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 was obtained to model the conditional probability 
 [9, 12]. Dart code and corresponding test files were 

extracted from open-source GitHub repositories using Google 
BigQuery. These files were then matched using regular 
expressions, ensuring that each code file was matched with its 
corresponding test file based on matching base filenames. The 
dataset underwent quality filtering and deduplication, resulting in 
16,252 input-output pairs, which was then divided into training 
(90%) and validation (10%) sets. The training set of the dataset 
consists of a total of 88.5M tokens using the LLaMA tokenizer. 
Secondly, for SFT on the downstream task of test generation, 
models were selected based on their code generation capabilities, 
as indicated by the pass@1 score on the HumanEval [2] and MBPP 
[1] benchmark, their parameter sizes, and the extent to which they 
had been trained on Dart data. In model selection, open-source
models capable of running on cost-efficient consumer hardware
with code generation abilities were primarily chosen.
Thirdly, in the SFT process, the test generation task was
represented as translation task, in line with ATHENATEST [16].
This is achieved by employing the following structured prompt
format for SFT [9]:

“{prefix_prompt} ### Code: {code} ### Test: {test}” 
In this work, there was no prefix prompt used during SFT. 
Fine-tuning. The fine-tuning was conducted on a single GPU 
system using Flash Attention 2 [3] and the QLoRA method [4] to 
reduce memory size and the number of trainable parameters. The 
fine-tuning process varied in duration up to 32 hours, resulting in 
total emissions of 13.099 kgCO2eq [5].  
Experimental Results. The performance of TestGen-Dart 
models was evaluated for their unit testing capabilities in Dart, in 
comparison to base models LLaMA 2 13B, Code Llama 13B, and 
Mistral 7B. The models were loaded in both float16 and 4-bit 
quantization configurations, and the evaluation involved nine 
different Dart files, encompassing 42 test cases. The results were 
obtained in a zero-shot setting using a structured prompt format, 
as described in the approach section. This included a prefix 
prompt instructing the models to generate unit tests: “Generate 
unit tests in Dart for the following class. The unit test should be 
structured with the 'test' function, an appropriate description, and an 
assertion 'expect' within the function to validate the test case.” The 
generated unit tests were classified into three categories: syntax 
errors (SE), syntactic correctness (SC), and functional correctness 
(FC). In a 4-bit quantization configuration, TestGen-Dart_v0.2 
enhanced the generation of syntactically correct unit tests by 
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ABSTRACT 
Motivation. Software tests are a necessity in the development of 
software to secure functionality, reliability, and usability [10]; 
however, these tests are costly and time-consuming [6]. Although 
tool support for software testing has advanced, there remains 
considerable potential for enhancement. Many software tests are 
still devised manually, with the creation of unit tests being 
particularly laborious. Automating the generation of test cases is 
promising for streamlining this aspect of software testing [6]. 
Large Language Models (LLMs) have exhibited capabilities in code 
generation [11, 13–15], test case generation [17], and various 
other domains [11]. The advancement of model performance of 
transformer-based LLMs is mainly achieved by expanding the 
model size in line with an increase in training data size [7, 8]. 
However, this approach leads to high computational costs which 
can only be afforded by corporations with significant financial 
resources. This highlights the need for transformer-based LLMs 
that perform well on a specific downstream task and are also cost-
efficient. Addressing this, we focused on supervised fine-tuning 
(SFT) of more resource-efficient transformer-based LLMs LLaMA 
2 13B, Code Llama 13B, and Mistral 7B for the specific 
downstream task of generating test cases for mobile applications.  
Research questions. This work investigated: Does SFT enhance 
the capabilities of a transformer-based LLM in the specific 
downstream task of generating test cases for mobile applications 
while being cost-efficient and runnable on standard consumer 
hardware? Does the fine-tuned model outperform other state-of-
the-art models in the task of test generation for mobile 
applications? 
Approach. Our approach is a modification of the ATHENATEST 
approach [16]. However, our approach focuses on supervised fine-
tuning (SFT) on both pre-trained and already fine-tuned 
transformer-based LLMs for the task of test case generation for 
mobile applications in Dart.  
The approach involves three steps, as illustrated in Figure 1. 
Firstly, a labeled dataset of corresponding input-output pairs 
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15.38% and functionally correct unit tests by 16.67%, compared to 
the underlying base model, Code Llama 13B. Additionally, 
TestGen-Dart_v0.2 demonstrated superior performance in the 16-
bit configuration. This evidenced that supervised fine-tuning 
(SFT) increases the capability of transformer-based LLMs in a 
specific downstream task, in this instance, generating test cases 
for mobile applications, addressing the first research question 
posed in this work. Additionally, TestGen-Dart_v0.2 outperformed 
the other state-of-the-art models of interest LLaMA 2 13B and 
Mistral 7B in that task, addressing the second research question.  
Conclusion. This work demonstrates that SFT enhances the 
capability of transformer-based LLMs in generating test cases for 
mobile applications in Dart. Furthermore, the 13B parameter size 
of the TestGen-Dart enables it to run locally on standard consumer 
hardware, potentially making it a cost-efficient and privacy-
friendly testing assistant for software developers by avoiding an 
external server connection to run the model.  
Outlook. Future work currently in progress may expand this 
approach to other programming languages and refine TestGen-
Dart's performance by using higher-quality fine-tuning data 
either synthetic or human-annotated. Additionally, the evaluation 
method may be enhanced by using TestGen-Dart for generating 
test cases for dummy applications and measuring code coverage. 
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Figure 1:  Three steps of the TestGen approach. 
Modification of the ATHENATEST approach [16]. 
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