaches, RepInLSTM occurs to be more accurate compared to RawInLSTM. The lowest
accuracy is given by RSM and the kNN provides slightly better predictions than the sequence-
wise approaches. Thus, the GBT model occurs best suited for the inverse surrogate model
approach. It is remarked here, that the evaluation of the model candidates is presented here
based on the RMSE measure. The same trend has been received by the application of the R2

metric. For brevity, the exact numbers are not shown here. Taking into account the evaluation
results, we select the GBT for the forward as well as the inverse surrogate model approach for
the subsequent analyses.
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Table 3. Comparison of accuracy of inverse surrogate model candidates based on mean
and standard deviation of the RMSE measure.

Model
Target Simulation input parameter space

Material Al Au Cu

kNN
mean 0.319 0.316 0.315
std ±0.004 ±0.005 ±0.004

RSM
mean 1.249 2.742 5.841
std ±0.163 ±0.635 ±1.17

GBT
mean 0.175 0.179 0.182
std ±0.003 ±0.002 ±0.002

RawInLSTM
mean 0.389 0.389 0.392
std ±0.001 ±0.003 ±0.002

RepInLSTM
mean 0.347 0.356 0.360
std ±0.006 ±0.019 ±0.007

GBT+LSTM
mean 0.295 0.301 0.321
std ±0.002 ±0.014 ±0.026

3.2. Forward surrogate model

To qualitatively explore the GBT forward surrogate model in detail, we demonstrate the 10-
fold cross-validation accuracy with a 90/10 train-test split based on a subset of the database
for Al. An exemplary forward prediction is shown in figure 7, for (a) the stress over strain and
(b) the mobile dislocation density over strain behavior. The RMSE for the stress prediction
results to a value of 2.139MPa and for the mobile dislocation density prediction to a value
of 0.815µm−2. In can be seen that during elastic deformation, the prediction of stress and
dislocation density fits very well to the ground truth. With the onset of plastic deformation,
the prediction starts to show slight deviations from the ground truth. However, the trend of
the prediction of stress as well as of the dislocation density is resembling to the ground truth.
The increment between each predicted data point exhibits a slightly jagged behaviour during
plastic deformation.

To quantify the accuracy of the GBT forward surrogate model, we display the APE of
the stress and dislocation density evolution at each strain state in figure 8(a). The bold line
indicates the median APE and the shaded background indicates the area between lower and
upper quartiles of the APE, for the targets stress and dislocation density, respectively. During
elastic deformation up to 0.1% strain the APE is close to zero. During plastic deformation, the
median APEs as well as the interquartile range of the APEs increase with ongoing straining.
The dislocation density prediction starts to deviate at a slightly earlier strain state than the stress
prediction. The median predictions converge after a strain of 0.6% to a constant APE with a
slightly larger error of about 4%median APE of the dislocation density prediction compared to
about 2.5%median APE of the stress prediction. To quantify the GBT forward surrogate model
from a macroscopic perspective, we evaluate the predictions based on macroscopic material
characteristics shown in figure 8(b). The box plot for each material characteristic displays the
median APE as a bold vertical line, the interquartile range of the APE as a box, 1.5 times the
interquartile range of the APE as whiskers and outliers as markers. The prediction of the yield
stress σy shows a good accuracy and almost all predictions of σy have an APE below 1%. The
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Figure 7. Example of GBT forward surrogate model prediction for (a) stress and (b) dis-
location density.

Figure 8. Accuracy of the GBT forward surrogate model based on the absolute per-
centage error (APE) measure of (a) stress and dislocation density evolution and (b) a
selection of material characteristics.

behavior changes for material characteristics describing plastic deformation. The predicted
hardening rate θσ has a median APE of around 10% and whiskers ranging from 0.01% to 20%
APE. Outliers may also have an APE of more than 100%, i.e. the hardening rate is strongly
overestimated in these cases. The APE of the change of dislocation density θρ is resembling
to the predictions of θσ. The predictions of maximum stress σmax and maximum dislocation
density ρmax reveal a median APE of around 2% and 1%, respectively. The interquartile range
for the predictions of ρmax ranges between two orders of magnitude compared to a range of
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Figure 9. Prediction over ground truth evaluation and analysis of feature importance for
the inverse surrogate model.

one order of magnitude for σmax. However, only few predictions for σmax and ρmax are outliers
with APEs larger than 10%.

3.3. Inverse surrogate model

To explore the quantitative accuracy of the inverse GBT surrogate model, we choose the same
procedure as for the forward model. We demonstrate the 10-fold cross-validation accuracy
with a 90/10 train-test split based on a subset of the database for Al. Figure 9(a) shows the
prediction over ground truth values and thus illustrates the prediction accuracy of each of the
1944 input parameter sets derived from the provided stress–strain data. Here, each depicted
ground truth value corresponds to the mean of each normalized parameter set. The overall
prediction shows a RMSE value of 0.173 and a R2 value of 0.8 To investigate the results fur-
ther, we analyse the importance of features during the stress–strain evolution for the inverse
model. Figure 9(b) quantifies the normalized feature importance during loading for the sim-
ulation input parameters. The results show the variation of impact of several features on the
input parameter prediction of the inverse GBT surrogate model. The prediction of the initial
dislocation densities is mainly dependent on the onset of yielding until a strain state of 0.2%.
The ongoing plastic deformation has smaller impact on the inverse prediction of initial dislo-
cation densities. Similarly, the model predicts the crystal orientation most dominantly by the
stress–strain data given during elastic deformation and the onset of plastic deformation. In con-
trast, the feature importance for the prediction of the source, curvature and reaction constant
is broader distributed. These constants are less dependent on the range of elastic deformation.
The results indicate that the onset of yielding impacts the prediction of these constants most.
However, ongoing plastic deformation has still a significant influence on the estimation of the
source, curvature and reaction constant.
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Figure 10. Evaluation of each simulation input parameter prediction performance based
on the inverse GBT surrogate model.

To evaluate the prediction of all considered simulation input parameters, we analyse the
APEs, see figure 10. Each box plot displays the range between the lower and upper quartiles
as a box, the median value as a bold bar, whiskers with 5%–95% confidence interval (CI), and
outliers. The prediction of the initial dislocation densities ρitot, ρ

i
mob, ρ

i
sta and ρ

i
lom show a lower

CI than ±1% and only few outliers. The prediction performance of the crystal orientation
probability ⟨CO⟩ of ⟨123⟩, ⟨100⟩ and ⟨111⟩ is accurate with the lowest APE. The prediction
of the yield stress τ iy yields accurate results with a CI smaller than ±1%. The prediction of
the source constant Cfr exhibits a high uncertainty with a CI of ±80% and an interquartile
range of ±40%. The prediction error of Vact exhibits a similar uncertainty compared to Cfr,
however, with a smaller interquartile range of around±20%. The results of the curvature con-
stant Cfr,multi is more accurate compared to Cfr with a CI of±30% and an interquartile range of
±4%. The APE of the reaction constants Clom and Ccol are comparable to the APE of CFR,multi.
The estimation of the mesh size reveals a low overall APE, however, with a bias of the upper
confidence bound of around 3% compared to the lower confidence bound, which indicates
a slight overestimation. Overall, the APE exhibit a median close to zero for all considered
parameters. No significant bias of underestimating or overestimating input parameter values
is observed when considering the interquartile ranges. The parameter categories dislocation
density, crystal orientation and mesh reveal a high accuracy. Larger uncertainties are exhib-
ited for the reaction and interaction constants.

3.4. Input parameter prediction from experiment

Considering the surrogate approach, we address the challenge of identifying the simulation
input parameter set that corresponds to a given experimental stress–strain curve. We apply the
inverse surrogate model to stress–strain data from an experimental compression test provided
by Kiener et al [54]. We consider the stress–strain curve of a squared Cu sample with an edge
length of 4.82 µm in ⟨111⟩ crystal orientation. For the parameter prediction, we apply a two
step transformation on the experimental data to prepare it for the surrogate procedure. Since
the elastic stiffness of the experimental stress–strain curve is affected by the system compli-
ance such as e.g. stiffness of the testing machine as already reported by Kiener et al [54] for a
comparison of DDD data and experiments, we first transform the experimental elastic stiffness
to the theoretic elastic stiffness of Cu. Afterwards, we set the initial strain of the experimental
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Figure 11. Inverse parameter identification from experiment. (a) Simulation input para-
meter prediction from an experimental stress–strain curve. (b) Comparison of experi-
mental and simulative stress–strain behavior resulting from predicted simulation input
parameters. (c) Simulative results of dislocation density evolution from CDD simula-
tions resulting from predicted input parameters.

stress–strain curve to zero. In a second step, we cut the experimental stress–strain curve at
1% strain, which corresponds to the limit inherent in the training database. Since the experi-
ment represents a Cu sample, we restrict the inverse GBT surrogate model on the sub-dataset
for Cu only to reduce the uncertainty of the inverse surrogate model. To estimate now the dis-
tribution of each parameter, we apply five repetitions of a 10-fold cross-validation. The pre-
dicted parameter distributions based on the experimental data are shown in figure 11(a). Here,
each predicted simulation input parameter reveals a unimodal distribution. The results show
that the prediction of the initial dislocation densities (ρimob, ρ

i
sta, ρ

i
lom), the reaction constants
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(Clom, Ccol) as well as the multiplication constants (CFR, CFR,multi) yield some probability dis-
tribution. The predicted initial dislocation density distributions indicate an initial dislocation
network with more initial network density than initial mobile density. As a first simple evalu-
ation of the inverse surrogate model, we predict the crystal orientation probability. Although
already known from the experiment, we use the inverse model to predict the crystal orienta-
tion. The results of figure 11(a) show that the model yields a high probability of having a ⟨111⟩
crystal orientation that is the correct orientation given by the experiment.

To further evaluate the predicted simulation input parameters, we conduct CDD simula-
tions applying the identified parameter probablity distributions. We choose five simulation
input parameter sets of the predicted distributions by selecting the median, two overestimated
and two underestimated parameter sets within the interquartile range of each predicted para-
meter, and conduct the CDD simulations. Figure 11(b) displays the mean and the standard
deviation of the resulting simulative stress–strain curves up to a total strain ε of 4%. Since
the elastic stiffness differs between experiment and simulation, which might be based on the
impact of the stiffness of the testing machine, the experimental elastic stiffness is indicated as
green dashed line. It is transformed as described above to the theoretic elastic stiffness of Cu
that is now identical to the simulation stiffness. Thus, a comparison of the elastic stiffness is
not part of the analysis. Comparing the experimental and the simulative stress–strain curve, the
yield stress is resembling between experiment and simulation. With ongoing plastic deforma-
tion, the simulated stress–strain behavior shows good accordance to the experiment up to 2%
strain. For larger strains, the simulative stress–strain curve starts to deviate from the experi-
mental stress–strain curve and exhibits a lower stress evolution compared to the experiment,
leading to a stress difference of 50 MPa at 4% strain. The standard deviation of the simulated
stress–strain data is about ±20 MPa during plastic deformation for the five simulation input
parameter sets. To provide an insight into the dislocation microstructure evolution, the evolu-
tion of the dislocation densities in the CDD simulations is shown in figure 11(c). The diagram
displays the mobile ρmob, stabilized ρsta, Lomer ρlom, screw GND κ1, edge GND κ2 and the
total ρtot dislocation density evolution. Due to the five different input parameter sets, the ini-
tial dislocation density distribution slightly differs. During elastic deformation, the dislocation
densities remain constant. A small region of dislocation density transfer from ρlom to ρmob and
ρsta can be observed just after reaching the yield stress. In the plastic regime, ρlom as well as
edge and screw GND density increase, whereas ρmob and ρsta slightly decrease during ongoing
plastic deformation. The overall trend of the dislocation density evolution slightly changes at
2% strain to a less pronounced increase. The results show that the quantitative ratio of Lomer
and mobile dislocation density reveals a large amount of persisting Lomer dislocation density
and a reduction of mobile dislocation density during plastic deformation.

4. Discussion

This introduced surrogate model bypasses continuum dislocation dynamics simulations
through a data-driven linkage of input parameter sets and output quantities. The work com-
prises the generation of a CDD simulation database representing simulations of a variety of
different input parameter sets. Based on the selection and evaluation of model candidates, a
surrogate model for forward and inverse prediction has been trained. Besides the speedup of
CDD computations by the forward surrogate model, the demonstration of the simulation input
parameter prediction based on experimental stress–strain data has been presented.

The evaluation of the surrogate model candidates has shown that a point-wise predictor,
namely the GBT, performs overall better than a sequence-wise predictor such as the LSTM
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with respect to the lowest mean RMSE measure as shown in table 2 for the forward and
in table 3 for the inverse surrogate model. We observe that the forward RepInLSTM surrog-
ate model shows more accurate results for the stress prediction of Al and Au compared to
the GBT. However, the GBT outperforms all other candidates for the stress prediction of Cu
and for the dislocation density prediction of each considered material. Similarly to the for-
ward problem, the GBT outperforms each model candidate for the inverse surrogate model
except for Cu, where the kNN performs equally well based on the lowest RMSE measure.
This is different to the forward surrogate model, where kNN shows less overall performance
based on the RMSE measure. This leads to the conclusion that distinct features are present
in the stress–strain data, that map the proximity of the stress–strain data to the proximity of
the simulation input parameters, but not vice versa. Ultimately, we select the GBT for the for-
ward and the inverse surrogate model. However, it has to be remarked that the GBT does not
include the material history in its prediction, which is contradicting plasticity theory on a first
glance [55]. In literature, LSTMs are frequently employed for data series predictions since it
has been found that they are able to take into account the influence of preceding microstructure
evolution [27, 28, 56]. This is not explicitly found in our study since the GBT shows better
results compared to the LSTM.We assume this can be explained here by only considering one
system set-up with the same loading scenario, strain rate and total strain. The overall micro-
structural evolution history of the variations might be too similar to have a significant impact
on the model. Therefore, the consideration of the material history information does not neces-
sarily provide an advantage for the prediction of the LSTM compared to the GBT as indicated
by the ambiguous best model candidates with the lowest mean RMSE for stress in table 2.
The prediction accuracy of the hybrid approach, i.e. the combination of GBT and LSTM, also
does not leverage the GBT and the LSTM for higher accuracy. Incorporating different loading
scenarios, specimen sizes or strain rates might be of particular interest for further development
of forward and inverse surrogate modelling. However, a comparison of various model candid-
ates is reasonable based on the present observation that more complex surrogate models such
as the LSTMs are not necessarily superior to simpler surrogate models such as GBTs.

The proposed forward GBT surrogate model demonstrates accurate predictions for the
stress and dislocation density evolution as shown exemplarily in figure 7. Based on the abso-
lute prediction error for the stress σ and the dislocation densities ρmob, the model exhibits
accurate results during elastic deformation until 0.1% strain. The prediction accuracy slightly
decreases with ongoing plasticity leading to an APE of 2.5% for stress and 4% for ρmob at
1% strain as shown in figure 8(a). This APE can be considered small compared to the median
stress of 120MPa at 1% strain for the Al sub-dataset as shown in figure 4(a). As indicated by
the absolute percentage error of the material characteristics in figure 8(b), the slightly decreas-
ing prediction accuracy with ongoing plasticity affects especially the prediction of material
characteristics describing plastic deformation such as the hardening rate. The prediction error
may be affected by strongly non-linear correlations between evolutionary input parameters
and mechanical behavior as indicated by the low linear correlation for evolutionary parameters
in figure 6. We assume that an extension of the database to a larger regime of parameter values,
could support the optimization of the surrogate model accuracy during plastic deformation.

In principal, such a forward surrogate model now applies to be incorporated into large scale
plasticity models. This aims to latest research in data-integrated multi-scale approaches for
faster and small scale informed modelling [24, 28, 57]. Considering the good accuracy of the
results, the significant reduction of the computational costs by the surrogate model has to be
highlighted. Whereas a CDD simulation requires a significant amount of CPU resources, the
proposed forward surrogate model predicts the desired output several orders of magnitude
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faster. This facilitates, e.g. the implementation of CDD into an accelerated multi-scale frame-
work in the future.

The inverse surrogate model demonstrates the ability to predict the simulation input para-
meter set from simulation as well as from experimental stress–strain data. The prediction based
on simulation stress–strain data shows high accuracy as displayed by the prediction vs ground
truth diagram in figure 9(a). Based on the normalized prediction error, the prediction accur-
acy has been evaluated for each considered simulation input parameter as shown in figure 10.
We observe parameter predictions with a confidence interval of less than ±1% as e.g. for the
initial dislocation densities, the yield stress or the crystal orientation that indicate a very good
prediction accuracy. The crystal orientation prediction depends most dominantly in the regime
of yielding as shown by the high feature importance until 0.1% strain in figure 9(b). The high
accuracy can be explained by the small but distinct differences for the onset of yielding for
each considered crystal orientation as shown in figure 4(b). The prediction of the initial dislo-
cation density depends most dominantly on the region during the onset of yielding and slightly
beyond as shown by the high feature importance between 0.1% and 0.3% strain in figure 9(b).
Since the initial dislocation densities are linked to the yield stress formulation in CDD (cp.
equation (3)), we assume that the initial dislocation density prediction is consistently accurate
if the yield stress is accurately predicted. Furthermore, the distribution of the dislocation dens-
ities reveals a high prediction accuracy despite a less distinct plastic deformation behavior as
displayed in figure 5(a). In contrast, simulation input parameters, which affect the evolution
of the dislocation microstructure during plastic deformation such as the source constant Cfr,
the curvature constant Cfr,multi or the reaction constants Clom or Ccol, are less accurately pre-
dicted with confidence intervals ranging from ±40% to ±80% as displayed in figure 10. The
prediction of these parameters depends on the entire plastic deformation region as indicated
by the high feature importance starting from 0.1% until 1.0% strain in figure 9(b). We assume
that the fewer prediction accuracy is related to a less distinct plastic deformation behavior,
e.g. for the proximity of the stress–strain behavior for different Lomer reaction coefficient
shown in figure 4(d). Furthermore, as shown by the Pearson correlation in figure 6, these para-
meters are a less distinct correlated to the stress and dislocation density evolution as indicated
by the Pearson coefficient around 0, which can be interpreted as a low linear or a potential non-
linear influence compared to input parameters with a high Pearson coefficient. For the source
and curvature constant, we observe a decreased prediction accuracy which can be explained
by the fact that these parameters are only varied between two values. However, the proposed
inverse GBT surrogate model is able to translate the information from plastic deformation to
an accurate evolutionary input parameter prediction that can be seen by the interquartile range
of the prediction error for the curvature and reaction constant is below±10%. With respect to
the overall prediction error, it can be concluded that the inverse GBT surrogate model exhib-
its accurate results for the prediction of the CDD simulation input parameter sets based on
stress–strain data.

The applicability of the inverse surrogate model to the direct identification of simulation
input parameters from experimental stress–strain data has been investigated. We applied the
inverse surrogate model to experimental results for a compression test presented by Kiener
et al [54]. The simulation input parameters derived by the inverse surrogate model from the
experimental stress–strain data reveal a unimodal distribution for each considered parameter
as displayed in figure 11(a). Since we do not observe a multimodal distribution, i.e. a stress–
strain curve corresponding to two or more distinct parameter sets, we interpret the results that
the surrogate model is able to identify distinct features for each parameter leading to a uniform
distribution. However, it can not be ruled out that an expansion of the parameter space might
yield to more than one global minimum of each considered parameter resulting in multimodal
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distributions. To validate the predicted input parameter distributions, we computed the cor-
responding CDD simulations including the parameters. The stress–strain results of the CDD
simulations based on the predicted simulation input parameters are then compared again to the
experimental stress–strain data. A very good accordance can be observed in the regime until
1% strain as shown by the stress–strain data in figure 11(b). Beyond 1% strain, the simulation
results of the stress–strain data can be considered still accurate and only starts to deviate from
the experimental data for a strain larger than 2%. The deviation of simulation and experiment
beyond 2% strain indicates that the microstructural evolution processes are not accurately rep-
resented within the CDD simulation for these strain states as indicated by the evolution of total
dislocation density in figure 11(c). However, it has to be remarked that the training data for
the surrogate model comprised data for strains up to 1%. The good accordance of the results
up to 2% yield the conclusion that certain extrapolation from the data is possible. But the lim-
its has to be investigated further. Possible explanations for the extrapolation behavior of the
results could be based on simplifying assumptions of further microstructural parameters. The
incorporation of certain input parameters, that have been kept constant in this study as, e.g. the
glissile and coplanar reaction constants, need to be taken into account for further investiga-
tions. Furthermore, an increase in Lomer dislocation density, i.e. a stable dislocation network
has been observed as shown in figure 11(c). In the CDD model, we incorporate unzipping of
Lomer junctions and therefore the dissolution of dislocation network density in a simplified
way [45]. However, the incorporation of a more accurate dissolution process of dislocation net-
work density in CDD can be discussed, since we observe a limitation of the content of Lomer
dislocation density in DDD simulations [47, 51]. But, as an overall conclusion to minimize
the observed deviations in the regime of higher strains, we assume that the incorporation of
simulations with higher strains into the database would yield a more precise input parameter
prediction and avoid the well-known issues of extrapolation in data-driven models.

In general, we observe a moderate total dislocation density evolution, which is similar to
other investigations of micro-compression tests [45]. However, more pronounced total dislo-
cation density evolutions for this set-up can be found based on DDD analyses [54]. Here, only
a small fraction of the total dislocation density is GND density, see figure 11(c). This is resem-
bling to DDD simulation results, which have been conducted in alignment to the same con-
sidered experiment of Kiener et al [54]. Additionally, we observe an increasing contribution of
Lomer dislocation density to the total dislocation density with ongoing plastic deformation as
shown in figure 11(c). This indicates an increasing amount of network dislocation density that
has been observed as well in DDD simulations in conjunction with a decreasing strain rate [58].
We assume that the experimental stress–strain data, which is conducted at a lower strain rate
compared to CDD simulation, incorporate information about the stability of the network dis-
location density, which is determined by the inverse surrogate model through the magnitude
of the reaction constants. However, further analysis on the derivation of physical-based con-
stitutive laws for dislocation network stability and evolution fromDDD simulations is required
for a better understanding of these network processes [59–61]. Summarizing, the prediction of
simulation input parameters based on quite limited consideration of strain states still exhibits
meaningful results and enables the derivation of input parameter sets for CDD simulations
representing the experimental mechanical behavior and the microstructural evolution beyond
the strain states, the inverse surrogate model is trained on. In general, the presented inverse
modelling approach can be applied to any experimental data series as long as the simulation is
capable to output this data. For example, one could consider the surface deformation evolution
from DIC measurements or the GND density evolution from HR-EBSD measurements.
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5. Conclusion

In this work, we introduced a surrogate modelling approach to link input parameter sets and
output quantities for continuum dislocation dynamics simulations on a data-drivenmanner.We
coupled a forward surrogate model that predicts the stress and the dislocation density evolu-
tion from a simulation input parameter set and an inverse surrogate model that derives the
simulation input parameters such as the initial microstructure and model parameters based on
simulation or experimental stress–strain data. We explored the mutual influence of the simula-
tion input parameters on the mechanical behaviour, and incorporated it into a surrogate model
for single crystalline materials. The main outcomes of this work are:

• A forward and an inverse surrogate model trained on a CDD database comprising a vari-
ety of elastic properties, crystal orientations, initial dislocation microstructures as well as
numerical and evolutionary parameters.

• A parameter space exploration revealing insights into linear and non-linear correlations of
the simulation input parameters and the resulting microstructural evolution and its mechan-
ical behavior.

• An evaluation of surrogate model candidates revealing strengths and weaknesses of various
machine learning approaches for capturing this work’s scenario of mapping simulation input
parameters to mechanical behavior.

The proposed forward surrogate model facilitates the derivation of CDD output data by sev-
eral orders of magnitudes lower computational cost compared to the classical CDD simulation.
The proposed inverse surrogate model provides a method to unravel the simulation input para-
meters from experimental data. The results indicate that the presented surrogate concept can
be applied for a faster and more reliable combination of simulation and experimental data in
the field of engineering and mechanics.
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Appendix A. Mathematical formulation of the continuum dislocation dynamics
model

The mathematical formulation of the continuum dislocation dynamics method is based on a
higher order formulation, which incorporates information about dislocation orientation and
dislocation curvature [62, 63]. The CDD implementation incorporates a dislocation network
evolution model [42] and dislocation source model [45] into a dicontinuous Galerkin frame-
work [41]. In general, the model interlinks an external elastic problem with an internal micro-
structure problem. The external problem is solved by linear elasticity by

σ = C(ε− εpl) , (A.1)

with the elasticity tensorC, the Cauchy stress tensorσ, the infinitesimal strain tensor ε and the
infinitesimal plastic strain tensor εpl. The equation takes into consideration the elastic proper-
ties of each desired material, which is simplified in our case to an isotropic material behavior
with the Young’s modulus E and the Poisson’s ratio ν. The infinitesimal plastic strain tensor εpl

equals to symmetric part of the plastic distortion tensor sym(βpl) under the assumption of small
deformations, which can be calculated by

βpl =
12∑
i

γiMi, (A.2)

with the Schmid tensorMi and the plastic shear strain γi. The Schmid tensor equals tomi⊗ di

with the normal vectormi and the slip direction di = 1
bi b

i of Burgers vector bi. Each considered
crystal orientation rotates the slip normal and the slip direction, which affects the Schmid
tensor and thus the overall plastic strain. The internal problem is coupled to the external prob-
lem by the Orowan equation

∂tγ
i = υibρitot, (A.3)

where υi is the dislocation velocity and ρitot is the total dislocation density of each slip system.
The dislocation velocity is calculated by

υi =
bi

B
sgn

(
τ ieff

)
max

(
0, |τ ieff − τ iy|

)
(A.4)

with the drag coefficient B, the yield stress τ iy and the effective shear stress τ ieff. For the yield

stress, we use the formulation τ iy = µbi
√
ajiρi described by Franciosi [48], where the inter-

action matrix aji quantifies the strength of different reaction mechanisms. The effective shear
stress τ ieff equals to τ i− τ ib, which considers the back stress τ ib described in more detail in
Groma et al [64]. The total dislocation density ρitot is the sum of mobile ρimob and network ρinet
dislocation density. The network dislocation density ρinet incorporates the sessile dislocation
network described by the Lomer dislocation density ρilom and the mobile dislocation network
described by the stabilized dislocation density ρista. The dislocation microstructure evolution
of the CDD formulation consists of a set of evolution equations incorporating the disloca-
tion densities ρimob, ρ

i
lom, ρ

i
sta as well as the GND density κi of edge and screw character

and the curvature dislocation density qi on each slip system i. The evolution equations are
described as

∂tρ
i
mob =−∇ ·

(
υi
(
κi× ni

))
+ υiqi+

(
∂tρ̄

i
mob,gli + ∂tρ̄

i
mob,cs + ∂tρ̂

i
mob

)
−
(
∂tρ̄

i
mob,lom + ∂tρ

i
mob,react + ∂tρ

i
mob,cs

)
, (A.5)

∂tκ
i =∇×

(
ρimobυ

imi
)
+ ∂tκ̄

i
cs − ∂tκ

i
cs, (A.6)
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∂tρ
i
lom = ∂tρ̄

i
lom,lom − ∂tρ̂

i
lom, (A.7)

∂tρ
i
sta = ∂tρ̄

i
sta,lom −

(
∂tρ̂

i
sta + ρista,react

)
, (A.8)

∂tq
i =−υi∇·

(
qi

ρi
κi

)
−Ai∇2υi+

(
∂tq̄

i
gli+ ∂tq̄

i
cs+ ∂tq̄

i
prod

)
−
(
∂tq

i
react + ∂tq

i
cs

)
, (A.9)

with the alignment tensor

Ai =
1
2

((
ρimob + ||κi||

) κi

||κi||
⊗ κi

||κi||
+
(
ρimob − ||κi||

) κi

||κi||
⊗ κi

||κi||

)
. (A.10)

Hereby, notations with (̄) indicate the evolution based on reaction mechanisms and (̂) indicate
the evolution based on Lomer dissolution. The considered Lomer, glissile and collinear dislo-
cation reactions are indicated with ()react. The cross slip mechanism is notated by ()cs and is
formulated by a probability term

P=min

(
β
Liscrew
L0

δt
t0
exp

(
Vact

kbT

(
τ i− τIII

))
, 1

)
. (A.11)

Here, β is a normalizing constant, Liscrew is the average length of a screw dislocation, L0 and t0
are reference values for the length and the time, respectively, δt is the simulation time step, kB
is the Boltzmann constant, T is the temperature, and Vact and τ III are the material dependent
activation volume and stage 3 transition shear stress, respectively. For estimating the bow-out
of cross-slip, a factor Cbow−out is introduced that is multiplied to the κi

cs and q
i
cs. It describes

if a generated screw dislocation is line like or half-circle like by

Cbow−out =

1, τ i ⩽ Cfr,multiτ
i
crit

π

2
, τ i < Cfr,multiτ

i
crit

(A.12)

where Cfr,multi is a constant between 0 and 1. τ icrit is a critical shear stress defined as

τ icrit =max

(
1
Cfr

µb
√

ρitot, τCRSS

)
. (A.13)

τCRSS is a reference value for the critical shear stress in case of vanishing dislocation densities
and Cfr is a constant to set adjust the average dislocation nucleation length described by li =
Cfr(ρ

i
tot)

−0.5. In addition to the varied parameters explained in section 2.3.1, table A1 displays
the parameters, which are not varied in this work.

Appendix B. Formulation of the surrogate model candidates

Here, we provide a detailed description of our surrogate model candidates. We define the sur-
rogate model inputs and outputs using the following scheme. The estimator function f̂ takes
x ∈ X as inputs and y ∈ Y as outputs at time steps t= 0, ..,T. Each input x consists of a set
of P parameters. We divide into point-wise predictors and sequence-wise predictors in the
following.

Point-wise prediction candidates

k-nearest neighbor Nearest neighbor models are regression models that are based on the
assumption that samples in close proximity also share a high similarity. To get an estimate for
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Table A1. CDD parameters with constant values.

Parameters Values

Drag coefficient 5× 10−5 sPa

Interaction matrix aji

aself = 0.300
acoplanar = 0.152
aHirth = 0.083
aLomer = 0.326
aglissile = 0.661
acollinear = 0.578

Cross-slip
β = 105

L0 = 1 µm
t0 = 1

Reaction constant
Cgli = 0.128
Ccopl = 0.0

a new sample x ′ ∈ X, we use the k examples found in the training set that are most similar to x′.
We call them the neighborhood. The euclidean distance is a common measure for similarity.
Given a training dataset X with targets Y, we can compute the k-Nearest Neighbour (k-NN)
estimate as

ŷ=
1
k

∑
xi∈Nk(x)

yi (B.1)

using x ∈ X, y ∈ Y and Nk(x) as the neighbourhood of x that minimize the distance metric. If
we find two neighbors that are equally distant, we select them randomly.

Response surface method The RSM is a heuristic to find a response function, which is
a latent function given by the simulation, i.e. the relation between our input parameters and
outputs. This leads to a response surface, which ismodel by an nth-order polynomial regression
to approximate the response surface. The target estimate of a second-order model using least
square regression has the form

ŷ= β0 +
m∑
j

(βjxj)+
m∑
j

m∑
j ′

(βj,j ′xjxj ′)+ ϵ, (B.2)

where βi is the ith coefficient and ϵ the residual. Second-order RSM models can capture non-
linear dependencies.

Gradient boosted tree Gradient boosted trees (GBTs) are tree-based models built frommul-
tiple decision trees. Boosting is an ensemble method to reduce the variance of a single estim-
ator. An ensemble consists of multiple estimators and is an estimator itself. The aggregated
estimate of the GBT is

ŷ= f̂(X) = f̂0 +
b∑
j

f̂j (X) , (B.3)
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where λ is the learning rate of the boosted tree, b is the number of boosting trees and f̂j is
the jth boosting tree, which will be minimized in the direction of the squared-loss function
Y− f̂j−1(X).

Sequence-wise prediction candidates

Recurrent neural networks Recurrent neural networks (RNNs) are ANNs, which has for-
ward and backward connections between neurons. A neuron is a unit that takes a number of
input values and computes a corresponding output. It processes the input by weighting the
input and applying an activation function on the result of each neuron. By giving the ANN
feedback of the prediction based the incorporation of information past inputs in processing of
future inputs enables forward and backward transfer of information. An optimization algorithm
computes the loss function, which is the difference between predicted outputs and actual out-
puts, and iteratively reduces the desired loss function.

Long short-term memory A common implementation of RNNs for data sequences are
LSTM Networks, originally proposed by Hochreiter and Schmidhuber [65] and extended by
Gers et al [66] that is commonly used today. In short, LSTMs retain a memory and are fed by
the hidden state ht, the cell state ct and the input vector x. Each time an LSTM processes an
input, it updates its cell state, makes a prediction, and then uses its feedback connections to
pass on its cell state to the next iteration. It processes inputs, includes memorized information,
and memorizes parts of the information. A so-called forget gate resets the cell state. For more
detailed information, we refer to the aforementioned original literature. The formal notation
of the LSTM estimate is

ŷ= f̂(x, t) =

 LSTM([y0,x] ,ht,ct) if t= 0

LSTM
([̂
f(x, t− 1) ,x

]
,ht,ct

)
if t> 0

. (B.4)

The square brackets represent concatenation. In this work, we subdivide the LSTM into two
different models: First, we feed the parameter space together with the previous prediction as
the input vector into the LSTM, which we call a LSTM with repeated inputs (RepInLSTM).
Second, we feed the previous prediction as the input vector and the parameter space as hidden
state into the LSTM, which we call LSTM with raw hidden state (RawInLSTM). Because for
the first time step, no previous prediction is available, the initial hidden state h0, cell state c0
and target y0 need to be integrated into the LSTM.We use a dummy for the initial target, which
is y0 = 0, which assumes, e.g. zero initial stress. For the RepInLSTM, we choose h0 = 0 and
c0 = 0, and for the RawInLSTM, we choose h0 = x and c0 = 0. We chose to develop two LSTM
models, since we wanted to investigate to what extent it differs whether the input parameters
are initially specified as hidden states or whether they are specified anew at each point in time.

Appendix C. Hyperparameter tuning of the surrogate model candidates

The surrogate model performance can strongly depend on the considered hyperparameter
choices. We conducted a grid search using a 10-fold cross-validation for each model can-
didate. The performance of k-NN models is affected by k. Since k-NN is distance-based, we
added a constraint, which distinguishes between the closest k neighbors across all dimensions
and across each dimension individually. For RSM, the polynomial degree pmainly affects the
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Table C1. Surrogate model hyperparameter grid.

Model Hyperparameters

k-NN
k ∈ {1,3,5,10}
Distance across all dimensions ∈ {True,False}

RSM p ∈ {2,3,4,5}

GBT

Maximal tree depth ∈ {2,10,−1}
Number of trees ∈ {100,500}
Learning rate ∈ {0.01,0.1,1}
Early stopping patience ∈ {−1,1,10}

LSTM
Batch size ∈ {64,128}
Adaptive learning rate estimator ∈ {True,False}

model performance. The model performance of the tree-based GBT is impacted by the max-
imal depth of the trees, the number of trees and the learning rate. For LSTM, several hyper-
paramters have impact on the model such as the number of hidden layers, learning rate or batch
size. Here, we choose 30 hidden layers for all LSTMs and use ADAM as an optimizer [67].
We apply an adaptive learning rate estimator to find the most appropriate learning rate [68].
We define an early stopping by a minimal improvement parameter of δmin = 1 × 10−6 and
we vary the batch size. We use the same setup of hyperparameters for the considered LSTM
candidates. The hyperparameter grid of each model candidate is shown in table C1.
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