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ABSTRACT

String sorting is an important part of tasks such as building index 
data structures. Unfortunately, current string sorting algorithms 
do not scale to massively parallel distributed-memory machines 
since they either have latency (at least) proportional to the number 
of processors 𝑝 or communicate the data a large number of times 
(at least logarithmic). We present practical and efficient algorithms 
for distributed-memory string sorting that scale to large 𝑝 . Similar 
to state-of-the-art sorters for atomic objects, the algorithms have 
latency of about 𝑝1/𝑘 

when allowing the data to be communicated 
𝑘 times. Experiments show good scaling behavior on a wide range 
of inputs on up to 49 152 cores. We achieve speedups of up to 5 over 
the current state-of-the-art distributed string sorting algorithms.
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1 INTRODUCTION

Sorting strings is a fundamental building block of many important

string-processing tasks such as the construction of index data struc-
tures for databases and full-text phrase search [9, 15]. The problem
differs from atomic sorting—where keys are treated as indivisible
objects that can be compared in constant time. Strings on the other 
hand can have variable lengths and the time needed to compare

two strings depends on the length of their longest common prefix.
Therefore, string sorting algorithms try to avoid the comparison of

whole strings. Instead, they inspect the distinguishing prefixes of
the strings, i.e., the characters needed to establish the global order-

ing, ideally only once. The sum of the lengths of all distinguishing

prefixes is usually denoted by 𝐷 . The lower bound for sequential

string sorting based on character comparisons is Ω(𝑛 log𝑛 + 𝐷)
with existing algorithms matching this bound [4].

1.1 Related Work

There exists extensive research on string sorting in the sequential

setting. For a systematic overview, we refer to [5, 14, 19]. We focus

on parallel sorting algorithms. Let 𝑛 be the total number of strings

and𝑁 be the total number of characters. For the PRAMmodel, there

are (comparison-based) algorithms solving the string sorting prob-

lem in O(𝑛 log𝑛 + 𝑁 ) work and O(log2 𝑛/log log𝑛) time [13]. For

integer alphabets, there exists an algorithm with O(𝑁 log log𝑁 )
work and running time in O(log𝑁 /log log𝑁 ) [11]. The work of

any string sorting algorithm can be made to depend on 𝐷 instead

of 𝑁 by increasing its time complexity in the PRAM model [8].

While the problem has been extensively studied in the sequen-

tial and (shared-memory) parallel setting, we are only aware of the

following results in the distributed-memory setting. Bingmann et al.

present the two state-of-the-art distributed string sorting algo-

rithms [7]. The first one follows the standard distributed-memory

merge sort scheme (local sorting, partitioning, message exchange,

and merging). Every step is augmented with string-specific opti-

mizations, e.g., LCP-compression and LCP-aware merging [6, 7,

17], see Section 2. The second algorithm is more communication-

efficient, as it only sorts approximations of the distinguishing pre-

fixes using the first algorithm. They also adapt the distributed hy-

percube quicksort algorithm [2, 3] to variable-length keys (without

string-related optimizations). These algorithms improve the first

dedicated distributed string sorting algorithm by Fischer et al. [10].

However, the algorithms are only efficient for very small or

large inputs, as they have a prohibitively high communication

volume (hypercube quicksort) or do not scale to the largest available

machines due to their latency, which is (at least) proportional to

the number of processors 𝑝 .

2 PRELIMINARIES

Machine Model. We assume 1 . . . 𝑝 processing elements (PEs) in

a network allowing single-ported point-to-point communication.

Exchanging ℎ bits between two PEs requires 𝛼 + 𝛽ℎ time, where 𝛼

accounts for the message start-up overhead and 𝛽 quantifies the
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time to exchange one bit.
String Properties. The input to our algorithms is a string array 
𝑆 = [𝑠0, 𝑠1, . . . , 𝑠𝑛−1] consisting of 𝑛 = |𝑆 | unique strings over 
an alphabet Σ of size 𝜎 . By 𝑁 = ∥𝑆 ∥, we denote the total number of 
characters in 𝑆 . The ℓ-prefix of a string 𝑠  are the first ℓ characters 
of 𝑠 . The longest common prefix (LCP) of two strings 𝑠  ≠  𝑡  is the 
prefix of 𝑠 with length lcp(𝑠, 𝑡 ) = arg min 𝑠 [ 𝑖] ≠ 𝑡 [𝑖]. For sorting the 
string array, we do not necessarily have to look at all characters in 
𝑆 . The distinguishing prefix of a string 𝑠  (with length dist(𝑠)) are 
the characters that need to be inspected to rank 𝑠 in 𝑆 . The sum of 
the lengths of all distinguishing prefixes of 𝑆  is denoted by 𝐷 . By ℓ̂  
and 𝑑ˆ, we denote the length of the longest string and the longest 
distinguishing prefix, respectively. PE 𝑖  obtains a  local subarray 
𝑆𝑖 of 𝑆 as input such that 𝑆 is the concatenation of all local string 
arrays 𝑆𝑖 . Furthermore, we assume the input to be well-balanced,
i.e., |𝑆𝑖 | = Θ(𝑛/𝑝), ∥𝑆𝑖 ∥ = Θ(𝑁 /𝑝).
Building Blocks. We make use of an 𝑟 -way LCP loser tree to merge 𝑟

sorted sequences of in total𝑚 strings augmented with LCP values

in O(𝑚 log 𝑟 + 𝐷) time [6]. Furthermore, we use LCP compression,

i.e., we send the longest common prefix of two consecutive strings

(in a sorted sequence) only once. While being very useful for many

inputs in practice, LCP compression cannot substantially reduce the

communication volume in the worst case [7]. (Robust) Hypercube

Quicksort (RQuick) is a sorting algorithm initially proposed for

atomic distributed sorting [1, 3]. It communicates all data (at least)

a logarithmic number of times but has a latency in O(𝛼 log
2 𝑝) and

is therefore especially suited for small inputs.

3 MULTI-LEVEL STRING SORTING

Our multi-level merge sort (MS) approach adapts algorithmic ideas

of Axtmann et al. for multi-level atomic sorting [2, 3] to string

sorting. It works by recursively splitting PEs into multiple groups

each of which solves an independent (string) sorting problem. By

using 𝑘 levels of recursion, we can reduce the latency to about

𝑟 = 𝑘
√
𝑝 as PEs now only communicate stringswithO(𝑟 ) instead of 𝑝

PEs directly. This comes at the cost of increasing the communication

volume by a factor 𝑘 as we communicate all strings in each level.

The algorithm is split into a one-time initialization and a recursive

phase which is invoked 𝑘 times. Fig. 1 provides an overview of

the main steps of the multi-level merge sort scheme which are

discussed in more detail in the following.

Initialization: On each PE 𝑖 , the input S𝑖 is sorted locally using a

string sorting algorithm [5, 8, 11].

Recursion: This phase comprises three main steps.

1) Distributed Partitioning: Globally determine 𝑟 − 1 splitters

and locally partition the data into 𝑟 buckets. Use string-based or

character-based partitioning to either balance the number of strings

or characters per group (see full version [16] for details).

2) String Assignment and Exchange: On each PE, assign the

strings in bucket 𝑗 to PEs in group 𝑗 such that no PE sends or re-

ceives more than O(𝑟 ) messages. Once this assignment is computed,

exchange strings and LCP values using direct messaging.

3) Local LCP-aware Merging: On each PE, merge the received

string sequences with LCP values to obtain locally sorted string

arrays which form the input for the subsequent recursive step.

PE 0 PE 1 PE 2 PE 3

group 0 (p′ = p/r PEs) group 1 (p′ = p/r PEs)

local sorting

distributed partitioning

string exchange

local merging

distributed partitioning

string exchange

local merging
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Figure 1: Overview of multi-level string sorting.

With character-based partitioning, message assignment, and as-

suming ℓ̂ ≤ 𝑁 /(𝑘2𝑝 𝑘
√
𝑝 log𝑝), it can be shown that the number

of characters per PE remains in O(𝑁 /𝑝) over the course of the

algorithm. Further assuming that an all-to-all operation where each

PE exchanges at most O(𝑁 /𝑝) characters with O(𝑟 ) other PEs
is possible in O(𝛼𝑟 + 𝛽𝑁 /𝑝 log𝜎) (see [2]), we achieve an over-

all latency in O(𝛼𝑘 𝑘
√
𝑝) = 𝑜 (𝛼𝑝) at the cost of a 𝑘 times higher

communication volume compared to the single-level algorithm for

𝑘 ≤ log𝑝/(2 log log 𝑝).

Theorem 3.1. With the above assumptions, multi-level MS runs

in O
(
𝑁
𝑝 log𝑛 + 𝛼𝑘 𝑘

√
𝑝 + 𝛽𝑘 𝑁

𝑝 log𝜎

)
time in expectation.

We refer to the full paper [16] for a more detailed analysis of the

algorithm’s running time stated in Theorem 3.1.

Multi-Level Prefix Doubling Merge Sort. The distinguishing prefix
of 𝑆 is usually much smaller than the total number of characters

𝑁 . In a distributed algorithm, we can use this property to reduce

the communication volume by only exchanging the distinguish-

ing prefixes. By doing so, instead of explicitly sorting the input

strings, we obtain the information on where to find the 𝑖𝑡ℎ small-

est string of the input. This, however, is sufficient in many use

cases where string sorting is used, e.g., for suffix sorting [15]. Bing-

mann et al. approximate the distinguishing prefix of each string

by an upper bound in an iterative doubling process [7] using a

distributed single-shot Bloom filter [18]. In each round, they hash

prefixes with geometrically increasing length of the strings and

globally check for uniqueness of the hash values. If the hash value

of a prefix with length 𝑑 of string 𝑠 is unique, we find dist(𝑠) ≤ 𝑑

and 𝑠 no longer needs to participate in the process. By introducing

𝑘-level Bloom filters for duplicate detection, we generalize this ap-

proach to arbitrary levels of indirection and achieve an expected

overall latency in O(𝛼𝑘 𝑘
√
𝑝 log ˆ𝑑) and expected communication

volume in O(𝑘 (𝑛/𝑝 log𝑝 + 𝐷/𝑝 log𝜎)) for large enough 𝑛/𝑝 and

𝑘 ≤ log 𝑝/(2 log log𝑝). Note that the term O(𝑘𝐷/𝑝 log𝜎) is domi-

nated by the subsequent multi-level merge sort performed on the

approximated distinguishing prefixes only.
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Figure 2: Average times for RQuick, MS𝑘 , and PDMS𝑘 (weak scal-

ing) using DNData inputs with ℓ = 500 and 𝐷/𝑁 = 0.5.

4 EXPERIMENTAL EVALUATION

The source code is publicly available at https://github.com/pmehnert/

distributed-string-sorting/. All algorithms are implemented in C++.

For interprocess communication, we use theMPI-wrapper KaMPIng

[12]. The experiments were performed on SuperMUC-NG.

We evaluated the following algorithms: Our new multi-level

string merge sort MS𝑘 with 𝑘 levels. Our new multi-level prefix

doubling string merge sort PDMS𝑘 including prefix approximation

using Bloom filters with 𝑘 levels. String sorting enabled RQuick [7]
(and RQuick+ with further string-specific optimizations) is also

part of the evaluation. Note that MS1, PDMS1, and RQuick are the

implementations by Bingmann et al. [7] that we improved slightly.

Fig. 2 shows the running times of threeweak-scaling experiments

on up to 49 152 cores (1024 compute nodes) where we evaluate the

algorithms on strings of length 500 with a 𝐷/𝑁 ratio of 0.5 with

{104, 105, 106} strings per PE. We use DNGenerator [7] to generate

the inputs. Further experiments can be found in the full paper [16].

The experiments reveal the expected relation between input size

and scaling behavior of the algorithms. Two-level merge sort sig-

nificantly outperforms the single-level version on all input sizes

for sufficiently large values of 𝑝 . As expected, the improvement

is most obvious for the smallest inputs with 𝑛/𝑝 = 10
4
. Here, the

single-level algorithms scale roughly linearly with the number of

PEs, as the running times approximately double for every doubling

of 𝑝 . For small inputs, adding a third level leads to further improve-

ments from 256 cores on. The different variants of RQuick perform

significantly worse than our (multi-level) merge sort algorithms.

We were not able to run any RQuick variant on the largest data set

due to memory consumption.

5 CONCLUSION AND FUTUREWORK

We demonstrate—in theory and practice—that string sorting can

be scaled to a very large number of processors. Our fastest al-

gorithm, a multi-level prefix doubling merge sort, only requires

communication volume close to the optimum (the total length of all

distinguishing prefixes) per level. In practice, all our multi-level al-

gorithms outperform their single-level counterparts on up to 49 152

cores (from a modest number of cores on). Scalable algorithms are

especially important when string sorting is part of a more complex

distributed application where it is not feasible to sort the data on

a large shared-memory machine due to the transfer costs. Hence,

we see our work as a building block to enable more complex string-

processing tasks at a massively parallel scale. Next, we plan to

improve the robustness of our algorithms by handling short and

long strings separately and only merging them in the end.
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