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ABSTRACT
Humanoid robots will be able to assist humans in their daily life, in
particular due to their versatile action capabilities. However, while
these robots need a certain degree of autonomy to learn and explore,
they also should respect various constraints, for access control
and beyond. We explore the novel field of incorporating privacy,
security, and access control constraints with robot task planning
approaches. We report preliminary results on the classical symbolic
approach, deep-learned neural networks, and modern ideas using
large language models as knowledge base. From analyzing their
trade-offs, we conclude that a hybrid approach is necessary, and
thereby present a new use case for the emerging field of neuro-
symbolic artificial intelligence.

CCS CONCEPTS
• Security and privacy→ Access control; • Computer systems
organization → Robotics; • Computing methodologies →
Neural networks; Robotic planning.
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1 INTRODUCTION
With an intensifying labor shortage in the care sector, assistive
humanoid robots will most likely become a necessity in the future
of our aging society. These robots will need to invade the most
private spaces of humans they care for, thus safety, security and
privacy issues in this field are of utmost importance. The potential
of humanoid robots to assist humans lies in the ability to learn
whatever is needed for assistance. However, ‘whatever is needed’
has to be restricted to safeguard safety, security, and privacy poli-
cies and preferences. The challenge for classical approaches, i.e.,
based on symbols and logical formulas, to ensure constraints lies
in the task universality of humanoid robots: While standard robot
designs like robotic arms or drones are limited to specific tasks,
humanoid robots are intended to be on par with human beings
regarding the variety of tasks they can solve. This wide range of
tasks and deployments favors approaches in which the robot is
granted increased sovereignty and should learn its authorizations
in the field. Learning promises scalability of problem complexity up
to task universality, while keeping manual specification complexity
manageable for humans. However, learning changes the nature of
access control from certain enforcement to probable observance.

Future use cases of assistive robots in care home will require
complex systems of requirements regarding safety, security and
a lot of personalized requirements when directly interacting with
patients. While some of these requirements are prescribed in pol-
icy documents like the official instructions for human care-home
workers accessible to the robot via manual translation or machine
learning, some requirements are purely based on “common sense”
and a common understanding of social norms not compiled in a
machine-readable way. An example of such norms is what objects
a human considers as private belongings and what objects can
inoffensively be interacted with.

In this Blue Sky paper, we investigate how symbolic and neural
methods to robot task planning can ensure symbolic and neural
constraints beyond access control, and how constraints from policy
documents and social norms can be inferred and observed using
large language models. We discuss the inherent trade-offs of sym-
bolic and neural standard methods, which mark the endpoints of
a neuro-symbolic spectrum. We propose neuro-symbolic hybrid
methods as vision to bring assisted living with humanoid robots
into practice.
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Figure 1: An assistive robot is tasked to clean the table in the per-
sonal room of a care home resident. The challenge is to integrate an
abstract “do not move private objects” policy as specific constraints
into robot task planning. While privacy has a common understand-
ing, it is a subjective preference that needs ad-hoc assessment by the
robot. On the table are care home-owned dishes, thus not personal.
The newspaper is personally-owned but contains no private infor-
mation. The diary is personal and private.

As toy example illustrated in Fig. 1, a robot is tasked to clean a
table in a personal room, for which the robot now needs a plan. It
considers whether it is allowed to move objects on the table, i.e., the
authorization to move an object is a precondition of the action for
moving that object. We assume constraints that formalize policies
like “do not move personal items”, which allow, e.g., the removal
of care home owned dishes, but disallow moving a diary. To put
user-instructed policies like that in concrete terms, the robot needs
a kind of policy information database or knowledge base to decide
whether an action with an object is actually constrained by a policy.

In a first attempt to tackle this problem of balancing sovereignty
and ‘obedience’, we proposed a joint modeling framework for ro-
bot task planning and access control [1]. By directly incorporating
access control into task planning, robots are unable to even “think
about” forbidden behavior. This paper is a continuation of our
poster abstract [10]. While the fit between the notion of an activ-
ity in Activity-Centric Access Control [9] and task planning was
shown in theory, we now report on preliminary practical insights.
Recently, machine learning-based approaches to assist with or even
perform access decisions have been proposed, as seenwithMachine-
Learning- and Deep-Learning-Based Access Control [20]. We refer
to further related work in the following sections. Since the rate in
which papers on deep learning are recently published is ‘breathtak-
ing’, we cannot claim completeness, but focus on scientific works
that substantiate our claims. Of course, the topic of our paper is
also related to the wider topic of ethical artificial intelligence.

This BlueSky paper is structured as follows: in Section 2 we
introduce terminology for planning on a symbolic and signal-based
level and formulate the problem statement of planning under con-
straints. While the problem formulation is generic, we focus in the
following on constraints that result from access control, security,
and privacy policies, and their integration with robotic planning.
In Section 3 we discuss methods we consider as current methods,
while in Section 4 we show what we expect for the future. We draft
a roadmap in Section 5 that goes beyond any single research project
and conclude in Section 6.
1In ancient Greece, “symbolons“ were objects like bones broken and distributed be-
tween parties. The term “symballo” refers to later verifying whether the pieces, i.e.,
the distributed “sub-symbols”, fit together for mutual authentication of parties. [16]

2 TERMINOLOGY & PROBLEM STATEMENT
A prompt is an instruction given by a user to perform a task to reach
a certain goal. A signal-based prompt is, e.g., a user-written text
or a microphone recording. A symbol-based prompt is formalized
and refers to abstract symbols, like subjects, objects, and locations
with attributes. A plan is a sequence of actions to be performed by
the robot to fulfill the task and reach the goal based on its current
initial state. A symbol-based plan is a sequence of abstract actions
with their pre- and postconditions (effects) that is converted to a
signal-based plan in the form of actuator commands needed for
execution. Planning is the problem of finding such a sequence of
actions. Symbolic planning does so by reshaping logical formulas
and needs a symbol-based prompt as input to output a symbolic
plan. Symbolic planning can be implemented either with classical
search algorithms or symbolic artificial intelligence, but always
uses a localist data representation where one symbol is represented
in one discrete variable in information processing. Neural planning
is the forward pass through a deep neural network that learned to
plan and can either use a symbol- or signal-based prompt, to either
create a symbol- or signal-based plan. End-to-end planning infers
a signal-based plan from a signal-based prompt.

Neural information processing usually operates on a distributed
data representationwhere one specific representation of a symbol in
the respective feature space is mapped to not one single neuron, but
a continuous activation pattern of many neurons1. The distributed
data representation is the key that allowed deep neural networks
to advance past symbolic methods in terms of generalizing from
their learning material and flexibility.

We say that policies are abstract ideas of what is allowed and
what is off limits, from individual user preferences over administra-
tive instruction documents to non-written social norms. We define
constraints as machine-executable representations of policies that
have to be considered by the planner to produce plans that adhere
to the constraints. A symbolic constraint is a constraint in form of,
e.g., a first-order logical formula, as in classical access control. A
neural constraint is a constraint in form of a deep neural network.

Solving planning problems under constraints is a classical topic.
But when scaling up the complexity of tasks, constraints, and envi-
ronments to task universality, classical methods might not deliver
the performance required for real-world use cases like humanoid
robots in assisted living scenarios. With task-specific robots, the
available action options are typically rather limited and allow for
manual specification of tasks, constraints, and environments. With
task-universal robots, i.e., robots that are able to mimic human
actions, the large space of potential actions leads to an most likely
unacceptable overhead in manual specification of constraints as
well as in runtime performance. As we will explicate in Section 3,
however, neural planning struggles to actually ensure safety, se-
curity, and privacy constraints in its generated plans. Our thesis
is that task-universal planning under safety, security, and privacy
constraints requires a hybrid method, for which we see large lan-
guage models, due to their proficiency in a broad range of tasks and
internalized “common sense”, and approaches from neuro-symbolic
artificial intelligence, due to their feature of bridging the gap be-
tween localist and distributed data representation, as promising
research directions (c.f. Section 4).
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3 ANALYSIS OF CURRENT METHODS
3.1 Constraint-Ensuring Symbolic Planning
In symbolic planning, a planner finds a symbolic plan by search-
ing through possible robot actions, trying to find transitions that
transform the current state of the robot and its environment to
the goal state inferred from the user prompt. In practice, the de-
facto standard for this is the Planning Domain Definition Language
(PDDL) [11], which we used in the following. The initial state is the
current state of the robot and its environment, the goal state is the
goal that the prompt described as target, and the transition rules
are the actions the robot is capable of. The symbolic planner then
tries to find a plan, i.e., a sequence of transitions that transforms the
initial state into the goal state. Actions have preconditions required
to be met before execution. Typical preconditions are that the robot
has to be at a table and empty-handed to grab an item, or that an
item has to be unobstructed to be grabbed. Transition precondi-
tions for a symbolic planner are the equivalent of access control
policies for a symbolic reference monitor. From an access control
perspective, incorporating safety, security, and privacy constraints
in form of preconditions is the most natural approach to generate
plans that are aware of such constraints, exemplified in Listing 1.

1 ( : a c t i on c l e a n _ f r om_ t a b l e
2 :parameters
3 ( ? r obo t − r obo t
4 ? t a b l e − l o c a t i o n
5 ? ob j − on_ t a b l e
6 ? remove − l o c a t i o n )
7 :precondi t ion ( and
8 ( non_per sona l ? ob j )
9 ( a t ? r obo t ? t a b l e )
10 ( a t ? ob j ? t a b l e )
11 ( remove_ loc ? remove )
12 )
13 : e f f e c t ( and
14 ( not ( a t ? ob j ? t a b l e ) )
15 ( a t ? ob j ? remove )
16 ) )
17 . . .
18 ( : i n i t
19 ( a t r obo t s t a r t )
20 ( a t newspaper t a b l e )
21 ( a t d i a r y t a b l e )
22 ( a t d i s h e s t a b l e )
23 ( non_per sona l d i s h e s )
24 ( non_per sona l newspaper )
25 ( p e r s on a l d i a r y )
26 ( remove_ loc remove ) )
27 ( : goa l
28 ( f o r a l l ( ? ob j − on_ t a b l e ) ( or
29 ( and ( non_per sona l ? ob j ) ( a t ? ob j remove ) )
30 ( and ( p e r s on a l ? ob j ) ( a t ? ob j t a b l e ) )
31 ) ) ) )

Listing 1: Excerpt from our PDDL domain description

The abstraction of a PDDL transition corresponds to the abstrac-
tion of an activity in Activity-Centric Access Control (ACAC, [9]),
whereby these concepts can be naturally combined. This workflow
is illustrated in Fig. 2. We identify three different phases when
designing such a planner. Only during runtime we automatically
generate plans, while manual work is needed during development
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Figure 2: Workflow of designing a robot task planner using symbolic
planning and symbolic constraints. We differentiate between three
phases: In the development phase, the rules for the constraints are
designed and the modeling for the symbolic planner is done. The
training phase consists of the incorporation of such constraints into
the planner. During runtime, the plan is generated and executed.

and training time. We were able to map2 ACAC preconditions di-
rectly into PDDL preconditions. Resulting conditions of ACAC
activities could be represented as effect in PDDL.

However, ACAC’s contextual conditions and current conditions,
which are checked during the execution of an action, are not di-
rectly transferable. Contextual conditions require PDDL extensions
to query external data. Current conditions require PDDL extensions
that allow temporal planning and durative, interruptible actions.
While it is possible to incorporate toy examples of ACAC into PDDL,
we question the scalability up to the scenario of humanoid robots
in a care home without requiring an equally complex manual spec-
ification. Every possible action, every possible object and every
ACAC policy needs to be considered, inherently prohibiting such
systems from being task-universal. While symbolic artificial intelli-
gence can learn incrementally in the field and can thereby reduce
manual specification complexity while still being understandable
and tunable by humans, adapting symbolic artificial intelligence to
a broad range of situations is still a ‘very manual’ process.

By relaxation from constraint-ensuring to constraint-observing
planning, recent developments in the field of machine-learning
based access control can be employed. Feasibility of access decisions
performed by machine learning methods such as neural networks
was, e.g., shown by Nobi et al. [21]. However, current systems
show quite large error margins, reaching a precision of about 0.9
in an access control scenario for mobile phone apps. Nobi et al.
propose the Deep Learning Based Access Control model, where a
neural network directly performs access decisions. Such systems
are mostly trained on access logs and further user and resource
metadata. To combine symbolic planning with a learned access
control model, the planner queries the learned model in addition or
instead of symbolic constraint formulas, and uses a learned heuristic
function that classifies branches of the state space as dead ends if a
constraint is violated.

2Full artifacts available: https://github.com/kit-dsn/how-to-raise-a-robot-beyond-ac
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ral constraints. The development phase now consists only of data
collection. The training phase includes the actual training of the
deep neural network, while the neural constraints are being fed into
the training of the planner. During runtime, a forward pass through
the network is performed.

3.2 Constraint-Observing Neural Planning
Deep-learned neural planners promise to be scalable to complex de-
ployments, and are the natural counterpart to deep-learning based
access control (DLBAC).When combining a neural constraintmodel
with a neural planner, one gets a workflow as illustrated in Fig. 3.
Again we identify three different phases. Compared to symbolic
planning with symbolic constraints, i.e., classical access control,
we can now perform the training phase automatically. The com-
putational hardness of learning access control policies is already
well-studied [15]: e.g., for typical access control models like access
control matrices or role-based access control, there are problem for-
mulations for which polynomial learning algorithms exist. Only the
development phase needs manual work, which improves scalability.

A policy change that happens after initial policy definition neces-
sitates incremental learning of the neural constraint model, i.e., in
contrast to learning only from data all at once in the initial training
phase, it has to learn new constraints from sequential data [17].
However, incremental learning is prone to catastrophic forgetting:
On learning new data, neural networks have the tendency to dis-
ruptively forget previously learned knowledge [23]. Dealing with
catastrophic forgetting has been an ongoing challenge for more
than thirty years. While natural neural networks typically do not
exhibit catastrophic forgetting, no general solution for artificial neu-
ral networks has been found yet [7]. In general, due to catastrophic
forgetting, changes in the policy make retraining of the neural plan-
ner and neural constraints necessary. Still, ways to tackle policy
changes in a manageable way have been shown regarding DLBAC
administration [20]. The main idea is to retrain the networks in
small steps, only using training data that represents the update that
should be introduced. This approach intends to only change the neu-
ral networks to incorporate the new data from the update, but this
cannot be guaranteed. One could also consider incorporating neural
constraints into the reward calculation of reinforcement-learning
based planners.

One can also combine neural planning with symbolic activity
control. Analogously to the previous paragraph, but unconven-
tionally for Generative Adversarial Network (GANs), one might

use symbolic constraints as discriminators to train the end-to-end
learning-based neural planners. It is challenging to provide a dis-
tributed representation of constraints since symbolic constraints
are localist representations. As approximation, a first step can be re-
alized by using the differentiable loss function provided by existing
deep learning based constraint systems, which can be used to train
the network. Although this approach might not be as scalable as
learning neural constraints in complex deployments due to manual
policy engineering, it is more efficient to administrate since the
symbolic constraints do not need to be retrained after a change.
For our running example, we now need to incorporate policies on
what are personal items again, which makes the whole process
inherently more complex. Even though the neural planner learns
its behavior, extensive policy engineering needs to be done. Once
the training of the end-to-end learning-based planner is finished,
this approach behaves similarly to using a deep-learning based ac-
tivity control system: Given a prompt, the robot performs a forward
pass through the neural planning network and receives a plan that
probably observes the desired constraints.

4 ANALYSIS OF UPCOMING METHODS
While symbolic and neural constraints are quite different compared
to each other, the process of integrating any type of constraints
in either symbolic or neural planning is similar. Therefore, one is
not limited to choosing only one combination. We instead argue
for a hybrid approach to combine the best of both worlds: one
can use neural planning and neural constraints for versatility and
universality, but ensure critical policies as symbolic constraints
during runtime. For critical situations with limited universality, one
can also fall back to symbolic planning to find an accurate solution
slowly. Neural systems could also serve as recommendation engine
for new policies that enhance the existing logical solution.

Recently, Large Language Models (LLMs) became a popular
method for artificial intelligence. Especially the model ChatGPT
by OpenAI [22] caught the attention of the general public, due
to its seemingly close resemblance of human conversation while
also being able to give symbolic answers, like solving a task in a
programming language or even PDDL. Due to their proficiency in
processing and generating both signal- and symbol-based input
and output, they are a natural building block for hybrid systems.

Neuro-symbolic artificial intelligence stands for the combina-
tion of symbolic and neural approaches to solve problems, and
promises the “best of both worlds”, i.e., combining the advantages
of both symbolic and neural methods. Thus, the popularity of neuro-
symbolic methods has risen in recent years [24], and those methods
promise to bring together the flexibility of neural planning with
guaranteeing constraint satisfaction of symbolic planning. We dis-
cuss LLMs using our toy example next, and then generalize to
discuss neuro-symbolic methods to constraint-ensuring universal
task planning in the following.

4.1 LLMs as Planner and Knowledge Base
While LLMs represent a break-through for dialogues with humans,
LLMs are capable of solving many kinds of problems given the right
prompt. Due to this versatility, LLMs are foundational models, from
which a problem-specific model is derived through priming. The

120



How to Raise a Robot — A Case for Neuro-Symbolic AI in Constrained Task Planning SACMAT 2024, May 15–17, 2024, San Antonio, TX, USA

Symbolic
Plan

Neuro-simulated
Symbolic Planning

Robot
executing

Task
Audio-Visual

Prompt

Actor

R
untim

e
Training

Tim
e

D
evelopm

ent
Tim

e

Automatic

Automatic

Manual
Prompt describing

Constraints

Data on
Constraints

Prompt describing
Planning

Data on
Planning

LLM Training

Training Data

Large Language
Data Collection

LLM Foundation Model

LLM Priming

LLM primed as
Symbolic Planner

Figure 4: Workflow of designing a robot task planner using a multi-
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ment phase, the prompts for priming are manually engineered.

LLM can act on the priming because of the breadth and sheer size
of its training data, which includes descriptions of planning prob-
lems, but also allows the models to generalize knowledge between
domains – for an LLM, solving a planning problem like the classical
wolf, goat and cabbage river crossing problem in English is of no
fundamental difference than solving it in another natural language,
or in a formal planning language like PDDL.

We now describe an experiment with priming LLMs to behave
like symbolic planers to solve constrained planing problems. We
can see such a workflow illustrated in Fig. 4. With recent advances
in multimodal large language model, we envision the model to
operate not only on textual information, but also on audio-visual
user prompts. We tested the primed LLM approach1 by formulat-
ing our running example as natural-language prompt, and used
ChatGPT 4 as constraint-observing neural planner to generate
natural-language plans, shown in Listing 2. Specifically, lines 1 and
12 reduce ChatGPT to a constraint-observing neural planner by
making it emulate a constraint-ensuring symbolic planner. Lines
2-8 simulate sensors and memory, lines 9-11 instruct ChatGPT with
a goal and constraints. We obtain a plan that reaches the goal of
cleaning the table, while not interacting with the most personal
item on the table, the diary. This experiment shows that we can use
a GPT-based LLM to do neural planning while observing neural
constraints inferred from natural-language prompts.

One interesting effect of using LLMs for constraint-observing
planning is their performance on problems that require knowledge
of common sense. Our toy example delivered an insight into such
behavior. We tasked the LLM-based planner with only handling
objects that are not considered private. From experience and in-
tuition, humans know that a diary is a very private object and
dirty dishes are not, but machines need to encode such information
somehow. When using LLMs as planner, such information does
not need to be given explicitly to the planner, because the LLM
can infer it from its training data. Since it is trained on extensive
textual data that encodes a lot of human interaction, such social
norms are known. When asked whether a diary is private, a yes has
a higher probability than a no. The LLM therefore not only acts as
a symbolic planner, but also as knowledge base for common sense
and object attribution for the simulated planner. This integrated
knowledge is of tremendous value for systems deployed in real

1 Suppose you are a symbolic planning system that generates plans for task−
universal assistive and humanoid robots based on a domain description
that is provided below.

2 Domain:
3 − Care home that uses robots to care for their residents. The care home has lots

of personal rooms for the residents, common spaces like a dining area,
and administrative spaces like a kitchen or offices

4 − Personal room of a resident, that has a table inside
5 − on the table are the following things:
6 − newspaper that was paid for by the resident
7 − dirty dishes that are owned by the care home and are cleaned by the care

home
8 − a diary that most certainly contains very private information
9 Goal: Remove as many objects from the table as possible
10 Constraints: Do not interact with objects that you would consider personal.
11 Possible actions: Move, analyze an object, take an object, place an object
12 Put out the plan in terms of a sequence of actions the robot performs. Put out

the action you used and the object you interacted with or where the
object was placed. You can only use the actions from the list above. Put
out a list of actions and objects that the plan consists of. Summarize the
reasoning for the overall plan as a single text paragraph. The plan must
be conform with all given constraints.

13 # Exemplary output from ChatGPT 4
14 Plan Sequence:
15 1. Analyze object: newspaper
16 2. Analyze object: dirty dishes
17 3. Analyze object: diary
18 4. Take object: dirty dishes
19 5. Move to: kitchen or designated cleaning area
20 6. Place object: dirty dishes in cleaning area or dishwashing station
21 Reasoning:
22 Given the constraints and the goal, the robot needs to first distinguish between

objects that are personal and objects that belong to the care home.
Analyzing each object ensures the robot can determine its nature and
importance. The newspaper, although bought by the resident, could be
seen as potentially non−intrusive. However, it was paid for by the
resident which could imply some personal value, so it's left untouched.
The diary is most certainly private, so it's not touched. The dirty dishes
belong to the care home and must be cleaned, so they are the only
objects removed from the table, in line with the constraints set.

Listing 2: A prompt to simulate a symbolic planner for a basic domain
description, and the ChatGPT 4 answer. Shared chat transcript at:
https://chat.openai.com/share/77d31c8a-239c-4d57-a96c-f70078f88503

world applications, because such social norms will no longer need
to be encoded directly, if a system should obey to them. Especially
humanoid assistive robots act in very sensitive environments and
will need to follow a very complex set of rules. While some of these
rules will be available in the form of certain documents, some rules
will only exist in the form of social norms, for which no single “ISO
norm” document exists. LLMs provide a solution to encoding such
norms, without extensive work on building a symbolic version of
them. Thus, LLMs serve as knowledge bases for such systems.

For any kind of constrained task planner, quality properties of
generated plans are crucial for their usefulness in practice, like
whether generating plans are syntactically valid, semantically cor-
rect, consistent between multiple consecutive planner executions,
and stable, in the sense that similar situations should lead to similar
plans. Symbolic planners scrape the possibility space until they
find a valid and correct plan, and if a planner returns a solution, it
can guarantee its quality properties. However, solution quality of
LLMs is an open problem [19], and for LLMs instructed to behave
like a symbolic planner, one can find examples where neither of
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1 A farmer with a pig, a goat, and a cabbage must cross a river by boat. The boat
can carry only the farmer and a single item. If left unattended together,
the goat or the pig would eat the cabbage. How can they cross the river
without anything being eaten?

2 # Exemplary output from ChatGPT 4
3 The puzzle you've described is a classic river crossing problem, though it's

typically presented with a wolf, a goat, and a cabbage. The solution to
this problem, where the pig or the goat would eat the cabbage if left
unattended, is as follows:

4 1. The farmer takes the goat (or pig, it doesn't matter which) across the river
first and leaves it on the other side.

5 2. The farmer then goes back alone to the original side.
6 3. He takes the cabbage across the river next.
7 4. After leaving the cabbage on the other side, he takes the goat (or pig) that

was left there during the first trip back with him to the original side.
8 5. He leaves the goat (or pig) on the original side and takes the pig (or goat, the

one he hasn't taken across yet) to the other side.
9 6. The farmer leaves the pig (or goat) with the cabbage on the other side and

goes back to the original side to get the goat (or pig).
10 7. Finally, he takes the goat (or pig) across the river.
11 Now, all three items − the pig, the goat, and the cabbage − are safely on the

other side of the river. At no point were the cabbage and the animals
left unattended together, so nothing was eaten.

Listing 3: A river crossing puzzle as stated inWikipedia [26], but with
the wolf replaced by a pig. The ChatGPT 4 solution leaves either
of the herbivores alone with the cabbage. Shared chat transcript:
https://chat.openai.com/share/b9eef797-a4ad-4b50-a9d1-3cc294e744f6

those properties are fulfilled. In our experiments, the dishes were
consistently moved to the kitchen, while the newspaper and diary
were always considered too personal to interact with. However,
with ChatGPT 3.5, the newspaper was sometimes interacted with
and sometimes not, showing probabilistic inconsistencies not ex-
hibited by a (deterministic) symbolic planner. These inconsistencies
stem from the fact that the LLM only simulated a symbolic planner
using neural methods. The LLM chose among the predicted text
continuations with the highest probability, and if two alternatives
have no clear winner, the solution will vary, leading to inconsistent
plans. Planning-primed LLMs produce outputs that sound like a
plan, but that are not necessarily a correct or even valid plan. As a
well-known example, Listing 3 shows a prompt for a variation of
the river-crossing problem usually formulated using a wolf, a goat,
and a cabbage, which is a common way to test the limits of LLMs
(c.f., e.g., Gerhard Paaß in [8]). Here, the wolf is replaced with a
pig, and the constraints are stated accordingly that neither of the
animals can be left unattended with the cabbage. While ChatGPT
4 confirms this fact, its plan does not ensure this constraint, as
it leaves one of the animals alone with the cabbage, due to miss-
ing symbolic understanding of the problem. Instead, it provides a
solution similar to the regular solution with the wolf, due to its
prevalence in the training data. When compared to standard ap-
proaches of Section 3, likelihood-based text completion in the form
of LLMs exhibit a form of task universality that has high potential
for meeting practical task and policy complexity needs of humanoid
robots [4, 5]. However, ?? demonstrates that inspiring results in
terms of complexity are offset by disillusioning solution quality
properties, when compared to quality standards set by standard
symbolic planning and access control methods that can guarantee
for their results.

Lvl Description based on
Garcez et al.[6]

Example for Constrained
Robot Task Planning

1 Standard neural networks
deep-learned for using
symbolic input and output

Learned neural network plan-
ner that produces symbolic
plans from symbolic prompts

2 Aneural network is loosely
coupled with a symbolic
problem solver

A LLM is used as knowledge
base for a symbolic constraint
system

3 A neural network focus-
ing on one task is interact-
ing with a symbolic system
performing a complemen-
tary task

A neural planner produces
symbolic plans, which are ver-
ified post-planning to ensure
symbolic security and privacy
constraints trough a symbolic
constraint system

4 Symbolic knowledge is
given into the training set
of a neural network

The training data is generated
by a simulator based on sym-
bolic domain and constraint
representations

5 Symbolic logic is mapped
onto an embedding which
acts as a soft-constraint on
the network’s loss function

The loss function of a neural
planner has an embedded sym-
bolic constraint system, penal-
izing illegal plans and empha-
sizing legal ones

6 True symbolic reasoning
inside a neural engine

A neural planner runs com-
pletely on a symbolic repre-
sentation of the domain and
its constraints

Table 1: Levels of neuro-symbolic integration according to Kautz
[13] and their respective realization for robot-task planning.

While LLMs worked well for showcasing versatile planning be-
havior based on the knowledge of social norms in our toy example,
the river-crossing problem example confirms the need for symbolic
reasoning to get correct solutions. The emerging field of neuro-
symbolic artificial intelligence acts as a promising direction to
combine versatility and quality properties like correctness and
consistency [18], which we look into next.

4.2 Integration of Neural and Symbolic AI
The term neuro-symbolic AI describes systems that combine sym-
bolic with neural approaches. The above-mentioned hybrid systems
are in this category. Neuro-symbolic AI systems are differentiated
on the extent of the integration of symbolic data representation in
the neural process. Kautz [13] differentiates between six different
types of neuro-symbolic integration (c.f. Table 1). This classifica-
tion ranges from standard deep learning or large language models,
where the input and output can be symbolic, but the inner workings
are not, to type six integration, where full symbolic reasoning is
possible within the neural engine. We especially want to emphasize
how the integration of symbolic reasoning into the training process
happens on each level. For our analysis, we consider each level and
give an example for our constrained task planning scenario.
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Our first experiment using a symbolic planner and PDDL from
Section 3.1 has no neural reasoning at all, i.e., provides no neuro-
symbolic integration, and therefore it is a “level zero” system. The
same is true for our end-to-end learned neural planner architecture
from Section 3.2, as no symbolic representation is involved.

Kautz’ categorization starts with level one, which is classical
deep learning trained on symbolic input to produce symbolic out-
put. Since there is no symbolic reasoning inside the system, data
representation is purely distributed inside the neural engine. The
integration of constraints may be possible by only using valid plans
as training data, hoping to not generate invalid ones. The LLM
system from Section 4.1 would fall in this category if prompted
with symbolic inputs to produce symbolic outputs, e.g. in PDDL.

Level two consists of loosely coupled systems. For example, a
symbolic problem solver can use a neural system as some kind
of sub-routine, as stated by Kautz [13]. In our constrained task
planning case, this level could be reached with a symbolic planer
like in our first experiment, enhanced to use a LLM as knowledge
base. The sub-routine would allow the symbolic planner to check
an item for its level of privacy and the societal knowledge encoded
in the LLM. It is important to note that the training process of
both parts is completely decoupled, i.e., the symbolic part has no
influence on the training of the neural part and vice-versa.

The third level is, e.g., the “do not cross the red line” approach.
We again have a distinct neural and symbolic system. On this level,
the output of one is given as input to the other one. While on level
two, the data flow was primarily handled by one of the systems,
with the other one being just a sub-routine, it is now handled by
both systems. A typical example is the pipeline of a neural computer
vision system which produces the symbolic input for a symbolic
planner, whose symbolic output is translated to motor signals by
another neural system. In our scenario, an example would be a
pipeline that feeds the symbolic plans of an LLM-based planner to
a symbolic constraint enforcement system, as seen with Yang et
al.’s LLM coupled with a linear temporal logic constraint enforce-
ment [28]. An important distinction of level three in contrast to
level two is that now both systems take part in a joint training
procedure. Kautz mentions a feedback loop that flows back from
the symbolic system to optimize the training of the neural system.

Level four represents systems where symbolic knowledge is put
into the neural system by encoding it into synthetic training data.
This approach uses symbolic knowledge on the problem domain,
but also general symbolic knowledge of physics or mathematics
applied to the domain, to generate valid and invalid solutions to
many problem instances. Note that finding a problem instance for
a given, randomly-generated solution, i.e., to generate a domain in
which a given plan does not violate any constraints, might be much
faster than the other way around, i.e., actual symbolic planning.
An exemplary system on this level would be a neural constraint
enforcement machine trained on synthetic decision logs. The train-
ing data would consist of access requests and corresponding access
decisions, generated from a set of symbolic constraints that for-
malize the access policy. Analogously, a neural task planner could
be trained with synthetic pairs of tasks and suitable plans. It is
important to note the difference to training on real world access
logs here: All synthetic training samples have symbolic knowledge
inherently encoded. This is not necessarily the case on real world

data, where the inherent logic might be overlaid by perturbations,
or not be present at all. Symbolically generated, synthetic training
data further deepens the integration of the symbolic reasoning into
the training process of the neural system. On level three, it was a
feedback loop back into the training, now it is directly embedded.

On level five, one looks at systems where symbolic logic is di-
rectly mapped onto the loss function of the neural system. This
level is especially challenging because the distributed data repre-
sentation of a symbolic system is typically not differentiable. In
our planning example, this approach would mean that for exam-
ple a symbolic constraint enforcement is directly mapped into the
loss function of the neural planner. Plans that are valid would be
emphasized by it and plans that are not valid would be penalized.
Since the symbolic logic is directly in the loss function of the neural
system, we cannot distinguish the symbolic part in the training
process anymore, it has become part of it.

The last step is further strengthening this integration of sym-
bolic logic into the neural system. Such systems are described by
level six neuro-symbolic systems, representing the deepest neuro-
symbolic integration. On this level, a real distinction of neural and
symbolic parts is almost impossible: The symbolic knowledge is
deeply encoded in the whole neural system. Systems on this level
might be compared to human brains, bridging the gap between
automatic and instinctive part of the brain and the slow and logical
part, according to Kahnemanns notion of Systems 1 and 2 [12].
State of the art neural systems correspond to the System 1 fast and
instinctive part, and are not able to bridge the gap to also think
slow and logical. This behavior is exemplarily demonstrated in List-
ing 3, where ChatGPT “reads over” the peculiarities of the specific
problem instance, and instead provides a solution similar to the
one for the common instance presumably more prevalent in its
training data. Our example for this level is a neural planner that
runs completely on a symbolic representation and its constraints.
The vagueness of this example is because such system do not exist
currently, and it is still unclear how they could look like in prac-
tice, or whether they are feasible at all. However, such level six
systems would be learned symbolic reasoning machines. Due to
their capability of “thinking, fast and slow” both in the neural and
symbolic world, they would be a game-changer for constrained task
planning. One would be able to completely explain the machines
and guarantee their behavior, neither of which is currently possible
using black-box deep-learned neural methods.

5 ROADMAP: CHALLENGES AHEAD
5.1 Neuro-Symbolic Integration of Constraint

Satisfaction and Task Planning
On current systems, we observe that task planning for real-world
robots scales best to complex situations using neural planners,
while in the access control community, symbolic approaches are
most prevalent to strictly enforce security and privacy constraints.
Therefore, we see the challenge of neuro-symbolic integration for
constrained robot task planning in integrating a neural planner
with a symbolic constraint system. While deepening the integra-
tion of the symbolic and neural spheres is still an open research
problem, we present goals and challenges for deep neuro-symbolic
integration for constrained robot task planning in this section.
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Deep-learned neural planning requires a distributed represen-
tation of plans instead of a localist representation as a list of task
actions, in order to be able to learn in the planning space embedding.
With end-to-end learning-based robot task planners, we get this
distributed representation of plans for free. With sensor data as fea-
ture space, we can directly perform neural operations on plan-level,
which is encoded by the internal weights of the neural network that
represents the planner. To interact with a neural planner, constraints
need a distributed representation as well. Recent developments in
deep learning based access control promise analogous approaches
to the distributed representation of end-to-end learning based robot
planners [21]. The deep neural networks that perform access deci-
sions encode distributed constraints in their internal weights, and
provide a feature space on which such constraints can be learned.
However, satisfaction of constraints in distributed representation
can still not be guaranteed (c.f. Section 3.2).

Thus the integration target of constraint-ensuring neural task
planning comes down to the following challenges that can be consid-
ered variations of the well-known signal-to-symbol gap challenges:

• How can a distributed representation of planning work to-
gether with a distributed representation of constraints?

• How can symbolic algorithms reason on suitable distributed
data representations?

• How to learn symbolic knowledge on distributed feature
spaces?

In this paper, we have described approaches up to level two in the
previous sections. As a research community, we can currently build
neuro-symbolic systems up to level three and four. For level three,
we can use existing systems and plug them together, level four can
be realized using synthetic training data generated from symbolic
knowledge on planning and constraints. Obviously, the leap to
level five is the challenge, however, it would also bring humanoid
assistive robots on a new level that might be necessary for practical
task-universal usage in the real world. Existing neural constraint
enforcement systems such as DLBAC [21] show that the integration
of such systems into the loss function of planners appears on the
horizon of current research. Controlled text generation of LLMs
is also a current research topic, addressing the question of how to
make a LLM produce text of a specific kind, as seen with Dathari
et al. [2] or Keskar et al. [14]. Such imposing of constraints is a
promising fit for imposing constraints on planners to use LLMs
in some form, as knowledge bases or even directly as planners.
While these controllers are also neural networks as of today and
therefore are level four systems at most, an approach with symbolic
controllers would be a level five neuro-symbolic AI.

A type six neuro-symbolic system that utilizes truly symbolic
reasoning inside a neural enginewouldmakemany problems of con-
straining task-universal robots disappear, and thereby would repre-
sent a major break-through for secure, private, but task-universal
humanoid assistive robots in the real world. Such a highly-integrated
neuro-symbolic system would be as task-universal, flexible and fast
as today’s neural planners, but still able to guarantee that learned
constraints would be met as today’s symbolic planners. A truly
neuro-symbolic system would easily be able to scale in the dimen-
sion of task and constraint complexity, because those could be
learned and would not need to be manually designed. However,

while we seem to have major parts for functioning level five neuro-
symbolic systems at hand, level six still presents a grand challenge
that is possibly much farther off in the future, if achievable at all.

However, a deep level six neuro-symbolic integration might not
be necessary for acceptable trade-offs regarding constrained task
planning. Pure symbolic problem solving always comes with the ad-
vantage of guaranteeing certain behavior, which neural approaches
cannot provide. For example, one could think of high-level sym-
bolic planners that provide a general idea, and only fine-grained
planning is done using neural systems. The same idea can be used
for constraints that are imposed or observed by such planning sys-
tems. The integration of symbolic reasoning might also be done
by imposing symbolic red lines to the neural planning system. The
neural planner would then be constrained by a symbolic system
that encodes rules of high importance. Aspects with a lower secu-
rity level can however be constrained by a neural planning system,
because errors do not have such an impact there. We conclude that
the goal is not necessarily maximum neuro-symbolic integration,
but rather to find the adequate integration level for the task at hand.

5.2 Next Steps
In this paper, we argued that neuro-symbolic hybrid approaches
are necessary to bring constrained task-universal planning to real-
world problem complexity. We listed many variations of possible
hybrid approaches, which still need to prove their feasibility in real
robot experiments. Feasibility especially means how well the differ-
ent approaches cope with practical task and policy complexity in
e.g. our assistive humanoid robot in care homes scenario. A practi-
cal feasibility analysis could also determine necessary and sufficient
levels of neuro-symbolic integration for the scenario, finding out
what type of neuro-symbolic integration would fit best. Deploying
neuro-symbolic systems on real robots is an extensive challenge,
but simulating such situations with the necessary degree of realism
using information gathered from care homes seems feasible.

In the space of possible neuro-symbolic approaches, we see LLMs
as promising building block due to their inherent knowledge on so-
cial norms and ability to workwithmultimodal, layered instructions
– we imagine a LLM that is primed to behave like a humanoid assis-
tive robot in a care home using documents and norms for human
trainees, that use input from the robot’s camera, other sensors and
memory to perform a task given as voice command in natural lan-
guage. We see advances in this direction in the form of multimodal
LLM-based planners that take vision and user command as input
and are able to respect basic physical constraints (c.f., e.g. [4, 5]).
These approaches directly embed images and other sensor data
from robots into the language-embedding space and use these dur-
ing training and fine-tuning stages. It can be observed that the
models gain an implicit understanding of their surroundings. Simi-
lar to learned physics reasoning based on scene images that looks
like an actual physics simulation based on a scene graph [3, 27],
these developments need to be continued to provide learned access
control reasoning based on natural language policies that looks like
an actual reference monitor based on symbolic policies.

However, further research into guaranteeing quality properties
of generated plans like validity, correctness, consistency, and stabil-
ity when using LLMs is necessary – we see a promising direction in

124



How to Raise a Robot — A Case for Neuro-Symbolic AI in Constrained Task Planning SACMAT 2024, May 15–17, 2024, San Antonio, TX, USA

building upon advances in controlling LLM output as a way to make
LLM-based planners adhere to constraints (c.f., e.g. [2, 14, 18, 25]).
In addition, performance of LLM-based planning in comparison to
standard symbolic and neural planning systems in terms of speed
and correctness is yet to be evaluated. Specific to LLMs used as
knowledge base for planners, the general performance of inferring
social norms also has to be evaluated.

Orthogonal to testing the feasibility of current ideas for hybrid
approaches, neuro-symbolic AI advances as a field of itself. Any
progress in this field, especially in the integration of a neural engine
and a symbolic constraint system, would be directly applicable in
constrained task planning for humanoid assistive robots.

6 CONCLUSION
We discussed combinations of symbolic and neural planning ap-
proaches under access control constraints and beyond. We high-
lighted their trade-offs and showed their benefits and shortcomings.
While neural planners scale better to complex deployments in terms
of required manual specification, they introduce an error margin
and hinder administrability. The usage of neural systems such as
LLMs as knowledge base for access decisions presents a direct way
of incorporating social norms into such access decisions. Designing
symbolic planning systems, however, requires more manual tasks
than neural planning systems. While neural systems seem to have
an advantage when scaling problem complexity to task universality,
to actually teach them security, they do not only challenge us to
quantify what we mean with security, but also to make that notion
differentiable. In order to create deployable systems one should,
therefore, strive for hybrid designs to combine best of both worlds:
neural planning with neural constraints leads to probable obser-
vance of policies, critical policies will be safeguarded by symbolic
constraints. Neuro-symbolic AI promises to advance the field of
constrained task planning of assistive humanoid robots, and of
access and activity control as well.
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