
Demian Frister
AIFB - BIS

 Karlsruhe Institute of Technology (KIT)
 Karlsruhe, Germany

Demian.frister@kit.edu

 was obtained to model the conditional probability
 [9, 12]. Dart code and corresponding test files were

extracted from open-source GitHub repositories using Google
BigQuery. These files were then matched using regular
expressions, ensuring that each code file was matched with its
corresponding test file based on matching base filenames. The
dataset underwent quality filtering and deduplication, resulting in
16,252 input-output pairs, which was then divided into training
(90%) and validation (10%) sets. The training set of the dataset
consists of a total of 88.5M tokens using the LLaMA tokenizer.
Secondly, for SFT on the downstream task of test generation,
models were selected based on their code generation capabilities,
as indicated by the pass@1 score on the HumanEval [2] and MBPP
[1] benchmark, their parameter sizes, and the extent to which they
had been trained on Dart data. In model selection, open-source
models capable of running on cost-efficient consumer hardware
with code generation abilities were primarily chosen.
Thirdly, in the SFT process, the test generation task was
represented as translation task, in line with ATHENATEST [16].
This is achieved by employing the following structured prompt
format for SFT [9]:

“{prefix_prompt} ### Code: {code} ### Test: {test}”
In this work, there was no prefix prompt used during SFT.
Fine-tuning. The fine-tuning was conducted on a single GPU
system using Flash Attention 2 [3] and the QLoRA method [4] to
reduce memory size and the number of trainable parameters. The
fine-tuning process varied in duration up to 32 hours, resulting in
total emissions of 13.099 kgCO2eq [5].
Experimental Results. The performance of TestGen-Dart
models was evaluated for their unit testing capabilities in Dart, in
comparison to base models LLaMA 2 13B, Code Llama 13B, and
Mistral 7B. The models were loaded in both float16 and 4-bit
quantization configurations, and the evaluation involved nine
different Dart files, encompassing 42 test cases. The results were
obtained in a zero-shot setting using a structured prompt format,
as described in the approach section. This included a prefix
prompt instructing the models to generate unit tests: “Generate
unit tests in Dart for the following class. The unit test should be
structured with the 'test' function, an appropriate description, and an
assertion 'expect' within the function to validate the test case.” The
generated unit tests were classified into three categories: syntax
errors (SE), syntactic correctness (SC), and functional correctness
(FC). In a 4-bit quantization configuration, TestGen-Dart_v0.2
enhanced the generation of syntactically correct unit tests by

Jacob Hoffmann
 AIFB - BIS

 Karlsruhe Institute of Technology (KIT)
 Karlsruhe, Germany

 Jacob.hoffmann@partner.kit.edu

ABSTRACT
Motivation. Software tests are a necessity in the development of
software to secure functionality, reliability, and usability [10];
however, these tests are costly and time-consuming [6]. Although
tool support for software testing has advanced, there remains
considerable potential for enhancement. Many software tests are
still devised manually, with the creation of unit tests being
particularly laborious. Automating the generation of test cases is
promising for streamlining this aspect of software testing [6].
Large Language Models (LLMs) have exhibited capabilities in code
generation [11, 13–15], test case generation [17], and various
other domains [11]. The advancement of model performance of
transformer-based LLMs is mainly achieved by expanding the
model size in line with an increase in training data size [7, 8].
However, this approach leads to high computational costs which
can only be afforded by corporations with significant financial
resources. This highlights the need for transformer-based LLMs
that perform well on a specific downstream task and are also cost-
efficient. Addressing this, we focused on supervised fine-tuning
(SFT) of more resource-efficient transformer-based LLMs LLaMA
2 13B, Code Llama 13B, and Mistral 7B for the specific
downstream task of generating test cases for mobile applications.
Research questions. This work investigated: Does SFT enhance
the capabilities of a transformer-based LLM in the specific
downstream task of generating test cases for mobile applications
while being cost-efficient and runnable on standard consumer
hardware? Does the fine-tuned model outperform other state-of-
the-art models in the task of test generation for mobile
applications?
Approach. Our approach is a modification of the ATHENATEST
approach [16]. However, our approach focuses on supervised fine-
tuning (SFT) on both pre-trained and already fine-tuned
transformer-based LLMs for the task of test case generation for
mobile applications in Dart.
The approach involves three steps, as illustrated in Figure 1.
Firstly, a labeled dataset of corresponding input-output pairs

This work licensed under Creative Commons Attribution-NonCommercial-ShareAlike
4.0 International License.
AST '24, April 15–16, 2024, Lisbon, Portugal
© 2024 Copyright is held by the owner/author(s).
ACM ISBN 979-8-4007-0588-5/24/04.
https://doi.org/10.1145/3644032.3644454

76

2024 IEEE/ACM International Conference on Automation of Software Test (AST)

https://doi.org/10.1145/3644032.3644454
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3644032.3644454&domain=pdf&date_stamp=2024-06-10

15.38% and functionally correct unit tests by 16.67%, compared to
the underlying base model, Code Llama 13B. Additionally,
TestGen-Dart_v0.2 demonstrated superior performance in the 16-
bit configuration. This evidenced that supervised fine-tuning
(SFT) increases the capability of transformer-based LLMs in a
specific downstream task, in this instance, generating test cases
for mobile applications, addressing the first research question
posed in this work. Additionally, TestGen-Dart_v0.2 outperformed
the other state-of-the-art models of interest LLaMA 2 13B and
Mistral 7B in that task, addressing the second research question.
Conclusion. This work demonstrates that SFT enhances the
capability of transformer-based LLMs in generating test cases for
mobile applications in Dart. Furthermore, the 13B parameter size
of the TestGen-Dart enables it to run locally on standard consumer
hardware, potentially making it a cost-efficient and privacy-
friendly testing assistant for software developers by avoiding an
external server connection to run the model.
Outlook. Future work currently in progress may expand this
approach to other programming languages and refine TestGen-
Dart's performance by using higher-quality fine-tuning data
either synthetic or human-annotated. Additionally, the evaluation
method may be enhanced by using TestGen-Dart for generating
test cases for dummy applications and measuring code coverage.

KEYWORDS
Software Testing, Mobile Testing, Machine Learning, Large
Language Models

Figure 1: Three steps of the TestGen approach.
Modification of the ATHENATEST approach [16].

ACKNOWLEDGMENTS
This work was supported by the Helmholtz Association's
Initiative and Networking Fund on the HAICORE@FZJ partition.
The dataset for the evaluation was obtained by Khalil Sakly.

REFERENCES
[1] Austin, J., Odena, A., Nye, M., Bosma, M., Michalewski, H.,

Dohan, D., Jiang, E., Cai, C., Terry, M., Le, Q. and Sutton,
C. 2021. Program Synthesis with Large Language Models.

arXiv:2108.07732. Retrieved from
http://arxiv.org/abs/2108.07732.

[2] Chen, M. et al. 2021. Evaluating Large Language Models
Trained on Code. Retrieved from
http://arxiv.org/abs/2107.03374.

[3] Dao, T., Fu, D.Y., Ermon, S., Rudra, A. and Ré, C. 2022.
FlashAttention: Fast and Memory-Efficient Exact Attention
with IO-Awareness. Retrieved from
http://arxiv.org/abs/2205.14135.

[4] Dettmers, T., Pagnoni, A., Holtzman, A. and Zettlemoyer,
L. 2023. QLoRA: Efficient Finetuning of Quantized LLMs.
arXiv: 2305.14314. Retrieved from
http://arxiv.org/abs/2305.14314.

[5] Ember 2022. Electricity Data Explorer. Retrieved from
https://ember-climate.org/data/data-tools/data-explorer/.

[6] Gamido, H. and Gamido, M. 2019. Comparative Review of
the Features of Automated Software Testing Tools.
International Journal of Electrical and Computer
Engineering. 9, (Oct. 2019), 4473–4478.
DOI:https://doi.org/10.11591/ijece.v9i5.pp4473-4478.

[7] Jiang, A.Q. et al. 2023. Mistral 7B. arXiv: 2310.06825.
Retrieved from http://arxiv.org/abs/2310.06825.

[8] Kaplan, J., McCandlish, S., Henighan, T., Brown, T.B.,
Chess, B., Child, R., Gray, S., Radford, A., Wu, J. and
Amodei, D. 2020. Scaling Laws for Neural Language
Models. arXiv:2001.08361. Retrieved from
http://arxiv.org/abs/2001.08361.

[9] Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H. and Neubig,
G. 2021. Pre-train, Prompt, and Predict: A Systematic
Survey of Prompting Methods in Natural Language
Processing. arXiv:2107.13586. Retrieved from
http://arxiv.org/abs/2107.13586.

[10] Nidhra, S. 2012. Black Box and White Box Testing
Techniques - A Literature Review. International Journal of
Embedded Systems and Applications. 2, 2 (Jun. 2012), 29–50.
DOI:https://doi.org/10.5121/ijesa.2012.2204.

[11] OpenAI 2023. GPT-4 Technical Report. arXiv: 2303.08774.
Retrieved from http://arxiv.org/abs/2303.08774.

[12] Radford, A., Narasimhan, K., Salimans, T. and Sutskever, I.
2018. Improving Language Understanding by Generative
Pre-Training.

[13] Rozière, B. et al. 2023. Code Llama: Open Foundation
Models for Code. arXiv: 2308.12950. Retrieved from
http://arxiv.org/abs/2308.12950.

[14] Touvron, H. et al. 2023. Llama 2: Open Foundation and
Fine-Tuned Chat Models. arXiv:2307.09288. Retrieved from
http://arxiv.org/abs/2307.09288.

[15] Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux,
M.-A., Lacroix, T., Rozière, B., Goyal, N., Hambro, E., Azhar,
F., Rodriguez, A., Joulin, A., Grave, E. and Lample, G. 2023.
LLaMA: Open and Efficient Foundation Language Models.
arXiv:2302.13971. Retrieved from
http://arxiv.org/abs/2302.13971.

[16] Tufano, M., Drain, D., Svyatkovskiy, A., Deng, S.K. and
Sundaresan, N. 2021. Unit Test Case Generation with
Transformers and Focal Context. arXiv:2009.05617.
Retrieved from http://arxiv.org/abs/2009.05617.

[17] Wang, J., Huang, Y., Chen, C., Liu, Z., Wang, S. and Wang,
Q. 2023. Software Testing with Large Language Model:
Survey, Landscape, and Vision. arXiv:2307.07221. Retrieved
from http://arxiv.org/abs/2307.07221.

77

