
RAMSES: an Artifact Exemplar for Engineering Self-Adaptive
Microservice Applications

Vincenzo Riccio
Giancarlo Sorrentino

Ettore Zamponi
Matteo Camilli

{first.last}@mail.polimi.it
matteo.camilli@polimi.it
Politecnico di Milano

Milano, Italy

Raffaela Mirandola
raffaela.mirandola@kit.edu

Karlsruhe Institute of Technology
Karlsruhe, Germany

Patrizia Scandurra
patrizia.scandurra@unibg.it

University of Bergamo
Bergamo, Italy

ABSTRACT

This paper introduces RAMSES, an exemplar tailored for both prac-
titioners and researchers working on self-adaptive microservice
applications. By emphasizing a clear separation of concerns be-
tween the application and its adaptation logic, RAMSES realizes a
reusable autonomic manager that implements a MAPE-K feedback
loop whose components are microservices themselves. Its primary
focus lies in addressing user-defined QoS attributes at runtime, like
availability and performance. To illustrate its usage, we provide a
practical example showing its mechanics in an e-food microservice
application. Initial experiments indicate the advantages of utilizing
RAMSES, as shown by a comparative analysis of the quality proper-
ties of a microservice application with and without self-adaptation.

CCS CONCEPTS

• Computer systems organization → Self-organizing autonomic
computing; Distributed architectures; • Software and its engineer-

ing → Software verification and validation; Extra-functional proper-
ties.

KEYWORDS

Microservice applications, self-adaptation, MAPE-K, exemplar
ACM Reference Format:

Vincenzo Riccio, Giancarlo Sorrentino, Ettore Zamponi, Matteo Camilli,
Raffaela Mirandola, and Patrizia Scandurra. 2024. RAMSES: an Artifact
Exemplar for Engineering Self-Adaptive Microservice Applications. In 19th
International Symposium on Software Engineering for Adaptive and Self-
Managing Systems (SEAMS ’24), April 15–16, 2024, Lisbon, AA, Portugal.
ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/3643915.3644110

1 INTRODUCTION

Microservice architectures have gained widespread popularity due
to their scalability, flexibility, and ability to facilitate continuous
deployment. Existing development frameworks (like Spring, Flask
and GoKit, to name a few) and management infrastructures simplify

SEAMS ’24, April 15–16, 2024, Lisbon, AA, Portugal
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0585-4/24/04.
https://doi.org/10.1145/3643915.3644110

the whole development andmanagement process also offering some
forms of self-adaptation built-in mechanisms (such autoscaling
and circuit breaking for resilience)[6]. However, the dynamic and
heterogeneous nature of modern computing environments calls for
the capacity to employ self-adaptation strategies that extend beyond
these built-in capabilities and can achieve arbitrary adaptation.

As a step in addressing this challenge, this paper proposes the
exemplar RAMSES to facilitate practitioners and researchers in
engineering a self-adaptive microservice application by clearly sep-
arating the microservice application and self-adaptation concerns.
RAMSES provides a reusable autonomic manager (a managing sub-
system) conforming to the well-known feedback control loop model
MAPE-K [4] (Monitor-Analyse-Plan-Execute over a Knowledge
base) to make a microservice application self-adaptive. Adaptation
concerns are mainly aimed at satisfying user-defined QoS attributes
(e.g., availability and response time) and self-* autonomic properties
(self-configuring, self-healing, and self-optimizing) of a microser-
vice application at runtime. RAMSES’s control loop components
themselves are microservices. RAMSES is designed to ease its reuse
across microservice applications through an API-led integration
that exploits a Contract-First approach to specify probing/actuating
RESTful APIs for connecting the RAMSES autonomic manager to
any managed microservice application. RAMSES was implemented
using the Java-based Spring Boot and Spring Cloud frameworks1.

To illustrate RAMSES, as part of this exemplar, an e-food mi-
croservice application has been developed and released to be used
as target managed system. This paper concretely reports some
preliminary evaluation results about the capability of RAMSES to
make such a microservice application self-adaptive by enforcing
the adaptation goals at runtime.

Concerning the timeliness of the problem addressed by the pro-
posed artifact and the overall discussion and considerations in [7]
regarding generality ("ability to support a variety of architectural
models and adaptation mechanisms") and reusability ("ability to
be reused without requiring substantial effort from software devel-
oper") in self-adaptive microservices, RAMSES has been conceived
with a focus on decoupling managed and managing systems. This is
achieved by defining RESTful probing and actuating APIs, providing
a means for managing systems to interact with managed systems
that expose the same interfaces, thereby facilitating reusability and
reuse by-design. At the same time, to better handle and speed up the

1https://spring.io/microservices

This work licensed under Creative Commons Attribution International 4.0 License.

161

2024 IEEE/ACM 19th Symposium on Software Engineering for Adaptive and Self-Managing Systems (SEAMS)

https://doi.org/10.1145/3643915.3644110
https://doi.org/10.1145/3643915.3644110
https://spring.io/microservices
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3643915.3644110&domain=pdf&date_stamp=2024-06-07


SEAMS ’24, April 15–16, 2024, Lisbon, AA, Portugal Vincenzo Riccio, Giancarlo Sorrentino, Ettore Zamponi, Matteo Camilli, Raffaela Mirandola, and Patrizia Scandurra

implementation of various self-adaptation strategies, the managing
system in RAMSES has been developed leveraging microservices
principles and mainstreammicroservice frameworks and infrastruc-
ture platforms. In-house mechanisms have also been implemented
to enhance its autonomy from the management infrastructure it-
self. This situates RAMSES at the Cross-Layer level in the MAPE
integration patterns as defined in [7].

The main contributions of this artifact paper for the community
of Software Engineering for Adaptive and Self-Managing Systems are:
(i) a non-simulated exemplar of self-adaptive microservice applica-
tion; (ii) a standalone autonomic manager for microservices charac-
terised by a Contract-First and API-led approaches for reusability
across other microservice applications; (iii) an in-house developed
managed microservice application that can be also reused in a
standalone manner as a use case for other benchmarks. Section 5
concludes the paper.

2 RELATEDWORK

Exemplars development is an active line of research in the self-
adaptive community 2. We report here the exemplars most related
to our work. Hogna [1] is a platform for deploying self-managing
web applications on the cloud and automating a set of operations,
such as the booting of the instances and their setup. Moreover,
it enables the continuous monitoring of the health status of the
applications. It provides a modular managing system, which is
however specifically focused on the deployment and configuration
of cloud applications on platforms such as Amazon EC2. Another
well-known exemplar is TAS [13]. It provides a useful (simulated)
service-based system to be used as a managed subsystem. Moreover,
it defines a set of generic adaptation scenarios applicable to service-
based systems, to deal with uncertainties of the system itself and
of the environment it is set in, which inspired the one proposed
in Table 1. Another related exemplar is SEAByTE which proposes
an experimental framework for testing novel self-adaptation so-
lutions to enhance the automation of continuous A/B testing of
a micro-service-based system [10]. SEAByTE represents a ready-
to-use framework, implemented using a well-known technology
stack (microservices, Spring, Docker, REST/JSON). However, its
application is limited to the specific domain of A/B testing.

Other exemplars (e.g., SWIM [9], RDMSim [12] and EWS [2])
implement specific managed subsystems that can be reused by re-
searchers to evaluate and compare different adaptation logic). In
different contexts, [3] proposes a framework that implements auto-
matic container sizing and self-healing features for a microservice-
based application deployed in Docker containers by exploiting
MAPE-K loops. In [14], an extension of Kubernetes has been de-
veloped to monitor microservices data and manage aspects of scal-
ability. When compared to RAMSES, the key differences are non-
simulated managed and managing systems, the adoption of ap-
proaches of Contract-First and API-led for reusability across mul-
tiple platforms. This last aspect is also facilitated by our design
choice of not depending to much on the self-adaptation capabilities
supported by some service management infrastructures natively
(such us Kubernetes autoscaling), to avoid conflicts/interferences
with the adaptation decisions of our autonomic manager.

2www.hpi.uni-potsdam.de/giese/public/selfadapt/category/exemplar/

Figure 1: RAMSES architecture overview

3 EXEMPLAR DESCRIPTION

RAMSES is about an autonomic manager (or managing system) for
making microservice applications self-adaptive. Once connected to
a target microservice application (the managed subsystem) through
probing/actuating APIs, the overall self-adaptive microservice ap-
plication (see Figure 1) is a two-layer architecture that, according to
the principles of architecture-based self-adaptation [5], decouples
the managed microservice application from its control loop layer.
RAMSES control loop components are microservices themselves
that execute the monitoring and adaptation activities conforming
to the well-known MAPE-K feedback loop model [4]. The goal
of RAMSES is to enforce the satisfaction of user-defined QoS at-
tributes (e.g., availability and response time) and self-* properties
at run-time, without human oversight. RAMSES is designed to ease
its reuse across microservice applications thanks to an API-led inte-
gration with the managed microservices. An additional dashboard
for configuring admin preferences and inspecting the managed
microservices at run-time is also supported. RAMSES has been
implemented using the Java-based frameworks Spring Boot and
Spring Cloud 3 for developing microservice applications. The ex-
emplar is publicly available (See Section 6), including all software
artifacts for injecting and simulating fictional service failures or
slowdowns for test scenarios.

3.1 Adaptation concerns and strategies

RAMSES is primarily tailored to automate typical service main-
tenance tasks. The main adaptation concerns are summarized in
the Table 1, together with the adaptation goals that the system
adaptations should achieve, and related strategies. These last could
be the result of a combined application of single adaptation actions.
The current prototype supports the following adaptation actions:
addInstance, removeInstance, changeConfiguration (e.g., for tuning
the service weights of the load balancing, or changing the circuit
breaker’s parameters and timeout thresholds), and selectNewImple-
mentation(to replace all instances of a given service type with the
spawned instances of another implementation of the same service).

3https://spring.io/microservices

162

www.hpi.uni-potsdam.de/giese/public/selfadapt/category/exemplar/
https://spring.io/microservices


RAMSES: an Artifact Exemplar for Engineering Self-Adaptive Microservice Applications SEAMS ’24, April 15–16, 2024, Lisbon, AA, Portugal

Table 1: Adaptation concerns, goals, and strategies in RAMSES

Concern Goal Strategies (examples)

C1: Individual service failure Recover from a silent or crashed service (self-healing) Start a new service instance
C2: Search for better service imple-
mentations

Select a better service implementation (self-
optimizing)

Change the current service implementation

C3: Workload distribution upon a ser-
vice instance activation/deactivation

Configure load balancing (self-configuring) Change service configuration for load balancing weights

C4: Violation of QoS requirements Maintain QoSs (availability and response time) Add service instance(s) and/or change weights for load balancing (e.g., to lighten
or even shutdown an instance with low performance)

3.2 Probing and actuating APIs

The probing/actuating interfaces have been defined using aContract-
First approach to promote reusability and then implemented as a
RESTful API. Such APIs are consumed by the managing layer and
provided by the managed microservice application.

Figure 2: Actuating REST/JSON API

Figure 2 shows the actuating API of RAMSES using the Plan-
tUML class diagram as generated from the API description in the
standard format OpenAPI. The actuating API exposes low-level
operations to be applied to the managed microservices. Below we
provide a description of the main operations exposed by the APIs.

• POST /rest/addInstances: allocates and starts a number
of new instances of a given service implementation, and
returns the details on each new instance (such as its address
and port).

• POST /rest/removeInstance: stops and deallocates an in-
stance which is currently running.

• POST /rest/changeLBWeights: updates the load balancer
weights of the instances of a given service.

• POST /rest/changeProperty: updates the value of a global
property or of a property for a certain service (includes the
addition/removal of the property)

The probing API for RAMSES has been defined as well. They
are responsible for collecting metrics from all the service instances
as a collection of objects Instance Metrics Snapshot (or simply
snapshot). Each service snapshot includes a timestamp, the status
of the instance, metrics related to resource usage (e.g., CPU usage),
metrics related to HTTP requests (e.g., number of server errors),
and circuit breakers. In the current prototype of RAMSES only

availability and average response time are concretely used to extract
QoS indicators for adaptations.

3.3 Managing subsystem

This section details the behavior of the MAPE-K microservices of
RAMSES. The Knowledge microservice maintains an up-to-date
data structure with all relevant information about the managed mi-
croservices as collected byMonitor component through the probing
API. These include data about service implementations and their
associated operational profile, current values for service configu-
ration parameters (e.g., for load balancing and circuit breaking),
running service instances and their snapshots series with the col-
lected metrics (CPU usage, HTTP requests stats, etc.) useful for
calculating QoS indicators. Other useful information computed by
the MAPE components for coordinating the loop execution itself is
also stored in the knowledge.

Through the probing API, the Monitor microservice periodically
collects snapshots of all running service instances and their associ-
ated quality metrics, and stores them in the knowledge. TheMonitor
executes asynchronously w.r.t. the rest of the control loop and its
sampling period can be dynamically configured via a REST API
exposed by the Monitor microservice itself or the admin dashboard.
Once a control loop execution terminates, the Executor microser-
vice notifies theMonitor so that theMonitor can invoke and request
the Analyze microservice to start a new asynchronous adaptation
loop with an up-to-date data collection for service snapshots.

The Analyze microservice exploits the updated metrics stored in
the knowledge for the QoS values computations (e.g., availability
and response time) adopting a sliding window approach, with con-
figurable window dimensions. Data are collected in the last window
of observation and a weighted average of the value of interest is
then computed. The weights are values in [0, 1] dynamically as-
signed to microservice instances by a load balancer. If the evaluated
QoS is below the user-defined reference threshold, then a set of
adaptation actions with different priority levels are selected and
stored in the knowledge and the Plan microservice is triggered.

The Plan microservice compares the proposed adaptation ac-
tions and selects the one that best fits the user requirements. The
benefit is calculated depending on the adaptation strategy and by
estimating the QoS values obtained after applying the correspond-
ing adaptation actions. For example, if the availability of a service
does not satisfy the requirement, an addInstance adaptation action
can be undertaken followed by a changeConfiguration action with
the computation of the new weighted average availability of the
current instances using the new weights. In each case, the best
adaptation strategy is selected using, for example, the option with
the associated highest estimated utility or the one that maximizes

163



SEAMS ’24, April 15–16, 2024, Lisbon, AA, Portugal Vincenzo Riccio, Giancarlo Sorrentino, Ettore Zamponi, Matteo Camilli, Raffaela Mirandola, and Patrizia Scandurra

Figure 3: Managed e-food microservice application

multiple objectives. The selected strategy becomes the adaptation
plan in the knowledge and then the Executemicroservice is invoked.

The Execute microservice retrieves the adaptation plan from the
knowledge, if any. Then, for each adaptation action of the plan, it
invokes the actuating API as exposed by the managed microser-
vice application. All processed adaptations are persisted into the
knowledge. Once the Execute microservice terminates, it notifies
the completion of the current loop iteration to the Monitor.

3.4 Managed microservice application

Our use case is an e-food microservice application (see Figure 3) for
ordering food from an online restaurant. It is made of a small set of
microservices running in Docker containers, an API gateway that
acts as a single entry point, infrastructure means for service man-
agement – Netflix Eureka for service discovery, and a configuration
server for storing and serving hot configurations to microservices
–, and service circuit breakers as supported by Spring Cloud in a
native way. A load balancer (not shown in Figure 3) is also used to
allocate requests to service instances according to a roulette wheel
selection policy [8]. Such a module has been developed in-house to
better oversight its internal behavior in a white box, thus avoiding
external and not so transparent load balancing mechanisms as of-
fered by management infrastructure solutions (e.g., Kubernetes) of
containerized applications. To be fully working, some services (e.g.,
Restaurant service and Ordering Service) require some data to be
persisted. To this end, a database-per-service pattern is applied [11],
and independent MySQL databases are added. Finally, to make the
managed microservice application also usable and inspectable by
humans at the edge of the microservices, a reusable web application
(also developed as a Spring Boot application) is provided. It serves
as the front end of the managed microservice application and acts
as a REST client that communicates with the API gateway.

3.5 HMI-dashboard

Once the managed application has been connected (via appropri-
ate configuration property files) to the end-points of the prob-
ing/actuating APIs of RAMSES, a web-based HMI dashboard (devel-
oped using Spring Boot and the frontend engine Thymeleaf) allows
an administrator for configuring (see the screenshot in Figure 4)
and inspecting the control loop and the managed microservices at
runtime (see the screenshot in Figure 5).

Figure 4a shows the control variables settable from the dash-
board for the running managed microservices, including current

58 3| Our Proposal

(a) RAMSES Dashboard – Homepage

(b) RAMSES Dashboard – Service Detail

Figure 3.11: RAMSES Dashboard

(a) Home

(b) Parameter Configuration

Figure 4: HMI dashboard

implementations, active service instances and their quality values
and QoS requirements. Configuration parameters of the control
loop (see Figure 4b) are also visible and settable: the current state of
the loop (running or not running), the monitor sampling period, and
specific parameters for the analysis. These latter include the metric
window size, i.e. the number of metric collected and buffered before
triggering the analysis; the analysis window size, i.e. the number of
metric values used to estimate the QoS level of each microservice
instance; and the shutdown threshold, i.e. the minimum amount of
requests that each microservice instance must be able to process to
stay alive. The dashboard also allows us to control the execution
of the MAPE-K loop, for example, to stop the autonomic manager
and simply monitor the managed microservice application.

4 EXEMPLAR EVALUATION

This section describes preliminary results about the efficacy of the
RAMSES autonomic manager. We refer the reader to our publicly
available package for a comprehensive guideline on utilizing the
artifact and conducting independent experimental campaigns with
RAMSES (see Section 6).

4.1 Setup of the testbed infrastructure

The experiments have been executed on two physical machines: a
driver node 𝑁1 and a subject node 𝑁2 equipped with an Apple M1

164



RAMSES: an Artifact Exemplar for Engineering Self-Adaptive Microservice Applications SEAMS ’24, April 15–16, 2024, Lisbon, AA, Portugal

Figure 5: Screenshot of the dashboard showing QoS data of the managed microservices at runtime.

(8-core) processor, 16GB RAM LPDDR4, and 256GB NVMe SSD.
To run our experiments, we used the swarm mode of Docker to
manage a cluster of twoDocker daemons: DockerManager deployed
onto 𝑁1, and a DockerWorker deployed onto 𝑁2. The RAMSES
managing subsystem and a software module ScenarioRunner for
conducting experiments have been deployed into the driver node
𝑁1. The DockerManager and DockerWorker are in charge of the
deployment/undeployment of the containerized microservices of
the managed subsystem onto the subject node 𝑁2.

For the sake of simplicity, the artifact comes with instructions to
set up and run RAMSES as well as a set of pre-configured scenar-
ios in a single machine. To promote portability and usability, our
package includes also instructions for other mainstream platforms
other than MacOS (i.e., Windows, and Linux).

The ScenarioRunner software module runs as a stand-alone
microservice and has been developed to facilitate and automate
the setup of the experimental campaign. It takes as input the spec-
ification of the experiments in terms of all configurable factors
required to create and reproduce a certain test scenario: the num-
ber of instances per microservice and boot time, the observation
period 𝑇 of the experimental campaign, workload (service requests
per second to issue to the managed subsystem), synthetic delays
in given time intervals (following a given Normal distribution),
failures (synthetic exceptions to generate in a given time interval
according to a certain failure rate), and network issues (i.e., time
intervals of service unreachability) to inject. The specification is
provided to ScenarioRunner through a configuration file where
the user specifies the aforementioned factors through pre-defined
variables as follows:

FAILURE_INJECTION = Y
FAILURE_INJECTION_1_START = 180
ID_OF_INSTANCE_TO_FAIL = restaurant :58085

In this example, the option failure injection is set to “Yes”. Thus, a
failure is injected at time 180s targeting the microservice instance
with ID restaurant :58085.

Given the specification, ScenarioRunner runs all the experi-
ments following a simple pipeline for each one of them. Such a
pipeline is made of three subsequent phases: setup, execution &
monitoring, and teardown. During the setup phase the RAMSES
autonomic manager and the managed microservice application are
deployed following the given configuration. The database images
are then loaded onto the managed microservices, and the control
loop’s knowledge is reset to its initial state to make sure that the
adaptation decisions undertaken are not influenced by prior knowl-
edge collected from past experiments. During the execution phase,
the ScenarioRunner replicates the desired operating conditions in
𝑁2 by generating a workload for the managed microservices and
by injecting specific issues/failures, as specified in the experimental
campaign. After a ramp-up period, the monitoring sub-phase starts
and the ScenarioRunner computes the metrics of interest to quan-
tify the effectiveness of RAMSES in achieving the adaptation goals.
When the observation period𝑇 ends, the teardown phase terminates
and undeploys the managing and the managed subsystems.

In our preliminary experiments, the effects of adaptations ap-
plied by the autonomic manager have been measured over the
observation period of 𝑇 = 20 minutes for all experiments. Con-
cerning the other configuration parameters of the managing layer,
we adopted the following default values (see Figure 4b): metric
and analysis window size equal to 5, shutdown threshold 40%, and
monitor scheduling period of 5 seconds.

4.2 Preliminary results

We here focus on the concern 𝐶4 of Table 1 about achieving QoS
requirements, and report some outcomes of the comparative analy-
sis of the capability of the system to maintain QoS properties with
and without adaptation (see Figure 6 and Figure 7).

To evaluate the system degradation, we introduce the quantita-
tive metric termed the QoS Degradation Area (QoSDA). The QoSDA
is calculated by measuring the area between the QoS threshold and

165



SEAMS ’24, April 15–16, 2024, Lisbon, AA, Portugal Vincenzo Riccio, Giancarlo Sorrentino, Ettore Zamponi, Matteo Camilli, Raffaela Mirandola, and Patrizia Scandurra

108 A| Appendix A - Experimental results

A.1.2. E2 - Adaptation benefits

Without adaptation

RESTAURANT-SERVICE

0 2 4 6 8 10 12 14 16 18

0.7

0.75

0.8

0.85

0.9

t[min]

Figure A.9: S1E2 – Restaurant Service availability – without adaptation

0 2 4 6 8 10 12 14 16 18

70

80

90

100

110

t[min]

Figure A.10: S1E2 – Restaurant Service average response time – without adaptation

(a) Without adaptation
72 4| Evaluation

0 2 4 6 8 10 12 14 16 18 20

0.7

0.8

0.9

1

t[min]

Figure 4.7: S1E3 – Restaurant Service availability

Concerning the Restaurant Service, as shown in Figure 4.7, at the beginning of this ex-
periment the Restaurant Service availability is below the specified threshold, resulting in
the execution of two Change Load Balancer Weights options, respectively at t ⇡ 1 and
t ⇡ 2.
As in the reference experiment, the first time the option is applied, all the three instances
are kept alive, distributing most of the load (specifically, about the 75% of the total load)
to the only nominal instance. Instead, the second time the load is redirected entirely to
the nominal instance, shutting down the other two.
From that moment on, no more adaptation is performed, since the Restaurant Service
availability becomes steady and satisfies the corresponding QoS specifications.
Compared to the reference experiment, in this experiment the Managing System requires
less time to propose an adaptation option. Indeed, the time required to determine whether
a service requires adaptation is strictly related to the size of its Metrics Window: the
smaller the Metrics Window, the less Metric Snapshots are required by the Analyse com-
ponent to generate a new latest value for each QoS indicator.
This results in a QoSDA availability value of 2.42·102, which is 50% smaller than the avail-
ability QoSDA of the Restaurant Service in the reference experiment, equal to 4.28 · 102.
However, this positive result comes along with a higher cost in terms of number of adapta-
tions. Indeed, at t ⇡ 10 the Restaurant Service is adapted again, after the network failure
injection event. As a reminder, during this and all the other experiments of this scenario,
two Metrics Snapshots of the Restaurant Service are manipulated by the Probe compo-
nent, simulating a network failure by considering the remaining instance UNREACHABLE
(see Figure 4.2 for reference). As a consequence, since the rate of UNREACHABLE Met-

(b) With adaptation

Figure 6: Restaurant service availability

the actual QoS during specific time intervals within the observa-
tion period 𝑇 . These intervals correspond to instances where the
operational state is degraded, indicating that the actual QoS falls
below the prescribed QoS requirement, such as a target availability
level. In essence, the adaptation actions performed by RAMSES aim
to minimize the QoSDA. Smaller QoSDA indicates a more effective
mitigation of degradation.

Figure 6 shows the results of the Restaurant service availability
by running the e-food application without and with the RAMSES
autonomic manager under a uniform workload intensity of 100
requests per second generated by 50 concurrent users. The applica-
tion itself is not able to meet the QoS requirement availability > 0.9
as illustrated in Figure 6a, with a QoSDA equal to 3.65 × 103 (red
area). With the introduction of the autonomic manager, RAMSES
plans and then actuates two adaptations to satisfy the QoS require-
ment (adaptation points corresponding to 𝑡 = 2 and 𝑡 = 3). The
first action corresponds to the change of the weights of the load
balancer to penalize the bad-performing instances. This improves
the availability up to ∼0.8 at time 𝑡 = 3, but the requirement is still
not satisfied. Another adaptation action is then performed: two in-
stances out of three are shut down, due to their poor performances.
The microservice finally achieves a stable and desired QoS value
from 𝑡 = 4 on. The QoSDA is 4.28 × 102 (red area) in Figure 6b. The
adaptation options reduce the QoSDA by 88%.

Similar results can be observed in Figure 7 considering the
Ordering service response time. In this case, the QoS requirement
is response time < 800 milliseconds, which is not fulfilled without
introducing the managing layer for adaptation. Figure 7a shows
a QoSDA of 8.22 × 103. The results of the introduction of the au-
tonomic manager are shown in Figure 7b, where the addition of a
new instance and the change of the weights of the load balancer

A| Appendix A - Experimental results 109

ORDERING-SERVICE

0 2 4 6 8 10 12 14 16 18 20

0.8

0.82

0.84

0.86

0.88

t[min]

Figure A.11: S1E2 – Ordering Service availability – without adaptation

0 2 4 6 8 10 12 14 16 18 20

1,000

1,500

2,000

t[min]

Figure A.12: S1E2 – Ordering Service average response time – without adaptation(a) Without adaptation

4| Evaluation 73

rics Snapshot in the Metrics Window is above the corresponding threshold, the running
instance is shut down and a new instance is started.
By comparing this event with the results obtained in E2, we can see how the last adap-
tation option was actually not necessary, as shown in Figure 4.5.

The size of the Metrics Window impacts on the decision of shutting down the instances
that are UNREACHABLE or FAILED : while a smaller size could lead to unnecessary
adaptations, a larger size could lead to postpone adaptation or ignore such events if they
happen rarely.

0 2 4 6 8 10 12 14 16 18 20
0

1,000

2,000

3,000

4,000

t[min]

Figure 4.8: S1E3 – Ordering Service average response time

Concerning the Ordering Service, as shown in Figure 4.8, at the beginning of the exper-
iment the average response time of the Ordering Service is above the threshold defined
by the QoS specification. However, as in the reference experiment, the Managing Sys-
tem does not adapt the Ordering Service until its dependencies satisfy their constraints.
Indeed, the Ordering Service depends on the Restaurant Service, which, according to
Figure 4.7, does not satisfy all of its QoS specifications before t ⇡ 2. Thus, all the QoS
Histories of the Ordering Service are invalidated when an adaptation option is applied
to the Restaurant Service, and while the adaptation process is still in progress. These
events are highlighted by the black marks on the graph that are not in correspondence of
an adaptation point.
When the dependencies do not require adaptation anymore, the Ordering Service is
adapted, by applying a Change Load Balancer Weights option when t ⇡ 4.
The Ordering Service is adapted again at t ⇡ 14, t ⇡ 15 and t ⇡ 16, during the second

(b) With adaptation

Figure 7: Ordering service response time

yield QoS requirement satisfaction. QoSDA in this last plot is equal
to 6.39 × 103 which leads to a 22% reduction.

5 CONCLUSION AND FUTURE DIRECTIONS

This work describes RAMSES a microservice-based autonomic man-
ager tailored to microservice applications. RAMSES is reusable
given that the managed system implements the probing/actuating
APIs and the provided load-balancing mechanism. The e-food mi-
croservice application developed as the managed application is
itself reusable by other applications to experiment with different
kinds of adaptation means.

In future work, RAMSES may be extended with: more metrics
(e.g., resource usage and circuit breakers metrics) for a more in-
depth evaluation; more adaptation actions and scenarios to deal
with additional quality like security and with more complex sit-
uations; more complex decision-making approaches taking into
account also the costs and the risks derived from the application of
an adaptation option.

6 ARTIFACT AVAILABILITY

The package of RAMSES, including the sources and the instructions
to set up and run it is publicly available at https://zenodo.org/doi/
10.5281/zenodo.10400820. We refer the reader to the README file
included in the package for further details.

ACKNOWLEDGMENTS

This work has been partially founded from the topic Engineering
Secure Systems of the Helmholtz Association (HGF) and by KASTEL
Security Research Labs.

166

https://zenodo.org/doi/10.5281/zenodo.10400820
https://zenodo.org/doi/10.5281/zenodo.10400820


RAMSES: an Artifact Exemplar for Engineering Self-Adaptive Microservice Applications SEAMS ’24, April 15–16, 2024, Lisbon, AA, Portugal

REFERENCES

[1] C. Barna, H. Ghanbari, M. Litoiu, and M. Shtern. 2015. Hogna: A Platform for
Self-Adaptive Applications in Cloud Environments. In SEAMS. 83–87.

[2] R. R. Filho, E. Alberts, I. Gerostathopoulos, B. Porter, and F. M. Costa. 2022.
EmergentWeb Server: An Exemplar to Explore Online Learning in Compositional
Self-Adaptive Systems. In SEAMS. 36–42.

[3] Luca Florio and Elisabetta Di Nitto. 2016. Gru: An Approach to Introduce De-
centralized Autonomic Behavior in Microservices Architectures. In IEEE ICAC.
357–362.

[4] JeffreyO. Kephart andDavidM. Chess. 2003. The Vision of Autonomic Computing.
IEEE Computer 36, 1 (Jan. 2003).

[5] Sara Mahdavi-Hezavehi, Vinicius H.S. Durelli, Danny Weyns, and Paris Avgeriou.
2017. A systematic literature review on methods that handle multiple quality
attributes in architecture-based self-adaptive systems. Information and Software
Technology 90 (2017), 1–26. https://doi.org/10.1016/j.infsof.2017.03.013

[6] N. C. Mendonca, P. Jamshidi, D. Garlan, and C. Pahl. 2021. Developing Self-
Adaptive Microservice Systems: Challenges and Directions. IEEE Software 38, 2
(2021), 70–79.

[7] Nabor C. Mendonça, David Garlan, Bradley Schmerl, and Javier Cámara. 2018.
Generality vs. Reusability in Architecture-Based Self-Adaptation: The Case for

Self-Adaptive Microservices. In Proceedings of the 12th European Conference on
Software Architecture: Companion Proceedings (Madrid, Spain) (ECSA ’18). Associ-
ation for Computing Machinery, New York, NY, USA, Article 18, 6 pages.

[8] M. Mitchell. 1999. An Introduction to Genetic Algorithms. The MIT Press, 124–125.
[9] G. A.Moreno, B. Schmerl, andD. Garlan. 2018. SWIM: An Exemplar for Evaluation

and Comparison of Self-Adaptation Approaches for Web Applications (SEAMS
’18). ACM, 137–143.

[10] F. Quin and D. Weyns. 2022. SEAByTE: A Self-adaptive Micro-service System
Artifact for Automating A/B Testing. In SEAMS. 77–83.

[11] C. Richardson. 2022. Pattern: Microservice Architecture. https://microservices.
io/patterns/microservices.html

[12] H. Samin, L. H. G. Paucar, N. Bencomo, C. M. C. Hurtado, and E. M. Fredericks.
2021. RDMSim: An Exemplar for Evaluation and Comparison of Decision-Making
Techniques for Self-Adaptation. In SEAMS. 238–244.

[13] D. Weyns and R. Calinescu. 2015. Tele Assistance: A Self-Adaptive Service-Based
System Exemplar. In SEAMS. 88–92.

[14] Shuai Zhang, Mingjiang Zhang, Lin Ni, and Peini Liu. 2019. A Multi-Level Self-
Adaptation Approach For Microservice Systems. In 2019 IEEE 4th International
Conference on Cloud Computing and Big Data Analysis (ICCCBDA). 498–502.

167

https://doi.org/10.1016/j.infsof.2017.03.013
https://microservices.io/patterns/microservices.html
https://microservices.io/patterns/microservices.html

