
Inertia-based Routing

New Approaches using Time-Optimal Trajectory Generation

for Multirotor UAVs as an Example

Zur Erlangung des akademischen Grades eines

Doktors der Ingenieurwissenschaften (Dr.-Ing.)

von der KIT-Fakultät für Wirtschaftswissenschaften

des Karlsruher Instituts für Technologie (KIT)

genehmigte

DISSERTATION

von

Fabian Meyer, M.Sc.

Hauptreferent: Prof. Dr. Stefan Nickel

Korreferent: Prof. Dr. rer. nat. habil. Armin Fügenschuh

Tag der Prüfung 12.06.2024

Abstract

Unmanned aerial vehicles (UAVs) are, from a physical point of view, inherently inert.

This means that they require an acceleration force to change their direction of movement

and/or velocity magnitude. Until now, however, these physical properties associated with

inertia have not been taken into account in the planning of a flight mission for a multirotor

UAV in sufficient detail. In the best case, this leads to the problem that the resulting

flight mission is not as efficient as the kinematic characteristics would allow. In the worst

case, the calculated mission plan requires physical properties such as maneuverability or

acceleration power that the considered multirotor UAV does not provide. Consequently,

the determined reference trajectory of the planned mission cannot be tracked by the UAV.

This results in spatial and temporal errors compared to what was planned which might

lead to a mission execution with a significantly lower quality than expected.

In this work, we give deep insights into the problem of inertia-based route planning with

multirotor UAVs, a special UAV type, as an example. To model the real physical capabilities

of multirotor UAVs, we develop a new analytical approach for time-optimal trajectory

planning for point-masses with constrained velocity and acceleration. The trajectories

yielded by our new method have proven to be sufficiently precise in modeling a multirotor

UAV’s full physical capabilities. Further, since our approach is based on analytical solutions

in closed form, it is computationally extremely cheap.

Next, we introduce the kinematic traveling salesman problem (KTSP) and the kinematic

orienteering problem (KOP), which are based on the assumption that each waypoint

of a flight mission can be traversed with different heading angles and velocities. For

each possibility to travel between a waypoint pair, we utilize our time-optimal trajectory

planning approach introduced above to describe the associated motion. We develop a

mathematical model for both, the KTSP and the KOP, and hence can solve related problems

with a commercial general-purpose solver to global optimality. Since both problems are

combinatorial and classified as NP-hard, we additionally develop heuristic algorithms to

solve both problem classes in a short time with sufficient solution quality. The presented

results show that our research on inertia-based route planning problems significantly

improves the achieved quality of UAV mission planning compared to state-of-the-art

approaches.

i

Contents

Abstract . i

1. Introduction . 1
1.1. Surveillance and Data Collection . 1

1.1.1. The Impact of Inertia - A Motivating Example 2

1.1.2. Research Gap . 7

1.2. Scope and Contribution of this Thesis . 8

1.3. Outline . 9

2. Time-Optimal Trajectory Generation for Point-Masses 11
2.1. Trajectory Planning for Inertia-based Routing 11

2.2. State-of-the-Art and Research Gap . 13

2.2.1. Related Work . 13

2.2.2. Problem Definition and State-of-the-Art Approach 17

2.2.3. Research Gap and Contributions 19

2.3. Time-Optimal Trajectory Generation in One Dimension 22

2.4. Time-Optimal Trajectory Generation in Multiple Dimensions 26

2.4.1. Required Control Input Patterns 26

2.4.2. Structural Analysis of Optimal Solutions to the TOT-PMAV . . . 31

2.4.3. General Algorithmic Framework TOP-UAV [26] 34

2.4.4. Improved Algorithmic Framework TOP-UAV++ [27] 34

2.5. Computational Study . 36

2.5.1. Computational Study Setup . 37

2.5.2. Occurance of Insynchronizabilities 37

2.5.3. Extent of Discrepancy between SOTA and TOP-UAV 39

2.5.4. Improved Exploitation of Kinematic Properties 42

2.5.5. Computation Times . 44

2.6. Conclusion . 46

3. Inertia-based Routing . 47
3.1. Related Work . 48

3.1.1. Overview of Inertia-based Route Planning Problems 48

3.1.2. Research Gap and Contributions 52

3.2. Inertia-based Routing Models . 54

3.2.1. Inertia-based Traveling Salesman Problem Models 55

3.2.2. Inertia-based Orienteering Problem Models 60

iii

Contents

3.3. Heuristic Solution Frameworks . 66

3.3.1. The General ALNS Solution Framework 68

3.3.2. Removal Heuristics . 70

3.3.3. Insertion Heuristics . 72

3.3.4. Waypoint Traversal Optimization via Dynamic Programming . . 74

3.3.5. Acceptance Criteria . 77

3.3.6. Multistart Initial Solution Construction 79

3.3.7. Adaptive Large Neighborhood Search for the KTSP 81

3.3.8. Adaptive Large Neighborhood Search for the KOP 84

3.4. Computational Study . 84

3.4.1. General Computational Study Setup 84

3.4.2. Problem Instances . 85

3.4.3. Performance Indicators . 88

3.4.4. Hyperparameter Optimization . 91

3.4.5. Computational Results for the KTSP 99

3.4.6. Computational Results for the KOP 108

3.5. Conclusion . 117

4. Conclusions and Outlook . 119
4.1. Summary and Results . 119

4.2. Future Work and Outlook . 120

Appendices 123

A. Hover-to-Hover Trajectories . 123

B. Trajectory Tracking in 2D . 125
B.1. Full-Kinematic System Model . 125

B.2. Restricted-Kinematic System Model . 127

C. Original Computational Results . 129

List of Figures . 135

List of Tables . 137

Glossary . 139

References . 141

iv

1. Introduction

In the last decade, unmanned aerial vehicle (UAV) technology has been steadily gaining

momentum. With technological advancements, UAVs are proving to be extremely useful in

a variety of applications. These include monitoring and inspection of large infrastructures

and energy facilities such as offshore wind farms, power lines, roads, oil and gas pipelines

[1, 2, 3, 4, 5], monitoring of cultivated land and forests [5, 6, 7], in the mining industry

[8], layout planning and digital reconstruction in construction [9], for damage assessment

after disaster events [10, 11], and many more [12, 5, 13].

In general, UAVs can be classified by a set of properties. These include the weight, range,

maximum altitude, maximum velocity, and engine type. However, one of the most impor-

tant properties is the horizontal take-off landing (HTOL) and the vertical take-off landing

(VTOL) property. HTOL systems such as fixed-wing UAVs usually fly at higher veloci-

ties than VTOL systems and hence suit better for long-range missions. However, VTOL

systems such as singlerotors (e.g. unmanned helicopters), quadrotors (see Figure 1.1), or,

in general, multirotor UAVs can hover efficiently and have higher maneuverability [14].

These characteristics make them perfect for airborne surveying of areas. Both systems

have their advantages, which is why hybrid designs are developed, too. For further insights

into the design of UAVs, we refer the reader to [14]. For the remainder of this work, we

focus on the flight mission planning of multirotor UAVs.

1.1. Surveillance and Data Collection

Within this work, we specifically focus on flight mission planning for multirotor UAVs

in surveillance and data collection applications, which is one of the most important use

cases for UAVs [5]. The focus lies especially on the flight planning for multi-view stereo

Figure 1.1.: Example of a multirotor UAV. Source: https://www.pixabay.com/.

1

https://www.pixabay.com/

1. Introduction

Figure 1.2.: Example for viewpoints to cover the ROI.

3D reconstruction. The goal of this application is to obtain a three-dimensional virtual

point cloud representation of the environment. This is obtained by capturing multiple

images from different perspectives and combining them with stereo vision methods. As an

example, these point clouds can be used to detect damages to buildings after earthquakes

(see [15]).

The latest approaches in 3D reconstruction rely on the identification of proper viewpoints.

These are spatial locations at which images must be recorded to achieve a specified quality

in the 3D reconstruction of the scene. In the literature, the approaches to determine these

viewpoints are manifold. One possibility is to cover the scene with a grid-like structure of

tiles of equal size (see [16, 17, 18]). If a tile in the grid is classified as a region of interest

(ROI), then the center of the tile is defined as a viewpoint. An example is given in Figure 1.2.

Here the green dots represent the identified viewpoints to reconstruct the green-shaded

shape. The size of the tiles directly results from the parameters of the used sensor, such as

the aperture angle of the camera, and the desired resolution of the sensor footprint. For

more insights in this regard, we refer the reader to [17, 18]. Apart from this grid-based

approach, there also exist more sophisticated approaches to determine the ensemble of

viewpoints to reconstruct the scene. However, this is not the focus of this work and we

refer the reader to [19, 20] as they provide a very concise review of the latest approaches

for UAV viewpoint planning. For our means, these approaches yield some set of viewpoints

that allows for a proper reconstruction of the scene. The leading question of the work at

hand is how to visit these viewpoints as best as possible respecting the UAV’s physical

capabilities and restrictions. In this context of this introduction, the terminology ‘best’

refers to a minimum time. This question is not easily answered as we show in Section

1.1.1. Aiming at real-world applications, we explicitly allow to traverse viewpoints with a

velocity higher than 0m/s to fully exploit possible optimization potential.

1.1.1. The Impact of Inertia - A Motivating Example

When solving the task of finding a minimum-time trajectory through a given set of

viewpoints, there arises a set of problems. To illustrate these problems, we investigate the

set of 25 viewpoints as given in Figure 1.2 that covers a given ROI, and solve the resulting

2

1.1. Surveillance and Data Collection

mission planning problem with approaches from the current state-of-the-art. Note that

this section mostly serves as a motivation to illuminate current research gaps. The used

approaches from the state-of-the-art are introduced and discussed in depth in Section

3.1.

We assume that the flight mission is to be planned for a single multirotor UAV, since the

viewpoints are rather close and high agility is required which multirotor UAVs provide [5].

The rotor thrust of the UAV allows a maximum acceleration of 1.5m/s
2
in the horizontal

plane. Further, the velocity of the UAV is limited to 3m/s, since otherwise, the flight would

be too aggressive from which the data quality of the recorded images would suffer (see e.g.

[16]).

A common approach to answering the question of how to fly through these viewpoints is

to assume that the UAV constantly flies at its maximum velocity and can make on-spot

turns (e.g. see [21]). The latter implies neglecting the maximum acceleration property.

With these assumptions, the resulting problem reduces to the classical traveling salesman

problem (TSP) in the case that the start and end points of the mission are the same. The

objective of the TSP is to find a Hamiltonian cycle through a set of locations such that each

location is visited exactly once except for the start location and a given cost functional - in

the present case the required flight time - is minimized. The TSP is a well-studied problem

in the literature and its solution can be used to generate a reference trajectory which is a

function of the UAV’s spatial position over time. Using this reference as a guidance, the

UAV knows exactly where to be at each point in time. For example, the point in time

when the UAV is required to take an image is specified as the point in time at which the

reference traverses the associated viewpoint.

In Figure 1.3, we show the solution to the above-stated problem. The direction of the cycle

is indicated by the black arrow. The resulting reference trajectory is given as a red curve

in the lefthand plot and the entire mission is determined to last 25.41 s. Next, we simulate

a UAV trying to follow this reference trajectory in space and time (see blue dashed curve

in the lefthand plot). Our simulation is based on the assumption that a UAV moving in a

horizontal plane can sufficiently be modeled as a point-mass with a constrained maximum

velocity and acceleration. To track the reference trajectory, we apply the model predictive

controller (MPC) presented in Appendix B.1 which works as follows. Based on a time

discretization, our MPC determines the acceleration value applied to each time step such

that the deviation to the reference trajectory at the discrete timestamps is minimized and

the constraints on the maximum velocity and acceleration norms are not violated. As a

performance indicator for this and all subsequent experiments of this section, we define

the distance between a certain waypoint and the simulated UAV position at the exact

timestamps when the reference trajectory traverses that waypoint (see red curve in the

righthand plot). Hence, the values in the righthand plot represent the distances of the

actual recording locations (blue squares in the lefthand plot) and the associated viewpoints

(red squares in the lefthand plot). We use this metric because it reflects whether the images

are taken at the pre-calculated positions which is a good indicator of the quality of the

resulting data ensemble.

3

1. Introduction

0 5 10 15 20 25
x in m

0

5

10

15

20

25
y

in
m

Viewpoints

Reference

Record

Tracked

0 5 10 15 20 25
Viewpoint index

0

1

2

3

4

5

6

7

8

D
ev

ia
ti

on
of

re
co

rd
lo

ca
ti

on
in

m

Figure 1.3.: Example mission with 25 waypoints for a multirotor UAV with a maximum velocity of 𝑣𝑚𝑎𝑥 =

3m/s and a maximum acceleration of 𝑎𝑚𝑎𝑥 = 1.5m/s
2
. The reference trajectory is calculated under the

assumption that the UAV can fly constantly at 𝑣𝑚𝑎𝑥 and can make on-spot turns. The righthand plot shows

the distance between the planned viewpoint and the actual position at the recording timestamps. The

planned mission duration is 25.41 s.

As can be seen in Figure 1.3, neglecting the acceleration comes with a significant deviation

between the reference and the actual UAV trajectory at the recording times of more than

7m. Conducting a data collection flight and accepting deviations of this extent in the

recording location risks producing data of low quality. As we will see later, the reason

for these large deviations is that the acceleration property of a UAV cannot simply be

neglected. This observation is further emphasized by our next experiment. Here, we slow

down the constant velocity to 2m/s for the generation of the reference trajectory while

the maximum allowed velocity of the simulated UAV remains at 3m/s and its maximum

acceleration remains at 1.5m/s
2
. Note that the maximum velocity of the simulated UAV

is higher than the constant velocity of the reference trajectory. This enables the UAV to

better catch up with the reference if a course deviation has occurred. The effect of this

modification on the flight mission is shown in Figure 1.4. The reduction of the constant

velocity results in an increase of the total mission duration to 38.12 s. However, there are

still significant deviations between the planned and the resulting recording locations of

more than 4m. This is only a small improvement considering the additional flight time

invested. Consequently, a simple reduction of the constant velocity in the generation of

the reference trajectory does not seem to solve the problem of the occurrence of large

deviations.

Consequently, the acceleration capabilities of a UAV cannot simply be neglected in UAV

mission planning in the considered application. As a first approach to consider the acceler-

ation properties of a UAV, each waypoint can be forced to be visited at rest. Hence, to move

between two viewpoints, the UAV can fully accelerate towards the end viewpoint until the

maximum velocity is reached, keep the maximum velocity, and then fully decelerate to

reach the end viewpoint exactly at rest. This approach is described e.g. in [11]. This type

4

1.1. Surveillance and Data Collection

0 5 10 15 20 25
x in m

0

5

10

15

20

25

y
in

m

Viewpoints

Reference

Record

Tracked

0 5 10 15 20 25
Viewpoint index

0

1

2

3

4

5

6

7

8

D
ev

ia
ti

on
of

re
co

rd
lo

ca
ti

on
in

m
Figure 1.4.: Example mission with 25 waypoints for a multirotor UAV with a maximum velocity of 𝑣𝑚𝑎𝑥 =

3m/s and a maximum acceleration of 𝑎𝑚𝑎𝑥 = 1.5m/s
2
. The reference trajectory is calculated by the

assumption the UAV can fly constantly at 𝑣𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 = 2m/s and is able to make on-spot turns. The righthand

plot shows the distance between the planned viewpoint and the actual position at the recording timestamps.

The planned mission duration is 38.12 s.

of reference trajectory generation is further denoted as hover-2-hover method. We provide

an algorithmic solution procedure for this type of trajectory generation in Appendix A.

The impact of using hover-2-hover trajectories for our example problem is shown in Figure

1.5. For the reference trajectory generation and the simulated UAV, the maximum velocity

is 𝑣𝑚𝑎𝑥 = 3m/s and the maximum acceleration is 𝑎𝑚𝑎𝑥 = 1.5m/s
2
. It can be observed

that, when using this method for reference trajectory generation, all images are taken

exactly at the locations of the specified viewpoints. However, the entire mission duration

is 71.25 s which is 86.9% more than reducing the constant velocity to 2m/s. Intuitively, this

cannot be the solution representing the minimummission duration, because when multiple

viewpoints lie on one straight line the UAV does not have to stop at each viewpoint to

remain on track.

The hover-2-hover method is not the only method for reference trajectory generation

considering the full kinematic property of a UAV. According to the state-of-the-art, one

of the latest approaches in UAV routing problems considering a maximum velocity and

acceleration is based on Dubins paths (see [5]). Dubins paths assume that the UAV moves

at constant velocity and can only apply acceleration lateral to the direction of motion.

This leads to trajectories containing straight segments and segments of constant turning

radii. Dubins paths are especially suited to describe the motion of fixed-wing UAVs which

require a minimum velocity to not suffer a stall, but they are also widely used as reference

trajectories for multirotor UAVs (see e.g. [22, 23]). More details are given in Section 2.2.1.

The globally optimal solution for applying this type of reference trajectory generation to

our example problem is shown in Figure 1.6. For the reference trajectory generation and

the simulated UAV, the maximum velocity is 𝑣𝑚𝑎𝑥 = 3m/s and the maximum acceleration is

𝑎𝑚𝑎𝑥 = 1.5m/s
2
. Although the obtained solution can be tracked by the simulated UAV with

5

1. Introduction

0 5 10 15 20 25
x in m

0

5

10

15

20

25
y

in
m

Viewpoints

Reference

Record

Tracked

0 5 10 15 20 25
Viewpoint index

0

1

2

3

4

5

6

7

8

D
ev

ia
ti

on
of

re
co

rd
lo

ca
ti

on
in

m

Figure 1.5.: Example mission with 25 waypoints for a multirotor UAV with a maximum velocity of 𝑣𝑚𝑎𝑥 =

3m/s and a maximum acceleration of 𝑎𝑚𝑎𝑥 = 1.5m/s
2
. The reference trajectory is calculated by the

assumption that the UAV starts and ends the motion between viewpoints at rest. The righthand plot shows

the distance between the planned viewpoint and the actual recording position at the specified timestamps.

The planned mission duration is 71.25 s.

−10 0 10 20 30 40
x in m

−10

0

10

20

30

40

y
in

m

Viewpoints

Reference

Record

Tracked

0 5 10 15 20 25
Viewpoint index

0

1

2

3

4

5

6

7

8

D
ev

ia
ti

on
of

re
co

rd
lo

ca
ti

on
in

m

Figure 1.6.: Example mission with 25 waypoints for a multirotor UAV with a maximum velocity of 𝑣𝑚𝑎𝑥 =

3m/s and a maximum acceleration of 𝑎𝑚𝑎𝑥 = 1.5m/s
2
. The reference trajectory is calculated by using Dubins

paths considering the specified maximum allowed velocity and acceleration. The righthand plot shows the

distance between the planned viewpoint and the actual recording position at the specified timestamps. The

planned mission duration is 77.28 s.

sufficient precision, the reference trajectory itself appears suboptimal due to the occurring

detours. These large loops result since the UAV must move at constantly 3m/s and is only

allowed to apply its maximum acceleration of 1.5m/s
2
lateral to its direction of motion.

This leads to a mission duration of 77.28 s, which is even higher than the hover-2-hover
approach.

6

1.1. Surveillance and Data Collection

−10 0 10 20 30 40
x in m

−10

0

10

20

30

40

y
in

m

Viewpoints

Reference

Record

Tracked

0 5 10 15 20 25
Viewpoint index

0

1

2

3

4

5

6

7

8

D
ev

ia
ti

on
of

re
co

rd
lo

ca
ti

on
in

m
Figure 1.7.: Example mission with 25 waypoints for a multirotor UAV with a maximum velocity of 𝑣𝑚𝑎𝑥 =

3m/s and a maximum acceleration of 𝑎𝑚𝑎𝑥 = 1.5m/s
2
. The reference trajectory is calculated by using Dubins

path considering a reduced maximum allowed velocity of 2m/s and an unchanged maximum acceleration of

1.5m/s
2
. The righthand plot shows the distance between the planned viewpoint and the actual recording

position at the specified timestamps. The planned mission duration is 58.88 s.

To reduce the detour length, the constant velocity can be set below the maximum allowed

velocity of the simulated UAV. For illustration, the constant velocity for the trajectory

generation based on the Dubins path is set to 2m/s, while the maximum allowed velocity of

the simulated UAV remains at 3m/s. The maximum allowed acceleration for both remains

at 1.5m/s
2
. The result of this scenario is shown in Figure 1.7. Reducing the maximum

allowed velocity the total mission duration decreases from 77.28 s to 55.88 s while the

tracking performance remains high with a maximum deviation of only 0.18m. However,

this cannot be the optimal solution either, since viewpoints that lie on a straight line can

be connected with higher velocity while guaranteeing trackability. With this example, we

see that the optimum choice of the constant velocity for Dubins paths highly depends on

the set of viewpoints itself and a general rule for selecting a proper constant velocity is

not likely to be found, as we will see in Chapter 3.

1.1.2. Research Gap

In conclusion, the problem of finding a single minimum-time reference trajectory through

a set of viewpoints such that the trajectory can be tracked by a UAV with limited maximum

velocity and acceleration is hard. More specifically, as the above-stated preliminary

experiments indicate, this problem is not yet solved by the current state-of-the-art, although

it is of great economic importance. Missions of shorter duration allow more flights to be

conducted in a given time. For a companyworking on UAV-based infrastructuremonitoring

as an example, this increases the number of orders/customers that can be served and hence

the revenue of the company. Further, it might cause a potential cost reduction due to the

need for fewer UAVs and their technical equipment.

7

1. Introduction

1.2. Scope and Contribution of this Thesis

Motivated by the economical potential of solving related types of problems to optimality,

we investigate whether it is even possible to findminimum-time trajectories through a set of

viewpoints where each viewpoint is traversed precisely and the trajectory is fully trackable

by the UAVs given kinematic properties. We propose a new mathematical programming

formulation, namely the kinematic traveling salesman problem (KTSP), which allows

finding a globally optimal solution for the described class of TSP-like problems. Further,

we propose another new mathematical programming formulation also considering the

maximum acceleration and velocity of a UAV, denoted as kinematic orienteering problem

(KOP). The KOP is an extension of the orienteering problem (OP) and aims at maximizing

the collected priorities for visiting prioritized viewpoints within a given maximum flight

time. Due to the consideration of kinematics as well as the maximum flight time, the

KOP is highly relevant for real applications, especially in scenarios where not all given

waypoints can be visited within the maximum flight time of the UAV and a selection of

waypoints must be made.

The potential of both of our models, the KTSP and the KOP, relies on a proper calcula-

tion of the UAV’s kinematic motions between the viewpoints, i.e. to calculate the edge

representation for the underlying graph-based problem formulation. This potential can

only be fully unfolded when using time-optimal trajectory generation approaches for

multirotor UAVs. In general, multirotor UAVs can sufficiently precisely be modeled as

a point-mass with constrained maximum velocity and acceleration for which such an

approach exists in the literature. However, we found that the state-of-the-art approach

for time-optimal trajectory planning for such point-mass models is not generally correct.

Therefore, we further propose a new optimization-based approach to solve this trajectory

planning problem. Our approach is proven to be valid in general and yields a globally

optimal solution.

Moreover, we show that solving problem instances of the KTSP and the KOP with a large

number of viewpoints becomes computationally intractable. Therefore, we also develop

powerful heuristic solvers based on the adaptive large neighborhood search solution

framework (see e.g. [24]). Last, we evaluate our proposed approaches in an extensive

computational study and discuss future research direction.

The work presented in this thesis has been partly published in the following three peer-

reviewed scientific articles:

• [25]: F. Meyer and K. Glock, Trajectory-based Traveling Salesman Problem for

Multirotor UAVs, 17th International Conference on Distributed Computing in Sensor

Systems (DCOSS), Cyprus, 2021

• [26]: F. Meyer and K. Glock, Kinematic Orienteering Problem with Time-optimal

Trajectories for Multirotor UAVs, IEEE Robotics and Automation Letters, vol. 7, no.

4, 2022

8

1.3. Outline

• [27]: F. Meyer, K. Glock andD. Sayah, TOP-UAV: Open-source time-optimal trajectory

planner for point-masses under acceleration and velocity constraints, IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS), Detroit, 2023

In these articles, the contribution of the second and third co-authors is limited to the dis-

cussion of possible solution approaches, suggestions for related literature, and support by

reviewing preliminary versions of the articles with regard to mathematical formality, struc-

ture, and language. All remaining work including ideation, literature review, development

of solution approaches, implementation, computational evaluation, and documentation in

the form of scientific articles represents the contribution of the first author.

In addition to the published articles, we also contributed to the scientific community by

providing the source code of our time-optimal trajectory generation method for point-

masses as open-source in the programming languages

• C++: https://github.com/fzi-forschungszentrum-informatik/top_uav_cpp and

• Python: https://github.com/fzi-forschungszentrum-informatik/top_uav_py.

Finally, a part of the approaches presented in this work contributed to the research project

LOKI which has been funded by the Federal Ministry of Education and Research of

Germany, Grant No.: 03G0890A. A brief description of the research project can be found

in [15].

1.3. Outline

The remainder of this work is organized into two major chapters.

Chapter 2 focuses on the trajectory generation for point-masses under acceleration and

velocity constraints serving to calculate the representation of possible motions between

waypoints for the inertia-based routing problems introduced in Chapter 3. This includes a

literature review of existing trajectory generation approaches that can be applied to the

above-described point-mass model. Based on this literature, the analytical generation of

time-optimal trajectories considering the relevant kinematic constraints is identified as a

potential candidate for this work. However, we show in our work [26] that the correspond-

ing state-of-the-art approach has a general flaw that might result in the generation of

trajectories that cannot be tracked. Therefore, we developed a new analytical approach that

is proven to overcome the identified issue of the state-of-the-art approach. We evaluate

our new approach in an extensive computational study.

In Chapter 3, we focus on inertia-based routing problems for UAVs. We describe the current

state-of-the-art and derive the research gap that can be closed to a significant extent by our

mathematical programming formulation for the KTSP and the KOP. Further, we develop

heuristic solution approaches for both which are based on the adaptive large neighborhood

search. We evaluate all proposed approaches in another detailed computational study.

9

https://github.com/fzi-forschungszentrum-informatik/top_uav_cpp
https://github.com/fzi-forschungszentrum-informatik/top_uav_py

1. Introduction

Finally, we provide a summary of this work and give an outlook for further research in

Chapter 4.

10

2. Time-Optimal Trajectory
Generation for Point-Masses

As indicated in Chapter 1, the motion planning approach considered for connecting

spatial waypoints has a high impact on the obtained solution quality for inertia-based

routing problems. Therefore, in this chapter, we give deep insights into existing motion

planning approaches. We identify a major flaw in the state-of-the-art approach to solve the

time-optimal trajectory planning problem for point-masses with constrained maximum

acceleration and velocity and develop a new approach that is proven to overcome the

identified problem.

This chapter is organized as follows. First, we set the focus on a general introduction of

the trajectory planning problem for inertia-based route planning problem and describe a

set of requirements that must be fulfilled by a potential solution approach in Section 2.1.

In Section 2.2, we give an overview of the related work on trajectory planning approaches

from the literature, give a formal introduction to the time-optimal trajectory planning

problem for point-masses under acceleration and velocity constraints (TOT-PMAV) and

present the state-of-the-art (SOTA) solution approach to solve it in more detail. Next, we

show in Section 2.2.3 that the SOTA approach is not valid in general and hence, state a

set of open research questions associated with the invalidity. To answer the described

research questions, we present our analytical approach to solving the TOT-PMAV in one

dimension globally optimally in Section 2.3. Utilizing the one-dimensional approach, we

present our new approach to solving the TOT-PMAV in multiple dimensions that is proven

to be valid in general and we explain the cause of the flaw of the SOTA approach in Section

2.4. We close this chapter by presenting the results of our extensive computational study

in two and three dimensions in Section 2.5.

2.1. Trajectory Planning for Inertia-based Routing

The basis of inertia-based routing is the generation of a trajectory that connects a given

start waypoint to a given end waypoint, both specified with a predefined velocity vectors.

In general, a single trajectory generation method is not suited for all physical systems,

but for a small group. For example, the physical motion capabilities of a robotic arm are

entirely different from the ones of a helicopter. This difference impacts the usefulness of a

trajectory generation method in a given application.

11

2. Time-Optimal Trajectory Generation for Point-Masses

The scope of this work is mainly focused on the application of UAVs for 3D reconstruction

as described in Section 1.1, but is not limited to it. Therefore, we primarily consider

multirotor UAVs as the applied physical system. Multirotor UAVs can hover and accelerate

in any arbitrary direction. Their maneuverability makes them perfectly suited for 3D

reconstruction applications. However, their motion capacities are limited. The acceleration

power is restricted due to the maximum thrust of the rotors and the mechanical design of

the UAV. Further, the UAV cannot move with arbitrary velocity in the real world. At some

point, the air friction becomes too high to further increase the velocity. This limitation can

approximately be modeled by a maximum allowed velocity constraint. Overall, this leads

to the assumption that multirotor UAVs can sufficiently precisely be modeled as a point

mass with a constrained maximum allowed velocity and acceleration. This assumption is

widely used in the literature (see [28, 29, 30]) and we indicate in [26] via simulation that

this assumption is correct. For that reason, only trajectory generation methods that are

suitable for point-mass models with constrained maximum velocity and acceleration are

relevant for this work.

Next, for UAV applications, the goal is to complete the flight missions as quickly as possible

while ensuring that the user-defined requirements on the quality of the collected data are

met. This emphasizes the need that the considered trajectory generation methods should

be capable of generating time-optimal motions while considering the kinematic properties

of UAVs.

Further, as indicated in Section 1, inertia-based routing requires a huge number of tra-

jectories as edges of a graph to be calculated for a single problem instance. This number

lies in the scale of millions, as we demonstrate in Chapter 3. This increases the need for a

potential trajectory generation method that features a very quick computation of a single

trajectory.

To conclude, we formulate the following requirements for a suitable trajectors generation

method for multirotor UAVs:

• Applicability to point-mass models with constrained maximum velocity and acceler-

ation

• Time-optimality and hence full exploitation of the underlying system’s physical

properties

• Quick calculation in the scale of a few microseconds

With this in mind, we give an overview of related work for trajectory generation in the

next Section. From the literature, we identify only a single candidate that seems to fit

the above-stated requirements. However, we will show that this approach suffers from a

major flaw. Solving this problem, and hence making the approach suitable to inertia-based

routing problems, is therefore the major objective in Sections 2.3 and 2.4. Lastly, we

conduct the computational study for our trajectory generation (see Section 2.5) in two as

well as three dimensions.

12

2.2. State-of-the-Art and Research Gap

2.2. State-of-the-Art and Research Gap

In general, path and motion planning for UAVs is a well-studied subject in robotics research.

At the moment, most effort is put into the development of approaches that can handle

dynamic environments with obstacles. In this work, however, a static environment is

considered with the objective of visiting a given set of waypoints. Intuitively, one might

assume that the literature already provides an approach that matches the comparably

simple requirements for this work. However, this is not the case as we show in Section

2.2.3. In the following, we first give an overview of the related work and show that the

only approach covering all requirements suffers from a major flaw.

2.2.1. Related Work

Many approaches in the literature are being applied to UAV motion planning. In some

cases, multiple variations and enhancements that share the same basic idea have been

studied. Therefore, we introduce the approaches from the literature according to the major

group they belong to.

Dubins paths:
Awidely used approach to generate trajectories are so-called Dubins paths [31]. Originally,

Dubins paths were designed to find the shortest curvature-constrained path between a

pair of two-dimensional coordinates with given tangents. The approach demonstrated

that it can be applied to all physical systems that can somehow be modeled as a so-

called Dubins vehicle. It describes a vehicle that moves at constant velocity and can

apply a constant maximum acceleration force lateral to the direction of motion [22]. This

results in a motion that consists of straight-line segments and segments with a constant

turning radius. According to the kinematics of the Dubins vehicle, Dubins paths are

globally optimal. In the field of aerial surveillance, Dubins paths are primarily used to

plan trajectories for fixed-wing UAVs [5] but they are also applied for multirotor UAVs

[22, 23]. The advantage of using Dubins paths and thus assuming constant velocity is that

acceleration and deceleration are avoided, making the trajectory more energy-efficient

overall, as illustrated in Chapter 1. Another advantage is that they can be calculated

with very low computational effort. In [32] it is stated that they require only 20 𝜇s of

computation time. However, their disadvantage, especially regarding multirotor-UAVs,

is that they are bound to a constant velocity. In general, this comes at the risk of large

detours (see Figure 1.6) since the maximum acceleration has to fight against the prevailing

mass inertia while the longitudinal velocity is to be kept constant. At some point, these

detours cancel out the efficiency advantage of a constant velocity and that is why an

optimal trade-off has to be determined [25]. Associated with this disadvantage is the fact,

that the constraint of a constant velocity does not cover the kinematics of a multirotor

UAV properly [33]. The ability of multirotor UAVs to hover cannot be modeled with

Dubins paths. The idea of Dubins paths is rather suited for vehicles that have to steadily

move at a minimum velocity such as airplanes or fixed-wing UAVs. To better suit the

requirements of fixed-wing UAVs in real-world applications, Dubins paths were extended

13

2. Time-Optimal Trajectory Generation for Point-Masses

into the three-dimensional space e.g. [34]. Moreover, a few concepts on Dubins paths even

allow the motion to vary between a minimum and a maximum longitudinal velocity e.g.

[35]. However, even such approaches are bound to a constant turning radius that is only

achieved by a constant velocity for the time segments that correspond to flying a turn.

Bézier curves:
Another possibility to generate motion trajectories for multirotor UAVs is by using so-

called Bézier curves [36, 37]. Here, two locations are connected by a smooth curve based

on Bernstein polynomials. By setting intermediate control points properly, it is possible

to guide the curve safely around obstacles. However, the polynomial representation of

a safe curve through Bézier curves is purely spatial and hence, represents a spatial path.

To ensure physical feasibility, the Bézier curve must first be transferred into the time

domain. Only by assigning each spatial point of the curve to a particular point in time

is it possible to consider physical constraints such as maximum velocity and maximum

acceleration (see [38]). This two-step procedure is computationally expensive (see [36]),

especially for inertia-based routing problems where millions of trajectories are calculated.

Further, it is argued in [38] that if the initial and final velocity are not both zero, there

may not exist a feasible solution. This is a critical drawback of Bézier curves in general

and especially for their applicability in this work. Moreover, another disadvantage is that

the resulting trajectory is likely to be time-suboptimal since the inherent smoothness

of polynomial representation does not allow for bang-bang behavior, which is required

to achieve time-optimality [28]. In control engineering, the term bang-bang behavior

describes that the control variable is always at its limit. Nevertheless, due to their capability

of obstacle-avoidance, Bézier curves are one of the most applied trajectory generation

approaches in literature for point-to-point motion planning (see [39, 38, 40, 41, 42, 43,

44]).

Minimum-snap trajectories:
A further widely used class of trajectory generation methods for multi-rotor UAVs is

minimum-snap trajectory generation. Note that the snap describes the second time-

derivative of the acceleration. Similar to Bézier curves the generation of minimum-snap

trajectories is based on polynomials. However, unlike Bézier curves, the polynomials

utilized in minimum-snap trajectory generation are defined directly in the time domain.

Therefore, no transfer from the spatial to the time domain is required. The major advan-

tage of this trajectory generation method is that the resulting trajectories can directly be

transferred into control input trajectories due to the differential flatness property of the

dynamic multirotor UAV model (see e.g. [45]). The computation time of minimum-snap

trajectory generation lies in the range of a few hundred microseconds (see [46]). For this

work, the computation time is acceptable but tends to be rather too slow. Further, it is

difficult for these approaches to consider bounds on maximum velocity and maximum

acceleration in a computationally efficient way. This is because the associated mathe-

matical program can consider a maximum velocity for specific points in time, but not

for the polynomial representation of the trajectory as a whole. Lastly, minimum snap

trajectory generation cannot yield time-optimality since they also suffer from the inherent

smoothness of polynomials which does not allow for the bang-bang behavior required to

achieve time-optimality [28]. Despite this drawback, their advantage to match with the

14

2.2. State-of-the-Art and Research Gap

differential flatness property of multirotor UAVs makes them widely used in literature (see

[32], [46], [47], [48], [49], [50])

Model-based predictive control:
Another possibility to generate trajectories for UAVs is model-based predictive control

(MPC). MPC iteratively solves the optimal control problem for time-discretized dynamical

systems (see [51, Chapter 13]) and is mostly used to determine control input trajectories

that enable tracking a given reference trajectory. This also holds for UAV applications and

means that MPC is primarily used to calculate the required thrust at each rotor of a given

UAV to follow a given reference trajectory in the best possible way [52, 53, 54]. However,

MPC is also suitable to generate reference trajectories for multirotor UAVs (see [55]). Some

MPC approaches even solve the reference trajectory generation problem simultaneously

with the associated tracking problem in a single optimization process [56]. In general,

MPC is based on a discrete-time motion model of the UAV consisting of system parameters,

system state, and control variables. The most used objective is to find a sequence of

control inputs that minimizes the deviation of the current state to a reference, for example,

described by the desired end state, while respecting limits of control input and feasible

states. Specifically, the ability to define a custom set of allowed system states and control

inputs makes them one of the most successful methods in UAV motion planning [57, 58,

59, 60, 61]. However, there are also some drawbacks of MPC. First, it is hard to achieve

time-optimality with MPC, and second, since MPC solves a mathematical program, usually

quadratic, numerically, it is a computationally expensive method (see [62]) that requires a

computation time in the scale of ms for the trajectory planning problems considered in

this work.

Time-optimal trajectory generation:
So far, none of the presented approaches is capable of fulfilling the time-optimality re-

quirement for multirotor UAV motion planning stated in Section 2.1. However, there

are such approaches. These approaches mostly rely on the assumption that the UAV

approximately behaves as a point-mass and utilize Pontryagin’s minimum principle (see

[63]), which states that time optimality is achieved by having the system always operate

at its physical limits. Consequently, the overall motion of the UAV can be divided into

several segments of constant maximum or minimum control input value or zero in case the

system reaches state limits. This property is used to define a set of control input patterns

that are used to calculate the time-optimal trajectory analytically and in a very short

time. Typical point-mass models either use bounded jerk, i.e. the first time derivative of

the acceleration, along each coordinate axis as control input and restrict the maximum

velocity and acceleration ([64, 65]) or rely on a bounded acceleration as control input,

sometimes with a further restriction on maximum velocity [28, 26, 66, 30, 29]. Although

the latter point-mass model is less precise according to the full dynamics of a multirotor,

the resulting trajectories can still precisely be tracked (see [26, 56, 28]). Most analytical

time-optimal trajectory generation methods that rely on a point-mass model are based on

a decoupling of the coordinate axes. Here, the time-optimal trajectory planning problem

is first solved for each dimension individually before all coordinate axes are synchronized

again. However, the process of axis synchronization appears to be a hard problem. For

example, [64] reported that they were not able to find an analytical solution for the axis

15

2. Time-Optimal Trajectory Generation for Point-Masses

Method Time-optimality Point-mass model Computation time

Dubins paths

Bézier curves / B-splines

Minimum-snap

MPC

Time-optimal

Table 2.1.: Requirements covered by the different classes of state-of-the-art approaches. ‘Time-optimality’

is covered if the associated trajectory generation approach yields time optimality for the point-mass model

with constrained maximum velocity and acceleration. The ‘point-mass model’ requirement is covered if the

associated approach can be applied for point-masses with a constrained maximum velocity and acceleration.

The requirement ‘computation time’ is fulfilled if the associated approach yields solutions in the scale of up

to 500 𝜇s.

synchronization in certain cases for their point-mass model with jerk as the control input.

But also for the less precise point-mass model with acceleration as the control input, this

approach fails in some situations as we show in our work [26]. In Section 2.4.1.1, we give

insights into why this is the case.

Conclusion:
Table 2.1 summarizes the properties of the existing approaches and offers a direct com-

parison regarding the declared requirements of this work. As stated above, Dubins path

can be calculated in a short time. Further, they represent a time-optimal solution to the

trajectory planning problem of the Dubins vehicle. However, the kinematics of a multirotor

UAV modeled as point-mass do not exactly match those of the Dubins vehicle. Therefore,

Dubins paths are in general time-suboptimal for pure point-mass models. However, al-

though yielding time-suboptimal motions, the kinematics of Dubins paths are covered

by point-mass models which is why Dubins paths can be applied as a feasible trajectory

generation approach for multirotor UAVs.

Bézier curves have the advantage of implicit obstacle avoidance. The consideration of a

maximum velocity and acceleration constraint is possible if the trajectory is to be calculated

if the start and end velocity is 0m/s. However, that requires a computationally expensive

time allocation procedure for each spatial position of the curve. Moreover, if the start and

end velocity are not both 0m/s there might be no feasible solution for this time allocation

process. Therefore, we specify that Beziér curves cannot be applied for point-masses with

a constrained maximum acceleration and velocity in general. Further, since Bézier curves

are based on polynomials they are time-suboptimal.

Minimum-snap trajectories come with the advantage, that it is possible to analytically

derive the optimal control input trajectory from the calculated snap-minimizing state

trajectory due to the differential flatness property. However, minimum-snap trajectories

are again a polynomial approach and hence time-suboptimal. Further, it is time-consuming

to consider acceleration constraints and to the best of our knowledge, no variation of the

minimum-snap trajectory generation approach from the literature covers the constraint of

16

2.2. State-of-the-Art and Research Gap

a maximum velocity. The required computation time depends on the computational setup

but is defined as acceptable for this work since the authors in [46] report computation

times of approximately 180 𝜇s for a single optimization of the coefficients of a polynomial

passing through four spatial waypoints.

Due to the possibility of intuitive customization, MPC is one of the most powerful

trajectory-planning approaches in the literature that can also be designed to cover the

kinematics of a point-mass with a constrained maximum velocity and acceleration. How-

ever, since it is based on the solution of a mathematical optimization problem, MPC is

computationally expensive. Further, the basic concept of MPC is not suitable to achieve

time-optimality in general. Hence, we consider the requirement of ‘time-optimality’ as

not covered by MPC.

The only approach that appears to fulfill the requirements of this work is given by the

time-optimal approach. As their name indicates, they yield time-optimal motions. Further,

they require a short computation time and consider state and control input constraints.

According to Table 2.1, the time-optimal trajectory generation approaches offer the highest

potential for this work and serve as a starting point. However, our research found that the

state-of-the-art approach for time-optimal trajectory generation of point-masses sometimes

yields trajectories that miss the required final state by far. Hence, we developed a new

method that can resolve the identified issue. To be able to illustrate this error, we formally

introduce the time-optimal trajectory planning problem for point-masses with maximum

acceleration and velocity constraints in the next section, followed by a description of the

state-of-the-art method to solve the problem. Then in Section 2.2.3, we provide an example

where the state-of-the-art to calculate the time-optimal trajectory fails. From this example,

we derive the research questions for this chapter on trajectory generation.

2.2.2. Problem Definition and State-of-the-Art Approach

In this section, we formally introduce the time-optimal trajectory planning problem for

point-masses under acceleration and velocity constraints (TOT-PMAV) and then describe

the state-of-the-art approach to solve it.

2.2.2.1. Problem Definiton of the TOT-PMAV

In the literature, many related versions of the TOT-PMAV are defined (e.g. see [66, 56,

29, 64]). For this work, we define the TOT-PMAV as follows. Given are the start and

end position and velocity vectors 𝒑𝒔,𝒑𝒆, 𝒗𝒔, 𝒗𝒆 ∈ R𝑛
of a point-mass in the 𝑛-dimensional

cartesian space. Expressions related to a single specific axis are described by 𝑝𝑠, 𝑝𝑒, 𝑣𝑠, 𝑣𝑒 ∈
R. Without loss of generality, the axis indices are left out for simplicity. Further, a

maximum allowed velocity and acceleration in any direction 𝑣𝑚𝑎𝑥 , 𝑎𝑚𝑎𝑥 ∈ R+ is given. The
TOT-PMAV is to find a bounded acceleration function 𝒂(𝑡) ∈ R𝑛, | |𝒂(𝑡) | | < 𝑎𝑚𝑎𝑥 , 𝑡 ∈ [0,𝑇 ∗]
such that the initial state [𝒑𝒔, 𝒗𝒔]⊤ is transfered into the final state [𝒑𝒆, 𝒗𝒆]⊤ and the total

17

2. Time-Optimal Trajectory Generation for Point-Masses

trajectory duration 𝑇 ∗ ∈ R+ is minimized. Further, the resulting overall velocity function

𝒗 (𝑡) ∈ R𝑛
has to respect the bound | |𝒗 (𝑡) | | < 𝑣𝑚𝑎𝑥 for all 𝑡 ∈ [0,𝑇 ∗].

2.2.2.2. State-of-the-Art Solution Approach for the TOT-PMAV

In this section, we focus on the state-of-the-art (SOTA) approach to solve the time-optimal

trajectory planning problem for point-masses under acceleration and velocity constraints

(TOT-PMAV) as briefly introduced in Section 2.2.1 under the headline ‘time-optimal trajec-

tory generation’. The subsequently described approach is widely applied in the literature

(see [66, 56, 30, 29, 64]).

The SOTA to determine a solution for the TOT-PMAV is based on the decoupling of axes.

This means that in the first step, all spatial coordinate axes 𝑖 ∈ {1, ..., 𝑛} of the trajectory in
the 𝑛-dimensional space are separated and the maximum allowed velocity and acceleration

for the 𝑖-th axis are set to

−𝑣𝑚𝑎𝑥 ≤ 𝑣𝑖 (𝑡) ≤ 𝑣𝑚𝑎𝑥 (2.1)

−𝑎𝑚𝑎𝑥 ≤ 𝑎𝑖 (𝑡) ≤ 𝑎𝑚𝑎𝑥 (2.2)

with 𝑣𝑚𝑎𝑥 ≔ 𝑣𝑚𝑎𝑥/
√
𝑛 and 𝑎𝑚𝑎𝑥 ≔ 𝑎𝑚𝑎𝑥/

√
𝑛. Pontryagin’s minimum principle [63] is

applied for each axis yielding a bang-zero-bang control input pattern. Such a pattern

defines that the acceleration is either at its limits or zero if the velocity limit is reached and

no further acceleration would be allowed. For the 𝑖-th axis with bounded acceleration as

control input and a maximum allowed velocity, the resulting bang-zero-bang acceleration

pattern (𝑎1, 𝑎2, 𝑎3), which defines the acceleration profile

𝑎𝑖 (𝑡) =


𝑎1, 0 ≤ 𝑡 < 𝑡1,𝑖

𝑎2, 𝑡1,𝑖 ≤ 𝑡 < 𝑡1,𝑖 + 𝑡2,𝑖
𝑎3, 𝑡1,𝑖 + 𝑡2,𝑖 ≤ 𝑡 ≤ 𝑡1,𝑖 + 𝑡2,𝑖 + 𝑡3,𝑖,

(2.3)

is given by (+𝑎, 0,−𝑎) with either 𝑎 = −𝑎𝑚𝑎𝑥 or 𝑎 = +𝑎𝑚𝑎𝑥 . Here, 𝑎𝑚𝑎𝑥 represents the

maximum allowed acceleration. The duration of each time segment of constant acceleration

is described by 𝑡1,𝑖, 𝑡2,𝑖 and 𝑡3,𝑖 . In case the velocity limit is not reached for the 𝑖-th axis,

𝑡2,𝑖 = 0 holds. Consequently, the time-optimal trajectory consists of two segments of

constant maximum acceleration with opposite signs and, if the velocity limit is reached,

an additional segment of no acceleration. The time-optimal trajectory duration for the 𝑖-th

axis 𝑇𝑜𝑝𝑡,𝑖 can be calculated analytically (e.g. see Section 2.3 or our work [25]). Next, the

SOTA postulates that the overall duration𝑇SOTA is defined as the largest of the time-optimal

durations 𝑇𝑜𝑝𝑡,𝑖 over all axes 𝑖 ∈ {1, ..., 𝑛}, i.e.

𝑇SOTA = max

𝑖∈{1,...,𝑛}
{𝑇𝑜𝑝𝑡,𝑖}. (2.4)

Hence, the one-dimensional trajectories of all axes have to be stretched in time to last

exactly as long as the slowest trajectory. This is further referred to as all axes are syn-

18

2.2. State-of-the-Art and Research Gap

chronized with 𝑇SOTA. The interesting question here is how this synchronization can

be realized. To the best of our knowledge, no concrete algorithm can be found in the

literature. In the following Section 2.2.3, we mathematically explain why this is the case by

showing that Equation (2.4) itself is no generally valid approach to determine the correct

synchronization time.

2.2.3. Research Gap and Contributions

The main research gap identified in this chapter comes from the observation, that the

SOTA approach presented in the previous Section 2.2.2.2 (see [66, 56, 30, 29, 64]) is not

valid in general. As we will demonstrate in the following, the SOTA approach can yield

trajectory durations 𝑇SOTA that sometimes cannot be applied to synchronize all coordinate

axes. Starting the trajectory from a given start position and velocity vector, using𝑇SOTA for

axis-synchronization might lead to large deviations between the desired and actual final

state. We identified in our research (see [26]) that the reason is that the SOTA approach

does not consider the inertia of the movement properly. Therefore, it sometimes results in

overshooting the desired final state. To the best of our knowledge, this effect has first been

reported in the literature in our work [26]. In the following, we show an example where

the SOTA yields an invalid result and which has been published in our work [26].

Figure 2.1 illustrates the trajectory generation in two dimensions 𝑥 and 𝑦 based on the

SOTA. For the 𝑥 axis the initial state is 𝑝𝑥,𝑠 = 0m, 𝑣𝑥,𝑠 = 0
m

s
, where 𝑝𝑥,𝑠 describes the initial

position and 𝑣𝑥,𝑠 the initial velocity. The resulting velocity vectors given in Figure 2.1 are

normalized to one second. The desired end state for the 𝑥 axis is 𝑝𝑥,𝑒 = 5m, 𝑣𝑥,𝑒 = 2
m

s
. The

range of allowed per-axis velocity values is 𝑣 ∈ [−2, 2] (m
s
) and per-axis acceleration values

is 𝑎 ∈ [−0.5, 0.5] (m
s
2
). Based on these kinematic per-axis restrictions the time-optimal

duration along each axis can be calculated e.g. as we described in our work [25] and is

𝑇𝑜𝑝𝑡,𝑥 = 4.5 s for the 𝑥 axis. For the 𝑦 axis the initial and end state is 𝑝𝑦,𝑠 = 0m, 𝑣𝑦,𝑠 = 2
m

s
,

𝑝𝑦,𝑒 = 5m, 𝑣𝑦,𝑒 = 2
m

s
. Here, the calculation of the time-optimal duration yields𝑇𝑜𝑝𝑡,𝑦 = 2.5 s

which corresponds to maintaining the maximum velocity of 2m/s for the entire motion.

According to Equation (2.4), both axes must be synchronized at 𝑇𝑠𝑦𝑛𝑐 = 4.5 s. Remember,

the term ‘synchronization’ means that for both axes an acceleration pattern must be found

that meets the requirements of each axis and lasts for the specified synchronization time.

We use the MPC which we provide in Appendix B.2 to validate axis synchronization

due to its ability to conduct trajectory generation for point-masses with a fixed duration.

This MPC is also based on a full decoupling of the coordinate axes and with the per-axis

velocity constrained by 𝑣 ∈ [−2, 2] (m
s
) and per-axis acceleration constrained by 𝑎 ∈

[−0.5, 0.5] (m
s
2
). For the above example, it can be seen that the resulting two-dimensional

trajectory with the fixed synchronization time𝑇sync = 4.5 s yielded by our MPC misses the

required final state by far (see blue dots in Figure 2.1).

This behavior is due to the inertia of the system. The high initial velocity along the 𝑦 axis

in combination with an insufficient acceleration power and the fixed duration to reach

the final state leads to overshooting the specified final waypoint. As a result, although

19

2. Time-Optimal Trajectory Generation for Point-Masses

0 2 4 6

0

2

4

6

𝑥 in m

𝑦
i
n
m

Trajectory

Locations

0 2 4 6

0

2

4

6

−→𝑣 𝑠

−→𝑣 𝑒

Figure 2.1.: Example for insynchronizability of a given initial and end state.

0 2 4 6 8 10 12

−2

0

2] []
= 𝑝𝑦,𝑒 − 𝑝𝑦,𝑠

𝑡 in s

𝑣
𝑦
(𝑡
)i
n
m
/
s

2.5 s 3.1 s 12.9 s

Figure 2.2.: Range of valid trajectory durations and their connection to corresponding velocity profiles

shown in green. The velocity profiles that lead to the limits of the corresponding range are given by colored

lines. The associated areas underneath these profiles are highlighted in the respective colors.

the 𝑦 axis has a potentially faster execution, it cannot be synchronized with the slower

time-optimal duration of the 𝑥 axis.

Remember that our objective is to find the lowest𝑇sync that can be used to feasibly synchro-

nize all axes. For this reason, we now present more detailed insights into the domain of

feasible𝑇sync for the 𝑦 axis in the above scenario. Figure 2.2 shows feasible velocity profiles

for different synchronization times 𝑇sync for the 𝑦 axis at which the desired final state is to

be entered. The property of a feasible trajectory is that the desired start and end velocity

must be met exactly, and the integral under the velocity profile must equal 𝑝𝑦,𝑒 − 𝑝𝑦,𝑠 . The
velocity profile 𝑣𝑦 (𝑡) of the time-optimal trajectory is shown by a solid black line. Since

its initial velocity already equals the maximum allowed value, it remains constant and

𝑇𝑦 = 𝑇𝑜𝑝𝑡,𝑦 = 2.5 s results. If the trajectory duration must be increased due to waiting for a

slower axis, i.e. 𝑇𝑦 > 2.5 s, the UAV first decelerates the motion and accelerates afterward

to meet the required final velocity 𝑣𝑦,𝑒 = 2
m

s
. However, this procedure works only as long

as the integral under the velocity profile equals 𝑝𝑦,𝑒 − 𝑝𝑦,𝑠 . The longest velocity profile that

does not violate this condition corresponds to𝑇𝑦 ≈ 3.1 s (see blue line in Figure 2.2). Further

increasing the required trajectory duration leads to overshooting until 𝑇𝑦 ≥ 12.9 s (see red

line in Figure 2.2). From this duration on it is possible to compensate for overshooting

by flying a loop. In total, the range of feasible trajectory durations with respect to the

20

2.2. State-of-the-Art and Research Gap

requirements on the 𝑦 axis is given in green. As can be seen, a synchronization with

𝑇sync = 𝑇𝑜𝑝𝑡,𝑥 = 4.5 s is not possible. In general, such an analysis must be done for all

axes and the lowest feasible trajectory duration that is valid for all axes represents the

time-optimum trajectory duration for the entire motion. However, such an analysis is

entirely left out by the approaches from the SOTA, which implicitly assume that each axis

can always be arbitrarily slowed down.

Research Questions:
With the research gap presented above, there are two major research questions:

1. What is the mathematical reason that sometimes not all axes can be synchronized

with 𝑇SOTA?

2. How to determine the time-optimal trajectory duration in a general valid way?

And a couple of complementary research questions:

1. How often does the SOTA approach fail to calculate a feasible trajectory duration?

2. What are the consequences for the trajectory generation process if the SOTA calcu-

lates the wrong trajectory duration?

3. How computationally competitive would a generally valid approach be compared to

the SOTA approach?

4. According to Equations (2.1) and (2.2), the maximum allowed velocity is distributed

equally among the axis. How to consider uneven distributions that enable faster

motion in one specific direction?

Contributions:
By answering these research questions, we make the following contributions in this

chapter:

• We mathematically show the reason why the SOTA approach is error-prone for

solving the TOT-PMAV.

• We develop our new TOP-UAV trajectory planner to solve the TOT-PMAV and math-

ematically prove its general validity and optimality.

• We demonstrate by simulation in which situations the SOTA approach is likely to

fail and evaluate the resulting consequence.

• Since the SOTA approach as well as our TOP-UAV approach both suffer from not

exploiting the full kinematics due to considering the coordinate axes as decoupled,

we further develop our improved TOP-UAV++ trajectory planner that better exploits

the given kinematic properties. We show that TOP-UAV++ yields on average up to

14% faster trajectories than TOP-UAV.

• We provide the source code for our TOP-UAV and TOP-UAV++ trajectory planner

as open source on GitHub in C++ (see [67]) and Python (see [68]).

21

2. Time-Optimal Trajectory Generation for Point-Masses

The remainder of this section is structured as follows:

First, we start by presenting an analytical approach for solving the one-dimensional

TOT-PMAV in Section 2.3 since it is the basis of our TOP-UAV and TOP-UAV++ trajectory

planners. The approach presented here is an improved version of what we presented

in [25] yielding a significant computational performance improvement. With this as a

basis, we start to consider multiple dimensions in our approach to solve the TOT-PMAV in

Section 2.4. For this, we investigate the synchronization feasibility of specific control input

patterns which are explained in detail in Sections 2.4.1 - 2.4.1.2 and represent bang-zero-

bang patterns. Within this investigation, we answer the first major research question in

Section 2.4.1.1 by showing that the SOTA neglects domain gaps, which occur for the applied

acceleration patterns. Next, we present our TOP-UAV approach to solve the TOT-PMAV,

mathematically prove its correctness, and present a solution algorithm that exploits our

mathematical findings in Section 2.4.2 and 2.4.3. With this, we answer the second major

research question. The fourth complementary research question is answered by our

development of our TOP-UAV++ trajectory planner in Section 2.4.4 and the remaining

complementary research questions are addressed in our computational study presented in

Section 2.5.

2.3. Time-Optimal Trajectory Generation in One
Dimension

In this Section, we describe the time-optimal trajectory generation with bounded velocity

and acceleration in a single dimensionwith acceleration as the control input. Our derivation

is based on Pontryagin’s minimum principle which states that time-optimality is achieved

by having the system always operate at its physical limits yielding a bang-zero-bang

behaviour.

The subsequently presented approach is an improved and not yet published approach

of what is presented in [25] with fewer mathematical operations needed. With this

approach, calculating the time-optimal duration of a one-dimensional TOT-PMAV requires

on average only 24ns compared to 85ns of the approach described in [25]. Both average

computation times are obtained from our C++17 implementations executed on an Intel

Core i7-8565U CPU.

With bounded acceleration as control input and a maximum allowed velocity, the resulting

bang-zero-bang acceleration pattern (𝑎1, 𝑎2, 𝑎3), which defines the acceleration profile

𝑎(𝑡) =


𝑎1, 0 ≤ 𝑡 < 𝑡1

𝑎2, 𝑡1 ≤ 𝑡 < 𝑡1 + 𝑡2
𝑎3, 𝑡1 + 𝑡2 ≤ 𝑡 ≤ 𝑡1 + 𝑡2 + 𝑡3 = 𝑡𝑒,

(2.5)

is given by (+𝑎, 0,−𝑎) with either 𝑎 = −𝑎𝑚𝑎𝑥 or 𝑎 = +𝑎𝑚𝑎𝑥 and 𝑎𝑚𝑎𝑥 representing the

maximum allowed acceleration (see Figure 2.3). The durations of each time segment of

22

2.3. Time-Optimal Trajectory Generation in One Dimension

0 𝑡1 𝑡1 + 𝑡2 𝑡1 + 𝑡2 + 𝑡3

+𝑎𝑚𝑎𝑥

0

−𝑎𝑚𝑎𝑥

Time
𝑎
(𝑡
)

(+𝑎𝑚𝑎𝑥 , 0, −𝑎𝑚𝑎𝑥) (−𝑎𝑚𝑎𝑥 , 0, +𝑎𝑚𝑎𝑥)

Figure 2.3.: Example acceleration patterns for bang-zero-bang behaviour in one dimension.

constant acceleration are described by 𝑡1, 𝑡2, 𝑡3 ∈ R+
0
. In case the velocity limit is not

reached 𝑡2 = 0 holds. Consequently, the time-optimal trajectory consists of two segments

of constant maximum acceleration with opposite signs and, if the velocity limit is reached,

one segment of no acceleration. The time-optimal trajectory duration𝑇𝑜𝑝𝑡 for a single axis

can be calculated as follows.

In the second segment of no acceleration, the constant velocity 𝑣𝑐 is determined as

𝑣𝑐 = 𝑣𝑠 + 𝑎𝑡1. (2.6)

For the end velocity holds

𝑣𝑒 = 𝑣𝑐 − 𝑎𝑡3. (2.7)

For the end position holds

𝑝𝑒 = 𝑝𝑠 + 𝑣𝑠𝑡1 +
1

2

𝑎𝑡2
1
+ 𝑣𝑐𝑡2 + 𝑣𝑐𝑡3 −

1

2

𝑎𝑡2
3
. (2.8)

Note that for equations (2.6) - (2.8) the parameter 𝑎 ∈ {+𝑎𝑚𝑎𝑥 ,−𝑎𝑚𝑎𝑥 } represents the
acceleration value of the first segment in the selected acceleration pattern.

Last, depending on the start and end state of the one-dimensional trajectory, we distinguish

between four cases from which a fourth equation is derived that needs to hold. These

cases are listed in the following:

Case 1: 𝑣𝑐 = 𝑣𝑚𝑎𝑥 , in case 𝑣𝑚𝑎𝑥 is reached using pattern (+𝑎𝑚𝑎𝑥 , 0,−𝑎𝑚𝑎𝑥) (2.9a)

Case 2: 𝑡2 = 0, in case the 𝑣𝑚𝑎𝑥 is not reached using pattern (+𝑎𝑚𝑎𝑥 , 0,−𝑎𝑚𝑎𝑥) (2.9b)

Case 3: 𝑣𝑐 = −𝑣𝑚𝑎𝑥 , in case −𝑣𝑚𝑎𝑥 is reached using pattern (−𝑎𝑚𝑎𝑥 , 0, +𝑎𝑚𝑎𝑥) (2.9c)

Case 4: 𝑡2 = 0, in case −𝑣𝑚𝑎𝑥 is not reached using pattern (−𝑎𝑚𝑎𝑥 , 0, +𝑎𝑚𝑎𝑥) (2.9d)

Equations (2.6)-(2.8) and the additional equation of the associated case from Equations (2.9)

form a system of equations that can be solved analytically. We determine the solutions for

each case using Maple 2021 as a symbolic solver and present them in the following:

23

2. Time-Optimal Trajectory Generation for Point-Masses

Solution for case 1:

• Applied pattern: (+𝑎𝑚𝑎𝑥 , 0,−𝑎𝑚𝑎𝑥)

• Additional equation: 𝑣𝑐 = 𝑣𝑚𝑎𝑥

• Solution:

𝑡1 =
𝑣𝑚𝑎𝑥 − 𝑣𝑠
𝑎𝑚𝑎𝑥

(2.10a)

𝑡2 =
(𝑝𝑒 − 𝑝𝑠) · 𝑎𝑚𝑎𝑥 + 1

2
(𝑣2𝑒 + 𝑣2𝑠) − 𝑣2𝑚𝑎𝑥

𝑎𝑚𝑎𝑥 · 𝑣𝑚𝑎𝑥

(2.10b)

𝑡3 =
𝑣𝑚𝑎𝑥 − 𝑣𝑒
𝑎𝑚𝑎𝑥

(2.10c)

𝑣𝑐 = +𝑣𝑚𝑎𝑥 (2.10d)

Solution for case 2:

• Applied pattern: (+𝑎𝑚𝑎𝑥 , 0,−𝑎𝑚𝑎𝑥)

• Additional equation: 𝑡2 = 0

• Solution:

𝑡1 =

+− 1

2

√
𝐵+ − 𝑣𝑠

𝑎𝑚𝑎𝑥

(2.11a)

𝑡2 = 0 (2.11b)

𝑡3 =

+− 1

2

√
𝐵+ − 𝑣𝑒

𝑎𝑚𝑎𝑥

(2.11c)

𝑣𝑐 =
+− 1

2

√
𝐵+ (2.11d)

with 𝐵+ := 4(𝑝𝑒 − 𝑝𝑠)𝑎𝑚𝑎𝑥 + 2(𝑣2𝑒 + 𝑣2𝑠). As is typical for systems of equations with

linear and quadratic parts, there are two solutions. The first solution is given by

using the + sign, the second solution is represented by the − sign.

Solution for case 3:

• Applied pattern: (−𝑎𝑚𝑎𝑥 , 0, +𝑎𝑚𝑎𝑥)

• Additional equation: 𝑣𝑐 = −𝑣𝑚𝑎𝑥

24

2.3. Time-Optimal Trajectory Generation in One Dimension

• Solution:

𝑡1 =
𝑣𝑚𝑎𝑥 + 𝑣𝑠
𝑎𝑚𝑎𝑥

(2.12a)

𝑡2 =
(𝑝𝑠 − 𝑝𝑒) · 𝑎𝑚𝑎𝑥 + 1

2
(𝑣2𝑒 + 𝑣2𝑠) − 𝑣2𝑚𝑎𝑥

𝑎𝑚𝑎𝑥 · 𝑣𝑚𝑎𝑥

(2.12b)

𝑡3 =
𝑣𝑚𝑎𝑥 + 𝑣𝑒
𝑎𝑚𝑎𝑥

(2.12c)

𝑣𝑐 = −𝑣𝑚𝑎𝑥 (2.12d)

Solution for case 4:

• Applied pattern: (−𝑎𝑚𝑎𝑥 , 0, +𝑎𝑚𝑎𝑥)

• Additional equation: 𝑡2 = 0

• Solution:

𝑡1 =

+− 1

2

√
𝐵− + 𝑣𝑠

𝑎𝑚𝑎𝑥

(2.13a)

𝑡2 = 0 (2.13b)

𝑡3 =

+− 1

2

√
𝐵− + 𝑣𝑒

𝑎𝑚𝑎𝑥

(2.13c)

𝑣𝑐 =
+− 1

2

√
𝐵− (2.13d)

with 𝐵− := 4(𝑝𝑠 − 𝑝𝑒)𝑎𝑚𝑎𝑥 + 2(𝑣2𝑒 + 𝑣2𝑠). Again, there are two solutions. The first

solution is given by using the + sign, the second solution is represented by the −
sign.

It is not possible to say in advance which of the cases corresponds to the optimum solution

for a given problem instance. Hence, all solutions must be evaluated as follows: Overall,

there are six different candidates for the time-optimal solution. These six candidates are

derived for each of the above cases while cases 2 and 4 yield two candidates due to their

quadratic nature. The set of candidates is further reduced since each candidate has to fulfill

the constraints 𝑡1, 𝑡2, 𝑡3 ≥ 0 and −𝑣𝑚𝑎𝑥 ≤ 𝑣𝑐 ≤ 𝑣𝑚𝑎𝑥 to be a feasible one. Note that since the

patterns are complementary, there is always at least one feasible candidate. The feasible

candidate with the lowest sum 𝑇𝑜𝑝𝑡 = 𝑡1 + 𝑡2 + 𝑡3 represents the time-optimal solution for a

single axis with the total duration 𝑇𝑜𝑝𝑡 .

25

2. Time-Optimal Trajectory Generation for Point-Masses

2.4. Time-Optimal Trajectory Generation in Multiple
Dimensions

As introduced in Section 2.2.3 the SOTA procedure sometimes yields infeasible time-

optimal trajectory durations as solutions. In the following, we show our general approach

to determining time-optimal trajectories for multiple axes. First, we present acceleration

patterns needed for our approach and discuss how to check whether these patterns can be

synchronized with a particular trajectory duration 𝑇sync. Second, we describe a general

procedure to obtain the time-optimal duration.

2.4.1. Required Control Input Patterns

The content of this section is extracted from our work [26]. Here, we derive all required

acceleration patterns and focus on the feasibility of synchronizing them for a single axis

with a particular𝑇sync. To check feasibility of these patterns, we first define the considered

acceleration patterns. On the one hand, we consider the acceleration patterns for time-

optimality in a single axis given by (+𝑎, 0,−𝑎) with 𝑎 ∈ {−𝑎𝑚𝑎𝑥 , 𝑎𝑚𝑎𝑥 }. These patterns are
from now on called classical patterns. However, we further consider the patterns defined

by (+𝑎, 0, +𝑎) with 𝑎 ∈ {−𝑎𝑚𝑎𝑥 , 𝑎𝑚𝑎𝑥 }, which we denote as synchronization patterns. They

are needed because classical patterns aim at finding the time-optimal behavior, however,

they are not sufficient for synchronization with large values for 𝑇sync in some cases. We

give the following example for illustration (see Figure 2.4): It is assumed that an axis with

𝑝𝑠 = 0m, 𝑝𝑒 = 1.75m and 𝑣𝑠 = 0
m

s
, 𝑣𝑒 = 0.5 m

s
has to be synchronized with a large enough

duration 𝑇sync. Here, 𝑝𝑠 , 𝑝𝑒 , 𝑣𝑠 and 𝑣𝑒 describe the start and end position as well as the

respective velocities.

The pattern yielding time-optimality is given by (+𝑎𝑚𝑎𝑥 , 0,−𝑎𝑚𝑎𝑥), with the black line

giving the overall time-optimal velocity profile. However, this pattern is only applicable

as long as 𝑇sync ≤ 4 s. When 𝑇sync is increased, the segment of deceleration at the end of

the velocity profile shortens in time (blue line) until it becomes zero for synchronization

time 𝑇sync = 4 (red line). If it is required to synchronize the axis with 𝑇sync > 4 s using

the classical pattern (+𝑎𝑚𝑎𝑥 , 0,−𝑎𝑚𝑎𝑥), no solution can be found since it is not possible to

meet the desired final velocity and area underneath the velocity profile at the same time

without lowering the acceleration magnitude. In this case, the synchronization patterns

(+𝑎, 0, +𝑎), 𝑎 ∈ {−𝑎𝑚𝑎𝑥 , 𝑎𝑚𝑎𝑥 } with two phases of acceleration pointing towards the same

direction come into play (green line). With such a pattern it is possible to synchronize

the axis with 𝑇sync > 4 s while keeping the magnitude of the acceleration as specified. We

define these patterns as synchronization patterns because they are only needed for the

synchronization between different axes.

Synchronization Feasibility Check:
To guarantee synchronization feasibility of one axis with the trajectory time𝑇sync, one has

to find a pattern from the set of classical and synchronization patterns where 𝑡1, 𝑡2, 𝑡3 ≥ 0 s

and −𝑣𝑚𝑎𝑥 ≤ 𝑣 (𝑡) ≤ 𝑣𝑚𝑎𝑥 ,∀𝑡 ∈
[
0,𝑇sync

]
. We define these inequations as synchronization

26

2.4. Time-Optimal Trajectory Generation in Multiple Dimensions

0 2 4 6

0

0.5

1

𝑡 in s

𝑣
(𝑡
)i
n
m
/
s

3 s 3.1 s 4 s 7 s

Figure 2.4.: Example of velocity profiles for different acceleration patterns and trajectory durations.

conditions. Note that if the initial and end velocities 𝑣𝑠 and 𝑣𝑒 are within the velocity

bounds, it is sufficient to show that the constant velocity 𝑣𝑐 = 𝑣 (𝑡1) in the segment of no

acceleration is within the velocity bound to guarantee that −𝑣𝑚𝑎𝑥 ≤ 𝑣 (𝑡) ≤ 𝑣𝑚𝑎𝑥 . The

following subsections present how the values 𝑡1, 𝑡2, 𝑡3, 𝑣𝑐 are determined for classical and

synchronization patterns.

2.4.1.1. Analysis of Classical Patterns

The classical patterns are defined by the acceleration profile

𝑎(𝑡) =


+𝑎, 0 ≤ 𝑡 < 𝑡1

0, 𝑡1 ≤ 𝑡 < 𝑡1 + 𝑡2
−𝑎, 𝑡1 + 𝑡2 ≤ 𝑡 ≤ 𝑡1 + 𝑡2 + 𝑡3.

(2.14)

with 𝑎 ∈ {𝑎𝑚𝑎𝑥 ,−𝑎𝑚𝑎𝑥 }. Based on this acceleration profile, the velocity profile results as

𝑣 (𝑡) =


𝑣𝑠 + 𝑎𝑡, 0 ≤ 𝑡 < 𝑡1

𝑣𝑠 + 𝑎𝑡1, 𝑡1 ≤ 𝑡 < 𝑡1 + 𝑡2
𝑣𝑠 + 𝑎(2𝑡1 + 𝑡2) − 𝑎𝑡 𝑡1 + 𝑡2 ≤ 𝑡 ≤ 𝑡1 + 𝑡2 + 𝑡3.

(2.15)

In order to meet the required velocity 𝑣𝑒 at time 𝑡1 + 𝑡2 + 𝑡3 the following equation has to

hold:

𝑣𝑒 − 𝑣𝑠 =
∫ 𝑡1+𝑡2+𝑡3

0

𝑎(𝑡)d𝑡

= 𝑎𝑡1 − 𝑎𝑡3 (2.16)

To meet the required position 𝑝𝑒 at time 𝑡1 + 𝑡2 + 𝑡3 the equation

𝑝𝑒 − 𝑝𝑠 =
∫ 𝑡1+𝑡2+𝑡3

0

𝑣 (𝑡)d𝑡

= 𝑣𝑠𝑡1 +
1

2

𝑎𝑡2
1
+ (𝑣𝑠 + 𝑎𝑡1)𝑡2 + (𝑣𝑠 + 𝑎𝑡1)𝑡3 −

1

2

𝑎𝑡2
3

(2.17)

27

2. Time-Optimal Trajectory Generation for Point-Masses

0 2 4 6 8 10 12 14 16

−5
0

5

10

15

N𝑙 N𝑟𝑇sync in s

𝐴
(𝑇

s
y
n
c
)i
n
s 𝐴(𝑇sync)

Figure 2.5.: Graph of 𝐴 depending on 𝑇sync for 𝑎 = −0.5m/s
2, 𝑝𝑠 = 0m, 𝑣𝑠 = 2m/s, 𝑝𝑒 = 5m, 𝑣𝑒 = 2m/s

2
.

The area where 𝐴 ≥ 0 is colored in green. The gap between N𝑙 and N𝑟 is given in red.

has to hold as well. Additionally, the equation

𝑡1 + 𝑡2 + 𝑡3 = 𝑇sync (2.18)

has to hold to guarantee time synchronization. Further, since the velocity 𝑣𝑐 for 𝑡 ∈ [𝑡1, 𝑡2]
is constant, the equation

𝑣𝑐 = 𝑎𝑡1 + 𝑣𝑠 (2.19)

applies as well.

Equations (2.16), (2.17), (2.18) and (2.19) form a system of equations with variables 𝑡1, 𝑡2,

𝑡3, 𝑣𝑐 whose solution is given by

𝑡1 =
𝑎𝑇sync + 𝑣𝑒 − 𝑣𝑠 ±

√
𝐴

2𝑎
(2.20a)

𝑡2 = ∓
√
𝐴

𝑎
(2.20b)

𝑡3 =
𝑎𝑇sync − 𝑣𝑒 + 𝑣𝑠 ±

√
𝐴

2𝑎
(2.20c)

𝑣𝑐 =
𝑎𝑇sync + 𝑣𝑠 + 𝑣𝑒 +

√
𝐴

2

(2.20d)

with

𝐴(𝑇sync) = 𝑎2𝑇 2

sync
+ 2(𝑣𝑒 + 𝑣𝑠)𝑇sync − 4𝑎(𝑥𝑒 − 𝑥𝑠) − (𝑣𝑒 − 𝑣𝑠)2. (2.21)

Equations (2.20a), (2.20b), (2.20c) and (2.20d) only depend on the trajectory duration 𝑇sync.

Hence, it is sufficient to insert𝑇sync into these equations and verify that 𝑡1(𝑇sync), 𝑡2(𝑇sync),
𝑡3(𝑇sync) ≥ 0 and 𝑣𝑚𝑖𝑛 ≤ 𝑣𝑐 (𝑇sync) ≤ 𝑣𝑚𝑎𝑥 to show synchronization feasibility for the

respective classical pattern.

Cause of the missing synchronizability for the SOTA approach:
As described above, the SOTA makes use of only two different control input patterns

𝑝1 = (+𝑎𝑚𝑎𝑥 , 0,−𝑎𝑚𝑎𝑥) and 𝑝2 = (−𝑎𝑚𝑎𝑥 , 0, +𝑎𝑚𝑎𝑥) for a single axis to determine the optimal

solution to the TOT-PMAV and assumes that it is always possible to synchronize the 𝑖-

th axes with any potential trajectory synchronization time 𝑇sync ∈ R+ for which holds

𝑇sync ≥ 𝑇𝑜𝑝𝑡,𝑖 . However, this assumption does not generally apply.

28

2.4. Time-Optimal Trajectory Generation in Multiple Dimensions

According to our work [26], we derive that each of the two patterns comes with a feasible

domain D𝑝1,D𝑝2 that describes for a single axes which trajectory duration 𝑇sync can be

realized. For input pattern 𝑝1, i.e. for 𝑎 = 𝑎𝑚𝑎𝑥 , this is

D𝑝1 := {𝑇sync ∈ R+ | (2.22a)

𝐴(𝑇sync) ≥ 0, (2.22b)

𝑎𝑇sync + 𝑣𝑒 − 𝑣𝑠 −
√︁
𝐴(𝑇sync)

2𝑎
≥ 0, (2.22c)

+
√︁
𝐴(𝑇sync)

𝑎
≥ 0, (2.22d)

𝑎𝑇sync − 𝑣𝑒 + 𝑣𝑠 −
√︁
𝐴(𝑇sync)

2𝑎
≥ 0, (2.22e)

− 𝑣𝑚𝑎𝑥 ≤
𝑎𝑇sync + 𝑣𝑒 + 𝑣𝑠 −

√︁
𝐴(𝑇sync)

2

≤ 𝑣𝑚𝑎𝑥 } (2.22f)

and for input pattern 𝑝2, i.e. for 𝑎 = −𝑎𝑚𝑎𝑥 , the domain is

D𝑝2 := {𝑇sync ∈ R+ | (2.23a)

𝐴(𝑇sync) ≥ 0, (2.23b)

𝑎𝑇sync + 𝑣𝑒 − 𝑣𝑠 +
√︁
𝐴(𝑇sync)

2𝑎
≥ 0, (2.23c)

−
√︁
𝐴(𝑇sync)

𝑎
≥ 0, (2.23d)

𝑎𝑇sync − 𝑣𝑒 + 𝑣𝑠 +
√︁
𝐴(𝑇sync)

2𝑎
≥ 0, (2.23e)

− 𝑣𝑚𝑎𝑥 ≤
𝑎𝑇sync + 𝑣𝑒 + 𝑣𝑠 −

√︁
𝐴(𝑇sync)

2

≤ 𝑣𝑚𝑎𝑥 }. (2.23f)

with 𝐴(𝑇sync) as defined in Equation (2.21).

As can be seen, both domains D𝑝1 and D𝑝2 contain a quadratic constraint (2.22b) and

(2.23b) which ensures that the square root in the other constraints can be calculated and

which represents a parabola that opens upwards. Under certain conditions, the vertex of

the parabola is in the fourth quadrant of the cartesian plane which is why there might be

two zeros

N𝑙 ,N𝑟 =
−𝑣𝑒 − 𝑣𝑠 ±

√︁
2(𝑣2𝑒 + 𝑣2𝑠) + 4𝑎(𝑝𝑒 − 𝑝𝑠)

𝑎
(2.24)

with N𝑙 ,N𝑟 > 0 which might split the feasible domain into two disjunct continuous sets

with a domain gap in between as is the case in Figure 2.2. One part is left of the left zero

N𝑙 and the other part is on the right zero N𝑟 . The curve of 𝐴(𝑇sync) and its zeros for the

example illustrated in Figure 2.2 are given in Figure 2.5. For any 𝑇sync within the gap in

(N𝑙 ,N𝑟), the square root
√︁
𝐴(𝑇sync) in the definition of the domains cannot be determined

as a real number and hence, it is impossible to synchronize the axis with the corresponding

29

2. Time-Optimal Trajectory Generation for Point-Masses

pattern. Since the SOTA only relies on patterns 𝑝1 and 𝑝2 and does not account for these

domain gaps, it sometimes yields an invalid solution. Note that domain gaps do not depend

on 𝑣𝑚𝑎𝑥 and hence, also exist for unbounded maximum velocities.

2.4.1.2. Analysis of Synchronization Patterns

Synchronization feasibility for the synchronization patterns is checked analogously. The

only difference is in the applied acceleration pattern

𝑎(𝑡) =


+𝑎, 0 ≤ 𝑡 < 𝑡1

0, 𝑡1 ≤ 𝑡 < 𝑡1 + 𝑡2
+𝑎, 𝑡1 + 𝑡2 ≤ 𝑡 ≤ 𝑡1 + 𝑡2 + 𝑡3

(2.25)

with 𝑎 ∈ {𝑎𝑚𝑎𝑥 ,−𝑎𝑚𝑎𝑥 }, which results in the following velocity profile

𝑣 (𝑡) =


𝑣𝑠 + 𝑎𝑡, 0 ≤ 𝑡 < 𝑡1

𝑣𝑠 + 𝑎𝑡1, 𝑡1 ≤ 𝑡 < 𝑡1 + 𝑡2
𝑣𝑠 + 𝑎(𝑡 − 𝑡2) 𝑡1 + 𝑡2 ≤ 𝑡 ≤ 𝑡1 + 𝑡2 + 𝑡3.

(2.26)

Analogously, this leads to a system of four equations and four variables whose solution is

given by

𝑡1 =
(−2𝑣𝑠𝑇sync + 2(𝑝𝑒 − 𝑝𝑠))𝑎 − (𝑣𝑒 − 𝑣𝑠)2

2𝑎(𝑇sync𝑎 − 𝑣𝑒 + 𝑣𝑠)
(2.27a)

𝑡2 =
𝑎𝑇sync − 𝑣𝑒 + 𝑣𝑠

𝑎
(2.27b)

𝑡3 =
(−2𝑣𝑒𝑇sync − 2(𝑝𝑒 − 𝑝𝑠))𝑎 − (𝑣𝑒 − 𝑣𝑠)2

2𝑎(𝑇sync𝑎 − 𝑣𝑒 + 𝑣𝑠)
(2.27c)

𝑣𝑐 =
2𝑎(𝑝𝑒 − 𝑝𝑠) − 𝑣2𝑒 + 𝑣2𝑠
2(𝑎𝑇sync − 𝑣𝑒 + 𝑣𝑠)

. (2.27d)

Again, Equations (2.27a), (2.27b), (2.27c) and (2.27d) only depend on𝑇sync and the synchro-

nization feasibility can easily be checked via insertion.

Defining the control input patterns 𝑝3 = (+𝑎𝑚𝑎𝑥 , 0, +𝑎𝑚𝑎𝑥) and 𝑝4 = (−𝑎𝑚𝑎𝑥 , 0,−𝑎𝑚𝑎𝑥), we
can state the corresponding domains of feasible trajectory durations for both patterns

which can be derived from Equations (2.27a) - (2.27d) as

30

2.4. Time-Optimal Trajectory Generation in Multiple Dimensions

D𝑝3 := {𝑇sync ∈ R+ | (2.28a)

− 2𝑎(𝑣𝑠𝑇sync − 𝑝𝑒 + 𝑝𝑠) − (𝑣𝑒 − 𝑣𝑠)2 ⋚ 0, (2.28b)

𝑎𝑇sync − 𝑣𝑒 + 𝑣𝑠 ≤ 0, (2.28c)

− 2𝑎(−𝑣𝑒𝑇sync + 𝑝𝑒 − 𝑝𝑠) − (𝑣𝑒 − 𝑣𝑠)2 ⋚ 0, (2.28d)

2𝑎(𝑝𝑒 − 𝑝𝑠) − 𝑣2𝑒 + 𝑣2𝑠 ≥ −2𝑣𝑚𝑎𝑥 (𝑎𝑇sync − 𝑣𝑒 + 𝑣𝑠) (2.28e)

2𝑎(𝑝𝑒 − 𝑝𝑠) − 𝑣2𝑒 + 𝑣2𝑠 ≤ 2𝑣𝑚𝑎𝑥 (𝑎𝑇sync − 𝑣𝑒 + 𝑣𝑠)} (2.28f)

and

D𝑝4 := {𝑇sync ∈ R+ | (2.29a)

− 2𝑎(𝑣𝑠𝑇sync − 𝑝𝑒 + 𝑝𝑠) − (𝑣𝑒 − 𝑣𝑠)2 ⋚ 0, (2.29b)

𝑎𝑇sync − 𝑣𝑒 + 𝑣𝑠 ≤ 0, (2.29c)

− 2𝑎(−𝑣𝑒𝑇sync + 𝑝𝑒 − 𝑝𝑠) − (𝑣𝑒 − 𝑣𝑠)2 ⋚ 0, (2.29d)

2𝑎(𝑝𝑒 − 𝑝𝑠) − 𝑣2𝑒 + 𝑣2𝑠 ≤ −2𝑣𝑚𝑎𝑥 (𝑎𝑇sync − 𝑣𝑒 + 𝑣𝑠) (2.29e)

2𝑎(𝑝𝑒 − 𝑝𝑠) − 𝑣2𝑒 + 𝑣2𝑠 ≥ 2𝑣𝑚𝑎𝑥 (𝑎𝑇sync − 𝑣𝑒 + 𝑣𝑠)} (2.29f)

with 𝑎 = +𝑎𝑚𝑎𝑥 for D𝑝3 and 𝑎 = −𝑎𝑚𝑎𝑥 for D𝑝4 . The right direction of the Inequations

(2.28b), (2.28d), (2.29b), and (2.29d) depends on the values of 𝑝𝑠, 𝑝𝑒, 𝑣𝑠, 𝑣𝑒, 𝑎 and 𝑣𝑚𝑎𝑥 .

2.4.2. Structural Analysis of Optimal Solutions to the TOT-PMAV

The content of this section is entirely extracted from our work [26]. According to [26] the

TOP-UAV solution approach consists of four different control input patterns that can be

applied on a single axis. The set containing all these control input patterns is described

by

P = {(+𝑎𝑚𝑎𝑥 , 0,−𝑎𝑚𝑎𝑥), (−𝑎𝑚𝑎𝑥 , 0, +𝑎𝑚𝑎𝑥),
(+𝑎𝑚𝑎𝑥 , 0, +𝑎𝑚𝑎𝑥), (−𝑎𝑚𝑎𝑥 , 0,−𝑎𝑚𝑎𝑥)}

= {𝑝1, 𝑝2, 𝑝3, 𝑝4}.

with 𝑝1 and 𝑝2 describing the classical patterns to achieve time-optimality and 𝑝3 and 𝑝4
as synchronization patterns that are required in some cases when the duration of an axis

has to be increased significantly for axis-synchronization (see Section 2.4.1) and which

serve the same purpose as lowering the applied maximum acceleration.

The domains for a single axis for patterns 𝑝1 and 𝑝2 are described by D𝑝1 and D𝑝2 as

defined in Equations (2.22) and (2.23). The associated domains for pattern 𝑝3 and 𝑝4 are

given in Equations (2.28) and (2.29).

31

2. Time-Optimal Trajectory Generation for Point-Masses

To determine the overall time-optimal trajectory from an initial state to the final state in

multiple dimensions with the respective kinematic constraints, we have to consider a set

of possible pattern combinations Φ with

Φ = {𝝓 = (𝜙1, 𝜙2, ..., 𝜙𝑛) | 𝜙𝑖 ∈ P, 𝑖 = 1, ..., 𝑛}

and (𝜙1, 𝜙2, ..., 𝜙𝑛) describing an𝑛-tuple with the 𝑖-th entry representing the applied pattern
for the 𝑖-th axis of the trajectory.

For each 𝝓 ∈ Φ the resulting optimization problem is to find the lowest feasible synchro-

nization time for the associated pattern combination, which is

𝑇
𝝓
sync

=min𝑇sync (2.30a)

𝑠 .𝑡 . 𝑇sync ∈ D𝜙𝑖 ∀𝑖 = 1, ..., 𝑛 (2.30b)

Here, 𝜙𝑖 ∈ P denotes the pattern of the 𝑖-th axis of pattern combination 𝝓.

The overall time-optimal trajectory is obtained by solving

𝑇 ∗𝑜𝑝𝑡 = min

𝝓∈Φ
𝑇
𝝓
sync

(2.31)

with𝑇
𝝓
sync

= +∞ if no feasible solution can be found for the associated pattern combination

𝝓.

Lemma 1 If a pattern combination 𝝓 only consists of patterns 𝑝3 and 𝑝4, then the resulting
optimization problem described in (2.30a) - (2.30b) represents a linear program (LP).

Proof 1 Since the respective domains D𝑝3 and D𝑝4 only contain linear inequations and the
objective function is linear, the problem in (2.30a) - (2.30b) is an LP by definition.

Theorem 1 If a pattern combination 𝝓 consists of patterns 𝑝1, 𝑝2, 𝑝3, 𝑝4, then the resulting
optimization problem defined in (2.30a) - (2.30b) represents a mixed-integer linear program
(MILP).

Proof 2 To prove the theorem, we start by only investigating the 𝑖-the axis which applies
pattern 𝑝1 and assume that the remaining axes apply the patterns 𝑝3 or 𝑝4. All subsequent
mathematical conversions are conducted using Maple 2021. Assume, for the 𝑖-th axis applying
pattern 𝑝1 holds −2(𝑣2𝑒 + 𝑣2𝑠) − 4𝑎(𝑝𝑒 − 𝑝𝑠) ≥ 0 ⇒ 𝐴(𝑇sync) ≥ 0, ∀𝑇sync ∈ R. In this case,
Inequations (2.22b) and (2.22d) can be neglected since they are always fulfilled. Solving
Inequation (2.22c) for 𝑇sync yields

𝑇sync ⋚
𝑣2𝑠 − 2𝑣𝑒𝑣𝑠 + 2𝑎(𝑝𝑒 − 𝑝𝑠) + 𝑣2𝑒

2𝑎𝑣𝑠
,

32

2.4. Time-Optimal Trajectory Generation in Multiple Dimensions

while the correct direction of the inequation sign depends on the value of the parameters
𝑝𝑠, 𝑝𝑒, 𝑣𝑠, 𝑣𝑒 . Analogously, Inequation (2.22e) can be represented by

𝑇sync ⋚
𝑣2𝑠 − 2𝑣𝑒𝑣𝑠 + 2𝑎(𝑝𝑒 − 𝑝𝑠) + 𝑣2𝑒

2𝑎𝑣𝑒

and Inequations (2.22f) by

𝑇sync ⋚
𝑣2𝑠 + 2𝑣𝑚𝑎𝑥 (𝑣𝑒 − 𝑣𝑚𝑎𝑥) + 2𝑎(𝑝𝑒 − 𝑝𝑠) + 𝑣2𝑒

−2𝑎𝑣𝑚𝑎𝑥

𝑇sync ⋚
𝑣2𝑠 − 2𝑣𝑚𝑎𝑥 (𝑣𝑒 + 𝑣𝑚𝑎𝑥) + 2𝑎(𝑝𝑒 − 𝑝𝑠) + 𝑣2𝑒

2𝑎𝑣𝑚𝑎𝑥

.

Since D𝑝1 can be expressed by only linear inequations in this case and the inequations of
D𝑝3,D𝑝4 as well as the objective function are linear, the problem in (2.30a) - (2.30b) is an LP
which is a subclass of MILP.

If −2(𝑣2𝑒 + 𝑣2𝑠) − 4𝑎(𝑝𝑒 − 𝑝𝑠) ≥ 0 does not hold, Inequation (2.22b) cannot be neglected and
the optimization problem remains nonlinear. However, there are two zeros N𝑙 and N𝑟 for
Inequation (2.22b) as shown in Equation (2.24). Consequently, the domain of feasible 𝑇sync
gets split into two disjunctive parts 𝑇sync ≤ N𝑙 or 𝑇sync ≥ N𝑟 . Knowing this and according to
[69], the quadratic constraints (2.22b) can be expressed as a set of disjunctive constraints and
modeled by the following big-M formulation

𝑧𝑘 (𝑇sync) ≤ 𝑀𝑘 (1 − 𝑦𝑘) ∀𝑘 ∈ {𝑙, 𝑟 }∑︁
𝑘∈{𝑙,𝑟 }

𝑦𝑘 = 1

𝑦𝑘 ∈ {0, 1} ∀𝑘 ∈ {𝑙, 𝑟 }

with 𝑀𝑘 ∈ R+, 𝑘 ∈ {𝑙, 𝑟 } representing a sufficiently large number and 𝑧𝑘 (𝑇sync), 𝑘 ∈ {𝑙, 𝑟 }
referring to the equations

𝑧𝑙 (𝑇sync) = 𝑇sync − N𝑙

𝑧𝑟 (𝑇sync) = N𝑟 −𝑇sync.

Further, it holds for 𝑘 ∈ {𝑙, 𝑟 } that

𝑦𝑘 =

{
1, if constraint 𝑧𝑘 (𝑇sync) ≤ 0 is applied
0, otherwise.

With this reformulation, we can algebraically express that either the part left ofN𝑙 or right of
N𝑟 is used in the optimum solution, never both. Further, Inequation (2.22d) can be neglected
again since it is always fulfilled for all 𝑇sync ≤ N𝑙 and 𝑇sync ≥ N𝑟 , and Inequations (2.22c),
(2.22e), and (2.22e) can be reformulated into linear constraints as stated in the first case.
However, with this reformulation, we have introduced a new integer decision variable 𝑦𝑘 ,
indicating if 𝑇sync ≤ N𝑙 or 𝑇sync ≥ N𝑟 holds for the affected axis. Hence, a MILP results.

33

2. Time-Optimal Trajectory Generation for Point-Masses

The derivation for applying pattern 𝑝2 on the 𝑖-th axis while the remaining axis apply
pattern 𝑝3 and 𝑝4 is analogous. In conclusion, each axis that applies pattern 𝑝1 or 𝑝2 adds
linear constraints to the problem (2.30a) - (2.30b) as well as integer constraints under special
circumstances and therefore, results in a MILP.

According to Theorem 1 the optimization problem (2.30a) - (2.30b) can be described as

MILP for any pattern combination 𝝓 ∈ Φ. MILPs are solved exactly by branch and bound

approaches where each leaf of the resulting branch and bound tree represents an LP.

For each LP, the optimal solution on the non-integer variable 𝑇sync can be found on the

boundary of the domain defined by the non-integer constraints. This is where at least one

of the inequations of domains D𝑝1, ...,D𝑝4 is fulfilled with equality.

2.4.3. General Algorithmic Framework TOP-UAV [26]

As described in the previous section the solution of the TOT-PMAV has to be on the

boundary of the domains D𝑝1, ...,D𝑝4 derived for each axis, which is where at least one

of the constraints of any domain and axis is fulfilled with equality. Hence, solving each

constraint of each domain and each axis for𝑇sync yields a list of potential solution candidates

that must contain the overall optimum solution 𝑇 ∗𝑜𝑝𝑡 described in the overall optimization

problem in Equation (2.31). From this list only those values 𝑇sync ≥ max𝑖∈{1,...,𝑛}{𝑇𝑜𝑝𝑡,𝑖}
are relevant. The reason for this is that the solution of the SOTA approach serves as

a physical lower bound of the trajectory duration since the synchronization of all axes

cannot be faster than a time-optimal solution of the slowest axis. All the remaining

candidates must then explicitly or implicitly be checked for feasibility. This means that

for each axis at least one pattern must be found that is feasible for the given candidate

𝑇sync. This is done by inserting the candidate into Equations (2.20a) - (2.20d) for the

classical patterns and Equations (2.27a) - (2.27d) for the synchronization patterns and

checking if the conditions 𝑡1(𝑇sync), 𝑡2(𝑇sync), 𝑡3(𝑇sync) ≥ 0 and 𝑣𝑚𝑖𝑛 ≤ 𝑣𝑐 (𝑇sync) ≤ 𝑣𝑚𝑎𝑥

hold. The lowest feasible candidate represents the overall optimum trajectory solution.

Since the 𝑡1(𝑇sync), 𝑡2(𝑇sync), 𝑡3(𝑇sync) are already determined during the feasibility check,

they are used to derive the full control input trajectory and hence the entire trajectory

representation.

We provide the source code for our TOP-UAV trajectory planner as open source on GitHub

in C++ (see [67]) and Python (see [68]) using 𝑣𝑒𝑟𝑠𝑖𝑜𝑛 = ”𝑏𝑎𝑠𝑖𝑐” as input argument when

instantiating a trajectory planner object.

2.4.4. Improved Algorithmic Framework TOP-UAV++ [27]

In many approaches (see [56, 64, 26, 30, 29]), the kinematic velocity and acceleration

constraints for 𝑛-dimensional time-optimal trajectory generation are fixed to a single value

for each axis according to Equations (2.1) and (2.2). The aggregation of the 𝑛 constraints

for the velocity and acceleration of each axis forms an 𝑛-dimensional cuboid for feasible

34

2.4. Time-Optimal Trajectory Generation in Multiple Dimensions

(a)Distribution of the maximum velocity

and acceleration norm for the SOTA ap-

proach and TOP-UAV.

(b)Distribution of the maximum velocity

and acceleration norm for TOP-UAV++.

Figure 2.6.: Configurations for distributing the maximum velocity and acceleration among each coordinate

axis for SOTA approach and TOP-UAV (see (a)) and for TOP-UAV++ (see (b)).

values of 𝒗 (𝑡) and 𝒂(𝑡) which lies strictly within an 𝑛-dimensional sphere that represents

the actual kinematic constraints | |𝒗 (𝑡) | | ≤ 𝑣𝑚𝑎𝑥 and | |𝒂(𝑡) | | ≤ 𝑎𝑚𝑎𝑥 (see Fig. 2.6a) and

which is defined by the problem definition of the TOT-PMAV in Section 2.2.2.1.

Algorithm 1: TOP-UAV++
trajectory planner

1 𝑇 ∗, C, 𝑎∗
1
(𝑡), ..., 𝑎∗𝑛 (𝑡) ← initialize()

2 forall 𝑐 ∈ C do
3 𝑇 𝑐

SOTA
← max𝑖∈{1,...,𝑛}{𝑇 𝑐

𝑜𝑝𝑡,𝑖} // see Section 2.3 for calculation of 𝑇 𝑐
𝑜𝑝𝑡,𝑖

4 if 𝑇 𝑐
SOTA < 𝑇 ∗ then

5 feasible, 𝝓 = checkFeasible(𝑇 𝑐
SOTA

, 𝑐)

6 if feasible then
7 𝑇 ∗ ← 𝑇 𝑐

SOTA

8 𝑎∗
1
(𝑡), ..., 𝑎∗𝑛 (𝑡) ← updateAccelerationProfile(𝑇 𝑐

SOTA
, 𝝓, 𝑐)

9 continue

10 S ← calculateCandidatesSorted(𝑇 𝑐
SOTA

,𝑇 ∗, 𝑐)
11 forall 𝑇 𝑐

𝑐𝑎𝑛𝑑
∈ S do

12 feasible, 𝝓 = checkFeasible(𝑇 𝑐
𝑐𝑎𝑛𝑑

, 𝑐)

13 if feasible then
14 𝑇 ∗ ← 𝑇 𝑐

𝑐𝑎𝑛𝑑

15 𝑎∗
1
(𝑡), ..., 𝑎∗𝑛 (𝑡) ← updateAccelerationProfile(𝑇 𝑐

𝑐𝑎𝑛𝑑
, 𝝓, 𝑐)

16 break

17 return: 𝑇 ∗, 𝑎∗
1
(𝑡), ..., 𝑎∗𝑛 (𝑡)

However, using a single cuboid representation of the kinematic constraints cuts off a sig-

nificant part of the feasible kinematics as indicated in [65, 66]. To improve the exploitation

of the full kinematic capabilities, we propose to consider a predefined set of different

35

2. Time-Optimal Trajectory Generation for Point-Masses

configurations of these cuboid-like constraints with each configuration complying with

the actual kinematic restrictions (see Fig. 2.6b).

Based in this idea, we improve the TOP-UAV solver first described in [26] to TOP-UAV++ as

described in Algorithm 1 and published in our paper [27]. In the algorithm, we initialize the

optimal trajectory duration 𝑇 ∗ = ∞ and the set of possible configurations C to distribute

the maximum velocity and acceleration norm among the axes as illustrated in Figure

2.6b. Further, we initialize optimal acceleration profiles for each axis. This initialization

procedure is given in line 1 in Algorithm 1. Next, we iterate over each configuration

𝑐 ∈ C and compute the time-optimal trajectory for each configuration (see lines 2 - 16).

According to the SOTA approach, this is done by calculating the time-optimal trajectory

duration of each specific axis 𝑇 𝑐
𝑜𝑝𝑡,𝑖 and determining the maximum value 𝑇 𝑐

SOTA
(line 3).

Thereafter, we check if 𝑇 𝑐
SOTA

< 𝑇 ∗ since 𝑇 𝑐
SOTA

serves as a lower bound for all solution

candidates of configuration 𝑐 (line 4). If this is not the case, we have already found a

better or equivalent solution for a previously investigated configuration than would be

possible with configuration 𝑐 and we move to the next configuration. Otherwise, we

check if and at what pattern combination 𝝓 all axes can be synchronized with 𝑇 𝑐
SOTA

by

using the method checkFeasible (line 5). This method checks if for all axes at least

one pattern exists for which 𝑡1, 𝑡2, 𝑡3 ≥ 0 and −𝑣𝑚𝑎𝑥,𝑖 ≤ 𝑣𝑐,𝑖 ≤ 𝑣𝑚𝑎𝑥,𝑖 holds ∀𝑖 , which is

analogous to our TOP-UAV approach described in Section 2.4.3. If this is true, we update

𝑇 ∗, 𝑎∗
1
(𝑡), ..., 𝑎∗𝑛 (𝑡) according to 𝑇 𝑐

SOTA
, 𝝓, 𝑐 and move to the next configuration (lines 6 - 9).

If not, we calculate all solution candidates that are greater than 𝑇 𝑐
SOTA

but less than 𝑇 ∗,
sort them in ascending order (line 10) and iteratively check for feasibility (lines 11 - 12).

We update 𝑇 ∗, 𝑎∗
1
(𝑡), ..., 𝑎∗𝑛 (𝑡) with the first feasible candidate 𝑇 𝑐

𝑐𝑎𝑛𝑑
and move to the next

configuration (lines 13 - 16). Finally, we return𝑇 ∗, 𝑎∗
1
(𝑡), ..., 𝑎∗𝑛 (𝑡) representing the optimum

solution including the minimum trajectory duration and the corresponding acceleration

profile for each axis (line 17).

Note that the difference between TOP-UAV (introduced in [26]) and TOP-UAV++ (introduced

in [27]) is, that the TOP-UAV only uses a single configuration of equally distributed maxi-

mum velocity and acceleration shares, while TOP-UAV++ uses in general multiple con-

figurations. Hence, the procedure described in lines 3 - 16 in Algorithm 1 describes the

pseudocode for TOP-UAV using the standard configuration.

We provide the source code for our TOP-UAV++ trajectory planner as open source on

GitHub in C++ (see [67]) and Python (see [68]) using 𝑣𝑒𝑟𝑠𝑖𝑜𝑛 = ”𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑑” as input

argument when instantiating a trajectory planner object.

2.5. Computational Study

In the following Sections, we focus on the complementary research questions described in

Section 2.2.3 by conducting an extensive computational study. We investigate in which

situations the SOTA approach is likely to yield an infeasible time-optimal trajectory

duration and show the consequences of the infeasibility when using the invalid duration

36

2.5. Computational Study

for axis synchronization. Further, we compare the computational performance of TOP-UAV

and TOP-UAV++ with the SOTA approach described in Section 2.2.2.2 in two and three

dimensions and show the impact of our TOP-UAV++ approach to improve the kinematic

exploitation.

2.5.1. Computational Study Setup

In the two-dimensional case and for the basic version of our trajectory generation, namely

TOP-UAV, the maximum allowed acceleration for each axis is limited according to the

SOTA to 𝑎𝑚𝑎𝑥,𝑖 = 𝑎𝑚𝑎𝑥/
√
2, which guarantees that the composed acceleration over all

axes does not exceed the total maximum acceleration 𝑎𝑚𝑎𝑥 . Analogously, we limit the

maximum velocity of each axis to 𝑣𝑚𝑎𝑥,𝑖 = 𝑣𝑚𝑎𝑥/
√
2. For the TOP-UAV++ version in two

dimensions, we use two additional kinematic configurations. These cover the improved

kinematic exploitation along a specific coordinate axis and use 𝑣𝑚𝑎𝑥,𝑖 = 𝑎𝑚𝑎𝑥

√
3/2 and

𝑎𝑚𝑎𝑥,𝑖 = 𝑎𝑚𝑎𝑥

√
3/2 for the specified axis while the maximum velocity and acceleration

of the other axis is restricted to 𝑣𝑚𝑎𝑥,𝑖 = 𝑣𝑚𝑎𝑥/2 and 𝑎𝑚𝑎𝑥,𝑖 = 𝑎𝑚𝑎𝑥/2. Note that each of

the configurations spans a rectangle that fits into the circle with a radius 𝑣𝑚𝑎𝑥 for the

maximum velocity and 𝑎𝑚𝑎𝑥 for the maximum acceleration restriction.

For the TOP-UAV trajectory planner in three dimensions, the maximum allowed accelera-

tion for each axis is limited according to the SOTA to 𝑎𝑚𝑎𝑥,𝑖 = 𝑎𝑚𝑎𝑥/
√
3. Further, we limit

the maximum velocity of each axis to 𝑣𝑚𝑎𝑥,𝑖 = 𝑣𝑚𝑎𝑥/
√
3. For the TOP-UAV++, we use three

additional kinematic configurations. Analogously, these cover improved kinematic ex-

ploitation along a specific coordinate axis and use 𝑣𝑚𝑎𝑥,𝑖 = 𝑣𝑚𝑎𝑥

√
3/2 and 𝑎𝑚𝑎𝑥,𝑖 = 𝑎𝑚𝑎𝑥

√
3/2

for the specified axis while the maximum velocity and acceleration of the remaining axis

are restricted to 𝑣𝑚𝑎𝑥,𝑖 = 𝑣𝑚𝑎𝑥/
√
8 and 𝑎𝑚𝑎𝑥,𝑖 = 𝑎𝑚𝑎𝑥/

√
8. Note that in the three-dimensional

case, each of the configurations spans a cubic that fits into the sphere with a radius 𝑣𝑚𝑎𝑥

for the maximum velocity and 𝑎𝑚𝑎𝑥 for the maximum acceleration restriction.

For both, the two- and three-dimensional versions of TOP-UAV++, any set of configurations

C to share the maximum velocity and acceleration norm among the coordinate axes

can be used in general. Provided the actual kinematic constraints | |𝒗 (𝑡) | | ≤ 𝑣𝑚𝑎𝑥 and

| |𝒂(𝑡) | | ≤ 𝑎𝑚𝑎𝑥 are fulfilled for each configuration 𝑐 ∈ C.

All our experiments were implemented in C++17 and ran on an Intel Core i7-8565U CPU

and 16 GB of RAM. For the remainder of this chapter, the term randomly sampled always

refers to a randomly sampled from a uniform distribution.

2.5.2. Occurance of Insynchronizabilities

In this section, we show in which situations the SOTA approach described in Section 2.2.2.2

is likely to yield infeasible trajectory durations when solving the TOT-PMAV. For this, we

utilized the TOP-UAV approach and the corresponding SOTA approach with maximum

velocity and acceleration equally shared among the axes. Further, we investigate four

37

2. Time-Optimal Trajectory Generation for Point-Masses

spatial settings of which two settings are related to two dimensions and another two

settings are related to three dimensions.

In the first setting, we use randomly sampled start and end positions in a (5m)2 spatial
square. In the second setting, the start and end positions are randomly sampled in (15m)2.
For both settings, start and end velocities of each axis are randomly sampled within the

interval [−𝑣𝑚𝑎𝑥/
√
2, +𝑣𝑚𝑎𝑥/

√
2]. In the third setting, we use randomly sampled start and

end positions in a (5m)3 spatial cubic. In the fourth setting, the start and end positions are

randomly sampled in a (15m)3 spatial cubic. For the last two settings, the start and end

velocities of each axis are randomly sampled within the interval [−𝑣𝑚𝑎𝑥/
√
3, +𝑣𝑚𝑎𝑥/

√
3].

The waypoints and associated velocities for all spatial settings are randomly sampled from

a uniform distribution.

We discretize the overall maximum allowed velocity 𝑣𝑚𝑎𝑥 between 0.1m/s and 5.0m/s

with 0.1m/s steps in-between as well as the maximum allowed acceleration 𝑎𝑚𝑎𝑥 between

0.1m/s
2
and 3.0m/s

2
with 0.1m/s

2
steps in-between and randomly generate 100,000 trajec-

tories for each combination of discretized maximum velocity and acceleration for each spa-

tial setting. Figures 2.7 and 2.8 show the percentage of howmany times the SOTA approach

yields lower axis-synchronization times𝑇SOTA than the TOP-UAV approach𝑇TOP-UAV. This

is the case if the SOTA yields an infeasible solution. In both three-dimensional settings,

it can be seen that especially for increasing maximum velocities the probability of in-

validities from the SOTA increases to up to 4%. The probability is even higher for both

two-dimensional settings where it reaches up to 7%. This observation can be illustrated

by Equation (2.21) since increasing start and end velocities move the vertex of 𝐴(𝑇sync)
downwards which immediately leads to a larger domain gap 𝑇sync ∈ (N𝑙 ,N𝑟) for which
𝐴(𝑇sync) < 0 holds. Further, decreasing the maximum acceleration also leads to an in-

creasing percentage of invalidities. According to Equation (2.21), increasing the maximum

acceleration comes with two opposing effects. On the one hand, it elongates the opening

of the parabola which leads to larger domain gaps. However, it also lifts the vertex up-

wards, which leads to smaller domain gaps. According to the observation of our study,

we assume that the first effect dominates in the majority of cases. However, we cannot

mathematically prove, that this holds for all cases. The latter might be the reason, why the

percentage of insynchronizable trajectory durations increases again for very lowmaximum

accelerations.

Having a detailed look at the results for the two-dimensional case presented in Figure

2.9 reveals even more information. Here, we focus on the 100,000 trajectories generated

with (𝑣𝑚𝑎𝑥 = 1m/s, 𝑎𝑚𝑎𝑥 = 1m/s
2), (𝑣𝑚𝑎𝑥 = 1m/s, 𝑎𝑚𝑎𝑥 = 3m/s

2), (𝑣𝑚𝑎𝑥 = 5m/s, 𝑎𝑚𝑎𝑥 =

1m/s
2), (𝑣𝑚𝑎𝑥 = 5m/s, 𝑎𝑚𝑎𝑥 = 3m/s

2) that we also used to create Figure 2.7a. The figures

show a heatmap plot of the optimum trajectory duration of the 𝑥 and 𝑦-axis of all insyn-

chronizable trajectories for the corresponding scenarios classified into bins of size 1 s. The

color indicates the percentage of all insynchronizable trajectories that are assigned to the

same bin. Viewed qualitatively, it can be seen that the SOTA approach yields infeasible

trajectory durations, particularly in scenarios with one fast axis and one slower one. This

observation is in line with the discovery that fast axes are likely to overshoot the required

final state due to high initial velocities and due to inertia (see Section 2.2.3). Moreover,

38

2.5. Computational Study

1 2 3 4 5
v̂max in m/s

1

2

3

â
m
a
x

in
m

/s
2

0

1

2

3

4

5

6

7

In
sy

n
ch

ro
n

iz
ab

ili
ti

es
in

%

(a) Start/end position in (5m)2.

1 2 3 4 5
v̂max in m/s

1

2

3

â
m
a
x

in
m

/s
2

0

1

2

3

4

5

6

7

In
sy

n
ch

ro
n

iz
ab

ili
ti

es
in

%

(b) Start/end position in (15m)2.

Figure 2.7.: Percentage of insynchronizable two-dimensional trajectories with the SOTA over 𝑣𝑚𝑎𝑥 and

𝑎𝑚𝑎𝑥 .

1 2 3 4 5
v̂max in m/s

1

2

3

â
m
a
x

in
m

/s
2

0

1

2

3

4

5

6

7
In

sy
n

ch
ro

n
iz

ab
ili

ti
es

in
%

(a) Start/end position in (5m)3.

1 2 3 4 5
v̂max in m/s

1

2

3

â
m
a
x

in
m

/s
2

0

1

2

3

4

5

6

7

In
sy

n
ch

ro
n

iz
ab

ili
ti

es
in

%

(b) Start/end position in (15m)3.

Figure 2.8.: Percentage of insynchronizable three-dimensional trajectories with the SOTA over 𝑣𝑚𝑎𝑥 and

𝑎𝑚𝑎𝑥 .

Figures 2.9c - 2.9b show that high velocities in combination with low acceleration power

yield the highest probability of insynchronizability.

2.5.3. Extent of Discrepancy between SOTA and TOP-UAV

In this section, we examine the extent of the use of invalid solutions of the SOTA approach

for axis-synchronization that arise for a subset of the experiments described in Section 2.5.2.

For this investigation, we utilize the four different kinematic samples ofmaximumvelocities

and accelerations {(𝑣𝑚𝑎𝑥 = 2m/s, 𝑎𝑚𝑎𝑥 = 2m/s
2), (𝑣𝑚𝑎𝑥 = 2m/s, 𝑎𝑚𝑎𝑥 = 1m/s

2), (𝑣𝑚𝑎𝑥 =

4m/s, 𝑎𝑚𝑎𝑥 = 2m/s
2), (𝑣𝑚𝑎𝑥 = 4m/s, 𝑎𝑚𝑎𝑥 = 1m/s

2)}with start and end positions randomly

sampled in a (5m)3 spatial cubic. These samples are also part of the investigation conducted

in Figure 2.8a. We show the empirical probability that the relative discrepancy between

the time-optimal trajectory duration yielded by the TOP-UAV approach and the SOTA

approach is higher than a certain value in Figure 2.10a. Moreover, we show the probability

that the error in the final position, final velocity magnitude and velocity direction is higher

than a certain absolute value (see Figures 2.10b - 2.10d).

39

2. Time-Optimal Trajectory Generation for Point-Masses

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Topt,x in s

14
13
12
11
10
9
8
7
6
5
4
3
2
1
0

T
op
t,
y

in
s

0

20

40

60

80

P
er

ce
nt

ag
e

of
in

sy
n

c.
in

%
(a)Heatmap of the percentage of insynchro-

nizable trajectories with 𝑣𝑚𝑎𝑥 = 1m/s and

𝑎𝑚𝑎𝑥 = 3m/s
2
. Total number of insynchro-

nizable trajectories: 26 out of 100, 000.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Topt,x in s

14
13
12
11
10
9
8
7
6
5
4
3
2
1
0

T
op
t,
y

in
s

0

5

10

15

20

P
er

ce
nt

ag
e

of
in

sy
n

c.
in

%

(b)Heatmap of the percentage of insynchro-

nizable trajectories with 𝑣𝑚𝑎𝑥 = 5m/s and

𝑎𝑚𝑎𝑥 = 3m/s
2
. Total number of insynchro-

nizable trajectories: 5, 363 out of 100, 000.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Topt,x in s

14
13
12
11
10
9
8
7
6
5
4
3
2
1
0

T
op
t,
y

in
s

0

5

10

15

20

25

30

P
er

ce
nt

ag
e

of
in

sy
n

c.
in

%

(c)Heatmap of the percentage of insynchro-

nizable trajectories with 𝑣𝑚𝑎𝑥 = 1m/s and

𝑎𝑚𝑎𝑥 = 1m/s
2
. Total number of insynchro-

nizable trajectories: 285 out of 100, 000.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Topt,x in s

14
13
12
11
10
9
8
7
6
5
4
3
2
1
0

T
op
t,
y

in
s

0

1

2

3

4

P
er

ce
nt

ag
e

of
in

sy
n

c.
in

%

(d)Heatmap of the percentage of insynchro-

nizable trajectories with 𝑣𝑚𝑎𝑥 = 5m/s and

𝑎𝑚𝑎𝑥 = 1m/s
2
. Total number of insynchro-

nizable trajectories: 6, 725 out of 100, 000.

Figure 2.9.: Occurances of insynchronizabilities in 2D for start positions in (5m)2. The time-optimal

trajectory for each axis is calculated as stated in Section 2.3.

To evaluate these errors, we utilize our model predictive controller (MPC) which we

provide in Appendix B.7 and which is similar to the MPC presented in [57]. Our MPC is

based on the decoupling of the coordinate axes which means that each axis of the trajectory

is treated separately. Instead of the jerk, we apply the acceleration as control input. As an

objective, we only consider the Mayer term, i.e. the objective function term that penalizes

deviation from the desired final state at the last time step, since we are only interested

in minimizing the deviation to the desired final state at the given synchronization time

𝑇sync. The mathematical constraint to meet the final state exactly is dropped since this

would lead to infeasible solutions for the MPC in cases where the SOTA approach fails

to calculate the correct time-optimal duration. To bound the applied acceleration and

the velocity, we apply Inequations (2.1), (2.2) as constraints. As sample time, we apply

40

2.5. Computational Study

0 50 100 150 200 250 300 350 400
Duration discrepancy δ in %

0.0

0.2

0.4

0.6

0.8

1.0

P
(d
≥
δ)

v̂max=2 m/s, âmax=2 m/s2

v̂max=2 m/s, âmax=1 m/s2

v̂max=4 m/s, âmax=2 m/s2

v̂max=4 m/s, âmax=1 m/s2

(a) Probability distribution of the discrepancy

between the trajectory duration yielded by our

TOP-UAV method and by the SOTA method.

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Position error ep in m

0.0

0.2

0.4

0.6

0.8

1.0

P
(∆
p
≥
e p

)

v̂max=2 m/s, âmax=2 m/s2

v̂max=2 m/s, âmax=1 m/s2

v̂max=4 m/s, âmax=2 m/s2

v̂max=4 m/s, âmax=1 m/s2

TOP-UAV

(b) Probability distribution of the distance 𝑒𝑝
between the desired 𝒑𝒆 and position 𝒑(𝑇SOTA)
achieved by MPC.

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Velocity error ev in m/s

0.0

0.2

0.4

0.6

0.8

1.0

P
(∆
v
≥
e v

)

v̂max=2 m/s, âmax=2 m/s2

v̂max=2 m/s, âmax=1 m/s2

v̂max=4 m/s, âmax=2 m/s2

v̂max=4 m/s, âmax=1 m/s2

TOP-UAV

(c)Probability distribution of the velocity differ-
ence 𝑒𝑣 between the desired 𝒗𝒆 and the velocity
𝒗 (𝑇SOTA) achieved by MPC.

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Velocity angle error eϕ in rad

0.0

0.2

0.4

0.6

0.8

1.0

P
(∆
ϕ
≥
e ϕ

)
v̂max=2 m/s, âmax=2 m/s2

v̂max=2 m/s, âmax=1 m/s2

v̂max=4 m/s, âmax=2 m/s2

v̂max=4 m/s, âmax=1 m/s2

TOP-UAV

(d) Probability distribution of the angle 𝑒𝜑 be-

tween the desired end velocity vector 𝒗𝒆 and
the velocity vector 𝒗 (𝑇SOTA) achieved by MPC.

Figure 2.10.: Error between desired end state and end state achieved by MPC with final time 𝑇SOTA for

trajectories where SOTA fails to find a feasible solution.

x in m

0 1 2 3
4 y in m−1 0 1 2 3

z
in

m

2

3

4

Start

End

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

V
el

oc
it

y
of

S
O

T
A

tr
a

je
ct

or
y

(m
/s

)

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

V
el

oc
it

y
of

T
O

P
-U

A
V

tr
a

je
ct

or
y

(m
/s

)

Figure 2.11.: Example setting for a time-optimal trajectory planning problem with 𝑣𝑚𝑎𝑥 = 4m/s and

𝑎𝑚𝑎𝑥 = 1m/s
2
. The SOTA solution (green profile) misses the desired final state by far. The solutions of our

approaches (TOP-UAV: thick red profile, TOP-UAV++: thin red profile) work correctly.

41

2. Time-Optimal Trajectory Generation for Point-Masses

0.05 s from which a finite horizon of 𝑁 = ⌊𝑇SOTA/0.05 s⌋ steps is derived. The resulting
three-dimensional trajectory corresponds to the composition of the trajectories along each

axis.

First, we specify the discrepancy between the trajectory duration 𝑇SOTA obtained from

the SOTA approach and 𝑇TOP-UAV yielded by TOP-UAV as 𝛿 = (𝑇TOP-UAV −𝑇SOTA)/𝑇SOTA.
To determine the position error, we evaluate 𝑒𝑝 = | |𝒑𝒆 − 𝒑(𝑇SOTA) | | with 𝒑𝒆 representing

the desired end position vector and 𝒑(𝑇SOTA) the achieved end position at time 𝑇SOTA
which is determined using our MPC. For the velocity error it holds 𝑒𝑣 = | |𝒗𝒆 − 𝒗 (𝑇SOTA) | |
and for the velocity angle error 𝑒𝜑 = arccos(𝒗⊤𝒆 𝒗 (𝑇SOTA)/(| |𝒗𝒆 | | · | |𝒗 (𝑇SOTA) | |)) with 𝒗𝒆
representing the desired end velocity vector and 𝒗 (𝑇SOTA) the yielded end velocity vector

at time 𝑇SOTA. Again, 𝑒𝑣 and 𝑒𝜑 are determined by utilizing our MPC. In Figure 2.10a, it

can be seen that there is a high probability that the discrepancy between 𝑇SOTA and the

optimal trajectory duration 𝑇TOP-UAV yielded by TOP-UAV is significant. For example, in

50% of all insynchronizable cases for 𝑣𝑚𝑎𝑥 = 4m/s and 𝑎𝑚𝑎𝑥 = 1m/s
2
the discrepancy is

higher than 51% and reaches up to 169% for 10% of these cases. Further, we see that in

these cases the error between the achieved and desired final state for all kinematic samples

is notable (see blue, orange, green and red graphs in Figures 2.10b - 2.10d). For comparison,

the errors encountered across all kinematic samples when tracking the TOP-UAV solutions

by the MPC are given in purple. It can be seen that only neglectable errors result due

to the time-discrete nature of MPC. An extreme example of the discrepancy between

TOP-UAV and the SOTA is given in Figure 2.11. Here the solution for the TOT-PMAV from

the start position 𝒑𝒔 = (0.1, 2.0, 4.3)⊤ (m) with start velocity 𝒗𝒔 = (0.1,−1.9,−0.4)⊤ (m/s)
to the end position 𝒑𝒆 = (3.6, 0.4, 2.6)⊤ (m) with end velocity 𝒗𝒆 = (0.1,−1.8, 0.6)⊤ (m/s)
has to be determined for 𝑣𝑚𝑎𝑥 = 4.0m/s and 𝑎𝑚𝑎𝑥 = 1.0m/s

2
. In this scenario, the SOTA

yields an optimal trajectory duration of 𝑇SOTA = 4.59 s for which the above-described

MPC only finds a solution with 𝑒𝑝 = 1.41m, 𝑒𝑣 = 1.42m/s and 𝑒𝜑 = 39.5◦ (see green

profile), whereas the TOP-UAV approach yielding 𝑇TOP-UAV = 11.89 s reaches the desired

final state exactly (see thick red profile). The same holds for our TOP-UAV++ approach,

which, however, yields 𝑇TOP-UAV++ = 7.57 s (see thin red profile). Further, Figures 2.10a

- 2.10d show again that the probability of high discrepancies increases with increasing

maximum velocity and decreases with increasing maximum acceleration.

2.5.4. Improved Exploitation of Kinematic Properties

In Figures 2.12 and 2.13, we evaluate the average trajectory duration reduction (𝑇TOP-UAV −
𝑇TOP-UAV++)/𝑇TOP-UAV of the TOP-UAV++ approach compared to TOP-UAV. Note that

TOP-UAV++ always yields solutions that are at least as good as TOP-UAV in case the

configuration to share the norms in TOP-UAV is also included in the set of possible con-

figurations for TOP-UAV++. In analogy to Section 2.5.2, the evaluation is based on the

generation of 100,000 trajectories for each combination of discretized maximum velocity

and acceleration with start and end position randomly sampled in a (5m)2 and (15m)2
spatial square and a (5m)3 and (15m)3 spatial cubic. Depending on the maximum allowed

velocities and accelerations, the average reduction ranges from 4% up to 14%. The highest

42

2.5. Computational Study

1 2 3 4 5
v̂max in m/s

1

2

3

â
m
a
x

in
m

/s
2

4
5
6
7
8
9
10
11
12
13
14

A
vg

.
im

p
ro

ve
m

en
t

in
%

(a) Start/end position in (5m)2

1 2 3 4 5
v̂max in m/s

1

2

3

â
m
a
x

in
m

/s
2

4
5
6
7
8
9
10
11
12
13
14

A
vg

.
im

p
ro

ve
m

en
t

in
%

(b) Start/end position in (15m)2

Figure 2.12.: Improvement of TOP-UAV++ compared to TOP-UAV over 𝑣𝑚𝑎𝑥 and 𝑎𝑚𝑎𝑥 .

1 2 3 4 5
v̂max in m/s

1

2

3

â
m
a
x

in
m

/s
2

4
5
6
7
8
9
10
11
12
13
14

A
vg

.
im

p
ro

ve
m

en
t

in
%

(a) Start/end position in (5m)3

1 2 3 4 5
v̂max in m/s

1

2

3

â
m
a
x

in
m

/s
2

4
5
6
7
8
9
10
11
12
13
14

A
vg

.
im

p
ro

ve
m

en
t

in
%

(b) Start/end position in (15m)3

Figure 2.13.: Improvement of TOP-UAV++ compared to TOP-UAV depending on 𝑣𝑚𝑎𝑥 and 𝑎𝑚𝑎𝑥 .

reductions occur for high velocities and low accelerations. Overall, the reduction is higher

for high maximum velocities with simultaneously low accelerations but also for low ve-

locities and high accelerations. We explain this by the fact that for distant waypoints the

maximum velocity and for near waypoints the maximum acceleration is the limiting factor

which can successfully be resolved by our TOP-UAV++ approach.

In Figures 2.14a and 2.14b, we present a histogram plot showing the improvement of

TOP-UAV++ compared to TOP-UAV parametrized with 𝑣𝑚𝑎𝑥 = 4m/s and 𝑎𝑚𝑎𝑥 = 1m/s
2

for the above described 100,000 trajectories sampled from (5m)2 and (15m)2. We group

all generated trajectories into 100 bins of equal size representing an improvement of 1%. A

single bin describes the count of how many times TOP-UAV++ yielded an improvement

compared to TOP-UAV calculated as (𝑇TOP-UAV −𝑇TOP-UAV++)/𝑇TOP-UAV that is assigned to

the bin. As can be seen in Figure 2.14a, for approximately one-third of all trajectories

no improvement is achieved. For the remaining trajectories, TOP-UAV++ achieves an

improvement of approximately 20% in the majority of all cases. Improvements higher

than 25% are very unlikely in the two-dimensional case. In Figure 2.14b, one can see

that increasing the sampling area for the start and end waypoints further reduces the

improvements of TOP-UAV++ compared to TOP-UAV.

43

2. Time-Optimal Trajectory Generation for Point-Masses

0 25 50 75 100
Improvement in %

0

10000

20000

30000

N
u

m
b

er
of

tr
a

je
ct

or
ie

s

(a) Histogram of the improvement of

TOP-UAV++ compared to TOP-UAV.

Start/end position in (5m)2.

0 25 50 75 100
Improvement in %

0

10000

20000

30000

N
u

m
b

er
of

tr
a

je
ct

or
ie

s

(b) Histogram of the improvement of

TOP-UAV++ compared to TOP-UAV.

Start/end position in (15m)2.

Figure 2.14.: Histogram of the improvement of TOP-UAV++ compared to TOP-UAV derived from 100,000

randomly generated trajectories with 𝑣𝑚𝑎𝑥 = 4m/s and 𝑎𝑚𝑎𝑥 = 1m/s
2
in two dimensions.

Analogously, we investigate the distribution of the improvements in the three-dimensional

case by randomly sampling start and end positions for another 100,000 from a (5m)3
(see Figure 2.15a) and a (15m)3 (see Figure 2.15b) spatial cubic. Here, it can be seen

that TOP-UAV++ does not yield a better solution than TOP-UAV in approximately 55%

of all cases when the waypoints are sampled from (5m)3. In the remaining cases, the

improvement is approximately equally distributed between 1% and 35%. An improvement

of more than 35% is unlikely. In approximately 63% of the cases when the waypoints

are sampled from (15m)3, TOP-UAV++ does not yield faster trajectories that TOP-UAV.

Here, the improvements for the remaining cases vary from 1% to approximately 30, while

improvements of more than 30% are unlikely.

2.5.5. Computation Times

In the following, we present the results of our study on the computation time of our

TOP-UAV and TOP-UAV++ trajectory planner. Our study distinguishes between the two-

and three-dimensional approaches, each evaluated on 100,000 randomly generated trajec-

tories sampled from (5m)2 and (5m)3 respectively.

Two-dimensional approach:
The computation times of TOP-UAV and TOP-UAV++ as well as the SOTA method are

presented in Tab. 2.2. It can be seen that the SOTA has the fastest average computation time

of 52 ns due to the missing feasibility check, which approximately doubles the required

computation time and results in 111 ns in scenarios where the SOTA yields a valid solution

(see column ‘TOP-UAVsync’). The SOTA and our TOP-UAV approach come with a standard

deviation of 9 ns and 22 ns, which we assume to be the impact of the operating system.

In cases where the SOTA approach is not applicable, our TOP-UAV approach takes on

44

2.5. Computational Study

0 25 50 75 100
Improvement in %

0

10000

20000

30000

40000

50000
N

u
m

b
er

of
tr

a
je

ct
or

ie
s

(a) Histogram of the improvement of

TOP-UAV++ compared to TOP-UAV.

Start/end position in (5m)3.

0 25 50 75 100
Improvement in %

0

20000

40000

60000

N
u

m
b

er
of

tr
a

je
ct

or
ie

s

(b) Histogram of the improvement of

TOP-UAV++ compared to TOP-UAV.

Start/end position in (15m)3.

Figure 2.15.: Histogram of the improvement of TOP-UAV++ compared to TOP-UAV derived from 100,000

randomly generated trajectories with 𝑣𝑚𝑎𝑥 = 4m/s and 𝑎𝑚𝑎𝑥 = 1m/s
2
in three dimensions.

SOTA TOP-UAVsync TOP-UAV¬sync TOP-UAV TOP-UAV++

Average computation time (ns) 52 111 572 139 288

Standard deviation (ns) 8 22 146 118 261

Table 2.2.: Computation time evaluation of 100,000 randomly generated trajectories in (5m)2 with 𝑣𝑚𝑎𝑥 =

4m/s and 𝑎𝑚𝑎𝑥 = 1m/s
2
.

average 572 ns (see column ‘TOP-UAV¬sync’). We identify these cases by validating that

the trajectory duration yielded by the SOTA and by TOP-UAV are different. In this case,

the computation time depends on how fast a feasible solution candidate for TOP-UAV is

found. Hence, the standard deviation increases to 146 ns. In this two-dimensional study,

the overall average computation time of our TOP-UAV planner is 139 ns with a standard

deviation of 118 ns. The overall computation time of our TOP-UAV++ trajectory planner

is approximately 288 ns with a high standard deviation of 261 ns due to possible insyn-

chronizabilities and multiple configurations. Note that although the improved version

TOP-UAV++ utilizes in total three different options to share the norms among the axes

its computation time is 2.07 times the computation time of the TOP-UAV planner. The

reason for this is as follows: If for a specific configuration the SOTA approach yields a

higher trajectory duration than the lowest feasible trajectory duration found so far, then

the entire configuration can be skipped since it would not yield a better solution than

already identified.

To illustrate the computational efficiency of both of our approaches: The measured com-

putation time to calculate one million trajectories in closed form with TOP-UAV is 139ms

and with TOP-UAV++ is 288ms in the given study.

Three-dimensional approach:
The computation time evaluation in the three-dimensional case for TOP-UAV and TOP-

UAV++ as well as the SOTA method is presented in Table 2.3 and the experimental setup

45

2. Time-Optimal Trajectory Generation for Point-Masses

SOTA TOP-UAVsync TOP-UAV¬sync TOP-UAV TOP-UAV++

Average computation time (ns) 72 160 1856 242 511

Standard deviation (ns) 11 26 389 374 749

Table 2.3.: Computation time evaluation of 100,000 randomly generated trajectories in (5m)3 with 𝑣𝑚𝑎𝑥 =

4m/s and 𝑎𝑚𝑎𝑥 = 1m/s
2
.

is analogous to the one conducted in the two-dimensional case. Again, it can be seen

that the SOTA has the fastest computation time with on average 72 ns followed by the

TOP-UAV approach in scenarios for which the SOTA would be applicable requiring 160 ns.

Both cases come with a standard deviation of 11 ns and 26 ns, which we assume to be

the impact of the operating system. In cases where the SOTA approach is not applica-

ble, our basic approach takes on average 1.86 𝜇s (see column ‘TOP-UAV¬sync’). In this

case, the computation time depends on how fast the fastest feasible solution candidate

is found. Hence, the standard deviation increases to 389 ns. Our TOP-UAV trajectory

planner requires an average computation time of 242 ns in the given study with a standard

deviation of 374 ns. However, remember that the average computation time depends on the

probability of how often the SOTA approach is invalid and the candidate list must be set

up. The overall computation time of our TOP-UAV++ trajectory planner is approximately

511 ns with a high standard deviation of 749 ns due to possible insynchronizabilities and

multiple configurations. In conclusion, the TOP-UAV++ planner requires on average 2.11

times the computation time of the TOP-UAV planner for the given study.

2.6. Conclusion

In this chapter, we presented our TOP-UAV solver for time-optimal trajectory generation

for point-masses under acceleration and velocity constraints. Our trajectory planner is

proven to overcome a flaw in the state-of-the-art solution approach and hence yields

the globally optimum solution of the trajectory planning problem at hand for the given

kinematic restriction considering the associated configurations of distributing the maxi-

mum velocity and acceleration norms among the axes. Since our approach is analytical it

allows for a highly performant implementation that is capable of calculating time-optimal

a trajectory in the scale of a few hundred nanoseconds as we show in Section 2.5.5. Fur-

ther, we investigate the consequences of the flaw of the state-of-the-art approach and

evaluate our new approach in these situations. To further improve the exploitation of

the given kinematic restrictions, we allow our framework to work with multiple configu-

rations to distribute the maximum allowed velocity and acceleration norms among the

axes. This extended approach TOP-UAV++ yields on average up to 14% faster trajectories

while requiring approximately two times the computation time. In the two-dimensional

case, this corresponds to an additional computation time of 149 ns on average. For the

three-dimensional approach, the additional computation time is 269 ns on average.

In the next chapter, we utilize the two-dimensional version of our TOP-UAV++ trajectory

planner to solve inertia-based routing problems for multirotor UAVs.

46

3. Inertia-based Routing

As stated in Chapter 1, UAV technology is highly beneficial for a manifold of applications,

especially in surveillance and data collection applications. Most of these applications can

be modeled as a set of tasks that must be performed efficiently and effectively considering

the UAV’s motion constraints. In the majority of cases, the term ‘efficiently’ equals the

objective of fulfilling tasks with minimum execution time [56].

The resulting problem represents a simultaneous task sequencing and motion planning

problemwhich is often closely related to variations of the traveling salesman problem (TSP)

and the orienteering problem (OP). In simple terms, the TSP describes a combinatorial

optimization problem in which a cost-minimum Hamiltonian cycle is sought that connects

all nodes in a given set of nodes while each node is exactly once. The OP, in turn, describes

a combinatorial optimization problem in which a tour from a given start node to a given

end node is sought that connects a subset of nodes in a given set of prioritized nodes such

that the tour maximizes the collected priorities. Further, each node can be visited at most

once and the total cost of the tour may not exceed a maximum value. For more detailed

information on the TSP and the OP, we refer the reader to e.g. [70] and [71].

In the context of UAV routing, the nodes represent spatial waypoints that must be visited

and edges represent the physical motion for traveling between two waypoints. In the

literature, there are many variations on how these edges and their associated costs can be

determined. For each alternative, an entire field of different route planning problems can

be derived that is suited for specific use cases. In Section 3.1, we give an overview of the

associated route planning problem and present the state-of-the-art (SOTA) approaches to

solving them.

As we will see in the conclusion of Section 3.1, the SOTA approaches for UAV routing

problems do not consider the full kinematic capabilities of multirotor UAVs in terms of the

maximum allowed velocity and acceleration in any direction and their ability to hover.

Our trajectory planner developed in Chapter 2 meets these requirements and further

even guarantees time-optimality. Hence, we develop new extensions of the TSP and

the OP that can be combinded with our TOP-UAV++ trajectory planner for calculating

the physical motions between each pair of waypoints. These are further denoted as the

kinematic traveling salesman problem (KTSP) and kinematic orienteering problem (KOP).

Our new models explicitly support varying velocity magnitudes and hence allow flying

with low velocity when agility is required and high velocity when larger distances have

to be covered. In Section 3.4, we show that our models can successfully be solved by a

commercial general-purpose solver to optimality for small and medium-sized problem

instances with up to 30 waypoints within a computation time limit of five hours. Further,

47

3. Inertia-based Routing

we show that the optimal solutions of our models significantly outperform the optimal

solutions of SOTA models.

The KTSP and the KOP are NP-hard since they are extensions of the TSP and OP which

are also known to be NP-hard (see e.g. [71]). Consequently, for an increasing number

of waypoints, the computational complexity increases exponentially. This explains the

observation from our computation study that solving our KTSP and KOP models to

optimality with commercial general-purpose solvers requires a few seconds with problem

instances with up to ten waypoints, however, easily exceeds one hour of computation time

for problem instances with more than ten waypoints. Therefore, we develop powerful

heuristic solvers for both models which are based on the adaptive large neighborhood

search (ALNS) framework.

3.1. Related Work

In general, route planning problems for UAVs are a well-studied scientific subject (see [5,

13, 72]). Thereby, most studies focus on surveillance and data collection (see e.g. [13])

with, in the majority of all studies, a minimum mission duration as an objective. However,

although UAV routing is so well-studied, only very few papers focus on problems that

explicitly consider the UAV’s kinematics. In the majority of cases, the kinematics are

significantly simplified or even neglected [72, 4]. In the following, we focus on the little

existing work related to UAV routing under consideration of their kinematic properties.

3.1.1. Overview of Inertia-based Route Planning Problems

In this section, we present an overview of related approaches for route planning problems

considering the kinematic restrictions of UAVs, i.e. maximum velocity and acceleration.

Inertia-based Route Planning Neglecting Acceleration:
A simple approach to consider basic kinematic restrictions in UAV routing problems is the

assumption of a constant velocity for themotion but neglecting the acceleration capabilities.

This approach is used to estimate the flight time between two spatial coordinates as the

quotient of the Euclidean distance between the coordinates over the constant flight velocity

[72, 73, 74]. Some approaches define that the constant velocity equals themaximum allowed

velocity [21]. Note that although the assumption of a constant velocity is easy to be used

to estimate the travel time based on the distance between two waypoints, this assumption

is rarely explicitly defined in the related work. In many publications, no comment is given

on how the travel times are calculated [75]. Some assume, that “the travel time between

pairs of targets were set equal to the Euclidean distance between them” (see [76]). Such

an assumption might be sufficient to evaluate the performance of solution approaches.

However, it does not allow any conclusions to be drawn about whether the proposed

solution approaches themselves can be applied to solve real-world problems properly.

A simple countermeasure to consider acceleration capabilities on a very basic level are

48

3.1. Related Work

hover-to-hover trajectories, as we provide them in Appendix A. Hover-2-hover trajectories

rely on the assumption that each waypoint must be visited at rest while the travel between

waypoints allows full acceleration until a possibly defined maximum velocity is reached.

However, even this very simple measure is very hard to find in the literature.

Inertia-based Route Planning using Dubins Paths:
When it comes to the consideration of constrained velocity and acceleration, most ap-

proaches rely on Dubins paths. Examples include extensions of the TSP (see [77, 78, 79,

80, 81, 82, 83]) and the OP (see [22, 23, 84]). These extensions are known as the Dubins

traveling salesman problem (DTSP) and the Dubins orienteering problem (DOP), whereas

the DTSP has been covered much more deeply in the literature. For example, lower bounds

for the solution quality have been developed (see [80, 77]). To the best of our knowledge,

such investigations have not been conducted for the DOP so far.

From a top-level view, most publications on DTSP and DOP are based on a discretization

of the heading angles that can be used to traverse each waypoint. This allows for powerful

mathematical programming formulations that can be used to obtain globally optimal

solutions by applying exact approaches such as general-purpose solvers (see [77]) or

branch-and-price approaches (see [84]). On the other hand, it also enables the development

of powerful heuristic solvers (see [22, 78, 85]). Since we use the DTSP and the DOP as

benchmark models in this work, we provide the associated mathematical programming

models in Sections 3.2.1.1 and 3.2.2.1.

In recent research, extensions of the Dubins paths are investigated in UAV routing prob-

lems. These approaches aim to better describe the physical capabilities of UAVs, to consider

obstacles, and to overcome the drawback of a fixed velocity. In [78], it is investigated

that UAVs cannot immediately apply full acceleration lateral to the direction of motion,

as assumed for the Dubins vehicle. Hence, they consider a smooth change of accelera-

tion. Further, they consider the presence of obstacles by considering only collision-free

connecting Dubins paths between waypoints. Additionally, they state that for an existing

sequence of visiting waypoints, the discrete heading angles to traverse each waypoint can

be globally optimized by using dynamic programming. The presented approach, however,

still suffers from the general drawback of the Dubins paths: The minimum turning radius.

This radius 𝑟 is constant for the entire flight mission and depends on the constant flight

velocity 𝑣𝑐𝑜𝑛𝑠𝑡 and the maximum acceleration 𝑎𝑚𝑎𝑥 and is calculated as 𝑟 = 𝑣2𝑐𝑜𝑛𝑠𝑡/𝑎𝑚𝑎𝑥 .

This limits the performance of the yielded solutions as follows: Distant waypoints can

be connected in less flight time when moving at a high velocity but, in turn, connecting

close waypoints requires agility which is obtained at a low velocity. In [86] this problem

is addressed by designing Dubins-like trajectories that are bound to a constant velocity

when making turns but are allowed to change velocity on straight segments. However,

since the curvature of the Dubins paths is still bound to a fixed velocity also this approach

suffers a potential performance limitation when considering multirotor UAVs.

The first to describe the Dubins orienteering problem are the authors of [22]. In their

work, they investigate the application of a UAV required to visit a set of prioritized

waypoints, but given a restricted maximum flight distance. Costs to traverse between

each pair of waypoints are given as a distance. As a solution approach, they propose a

49

3. Inertia-based Routing

variable neighborhood search (VNS) and solve the problem heuristically. To evaluate the

performance of their approach, they benchmark their approach against the orienteering

problem (OP) with travel costs calculated as the Euclidean distance. However, they are

not able to determine exact solutions for their DOP instances since their mathematical

model cannot be solved by a general-purpose solver. In the same year, the same authors

introduced the Dubins orienteering problem with Neighborhoods (DOPN) that deals with

the problem that in UAV applications not all waypoints have to be traversed exactly but

with tolerances [23]. Again, a VNS-based solution approach is presented and the results of

DOPN are benchmarked against their approach for the DOP [22]. Exact solutions for the

DOPN are not provided as well.

The authors of [84] introduce a branch-and-price approach to the Dubins team orienteering

problem (DTOP). The DTOP is closely related to the DOP but considers multiple Dubins

vehicles. Although representing a generalization of the DOP no benchmark against the

solutions presented in [22] was conducted.

Lastly, we identified another unresolved problem regarding the DOP. To the best of our

knowledge, there exists no mathematical programming formulation for the DOP that can

directly be used by a commercial general-purpose solver. To allow benchmarking our KOP

with the DOP, we develop such a model in [87] and provide it in Appendix 3.2.2.1.

Inertia-based Route Planning using Bézier Curves and B-Splines:
Apart from Dubins paths, also Bézier curves [36, 37] and its generalization B-splines [3]

are utilized to cover the kinematic properties of UAVs in routing problems. However,

both concepts are not represented as much as e.g. Dubins-based routing in the literature.

In both approaches, two locations are connected by a smooth curve based on Bernstein

polynomials. By setting intermediate control points in the right way, it is possible to guide

the path safely around obstacles. However, their polynomial representation of a safe path

is purely spatial. To ensure physical feasibility, the resulting curve must first be transferred

to the time domain. Only by assigning each spatial point of the curve to a particular

point in time is it possible to consider physical constraints such as maximum velocity and

acceleration (see [38]). For routing problems where thousands of trajectories are calculated

this two-step procedure is computationally expensive (see [36]). This might be the reason,

why the authors of [36] proposed to use a numerical estimation of the travel duration for a

given Bézier curve. Further, it is argued in [38] that if the initial and final velocity are not

both zero, there may not exist a feasible solution. This can be explained by the following

illustration. Given a spatial Bézier curve with changing curvature as well as a start velocity

magnitude and direction. By decreasing the maximum allowed acceleration towards any

direction, it is always possible to create a setting where the maximum acceleration is not

high enough to keep on track with the curvature of the spatial Bézier curve. Consequently,

for such a setting, there is no possibility of feasibly transferring the spatial path into the

time domain respecting the given maximum acceleration property. Moreover, another

disadvantage results from their polynomial representation, which does not allow for bang-

bang behavior and hence does not yield time-optimal behavior (see [28]). Remember,

bang-bang behavior is motivated by Pontryagin’s minimum principle (see [63]), which

states that time optimality is only achieved by having the system always operate at its

50

3.1. Related Work

physical limit. These above described drawbacks might be the reason why Bézier and

B-splines curves are not that often used for UAV route planning in the literature.

MPC-based Route Planning Approaches:
The MPC-based approach from [88] which solves the ‘incremental motion planning with

dynamical reward’ can also be used to solve the OP with kinematic restrictions. In their

approach, the maximum allowed flight time is used as a fixed mission duration from which

the number of control input periods is derived. In these periods, the UAV is allowed to

apply a constant acceleration in any direction which dynamically affects velocity and

position. Related to the resulting spatial position trajectory, rewards are received when

passing by a waypoint sufficiently close. The allowed maximum velocity and acceleration

are considered by applying the corresponding constraints. However, as the authors state,

the number of planning steps is fixed and so is the total travel time. Hence, the provided

solutions are not time-optimal but satisfy the travel time budget.

In [89] and [90], two articles that build on each other, the UAV flight planning is modeled

as a discrete-time mixed-integer nonlinear mathematical program. Their model considers

multiple UAVs moving in the three-dimensional cartesian space and a set of environmental

constraints such as obstacles, wind fields, fuel consumption, and flight range. Further,

the authors consider each UAV’s kinematic capabilities such as maximum velocity and

acceleration in three spatial dimensions individually. To obtain a mixed-integer linear

program that serves as a basis for their computational study, the nonlinear constraints are

linearized. In the computational study, the authors apply a commercial general-purpose

solver to solve a set of problem instances. Due to the discrete-time formulation, their

solution approach primarily depends on the maximum duration of the flight mission and

on the time step length for which decisions, such as applied acceleration, are defined as

fixed. Larger time step lengths result in less computational complexity but also in less

maneuverability which is accompanied by less kinematic efficiency. Overall, a trade-off

between computational complexity and kinematic efficiency is to be found.

Mixed-Integer Optimal Control Problem (MIOCP)-based Approaches:
The authors of [91, 92] present a general approach that can be applied to numerically solve

a mixed-integer optimal control problem and show that it can successfully be applied to the

motorized traveling salesman problem which is closely related to our KTSP formulation

but is based on a car like vehicle with a different kinematic model than multirotor UAVs.

For this problem class, the authors model the problem of sequencing the cities of the

TSP by introducing a discrete binary control variable. The state variables, i.e. position,

velocity, and steering angle as well as the control variables, i.e. acceleration and steering

angle velocity are modeled as continuous functionals. In their work, a decomposition

approach is proposed that addresses the decision on the sequence of the cities represented

by the discrete binary control variables via branch-and-bound (see [91]) or using a genetic

algorithm (see [92]). For all intermediate waypoint sequence representations, i.e. for nodes

in the branch-and-bound-tree or individuals in the population of the genetic algorithm, the

underlying multi-phase optimal control problem is solved using direct collocation. For this

purpose, the continuous state and control variables are modeled as piecewise cubic Hermite

polynomials from which the optimal control problem reduces to a constrained nonlinear

51

3. Inertia-based Routing

program with the optimization variables representing the coefficients of the Hermite

polynomials as well as the travel times between each pair subsequent waypoints.

The resulting constrained nonlinear program is solved via sequential quadratic program-

ming yielding a locally optimum solution which, in general, does not neccessarily represent

a globally optimum solution. Further, although the authors use the objective of minimizing

the total trajectory duration, the solutions yielded by the proposed approaches will in gen-

eral be time-suboptimal since they model the control variables as polynomials. Remember,

polynomials do not allow for bang-bang behavior, which is required for time optimality

(see [28]).

Conclusion:
According to the related literature, only a few approaches exist for UAV routing that

consider the maximum allowed velocity and acceleration for multirotor UAVs properly.

The first class of approaches utilizes the classical routing model formulations with only

one possible edge to travel between two waypoints. This limits the range of methods,

that can be applied to properly estimate the travel time between waypoints. The second

class of approaches is based on Dubins paths. The associated models allow to traverse

waypoints with different heading angles. Depending on heading angles for the start

and end waypoint, the travel time between waypoints changes. This allows to model

the inertia of a UAV. However, Dubins paths are bound to a constant velocity, which

does not account for the full kinematic capabilities of multirotor UAVs. The third class is

based on Bézier curves and B-splines. Both motion planning methods compute a smooth

spatial path that appears to be trackable by an inert UAV. However, this path does not

implicitly consider maximum velocity and acceleration and hence they do not model the

kinematics of UAVs accurately. Moreover, there are MPC-based approaches. MPC is a

very powerful approach for considering the physical behavior of UAVs. However, the

MPC-based approaches get computationally expensive for an increasing number of time

steps. Hence, for long-duration flight missions, the time step length must be increased

to reduce the overall number of time steps and consequently, to keep the computational

complexity manageable. However, the reduction of the time step length comes at the cost

of reducing the maneuverability of the UAV in the planning process. The last class of

approaches discussed here is based on iteratively solving the optimal control problem for

a given sequence using direct collocations by solving a constrained nonlinear program.

However, these approaches are again based on a polynomial representation of the control

input trajectory, which does not allow for bang-bang behavior and again would not utilize

the full kinematic capabilities of a multirotor UAV.

3.1.2. Research Gap and Contributions

There are only a few approaches for UAV routing that consider the maximum allowed

velocity and acceleration, as we present in Section 3.1.1. These few approaches either

apply simplifying assumptions with regard to the kinematics of multirotor UAVs, such

as a constant velocity (see [22, 77, 78]), or rely on a coarse time-discretization to keep

the resulting optimization problem computationally tracktable (see e.g. [4]). Both do not

52

3.1. Related Work

properly reflect the full kinematic properties of a multirotor UAV. Some approaches use

polynomial trajectory representations that are assumed, although not mathematically of

experimentally demonstrated, as good enough to exploit the kinematic capabilities (see e.g.

[21, 36, 91]). To the best of our knowledge, none of the existing approaches in the literature

fully covers the entire maneuverability of a multirotor UAV in terms of time-optimal

motions based on their kinematic capabilities. Note that this observation holds despite

time optimality although time-optimality is known as the most-used objective in UAV

routing [13]. With this, we identify a major research gap in the intersection between

route planning and UAV motion planning and make the first steps toward this new field of

research.

Research Questions:
The above research gap can be expressed by a set of research questions, which we present

as follows:

• How to develop mathematical models such that the full potential of the kinematic

capabilities of a multirotor UAV in terms of time-optimality is considered?

• What is the effect of such models in terms of the achieved solutions compared to

state-of-the-art models such as DTSP and DOP?

• How computationally expensive is it to solve these models to optimality using

commercial solvers?

• How to design heuristic solution approaches based on these models and how well is

their performance regarding the achieved solution quality compared to the global

optimum?

Contributions:
To answer these research questions, we focus on the two basic classes of routing problems,

namely the TSP and the OP, and make the following major contributions:

• We present new models that extend the traveling salesman problem and the orien-

teering problem, namely the kinematic traveling salesman problem (KTSP) and the

kinematic orienteering problem (KOP), that are able to integrate our time-optimal tra-

jectory planner presented in Section 2.4 to determine travel times between waypoints

by exploiting the full kinematic properties of multirotor UAVs.

• Since solving these models, i.e. the KTSP and the KOP, with a commercial solver is

computationally expensive, as we show in Section 3.4, we develop heuristic solver

for both problem classes which are based on the adaptive large neighborhood search

(see e.g. [24]). This metaheuristic solution framework is derived from the well-

known ruin and recreate mechanism (see [93]) and is widely and successfully used

to solve routing problems in various domains (see [94, 95]). To unlock the greatest

potential of our heuristic solvers, we tune their hyperparameters via hyperparameter

optimization.

53

3. Inertia-based Routing

• We conduct an extensive computational study to evaluate the benefit of our new

models compared to state-of-the-art models. Further, we investigate if our models

suit to be solved by commercial solvers to solve realistic problem instances and we

investigate the performance of our heuristic solvers regarding the achieved solution

quality for predefined computation times.

What we do not focus on in this work:
Since we are the first to investigate such kind of kinematic routing problems, the following

research directions are out of the scope of this work.

• We do not focus on developing and comparing multiple different mathematical

models of the KTSP and the KOP in terms of the number of variables, constraints

and overall computational complexity.

• We do not develop problem-specific exact solvers such as branch-and-price or branch-

and-cut that aim at solving the KTSP and KOP to optimality with less computational

effort than using a general-purpose solver.

• Developing and comparing multiple different heuristic solution approaches for the

KTSP and KOP is also out of the scope of this work. This also holds for the devel-

opment and performance evaluation of single insertion and removal operators of

our adaptive large neighborhood solvers. In this work, we use and modify existing

operators that can be found in the literature.

The remainder of this chapter is structured as follows. We introduce the mathematical

models for inertia-based routing used in this work in Section 3.2. These contain the KTSP

and the KOP model but also the associated Dubins paths-based models. Next, we present

our heuristic approach to solving the KTSP and KOP in Section 3.3. Last, we present our

computational study in Section 3.4.

3.2. Inertia-based Routing Models

In this section, we formally introduce inertia-based routing models to visit a set of given

waypoints while respecting the kinematics of a multirotor UAV.

We first focus on models for inertia-based traveling salesman problems. These problems

are especially relevant in real-world applications for UAVs in the context of continuous

surveillance of infrastructures where the identical mission is executed multiple times in

a series. In this regard, we present the Dubins traveling salesman problem (DTSP) as

introduced in [77] which is an extension of the well-known traveling salesman problem

(see [96]). Since Dubins paths are always bound to a fixed velocity, which is a potential

performance limitation for multirotor UAVs (see Section 3.1.1), we present the kinematic

traveling salesman problem (KTSP) as introduced in our work [25]. The KTSP enables the

consideration of varying traversal velocities at each waypoint and hence unfolds the most

potential in combination with our TOP-UAV++ trajectory planner presented in Section

54

3.2. Inertia-based Routing Models

2.4.4. In general, the KTSP can be defined for any inert system, as long as a suitable

planning method is applied.

In cases where the maximum flight time must be considered, a selection of waypoints

that are to be visited must often be made. This can be done by assigning each waypoint a

priority value and then modeling the problem as an orienteering problem (see [97]). In

the context of inertia-based orienteering problems, the Dubins orienteering problem has

been defined in the literature and has been heuristically solved (see [22]). However, to the

best of our knowledge, no mathematical programming formulation has been stated in the

literature so far that can be solved directly using a general-purpose solver. For this reason,

optimal benchmark solutions of the DOP are hard to find. In Section 3.2.2.1, we present

our model which we developed in [87] and which can be solved using general-purpose

solvers. It is to be mentioned that [87] is a master thesis supervised during this work

whose results have not yet been published in a scientific paper. For the same reason as for

the DTSP, i.e. since Dubins paths are always bound to a fixed velocity, we also present the

kinematic orienteering problem as stated in our work [26]. Analogously to the KTSP, the

KOP unfolds the most potential in combination with our TOP-UAV++ trajectory planner.

In general, the KOP can be defined for any inert system, as long as a suitable planning

method is applied.

Note that we solve the DTSP, KTSP, DOP, and KOP using the corresponding mathematical

models and applying Gurobi implemented in Python as a general-purpose solver. More

details on the computational setup are given in Section 3.4.1. This solution approach will

henceforth be referred to as the mixed-integer programming (MIP)-based approach. To

apply our MIP-based approach, the corresponding travel time matrix must be preprocessed.

In this work, all travel time matrices used are symmetric.

3.2.1. Inertia-based Traveling Salesman Problem Models

In this Section, we introduce the DTSP as presented in [77] in Section 3.2.1.1, followed by

our more general KTSP in Section 3.2.1.2. The DTSP and KTSP are NP-hard, since both

problems are extensions of the TSP which is known to be NP-hard (see e.g. [96]).

The objective of the DTSP and the KTSP is to find a kinematically feasible trajectory

through an initially unordered set of waypoints in the two-dimensional plane, whereas

each waypoint is visited exactly once. In this regard, kinematically feasible means that a

solution trajectory does not violate the given maximum velocity constraint and the given

maximum acceleration constraint at any time.

The DTSP and KTSP are closely related and share a set of properties which are introduced

in the following:

First of all, both problems are defined in an obstacle-free environment and for both a set

of waypoints

L = {𝑙𝑖 | 𝑙𝑖 = 𝑖, 𝑖 = 1, ..., 𝐿}

55

3. Inertia-based Routing

is given where each element 𝑙𝑖 ∈ L must be visited. Here, 𝐿 describes the number of

waypoints.

Following the mathematical model of the DTSP presented in [77], we discretize the allowed

heading angle to traverse each waypoint. We want to emphasize, that this discretization is

an abstraction from the continuous reality to be able to mathematically model the problem.

We define the set of discretized heading angles to traverse each waypoint 𝑙𝑖 ∈ L as

H = {ℎ𝑖 | ℎ𝑖 = 2𝜋 (𝑖 − 1)/𝐻, 𝑖 = 1, ..., 𝐻 }.

Here, 𝐻 represents the number of equidistant discretization levels of the traversal heading

angle.

With the definitions ofL andH , we present the DTSP and KTSPmodels in the following.

3.2.1.1. Dubins Traveling Salesman Problem according to [77]

In this section, we introduce the DTSP as presented in [77]. Based on the definitions of L
andH in Section 3.2.1, the DTSP is formally described on a graph G = (N , E), where

N = {(𝑙𝑖, ℎ𝑘) | ∀𝑖 ∈ {1, ..., 𝐿},∀𝑘 ∈ {1, ..., 𝐻 }}

represents the set of unique nodes (𝑙𝑖, ℎ𝑘) such that there are 𝐿 ·𝐻 nodes in the graph. The

set E of unique edges linking two nodes in graph G is represented as

E = {
(
(𝑙𝑖, ℎ𝑘), (𝑙 𝑗 , ℎ𝑚)

)
| ∀𝑖, 𝑗 ∈ {1, ..., 𝐿},∀𝑘,𝑚 ∈ {1, ..., 𝐻 }}.

Overall, there are 𝐿2 · 𝐻 2
edges in graph G. The costs 𝑐

𝑗𝑚

𝑖𝑘
associated with each edge(

(𝑙𝑖, ℎ𝑘), (𝑙 𝑗 , ℎ𝑚)
)
∈ E describe the required flight time to travel the edge which is calculated

as the length of the shortest Dubins path (see [31]) between both nodes divided by a given

constant velocity 𝑣𝑐𝑜𝑛𝑠𝑡 . In the context of this work, the optimum Dubins path depends

on the minimum allowed turning radius of the multirotor UAV which is calculated as

𝑣2𝑐𝑜𝑛𝑠𝑡/𝑎𝑚𝑎𝑥 while 𝑣𝑐𝑜𝑛𝑠𝑡 can be arbitrarily chosen within 0 < 𝑣𝑐𝑜𝑛𝑠𝑡 ≤ 𝑣𝑚𝑎𝑥 . Since increasing

the constant mission velocity 𝑣𝑐𝑜𝑛𝑠𝑡 for the DTSP leads to an increasing minimum turning

radius, the selection of a proper 𝑣𝑐𝑜𝑛𝑠𝑡 depends on the problem instance to be solved. This

is a general problem of using Dubins paths in UAV routing ([25]).

The main decision variables for the DTSP model 𝑥
𝑗𝑚

𝑖𝑘
are binary and interpreted as

𝑥
𝑗𝑚

𝑖𝑘
=


1, if waypoint 𝑙𝑖 is left with heading angle ℎ𝑘

towards waypoint 𝑙 𝑗 , which is

entered with heading angle ℎ𝑚 ,

0, otherwise

56

3.2. Inertia-based Routing Models

Furthermore, there are integer decision variables 𝑢𝑖 ∈ {1, ..., 𝐿} , 𝑖 = 1, ..., 𝐿 that define the

sequence of waypoints 𝑙𝑖 in the resulting sequence of waypoints.

The resulting mathematical programming formulation to determine the optimal sequence

of waypoints, as well as the heading angle configurations with which to visit eachwaypoint,

is shown in the optimization problem (3.1).

min

𝐿∑︁
𝑖=1

𝐿∑︁
𝑗=1

𝐻∑︁
𝑘=1

𝐻∑︁
𝑚=1

𝑥
𝑗𝑚

𝑖𝑘
𝑐
𝑗𝑚

𝑖𝑘
(3.1a)

s. t.

𝐿∑︁
𝑗=1

𝐻∑︁
𝑘=1

𝐻∑︁
𝑚=1

𝑥
𝑗𝑚

𝑖𝑘
= 1, ∀𝑖 ∈ {1, ..., 𝐿} (3.1b)

𝐿∑︁
𝑖=1

𝐻∑︁
𝑘=1

𝐻∑︁
𝑚=1

𝑥
𝑗𝑚

𝑖𝑘
= 1, ∀𝑗 ∈ {1, ..., 𝐿} (3.1c)

𝐿∑︁
𝑖=1

𝐻∑︁
𝑘=1

𝑥
𝑗𝑚

𝑖𝑘
−

𝐿∑︁
𝑜=1

𝐻∑︁
𝑝=1

𝑥
𝑜𝑝

𝑗𝑚
= 0 ∀𝑗 ∈ {1, ..., 𝐿}; ∀𝑚 ∈ {1, ..., 𝐻 } (3.1d)

𝑢𝑖 − 𝑢 𝑗 + (𝐿 − 1)
𝐻∑︁
𝑘=1

𝐻∑︁
𝑚=1

𝑥
𝑗𝑚

𝑖𝑘

+ (𝐿 − 3)
𝐻∑︁
𝑘=1

𝐻∑︁
𝑚=1

𝑥𝑖𝑘𝑗𝑚 ≤ 𝐿 − 2 ∀𝑖, 𝑗 ∈ {1, ..., 𝐿} (3.1e)

𝑢1 = 1 (3.1f)

𝑢𝑖 ∈ {2, ..., 𝐿}, ∀𝑖 ∈ {2, ..., 𝐿} (3.1g)

𝑥
𝑗𝑚𝑤

𝑖𝑘𝑔
∈ {0, 1} ∀𝑖, 𝑗 ∈ {1, ..., 𝐿}; ∀𝑘,𝑚 ∈ {1, ..., 𝐻 } (3.1h)

The objective of the presented mathematical programming formulation (3.1a) is to mini-

mize the total required travel time. Constraint set (3.1b) enforces that each waypoint is

entered exactly once for all heading angles whereas constraint set (3.1c) enforces that each

waypoint is left exactly once. Flow conservation is fulfilled by constraint set (3.1d). These

constraints ensure that each waypoint 𝑙 𝑗 is left in the same direction as it is entered. To

prevent subtours, the presented model makes use of the subtour elimination constraints

(3.1e), (3.1f), and (3.1g), which were developed in [96] and are an improved version of the

Miller-Tucker-Zemlin Constraints [70]. Constraints (3.1h) enforce the decision variable

𝑥
𝑗𝑚

𝑖𝑘
to be binary.

In Figure 3.1, we present two globally optimal solutions of the DTSP with different constant

velocities as an example. For both, we define 𝐻 = 8 and 𝑎𝑚𝑎𝑥 = 1.5 m/s
2
. The optimum

solution of the DTSP with 𝑣𝑐𝑜𝑛𝑠𝑡 = 1.5 m/s requires a total mission duration of 52.92 s and

is given in Figure 3.1a. The corresponding optimum solution for 𝑣𝑐𝑜𝑛𝑠𝑡 = 3.0 m/s requires

57

3. Inertia-based Routing

0 5 10 15
x in m

5.0

7.5

10.0

12.5

15.0

17.5

y
in

m

Waypoints

(a) Optimum solution for the DTSP with

𝑣𝑐𝑜𝑛𝑠𝑡 = 1.5 m/s. The required mission du-

ration is 52.92 s.

−10 0 10 20
x in m

−5

0

5

10

15

20

y
in

m

Waypoints

(b) Optimum solution for the DTSP with

𝑣𝑐𝑜𝑛𝑠𝑡 = 3.0 m/s. The required mission du-

ration is 98.56 s.

Figure 3.1.: Example optimum solutions of the DTSP.

a total mission duration of 98.56 s and is given in Figure 3.1b. As can be seen, although

the constant velocity of the righthand plot is double as high in the lefthand, the required

mission duration is 86.24% higher due to occuring detours.

3.2.1.2. Kinematic Traveling Salesman Problem according to [25]

In the following, we introduce the KTSP as presented in our work [25].

As an extension of the DTSP, our KTSP model depends on a discretized setV of possible

velocities to traverse each waypoint. This set depends on the maximum allowed velocity

𝑣𝑚𝑎𝑥 and the number of spatial dimensions 𝑛 and is represented by

V = {𝑣𝑖 | ((𝑖 − 1) · 𝑣𝑚𝑎𝑥)/(
√
𝑛 · (𝑉 − 1)), 𝑖 ∈ {1, ...,𝑉 }}

with 𝑣𝑖 ∈
[
0, 𝑣𝑚𝑎𝑥/

√
2

]
for 𝑛 = 2. Note that we apply

√
𝑛 to the above definition to enable

the usage of our TOP-UAV++ trajectory planner as we state later. The number of discrete

velocities is denoted by 𝑉 . Analogously to the set of discretized heading angles, the

discretization of the traversal velocities is an abstraction of the continuous reality to be

able to mathematically model the problem.

Based on the set of waypoints L, the set of discretized heading anglesH , and the set of

discretized traversal velocitiesV , we formally define the KTSP on a graph G = (N , E),
where

N = {(𝑙𝑖, ℎ𝑘 , 𝑣𝑔) |
∀𝑖 ∈ {1, ..., 𝐿},∀𝑘 ∈ {1, ..., 𝐻 },∀𝑔 ∈ {1, ...,𝑉 }}

58

3.2. Inertia-based Routing Models

represents the set of unique nodes (𝑙𝑖, ℎ𝑘 , 𝑣𝑔). Hence, graph G consists of a total of 𝐿 ·𝐻 ·𝑉
nodes. The set E of unique edges linking two nodes in graph G is represented as

E = {
(
(𝑙𝑖, ℎ𝑘 , 𝑣𝑔), (𝑙 𝑗 , ℎ𝑚, 𝑣𝑤)

)
|

∀𝑖, 𝑗 ∈ {1, ..., 𝐿},∀𝑘,𝑚 ∈ {1, ..., 𝐻 },∀𝑔,𝑤 ∈ {1, ...,𝑉 }}.

In total, there are 𝐿2 · 𝐻 2 ·𝑉 2
edges in graph G. Again, the costs 𝑐 𝑗𝑚𝑤

𝑖𝑘𝑔
associated to each

edge

(
(𝑙𝑖, ℎ𝑘 , 𝑣𝑔), (𝑙 𝑗 , ℎ𝑚, 𝑣𝑤)

)
∈ E describes the required flight time to travel the edge. In

this work, these costs are calculated for a given multirotor UAV defined by its maximum

velocity and acceleration capabilities using our TOP-UAV++ approach presented in Section

2.4.4.

The resulting mathematical programming formulation for determining the optimal se-

quence of waypoints as well as the associated traversal heading angles and velocities is

shown in the following.

The main decision variables for our formulation 𝑥
𝑗𝑚𝑤

𝑖𝑘𝑔
are binary and interpreted as

𝑥
𝑗𝑚𝑤

𝑖𝑘𝑔
=


1, if waypoint 𝑙𝑖 is left with heading angle ℎ𝑘

and velocity 𝑣𝑔 towards waypoint 𝑙 𝑗 , which is

entered with heading angle ℎ𝑚 and velocity 𝑣𝑤 ,

0, otherwise

Furthermore, there are integer decision variables 𝑢𝑖 ∈ {1, ..., 𝐿} , 𝑖 = 1, ..., 𝐿 that define the

sequence of the associated waypoints 𝑙𝑖 in the tour. The overall KTSP optimization model

is given as follows:

min

𝐿∑︁
𝑖=1

𝐿∑︁
𝑗=1

𝐻∑︁
𝑘=1

𝐻∑︁
𝑚=1

𝑉∑︁
𝑔=1

𝑉∑︁
𝑤=1

𝑥
𝑗𝑚𝑤

𝑖𝑘𝑔
𝑐
𝑗𝑚𝑤

𝑖𝑘𝑔
(3.2a)

s. t.

𝐿∑︁
𝑗=1

𝐻∑︁
𝑘=1

𝐻∑︁
𝑚=1

𝑉∑︁
𝑔=1

𝑉∑︁
𝑤=1

𝑥
𝑗𝑚𝑤

𝑖𝑘𝑔
= 1, ∀𝑖 ∈ {1, ..., 𝐿} (3.2b)

𝐿∑︁
𝑖=1

𝐻∑︁
𝑘=1

𝐻∑︁
𝑚=1

𝑉∑︁
𝑔=1

𝑉∑︁
𝑤=1

𝑥
𝑗𝑚𝑤

𝑖𝑘𝑔
= 1, ∀𝑗 ∈ {1, ..., 𝐿} (3.2c)

𝐿∑︁
𝑖=1

𝐻∑︁
𝑘=1

𝑉∑︁
𝑔=1

𝑥
𝑗𝑚𝑤

𝑖𝑘𝑔
−

𝐿∑︁
𝑜=1

𝐻∑︁
𝑝=1

𝑉∑︁
𝑞=1

𝑥
𝑜𝑝𝑞

𝑗𝑚𝑤
= 0 ∀𝑗 ∈ {1, ..., 𝐿}

∀𝑚 ∈ {1, ..., 𝐻 }
∀𝑤 ∈ {1, ...,𝑉 } (3.2d)

59

3. Inertia-based Routing

𝑢𝑖 − 𝑢 𝑗 + (𝐿 − 1)
𝐻∑︁
𝑘=1

𝐻∑︁
𝑚=1

𝑉∑︁
𝑔=1

𝑉∑︁
𝑤=1

𝑥
𝑗𝑚𝑤

𝑖𝑘𝑔
+ (𝐿 − 3)

𝐻∑︁
𝑘=1

𝐻∑︁
𝑚=1

𝑉∑︁
𝑔=1

𝑉∑︁
𝑤=1

𝑥
𝑖𝑘𝑔

𝑗𝑚𝑤
≤ 𝐿 − 2

∀𝑖, 𝑗 ∈ {1, ..., 𝐿} (3.2e)

𝑢1 = 1 (3.2f)

𝑢𝑖 ∈ {2, ..., 𝐿}, ∀𝑖 ∈ {2, ..., 𝐿} (3.2g)

𝑥
𝑗𝑚𝑤

𝑖𝑘𝑔
∈ {0, 1} ∀𝑖, 𝑗 ∈ {1, ..., 𝐿}

∀𝑘,𝑚 ∈ {1, ..., 𝐻 }
∀𝑔,𝑤 ∈ {1, ...,𝑉 } (3.2h)

The objective (3.2a) of the presented mathematical programming formulation (3.2) is to

minimize the total required travel time. Constraint set (3.2b) enforces that each waypoint

is entered exactly once for all heading angles and velocities whereas constraint set (3.2c)

enforces that each waypoint is left exactly once. Flow conservation is fulfilled by constraint

set (3.2d). These constraints ensure that task 𝑗 is left in the same direction as it is entered as

well as with the same velocity. To prevent subtours, we make use of the subtour elimination

constraints (3.2e), (3.2f), and (3.2g), which were developed in [96] and are an improved

version of the Miller-Tucker-Zemlin (MTZ) constraints [70]. Constraints (3.2h) enforce

the decision variable 𝑥
𝑗𝑚𝑙

𝑖𝑘𝑤
to be binary.

In Figure 3.2, we present the globally optimal solution of the KTSP for the same problem

instance as presented for the DTSP in Figure 3.1. For the KTSP, we defined𝐻 = 8 and𝑉 = 6.

Further, we defined 𝑣𝑚𝑎𝑥 = 3m/s and 𝑎𝑚𝑎𝑥 = 1.5m/s
2
and used our TOP-UAV++ trajectory

planner to determine the edge costs. The required total mission duration is 34.03 s.

Note that our KTSP model itself is independent of the time-optimal trajectory generation

approach developed in Section 2.4.4. Consequently, it is also independent of the kinematics

of a multirotor UAV. In general, the KTSP can be defined for any inert system as long as

a suitable trajectory planning approach exists that allows precise estimation of the edge

costs.

3.2.2. Inertia-based Orienteering Problem Models

Analogously to Section 3.2.1, we present the Dubins orienteering problem (DOP) in Sec-

tion 3.2.2.1 as we introduced in our work [87], followed by our more general kinematic

orienteering problem (KOP) in Section 3.2.2.2 which we first introduced in [26]. Again,

the DOP and KOP are NP-hard, since both problems are extensions of the orienteering

problem which is known to be NP-hard (see e.g. [97]).

The DOP and KOP are motivated by the maximum flight time of a multirotor UAV in

reality. Their objective is to find a kinematically feasible trajectory from an initial to a

final waypoint and maximize the collected priorities by visiting waypoints in a given

list of prioritized waypoints within the maximum flight time budget. Analogously to

60

3.2. Inertia-based Routing Models

5 10 15
x in m

5.0

7.5

10.0

12.5

15.0

17.5

y
in

m

Waypoints

0.0

0.5

1.0

1.5

2.0

2.5

3.0

V
el

oc
it

y
in

m
/s

Figure 3.2.: Example solution for the KTSP. The required mission duration is 34.03 s.

Section 3.2.1, kinematically feasible means that a solution trajectory does not violate a

given maximum velocity constraint and a given maximum acceleration constraint at any

time.

The DOP and KOP are both defined in an obstacle-free environment and for both a set of

waypoints

L = {𝑙𝑖 | 𝑙𝑖 = 𝑖, 𝑖 = 1, ..., 𝐿}
is given where each element 𝑙𝑖 ∈ L is assigned a priority 𝑟𝑖 ∈ R+0 . Here, 𝐿 describes the

number of waypoints.

Following the mathematical models of the DTSP and KTSP presented in Section 3.2.1, we

discretize the heading angles allowed to traverse each waypoint. This discretization is an

abstraction from reality to be able to mathematically model the problem. We define the

set of discretized heading angles to traverse each waypoint 𝑙𝑖 ∈ L as

H = {ℎ𝑖 | ℎ𝑖 = 2𝜋 (𝑖 − 1)/𝐻, 𝑖 = 1, .., 𝐻 }.

Here, 𝐻 represents the number of equidistant discretization levels of the traversal heading

angle.

With the definitions of L andH , we present the DOP and KOP models in the following.

3.2.2.1. Dubins Orienteering Problem according to [87]

We introduce the Dubins orienteering problem (DOP) as stated in our work [87]. The

DOP was first introduced in [22] but only solved heuristically, since their mathematical

model does not suit to be solved by a general-purpose solver. In [84], the DOP is extended

to the Dubins team orienteering problem (DTOP). They propose a route-based model

and solve the problem using a branch-and-price approach. However, also their model is

61

3. Inertia-based Routing

not suited to be solved by a general-purpose solver. To be able to apply general-purpose

solvers to the DOP and benchmark different solution approaches against DOP solutions,

we propose a suitable model for the DOP in [87]. Our model is described in more detail in

the following.

We define the Dubins orienteering problem for a set of prioritized waypoints L as stated

in Section 3.2.2 that can be visited at discretized heading angles from the setH . Start and

end waypoints are represented by 𝑙1 and 𝑙𝐿 .

We formally define the DOP on a graph G = (N , E), where

N = {(𝑙𝑖, ℎ𝑘) | ∀𝑖 ∈ {1, ..., 𝐿},∀𝑘 ∈ {1, ..., 𝐻 }}

represents the set of unique nodes (𝑙𝑖, ℎ𝑘). Hence, the total number of nodes is 𝐿 · 𝐻 . The

set E of unique edges linking two nodes in graph G is represented as

E = {
(
(𝑙𝑖, ℎ𝑘), (𝑙 𝑗 , ℎ𝑚)

)
| ∀𝑖, 𝑗 ∈ {1, ..., 𝐿},∀𝑘,𝑚 ∈ {1, ..., 𝐻 }}.

There are 𝐿2 · 𝐻 2
edges in graph G. Analogously to the definition of the DTSP in Section

3.2.1.1, the costs 𝑐
𝑗𝑚

𝑖𝑘
associated to each edge

(
(𝑙𝑖, ℎ𝑘), (𝑙 𝑗 , ℎ𝑚)

)
∈ E describe the required

flight time to travel the edge which is calculated as the length of the shortest Dubins

path (see [31]) between both nodes divided by a given constant velocity 𝑣𝑐𝑜𝑛𝑠𝑡 . Again, the

optimum Dubins path depends on the minimum allowed turning radius of the multirotor

UAV which is calculated as 𝑣2𝑐𝑜𝑛𝑠𝑡/𝑎𝑚𝑎𝑥 with 0 < 𝑣𝑐𝑜𝑛𝑠𝑡 ≤ 𝑣𝑚𝑎𝑥 .

The main decision variables for our DOP formulation 𝑥
𝑗𝑚

𝑖𝑘
are binary and interpreted as

𝑥
𝑗𝑚

𝑖𝑘
=


1, if location 𝑙𝑖 is left with heading angle ℎ𝑘

towards location 𝑙 𝑗 , which is

entered with heading angle ℎ𝑚,

0, otherwise

Furthermore, the integer decision variables 𝑢𝑖 ∈ {1, ..., 𝐿} , 𝑖 = 1, ..., 𝐿 define the sequence

of visited locations 𝑙𝑖 in the tour. The overall DOP model is given as follows.

max

𝐿−1∑︁
𝑖=2

𝐿∑︁
𝑗=2

𝐻∑︁
𝑘=1

𝐻∑︁
𝑚=1

𝑥
𝑗𝑚

𝑖𝑘
𝑟𝑖 (3.3a)

s. t.

𝐿∑︁
𝑗=2

𝐻∑︁
𝑘=1

𝐻∑︁
𝑚=1

𝑥
𝑗𝑚

1𝑘
= 1 (3.3b)

62

3.2. Inertia-based Routing Models

𝐿−1∑︁
𝑖=1

𝐻∑︁
𝑘=1

𝐻∑︁
𝑚=1

𝑥𝐿𝑚
𝑖𝑘

= 1 (3.3c)

𝐿−1∑︁
𝑖=1

𝐻∑︁
𝑘=1

𝐻∑︁
𝑚=1

𝑥
𝑗𝑚

𝑖𝑘
≤ 1 ∀𝑗 ∈ {2, ..., 𝐿} (3.3d)

𝐿−1∑︁
𝑖=1

𝐻∑︁
𝑘=1

𝑥
𝑗𝑚

𝑖𝑘
=

𝐿∑︁
𝑜=2

𝐻∑︁
𝑝=1

𝑥
𝑜𝑝

𝑗𝑚
∀𝑗 ∈ {2, ..., 𝐿 − 1}; ∀𝑚 ∈ {1, ..., 𝐻 } (3.3e)

𝐿−1∑︁
𝑖=1

𝐿∑︁
𝑗=2

𝐻∑︁
𝑘=1

𝐻∑︁
𝑚=1

𝑥
𝑗𝑚

𝑖𝑘
𝑐
𝑗𝑚

𝑖𝑘
≤ 𝐶𝑚𝑎𝑥 (3.3f)

𝑢𝑖 − 𝑢 𝑗 + 1 ≤ (𝐿 − 1)
(
1 −

𝐻∑︁
𝑘=1

𝐻∑︁
𝑚=1

𝑥
𝑗𝑚

𝑖𝑘

)
∀𝑖, 𝑗 ∈ {1, ..., 𝐿} (3.3g)

𝑢1 = 1 (3.3h)

𝑢𝑖 ∈ {2, ..., 𝐿} ∀𝑖 ∈ {2, ..., 𝐿} (3.3i)

𝑥
𝑗𝑚

𝑖𝑘
∈ {0, 1} ∀𝑖, 𝑗 ∈ {1, ..., 𝐿}; ∀𝑘,𝑚 ∈ {1, ..., 𝐻 } (3.3j)

The objective of the presented mathematical programming formulation (3.3a) is to max-

imize the collected priorities. Constraint (3.3b) enforces that the start location is left

whereas constraint (3.3c) enforces that the end location is entered. Constraint set (3.3d) en-

sures that each location is entered at most once. Flow conservation is fulfilled by constraint

set (3.3e). These constraints further ensure that location 𝑙 𝑗 is left in the same direction as it

is entered. Constraints (3.3f) ensure that the maximum allowed flight time is not exceeded.

To prevent subtours, we make use of the subtour elimination constraints (3.3g), (3.3h) and

(3.3i) which are formulated according to the Miller-Tucker-Zemlin (MTZ) formulation [70].

Constraints (3.3j) enforce the decision variable 𝑥
𝑗𝑚

𝑖𝑘
to be binary.

In Figure 3.3, we present two globally optimal solutions of the DOP with different constant

velocities as an example. For both, we define 𝐻 = 8 and 𝑎𝑚𝑎𝑥 = 1.5m/s
2
. The maximum

flight time budget is set to 15 s. The optimum solution of the DOP with 𝑣𝑐𝑜𝑛𝑠𝑡 = 1.5m/s

given in Figure 3.3a collects an aggregated priority value of 95. The corresponding optimum

solution for 𝑣𝑐𝑜𝑛𝑠𝑡 = 3.0m/s collects an aggregated priority value of 30 and is given in

Figure 3.3b. Again, the detours due to the higher velocity lead to a significant reduction

of the collected priorities. In both figures, each waypoint 𝑙𝑖 except for the start and end

waypoint is assigned a priority 𝑟𝑖 ∈ {10, 15, 20, 25, 30} which is indicated by the size of the

associated blue markers. The larger the marker, the higher the associated priority. The

maximum aggregated priority value that can be collected in the given problem instance is

230.

63

3. Inertia-based Routing

2.5 5.0 7.5 10.0 12.5

x in m

6

8

10

12

14
y

in
m

Start

End

Waypoints

(a)Optimum solution for the DOPwith 𝑣𝑐𝑜𝑛𝑠𝑡 =

1.5m/s. The collected priorities sum up to 95.

−5 0 5 10

x in m

2.5

5.0

7.5

10.0

12.5

15.0

17.5

y
in

m

Start

End
Waypoints

(b)Optimum solution for the DOPwith 𝑣𝑐𝑜𝑛𝑠𝑡 =

3.0m/s. The collected priorities sum up to 30.

Figure 3.3.: Example optimum solutions of the DOP.

3.2.2.2. Kinematic Orienteering Problem according to [26]

In the following, we introduce the KOP as presented in our work [26]. As an extension of

the DOP, our KOP model depends on a discretized setV of possible velocities to traverse

each waypoint. This set depends on the maximum allowed velocity 𝑣𝑚𝑎𝑥 and the number

of spatial dimensions 𝑛 and is represented by

V = {𝑣𝑖 | ((𝑖 − 1) · 𝑣𝑚𝑎𝑥)/(
√
𝑛 · (𝑉 − 1)), 𝑖 ∈ {1, ...,𝑉 }}

Again, we apply

√
𝑛 to the above definition to enable the usage of our TOP-UAV++ trajec-

tory planner. The number of discrete velocities is denoted by 𝑉 . Analogously to the set of

discretized heading angles, the discretization of the traversal velocities is an abstraction of

the continuous reality to be able to mathematically model the problem.

Analogously to Section 3.2.1.2 on the KTSP, we formally define the KOP on a graph

G = (N , E), where

N = {(𝑙𝑖, ℎ𝑘 , 𝑣𝑔) |
∀𝑖 ∈ {1, ..., 𝐿},∀𝑘 ∈ {1, ..., 𝐻 },∀𝑔 ∈ {1, ...,𝑉 }}

represents the set of unique nodes (𝑙𝑖, ℎ𝑘 , 𝑣𝑔). Overall, there exist 𝐿 · 𝐻 ·𝑉 nodes in graph

G. The set E of unique edges linking two nodes in graph G is represented as

E = {
(
(𝑙𝑖, ℎ𝑘 , 𝑣𝑔), (𝑙 𝑗 , ℎ𝑚, 𝑣𝑤)

)
|

∀𝑖, 𝑗 ∈ {1, ..., 𝐿},∀𝑘,𝑚 ∈ {1, ..., 𝐻 },∀𝑔,𝑤 ∈ {1, ...,𝑉 }}.

Overall, there exist 𝐿2 · 𝐻 2 ·𝑉 2
edges in graph G. The edge costs 𝑐 𝑗𝑚𝑙

𝑖𝑘𝑔
associated to each

edge

(
(𝑙𝑖, ℎ𝑘 , 𝑣𝑔), (𝑙 𝑗 , ℎ𝑚, 𝑣𝑤)

)
describes the required flight time to travel the edge and is

64

3.2. Inertia-based Routing Models

determined by our TOP-UAV++ trajectory generation method presented in Section 2.4.4.

The maximum flight time is denoted as 𝐶𝑚𝑎𝑥 .

The mathematical programming formulation for determining the priority-maximizing

sequence of waypoints as well as the associated heading angles and velocities, i.e. for

solving the KOP, is shown in the following.

The main decision variables for our formulation 𝑥
𝑗𝑚𝑙

𝑖𝑘𝑔
are binary and interpreted as

𝑥
𝑗𝑚𝑙

𝑖𝑘𝑔
=


1, if location 𝑙𝑖 is left with heading angle ℎ𝑘

and velocity 𝑣𝑔 towards location 𝑙 𝑗 , which is

entered with heading angle ℎ𝑚 and velocity 𝑣𝑙 ,

0, otherwise

Furthermore, integer decision variables 𝑢𝑖 ∈ {1, ..., 𝐿} , 𝑖 = 1, ..., 𝐿 define the sequence of

visited locations 𝑙𝑖 in the tour.

The overall KOP model is given as follows.

max

𝐿−1∑︁
𝑖=2

𝐿∑︁
𝑗=2

𝐻∑︁
𝑘=1

𝐻∑︁
𝑚=1

𝑉∑︁
𝑔=1

𝑉∑︁
𝑤=1

𝑥
𝑗𝑚𝑤

𝑖𝑘𝑔
𝑟𝑖 (3.4a)

s.t.

𝐿∑︁
𝑗=2

𝐻∑︁
𝑘=1

𝐻∑︁
𝑚=1

𝑉∑︁
𝑤=1

𝑥
𝑗𝑚𝑤

1𝑘1
= 1 (3.4b)

𝐿−1∑︁
𝑖=1

𝐻∑︁
𝑘=1

𝐻∑︁
𝑚=1

𝑉∑︁
𝑔=1

𝑥𝐿𝑚1

𝑖𝑘𝑔
= 1 (3.4c)

𝐿−1∑︁
𝑖=1

𝐻∑︁
𝑘=1

𝐻∑︁
𝑚=1

𝑉∑︁
𝑔=1

𝑉∑︁
𝑤=1

𝑥
𝑗𝑚𝑤

𝑖𝑘𝑔
≤ 1 ∀𝑗 ∈ {2, ..., 𝐿} (3.4d)

𝐿−1∑︁
𝑖=1

𝐻∑︁
𝑘=1

𝑉∑︁
𝑔=1

𝑥
𝑗𝑚𝑤

𝑖𝑘𝑔
−

𝐿∑︁
𝑜=2

𝐻∑︁
𝑝=1

𝑉∑︁
𝑞=1

𝑥
𝑜𝑝𝑞

𝑗𝑚𝑤
= 0

∀𝑗 ∈ {2, ..., 𝐿 − 1}
∀𝑚 ∈ {1, ..., 𝐻 }
∀𝑤 ∈ {1, ...,𝑉 } (3.4e)

𝐿−1∑︁
𝑖=1

𝐿∑︁
𝑗=2

𝐻∑︁
𝑘=1

𝐻∑︁
𝑚=1

𝑉∑︁
𝑔=1

𝑉∑︁
𝑤=1

𝑥
𝑗𝑚𝑤

𝑖𝑘𝑔
𝑐
𝑗𝑚𝑤

𝑖𝑘𝑔
≤ 𝐶𝑚𝑎𝑥 (3.4f)

𝑢𝑖 − 𝑢 𝑗 + 1 ≤ (𝐿 − 1)
(
1 −

𝐻∑︁
𝑘=1

𝐻∑︁
𝑚=1

𝑉∑︁
𝑔=1

𝑉∑︁
𝑤=1

𝑥
𝑗𝑚𝑤

𝑖𝑘𝑔

)
∀𝑖, 𝑗 ∈ {1, ..., 𝐿} (3.4g)

65

3. Inertia-based Routing

𝑢1 = 1 (3.4h)

𝑢𝑖 ∈ {2, ..., 𝐿} ∀𝑖 ∈ {2, ..., 𝐿} (3.4i)

𝑥
𝑗𝑚𝑤

𝑖𝑘𝑔
∈ {0, 1} ∀𝑖, 𝑗 ∈ {1, ..., 𝐿}

∀𝑘,𝑚 ∈ {1, ..., 𝐻 }
∀𝑔,𝑤 ∈ {1, ...,𝑉 } (3.4j)

The objective of the presented mathematical programming formulation (3.4a) is to max-

imize the collected priorities. Constraint (3.4b) enforces that the start location is left in

any direction with the start velocity at rest whereas constraint (3.4c) enforces that the

end location is entered from any direction with the final velocity at rest. Constraint set

(3.4d) ensures that each location is entered at most once. Flow conservation is fulfilled

by constraint set (3.4e). These constraints also ensure that location 𝑙 𝑗 is left in the same

direction as it is entered as well as with the same velocity. Constraints (3.4f) ensure that

the maximum allowed flight time is not exceeded. To prevent subtours, we make use of the

subtour elimination constraints (3.4g), (3.4h) and (3.4i) which are formulated according to

the Miller-Tucker-Zemlin (MTZ) formulation [70]. Constraints (3.4j) enforce the decision

variable 𝑥
𝑗𝑚𝑤

𝑖𝑘𝑔
to be binary.

In Figure 3.4, we present the optimum solution of the KOP for the same problem instance

as presented for the DOP in Figure 3.1. The number of traversal velocities is set to

𝑉 = 6, and the number of traversal heading angles is set to 𝐻 = 8. The maximum flight

time budget is again set to 15 s. As the trajectory generation approach to determine the

edge costs between waypoints, we use TOP-UAV++. The maximum allowed velocity is

𝑣𝑚𝑎𝑥 = 3 m/s, and the maximum allowed acceleration is 𝑎𝑚𝑎𝑥 = 1.5 m/s
2
. In the given

figure, each waypoint 𝑙𝑖 except for the start and end waypoint is assigned a priority

𝑟𝑖 ∈ {10, 15, 20, 25, 30} which is indicated by the size of the associated blue markers. The

larger the marker, the higher the associated priority. The aggregated collected priorities

by the KOP solution sum up to 135. The maximum aggregated priority value that can be

collected in the given problem instance is 230.

Analogously to the KTSP defined in Section 3.2.1.2, the KOP model itself is independent of

the time-optimal trajectory generation approach developed in Section 2.4.4. In general, the

KOP can be defined for any inert system as long as a suitable trajectory planning approach

exists that allows precisely estimating the edge costs.

3.3. Heuristic Solution Frameworks

In this Section, we present the heuristic solution frameworks to solve the KTSP and KOP

presented in Sections 3.2.1.2 and 3.2.2.2. Both frameworks are based on the adaptive large

neighborhood search (ALNS) which was first introduced in [24] and utilizes an iterative

remove-and-insert procedure (see [93]). ALNS is a widely used metaheuristic solution

approach in routing problems and demonstrated to yield high-quality results (see e.g.

66

3.3. Heuristic Solution Frameworks

5 10
x in m

6

8

10

12

14

y
in

m

Start

End

Waypoint

0.0

0.5

1.0

1.5

2.0

2.5

3.0

V
el

oc
it

y
in

m
/s

Figure 3.4.: Example solution for the KOP. The total priorities sum up to 135.

the surveying articles [95, 94]). As we state in Section 3.1.2, developing and comparing

different heuristics solution approaches is out of the scope of this work. Instead, we focus

on the development of heuristic solution approaches for the KTSP, but also the KOP, to

show that heuristic solution approaches are sufficient to exploit the advantage of the

mathematical KTSP and KOP models despite their higher complexity. For this purpose, we

use well-established ideas from the literature and modify them to fit the needs for solving

our kinematic version of the TSP and the OP.

The remainder of this section is as follows: First, we give the reader a brief introduction

to how the general ALNS metaheuristic works in Section 3.3.1. With these foundations

in mind, we start to introduce the operators used to remove and insert waypoints in a

current solution representation in Sections 3.3.2 and 3.3.3. These operators originate from

existing literature and are adapted for the needs of this work. Next, we make use of a

technique that is widely used in the literature on heuristic solution approaches for the

DTSP and DOP (see e.g. [78, 79, 22]), which is the optimization of the traversal heading

angles for each waypoint of a given sequence via dynamic programming (DP). Since the

KTSP and the KOP additionally consider the traversal velocity for each waypoint in a

sequence, we adapt this idea such that heading angles and velocities are considered. We

present our DP-based approach in Section 3.3.4. Next, at the end of each iteration of an

ALNS approach, it must be decided if the generated solution is used as the start solution

for the next iteration, or not. This decision can be automated by using acceptance criteria.

In Section 3.3.5, we briefly present three different acceptance criteria from the literature

and give a detailed introduction to one of them, namely the simulated annealing (SA),

since it significantly outperformed its competitors in preliminary experiments.

With the removal and insertion operators, as well as the DP traversal property optimization

and the acceptance criteria introduced, we present our ALNS-based solvers for the KTSP

(see Section 3.3.7) and the KOP (see Section 3.3.8) including the initial solution construction

in Section 3.3.6

67

3. Inertia-based Routing

Overall, in this Section, we develop heuristic solution approaches for new classes of routing

problems by composing existing ideas from the literature.

Note that our ALNS-based solvers depend on numerous hyperparameters, which affect

their performance. Hence, at the beginning of our computational study, we present the

hyperparameter optimization for our solvers (see Section 3.4.4).

3.3.1. The General ALNS Solution Framework

In this Section, we briefly introduce the foundations of the ALNS metaheuristic (see [24, 98,

94]). We selected ALNS as a heuristic solution framework since it is widely used especially

for routing problems (see [95]). In general, an ALNS is an extension of the classical large

neighborhood search (LNS) presented by [99]. The main idea of an LNS is to search through

the neighborhoods of a solution which are implicitly defined by applying simple but fast

heuristics that are applied to destroy and repair a solution [94]. This process is also known

as the ruin-and-recreate mechanism which is first discussed in [93]. In an LNS, the removal

and insertion heuristics, which implement the destroy and repair process, are selected

based on a static policy, which indicates the difference between LNS and ALNS. In contrast

to the LNS, an ALNS selects the removal and insertion heuristics based on a dynamically

adaptive routine, which ensures that heuristics that performed well in the past are more

likely to be selected in future iterations. This dynamic routine is realized using weights,

which are assigned to each removal and insertion heuristic. These weights are dynamically

updated during the search process and leveraged to select well-performing removal and

insertion heuristics in each iteration. Note that the additional complexity of the adaptive

weights adjustment is especially profitable when the best-performing heuristics change

during the search process (see [100]).

In the following, we present the general procedure of the ALNS illustrated by Algorithm 2.

The weights for the removal heuristics are further denoted as 𝛾R , the ones for the insertion
heuristics as 𝛾I . In this general introduction as well as in the remainder of this work, the

selection of removal and insertion heuristics is done via roulette-wheel selection using a

uniform distribution. The general algorithm of the ALNS metaheuristic works as follows.

First, the sets of insertion heuristics I and removal heuristics R are defined as well as

a feasible initial solution 𝑠 (see lines 1-3). Then the best solution is defined as the initial

solution and the weights for the selection of each heuristic are initialized with one (lines

4-5). Next, the optimization loop is entered in line 6 of the pseudocode. It starts by the

selection of a removal and insertion heuristic for the current iteration (see lines 7-8). The

probability 𝑃 (𝜆𝑖R) for selecting the 𝑖-th removal heuristic 𝜆𝑖R ∈ R is based on its associated

weight 𝛾 𝑖R and calculated as

𝑃 (𝜆𝑖R) =
𝛾 𝑖R∑

𝛾
𝑗

R∈𝛾R
𝛾
𝑗

R
. (3.5)

68

3.3. Heuristic Solution Frameworks

Algorithm 2: General procedure of the ALNS
1 Input: Set of insertion heuristics I
2 Input: Set of removal heuristics R
3 Input: A feasible initial solution 𝑠

4 𝑠best = 𝑠;𝛾I = (1, ..., 1);𝛾R = (1, ..., 1)
5 stop = false

6 while stop == false do
7 select removal heuristic 𝜆𝑖R ∈ R
8 select insertion heuristic 𝜆𝑖I ∈ I
9 𝑠new = 𝑠 .removal(𝜆𝑖R).insertion(𝜆

𝑖
I)

10 if accepted(𝑠new, 𝑠) then
11 𝑠 = 𝑠new

12 if 𝐽 (𝑠new) better than 𝐽 (𝑠best) then
13 𝑠best = 𝑠new

14 Update weights 𝛾I, 𝛾R
15 if stopping criterion met then
16 stop = true

17 return: 𝑠best

The probability 𝑃 (𝜆𝑖I) for selecting the 𝑖-th insertion heuristic 𝜆𝑖I is analogous. It is

determined as

𝑃 (𝜆𝑖I) =
𝛾 𝑖I∑

𝛾
𝑗

I∈𝛾I
𝛾
𝑗

I
. (3.6)

Then, the removal procedure using the selected removal heuristic is applied followed by

the insertion procedure to repair the solution based on the selected insertion heuristic as

given in line 9. Next, the acceptance criterion of the generated solutions is evaluated in

lines 10 - 11. If the new solution passes the acceptance criterion then it is defined as the

start solution for the next iteration. Next, it is evaluated if a new best solution is found

in lines 12-13. if this holds, the best solution found is updated. In line 14, the weights

𝛾I, 𝛾R are updated. This is mostly done by assessing if the heuristics used for the current

iteration contributed to finding a new best solution, an accepted solution, or a solution that

has not been found before to enhance exploration. Finally, a particular stopping criterion

is evaluated and in case it decides to stop, the termination of the ALNS is initiated and the

best solution found is returned (see lines 15-17).

In the following section, we present the removal and insertion operators that we utilize

for our ALNS solvers.

69

3. Inertia-based Routing

Removal heuristic Description KTSP KOP

MD Most distance

MAFT Most additional flight time

WA Worst angle

RW Random waypoint

RS Random sequence

LP Least priority

MR Most ratio

Table 3.1.: Overview of utilized removal heuristics.

3.3.2. Removal Heuristics

In this section, we present the removal heuristics that we use in our ALNS solvers. Among

the numerous removal heuristics that can be found in the literature, the heuristics we

present here provided good performance in preliminary computational experiments and

hence, are utilized for the ALNS frameworks to solve the KTSP and KOP in this work.

Note that a full study on the best composition of removal heuristics is out of the scope of

this work. An overview of the used removal heuristics is given in Table 3.1 together with

an indication if the corresponding heuristic is used to solve the KTSP, the KOP, or both.

In general, the removal heuristics that we apply are based on the assumption that during

the search process of the ALNS, there exist two sets of waypoints. The first one is an

ordered set that contains all waypoints in the exact order as they are visited. Therefore,

this ordered set represents the current solution that is to be executed by the UAV. The

second set is unordered and contains the waypoints not visited in the current solution.

The task of the removal heuristic is to select a waypoint that has to be removed from the

current solution to the unordered set of unvisited waypoints.

One important aspect is the termination of the removal process. In this work, we define

the number of waypoints that have to be removed from the current solution representation

a-priori. More details on how this number is determined are given in Sections 3.3.7 and

3.3.8.

In the following, we present all removal heuristics applied in this work.

MD removal:
→Usage: KTSP
The Most Distance (MD) removal heuristic recurrently removes the waypoint from the

current solution, where the associated sum of Euclidean distances to its adjacent waypoints

is highest. The MD removal operator can be found e.g. in [101] and corresponds to the

class of "worst removal" operators which are described in [98]. Worst removal operators

have been applied in numerous ALNS approaches in different routing problem domains

(see [101, 98, 11, 102, 24]).

70

3.3. Heuristic Solution Frameworks

MAFT removal:
→Usage: KTSP
The Most Additional Flight Time (MAFT) removal determines the sum of flight times

required to connect a particular waypoint with its adjacent waypoints with fixed traversal

properties, and subtracts the flight time required to directly connect its predecessor with its

successor. The resulting value represents the additional flight time required to incorporate

the associated waypoint at its current position into the tour. This procedure is conducted

for all waypoints in the tour. The waypoint with the most additional flight time is then

removed from the current solution representation. This removal operator also corresponds

to the class of "worst removal" operators (see [101, 98, 11, 102, 24]). Note that the MAFT

removal represents the counterpart of the LAFT insertion heuristic which we introduce in

Section 3.3.3.

WA removal:
→Usage: KTSP, KOP
The Worst Angle (WA) removal is based on a metric, that estimates if a waypoint is placed

well (i.e. can be connected efficiently) between its predecessor and successor. This metric

evaluates the angle∠(𝑖−1, 𝑖, 𝑖+1) ∈ [0, 𝜋] that spans between the arc between the (𝑖−1)-th
and the 𝑖-th waypoint and the arc between the 𝑖-th and the (𝑖+1)-th waypoint and assumes

that acute angles correspond to inefficient motions. Overall, this metric is evaluated for all

waypoints in the current solution representation excluding the start and end waypoints.

The waypoint 𝑙𝑖 that is associated with the acutest angle is removed. A similar type of

insertion heuristic is introduced in [11]. WA removal is another implementation of the

"worst removal" operators class that is widely used in the literature (see e.g. [101, 98, 11,

102, 24]).

RW removal:
→Usage: KTSP, KOP
The Random Waypoint (RW) removal randomly selects a waypoint from the current

solution and removes it. Random removal operators are widely used in many different

domains (see[101, 98, 11, 102, 24, 103]) to enhance the exploration of the solution space.

RS removal:
→Usage: KTSP, KOP
Given the number of 𝑛 ∈ N waypoints that are allowed to be removed in the current

removal process, the Random Sequence (RS) heuristic randomly selects a number 𝑛̂ from

the integer interval [1, ..., 𝑛] from a uniform distribution. Further, a seed position in the

current solution is selected randomly based on a uniform distribution. Starting from this

seed position the 𝑛̂ consecutive waypoints are removed in a batch. For the KTSP case, the

seed position can be arbitrarily selected among all positions of waypoints in the current

solution representation. In the KOP case, the seed position is randomly selected within

the integer interval [2, ..., 𝑁 − 𝑛̂]. Here, 𝑁 denotes the number of waypoints visited in

the current solution representation. The waypoint at position 1 is excluded and cannot

be removed since it represents the given start waypoint. This analogously holds for the

waypoint at positions > 𝑁 − 𝑛̂ since that would imply removing the given end waypoint.

Random sequence removal operators are used e.g. in [104, 11].

71

3. Inertia-based Routing

LP removal:
→Usage: KOP
The Least Priority (LP) removal identifies the waypoint in the current tour assigned with

the lowest priority and removes it. If multiple waypoints with equal priority exist, then

the selection is made randomly among these minimum-priority waypoints based on a

uniform distribution. LP removal belongs to the class of "worst removal" operators that

are commonly used in the literature (see e.g. [101, 98, 11, 102, 24]).

MR removal:
→Usage: KOP
The Most Ratio (MR) removal calculates the additional flight time used for visiting a

particular based on its predecessor and successor. This means the sum of flight times of

reaching the given waypoint from its predecessor and reaching its successor from the

given waypoint is determined. Next, the flight time required for moving immediately from

the predecessor to the successor with their traversal properties fixed as in the current

solution is subtracted from this sum. This value represents the additional flight time

currently invested to visit the investigated waypoint. Finally, the ratio of the additional

flight time divided by the priority assigned to the given waypoint is determined. This

process is conducted for all waypoints in the current solution except for the start and end

waypoints. The waypoint with the highest ratio is removed since it represents the worst

trade-off between invested flight time and collected priorities. MR removal represents

the counterpart of the least ratio (LR) insertion which we introduce in Section 3.3.3 and

belongs to the class of "worst removal" operators (see e.g. [101, 98, 11, 102, 24]).

3.3.3. Insertion Heuristics

Analogously to Section 3.3.2, we introduce the insertion heuristics that performed best in

preliminary computational experiments in this section. An overview of all used insertion

heuristics in this work is given in Table 3.2. For each insertion heuristic given, we further

indicate if the heuristic is used to solve the KTSP, the KOP, or both.

In contrast to the removal heuristics introduced in Section 3.3.2, the task of the insertion

heuristics is to move waypoints from the unordered set of unvisited waypoints to a

potentially good position in the ordered set of visited waypoints. The terminology "good"

corresponds to the desire to yield a new best solution at the end of the insertion process.

In the KTSP case, the insertion process stops when the set of unvisited waypoints is empty.

In the KOP case, the insertion process stops when no further waypoint can be inserted into

the tour without violating the maximum flight time budget, or when the set of unvisited

waypoints is empty.

In the following, all insertion heuristics developed for this work are introduced.

RW insertion:
→Usage: KTSP, KOP
The RandomWaypoint (RW) insertion randomly selects a waypoint of the set of unvisited

waypoints and greedily inserts it into the current solution at the position where it can

72

3.3. Heuristic Solution Frameworks

Insertion heuristic Description KTSP KOP

RW Random waypoint

LAFT Least additional flight time

MP Most priority

LR Least ratio

Table 3.2.: Overview of utilized insertion heuristics for the ALNS for the KTSP and the KOP.

be visited with the overall minimum additional flight time. This means that the selected

waypoint is evaluated between each consecutive waypoint pair in the current solution,

which is represented by the current ordered set of waypoints. For each possible insertion

position, the optimum traversal velocity 𝑣 ∈ V and angle ℎ ∈ H is determined by

minimizing the additional flight time. In the end, the waypoint is inserted with a velocity

and angle configuration between the best-fitting consecutive waypoints such that the

overall required additional flight time is minimized. For the KOP case: If the sum of

the additional required flight time for the insertion and the total duration of the current

solution exceeds the maximum flight time budget, no feasible insertion is found and the

insertion process for the ALNS-iteration terminates. RW insertion is also used analogously

in different routing problems (see e.g. [104])

LAFT insertion:
→Usage: KTSP, KOP
The Least Additional Flight Time (LAFT) insertion is similar to the RW-insertion, but

conducted for all unvisited waypoints. Hence, it is more powerful but also more time-

consuming. The one waypoint among all unvisited waypoints that can be inserted into the

current trip with minimum additional flight time is inserted at the corresponding position.

Again, if the resulting total trip duration exceeds the maximum flight time budget of the

KOP, no insertion is conducted and the insertion process of the current ALNS iteration

terminates. LAFT insertion belongs to the general class of "greedy insertion" heuristics

(see e.g. [98, 104, 11, 102])

MP insertion:
→Usage: KOP
The Most Priority (MP) insertion heuristic determines a subset of waypoints from the

set of unvisited waypoints that are assigned the highest priority. For each waypoint in

this subset containing the unvisited highest priority waypoints, the best position in the

current solution representation is determined which enables the insertion of the associated

waypoint into the tour with minimum additional flight time while simultaneously ensuring

that the resulting total mission duration does not exceed the maximum flight time budget.

In the end, the highest-priority waypoint that can be feasibly inserted with minimum

additional flight time into the solution is inserted at the best-fitting position. If no feasible

insertion is found, then the insertion process of the current ALNS iteration terminates.

MP insertion is also part of the class of "greedy insertion" heuristics (see e.g. [98, 104, 11,

102])

73

3. Inertia-based Routing

LR insertion:
→Usage: KOP
The Least Ratio (LR) insertion iterates over all unvisited waypoints. For each waypoint, it

determines the minimum additional flight time to feasibly insert the waypoint into the

current solution. If the waypoint cannot be inserted without violating the maximum flight

time budget, then the corresponding candidate is excluded from the insertion process.

Next, the ratio of the minimum additional flight time divided by the associated priority is

determined. This ratio serves as a metric quantifying the trade-off of investing additional

flight time and the priorities collected by this investment. A low ratio represents that a

high-priority waypoint can be inserted into the current solution by investing low additional

flight time. If no feasible insertion can be found, then no insertion is conducted and the

insertion process of the current ALNS iteration terminates. LR insertion is also part of the

class of "greedy insertion" heuristics (see e.g. [98, 104, 102]). The explicit consideration of

the ratio between the additionally collected priorities and invested flight time can be seen

e.g. in [11].

3.3.4. Waypoint Traversal Optimization via Dynamic
Programming

Due to inertia, the quality of the insertion of a new waypoint into the current solution, i.e.

an ordered set of waypoints, does not simply depend on the traversal angle and velocity

of the inserted waypoint itself but also on the traversal properties of its predecessors and

successors. Hence, the optimum traversal velocity and heading angles of each waypoint

in the tour can change after each insertion. Therefore, we aim to ensure optimality in the

traversal properties of each waypoint in the solution by using dynamic programming (DP).

Due to its computational efficiency, this approach is commonly used in the literature on

related routing problems using the Dubins vehicle (see [22, 78, 79]).

Assume a new waypoint 𝑙𝑖 ∈ L is inserted into an existing sequence of waypoints. The

first and last waypoints are assumed to be traversed with a predefined and immutable

traversal property. All other waypoints can be traversed at an arbitrary heading angle

ℎ ∈ H and an arbitrary velocity 𝑣 ∈ V . The problem at hand is how to travel from the start

to the end waypoint by traversing the given sequence of waypoints in exactly the given

order with minimum time. The underlying problem represents a shortest path problem

with the associated search graph given in Figure 3.5. In the graph the start node is defined

by a fixed heading angle and velocity ℎ𝑠, 𝑣𝑠 . Beginning with the start node, it has to be

decided how to traverse each waypoint in the sequence of waypoints among all possible

combinations of ℎ𝑖 ∈ H , 𝑣𝑖 ∈ V until the final waypoint is visited with a fixed heading

angle and velocity ℎ𝑒, 𝑣𝑒 .

To understand the behavior of the DP approach used to solve this problem, one essential

expression is introduced in Equation (3.7) which is also known as the Bellman equation

and which was first presented in [105]. Generally speaking, it describes that the optimal

costs to reach a certain node in the graph are determined based on the optimal costs

74

3.3. Heuristic Solution Frameworks

to reach its predecessor and the cost of reaching the given node from that particular

predecessor. In this context, a node is represented by a tuple (𝑖, ℎ, 𝑣). These nodes are
described by the identifier 𝑖 specifying the 𝑖-th waypoint in a given sequence of waypoints,

the heading angle ℎ ∈ H , and the velocity 𝑣 ∈ V . The costs 𝑐𝑖ℎ𝑣(𝑖−1)𝑘𝑔 to move between

nodes (𝑖 − 1, 𝑘, 𝑔) and (𝑖, ℎ, 𝑣) represent the required flight times which we determined

by using TOP-UAV++ trajectory planner. The optimal costs to reach the node (𝑖, ℎ, 𝑣) are
calculated by

𝑐𝑜𝑠𝑡𝑠∗(𝑖, 𝑣, ℎ) = min

𝑘=1,...,𝐻
𝑔=1,...,𝑉

{
𝑐𝑜𝑠𝑡𝑠∗(𝑖 − 1, 𝑘, 𝑔) + 𝑐𝑖ℎ𝑣(𝑖−1)𝑘𝑔

}
. (3.7)

Analogously, the optimal traversal property required to reach node (𝑖, ℎ, 𝑣) from its prede-

cessor waypoint can be obtained by solving

𝑢∗(𝑖, 𝑣, ℎ) = argmin

𝑘=1,...,𝐻
𝑔=1,...,𝑉

{
𝑐𝑜𝑠𝑡𝑠∗(𝑖 − 1, 𝑘, 𝑔) + 𝑐𝑖ℎ𝑣(𝑖−1)𝑘𝑔

}
. (3.8)

With Equations (3.7) and (3.8) introduced, we now present the dynamic programming

procedure used to optimize the traversal properties of a given sequence of waypoints. This

procedure is shown in the Algorithm 3.

In the first step, starting with the given traversal properties of the start waypoint, we

determine the optimal cost to reach the nodes specified with 𝑖 = 1 and all of its possible

traversal configurations by calculating the time optimal trajectory duration between each

node pair. For each of these nodes, the optimal traversal properties of its predecessor are

assigned the immutable traversal property of the start node.

In the second step, we exploit that iteratively the optimal costs to reach all of the possible

predecessors of the nodes specified with 𝑖 ∈ {2, ..., 𝐿 − 1} are determined in the previous

iteration. Hence, to determine the optimal cost to reach node (𝑖, ℎ, 𝑣) Equation (3.7) has

to be applied. The optimal traversal properties required at waypoint 𝑖 − 1 to reach node

(𝑖, ℎ, 𝑣) are calculated using Equation (3.8).

The third step is similar to the second step. However, since the last waypoint 𝐿 is assigned

an immutable traversal property, Equations (3.7) and (3.8) have to be applied only once

once to obtain the optimal costs to reach that very last node and to obtain the optimal

traversal properties of its predecessor waypoint 𝐿 − 1. Note that the third step can be

interpreted as a special case of the second step with only a single node given.

At this point, the optimal traversal properties of each node in the sequence of waypoints

can be obtained by iterating over all 𝑢∗(𝑖, 𝑣, ℎ) backward. This means that beginning

from the last node and in a recurrent manner, the traversal properties of the predecessor

waypoint are investigated which specify the preceding node. This process is repeated

until the start node is reached and the optimal traversal property of the entire sequence

75

3. Inertia-based Routing

Algorithm 3: Dynamic programming

1 //1st step: initialize first free configuration

2 for ℎ = 1, ..., 𝐻 : do
3 for 𝑣 = 1, ...,𝑉 : do
4 costs

∗(1, ℎ, 𝑣) = 𝑐1ℎ𝑣
𝑠,𝑘0,𝑔0

5 u
∗(1, ℎ, 𝑣) = (𝑘0, 𝑔0)

6 //2nd step: run through the entire sequence

7 for 𝑖 − 1 = 1, ..., 𝐿 − 1: do
8 for ℎ = 1, ..., 𝐻 : do
9 // successor heading

10 for 𝑣 = 1, ...,𝑉 : do
11 // successor velocity

12 𝑐𝑜𝑠𝑡𝑠∗(𝑖, ℎ, 𝑣) = min𝑘=1,...,𝐻
𝑔=1,...,𝑉

{
𝑐𝑜𝑠𝑡𝑠∗(𝑖 − 1, 𝑘, 𝑔) + 𝑐𝑖ℎ𝑣(𝑖−1)𝑘𝑔

}
13 𝑢∗(𝑖, ℎ, 𝑣) = argmin𝑘=1,...,𝐻

𝑔=1,...,𝑉

{
costs

∗(𝑖 − 1, 𝑘, 𝑔) + 𝑐𝑖ℎ𝑣(𝑖−1)𝑘𝑔
}

14 //3rd step: last node

15 𝑐𝑜𝑠𝑡𝑠∗(𝐿,ℎ𝐿, 𝑣𝐿) = min𝑘=1,...,𝐻
𝑔=1,...,𝑉

{
𝑐𝑜𝑠𝑡𝑠∗(𝐿 − 1, 𝑘, 𝑔) + 𝑐𝐿ℎ𝐿𝑣𝐿(𝐿−1)𝑘𝑔

}
16 𝑢∗(𝐿,ℎ𝐿, 𝑣𝐿) = argmin𝑘=1,...,𝐻

𝑔=1,...,𝑉

{
costs

∗(𝐿 − 1, 𝑘, 𝑔) + 𝑐𝐿ℎ𝐿𝑣𝐿(𝐿−1)𝑘𝑔

}
17 // 4th step: reconstruct solution from back

18 updateHeadingAnglesAndVelocities()

Figure 3.5.: Visualization of the graph for the DP approach.

of waypoints is determined. In line 18 of Algorithm 3 this process is abbreviated as

updateHeadingAnglesAndVelocities().

Note that we use the DP approach presented in Algorithm 3 in two different ways. First, we

use it to optimize the heading angles and velocities of all visited waypoints. This use case

is further referred to as global DP optimization of the traversal properties. However, since

we assume that the impact of inserting a new waypoint into an existing sequence only

76

3.3. Heuristic Solution Frameworks

affects its immediate neighbors in the sequence, we also use the DP algorithm to locally

optimize the traversal properties for the 𝜂 ∈ N immediate successors and predecessors.

Analogously, this use case is further referred to as local DP optimization of the traversal

properties. In Sections 3.4.4.1 and 3.4.4.2, we derive proper values of 𝜂 for the KTSP and

the KOP via hyperparameter optimization.

3.3.5. Acceptance Criteria

One crucial element in applying metaheuristics to solve combinatorial optimization prob-

lems such as the KTSP and the KOP is the acceptance of solutions for future iterations.

This means the following: in each iteration of the ALNS solution process, a new solution

is generated based on an existing one. This new solution serves as a starting point for the

next iteration, i.e. for the removal and insertion process, if it is accepted. Otherwise, the

previous solution serves as a starting point again.

The set of potential acceptance criteria is manifold and each criterion differently affects

e.g. the exploration of the solution space, or the ability to escape local optima.

In this section, we briefly introduce the acceptance criteria that have been investigated in

this work. These are simulated annealing, hill climbing and tabu search. Since preliminary

results showed that the simulated annealing approach significantly outperformed the hill

climbing and tabu search approach, we describe the simulated annealing approach more

deeply.

Simulated annealing:
Simulated annealing is the most sophisticated acceptance criterion used in this work. It

is inspired by statistical mechanics, that investigates “[...] the behavior of a system with

many degrees of freedom in the thermal equilibrium of a finite temperature [...]” (see

[106]). Based on the difference of the objective function values 𝐽 of the current solution 𝑠𝑘
and a new candidate solution 𝑠𝑘+1 and a fictional temperature parameter 𝜏𝑘 the acceptance

probability 𝑃𝐴 of the new solution 𝑠𝑘+1 for the next iteration is determined for minimization

and maximization problems as follows:

𝑚𝑖𝑛 : 𝑃𝐴 = 𝑒
− 𝐽 (𝑠𝑘+1)− 𝐽 (𝑠𝑘)

𝜏𝑘 (3.9)

𝑚𝑎𝑥 : 𝑃𝐴 = 𝑒
𝐽 (𝑠𝑘+1)− 𝐽 (𝑠𝑘)

𝜏𝑘 (3.10)

If 𝑃𝐴 is greater than 1, then 𝑃𝐴 = 1 is set. Starting from a start temperature 𝜏0, the

temperature of the (𝑘 + 1)-th iteration 𝜏𝑘+1 is determined as 𝜏𝑘+1 = 𝜗 · 𝜏𝑘 , whereas for the
cooling parameter 𝜗 ∈ R holds 0 ≤ 𝜗 ≤ 1.

A common approach to cope with problem instances of different sizes, i.e. with different

numbers of waypoints, is to define the start temperature by utilizing the objective value

of the initial solution and a start temperature control parameter (see [98]). With this

approach, the start temperature is defined in a way that a new solution is accepted with a

77

3. Inertia-based Routing

probability 50% if it is 𝜔 times worse than the initial solution. From Equation (3.9), we

derive

𝑒
−𝜔 · 𝐽 (𝑠

0
)

𝜏
0 = 0.5 (3.11)

−𝜔 · 𝐽 (𝑠0) = 𝑙𝑛(0.5) · 𝜏0 (3.12)

𝜏0 = −
𝜔 · 𝐽 (𝑠0)
𝑙𝑛(0.5) , (3.13)

where 𝜔 represents the start temperature control parameter, 𝐽 (𝑠0) represents the objective
value of the initial solution, and 𝜏0 represents the start temperature of the simulated

annealing process. We determine the start temperature control parameter 𝜔 and cooling

parameter 𝜗 as part of a hyperparameter optimization as described in Section 3.4.4.

Preliminary results showed that the simulated annealing approach significantly outper-

formed the hill climbing and the tabu search approach. Further, many ALNS approaches

found in the literature rely on SA as an acceptance criterion. Examples can be found in

[11, 98, 24, 102, 101, 103]. Therefore, in the future course of this work, only the simulated

annealing approach considering the start temperature control mechanism is used.

Hill climbing:
One of the simplest acceptance criteria considered in this work is denoted as hill climbing

(see e.g. [107]). It defines, that the solution generated in the current iteration is accepted

as the start solution of the next iteration if and only if the new solution is the best solution

found so far. This procedure implicitly comes at the risk of getting stuck in local optima in

non-convex optimization problems. Compared to the SA acceptance criterion, hill climbing

performed significantly worse in preliminary experiments. Therefore, the hill climbing

acceptance criterion is not pursued any further in this work.

Tabu search:
The tabu search acceptance criterion (see [107, 108]) aims at diversification of the search

process rather than directly considering the objective function values of new solutions.

With this philosophy, tabu search is the counterpart of the hill climbing approach. Each

time a new solution candidate is found it is checked whether the new solution has already

been visited in the search process before. This is usually done by storing the hash values

of each solution in the so-called tabu list. If the hash value of a new solution is not found

in the tabu list, then the new solution is used as a starting point for the next iteration

and its hash is inserted into the tabu list. Otherwise, the new solution is rejected and the

search process starts again with the previous solution as the start solution. To not block

the search for good solutions in potentially profitable areas of the solution space, the tabu

list is assigned a maximum length and implements the first-in-first-out (FIFO) principle.

This means that solutions that were found early in the solution process and hence blocked

for further investigation are allowed to be reentered in the future. Again, compared to the

SA acceptance criterion, also tabu search performed significantly worse in preliminary

experiments. Hence, the tabu search acceptance criterion is not further pursued in the

remainder of this work as well.

78

3.3. Heuristic Solution Frameworks

3.3.6. Multistart Initial Solution Construction

In this section, we present our algorithm to construct an initial solution. The algorithm is

based on the idea of a multistart approach, which is a widely used concept in mathematical

optimization to enhance diversification in solution space exploration and to escape local

optima (see e.g. [109]). For both, the KTSP and the KOP, the initial solution is constructed by

applying Algorithm 4. The only structural difference between applying Algorithm 4 for the

KTSP and the KOP is the termination criterion of the insertion process which is explained

in detail throughout this section. As an input, the algorithm receives a set of insertion

heuristics I (see line 1). For the KTSP this set is represented by I = {𝑅𝑊(10), 𝐿𝐴𝐹𝑇 } and
for the KOP it is I = {𝑅𝑊(10), 𝐿𝐴𝐹𝑇,𝑀𝑃, 𝐿𝑅}. Here, to exploit the exploration capability

and computational efficiency of the 𝑅𝑊 insertion, we append the 𝑅𝑊 insertion heuristic

ten times to I for both, the KTSP and the KOP. Next, a list is generated in which the

constructed solutions are being stored (line 2). Note that a solution is represented as an

ordered set of waypoints, each with traversal heading angle and velocity specified. Then,

for each insertion heuristic 𝜆𝑖I ∈ I a construction process is conducted (see line 3). This

process starts by creating an empty solution (see line 4) that serves as a starting point for

inserting waypoints. For the KTSP, the empty solution is represented as a list where the

first waypoint defined in the problem instance is inserted as the first and last element.

Throughout the entire solution construction process for the KTSP, both waypoints are

identical in terms of their heading angle and velocity as they represent the same physical

waypoint. Note that in general, an arbitrary waypoint can be used as the first/last waypoint

since the solution of the KTSP must traverse each waypoint. For the KOP, the start and

end waypoints of the associated problem instance are used and inserted into the empty

solution with a traversal velocity of 0m/s. This corresponds to our definition for the KOP

where the start and the end waypoint are to be visited at rest (see Section 3.2.2.2). Further,

for the start and end waypoint, the heading angle is set to zero since at a velocity of 0m/s

and on an infinitesimal scope, the heading angle does not affect the time-optimal trajectory

duration.

In line 5, the construction process is started and proceeds until no further valid insertion

can be found. Each iteration of the while loop considers all unvisited waypoints, iden-

tifies the insertion decision according to the selected insertion heuristic and inserts the

corresponding waypoint with traversal properties as determined by the insertion heuristic

into the current solution representation (see lines 6-8). In general, all unvisited waypoints

can be inserted between all waypoints of the current solution but not as the first and last

one. For the KTSP, the insertion process terminates when the set of unvisited waypoints

is empty. For the KOP, the insertion process terminates when either the set of unvisited

waypoints is empty, or when the associated insertion heuristic cannot find another inser-

tion that does not violate the maximum flight time budget 𝐶𝑚𝑎𝑥 . This behavior is encoded

in lines 7, 9, and 10.

For the KTSP as well as the KOP, the waypoints are inserted heuristically with locally

optimal traversal properties as defined by the insertion heuristics (see Section 3.3.3). Here,

local optimality refers to that the traversal properties of the predecessor and successor are

79

3. Inertia-based Routing

Algorithm 4:Multistart initial solution construction for KTSP and KOP

1 Input: Set of insertion heuristics I
2 initialSolutionCandidates← { }
3 for 𝜆𝑖I ∈ I do
4 s← Solution.empty()

5 while true do
6 insertionDecision← getBestInsertionDecision(s, 𝜆𝑖I)

7 if insertionDecision.isValid() then
8 s.apply(insertionDecision)

9 else
10 break;

11 s.optimizeTraversalPropertiesByDP()

12 initialSolutionCandidates.append(s)

13 return: getBestSolution(initialSolutionCandidates);

fixed to the associated values before the insertion and the inserted waypoint’s traversal

properties are optimized with regard to the fixed predecessor and successor using full

enumeration. With this in mind, the global dynamic programming optimization approach

presented in Section 3.3.4 is applied once to each initial solution candidate right after the

insertion process terminates. This step is specified in line 11 of Algorithm 4. For the KOP,

this dynamic programming procedure is straightforward, since the traversal properties of

the start and end waypoint are defined a-priori and classified as immutable. Therefore, the

DP solver presented in Section 3.3.4 yields global optimality of the traversal properties of

each waypoint in the given waypoint sequence.

However, this does not hold for the KTSP since all waypoints can be traversedwith arbitrary

traversal properties including the starting waypoint which, however, must have the same

traversal properties as the last waypoint in the current solution representation. Leaving

the traversal properties of the first and last waypoint fixed to the value assigned to them

at the construction of the empty solution would likely yield a time-suboptimal solution.

Therefore, the dynamic programming approach must be performed for any possible

combination of traversal heading angles and traversal velocities of the start/end waypoint

synchronization. This approach would require 𝐻 ·𝑉 runs of the global DP optimization

approach which empirically proved to be computationally very expensive. Therefore,

for the KTSP and only for the KTSP, we apply the following two-step approach. First,

the dynamic programming approach is conducted with the currently specified traversal

properties of the first waypoint and last waypoint in the current solution representation.

Then, right after this global DP optimization on the current solution, we conduct a second

local DP optimization where the traversal properties of the first/last waypoint in the

solution and its 𝜂 predecessors and successors are optimized. This procedure demonstrates

to yield very good results and is computationally cheap.

The above-described steps are conducted for all insertion heuristics 𝜆𝑖I ∈ I. In the end,

the overall best solution found among all used insertion heuristics is classified as the initial

80

3.3. Heuristic Solution Frameworks

solution and used for further optimization in the subsequent adaptive large neighborhood

search (see Sections 3.3.7 and 3.3.8).

3.3.7. Adaptive Large Neighborhood Search for the KTSP

In the following, we present our adaptive large neighborhood (ALNS) approach to solve

the KTSP and the KOP which consists of two stages and is applied immediately after

the initial solution is constructed (see Section 3.3.6). The first stage of our ALNS aims at

exploring the solution space widely to find profitable solutions. This is done by allowing

large parts of the solution to be destroyed. In the second stage, the best solution found by

the first stage serves as a starting point for a rather local optimization. The second stage

is based on the idea that even better solutions could exist close to the best solution found

during the first stage.

In general, our ALNS receives a set of insertion heuristics I and removal heuristics R as

input. Further, a feasible initial solution which is produced by the construction heuristic

(see Algorithm 4) and a computation time limit CT𝑚𝑎𝑥 (s) are given. Since we apply a

simulated annealing acceptance criterion, the start temperature is given as an input as

well. The value of this parameter is determined based on the objective value of the initial

solution as described in more detail in Section 3.3.5.

Next, we focus more deeply on the structure of our two-step approach. The share of

computation time for the first step 𝑠𝑔, which corresponds to the global search phase, is

derived from the overall time limit CT𝑚𝑎𝑥 and determined via hyperparameter tuning

(see Section 3.4.4). Analogously, the share of computation time for the second step is

1 − 𝑠𝑔. In this two-stage process, the best solution found in the first stage serves as a

start solution for the second stage. When the second improvement phase terminates, the

overall best solution found is returned. Note that both improvement stages follow the same

structure. They only differ in their computation time limit CT𝑚𝑎𝑥 and the allowed range of

destruction, i.e. the minimum and maximum number of waypoints to be removed from the

current solution during the removal process of a single iteration. For each iteration, we

randomly select a real number that represents the concrete share of destruction from this

integer range. The destruction shares for the first and second search phases are different

and serve as hyperparameters that are described in more detail in Sections 3.4.4.1 and

3.4.4.1.

In the following, we give more insights into the improvement process of each stage. The

pseudocode of the improvement phase of the ALNS for the KTSP is given in Algorithm

5.

Each improvement phase is given an argument that distinguishes whether the solver

searches for better solutions globally or locally, i.e. if the first or the second stage is

executed. Further, the set of allowed insertion and removal heuristics that can be applied

is given. Moreover, a feasible start solution and the computation time limit CT𝑚𝑎𝑥 for the

entire optimization process of the ALNS are given (see lines 1-6). As the first command,

the current system timestamp is stored to evaluate the elapsed computation time of the

81

3. Inertia-based Routing

Algorithm 5: Improvement phase

1 Input:
2 - Search phase 𝑝 ∈ {”𝑔𝑙𝑜𝑏𝑎𝑙”, ”𝑙𝑜𝑐𝑎𝑙”}
3 - Set of insertion heuristics I
4 - Set of removal heuristics R
5 - A feasible initial solution 𝑠

6 - Computation time limit CT𝑚𝑎𝑥

7 startTime = getCurrentTime()

8 𝑠best = 𝑠,𝛾I = (1, ..., 1), 𝛾R = (1, ..., 1)
9 stop = false

10 weightUpdateCounter = 0

11 while stop == false do
12 if weightUpdateCounter ≥ weightUpdateCounterMax then
13 Update weights 𝛾I, 𝛾R
14 weightUpdateCounter = 0;

15 select removal heuristic 𝜆𝑖R ∈ R
16 select insertion heuristic 𝜆𝑖I ∈ I
17 destructionShare = rand(minShareDestr(𝑝),maxShareDestr(𝑝))

18 𝑠new = 𝑠 .removalPhase(𝜆𝑖R , destructionShare).insertionPhase(𝜆
𝑖
I)

19 if acceptedBySimulatedAnnealing(𝑠new, 𝑠 , 𝜆𝑖R , 𝜆
𝑖
I) then

20 𝑠new.optimizeTraversalPropertiesByDP()

21 if 𝐽 (𝑠new) < 𝐽 (𝑠best) then
22 𝑠best = 𝑠new

23 if getCurrentTime() - startTime > CT𝑚𝑎𝑥 · getComputationTimeShare(𝑝) then
24 stop = true

25 weightUpdateCounter++

26 return: 𝑠best

current search phase (line 7). Next, the weights for selecting the insertion heuristics 𝛾I
and removal heuristics 𝛾R are initialized with 1 and the best solution found in the process

is set to the start solution (line 8). To consider the average performance of the heuristics

selected, we further introduce the𝑤𝑒𝑖𝑔ℎ𝑡𝑈𝑝𝑑𝑎𝑡𝑒𝐶𝑜𝑢𝑛𝑡𝑒𝑟 and initialize it with zero. This

parameter specifies the number of iterations that are used for averaging the performance

of the individual heuristics (line 10).

The actual process for solution improvement is embedded into the while loop starting in

line 11. The while loop continuously iterates until a boolean flag enforces termination

when the current iteration exceeds the computation time limit.

The first routine checks if the weightUpdateCounter exceeds the maximum value (line

12). In this case, the accumulated scores that each heuristic collected on average during

the last 𝑤𝑒𝑖𝑔ℎ𝑡𝑈𝑝𝑑𝑎𝑡𝑒𝐶𝑜𝑢𝑛𝑡𝑒𝑟𝑀𝑎𝑥 iterations are used as new weights for the removal

and insertion heuristics and the weightUdateCounter is reset to zero again while the

accumulated scores for each heuristic are reset to one (lines 13-14). Following [24, 98, 94,

82

3.3. Heuristic Solution Frameworks

11], scores can be collected in three possible ways. First, if the pair of removal and insertion

heuristics selected for the current iteration finds a new best solution, then it collects a

score of 𝜎1. If the heuristic pair finds a solution that is worse than the best solution, but

better than the start solution of the current iteration and additionally has not been found

in previous iterations, then the associated removal and insertion heuristic collect a score

of 𝜎2. If the heuristic pair does neither find a new best solution nor a solution that is better

than the incumbent solution of the iteration, but the new solution has not been found

in previous iterations, then the two heuristics collect a score of 𝜎3. In all other cases, no

scores are collected.

In each iteration, the removal and insertion heuristics are selected randomly based on

the current weights of each heuristic (see lines 15-16). The probability 𝑃 (𝜆𝑖R) of selecting
removal heuristic 𝜆𝑖R is presented in Equation (3.5) while the probability 𝑃 (𝜆𝑖I) of selecting
insertion heuristic 𝜆𝑖I is given in Equation (3.6).

Next, the share of destruction to remove waypoints is selected (line 17). This process is

guided by two hyperparameters, namely𝑚𝑖𝑛𝑆ℎ𝑎𝑟𝑒𝐷𝑒𝑠𝑡𝑟 and𝑚𝑎𝑥𝑆ℎ𝑎𝑟𝑒𝐷𝑒𝑠𝑡𝑟 , which vary

depending on the search phase. Both values define an interval from which the share of

destruction in the current iteration is selected randomly based on a uniform distribution.

Then, depending on the selected destruction share and removal heuristic, a part of the

solution is destroyed and fully repaired with the previously selected insertion heuristic

(line 18). To improve the quality of each insertion of waypoints immediately after each

insertion of the insertion phase, we optimize the traversal properties of all waypoints at the

positions 𝑖 −𝜂, 𝑖 −𝜂 + 1, ..., 𝑖 +𝜂 − 1, 𝑖 +𝜂 of the current solution representation via the local

DP optimization approach presented in Section 3.3.4. Here 𝑖 denotes the position of the

newly inserted waypoint. The parameter 𝜂 is further denoted as the dynamic programming

horizon and it represents a hyperparameter that affects the overall performance of the

ALNS. More details on the hyperparameter 𝜂 are given in Section 3.4.4. In this process,

the waypoints at the locations 𝑖 − 𝜂 − 1 and 𝑖 + 𝜂 + 1 are considered as start and end nodes

of the dynamic programming procedure and their traversal properties are fixed. Note that

this local DP optimization is encoded in the insertion phase in line 18.

When no further insertion is possible, the creation of a new solution is finished and the

quality of that solution needs to be evaluated. Hence, in the first step, it is accessed via

the simulated annealing acceptance criterion presented in Section 3.3.5 if the solution

is accepted and serves as a starting point for the next iteration (see line 19). This step

also includes updating the temperature for the next iteration. If the solution is accepted,

the solution is classified as good enough to be investigated further and the global DP

optimization procedure is applied for the entire sequence of waypoints (see line 20). This

includes the post-optimization of the traversal attributes of the start and end waypoint

in the current solution representation as described in Section 3.3.6 for the KTSP. Note

that we only apply the global DP optimization to accepted solutions since this procedure

is computationally too expensive to be applied in each iteration. The objective value of

the newly generated solution is evaluated and compared with the current best solution

found in the next step (line 21). If with the new solution, a new best solution is found,

the best solution is updated (line 22). In any case, the new solution serves as the start

83

3. Inertia-based Routing

solution for the next iteration. As the last step, the termination criterion is evaluated and

the weightUpdateCounter is incremented (see lines 23-25). In this work, termination is

enforced when the elapsed time of the current improvement phase exceeds the maximum

computation time of the associated search phase 𝑝 . At termination, the algorithm returns

the best solution found.

3.3.8. Adaptive Large Neighborhood Search for the KOP

The ALNS for the KOP works almost identically to the ALNS procedure for the KTSP,

which is presented in the previous section. The major difference is that in the KOP case, the

objective is to maximize the collected priorities while a maximum travel time budget must

be considered. Hence the insertion procedure either ends when all unvisited waypoints

are inserted into the solution, or when the maximum flight time budget cannot be held for

any further insertion. Further, the KOP utilizes a different set of insertion and removal

heuristics as described in Sections 3.3.3 and 3.3.2. Lastly, the traversal properties of the

start and end waypoint are not post-optimized after the global DP procedure since they

are fixed to specific values a-priori as given in the associated problem instance.

3.4. Computational Study

In this section, we present the results of the computational study on our approaches to

solving inertia-based routing problems. We first present the general computational study

settings which are applied as default if not specified differently. Next, we shortly introduce

the problem instances, that we use within this work and present the performance indicators

we use to assess our proposed solution approaches.

With these general settings, we present the results of the hyperparameter optimization of

our ALNS approaches to solve the KTSP and the KOP. This is followed by an investigation

of our proposed approaches by benchmarking them against current solution approaches

from the literature. Here, we focus on the computational complexity, solution quality and

applicability to real-world problems.

3.4.1. General Computational Study Setup

All our experiments were run on an Intel(R) Core(TM) i7-8565U CPU with 16 GB of RAM.

MIP-based solutions are obtained by utilizing Gurobi 10.0.1 as a commercial general-

purpose solver implemented in Python 3.9 and assigned a computation time limit of

18000 s if not specified differently. Our ALNS solvers for the KTSP and KOP are imple-

mented in C++17 as a single-threaded executable. Both of our ALNS solvers are parameter-

ized using the best hyperparameters identified in our hyperparameter optimization which

we present in Section 3.4.4. As default, the ALNS approaches are assigned a maximum

computation time of either 30 s, 60 s , or 120 s.

84

3.4. Computational Study

To determine the edge costs for our KTSP and KOP models, i.e. to determine the travel

times between each waypoint pair with specified traversal heading angle and velocity, we

use the two-dimensional version TOP-UAV++ as default. If not specified differently, our

TOP-UAV++ trajectory planner generates trajectories with a maximum allowed velocity

of 3m/s and a maximum allowed acceleration of 1.5m/s
2
. These kinematic properties are

realistic values for surveillance and data collection applications using multirotor UAVs

for flights at lower altitudes (see e.g. [22, 37, 36]), as required for example in damage

detection of buildings. Further, if not specified differently, we set the number of traversal

heading angles 𝐻 = 8 and the number of traversal velocities 𝑉 = 6. As we derive in

Section 3.4.5.1, this combination offers a good trade-off between solution quality and

computational complexity.

3.4.2. Problem Instances

Here, we present the problem instances we use to evaluate our solvers for the KTSP and

the KOP and to compare them with solutions yielded by existing approaches from the

literature. As described in the following, we introduced problem instances for solution

quality benchmarking, hyperparameter optimization and computation time evaluation for

both, the KTSP and the KOP.

3.4.2.1. Problem Instances for Benchmarking - TSP Variants

As benchmark instances for considered variants of the TSP, we make use of the prob-

lem instances introduced in [110], further denoted as Tsiligirides dataset 1, 2, and 3.

These instances can be found online under https://www.mech.kuleuven.be/en/cib/op#

section-0. Originally, these datasets are designed for the orienteering problem. To be able

to evaluate the performance of our KTSP model and our associated solvers, we modified

these instances by relaxing the maximum travel budget and neglecting the priorities as-

signed to each waypoint. By this modification, each dataset is reduced to a single problem

instance. On these three problem instances, we apply spatial scaling factors from the set

{0.25, 0.5, 1.0, 2.0, 4.0} to each coordinate of each waypoint to these instances. The scaling

is applied to evaluate how well our KTSP model performs compared to SOTA models,

such as the DTSP, when the distances between waypoints get larger / lower while the

kinematic properties remain constant. We provide these problem instances as open source

on GitHub under [111].

In Table 3.3, we give an overview of the properties of all problem instances used for the

solution quality benchmarking purpose of the considered TSP variants. As can be seen for

the scaled Tsiligirides 1 problem instances, the area that contains all waypoints ranges

from 3.275m · 5.35m to 54.4m · 85.6m. The associated area for the Tsiligirides 2 problem

instances is slightly smaller for the corresponding scaling factor while the area of the

associated Tsiligirides 3 problem instances is slightly larger.

85

https://www.mech.kuleuven.be/en/cib/op#section-0
https://www.mech.kuleuven.be/en/cib/op#section-0

3. Inertia-based Routing

Basic instance 𝐿 Scaling factor Area

Tsiligirides 1 32 0.25 3.275m · 5.350m
0.5 6.550m · 10.700m
1.0 13.100m · 21.400m
2.0 26.200m · 42.800m
4.0 52.400m · 85.600m

Tsiligirides 2 21 0.25 2.825m · 3.300m
0.5 5.650m · 6.600m
1.0 11.300m · 13.200m
2.0 22.600m · 26.400m
4.0 45.200m · 52.800m

Tsiligirides 3 33 0.25 3.775m · 7.125m
0.5 7.550m · 14.250m
1.0 15.100m · 28.500m
2.0 30.200m · 57.000m
4.0 60.400m · 114.000m

Table 3.3.: Benchmark problem instances for TSP-variants as we provide them on GitHub under [111]. Here,

the name of the basic problem instances is given as well as the number of waypoints 𝐿, the scaling factor

and the area size in which the waypoints are located.

3.4.2.2. Problem Instances for Hyperparameter Optimization - KTSP

To conduct the hyperparameter optimization for our ALNS to solve the KTSP, we make

use of six different problem instances. These problem instances differ in the number of

waypoints they contain. Overall, the number of waypoints of these problem instances is

given by the set {10, 15, 20, 25, 30, 35}. For each problem instance, the 𝑥,𝑦 coordinates of

the waypoints are randomly sampled from a uniform distribution in the interval [0, 20] (m).
The interval length of 20m is selected since it approximately represents the spatial scale

of the problem instances described in Section 3.4.2.1 with a spatial scaling factor of 1.0.

We provide all problem instances for our hyperparameter optimization as open source on

GitHub under [112].

3.4.2.3. Problem Instances for Computation Time Evaluation - TSP Variants

To evaluate the required computation time of our MIP-based approach for the KTSP

and compare it with the corresponding approach for the DTSP, we solve 80 different

problem instances using each approach. The number of waypoints 𝐿 in each problem

instance ranges from ten to 40 with steps of two additional waypoints in between. For

each number of waypoints 𝐿, we generate five different problem instances where for

each problem instance the 𝑥,𝑦 coordinates of 𝐿 waypoints are randomly sampled from

a uniform distribution in the interval [0, 20] (m). Again, the interval length of 20m is

86

3.4. Computational Study

selected to enable a comparison with the problem instances which we describe in Section

3.4.2.1. We provide these problem instances as open source on GitHub under [113].

3.4.2.4. Problem Instances for Benchmarking - OP Variants

Analogously to the benchmark instances for the TSP variants, for the OP variants, we

make use of the problem instances introduced in [110], which can be found online under

https://www.mech.kuleuven.be/en/cib/op#section-0. The area inwhich eachwaypoint

of these problem instances is located corresponds to the area given in Table 3.3. For

Tsiligirides dataset 1 the priorities assigned to each waypoint excluding the start and the

end waypoint range from five to 15. For datasets 2 and 3 the priorities range from ten to

50. For all datasets, the start and end waypoints are assigned a priority of zero.

However, the problem instances of the original Tsiligirides datasets are hard to solve to

optimality by our MIP-based approach within the given computation time limit. Therefore,

we additionally modify the waypoints set of Tsiligirides dataset 2 by only using the first

15 waypoints. The first waypoint represents the start and the 15-th waypoint is the final

waypoint. To evaluate the impact of changing distances between the prioritized waypoints

on our solution approaches and the ones from the SOTA, we apply spatial scaling factors

from the set {0.25, 0.5, 1.0, 2.0, 4.0} to each coordinate of each waypoint of this reduced

waypoint set. We provide the scaled versions of the waypoint set derived from Tsiligirides

dataset 2 as open source on GitHub under [114]. The maximum flight time constraint

that complements these waypoint sets to an OP problem instance is described in the

corresponding parts of this work. The area in which each waypoint is located is given in

Table 3.4 with the corresponding spatial scaling factors. The priorities for the problem

instances of the reduced Tsiligirides dataset 2 range from ten to 40 except for the start and

end waypoints which are assigned a priority of zero.

Basic instance 𝐿 Scaling factor Area

Tsiligirides 2 - reduced 15 0.25 2.125m · 3.300m
0.5 5.500m · 4.250m
1.0 11.000m · 8.500m
2.0 22.000m · 17.000m
4.0 44.000m · 34.000m

Table 3.4.: Reduced Tsiligirides dataset 2 problem instances for OP-variants as we provide them on GitHub

under [114].

3.4.2.5. Problem Instances for Hyperparameter Optimization - KOP

To optimize the hyperparameters for our ALNS to solve the KOP, we design and use

six ordered sets of prioritized waypoints which we provide on GitHub under [115]. The

87

https://www.mech.kuleuven.be/en/cib/op#section-0

3. Inertia-based Routing

maximum travel time budget that complements these ordered sets of prioritized waypoints

to actual problem instances is given at the corresponding parts in the computational study.

These described waypoint sets differ in the number of waypoints they contain and which

is an element of the set {10, 15, 20, 25, 30, 35}. The 𝑥,𝑦 coordinates of each waypoint of

each ordered set of waypoints are sampled randomly in the interval [0, 20] (m) using a

uniform distribution. Each waypoint is assigned a random integer from the interval [1, 35]
as priority except for the start and end waypoints which are assigned a priority of zero.

Analogously to the KTSP case, the interval length of 20m is selected it approximately

represents the spatial scale of the problem instances described in Section 3.4.2.1 with a

spatial scaling factor of 1.0.

3.4.2.6. Problem Instances for Computation Time Evaluation - OP Variants

Our evaluation of the required computation time of our MIP-based approach for the KOP

in comparison with our MIP-based SOTA approaches is based on a total of 25 ordered

sets of prioritized waypoints. Again, for these sets, the maximum travel time budget is

specified at the corresponding parts of the computational study.

The number of waypoints in each waypoint set ranges from five to 25 with steps of five

additional waypoints in between. In this setup, five waypoint sets always contain the

same number of waypoints. The 𝑥,𝑦 coordinates of each waypoint 𝐿 in each ordered set

of prioritized waypoints are randomly sampled in the interval [0, 20] (m) using a uniform

distribution. Further, each waypoint is assigned a random integer from the interval [1, 9]
as priority except for the start and end waypoints which are assigned a priority of zero.

We provide these waypoint sets as open source on GitHub under [116].

3.4.3. Performance Indicators

In the following, we describe the indicators to assess the performance of all approaches

used in this work as well as the approaches from the SOTA. The performance indicators

that apply to both, the TSP variants including the KTSP and the OP variants including

the KOP, are summarized in Table 3.5. The problem-specific performance indicators are

presented in Sections 3.4.3.1 and 3.4.3.2.

The first performance indicator to be introduced is the MAE (mean absolute error). It

measures the averaged tracking error between the reference trajectory and the trajectory

obtained when tracking the reference by the MPC described in Appendix B.1. This MPC

is, on the one hand, assigned a time horizon of 𝑁 = 10 steps with a time step length of

Δ𝑇 = 0.1 s. Further, the maximum velocity and acceleration are considered as coupled for

the 𝑥 and 𝑦 axis and are constrained by the associated maximum norms of 𝑣𝑚𝑎𝑥 and 𝑎𝑚𝑎𝑥 .

As usual for MPC-based trajectory tracking, the trajectory tracking process of our MPC

utilizes the moving horizon principle by only applying the acceleration of the very first time

step of the optimized solution as control input. Then the kinematic equations are evaluated

88

3.4. Computational Study

based on this acceleration and the process of determining the optimal acceleration for the

next time step starts again. For our MAE performance indicator holds

MAE =
1

𝑛

𝑛∑︁
𝑖=1

√︃
(𝑝𝑟𝑒 𝑓

𝑥,𝑖
− 𝑝𝑚𝑝𝑐

𝑥,𝑖
)2 + (𝑝𝑟𝑒 𝑓

𝑦,𝑖
− 𝑝𝑚𝑝𝑐

𝑦,𝑖
)2, (3.14)

where 𝑝
𝑟𝑒 𝑓

𝑥,𝑖
, 𝑝

𝑟𝑒 𝑓

𝑦,𝑖
∈ R describes the reference position trajectory yielded by one of the

used planning approaches sampled at time 𝑖 · Δ𝑇 . Here, Δ𝑇 represents the discretized

time step length as explained in Appendix B.1. Further, 𝑝
𝑚𝑝𝑐

𝑥,𝑖
and 𝑝

𝑚𝑝𝑐

𝑦,𝑖
∈ R describe the

corresponding simulated position at the 𝑖-th time step of the MPC trying to track the

reference. Last, 𝑛 describes the number of time steps for the entire flight mission.

To assess the yielded solution quality of our MIP-based approaches to solve the DTSP,

KTSP, DOP, and KOP, we introduce the performance indicator Gap
MIP

as given in Table

3.5. This performance indicator describes the relative gap between the primal bound (PB),

which represents the best feasible solution found so far, and the dual bound (DB), which

represents the currently best bound on how good the global optimal solution can get. The

braces in the corresponding row in Table 3.5 describe that this equation holds for both,

the KTSP and the KOP.

As stated in Section 3.4.1, all MIP-based approaches are given a maximum computation

time limit of 18000 s as default. However, this time limit is not always entirely used, since an

optimal solution can be found in less computation time. To evaluate the computation time

consumption of the MIP-based approaches, we determine for lowest required computation

time for solving a set of closely related problem instances as CTLB and the highest required

computation time as CTUB. The average computation time is denoted as CT. Note in

case only a single problem instance is solved using a MIP-based approach, the required

computation time is also denoted as CT.

KPI Unit Description

MAE m Mean absolute error of the tracking

Gap
MIP

% Relative MIP gap |{}𝐷𝐵 − {}𝑃𝐵 |/{}𝑃𝐵
CTLB s Lowest computation time

CT s Single or averaged computation time

CTUB s Highest computation time

Table 3.5.: General performance indicators.

3.4.3.1. Performance Indicators for TSP-related Problems

To assess the performance of the approaches used to solve TSP variants within this work,

we introduce a set of specifically tailored performance indicators which are summarized

89

3. Inertia-based Routing

in Table 3.6. The main indicator isM𝑇 , which describes the minimum mission duration

found.

Further, to assess the performance of our ALNS approach in terms of yielded solution

quality specifically for the KTSP, we define a set of performance indicators that follow

up with the idea of a relative gap. We define the performance indicator Gap
ALNS

as the

relative gap between the solution yielded by our ALNS approach and the best solution

yielded by the corresponding MIP-based approach within a computation time limit of

five hours. Accordingly, Gap
ALNS

UB
describes the highest relative gap between the solutions

yielded by our ALNS approach and the corresponding MIP-based approach over multiple

problem instances. The performance indicator Gap
ALNS

LB
describes the lowest relative gap.

In cases where the ALNS yields a solution with a lower mission duration than yielded by

the MIP-based approach due to the computation time limit of the MIP-based approach,

the relative gap takes a negative value.

Moreover, we use the performance indicator Gap
MIP

SOTA
to evaluate the performance of a

particular SOTA approach compared to the best solution found by our MIP-based approach

within a computation time limit of five hours.

KPI Unit Description

M𝑇 s Required mission duration

Gap
ALNS

LB
% Lowest relative gap (KTSPALNS − KTSPPB)/KTSPALNS

Gap
ALNS

% Relative gap (KTSPALNS − KTSPPB)/KTSPALNS
Gap

ALNS

UB
% Highest relative gap (KTSPALNS − KTSPPB)/KTSPALNS

Gap
MIP

SOTA
% Relative gap (SOTA − KTSPPB)/KTSPPB

Table 3.6.: Performance indicators for TSP-related problems.

3.4.3.2. Performance Indicators for OP-related Problems

The performance indicators specifically tailored for variants of the OP are summarized in

Table 3.7 The main performance indicator considered in this work isM𝑃 . It measures the

sum of all priorities collected by visiting the associated waypoints within the given travel

time budget.

Moreover, in analogy to Section 3.4.3.1, we define Gap
ALNS

as the relative gap between the

total collected priorities yielded by our ALNS approach and the corresponding MIP-based

approach with a computation time limit of five hours. In case multiple problem instances

are considered, Gap
ALNS

LB
represents the lowest and Gap

ALNS

UB
the highest relative gap. If the

solution yielded by our ALNS collects more priorities within the given travel time budget

than the solution yielded by our MIP-based approach, the relative gap takes a negative

value. Note that the nomenclature of Gap
ALNS

, Gap
ALNS

LB
, and Gap

ALNS

UB
for the OP variants

90

3.4. Computational Study

is identical to the one for the TSP variant. We point out to the reader that these identifiers

must be interpreted problem-specifically for the rest of the work.

The performance index Gap
MIP

SOTA
is not specified for the KOP since there are no associated

experiments conducted.

KPI Unit Description

M𝑃 - Accumulation of collected priorities

Gap
ALNS

LB
% Lowest relative gap (KOPPB − KOP𝐴𝐿𝑁𝑆)/KOP𝐴𝐿𝑁𝑆

Gap
ALNS

% Relative gap (KOPPB − KOP𝐴𝐿𝑁𝑆)/KOP𝐴𝐿𝑁𝑆

Gap
ALNS

UB
% Highest relative gap (KOPPB − KOP𝐴𝐿𝑁𝑆)/KOP𝐴𝐿𝑁𝑆

Table 3.7.: Performance indicators for OP-related problems.

3.4.4. Hyperparameter Optimization

In this section, we present the optimization of the hyperparameters associated with our

ALNS solvers to solve the KTSP and the KOP. For the sake of comparability, we discretize

all hyperparameters with different discretization depths, as we specify in the following.

In general, the discretization of hyperparameters creates a hyperdimensional grid of

possible hyperparameter combinations. As we describe later on, there are intractably

many combinations and it would be computationally too expensive to consider all of them

for the hyperparameter optimization. However, in contrast to enlarging the discretization

steps of the hyperparameter grid to reduce the set of hyperparameter combinations, we

follow a random search approach on the associated grid. Random search is a simple but

effective approach for hyperparameter optimization and ‘[. . .] often has much better

performance than full grid search [. . .]’ (see [117]). This is explained in Figure 3.6, which

refers to a figure we extracted from [118]. Under the assumption that some parameters

are more important than others to achieve high solution quality, random search allows

sampling of these important parameters more densely.

In the following, we give detailed insights into the hyperparameter optimization of the

ALNS solution frameworks for the KTSP and the KOP.

3.4.4.1. Hyperparameter Optimization for the KTSP

Our ALNS to solve the KTSP depends on a set of tunable hyperparameters affecting

the performance. These hyperparameters can be divided into two groups. The first

group contains three parameters 𝜎1, 𝜎2, and 𝜎3 that are directly related to the general

ALNS solution framework and that specify its adaptiveness as described in the following

enumeration.

91

3. Inertia-based Routing

Figure 3.6.: Comparison of grid search and random search for hyperparameter optimization as given in

[118]. Random search allows the sampling of the important parameters more densely.

• 𝜎1: Score update of a removal/insertion pair of heuristics when it contributed to

finding a new best solution.

• 𝜎2: Score update of a removal/insertion pair of heuristics when it contributed to

finding a solution that has not been accepted before and is better than the incumbent

solution.

• 𝜎3: Score update of a removal/insertion pair of heuristics when it contributed to

finding a solution that has not been accepted before but is worse than the incumbent

solution.

For these hyperparameters, there exist values that are widely used in the literature. We

set the values of these parameters to 𝜎1 = 33, 𝜎2 = 9, 𝜎3 = 13, as they are defined in [24]

and demonstrated to yield solutions of high quality in a variaty of applications (see [98,

11, 119]).

Apart from these general ALNS hyperparameters, there is also a set of hyperparameters

that are introduced specifically for this work and for which no proper values can be derived

from the literature. These parameters are described in more detail in the following.

• Share of global search 𝑠𝑔: As described in Section 3.3.7, we utilize a two-step

search, for which in the first step the destruction of large parts of the solution is

allowed to support global solution space exploration. In the second step, only a

smaller part of the solution can be modified to locally optimize the best solution

found in the first step. The parameter that specifies the share of global exploration

in the search process is defined by 𝑠𝑔 ∈ {0.0, 0.1, ..., 1.0}. The share of the local

exploration procedure is 1 − 𝑠𝑔. Note that the value of 𝑠𝑔 relates to the maximum

computation time limit of the ALNS solver. Hence, 𝑠𝑔 = 0.0 represents, that during

the entire computation time of the ALNS, improvements of the current solution are

searched only locally. Vice versa, for 𝑠𝑔 = 1.0 the improvements are searched entirely

globally.

• Minimum destruction share for global improvement phase 𝛿𝑚𝑖𝑛
𝑔 :

In the first step, a search for good solutions is conducted on a rather global scale.

This is achieved by destroying large parts of the solution. The hyperparameter

92

3.4. Computational Study

𝛿𝑚𝑖𝑛
𝑔 defines the minimum share of destruction. This means that at least ⌈𝛿𝑚𝑖𝑛

𝑔 · 𝐿⌉
waypoints must be removed from the solution. Here, 𝐿 again describes the number of

waypoints in the problem instance. For the hyperparameter optimization conducted

in this work, we define 𝛿𝑚𝑖𝑛
𝑔 ∈ {0.1, 0.2, . . . , 0.5}.

• Maximum destruction share for global improvement phase 𝛿𝑚𝑎𝑥
𝑔 :

The parameter 𝛿𝑚𝑎𝑥
𝑔 represents the counterpart of 𝛿𝑚𝑖𝑛

𝑔 . It defines the maximum

share of destruction. For the KTSP it holds that the maximum number of removed

waypoints from a solution equals ⌈𝛿𝑚𝑎𝑥
𝑔 · 𝐿⌉. Further, 𝛿𝑚𝑎𝑥

𝑔 ∈ {0.5, 0.6, . . . , 0.9} holds.

• Minimum destruction share for local improvement phase 𝛿𝑚𝑖𝑛
𝑙

:
In the second optimization phase, the neighborhood around the best solution found in

the first phase is explored locally. Hence, only small parts of the solution are allowed

to be destroyed. The minimum value of destruction is defined by 𝛿𝑚𝑖𝑛
𝑙

. Analogously

to the global search phase, the minimum number of waypoints to remove is set to

⌈𝛿𝑚𝑖𝑛
𝑙
· 𝐿⌉. Allowed values for 𝛿𝑚𝑖𝑛

𝑙
are defined by {0.05, 0.10, 0.15, 0.20}.

• Maximum destruction share for local improvement phase 𝛿𝑚𝑎𝑥
𝑙

:
Again 𝛿𝑚𝑎𝑥

𝑙
represents the counterpart to 𝛿𝑚𝑖𝑛

𝑙
. It defines the maximum share of

destruction for the local improvement phase. Hence, the maximum number of

waypoints to remove during the second phase is set to ⌈𝛿𝑚𝑎𝑥
𝑙
· 𝐿⌉. Allowed values for

𝛿𝑚𝑎𝑥
𝑙

are defined by {0.20, 0.25, 0.30, 0.35}.

• Start temperature control parameter 𝜔 :
The start temperature control parameter 𝜔 defines the start temperature of the

simulated annealing process (see Section 3.3.5). For our solver, it specifies that in the

very first iteration a new solution which is 𝜔 times worse than the initial solution is

accepted with a probability of 𝑃𝐴 = 50%. For the hyperparameter optimization of

this work, we define 𝜔 ∈ {0.00, 0.05, . . . , 0.35, 0.4}.

• Temperature decrease parameter 𝜗 :
The temperature decrease parameter defines the factor applied to each iteration

to decrease the temperature for the next iteration in the simulated annealing pro-

cedure. With a lower temperature comes a lower probability of accepting bad

solutions (see Section 3.3.5). As a hyperparameter, we enable 𝜗 to be selected among

{0.99000, 0.99005, . . . , 0.99995, 1}, whereas 𝜗 = 1 would mean that the temperature

remains constant during the entire search process.

• Horizon of dynamic programming traversal property optimization 𝜂:
When inserting a waypoint into an existing solution, not only the inserted waypoint’s

traversal property must be optimized but also optimizing the traversal properties of

the inserted waypoint’s neighbors must be considered. We define 𝜂 = 1 to optimize

the traversal properties of the inserted waypoint as well as its immediate predecessor

and successor while the enclosing waypoints’ traversal properties are fixed. A

horizon of 𝜂 = 2 represents that the two predecessors and two successors are free

for optimization of their traversal properties. The optimization is realized via the

dynamic programming approach as shown in Section 3.3.4. An example for 𝜂 = 1

93

3. Inertia-based Routing

Figure 3.7.: Dynamic programming traversal property optimization graph for 𝜂 = 1 when waypoint 𝑙 𝑗 is

inserted.

is given in Figure 3.7. If 𝜂 = 0 holds, only the traversal property of the inserted

waypoint is optimized.

For hyperparameter optimization of this work, we allow𝜂 ∈ {0, 1, 2}. Note that higher
values for 𝜂 might represent better insertion qualities, however, since the dynamic

programming is executed for each insertion, the computational effort gets higher.

Consequently, the number of iterations performed within a given computation

time limit for the entire ALNS solver gets lower which reduces the exploration of

the solution space. Hence, the purpose of considering 𝜂 in the hyperparameter

optimization is to find a suitable trade-off between insertion quality and exploration.

The full grid of possible hyperparameter configurations with the above-specified dis-

cretization consists of ≈ 23.88 · 106 combinations, which is too many for a full grid search.

Therefore, as described in Section 3.4.4, we make use of random search and randomly

sample 500 different hyperparameter combinations from the above-described hyperparam-

eter domains. For each hyperparameter configuration, we solve each of the six problem

instances given in Section 3.4.2.2 three times with different random seeds. For each hyper-

parameter configuration, we aggregate the worst objective function value obtained for

each problem instance over the three runs and define the hyperparameter configuration

with the best worst-case performance for all problem instances as the best hyperparam-

eter configuration found. We apply the best worst-case behavior to obtain a constantly

well-performing solver for a wide range of problem instances.

The computation time limit for each run of our ALNS-solver specified by the associated

hyperparameters is set to CT𝑚𝑎𝑥 = 30 s. We choose this computation time limit for two

reasons: First, in real-world field applications, UAV mission planning solutions must be

obtained in a short time. Second, we needed to find a trade-off between the invested

computation time for the hyperparameter optimization and the density of the hyperpa-

rameter samples in the hyperparameter space. The overall computation time invested for

hyperparameter optimization of our ALNS for the KTSP was 270,000 s ≈ 3.1 days.

94

3.4. Computational Study

0 0.2 0.4 0.6 0.8 1

47

47.5

48

48.5

𝑠𝑔

M
𝑇
i
n
s

(a) Effect of the share of global search.

0 1 2

47

47.5

48

48.5

𝜂

M
𝑇
i
n
s

(b) Effect of the horizon of DP.

0.1 0.2 0.3 0.4 0.5
47

47.5

48

48.5

𝛿𝑚𝑖𝑛
𝑔

M
𝑇
i
n
s

(c) Effect of the minimum destruction share for

searching globally.

0.5 0.6 0.7 0.8 0.9
47

47.5

48

48.5

𝛿𝑚𝑎𝑥
𝑔

M
𝑇
i
n
s

(d) Effect of the maximum destruction share for

searching globally.

0.05 0.10 0.15 0.20

47

47.5

48

48.5

𝛿𝑚𝑖𝑛
𝑙

M
𝑇
i
n
s

(e) Effect of the minimum destruction share for

searching locally.

0.2 0.25 0.3 0.35
47

47.5

48

48.5

𝛿𝑚𝑎𝑥
𝑙

M
𝑇
i
n
s

(f) Effect of the maximum destruction share for

searching locally.

0.990 0.992 0.994 0.996 0.998

47

47.5

48

48.5

𝜗

M
𝑇
i
n
s

(g) Effect of the parameter describing the tempera-

ture decrease.

0 0.1 0.2 0.3 0.4
47

47.5

48

48.5

𝜔

M
𝑇
i
n
s

(h) Effect of the start temperature control parame-

ter.

Figure 3.8.: Effect of the hyperparameters on the performance of the ALNS for the KTSP.

95

3. Inertia-based Routing

Parameter 𝑠𝑔 𝜂 𝛿𝑚𝑖𝑛
𝑔 𝛿𝑚𝑎𝑥

𝑔 𝛿𝑚𝑖𝑛
𝑙

𝛿𝑚𝑎𝑥
𝑙

𝜗 𝜔

Optimized values 0.9 1 0.4 0.6 0.1 0.3 0.99251 0.2

Table 3.8.: Best hyperparameter configuration found for the KTSP.

In Figures 3.8, we show the effect of each hyperparameter on the performance of the

ALNS for the KTSP. The bounds of the light blue shape represent the minimum and

maximum mission durationM𝑇 yielded for the hyperparameter configurations with the

corresponding value averaged over all problem instances and runs. The dotted blue

represents the averageM𝑇 for the associated hyperparameter value averaged over all

problem instances and runs. The most significant hyperparameters are given as follows.

As can be seen in Figure 3.8a, the higher the share of the global search phase 𝑠𝑔 the lower

theM𝑇 . Moreover, the lower the dynamic programming horizon, the lower the average

M𝑇 (see 3.8b). However, the least values forM𝑇 is achived for 𝜂 = 1. A less significant but

also notable effect is obtained for the minimum destruction shares of the global and local

searching process (see Figures 3.8c and 3.8e). The higher the share the lower the average

required mission durationM𝑇 . The remaining parameters seem to have no notable effect

on the ALNS performance. However, their composition is likely to be important, e.g. since

the temperature decrease parameter 𝜗 and the start temperature control parameter 𝜔 are

closely coupled.

Among all configurations, the hyperparameter configuration yielding the best worst-case

performance is given in Table 3.8. It can be seen that in alignment with Figure 3.8a a high

share of global optimization is favored since it allows an efficient search for good solutions

on a global scale. Then, only a small part of the total computation time is required to

locally optimize the best solution found so far. The next interesting result relates to the

horizon of the dynamic programming optimization applied after each insertion. Although

a smaller dynamic programming horizon yields on average better results, the horizon

belonging to the best worst-case hyperparameter configuration is 𝜂 = 1. Consequently,

the optimization of the traversal properties of the direct neighbors of an inserted waypoint

is favored since it seems to yield the best trade-off between investment of computational

resources and quality of insertion.

3.4.4.2. Hyperparameter Optimization for the KOP

Since the KOP and the KTSP are closely related problems and since the ALNS algorithm of

the KOP is almost identical to the one for the KTSP, their set of hyperparameters is equal

including the domain of feasible values for each hyperparameter. For the same reason as in

the KTSP case, the values of the weight update parameters are set to 𝜎1 = 33, 𝜎2 = 9, 𝜎3 = 13

as these values showed good performance in various studies in the literature (see [98, 11,

119]).

96

3.4. Computational Study

Analogously to the optimization of the hyperparameters for the KTSP, we randomly

sampled a total of 500 different hyperparameter configurations for the KOP that were

evaluated on the 24 hyperparameter optimization instances described in Section 3.4.2.5.

Again, each problem instance is solved by each solver configuration three times with

different random seeds. The computation time limit of each solver is set to 30 s. Again, this

computation time limit is chosen for two reasons: First, in real-world field applications,

UAV mission planning solutions must be obtained in a short time. Second, a trade-off

between the invested computation time for the hyperparameter optimization and the

density of the hyperparameter samples in the hyperparameter space is to be defined. The

overall computation time invested for hyperparameter optimization of our ALNS for the

KOP was 1,080,000 s ≈ 12.5 days.

In contrast to the KTSP case, the hyperparameters related to the share of destruction, i.e.

𝛿𝑚𝑖𝑛
𝑔 , 𝛿𝑚𝑎𝑥

𝑔 , 𝛿𝑚𝑖𝑛
𝑙

, and 𝛿𝑚𝑎𝑥
𝑙

, are not related to the number 𝐿 of all waypoints given in the

problem instance. Instead, they are related to the number of waypoints visited in the start

solution of the improvement current iteration. With this approach, the removal phase is

also suited to cover problem instances in which only a fraction of the number of waypoints

can be visited in the given maximum flight time budget.

In Figures 3.9, we show the effect of each hyperparameter on the performance of the ALNS

for the KOP. Analogously, the bounds of the light blue shape represent the minimum and

maximum collected prioritiesM𝑃 yielded for the hyperparameter configurations with

the corresponding value averaged over all problem instances and runs. The dotted blue

represents the averageM𝑃 for the associated hyperparameter value averaged over all

problem instances and runs. The most effective hyperparameter is 𝑠𝑔. The higher its value

the higher the minimum, maximum, and average collected priorities, as can be seen in

Figure 3.9a. Moreover, the hyperparameters 𝜂, 𝛿𝑚𝑖𝑛
𝑔 , and 𝛿𝑚𝑎𝑥

𝑔 are effective in terms of the

average obtained solution quality as well. Interestingly and in contrast to the KTSP case,

the higher the value of 𝜂 the better the average obtained collected priorities.

This can be explained since higher values for 𝜂 correspond to more time-efficient motions

between a given sequence of waypoints. The resulting flight time savings can be exploited

by e.g. inserting a few more waypoints with potentially higher priorities into the tour

without violating the maximum flight time constraint.

The remaining parameters seem to have no directly notable effect on theALNS performance.

However, analogously the hyperparameter of the ALNS for the KTSP, the composition

of these hyperparameters is likely to be important, e.g. since the temperature decrease

parameter 𝜗 and the start temperature control parameter 𝜔 are closely coupled.

To assess the performance of each configuration, we again consider the best worst-case

performance, i.e. for each hyperparameter configuration, the worst maximum priorities

obtained among each run of each problem instance are accumulated and finally divided

by the number of problem instances. The hyperparameter configuration associated with

the highest resulting collected priorities is defined as best. The values of the optimized

hyperparameters are given in Table 3.9. Interestingly, the values are similar to the ones

obtained for the KTSP.

97

3. Inertia-based Routing

0 0.2 0.4 0.6 0.8 1

192

194

196

198

𝑠𝑔

M
𝑃

(a) Effect of the share of global search.

0 1 2

192

194

196

198

𝜂

M
𝑃

(b) Effect of the horizon of DP.

0.1 0.2 0.3 0.4 0.5
192

194

196

198

𝛿𝑚𝑖𝑛
𝑔

M
𝑃

(c) Effect of the minimum destruction for searching

globally.

0.5 0.6 0.7 0.8 0.9
192

194

196

198

𝛿𝑚𝑎𝑥
𝑔

M
𝑃

(d)Effect of the maximum destruction for searching

globally.

0.05 0.10 0.15 0.20

192

194

196

198

𝛿𝑚𝑖𝑛
𝑙

M
𝑃

(e) Effect of the minimum destruction for searching

locally.

0.2 0.25 0.3 0.35
192

194

196

198

𝛿𝑚𝑎𝑥
𝑙

M
𝑃

(f)Effect of the maximum destruction for searching

locally.

0.990 0.992 0.994 0.996 0.998

192

194

196

198

𝜗

M
𝑃

(g) Effect of the parameter describing the tempera-

ture decrease.

0 0.1 0.2 0.3 0.4
192

194

196

198

𝜔

M
𝑃

(h) Effect of the start temperature control parame-

ter.

Figure 3.9.: Effect of the hyperparameters on the performance of the ALNS for the KOP.

Parameter 𝑠𝑔 𝜂 𝛿𝑚𝑖𝑛
𝑔 𝛿𝑚𝑎𝑥

𝑔 𝛿𝑚𝑖𝑛
𝑙

𝛿𝑚𝑎𝑥
𝑙

𝜗 𝜔

Optimized values 0.9 2 0.5 0.6 0.1 0.3 0.99109 0.25

Table 3.9.: Best hyperparameter configuration found for the KOP.

98

3.4. Computational Study

3.4.5. Computational Results for the KTSP

In this section, we present the computational results for the KTSP and its comparison

to TSP variants from the literature. This contains an evaluation of the best trade-off

between the number of traversal velocities 𝑉 and the computational complexity. Further,

we evaluate the benefit of using the KTSP model compared to models from the state-of-

the-art including an evaluation of the required computation time for increasing problem

sizes. Last, we evaluate the performance of our heuristic ALNS solver.

3.4.5.1. Effect of the Number of Traversal Velocities

First, we evaluate the effect of the number of traversal velocities𝑉 on the resulting mission

duration for the KTSP. The purpose of this evaluation is to identify𝑉 such that it represents

the best trade-off between the obtained solution quality and the associated computational

complexity. Therefore, we solve a total of five different problem instances labeled as 10a,

10b, ... 10e. These problem instances are a subset of the problem instances described in

Section 3.4.2.3 and are those that contain exactly ten waypoints.

To solve the corresponding KTSP instances, we set the maximum allowed velocity to 3m/s

and the maximum allowed acceleration to 1.5m/s
2
. The number of traversal heading angles

is fixed to 𝐻 = 8 which we derived from the existing literature on the DTSP (see [77]),

showing that a discretization 𝐻 > 8 does not contribute notably to the achieved mission

durationM𝑇 but significantly increases the computational complexity. This property is

also discovered for the DOP (see [22]).

Hence, for each KTSP instance, we determine the global optimal solution for an increasing

number of traversal velocities. For𝑉 = 1 the traversal velocity is set to 𝑣𝑚𝑎𝑥/
√
2. For𝑉 > 1,

the set of possible traversal velocities is defined by {𝑖/(𝑉 − 1) · 𝑣𝑚𝑎𝑥/
√
2 | 𝑖 = 0, 1, ...,𝑉 − 1}

following the definition of the KTSP in Section 3.2.1.2. The optimal mission durations for

the associated problem instances and for the considered number of traversal velocities 𝑉

are given in Figure 3.10.

For each instance, it can be seen that the highest mission duration results for 𝑉 = 1. The

highest decrease of the minimummission duration can be observed up to𝑉 = 3. Increasing

the number of traversal velocities to 𝑉 = 6 continues to slightly decrease the resulting

mission duration. Further increasing the number of traversal velocities to 𝑉 > 6 has no

significant impact on the obtained mission duration, but is likely to negatively impact the

computational complexity. Therefore, we set the number of traversal velocities to 𝑉 = 6

for the remainder of this work.

3.4.5.2. Benefit of the KTSP Model

To evaluate the benefit of using the KTSP model, we benchmark it against three different

TSP variants. The first two variants are based on the classical traveling salesman problem

using the mathematical programming formulation discussed in [96]. Based on this problem

99

3. Inertia-based Routing

1 2 3 4 5 6 7 8 9 10 11 12

28

30

32

34

36

38

Number of traversal velocities 𝑉

M
𝑇
i
n
s

10a 10b 10c 10d 10e

Figure 3.10.: Impact of the number of traversal velocities. The number of traversal angles is fixed to 𝐻 = 8.

formulation, we, on the one hand, calculate the edge costs as the distance between two

nodes divided by the maximum velocity and denote the resulting program as TSP-classic.

This approach is widely used in the literature as described in Section 3.1. However, it

utilizes edge costs that only represent a lower bound on the physically feasible motion since

it assumes a constant flight at maximum velocity neglecting the acceleration properties

that are required to change the direction of motion.

As a second benchmark model, we utilize also a classical TSP model, but with the edge

costs calculated as hover-to-hover motion, which is described in the following. This model

is further denoted as TSP-H2H. The hover-to-hover motion describes that the motion

between any pair of waypoints has to start and end at rest. In between, the system is allowed

to fully accelerate towards the final waypoint until the maximum velocity is reached and

no further acceleration is allowed. The constant velocity at this point is maintained until

in the last phase, the system fully decelerates to visit the final waypoint exactly at rest. The

algorithm on how to determine hover-to-hover trajectories and especially their associated

durations is given in Appendix A. The advantage of the hover-2-hover trajectories is, that

since they consider the kinematic constraints of a maximum allowed velocity 𝑣𝑚𝑎𝑥 and

acceleration 𝑎𝑚𝑎𝑥 , they are entirely feasible for the given kinematics.

The third benchmark model utilizes the Dubins traveling salesman problem (DTSP) model

as we introduce it in Section 3.2.1.1.

For the evaluation of each model, we set the maximum allowed velocity to 𝑣𝑚𝑎𝑥 = 3m/s

and the maximum allowed acceleration to 𝑎𝑚𝑎𝑥 = 1.5m/s
2
. As benchmark instances, we

use the problem instances described in Section 3.4.2.1. These are three basic problem

instances with between 21 and 33 waypoints in an area of up to 15.1 · 28.5𝑚2
. For each of

these problem instances, we further applied different scaling factors. The results of this

benchmark study are illustrated in Figures 3.11, while the original results in tabular format

are given in Table C.1 in Appendix C.

As can be seen, the TSP-classic approach yields the lowest mission duration for each

problem instance and each scaling factor. However, the solution can not be tracked by a

100

3.4. Computational Study

100

200

300

400

500

0.25 0.5 1.0 2.0 4.0

Spatial scaling factor

M
𝑇

TSP TSP-H2H Avg. DTSP KTSPPB KTSPDB

(a) Required mission duration for scaled versions of Tsiligirides dataset 1 and a computation time

limit of 18000 s.

100

200

300

400

500

0.25 0.5 1.0 2.0 4.0

Spatial scaling factor

M
𝑇

TSP TSP-H2H Avg. DTSP KTSPPB KTSPDB

(b) Required mission duration for scaled versions of Tsiligirides dataset 2 and a computation time

limit of 18000 s.

100

200

300

400

500

0.25 0.5 1.0 2.0 4.0

Spatial scaling factor

M
𝑇

TSP TSP-H2H Avg. DTSP KTSPPB KTSPDB

(c) Required mission duration for scaled versions of Tsiligirides dataset 3 and a computation time

limit of 18000 s.

Figure 3.11.: Potential of the KTSP model.

101

3. Inertia-based Routing

simulated UAV as can be seen in Table 3.10. The MAE tracking error ranges from 1.100m

up to 22.175m.

Problem instance Scale

MAE (m)

TSP-classic TSP-H2H DTSP KTSP

TSI1 0.25 1.480 0.001 0.002 0.001

TSI1 0.50 1.264 0.001 0.002 0.001

TSI1 1.00 1.830 0.002 0.004 0.001

TSI1 2.00 2.706 0.005 0.006 0.000

TSI1 4.00 4.237 0.007 0.009 0.000

TSI2 0.25 1.100 0.001 0.001 0.001

TSI2 0.50 1.976 0.001 0.002 0.001

TSI2 1.00 2.858 0.002 0.003 0.001

TSI2 2.00 2.166 0.005 0.023 0.000

TSI2 4.00 3.122 0.008 0.007 0.000

TSI3 0.25 3.408 0.001 0.002 0.001

TSI3 0.50 4.291 0.001 0.003 0.000

TSI3 1.00 4.086 0.003 0.006 0.001

TSI3 2.00 22.175 0.003 0.010 0.001

TSI3 4.00 7.106 0.006 0.009 0.000

Table 3.10.: MAE tracking error for MIP-based solutions of the TSP-classic, TSP-H2H, DTSP, and KTSP in

m.

The worst results regarding the mission duration M𝑇 for each problem instance and

scaling factor are achieved by the TSP-H2H approach (see Figures 3.11). However, the

solutions are trackable as can be seen by the very low MAE in Table 3.10.

For the results of the DTSP for each problem instance and scale, we solve the corresponding

DTSP ten times with ten different constant velocities 𝑣𝑐𝑜𝑛𝑠𝑡 ∈ {𝑖 ·𝑣𝑚𝑎𝑥 , 𝑖 = 0.1, 0.2, ..., 1.0} to
find the best trade-off between velocity and maneuverability. The range of results for the

DTSP are given as red shapes in Figures 3.11 while the average required mission duration

over all investigated constant velocities is given as a red dotted line. Among the solutions

of each constant velocity, we present the best one in the Appendix in Table C.1 which

represents the lower bounds of the red shape depicted in Figures 3.11. This lower bound

can be interpreted as the best solution among all possible DTSP formulations. Note that

the constant velocity yielding the minimummission duration is not known a-priori and the

resulting mission duration for a suboptimal constant velocity might be significantly worse

as illustrated in Figure 3.11. However, it can be seen, that the best possible solution of the

DTSP constantly yields better results than the TSP-H2H while ensuring the trackability of

the solution by a UAV with the given kinematic properties.

The results of the DTSP are, however, all outperformed by the results of the KTSP (see

blue line in Figures 3.11). The results for the KTSP are obtained by using Gurobi with

a computation time limit of 5h. Note that some of the KTSP problem instances could

not be solved to optimality within the given computation time limit, as given in Table

C.1 in Appendix C. On average, the KTSP yields 27.60% better solutions than the best

possible solution of the DTSP and 38.19% better solution than TSP-H2H. Further, the

TSP-classic approach yielded on average −50.49% faster mission durations than the KTSP.

102

3.4. Computational Study

0.25 0.5 1.0 2.0 4.0

0

20

40

60

Spatial scaling factor

G
a
p
M
I
P

S
O
T
A

TSP-H2H

DTSP

(a)Deterioration of TSP-H2H and the best DTSP compared to the KTSPPB on the scaled Tsiligirides

dataset 1 instances.

0.25 0.5 1.0 2.0 4.0

0

20

40

60

Spatial scaling factor

G
a
p
M
I
P

S
O
T
A

TSP-H2H

DTSP

(b)Deterioration of TSP-H2H and the best DTSP compared to the KTSPPB on the scaled Tsiligirides

dataset 2 instances.

0.25 0.5 1.0 2.0 4.0

0

20

40

60

Spatial scaling factor

G
a
p
M
I
P

S
O
T
A

TSP-H2H

DTSP

(c)Deterioration of TSP-H2H and the best DTSP compared to the KTSPPB on the scaled Tsiligirides

dataset 3 instances.

Figure 3.12.: Deterioration of the optimal solution of TSP-H2H and the best optimal solution of the DTSP

among multiple constant velocity options compared to the best solutions for the KTSP for scaled versions of

the Tsiligirides datasets [110].

This discrepancy between the TSP-classic and the KTSP approach emphasizes the need to

properly consider the acceleration properties of a UAV. The above-described values are

calculated using the term Gap
MIP

SOTA
= 𝑆𝑂𝑇𝐴 − KTSPPB/KTSPPB.

The overall improvements of the KTSP compared to the SOTA approaches are given in

Figure 3.12. As can be seen, the improvement of the KTSP compared to the TSP-H2H and

the DTSP decreases for increasing scaling factors. Consequently, the KTSP seems to offer

the highest benefit for flight missions with close waypoints when high agility is required.

However, note that in real-world applications, missions with distant waypoints would

certainly allow the UAV to move with higher velocities which will increase the benefit of

103

3. Inertia-based Routing

−6 −4 −2 0 2 4 6
x in m

−6

−4

−2

0

2

4

6
y

in
m

(a) DTSP with 𝑣𝑚𝑎𝑥 = 2.10m/s. Total

mission duration is 8.97 s.

−6 −4 −2 0 2 4 6
x in m

−6

−4

−2

0

2

4

6

y
in

m

0.0

0.5

1.0

1.5

2.0

V
el

oc
it

y
in

m
/s

(b) KTSP with 𝑣𝑚𝑎𝑥 = 2.10m/s. Total mission

duration is 11.91 s.

−6 −4 −2 0 2 4 6
x in m

−6

−4

−2

0

2

4

6

y
in

m

(c) DTSP with 𝑣𝑚𝑎𝑥 = 2.15m/s. Total

mission duration is 33.65 s.

−6 −4 −2 0 2 4 6
x in m

−6

−4

−2

0

2

4

6

y
in

m

0.0

0.5

1.0

1.5

2.0

V
el

oc
it

y
in

m
/s

(d) KTSP with 𝑣𝑚𝑎𝑥 = 2.15m/s. Total mission

duration is 11.65 s.

Figure 3.13.: Robustness of the KTSP model compared with the DTSP.

the KTSP compared to DTSP and TSP-H2H again. This can be illustrated by the following

example based on the scaled problem instances derived from Tsiligirides dataset 1. Using

a scaling factor of two and changing the maximum allowed velocity from 𝑣𝑚𝑎𝑥 = 3m/s to

𝑣𝑚𝑎𝑥 = 4.5m/s, then Gap
MIP

SOTA
for the TSP-H2H increases from 31.08% to 41.01% and for

the DTSP increases from 23.35% to 33.69%. For the identical setting but a scaling factor of

four, Gap
MIP

SOTA
for the TSP-H2H increases 19.43% to 32.52% and for DTS increases from

4.31% to 22.57%.

However, there is unused potential of the KTSP in its current form that can best be

illustrated by a comparison with the DTSP on a special problem instance that is given in

Figure 3.13. In this experiment, we set the maximum allowed acceleration for the DTSP

and KTSP to 1.5m/s
2
and maximum allowed velocities to once 2.10m/s and once 2.15m/s.

For both, we set 𝐻 = 8 and additionally for the KTSP, we set 𝑉 = 6. The given problem

104

3.4. Computational Study

instance to be solved represents eight waypoints equally distributed on a two-dimensional

circle with a radius of 3m.

As can be seen in Figures 3.13a and 3.13c the DTSP is very sensitive to changing its constant

velocity. Even the small change of the maximum velocity of 0.05m/s significantly increases

the total mission durationM𝑇 by a factor of ≈ 3.75 due to resulting detours. The KTSP

(see Figures 3.13b and 3.13d) is much more robust against varying initial conditions due

to its ability to vary the longitudinal velocity. However, the drawback of the KTSP in its

current form is also revealed in this example. Comparing the mission duration of DTSP

in Figure 3.13a with the mission durations for the KTSP shown in Figures 3.13b, it can

be seen that the DTSP is faster than the KTSP. This is because the KTSP only allows to

traverse the waypoints with a maximum velocity magnitude of at maximum
1√
2

·𝑣𝑚𝑎𝑥 , since

otherwise the decoupling approach for the TOP-UAV time-optimal trajectory generation

approach could be infeasible. In general, using TOP-UAV++ would allow higher traversal

velocities that would compensate for the drawback. However, in this work, we rely on

the KTSP model as stated in Section 3.2.1.2. Note that the adaptation of the mathematical

problem to the capabilities of a specific trajectory planner is rather a technical problem

than a scientific one. Hence, in this work, we uniformly define the set of possible traversal

velocities as given for the KTSP but also the KOP.

3.4.5.3. Limits of Solving the KTSP to Optimality

To evaluate how the KTSP model computationally scales with increasing complexity in

comparison to the DTSP, we solve the problem instances introduced in Section 3.4.2.3.

These problem instances range from a number of waypoints 𝐿 = 10 to 𝐿 = 40, with steps

of two additional waypoints between. For each number of waypoints 𝐿, there are five

different problem instances given. The kinematic properties are again set to 𝑣𝑚𝑎𝑥 = 3m/s

and 𝑎𝑚𝑎𝑥 = 1.5m/s
2
. For the solutions of all problem instances with an equal number of

waypoints, we list the lowest solution time (CTLB), the average solution time required (CT)

and the highest solution time (CTUB) required to solve the problem instances in original

form in Table C.2 in Appendix C and visualize these results in Figure 3.14. The computation

time limit for Gurobi was set to 3600 s. To enable comparability, Table C.2 also contains

the required computation times for using the MIP-based approach provided by Gurobi (see

[120]) for our TSP-classic formulation. However, since all TSP-classic problem instances

are solved in less than a second, we leave the corresponding results out for the remainder

of this section.

In Figure 3.14 the range of required computation times for the associated number of

waypoints for the KTSP is illustrated as a blue shape. The lower bound represents the

lowest, and the upper bound the highest required computation time. The average required

computation time is given as a blue dotted line. Analogously, the results for the DTSP are

given in red. As can be seen, the DTSP tends to require increasing computation time for an

increasing number of waypoints. However, in all but one problem instances, the required

computation time for the DTSP is well below the given computation time limit of one hour.

The computation times for the KTSP are significantly higher. Even for smaller instances

105

3. Inertia-based Routing

10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

10

20

30

40

50

60

Number of waypoints 𝐿

C
T
(
m
i
n
)

DTSP KTSP Computation time limit

Figure 3.14.: To evaluate the runtimes, we randomly generate 5 different problem instances with an equal

number of waypoints. These instances are solved for different TSP variants and the computation time is

measured. The time limit for computation is set to 3600 s. The number of allowed heading angles for DTSP

and KTSP are 𝐻 = 8. The number of allowed traversal velocities for the KTSP is set to 𝑉 = 6.

with 𝐿 = 18 waypoints, the computation time limit is reached. For all problem instances

with 𝐿 ≥ 34 waypoints, our MIP-based approach for the KTSP reaches the computation

time limit. With the identified benefit of the KTSP compared to SOTA-models which we

derived from the findings in Section 3.4.5.2, the required computation times of the KTSP

for larger problem sizes emphasize the need for a heuristic solution approach.

3.4.5.4. Performance of the ALNS to Solve the KTSP

To evaluate the performance of the ALNS, we make use of the benchmark instances, which

we introduce in Section 3.4.2.1. The problem instances considered are modified versions

of the problem instances provided in [110] to which we apply different spatial scaling

factors. This modification allows us to evaluate the connection between the distances of

the waypoints and the given kinematic properties.

The evaluation is done for the ALNS with a computation time limit of 30 s, 60 s, as well as

120 s. These short computation time limits are selected since in UAV field applications,

missions must usually be calculated in similarly short times.

In Figures 3.15, we visualize the results of our computational study as given in original form

in Table C.3 in Appendix C. The figures show the Gap
ALNS

between the solutions obtained

by our ALNS solver and the corresponding solution of our MIP-based approach with a

computation time limit of five hours. Since our ALNS is based on randomness, we solve

each problem instance considering each scaling factor ten times with different random

seeds. From these ten runs, a best, worst, and average obtained Gap
ALNS

is derived as

depicted by the colored band shapes. The gray band shapes represent the range of obtained

106

3.4. Computational Study

0

5

10

15

20

0.25 0.5 1.0 2.0 4.0

Spatial scaling factor

G
a
p
A
L
N
S

Initial ALNS-30 ALNS-60 ALNS-120

(a) Deterioration of the initial solution and the ALNS solution compared to the corresponding

KTSPPB for scaled versions of Tsiligirides dataset 1 with a computation time limit of 18000 s.

0

5

10

15

20

0.25 0.5 1.0 2.0 4.0

Spatial scaling factor

G
a
p
A
L
N
S

Initial ALNS-30 ALNS-60 ALNS-120

(b)Deterioration of the initial solution and the ALNS solution compared to the corresponding

KTSPPB for scaled versions of Tsiligirides dataset 2 with a computation time limit of 18000 s.

0

5

10

15

20

0.25 0.5 1.0 2.0 4.0

Spatial scaling factor

G
a
p
A
L
N
S

Initial ALNS-30 ALNS-60 ALNS-120

(c) Deterioration of the initial solution and the ALNS solution compared to the corresponding

KTSPPB for scaled versions of Tsiligirides dataset 3 with a computation time limit of 18000 s.

Figure 3.15.: Performance of the ALNS to solve the KTSP.

107

3. Inertia-based Routing

solution qualities of the initially constructed solution. The red, green, and blue band shapes

represent the range of obtained solution qualities for our ALNS with a computation time

limit of 30 s, 60 s, and 120 s. The average obtained Gap
ALNS

is given in the corresponding

colors as dotted lines.

Overall, the problem instances with close waypoints seem to be harder to solve for our

ALNS since the obtained optimality gap reaches up to 7.68% in the worst case. This

holds especially for larger problem instances such as Tsiligirides dataset 1 with 32 way-

points and Tsiligirides dataset 3 with 33 waypoints. For increasing scaling factors, the

Gap
ALNS

significantly decreases for each problem instance yielding a worst-case gap of

1.44% among all problem instances. We explain this as follows: For high scaling factors,

the traversal properties lose importance because the motion between two waypoints is

mostly defined by the distance and the maximum velocity. In the case of a high scaling

factor, the motion remains for a large part of the mission duration at velocities close to

𝑣𝑚𝑎𝑥 . Consequently, the figures indicate, that the heuristics used by our ALNS show a

good performance in finding waypoint sequences of high quality.

Further, it is worth mentioning that our ALNS performs highly effectively for small

problem instances such as the Tsiligirides dataset 2 with 21 waypoints. Here, the worst

Gap
ALNS

among all considered problem instances with a computation time limit of 30 s is

only 1.15%.

Overall, increasing the computation time limit for the ALNS tends to slightly increase the

quality of the yielded solution. This observation is in line with the expected behavior of

our solver since it can search for better solutions for a longer time.

In this context, it has to be mentioned that our current ALNS implementation does not

support multithreading to fully exploit the capability of the CPU. Each CPU core could

be assigned a single thread to solve the KTSP with a different random seed. Hence, the

worst-case performance using all 4 cores of our Intel(R) Core(TM) i7-8565U CPU would

increase the probability that the yielded solution by our solver is similar to the best-case

performance over ten runs as shown in Table C.3. This clearly shows the potential of the

ALNS to solve even larger KTSPs while given only short time limits.

To conclude, the ALNS approach is highly competitive to the exact approach, especially for

scenarios with limited computation time. However, the results also indicated that yielding

close to optimum solutions of the KTSP is difficult, especially for solving larger problem

instances with close waypoints.

3.4.6. Computational Results for the KOP

We present the computational results for the KOP in this section. First, we investigate

the benefit of the KOP model compared to models from the SOTA. This is followed

by an investigation and comparison of the computational complexity of the KOP and

the associated SOTA approaches for problem instances with an increasing number of

waypoints. Next, we evaluate the performance of our ALNS approach and compare it

108

3.4. Computational Study

with the results yielded using our MIP-based approach. Lastly, we benchmark our ALNS

approach against the latest results of an MPC-based approach from the literature.

3.4.6.1. Benefit of the KOP Model

As a benchmark model for the KOP, we consider the classical OP (see e.g. [97]) in two

variations. On the one hand, we use the distance between waypoints divided by the

maximum velocity as edge costs. This variant is further denoted as OP-classic. On the

other hand, we utilize the duration of the hover-to-hover trajectories described in Appendix

A as edge costs. As the last benchmark model, we utilize the Dubins orienteering problem

(DOP) which is an extension of the OP using Dubins path (see Section 3.2.2.1).

For the evaluation of each model, we set the maximum allowed velocity to 𝑣𝑚𝑎𝑥 = 3m/s

and the maximum allowed acceleration to 𝑎𝑚𝑎𝑥 = 1.5m/s
2
. As a benchmark instance, we

use a modified version of the Tsiligirides datasets 2 as we describe in Section 3.4.2.4. All the

problem instances from the modified dataset offer a total of 230 priorities for collection. In

analogy to the computational study conducted on the KTSP in Section 3.4.5.2, we evaluate

the connection between the distance between the waypoints and the given kinematic

properties of our system by scaling the coordinates of each waypoint. In this evaluation,

the scaling factors are again 0.25, 0.5, 1.0, 2.0, and 4.0. The maximum allowed travel time

for each problem instance as well as the computational results for each benchmark model

are given in Figures 3.16. These figures visualize the results given in the original form in

Table 3.11 and show the performance of each investigated method on the given problem

instance for different maximum travel time budgets and different spatial scaling factors. To

generate the results, the corresponding problems are all solved to optimality using Gurobi

as general-purpose solver and a computation time limit of 18000 s. The accumulated

collected priorities of the OP-classic approach are given in black, the OP-H2H in green,

and the KOP in blue. The collected priorities for the DOP depend on the constant velocity.

Analogously to the DTSP in Section 3.4.5.2, we solve the corresponding DOP ten times

each with a different constant velocity 𝑣𝑐𝑜𝑛𝑠𝑡 ∈ {𝑖 · 𝑣𝑚𝑎𝑥 , 𝑖 = 0.1, 0.2, ..., 1.0} to find the

best trade-off between the velocity magnitude and the maneuverability. The range of the

obtained accumulated collected priorities is indicated by the red shape and its bounds

represent the maximum and minimum collected priorities over all investigated constant

velocities. The average collected priority values are given as a red dotted line.

For all problem instances, it can be seen that the OP-classic model always collects the most

priorities. This is because it does not account for the kinematics of the systems which leads

to the problem that the resulting solution cannot be tracked with sufficient precision, as

can be seen in Table 3.11. On the other hand, the OP-H2H model yields feasible solutions

which indicated by the low MAE given in Table 3.11. However, due to the restriction of

resting at each waypoint, the yielded solutions collect significantly fewer priorities than

the OP-classical.

The performance of the DOP model highly depends on the selected constant velocity. In

the majority of all cases, the DOP collects fewer priorities than all other models. However,

109

3. Inertia-based Routing

5 10 15 20

0

100

200

𝐶𝑚𝑎𝑥

M
𝑃

OP

OP-H2H

DOP avg.

KOP

(a) Spatial scaling factor 0.25

5 10 15 20 25

0

100

200

𝐶𝑚𝑎𝑥

M
𝑃

OP

OP-H2H

DOP avg.

KOP

(b) Spatial scaling factor 0.50

10 15 20 25 30 35

0

100

200

𝐶𝑚𝑎𝑥

M
𝑃

OP

OP-H2H

DOP avg.

KOP

(c) Spatial scaling factor 1.00

10 20 30 40 50

0

100

200

𝐶𝑚𝑎𝑥

M
𝑃

OP

OP-H2H

DOP avg.

KOP

(d) Spatial scaling factor 2.00

15 30 45 60 75

0

100

200

𝐶𝑚𝑎𝑥

M
𝑃

OP

OP-H2H

DOP avg.

KOP

(e) Spatial scaling factor 4.00

Figure 3.16.: Optimal for OP variants for the first 15 waypoints of Tsiligirides dataset 2 scaled with different

factors. All investigated problem instances for each model could be solved to optimality within a computation

time limit of 18000 s. The quantitative results are given in Table 3.11.

110

3.4. Computational Study

Scale 𝐶𝑚𝑎𝑥 (𝑠)
OP-classic OP-H2H DOP KOP

M𝑃 MAE M𝑃 MAE M𝑃 MAE M𝑃 MAE

0.25 5 230 0.480 45 0.001 55 0.078 75 0.001

0.25 10 230 0.390 130 0.001 140 0.022 190 0.001

0.25 15 230 0.390 210 0.001 220 0.015 230 0.001

0.25 20 230 0.390 230 0.001 230 0.022 230 0.001

0.50 5 230 1.040 10 0.002 40 0.394 40 0.000

0.50 10 230 1.025 85 0.001 95 0.202 130 0.001

0.50 15 230 1.023 145 0.001 155 0.047 205 0.001

0.50 20 230 0.914 200 0.001 210 0.044 230 0.001

0.50 25 230 0.914 230 0.001 230 0.012 230 0.001

1.00 10 230 2.890 45 0.001 55 0.364 75 0.000

1.00 15 230 2.830 95 0.001 95 0.356 135 0.001

1.00 20 230 2.534 130 0.001 145 0.428 190 0.001

1.00 25 230 2.160 170 0.001 185 0.452 230 0.000

1.00 30 230 2.428 210 0.001 220 0.063 230 0.000

1.00 35 230 2.705 230 0.002 230 0.067 230 0.000

2.00 10 95 1.278 0 0.000 40 1.610 20 0.000

2.00 20 230 5.693 85 0.002 95 1.079 110 0.000

2.00 30 230 4.019 140 0.010 155 0.260 195 0.000

2.00 40 230 5.390 200 0.005 210 0.369 230 0.000

2.00 50 230 3.649 230 0.030 230 0.092 230 0.000

4.00 30 170 12.732 85 0.003 105 1.714 105 0.000

4.00 45 230 14.266 140 0.048 175 0.871 180 0.000

4.00 60 230 3.998 200 0.068 220 0.382 230 0.000

4.00 75 230 4.393 230 0.091 230 0.350 230 0.000

Table 3.11.: Optimal results for OP variants for the first 15 waypoints of Tsiligirides dataset 2 scaled with

different factors. All investigated problem instances for each model could be solved to optimality within a

computation time limit of 18000 s.

when the constant velocity for the DOP is selected properly, it constantly yields solutions

that are at least as good as the solutions of the OP-H2H. Another interesting observation

is that especially for short maximum flight time budgets the DOP sometimes outperforms

the KOP. This can be explained by the fact that our KOP solution must start and end rest.

The DOP starts and ends at its associated constant velocity. Especially for short maximum

flight time budgets, this explains why the DOP collects more priorities than the KOP. This

also explains the notable tracking error MAE for the DOP solutions, which can be seen in

Table 3.11. However, remember that only the best possible solution of the DOP is given in

the table. Moving at lower constant velocities would increase the capability of the UAV to

track the reference with reduced MAE tracking errors. This is the reason why the MAE

is smaller for small scaling factors of the problem instances although in these cases the

mission durations are shorter and the timeshare of the transient to follow the reference

trajectory compared to the entire mission duration is smaller.

As Figures 3.16 show, the collected priorities for the KOP are significantly higher than

the ones collected for OP-H2H for all considered problem instances. Further, the results

are also significantly better solutions than the best possible solution of the DOP in the

majority of cases while always guaranteeing the kinematic executability of the calculated

flight missions. Only for very short mission durations and spatial scaling factors ≥ 2, the

DOP yields more collected priorities than the KOP. However, this can be explained by

111

3. Inertia-based Routing

the kinematically infeasible constant velocity at the start and end waypoint. Overall, the

results show that the KOP model is highly beneficial when solving orienteering problems

for physically inert systems.

3.4.6.2. Limits of Solving the KOP to Optimality

To assess the scaling properties of the KOP model compared to the OP-classic and the DOP,

wemake use of the set of 25 ordered sets of waypoints with start and endwaypoint specified

and which we introduce in Section 3.4.2.6. Each of these waypoint sets is complemented

to a proper problem instance by assigning five different maximum travel time budgets

𝐶𝑚𝑎𝑥 ∈ {10, 15, 20, 25} as given in Table 3.12. This accumulates to a total of 100 investigated

problem instances. For this study, we apply the default settings as described in Section

3.4.1 except for the computation time limit for our MIP-based approaches, which we set

to 3600 s. Table 3.12 shows the lowest, average, and highest computation time required

to solve a single problem instance by our MIP-based approaches for the OP-classic, DOP,

and KOP.

𝐿 𝐶𝑚𝑎𝑥
OP-classic DOP KOP

CTLB (s) CT (s) CTUB (s) CTLB (s) CT (s) CTUB (s) CTLB (s) CT (s) CTUB (s)

5 10 0.00 0.00 0.01 0.00 0.00 0.00 0.08 1.42 6.66

15 0.00 0.00 0.00 0.00 0.01 0.01 0.23 0.81 1.72

20 0.00 0.00 0.00 0.01 0.01 0.02 0.37 0.57 0.92

25 0.00 0.00 0.01 0.02 0.02 0.03 0.32 0.36 0.42

10 10 0.01 0.02 0.03 0.01 0.01 0.02 1.93 19.23 69.27

15 0.01 0.01 0.02 0.04 0.07 0.13 5.70 739.31 3600.00

20 0.01 0.02 0.04 0.11 0.24 0.42 13.91 1107.77 3600.00

25 0.00 0.01 0.01 0.23 0.44 0.96 10.64 133.23 558.80

15 10 0.04 0.19 0.41 0.03 0.04 0.05 13.52 64.94 21.63

15 0.03 0.17 0.45 0.48 0.62 0.75 24.39 1480.36 3600.00

20 0.04 0.16 0.30 0.24 0.34 0.56 65.85 120.00 208.68

25 0.02 0.03 0.05 0.40 0.63 0.83 41.50 1470.65 3600.00

20 10 0.06 0.32 0.73 0.05 0.06 0.09 13.99 142.51 344.28

15 0.09 0.20 0.49 1.21 1.29 1.44 68.75 1172.36 3600.00

20 0.10 1.13 4.72 0.47 1.12 3.20 241.59 945.30 3163.05

25 0.04 0.29 0.73 1.10 1.70 3.11 135.23 396.33 718.77

25 10 0.18 0.60 1.34 0.09 0.16 0.21 47.48 70.61 108.01

15 0.52 9.63 41.91 1.92 2.31 3.31 249.86 1027.59 3600.00

20 0.45 3.82 10.05 1.18 2.60 5.60 393.65 2616.26 3600.00

25 0.23 1.71 4.03 1.78 4.11 6.87 324.37 1943.62 3600.00

Table 3.12.: To evaluate the runtimes, we randomly generate 5 different problem instances with an equal

number of waypoints. These instances are solved for different OP variants and the computation time is

measured. The time limit for computation is set to 3600 s. The number of allowed heading angles for the

DOP and the KOP are 𝐻 = 8. The number of allowed traversal velocities for the KOP is set to 𝑉 = 6.

As can be seen, the OP-classic approach mostly requires only a fraction of a second until the

global optimum solution is found. The overall highest computation time is obtained for a

single problem instance with 25 waypoints and is 41.91 s. The second highest computation

time is 10.05 s, which is also obtained for a problem instance with 25 waypoints. The DOP

112

3.4. Computational Study

requires computation times in the scale of a few seconds as well. However, the average

computation times are slightly higher than the ones required by the OP-classic approach

for the problem instances related to 25 waypoints and a maximum travel time budget of

𝐶𝑚𝑎𝑥 ∈ {15, 20}. Remind, that all waypoints are placed in a square with an edge length of

20 meters. Given the constant maximum velocity of 3m/s and a maximum acceleration

of 1.5m/s yielding a turning diameter of 12m shows, that the waypoints are too dense

to be suited for the DOP. Hence, we assume that the investigated problem instances are

easy to solve since many solution candidates are quickly identified to be infeasible. The

highest runtime is required by the KOP approach. Especially for problem instances with

a larger number of waypoints, i.e. 𝐿 ≥ 10. In these cases, the computation time limit of

CT𝑚𝑎𝑥 = 3600 s is mostly reached for at least one problem instance of each group. Only

for problem instances with five waypoints, or with a maximum travel time budget of

𝐶𝑚𝑎𝑥 = 10 s, the required computation time is constantly rather low with a maximum of

344.28 s. These experiments show two things: First, the KOP is significantly more complex

than the DOP and requires powerful heuristic solution approaches to unfold the benefits

identified in Section 3.4.6.1. Second, the KOP can be applied to a wide range of problem

instances and applications for which the DOP is not well-suited.

3.4.6.3. Performance of the ALNS to Solve the KOP

For the KOP, we evaluate the performance of the ALNS against the best solutions yielded

by our MIP-based approach with a time limit of 18000 s on the original problem instances

Tsiligirides datasets 1, 2, and 3 (see [110]) with the specified travel budget interpreted as

maximumflight time. These problem instances are provided as open source at https://www.

mech.kuleuven.be/en/cib/op#section-0. For our evaluation, we make use of the default

computational setup as introduced in Section 3.4.1 which among other things defines a

maximum velocity of 𝑣𝑚𝑎𝑥 = 3m/s and a maximum acceleration 𝑎𝑚𝑎𝑥 = 1.5m/s
2
.

We solved each problem instance ten times with different random seeds for ALNS solvers

with a computation time limit of 30 s, 60 s, and 120 s. For each solver, the best and

worst solution found among the ten runs is illustrated by the colored band shape in

red (KOP-ALNS30 s), green (KOP-ALNS60 s), and blue (KOP-ALNS120 s) in Figures 3.17. The

average collected priorities are presented as dotted lines in the respective colors. Further,

we present the objective values of the best solution found by our MIP-based approach as

a black solid line and the corresponding dual bound as a black dotted line. The original

results are also provided in Tables C.4, C.5, and C.6 in Appendix C.

For dataset 1 with 32 waypoints according to Table C.4, it can be seen that our MIP-based

approach reached the computation time limit of five hours in 10 out of 14 problem instances.

Among these cases, the average Gap
MIP

is 22.60% while the highest Gap
MIP

is 63.64%. For

all three computation time limits, our ALNS solution approach yields solutions of high

quality as can be seen in the following while requiring only a fraction of the computation

time requried by the our MIP-based approach. The average gap between the best solutions

found by our ALNS compared to the solutions yielded by our MIP-based approach is −1.9%.
Note that negative values indicate that the ALNS did find better solutions than the exact

113

https://www.mech.kuleuven.be/en/cib/op#section-0
https://www.mech.kuleuven.be/en/cib/op#section-0

3. Inertia-based Routing

5 10 15 20 25 30 35 40 45 50 55 60 65 70

0

100

200

300

𝐶𝑚𝑎𝑥

M
𝑃

KOPPB

KOPDB

Avg. KOP-ALNS30 s

Avg. KOP-ALNS60 s

Avg. KOP-ALNS120 s

(a) Performance of the ALNS for the KOP on Tsiligirides dataset 1

15 20 23 25 27 30 32 35 38

200

300

400

𝐶𝑚𝑎𝑥

M
𝑃

KOPPB

KOPDB

Avg. KOP-ALNS30 s

Avg. KOP-ALNS60 s

Avg. KOP-ALNS120 s

(b) Performance of the ALNS for the KOP on Tsiligirides dataset 2

15 20 25 30 35 40 45 50 55 60 65 70

200

400

600

800

𝐶𝑚𝑎𝑥

M
𝑃

KOPPB

KOPDB

Avg. KOP-ALNS30 s

Avg. KOP-ALNS60 s

Avg. KOP-ALNS120 s

(c) Performance of the ALNS for the KOP on Tsiligirides dataset 3

Figure 3.17.: Performance of the ALNS for the KOP on Tsiligirides datasets.

approach. For dataset 1, our KOP-ALNS30 s did find better solutions than our MIP-based

approach in three out of 14 problem instances while our KOP-ALNS120 s approach bet our

MIP-based approach in 6 out of 14 problem instances.

Considering all investigated problem instances, it can be seen that the assignment of

a higher computation time limit to our ALNS increases the probability of yielding a

114

3.4. Computational Study

solution of high quality. This can be explained as follows by focussing on the average

performance of our solvers averaged over all problem instances of a dataset: As an example,

in dataset 1, the averaged Gap
ALNS

value for the KOP-ALNS30 s is 0.36 %, while the averaged

Gap
ALNS

for the KOP-ALNS60 s is -0.19 % and for KOP-ALNS120 s is -0.65 %. For dataset 2,

the corresponding averaged Gap
ALNS

values are 3.04 %, 2.54 %, and 1.77 % and for dataset 3,

the averaged Gap
ALNS

values are 3.11 %, 2.70 %, and 2.35 %. These results demonstrated the

competitiveness of our ALNS solvers compared to the MIP-based approach. Remember

that our ALNS is a single-threaded executable and these results are based on the average

performance over ten runs for each problem instance, not the best performance. Hence,

running our ALNS for a single problem instance in parallel on four different threads with

a different random seed, i.e. each on a dedicated core of our Intel(R) Core(TM) i7-8565U

CPU such that all available cores are utilized, the yielded solutions would tend to be closer

to the best performance of our solver. This further emphasizes the potential benefit of

our approach. However, note that for some runs, our ALNS yielded insufficient solution

qualities with gaps of up to 11.8%. This shows that further work must be conducted to

improve the consistency of our ALNS solver. in yielding high-quality solutions.

3.4.6.4. Benchmark Against the Approach from [88]

Last, we compare our ALNS approach for the KOP against the MPC-based approach

published in [88]. In their work, the maximum velocity norm is constrained by

√︃
𝑣2𝑥 + 𝑣2𝑦 ≤

𝑣𝑚𝑎𝑥 = 3 m/s
2
. Further, the authors restricted the maximum acceleration for the 𝑖-the axis

to |𝑎𝑚𝑎𝑥,𝑖 | = 𝑎𝑚𝑎𝑥/
√
2 with 𝑎𝑚𝑎𝑥 = 1.5m/s

2
.

In our study, we comply with these constraints by using on the one hand our TOP-UAV and

on the other hand our TOP-UAV++ trajectory planner specified with 𝑣𝑚𝑎𝑥 = 3 m/s and

𝑎𝑚𝑎𝑥 = 1.5 m/s
2
. We solve the associated problem instance derived from Tsiligirides

dataset 2 (see [110]) using our ALNS with a computation time limit of 30 s, 60 s, and

120 s. We want to emphasize, that our KOP model is constrained to start and end at

rest while the solutions presented in [88] may start and end with an arbitrary velocity

magnitude between 0 m/s and 𝑣𝑚𝑎𝑥 = 3 m/s
2
. Note, our TOP-UAV trajectory planner

allows lower maximum velocity in certain directions due to the decoupling of the axes and

equal maximum acceleration properties compared to the approach in [88]. Further, our

TOP-UAV++ planner also allows a slightly lower but similar maximum velocity compared

to the approach in [88]. However, it allows a higher maximum acceleration for certain

directions due to the multiple configurations for sharing the acceleration norm among the

axes.

In Figures 3.18a and 3.18b, we present the solutions yielded in [88] as a black solid line

while the solutions yielded by our ALNS approaches are given colored. For each of our

ALNS solvers, we provide the range between the worst and best solution found over

ten runs with different seeds as a colored band shape. The average performance of the

associated solver is given as a dotted line in the corresponding color. The results of our

KOP-ALNS30 s are given in red, of our KOP-ALNS60 s in green, and of our KOP-ALNS120 s

115

3. Inertia-based Routing

10 15 20 25 30 35 40

100

150

200

250

300

350

400

450

𝐶𝑚𝑎𝑥 in s

M
𝑃

MPC-based [88]

Avg. KOP-ALNS30 s

Avg. KOP-ALNS60 s

Avg. KOP-ALNS120 s

(a) Results for the our ALNS based on the TOP-UAV trajectory planner.

10 15 20 25 30 35 40

100

150

200

250

300

350

400

450

𝐶𝑚𝑎𝑥 in s

M
𝑃

MPC-based [88]

Avg. KOP-ALNS30 s

Avg. KOP-ALNS60 s

Avg. KOP-ALNS120 s

(b) Results for the our ALNS based on the TOP-UAV++ trajectory planner.

Figure 3.18.: Performance evaluation of the ALNS against best solutions yielded by the MPC approach

from [88] on Tsiligirides dataset 2. The ALNS using our TOP-UAV and TOP-UAV++ trajectory planner is

evaluated given 30 s, 60 s and 120 s as computation time limit and ran ten times with different random seeds

on each problem instance.

in blue. As can be seen in Figure 3.18a, although our solver using TOP-UAV is more

constrained in velocity than the approach in [88] and must start and end at rest, it yields

on average at least as good solution as the benchmarked MPC-approach in four out of

seven problem instances. Only for the problem instances with 𝐶𝑚𝑎𝑥 ∈ {10 s, 30 s}, our
ALNS approach was outperformed by the MPC approach. We explain this observation by

the more constrained kinematics of our solver and the start/end at rest restriction.

For our ALNS solvers using TOP-UAV++ (see Figure 3.18b), the average performance is at

least as good as the MPC approach in all instances. In three out of 7 instances, the average

performance of our ALNS solvers significantly outperforms the MPC approach. Note that

in three out of seven problem instances, i.e for 𝐶𝑚𝑎𝑥 ∈ {30 s, 35 s, 40 s}, our ALNS and the

MPC-based approach constantly collect all priorities available for the problem instances.

This indicates the potential of using our ALNS approach compared to the MPC-based

approach. We further want to emphasize a further advantage of our ALNS approach. Our

KOP approach is based on a set of edges that must be precomputed, for which we use

our efficient TOP-UAV or TOP-UAV++ trajectory planner. The computation time of these

116

3.5. Conclusion

edge costs does not depend on the distance between the waypoints, the maximum velocity,

or the maximum acceleration. This is different for the MPC approach since for each time

step, there is a decision variable deciding which acceleration to apply on each coordinate

axis, there would be an increasing number of decision variables for an increasing number

of time steps, e.g. due to longer mission durations. The keep track of the computational

complexity, the time step length must be increased for long-duration missions from which

consideration of the maneuverability of the UAV suffers.

The original results accompanying the Figures can be found in Appendix C in Tables C.7

and C.8.

3.5. Conclusion

In this chapter, we presented existing work on inertia-based routing. Further, we provided

two new problem formulations, namely the KTSP and the KOP and introduced a heuristic

solution framework based on the ALNS to solve them. The results show that the KTSP

and KOP models are highly beneficial when it comes to routing problems with inertia.

However, we show that obtaining the proven global optimum solution by applying a

commercial solver such as Gurobi becomes computationally very expensive, especially

for larger problem instances. This motivates the need for powerful heuristic solvers. Our

ALNS is capable of yielding high-quality solutions for the KTSP and the KOP in a short

time.

117

4. Conclusions and Outlook

In this thesis, we presented deep insights into inertia-based routing problems. In Chapter

1, we motivated why inertia-based routing is especially important for multirotor UAV

applications and indicated the limits of modern approaches. In Chapter 2, we introduced

our time-optimal trajectory planner that is used in Chapter 3 to estimate the flight time

between spatial waypoints and which overcome major flaw in the current state-of-the-art

to calculating time-optimal trajectories for point-masses. In Chapter 3, we specifically

focus on inertia-based routing problems. We introduce new mathematical models, namely

the KTSP and the KOP, and develop powerful heuristic solution approaches based on

the adaptive large neighborhood search framework. In this chapter, we summarize the

findings of this work and give an outlook for promising future research directions.

4.1. Summary and Results

In Chapter 1, we presented a general introduction to UAV routing problems and especially

focused on surveillance and data collection applications. Further, we give an example

problem of such a data collection mission and show the solution of the mission planning

with approaches from the current state-of-the-art. Assuming a simulated multirotor

UAV trying to follow the trajectory representing the yielded solution of the routing

problem, we see that the SOTA approaches either significantly underestimate the required

flight time between two waypoints by neglecting essential physical capabilities of the

simulated UAV, or overestimate them by not properly consider these capabilities of the

UAV. This might lead to two different problems: On the one hand, the computed reference

trajectory is not compatible with the capabilities of the UAV and spatial discrepancies

in the mission execution result. On the other hand, although the computed reference

trajectory is compatible with the physical capabilities of the UAV, it does not fully exploit

these. Hence, the reference trajectory turns out to be time-inefficient.

We identify the root of this problem to be the type of applied trajectory planning approaches

since none of the state-of-the-art approaches for UAV routing correctly cover the full

kinematic properties of a multirotor UAV, i.e. their ability to arbitrarily change velocity

magnitude and direction by applying acceleration forces in specific directions.

Therefore, we investigate possible candidates for trajectory planning of multirotor UAVs

in Chapter 2. Crucial aspects of an ideal candidate for trajectory planning are, that the

approach considers the full kinematics of a multirotor UAV, yields time-optimal motions

since minimum time is one of the highest objectives in UAV routing applications, and

119

4. Conclusions and Outlook

calculates trajectories within the scale of a few hundred microseconds since in UAV routing

problems thousands of trajectories must be calculated. In the literature, we identified

one promising candidate that covers all these specifications. However, we also identified

that this approach is not generally correct and sometimes yields trajectories that miss the

required final waypoint by far. Hence, we developed a new optimization-based approach

which we could prove to overcome the identified issue of the state-of-the-art approach.

During the development of our TOP-UAV approach, we also identified the cause of why

the SOTA approach fails under some circumstances. To even better exploit the kinematic

capabilities of multirotor UAVs, we improved our trajectory planner to TOP-UAV++ and

provided the source code of both trajectory planners as open source in C++ and Python for

the two- and three-dimensional case. Moreover, we presented an extensive computational

study and show, that our approaches solve the time-optimal trajectory planning problem

optimally within the scale of a few hundred nanoseconds which is even faster than

required.

With our TOP-UAV++ trajectory planner at hand, we focussed on the inertia-based routing

problem for multirotor UAVs in Chapter 3. We first give an overview of existing literature

and then define the kinematic traveling salesman problem and the kinematic orienteering

problem. As we show in the computational results, solving the KTSP and the KOP to

optimality with a commercial solver such as Gurobi becomes computationally intractable

for larger problem instances. Hence, we developed a heuristic solver for both, which is

based on the adaptive large neighborhood search. The results show, that the KTSP and

the KOP offer a significant advantage compared to related problem formulations from the

state-of-the-art and that our ALNS is capable of yielding high-quality solutions in a short

time.

4.2. Future Work and Outlook

The findings of this work indicate that a proper consideration of the kinematic properties

for route planning of a physical system is possible and offers lots of potential improvements

compared to state-of-the-art approaches. However, this work represents just the entry

into a highly relevant and interesting new research area that combines the classical vehicle

routing domain from operations research with the motion planning domain from robotics.

Having a look at the work on UAV routing conducted in this thesis, lots of promising

future research can be done. As indicated in Sections 3.4.5.3 and 3.4.6.2, the computational

complexity for solving the KTSP and the KOP to its global optimum with a commercial

solver is very time-consuming. Hence, one future research direction could be to design

problem-specific mathematical solvers based on e.g. branch-and-cut or branch-and-price,

that are capable of solving larger problem instances in less time. The same holds for

heuristic solvers for the ALNS. Other metaheuristic frameworks could be applied to solve

the KTSP and the KOP such as Variable Neighborhood Search (VNS), Local Search (LS), or

Genetic Algorithms (GA), to get a better understanding of which approach is suited best to

solve even larger KTSP or KOP instances consistently with high quality in short time.

120

4.2. Future Work and Outlook

Apart from the future research direction directly related to the KTSP and KOP defined in

this work, there are extensions considerable. For example, UAVs move in three dimensions.

Hence the KOP and KTSP could be extended to 3-dimensional problem instances. As

we showed in Section 2.5 our trajectory planners TOP-UAV and TOP-UAV++ are already

capable of calculating three-dimensional time optimal motions. When having a look at

the model for the KTSP and the KOP in Sections 3.2.1.2 and 3.2.2.2, an extension to 3D

would require two additional indices for the azimuthal heading angle for the start and

end waypoints in addition to the polar heading angles already defined. Such a model

would be highly beneficial in uneven terrain when a constant altitude above ground

level is required and hence the waypoints are at different altitudes above mean sea level.

Further, in many real-world applications for surveillance and data collection, a fixed

set of obstacles must be considered. This would require extending our TOP-UAV and

TOP-UAV++ trajectory planners to consider these obstacles. In general, the calculation of

obstacle-avoiding trajectories is much more complex than calculating trajectories in an

obstacle-free environment. However, there are some capable and efficient approaches. For

example, one lately published framework that could be used is based on rapidly exploring

random trees (RRT), and also incorporates time-optimal trajectories with constrained

maximum acceleration [121]. The next promising research direction lies in the extension

of the KTSP and the KOP model to consider teams of homogenous multirotor UAVs with

the same kinematic properties, teams of heterogenous multirotor UAVs with different

kinematic properties, but also teams of heterogenous UAVs of multirotor and fixed-wing

UAVswith different kinematic properties. Apart from these extensions, it is to bementioned

that the KTSP and the KOP are rather basic concepts that show a potential benefit when

considering the kinematics of a system properly. There are numerous application-specific

models to be investigated, e.g. time-window constraints, multiple depots, and many

more.

Another promising research direction is to investigate the impact of kinematic routing

models in non-UAV applications. For example in additive manufacturing such as laser

powder-bed fusion. One of potentially multiple micro-mirrors is required to conduct a

rotational route such that a laser fuses the metal powder at specific locations. Although

mirrors can be adjusted very fast, these mirrors are still inert (see [122, 123]) and the angle

positions of the mirrors that correspond to a specific position in the metal powder plane

are very close. Moreover, in such use cases, the velocity is constrained since the power of

the laser is limited and the metal must absorb enough energy to fuse. Hence, kinematic

routing models have the potential to come at a reduction of the printing time. Especiall in

such applications it would be necessary to modify our TOP-UAV trajectory planner to be

able to deal with the rotational motion of the mirrors rather than the translational motion

of the projected waypoint in the powder-bed plane.

Apart from laser powder-bed fusion, also extrusion-based additive manufacturing appli-

cations could benefit from kinematic routing formulations in terms of required printing

time. This potential benefit is indicated e.g. in [124, 125, 126, 127], as such systems are

constrained by the maximum acceleration of the extruder as well as a constraint in the

maximum velocity due to a maximum feed rate of the extruder with 3D printing material.

121

4. Conclusions and Outlook

For our time-optimal trajectory planning framework there are also numerous promising

extensions considerable. In general, our TOP-UAV and TOP-UAV++ trajectory planners

for two- and three-dimensional translational motion are very mature for symmetric max-

imum velocities and acceleration distribution on a single axis, i.e. −𝑣𝑚𝑎𝑥 ≤ 𝑣 (𝑡) ≤ 𝑣𝑚𝑎𝑥

and −𝑎𝑚𝑎𝑥 ≤ 𝑎(𝑡) ≤ 𝑎𝑚𝑎𝑥 . One further immediate extension of our trajectory planner

could be to investigate the effect of higher numbers of configurations to share the velocity

and acceleration norms among the axes and potentially find a trade-off between required

computation time and improvement of the motion. Further, the consideration of unsym-

metric maximum velocities and accelerations for a single axis, i.e. 𝑣𝑚𝑖𝑛 ≤ 𝑣 (𝑡) ≤ 𝑣𝑚𝑎𝑥 and

𝑎𝑚𝑖𝑛 ≤ 𝑎(𝑡) ≤ 𝑎𝑚𝑎𝑥 , and especially their behavior when coupled with the remaining axis in

multi-dimensional time-optimal trajectory planning. In this case, an extended evaluation

of the feasibility of the resulting solutions and optimality proofs must be conducted as done

in the symmetric case in Section 2.4.2. This helps to better consider e.g. the gravitational

force in time-optimal trajectory planning and subsequently in inertia-based UAV routing

applications. Another possible extension of our trajectory planner is to simultaneously

consider rotational and translational motion. Such trajectories could help in surveillance

and data collection applications for multirotor UAVs when not only the waypoints are

given, but also the orientation of the sensor to capture a scene is specified.

122

A. Hover-to-Hover Trajectories

Hover-to-hover trajectories represent the time-optimal motion between any two spatial

waypoints, whereas the motion has to start at rest at the start waypoint and end at rest

at the end waypoint. Further, the overall motion is restricted by a maximum allowed

velocity and maximum allowed acceleration. Although hover-to-hover trajectories are

comparably simple to calculate, they are a kinematically feasible approach and yet used

to compute UAV missions for surveillance and data collection (see [11]). In Algorithm

6, we present the algorithm to calculate the duration and the associated acceleration

pattern as control input used in this work. In analogy to Equation 2.5, the acceleration

pattern (𝑎1, 𝑎2, 𝑎3) is described by the segments times 𝑡1, 𝑡2, and 𝑡3, whereas 𝑡𝑖 specifies the

duration the acceleration 𝑎𝑖 is applied. Since hover-to-hover trajectories start at rest, they

always implement a bang-zero-bang control input pattern of the form (+𝑎𝑚𝑎𝑥 , 0,−𝑎𝑚𝑎𝑥)
with 𝑡1 = 𝑡3. In the following, we describe the algorithm.

Algorithm 6: Hover-2-Hover
1 Input:
2 - Distance between waypoints: dist
3 - Maximum velocity: 𝑣𝑚𝑎𝑥

4 - Maximum acceleration: 𝑎𝑚𝑎𝑥

5 threshold_time← 2 · 𝑣𝑚𝑎𝑥/𝑎𝑚𝑎𝑥

6 threshold_dist← 𝑎𝑚𝑎𝑥 · (threshold_time/2)2

7 if dist < threshold_dist then
8 𝑡1, 𝑡3 ←

√︁
dist/𝑎𝑚𝑎𝑥

9 𝑡2 ← 0

10 else
11 𝑡1, 𝑡3 ← threshold_time/2
12 𝑡2 ← (dist − threshold_dist)/𝑣𝑚𝑎𝑥

13 return: 𝑡1, 𝑡2, 𝑡3

First, we calculate the time threshold_time that would be needed to accelerate from rest to

𝑣𝑚𝑎𝑥 and decelerate to rest again in line 5. Next, we calculate the distance threshold_dist in
line 6 that would be traversed in this case. That is, when starting at rest and accelerating

with 𝑎𝑚𝑎𝑥 until 𝑣𝑚𝑎𝑥 is reached, and, immediately at this point, decelerating with 𝑎𝑚𝑎𝑥

until the rest state is reached again.

This information is used to identify if the hover-to-hover trajectory reaches 𝑣𝑚𝑎𝑥 for the

given input arguments, or not. If the input argument dist is less than threshold_dist, then

123

Hover-to-Hover Trajectories

𝑣𝑚𝑎𝑥 is not reached and 𝑡2 = 0 follows. Further, 𝑡1, 𝑡3 =
√︁
𝑑𝑖𝑠𝑡/𝑎𝑚𝑎𝑥 are obtained. This case

can be seen in lines 7 - 8.

On the other hand, if dist is greater than or equal to threshold_dist, then 𝑣𝑚𝑎𝑥 is reached.

In this case, 𝑡1 and 𝑡3 are assigned threshold_dist/2 as it represents the duration for which

𝑎𝑚𝑎𝑥 must be applied to reach 𝑣𝑚𝑎𝑥 from starting at rest. This implies that during the

acceleration phases, the distance threshold_dist is covered and the trajectory remains for

the distance (dist - threshold_dist) at velocity 𝑣𝑚𝑎𝑥 from which 𝑡2 is derived. The associated

assignments for 𝑡1, 𝑡2, and 𝑡3 are given in lines 11 and 12.

In the end, 𝑡1, 𝑡2, and 𝑡3 are returned. Note that the duration of the resulting hover-to-hover

trajectory can be calculated as 𝑇𝐻2𝐻 = 𝑡1 + 𝑡2 + 𝑡3.

124

B. Trajectory Tracking in 2D

Within this work, we utilize two different MPC-based approaches, namely the ‘full-

kinematic system model’ and the ‘restricted-kinematic system model’. We use the ‘full-

kinematic system model’ to simulate a real UAV with a maximum allowed velocity 𝑣𝑚𝑎𝑥

and a maximum allowed acceleration of 𝑎𝑚𝑎𝑥 in any direction. On the other hand, we use

to ‘restricted-kinematic system model’ for the validation of the SOTA approach presented

in Section 2.2.2.2 as it allows us to consider the same kinematic properties, i.e. the decou-

pled maximum allowed velocity 𝑣𝑚𝑎𝑥 and acceleration 𝑎𝑚𝑎𝑥 per axis. In the following, we

describe both approaches.

B.1. Full-Kinematic System Model

The kinematic system model covering the multirotor UAV’s full kinematics with a maxi-

mum allowed velocity 𝑣𝑚𝑎𝑥 and acceleration 𝑎𝑚𝑎𝑥 in any direction is given as follows:
𝑝𝑥 (𝑘 + 1)
𝑝𝑦 (𝑘 + 1)
𝑣𝑥 (𝑘 + 1)
𝑣𝑦 (𝑘 + 1)

︸ ︷︷ ︸
𝒙 (𝑘+1)

=


1 0 Δ𝑇 0

0 1 0 Δ𝑇
0 0 1 0

0 0 0 1

︸ ︷︷ ︸
𝑨

·


𝑝𝑥 (𝑘)
𝑝𝑦 (𝑘)
𝑣𝑥 (𝑘)
𝑣𝑦 (𝑘)

︸ ︷︷ ︸
𝒙 (𝑘)

+


Δ𝑇 2

2
0

0
Δ𝑇 2

2

Δ𝑇 0

0 Δ𝑇

︸ ︷︷ ︸
𝑩

·
[
𝑎𝑥 (𝑘)
𝑎𝑦 (𝑘)

]
︸ ︷︷ ︸

𝒖 (𝑘)

(B.1)

Equation (B.1) describes a linear, time-discrete and time-invariant kinematic system model

of a UAV and defines how the application of acceleration power due to rotor thrust affects

the velocity and finally the position of the UAV. In each time step 𝑘 , it is assumed that the

control input 𝒖 (𝑘) is constant for the entire time step length Δ𝑇 .

With this model, we can state the MPC for the full-kinematic system model as optimal

control problem as follows:

min

𝒖 (𝑘)
(𝒙 (𝑁) − 𝒙𝑟 (𝑁))⊤𝑸𝑁 (𝒙 (𝑁) − 𝒙𝑟 (𝑁)) (B.2a)

𝑁−1∑︁
𝑘=0

(𝒙 (𝑘) − 𝒙𝑟 (𝑘))⊤𝑸 (𝒙 (𝑘) − 𝒙𝑟 (𝑘)) (B.2b)

𝑁−1∑︁
𝑘=0

𝒖 (𝑘)⊤𝑹𝒖 (𝑘) (B.2c)

125

Trajectory Tracking in 2D

𝑠 .𝑡 .

𝒙 (0) = 𝒙𝑠 (B.2d)

𝒙 (𝑘 + 1) = 𝑨𝒙 (𝑘) + 𝑩𝒖 (𝑘), ∀𝑘 = 0, ..., 𝑁 − 1 (B.2e)

𝒙⊤(𝑘)


0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 1

 𝒙 (𝑘) ≤ 𝑣2𝑚𝑎𝑥 , ∀𝑘 = 0, ..., 𝑁 (B.2f)

𝒖⊤(𝑘)
[
1 0

0 1

]
𝒖 (𝑘) ≤ 𝑎2𝑚𝑎𝑥 ∀𝑘 = 0, ..., 𝑁 − 1 (B.2g)

𝒙 (𝑘) ∈ R4, ∀𝑘 = 0, ..., 𝑁 (B.2h)

𝒖 (𝑘) ∈ R2, ∀𝑘 = 0, ..., 𝑁 − 1 (B.2i)

While the weight matrices 𝑸𝑁 ,𝑸 , and 𝑹 are defined as

𝑸𝑁 =


1000 0 0 0

0 1000 0 0

0 0 10 0

0 0 0 10

 (B.3)

𝑸 =


100 0 0 0

0 100 0 0

0 0 1 0

0 0 0 1

 (B.4)

𝑹 =

[
0 0

0 0

]
(B.5)

for this work.

As can be seen in the Equations (B.2), we first specify the objective. Given the discrete

number of time steps and a reference trajectory 𝒙𝑟 (𝑘), 𝑘 = 0, ..., 𝑁 , MPC applies a term

penalizing the deviation from the desired final state as given in Equation (B.2a) which is

also known as Mayer-term. Further, the deviation along the reference trajectory is also

penalized for each time step 𝑘 = 0, ..., 𝑁 − 1 (see Equation (B.2b)) as well as the applied

control input (see Equation (B.2c)). Both are referred to as Lagrange-term. In this work, we

do not consider a penalization of the applied control input by the 𝑹 as specified in Equation

(B.5). Penalizing the control input would allow a trade-off between the precision of the

trajectory tracking and the application of control input values that do not correspond to the

maximum allowed acceleration. This is not in line with the concept of time-optimality.

Moreover, the optimal control problem in (B.2) is constrained by a set of inequations. First,

the initial state 𝒙 (0) is defined that specifies the start position and velocity along the

𝑥 and 𝑦 coordinate axis. Second, the kinematic system model must hold for each time

step 𝑘 = 0, ..., 𝑁 − 1. Then, the norm of the velocity and acceleration at each timestep

𝑘 = 0, ..., 𝑁 are constrained by 𝑣𝑚𝑎𝑥 and 𝑎𝑚𝑎𝑥 respectively as defined in Inequations (B.2f)

126

B.2. Restricted-Kinematic System Model

and (B.2g). Last, the state 𝒙 is defined to be an element of R4
and the control input 𝒖 is an

element of R2
.

We solve the nonlinear mathematical optimization problem defined (B.2) using Gurobi

10.0.1 implemented in Python 3.9. The number of time steps 𝑁 is derived from the yielded

synchronization time 𝑇sync and the time step length Δ𝑇 as 𝑁 = ⌊𝑇sync/Δ𝑇 ⌋.

B.2. Restricted-Kinematic System Model

The SOTA approach defined in Section 2.2.2.2 as well as our basic TOP-UAV trajectory

planner is based on the decoupling of the axis, where each axis is assigned a specific

maximum velocity 𝑣𝑚𝑎𝑥 and acceleration 𝑎𝑚𝑎𝑥 . To check the feasibility of both approaches,

we design an MPC-based trajectory planner, that considers the same kinematics as both

approaches including the decoupled axes. Hence it is perfectly suited for validation.

Due to the decoupling approach, the system model considered for this MPC covers the

kinematics of only a single axis. The corresponding time-discrete, linear and time-invariant

system model is given as follows:[
𝑝 (𝑘 + 1)
𝑣 (𝑘 + 1)

]
︸ ︷︷ ︸

𝒙 (𝑘+1)

=

[
1 Δ𝑇
0 1

]
︸ ︷︷ ︸

𝑨

·
[
𝑝 (𝑘)
𝑣 (𝑘)

]
︸ ︷︷ ︸
𝒙 (𝑘)

+
[
Δ𝑇 2

2

Δ𝑇

]
︸︷︷︸

𝑩

·
[
𝑎(𝑘)

]︸ ︷︷ ︸
𝒖 (𝑘)

(B.6)

As can be seen, the control input 𝒖 (𝑘) defines a scalar value that represents the applied
acceleration that is applied in time step 𝑘 for the duration Δ𝑇 on the axis. This acceleration

affects the velocity and the position in the next time step 𝑘 + 1. Further, the velocity in

time step 𝑘 affects the position of time step 𝑘 + 1.

The resulting optimal control problem can be seen below:

min

𝒖 (𝑘)
(𝒙 (𝑁) − 𝒙𝑟 (𝑁))⊤𝑸𝑁 (𝒙 (𝑁) − 𝒙𝑟 (𝑁)) (B.7a)

𝑁−1∑︁
𝑘=0

(𝒙 (𝑘) − 𝒙𝑟 (𝑘))⊤𝑸 (𝒙 (𝑘) − 𝒙𝑟 (𝑘)) (B.7b)

𝑁−1∑︁
𝑘=0

𝒖 (𝑘)⊤𝑹𝒖 (𝑘) (B.7c)

𝑠 .𝑡 .

𝒙 (0) = 𝒙𝑠 (B.7d)

𝒙 (𝑘 + 1) = 𝑨𝒙 (𝑘) + 𝑩𝒖 (𝑘), ∀𝑘 = 0, ..., 𝑁 − 1 (B.7e)

− 𝑣𝑚𝑎𝑥 ≤
[
0 1

]
𝒙 (𝑘) ≤ 𝑣𝑚𝑎𝑥 , ∀𝑘 = 0, ..., 𝑁 (B.7f)

− 𝑎𝑚𝑎𝑥 ≤ 𝒖 (𝑘) ≤ 𝑎𝑚𝑎𝑥 , ∀𝑘 = 0, ..., 𝑁 − 1 (B.7g)

127

Trajectory Tracking in 2D

𝒙 (𝑘) ∈ R2, ∀𝑘 = 0, ..., 𝑁 (B.7h)

𝒖 (𝑘) ∈ R, ∀𝑘 = 0, ..., 𝑁 − 1 (B.7i)

Analogously to Section B.1, the general form of the optimal control problem contains

a Mayer term that penalizes the deviation between the required and the achieved final

state after 𝑁 time steps. It also contains the Lagrange term that penalizes deviation from

the reference trajectories and the applied control input. Since we focus on time-optimal

trajectories in this work and the SOTA approach defined in Section 2.2.2.2 does not yield

the entire reference but only the optimum trajectory duration, we are only interested in

the Mayer-term and neglect the Lagrange term. This is done by setting the weight matrices

𝑸𝑁 ,𝑸 , and 𝑹 as follows:

𝑸𝑁 =

[
1000 0

0 1000

]
, (B.8)

𝑸 =

[
0 0

0 0

]
, (B.9)

𝑹 =
[
0

]
. (B.10)

Further, the resulting optimal control problem is constrained by the initial state in Inequa-

tion (B.7d), by the considered restricted-kinematic system model in each time step as (see

Equations (B.7d)), the maximum velocity and acceleration bounds for each time step (see

Inequations (B.7f) and (B.7g)) and the domains of 𝒙 (𝑘) and 𝒖 (𝑘) (see Equations (B.7h) and
(B.7i)).

We solve the mathematical program defined (B.7) for each considered coordinate axis using

Gurobi 10.0.1 implemented in Python 3.9. The number of time steps 𝑁 is derived from the

yielded synchronization time 𝑇sync and the time step length Δ𝑇 as 𝑁 = ⌊𝑇sync/Δ𝑇 ⌋.

128

C. Original Computational Results

Inst. Scale

TSP-classic TSP-H2H DTSP KTSP

M𝑇 MAE M𝑇 MAE M𝑇 MAE M𝑇 Gap
MIP

MAE

TSI1 0.25 6.76 1.480 40.37 0.001 39.88 0.002 27.99 0.00 0.001

TSI1 0.50 13.53 1.264 57.10 0.001 54.88 0.002 39.37 0.00 0.001

TSI1 1.00 27.06 1.830 80.75 0.002 76.66 0.004 57.47 2.44 0.001

TSI1 2.00 54.12 2.706 115.05 0.005 108.26 0.006 87.77 2.04 0.000

TSI1 4.00 108.23 4.237 171.75 0.007 150.01 0.009 143.81 0.51 0.000

TSI2 0.25 3.83 1.100 24.47 0.001 24.36 0.001 17.09 0.00 0.001

TSI2 0.50 7.67 1.976 34.62 0.001 34.17 0.002 23.86 0.00 0.001

TSI2 1.00 15.33 2.858 48.96 0.002 48.72 0.003 34.03 0.00 0.001

TSI2 2.00 30.66 2.166 69.67 0.005 68.34 0.023 51.84 0.00 0.000

TSI2 4.00 61.32 3.122 102.91 0.008 97.44 0.007 83.23 0.00 0.000

TSI3 0.25 8.13 3.408 44.55 0.001 40.83 0.002 29.31 0.00 0.001

TSI3 0.50 16.26 4.291 63.01 0.001 57.86 0.003 41.85 3.18 0.000

TSI3 1.00 32.51 4.086 89.14 0.003 89.14 0.006 61.31 0.00 0.001

TSI3 2.00 65.02 22.175 128.05 0.003 114.90 0.010 94.22 0.00 0.001

TSI3 4.00 130.05 7.106 195.38 0.006 164.92 0.009 164.86 0.37 0.000

Table C.1.: Mission duration and MAE tracking error for optimal solutions of TSP-classic, TSP-H2H, DTSP,

and KTSP on the problem instances presented in Section 3.4.2.1. For the KTSP, we additionally give the

Gap
MIP

since not all problem instances were solved to proven optimality due to the time limit of 18000 s.

129

C. Original Computational Results

𝐿
TSP-classic DTSP KTSP

CTLB CT CTUB CTLB CT CTUB CTLB CT CTUB

10 0.00 0.00 0.01 0.21 10.39 38.26 9.82 85.53 284.77

12 0.00 0.01 0.02 0.30 3.41 12.31 4.95 16.22 27.28

14 0.00 0.01 0.02 0.32 6.83 18.11 6.76 363.29 1609.52

16 0.01 0.01 0.01 1.40 3.10 5.84 37.46 65.79 81.42

18 0.01 0.02 0.04 2.65 42.88 159.44 44.03 1352.06 3600.00

20 0.01 0.03 0.06 4.26 10.78 28.66 131.33 575.39 1705.34

22 0.01 0.03 0.05 2.07 72.04 314.67 137.23 1112.57 1924.09

24 0.04 0.05 0.07 7.10 26.97 65.02 772.39 2028.60 3600.00

26 0.02 0.06 0.11 5.43 20.29 32.37 150.20 1139.73 3600.00

28 0.05 0.07 0.09 11.28 28.09 55.08 2592.10 3398.42 3600.00

30 0.07 0.12 0.21 48.19 324.91 1171.91 1462.61 2857.08 3600.00

32 0.06 0.13 0.19 8.68 530.61 2423.46 3083.45 3424.04 3600.00

34 0.02 0.10 0.17 12.28 336.84 1268.42 3600.00 3600.00 3600.00

36 0.07 0.12 0.25 45.90 597.42 1742.12 3600.00 3600.00 3600.00

38 0.04 0.13 0.23 6.60 1273.25 3600.00 3600.00 3600.00 3600.00

40 0.03 0.07 0.13 71.53 214.01 508.49 3600.00 3600.00 3600.00

Table C.2.: To evaluate the lowest (CTLB), average (CT) and highest (CTUB) computation times for different

TSP variants, we use the problem instances presented in Section 3.4.2.3. The computation time limit is set

to 3600 s. The number of allowed heading angles for DTSP and KTSP are 𝐻 = 8. The number of allowed

traversal velocities for the KTSP is set to 𝑉 = 6.

130

I
n
s
t
.

S
c
a
l
e

K
T
S
P
-
e
x
a
c
t

K
T
S
P
-
A
L
N
S
3
0
s
(
%
)

K
T
S
P
-
A
L
N
S
6
0
s
(
%
)

K
T
S
P
-
A
L
N
S
1
2
0
s
(
%
)

M
𝑇

G
a
p
M
I
P

C
P
U
(
s
)

G
a
p
A
L
N
S

L
B

G
a
p
A
L
N
S

G
a
p
A
L
N
S

U
B

G
a
p
A
L
N
S

L
B

G
a
p
A
L
N
S

G
a
p
A
L
N
S

U
B

G
a
p
A
L
N
S

L
B

G
a
p
A
L
N
S

G
a
p
A
L
N
S

U
B

T
S
I
1

0
.2
5

2
7
.9
9

0
.0
0

7
6
0
4

5
.1
8

6
.0
4

7
.5
0

3
.4
7

5
.5
0

7
.6
8

3
.0
0

5
.0
3

6
.5
4

T
S
I
1

0
.5
0

2
9
.3
7

0
.0
0

1
5
3
8
0

2
.4
4

4
.3
0

5
.8
2

1
.9
8

3
.9
6

6
.2
0

1
.7
3

3
.5
8

5
.3
1

T
S
I
1

1
.0
0

5
7
.4
7

2
.4
4

1
8
0
0
0

1
.2
7

3
.1
5

4
.2
1

1
.4
8

2
.3
1

3
.2
2

1
.2
2

2
.3
8

3
.4
3

T
S
I
1

2
.0
0

8
7
.7
7

2
.0
4

1
8
0
0
0

0
.1
3

1
.3
7

1
.9
3

0
.0
0

0
.9
0

1
.3
2

0
.2
2

1
.0
3

1
.4
0

T
S
I
1

4
.0
0

1
4
3
.8
1

0
.5
1

1
8
0
0
0

0
.0
0

0
.3
1

1
.4
4

0
.0
0

0
.0
1

0
.1
3

0
.0
0

0
.0
1

0
.1
3

T
S
I
2

0
.2
5

1
7
.0
9

0
.0
0

2
1
2

0
.1
8

0
.5
3

0
.9
4

0
.1
8

0
.5
3

0
.9
4

0
.0
0

0
.3
5

1
.4
6

T
S
I
2

0
.5
0

2
3
.8
6

0
.0
0

5
2
9

0
.0
0

0
.4
6

1
.0
1

0
.0
0

0
.2
1

0
.9
6

0
.0
0

0
.2
9

1
.3
0

T
S
I
2

1
.0
0

3
4
.0
3

0
.0
0

1
7
2
4

0
.0
0

0
.5
9

1
.1
5

0
.0
0

0
.3
5

0
.7
3

0
.0
0

0
.2
4

0
.7
3

T
S
I
2

2
.0
0

5
1
.8
4

0
.0
0

3
0
7
8

0
.0
0

0
.2
3

0
.7
9

0
.0
0

0
.3
3

0
.7
9

0
.0
0

0
.1
7

0
.7
9

T
S
I
2

4
.0
0

8
3
.2
3

0
.0
0

4
9
8
7

0
.0
0

0
.0
0

0
.0
0

0
.0
0

0
.0
0

0
.0
0

0
.0
0

0
.0
0

0
.0
0

T
S
I
3

0
.2
5

2
9
.3
1

0
.0
0

7
2
0
4

4
.0
3

6
.0
7

7
.5
4

2
.9
7

5
.3
6

7
.6
8

3
.4
8

4
.8
1

6
.0
4

T
S
I
3

0
.5
0

4
1
.8
5

3
.1
8

1
8
0
0
0

3
.0
8

4
.7
6

6
.7
1

1
.2
4

3
.5
4

5
.9
0

1
.3
6

3
.3
9

4
.9
5

T
S
I
3

1
.0
0

6
1
.3
1

0
.0
0

8
9
1
0

3
.0
2

3
.5
9

4
.4
8

1
.6
5

2
.7
4

4
.1
3

0
.0
0

1
.9
6

3
.3
6

T
S
I
3

2
.0
0

9
7
.2
2

0
.0
0

1
7
4
0
3

0
.8
7

1
.2
4

2
.0
1

0
.7
1

1
.0
9

1
.3
9

0
.1
4

0
.8
4

1
.3
9

T
S
I
3

4
.0
0

1
6
4
.8
6

0
.3
7

1
8
0
0
0

0
.3
9

0
.6
4

1
.2
7

0
.3
2

0
.3
9

0
.5
5

0
.3
9

0
.3
9

0
.3
9

Ta
bl
e
C
.3
.:
P
e
r
f
o
r
m
a
n
c
e
e
v
a
l
u
a
t
i
o
n
o
f
t
h
e
A
L
N
S
a
g
a
i
n
s
t
s
o
l
u
t
i
o
n
s
y
i
e
l
d
e
d
b
y
s
o
l
v
i
n
g
t
h
e
K
T
S
P
e
x
a
c
t
l
y
w
i
t
h
G
u
r
o
b
i
w
i
t
h
a
c
o
m
p
u
t
a
t
i
o
n
t
i
m
e
l
i
m
i
t
1
8
0
0
0
s
.

T
h
e
A
L
N
S
i
s
e
v
a
l
u
a
t
e
d
g
i
v
e
n
3
0
s
,
6
0
s
a
n
d
1
2
0
s
a
s
c
o
m
p
u
t
a
t
i
o
n
t
i
m
e
l
i
m
i
t
a
n
d
r
u
n
t
e
n
t
i
m
e
s
w
i
t
h
d
i
ff
e
r
e
n
t
r
a
n
d
o
m

s
e
e
d
s
o
n
e
a
c
h
p
r
o
b
l
e
m

i
n
s
t
a
n
c
e
.
F
o
r
e
a
c
h

c
o
m
p
u
t
a
t
i
o
n
t
i
m
e
l
i
m
i
t
t
h
e
t
a
b
l
e
s
h
o
w
s
t
h
e
b
e
s
t
,
a
v
e
r
a
g
e
a
n
d
w
o
r
s
t
y
i
e
l
d
e
d
g
a
p
t
o
t
h
e
b
e
s
t
f
o
u
n
d
s
o
l
u
t
i
o
n
o
b
t
a
i
n
e
d
f
r
o
m

G
u
r
o
b
i
.

131

C. Original Computational Results

𝐶𝑚𝑎𝑥
KOP KOP-ALNS30 s KOP-ALNS60 s KOP-ALNS120 s

M𝑃 Gap
MIP

CT M𝑃 M𝑃 M𝑃 M𝑃 M𝑃 M𝑃 M𝑃 M𝑃 M𝑃

5 10 0.00 129.21 10 10.0 10 10 10.0 10 10 10.0 10

10 40 37.50 18000.00 35 35.0 35 35 35.0 35 35 35.0 35

15 55 63.64 18000.00 75 71.5 70 75 71.0 70 75 72.5 70

20 100 20.00 18000.00 100 97.0 90 105 99.5 90 105 99.5 95

25 125 20.00 18000.00 130 125.0 120 130 125.5 120 130 128.5 125

30 170 0.00 13095.55 165 155.5 150 165 159.0 155 165 161.0 155

35 200 0.00 12283.97 195 191.5 185 195 194.0 190 195 193.0 185

40 220 2.25 18000.00 215 212.0 205 215 213.5 210 215 213.5 210

45 240 2.08 18000.00 235 230.0 225 235 231.5 230 235 230.5 230

50 250 8.00 18000.00 250 248.0 240 255 250.0 245 255 252.0 250

55 270 5.56 18000.00 270 267.5 265 270 270.0 270 270 268.5 265

60 280 1.79 18000.00 285 282.5 280 285 281.0 280 285 283.5 280

65 280 1.79 18000.00 285 285.0 285 285 285.0 285 285 285.0 285

70 285 0.00 3531.04 285 285.0 285 285 285.0 285 285 285.0 285

Table C.4.: Tsiligirides dataset 1. Performance evaluation of the ALNS against solutions yielded by solving

the KOP exactly with Gurobi with a computation time limit of 18000 s on Tsiligirides dataset 1. The ALNS is

evaluated given 30 s, 60 s and 120 s as a computation time limit and ran ten times with different random

seeds on each problem instance. For each time limit the table shows the best, average and worst collected

priorities.

𝐶𝑚𝑎𝑥
KOP KOP-ALNS30 s KOP-ALNS60 s KOP-ALNS120 s

M𝑃 Gap
MIP

CT M𝑃 M𝑃 M𝑃 M𝑃 M𝑃 M𝑃 M𝑃 M𝑃 M𝑃

15 190 10.53 18000.00 190 185.5 175 190 188.5 175 190 190.0 190

20 270 0.00 9797.15 260 251.0 240 265 254.0 245 270 263.0 255

23 325 0.00 741.65 315 298.5 290 310 301.0 295 315 309.0 300

25 355 0.00 508.11 350 342.5 335 355 343.0 335 355 345.5 340

27 380 0.00 253.19 380 373.5 365 375 373.0 365 380 375.5 370

30 410 0.00 6822.06 400 399.5 395 410 403.0 400 400 400.0 400

32 430 4.65 18000.00 430 421.0 420 430 422.0 420 430 421.0 420

35 450 0.00 4994.18 450 450.0 450 450 450.0 450 450 450.0 450

38 450 0.00 893.50 450 450.0 450 450 450.0 450 450 450.0 450

Table C.5.: Tsiligirides dataset 2. Performance evaluation of the ALNS against solutions yielded by solving

the KOP exactly with Gurobi with a computation time limit of 18000 s on Tsiligirides dataset 2. The ALNS is

evaluated given 30 s, 60 s and 120 s as a computation time limit and ran ten times with different random

seeds on each problem instance. For each time limit the table shows the best, average and worst collected

priorities.

132

𝐶𝑚𝑎𝑥
KOP KOP-ALNS30 s KOP-ALNS60 s KOP-ALNS120 s

M𝑃 Gap
MIP

CT M𝑃 M𝑃 M𝑃 M𝑃 M𝑃 M𝑃 M𝑃 M𝑃 M𝑃

15 220 0.00 7497.43 220 209.0 200 220 216.0 200 220 218.0 200

20 330 0.00 1954.54 320 315.0 310 320 315.0 310 330 314.0 310

25 410 0.00 1726.59 400 393.0 390 400 393.0 390 400 396.0 390

30 490 0.00 806.89 480 464.0 450 480 462.0 450 480 472.0 460

35 550 0.00 2613.76 530 522.0 510 530 529.0 520 530 526.0 520

40 600 0.00 7826.57 590 579.0 570 590 577.0 560 590 579.0 570

45 660 0.00 3022.42 650 633.0 610 640 632.0 620 650 634.0 620

50 710 1.41 18000.00 700 692.0 680 700 695.0 680 710 699.0 690

55 760 0.00 5240.66 750 739.0 730 750 746.0 730 750 746.0 740

60 780 2.56 18000.00 780 777.0 770 780 775.0 770 780 778.0 770

65 790 1.27 18000.00 800 800.0 800 800 800.0 800 800 800.0 800

70 800 0.00 3193.12 800 800.0 800 800 800.0 800 800 800.0 800

Table C.6.: Tsiligirides dataset 3. Performance evaluation of the ALNS against solutions yielded by solving

the KOP exactly with Gurobi with a computation time limit of 18000 s on Tsiligirides dataset 3. The ALNS is

evaluated given 30 s, 60 s and 120 s as a computation time limit and ran ten times with different random

seeds on each problem instance. For each time limit the table shows the best, average and worst collected

priorities.

𝐶𝑚𝑎𝑥
MPC [88] KOP-ALNS30 s KOP-ALNS60 s KOP-ALNS120 s

M𝑃 CT M𝑃 M𝑃 M𝑃 M𝑃 M𝑃 M𝑃 M𝑃 M𝑃 M𝑃

10 115.0 1.7 105.0 102.0 100.0 105.0 103.0 100.0 105.0 104.0 100.0

15 200.0 2.8 210.0 199.5 195.0 210.0 198.5 195.0 210.0 203.0 195.0

20 260.0 8.7 295.0 290.0 285.0 295.0 291.0 285.0 305.0 296.5 290.0

25 370.0 11.4 390.0 385.5 375.0 390.0 388.5 375.0 390.0 389.0 385.0

30 450.0 15.9 440.0 435.0 430.0 440.0 438.0 430.0 440.0 440.0 440.0

35 450.0 22.8 450.0 450.0 450.0 450.0 450.0 450.0 450.0 450.0 450.0

40 450.0 45.7 450.0 450.0 450.0 450.0 450.0 450.0 450.0 450.0 450.0

Table C.7.: Performance evaluation of the ALNS against best solutions yielded by the MPC approach from

[88] on Tsiligirides dataset 2. The ALNS using our TOP-UAV trajectory planner is evaluated given 30 s, 60 s

and 120 s as computation time limit and ran ten times with different random seeds on each problem instance.

𝐶𝑚𝑎𝑥
MPC [88] KOP-ALNS30 s KOP-ALNS60 s KOP-ALNS120 s

M𝑃 CT M𝑃 M𝑃 M𝑃 M𝑃 M𝑃 M𝑃 M𝑃 M𝑃 M𝑃

10 115.0 1.7 115.0 114.5 110.0 120.0 116.0 115.0 120.0 117.0 115.0

15 200.0 2.8 220.0 208.5 195.0 220.0 209.0 205.0 220.0 211.0 205.0

20 260.0 8.7 310.0 302.5 300.0 305.0 300.5 295.0 315.0 308.5 300.0

25 370.0 11.4 400.0 396.0 390.0 400.0 399.0 390.0 400.0 397.5 390.0

30 450.0 15.9 450.0 450.0 450.0 450.0 450.0 450.0 450.0 450.0 450.0

35 450.0 22.8 450.0 450.0 450.0 450.0 450.0 450.0 450.0 450.0 450.0

40 450.0 45.7 450.0 450.0 450.0 450.0 450.0 450.0 450.0 450.0 450.0

Table C.8.: Performance evaluation of the ALNS against best solutions yielded by the MPC approach from

[88] on Tsiligirides dataset 2. The ALNS using our TOP-UAV++ trajectory planner is evaluated given 30 s,

60 s and 120 s as computation time limit and ran ten times with different random seeds on each problem

instance.

133

List of Figures

1.1. Example of a multirotor UAV. 1

1.2. Example for viewpoints to cover the ROI. 2

1.3. Example mission - classic fast. 4

1.4. Example mission - classic slow. 5

1.5. Example mission - hover-2-hover. 6

1.6. Example mission - Dubins fast. 6

1.7. Example mission - Dubins slow. 7

2.1. Example for insynchronizability. 20

2.2. Range of valid trajectory durations. 20

2.3. Example acceleration patterns. 23

2.4. Example of velocity profiles. 27

2.5. Example of a domain gap. 28

2.6. Configurations for maximum velocity and acceleration distribution. 35

2.7. Percentage of insynchronizable trajectories in 2D. 39

2.8. Percentage of insynchronizable trajectories in 3D. 39

2.9. Occurance of insynchronizabilities in 2D. 40

2.10. Extent of discrepancy. 41

2.11. Example for time-optimal trajectory generation. 41

2.12. Improvement of TOP-UAV++ compared to TOP-UAV. 43

2.13. Improvement of TOP-UAV++ over TOP-UAV. 43

2.14. Histogram of the improvement of TOP-UAV++ over TOP-UAV in 2D. 44

2.15. Histogram of the improvement of TOP-UAV++ over TOP-UAV in 3D. 45

3.1. Example optimum solutions of the DTSP. 58

3.2. Example solution for the KTSP. 61

3.3. Example optimum solutions of the DOP. 64

3.4. Example solution for the KOP. 67

3.5. Visualization of the graph for the DP approach. 76

3.6. Random search for hyperparameter optimization. 92

3.7. Dynamic programming traversal property optimization. 94

3.8. Effect of the hyperparameters (KTSP). 95

3.9. Effect of the hyperparameters (KOP). 98

3.10. Impact of the number of traversal velocities. 100

3.11. Potential of the KTSP model. 101

3.12. Deterioration of the SOTA compared to the KTSP. 103

3.13. Robustness of the KTSP model. 104

135

List of Figures

3.14. Scaling of the KTSP model. 106

3.15. Performance of the ALNS to solve the KTSP. 107

3.16. Potential of the KOP model. 110

3.17. Performance of the ALNS for the KOP on Tsiligirides datasets. 114

3.18. Benchmark of our ALNS based on TOP-UAV and TOP-UAV++ against [88]. . 116

136

List of Tables

2.1. Requirements covered by the SOTA. 16

2.2. Computation time evaluation in 2D. 45

2.3. Computation time evaluation in 3D. 46

3.1. Overview of utilized removal heuristics. 70

3.2. Overview of utilized insertion heuristics. 73

3.3. Benchmark problem instances for TSP-variants. 86

3.4. Reduced Tsiligirides dataset 2 problem instances for OP-variants. 87

3.5. General performance indicators. 89

3.6. Performance indicators for TSP-related problems. 90

3.7. Performance indicators for OP-related problems. 91

3.8. Best hyperparameter configuration found (KTSP). 96

3.9. Best hyperparameter configuration found (KOP). 98

3.10. MAE tracking error of TSP variants. 102

3.11. Potential of the KOP model. 111

3.12. Scaling of the KOP model. 112

C.1. Potential of the KTSP model. 129

C.2. Scaling of the KTSP model. 130

C.3. Performance of the ALNS for the KTSP. 131

C.4. Performance of the ALNS for the KOP: Dataset 1. 132

C.5. Performance of the ALNS for the KOP: Dataset 2. 132

C.6. Performance of the ALNS for the KOP: Dataset 3. 133

C.7. Benchmark based on TOP-UAV against [88]. 133

C.8. Benchmark based on TOP-UAV++ against [88]. 133

137

Glossary

Abbreviation Meaning
ALNS Adaptive large neighborhood search

DOP Dubins orienteering problem

DOPN Dubins orienteering problem with neighborhoods

DP Dynamic programming

DTSP Dubins traveling salesman problem

GA Genetic algorithm

H2H Hover-to-hover

HTOL Horizontal take-off and landing

KTSP Kinematic traveling salesman problem

KOP Kinematic orienteering problem

LS Local Search

LNS Large neighborhood search

LP Linear program

MAE Mean absolute error

MPC Model-based predictive control

MIOCP Mixed-integer optimal control problem

MIP Mixed-integer program

OP Orienteering problem

ROI Region of interest

RRT Rapidly exploring random tree

SA Simulated annealing

SOTA State-of-the-art

TOP-UAV Time-optimal trajectory planner for point-masses

under acceleration and velocity constraints

TOP-UAV++ Improved version of TOP-UAV

TOT-PMAV Time-optimal trajectory planning problem for point-

masses under acceleration and velocity constraints

TSP Traveling salesman problem

UAV Unmanned aerial vehicle

VNS Variable neighborhood search

VTOL Vertical take-off and landing

139

References

[1] J. A. Besada et al. „Drone Mission Definition and Implementation for Automated

Infrastructure Inspection Using Airborne Sensors“. In: Sensors 18.4 (2018). issn:
1424-8220. doi: https://doi.org/10.3390/s18041170.

[2] D. Mader et al. „Potential of UAV-based laser scanner and multispectral camera

data in building inspection“. In: The International Archives of the Photogrammetry,
Remote Sensing and Spatial Information Sciences XLI-B1 (2016), pp. 1135–1142. doi:
https://doi.org/10.5194/isprs-archives-XLI-B1-1135-2016.

[3] J. Keller et al. „Coordinated Path Planning for Fixed-Wing UAS Conducting Per-

sistent Surveillance Missions“. In: IEEE Transactions on Automation Science and
Engineering 14.1 (2017), pp. 17–24. doi: https://doi.org/10.1109/TASE.2016.

2623642.

[4] J. Schmidt and A. Fügenschuh. „Planning inspection flights with an inhomogenous

fleet of micro aerial vehicles“. In: Cottbus Mathematical Preprints 21 (2021). doi:
https://doi.org/10.26127/BTUOpen-5656.

[5] A. Otto et al. „Optimization approaches for civil applications of unmanned aerial

vehicles (UAVs) or aerial drones: A survey“. In: Networks 72.4 (2018), pp. 411–458.
doi: https://doi.org/10.1002/net.21818.

[6] J. del Cerro et al. „Unmanned Aerial Vehicles in Agriculture: A Survey“. In: Agron-
omy 11.2 (2021). issn: 2073-4395. doi: https://doi.org/10.3390/agronomy

11020203.

[7] D. C. Tsouros, S. Bibi, and P. G. Sarigiannidis. „A Review on UAV-Based Applications

for Precision Aggriculture“. In: Information 10.11 (2019). doi: https://doi.org/10.

3390/info10110349.

[8] J. Shahmoradi et al. „A Comprehensive Review of Applications of Drone Technology

in the Mining Industry“. In: Drones 4.3 (2020). issn: 2504-446X. doi: https://doi.
org/10.3390/drones4030034.

[9] X. Zheng, F. Wang, and Z. Li. „A multi-UAV cooperative route planning method-

ology for 3D fine-resolution building model reconstruction“. In: ISPRS Journal of
Photogrammetry and Remote Sensing 146 (2018), pp. 483–494. issn: 0924-2716. doi:

https://doi.org/10.1016/j.isprsjprs.2018.11.004.

[10] A. Restas. „Drone Applications for Supporting Disaster Management“. In:World
Journal of Engineering and Technology 4 (2015), pp. 316–321. doi: https://doi.

org/10.4236/wjet.2015.33C047.

141

https://doi.org/https://doi.org/10.3390/s18041170
https://doi.org/https://doi.org/10.5194/isprs-archives-XLI-B1-1135-2016
https://doi.org/https://doi.org/10.1109/TASE.2016.2623642
https://doi.org/https://doi.org/10.1109/TASE.2016.2623642
https://doi.org/https://doi.org/10.26127/BTUOpen-5656
https://doi.org/https://doi.org/10.1002/net.21818
https://doi.org/https://doi.org/10.3390/agronomy11020203
https://doi.org/https://doi.org/10.3390/agronomy11020203
https://doi.org/https://doi.org/10.3390/info10110349
https://doi.org/https://doi.org/10.3390/info10110349
https://doi.org/https://doi.org/10.3390/drones4030034
https://doi.org/https://doi.org/10.3390/drones4030034
https://doi.org/https://doi.org/10.1016/j.isprsjprs.2018.11.004
https://doi.org/https://doi.org/10.4236/wjet.2015.33C047
https://doi.org/https://doi.org/10.4236/wjet.2015.33C047

References

[11] K. Glock and A. Meyer. „Mission Planning for Emergency Rapid Mapping with

Drones“. In: Transportation Science 54.2 (2020), pp. 534–560. doi: https://doi.org/
10.1287/trsc.2019.0963.

[12] J. Delmerico et al. „The current state and future outlook of rescue robotics“. In:

Journal of Field Robotics 36.7 (2019), pp. 1171–1191. doi: https://doi.org/10.

1002/rob.21887.

[13] D. R. Viloria et al. „Unmanned aerial vehicles/drones in vehicle routing problems: a

literature review“. In: International Transactions in Operational Research 28.4 (2021),

pp. 1626–1657. doi: https://doi.org/10.1111/itor.12783.

[14] M. Hassanalian and A. Abdelkefi. „Classifications, applications, and design chal-

lenges of drones: A review“. In: Progress in Aerospace Sciences 91 (2017), pp. 99–131.
issn: 0376-0421. doi: https://doi.org/10.1016/j.paerosci.2017.04.003.

[15] J. Kohns et al. „Innovative methods for earthquake damage detection and classifica-

tion using airborne observation of critical infrastructures (project LOKI)“. In: 23rd
EGU General Assembly (2021). doi: https://doi.org/10.5194/egusphere-egu21-

2712.

[16] S. D. Apostolidis et al. „Cooperative multi-UAV coverage mission planning platform

for remote sensing applications“. In: Autonomous Robots 46 (2022), pp. 373–400.
doi: https://doi.org/10.1007/s10514-021-10028-3.

[17] S. Xiao, X. Tan, and J. Wang. „A Simulated Annealing Algorithm and Grid Map-

Based UAV Coverage Path Planning Method for 3D Reconstruction“. In: Electronics
10.7 (2021). doi: https://doi.org/10.3390/electronics10070853.

[18] P. Tripicchio et al. „Smooth Coverage Path Planning for UAVs withModel Predictive

Control Trajectory Tracking“. In: Electronics 12.10 (2023). doi: https://doi.org/
10.3390/electronics12102310.

[19] Z. Shang and Z. Shen. „Topology-based UAV path planning for multi-view stereo

3D reconstruction of complex structures“. In: Complex and Intelligent Systems 9.1
(2023), pp. 909–926. doi: https://doi.org/10.1007/s40747-022-00831-5.

[20] M. Maboudi et al. „A Review on Viewpoints and Path Planning for UAV-Based 3-D

Reconstruction“. In: IEEE Journal of Selected Topics in Applied Earth Observations
and Remote Sensing 16 (2023), pp. 5026–5048. doi: https://doi.org/10.1109/

JSTARS.2023.3276427.

[21] E. Fountoulakis, G. S. Paschos, and N. Pappas. „UAV Trajectory Optimization for

Time Constrained Applications“. In: IEEE Networking Letters 2.3 (2020), pp. 136–139.
doi: https://doi.org/10.1109/LNET.2020.3007310.

[22] R. Pěnička et al. „Dubins Orienteering Problem“. In: IEEE Robotics and Automation
Letters 2.2 (2017), pp. 1210–1217. doi: https://doi.org/10.1109/LRA.2017.

2666261.

[23] R. Pěnička et al. „Dubins orienteering problem with neighborhoods“. In: 2017
International Conference on Unmanned Aircraft Systems (ICUAS). 2017, pp. 1555–
1562. doi: https://doi.org/10.1109/ICUAS.2017.7991350.

142

https://doi.org/https://doi.org/10.1287/trsc.2019.0963
https://doi.org/https://doi.org/10.1287/trsc.2019.0963
https://doi.org/https://doi.org/10.1002/rob.21887
https://doi.org/https://doi.org/10.1002/rob.21887
https://doi.org/https://doi.org/10.1111/itor.12783
https://doi.org/https://doi.org/10.1016/j.paerosci.2017.04.003
https://doi.org/https://doi.org/10.5194/egusphere-egu21-2712
https://doi.org/https://doi.org/10.5194/egusphere-egu21-2712
https://doi.org/https://doi.org/10.1007/s10514-021-10028-3
https://doi.org/https://doi.org/10.3390/electronics10070853
https://doi.org/https://doi.org/10.3390/electronics12102310
https://doi.org/https://doi.org/10.3390/electronics12102310
https://doi.org/https://doi.org/10.1007/s40747-022-00831-5
https://doi.org/https://doi.org/10.1109/JSTARS.2023.3276427
https://doi.org/https://doi.org/10.1109/JSTARS.2023.3276427
https://doi.org/https://doi.org/10.1109/LNET.2020.3007310
https://doi.org/https://doi.org/10.1109/LRA.2017.2666261
https://doi.org/https://doi.org/10.1109/LRA.2017.2666261
https://doi.org/https://doi.org/10.1109/ICUAS.2017.7991350

References

[24] S. Ropke and D. Pisinger. „An Adaptive Large Neighborhood Search Heuristic for

the Pickup and Delivery Problem with Time Windows“. In: Transportation Science
40.4 (2006), pp. 455–472. doi: https://doi.org/10.1287/trsc.1050.0135.

[25] F. Meyer and K. Glock. „Trajectory-based Traveling Salesman Problem for Multiro-

tor UAVs“. In: 2021 17th International Conference on Distributed Computing in Sensor
Systems (DCOSS). 2021, pp. 335–342. doi: https://doi.org/10.1109/DCOSS52077.
2021.00061.

[26] F. Meyer and K. Glock. „Kinematic Orienteering Problem With Time-Optimal

Trajectories for Multirotor UAVs“. In: IEEE Robotics and Automation Letters 7.4
(2022), pp. 11402–11409. doi: https://doi.org/10.1109/LRA.2022.3194688.

[27] F. Meyer, K. Glock, and D. Sayah. „TOP-UAV: Open-Source Time-Optimal Trajec-

tory Planner for Point-Masses Under Acceleration and Velocity Constraints“. In:

2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).
2023, pp. 2838–2845. doi: https://doi.org/10.1109/IROS55552.2023.10342270.

[28] P. Foehn, A. Romero, and D. Scaramuzza. „Time-optimal planning for quadrotor

waypoint flight“. In: Science Robotics 6.56 (2021), eabh1221. doi: https://doi.org/
10.1126/scirobotics.abh1221.

[29] P. Foehn et al. „AlphaPilot: autonomous drone racing“. In: Autonomous Robots 46
(2022), pp. 307–320. doi: https://doi.org/10.1007/s10514-021-10011-y.

[30] A. Romero, R. Penicka, and D. Scaramuzza. „Time-Optimal Online Replanning

for Agile Quadrotor Flight“. In: IEEE Robotics and Automation Letters 7.3 (2022),
pp. 7730–7737. doi: https://doi.org/10.1109/LRA.2022.3185772.

[31] L. E. Dubins. „On curves of minimal length with a constraint on average curvature,

and with prescribed initial and terminal positions and tangents“. In: American
Journal of Mathematics 79.3 (1957), pp. 497–516. doi: https://doi.org/10.2307/
2372560.

[32] A. Bry et al. „Aggressive flight of fixed-wing and quadrotor aircraft in dense indoor

environments“. In: International Journal of Robotics Research 34 (7 2015), pp. 969–

1002. doi: https://doi.org/doi:10.1177/0278364914558129.

[33] M. Henchey and S. Rosen. „Emerging approaches to support dynamic mission

planning: survey and recommendations for future research“. In: The Journal of
Defense Modeling and Simulation 18.4 (2021), pp. 453–468. doi: https://doi.org/

10.1177/1548512919898750.

[34] P. Váňa et al. „Minimal 3D Dubins Path with Bounded Curvature and Pitch Angle“.

In: 2020 IEEE International Conference on Robotics and Automation (ICRA). 2020,
pp. 8497–8503. doi: https://doi.org/10.1109/ICRA40945.2020.9197084.

[35] K. Kučerová, P. Váňa, and J. Faigl. „On Finding Time-Efficient Trajectories for

Fixed-Wing Aircraft Using Dubins Paths with Multiple Radii“. In: Proceedings of
the 35th Annual ACM Symposium on Applied Computing. New York, NY, USA:

Association for Computing Machinery, 2020, pp. 829–831. isbn: 9781450368667.

doi: https://doi.org/10.1145/3341105.3374112.

143

https://doi.org/https://doi.org/10.1287/trsc.1050.0135
https://doi.org/https://doi.org/10.1109/DCOSS52077.2021.00061
https://doi.org/https://doi.org/10.1109/DCOSS52077.2021.00061
https://doi.org/https://doi.org/10.1109/LRA.2022.3194688
https://doi.org/https://doi.org/10.1109/IROS55552.2023.10342270
https://doi.org/https://doi.org/10.1126/scirobotics.abh1221
https://doi.org/https://doi.org/10.1126/scirobotics.abh1221
https://doi.org/https://doi.org/10.1007/s10514-021-10011-y
https://doi.org/https://doi.org/10.1109/LRA.2022.3185772
https://doi.org/https://doi.org/10.2307/2372560
https://doi.org/https://doi.org/10.2307/2372560
https://doi.org/https://doi.org/doi:10.1177/0278364914558129
https://doi.org/https://doi.org/10.1177/1548512919898750
https://doi.org/https://doi.org/10.1177/1548512919898750
https://doi.org/https://doi.org/10.1109/ICRA40945.2020.9197084
https://doi.org/https://doi.org/10.1145/3341105.3374112

References

[36] J. Faigl and P. Váňa. „Surveillance Planning with Bézier Curves“. In: IEEE Robotics
and Automation Letters 3.2 (2018), pp. 750–757. doi: https://doi.org/10.1109/
LRA.2018.2789844.

[37] J. Faigl, P. Váňa, and R. Pěnička. „Multi-Vehicle Close Enough Orienteering Problem

with Bézier Curves for Multi-Rotor Aerial Vehicles“. In: (2019), pp. 3039–3044. doi:

https://doi.org/10.1109/ICRA.2019.8794339.

[38] F. Gao et al. „Optimal Time Allocation for Quadrotor Trajectory Generation“. In:

2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).
2018, pp. 4715–4722. doi: https://doi.org/10.1109/IROS.2018.8593579.

[39] F. Gao et al. „Optimal Trajectory Generation for Quadrotor Teach-and-Repeat“.

In: IEEE Robotics and Automation Letters 4.2 (2019), pp. 1493–1500. doi: https:

//doi.org/10.1109/LRA.2019.2895110.

[40] F. Gao et al. „Online Safe Trajectory Generation for Quadrotors Using Fast Marching

Method and Bernstein Basis Polynomial“. In: 2018 IEEE International Conference
on Robotics and Automation (ICRA). 2018, pp. 344–351. doi: https://doi.org/10.
1109/ICRA.2018.8462878.

[41] F. Stoican et al. „Constrained trajectory generation for UAV systems using a B-spline

parametrization“. In: 2017 25th Mediterranean Conference on Control and Automation
(MED). 2017, pp. 613–618. doi: https://doi.org/10.1109/MED.2017.7984185.

[42] P. Shen, X. Zhang, and Y. Fang. „Complete and Time-Optimal Path-Constrained

Trajectory Planning With Torque and Velocity Constraints: Theory and Applica-

tions“. In: IEEE/ASME Transactions on Mechatronics 23.2 (2018), pp. 735–746. doi:
https://doi.org/10.1109/TMECH.2018.2810828.

[43] P. Shen et al. „Real-Time Acceleration-Continuous Path-Constrained Trajectory

Planning With Built-In Tradeoff Between Cruise and Time-Optimal Motions“. In:

IEEE Transactions on Automation Science and Engineering 17.4 (2020), pp. 1911–1924.
doi: https://doi.org/10.1109/TASE.2020.2980423.

[44] Q.-C. Pham. „A General, Fast, and Robust Implementation of the Time-Optimal

Path Parameterization Algorithm“. In: IEEE Transactions on Robotics 30.6 (2014),
pp. 1533–1540. doi: https://doi.org/10.1109/TRO.2014.2351113.

[45] D. Mellinger and V. Kumar. „Minimum snap trajectory generation and control for

quadrotors“. In: 2011 IEEE International Conference on Robotics and Automation.
2011, pp. 2520–2525. doi: https://doi.org/10.1109/ICRA.2011.5980409.

[46] C. Richter, A. Bry, and N. Roy. „Polynomial Trajectory Planning for Aggressive

Quadrotor Flight in Dense Indoor Environments“. In: Robotics Research: The 16th
International Symposium ISRR. Ed. by Masayuki Inaba and Peter Corke. Springer

International Publishing, 2016, pp. 649–666. isbn: 978-3-319-28872-7. doi: https:

//doi.org/10.1007/978-3-319-28872-7_37.

144

https://doi.org/https://doi.org/10.1109/LRA.2018.2789844
https://doi.org/https://doi.org/10.1109/LRA.2018.2789844
https://doi.org/https://doi.org/10.1109/ICRA.2019.8794339
https://doi.org/https://doi.org/10.1109/IROS.2018.8593579
https://doi.org/https://doi.org/10.1109/LRA.2019.2895110
https://doi.org/https://doi.org/10.1109/LRA.2019.2895110
https://doi.org/https://doi.org/10.1109/ICRA.2018.8462878
https://doi.org/https://doi.org/10.1109/ICRA.2018.8462878
https://doi.org/https://doi.org/10.1109/MED.2017.7984185
https://doi.org/https://doi.org/10.1109/TMECH.2018.2810828
https://doi.org/https://doi.org/10.1109/TASE.2020.2980423
https://doi.org/https://doi.org/10.1109/TRO.2014.2351113
https://doi.org/https://doi.org/10.1109/ICRA.2011.5980409
https://doi.org/https://doi.org/10.1007/978-3-319-28872-7_37
https://doi.org/https://doi.org/10.1007/978-3-319-28872-7_37

References

[47] D. Burke, A. Chapman, and I. Shames. „Generating Minimum-Snap Quadrotor

Trajectories Really Fast“. In: 2020 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). 2020, pp. 1487–1492. doi: https://doi.org/10.1109/
IROS45743.2020.9341794.

[48] F. Gao and S. Shen. „Online quadrotor trajectory generation and autonomous

navigation on point clouds“. In: 2016 IEEE International Symposium on Safety,
Security, and Rescue Robotics (SSRR). 2016, pp. 139–146. doi: https://doi.org/10.
1109/SSRR.2016.7784290.

[49] F. Gao, Y. Lin, and S. Shen. „Gradient-based online safe trajectory generation

for quadrotor flight in complex environments“. In: 2017 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). 2017, pp. 3681–3688. doi:
https://doi.org/10.1109/IROS.2017.8206214.

[50] S. Liu et al. „Planning Dynamically Feasible Trajectories for Quadrotors Using Safe

Flight Corridors in 3-D Complex Environments“. In: IEEE Robotics and Automation
Letters 2.3 (2017), pp. 1688–1695. doi: https://doi.org/10.1109/LRA.2017.

2663526.

[51] Markos Papageorgiou, Marion Leibold, and Martin Buss. „Optimale Steuerung zeit-

diskreter dynamischer Systeme“. In: Optimierung: Statische, dynamische, stochastis-
che Verfahren für die Anwendung. Berlin, Heidelberg: Springer Berlin Heidelberg,

2015, pp. 343–355. isbn: 978-3-662-46936-1. doi: https://doi.org/10.1007/978-

3-662-46936-1_13.

[52] M. Kamel et al. „Model Predictive Control for Trajectory Tracking of Unmanned

Aerial Vehicles Using Robot Operating System“. In: Robot Operating System (ROS):
The Complete Reference (Volume 2). Ed. by A. Koubaa. Cham: Springer International

Publishing, 2017, pp. 3–39. isbn: 978-3-319-54927-9. doi: https://doi.org/10.

1007/978-3-319-54927-9_1.

[53] G. Ganga and M. M. Dharmana. „MPC controller for trajectory tracking control

of quadcopter“. In: 2017 International Conference on Circuit ,Power and Computing
Technologies (ICCPCT). 2017, pp. 1–6. doi: https://doi.org/10.1109/ICCPCT.
2017.8074380.

[54] M. Brunner et al. „Trajectory Tracking Nonlinear Model Predictive Control for

an Overactuated MAV“. In: 2020 IEEE International Conference on Robotics and
Automation (ICRA). 2020, pp. 5342–5348. doi: https://doi.org/10.1109/ICRA
40945.2020.9197005.

[55] T. Engelhardt et al. „Flatness-based control for a quadrotor camera helicopter

using model predictive control trajectory generation“. In: 2016 24th Mediterranean
Conference on Control and Automation (MED). 2016, pp. 852–859. doi: https://doi.
org/10.1109/MED.2016.7536036.

[56] A. Romero et al. „Model Predictive Contouring Control for Time-Optimal Quadrotor

Flight“. In: IEEE Transactions on Robotics 38.6 (2022), pp. 3340–3356. doi: https:
//doi.org/10.1109/TRO.2022.3173711.

145

https://doi.org/https://doi.org/10.1109/IROS45743.2020.9341794
https://doi.org/https://doi.org/10.1109/IROS45743.2020.9341794
https://doi.org/https://doi.org/10.1109/SSRR.2016.7784290
https://doi.org/https://doi.org/10.1109/SSRR.2016.7784290
https://doi.org/https://doi.org/10.1109/IROS.2017.8206214
https://doi.org/https://doi.org/10.1109/LRA.2017.2663526
https://doi.org/https://doi.org/10.1109/LRA.2017.2663526
https://doi.org/https://doi.org/10.1007/978-3-662-46936-1_13
https://doi.org/https://doi.org/10.1007/978-3-662-46936-1_13
https://doi.org/https://doi.org/10.1007/978-3-319-54927-9_1
https://doi.org/https://doi.org/10.1007/978-3-319-54927-9_1
https://doi.org/https://doi.org/10.1109/ICCPCT.2017.8074380
https://doi.org/https://doi.org/10.1109/ICCPCT.2017.8074380
https://doi.org/https://doi.org/10.1109/ICRA40945.2020.9197005
https://doi.org/https://doi.org/10.1109/ICRA40945.2020.9197005
https://doi.org/https://doi.org/10.1109/MED.2016.7536036
https://doi.org/https://doi.org/10.1109/MED.2016.7536036
https://doi.org/https://doi.org/10.1109/TRO.2022.3173711
https://doi.org/https://doi.org/10.1109/TRO.2022.3173711

References

[57] M. W. Mueller and R. D’Andrea. „A model predictive controller for quadrocopter

state interception“. In: 2013 European Control Conference (ECC). 2013, pp. 1383–1389.
doi: https://doi.org/10.23919/ECC.2013.6669415.

[58] T. Konrad, T. Salesch, and D. Abel. „Flatness-based model predictive trajectory opti-

mization for inspection tasks of multirotors“. In: 2019 American Control Conference
(ACC). 2019, pp. 2264–2270. doi: https://doi.org/10.23919/ACC.2019.8815191.

[59] M. Kamel et al. „Fast nonlinear model predictive control for multicopter attitude

tracking on SO(3)“. In: 2015 IEEE Conference on Control Applications (CCA). 2015,
pp. 1160–1166. doi: https://doi.org/10.1109/CCA.2015.7320769.

[60] H. Nguyen et al. „Model Predictive Control for Micro Aerial Vehicles: A Survey“.

In: 2021 European Control Conference (ECC). 2021, pp. 1556–1563. doi: https://
doi.org/10.23919/ECC54610.2021.9654841.

[61] M. Castillo-Lopez et al. „Model Predictive Control for Aerial Collision Avoidance

in Dynamic Environments“. In: 2018 26th Mediterranean Conference on Control and
Automation (MED). 2018, pp. 1–6. doi: https://doi.org/10.1109/MED.2018.
8442967.

[62] G. Kulathunga et al. „Optimization-Based Trajectory Tracking Approach for Multi-

Rotor Aerial Vehicles in Unknown Environments“. In: IEEE Robotics and Automation
Letters 7.2 (2022), pp. 4598–4605. doi: https://doi.org/10.1109/LRA.2022.

3151157.

[63] L. S. Pontryagin. Mathematical Theory of Optimal Processes. Taylor & Francis, 1987.

isbn: 9780203749319. doi: https://doi.org/10.1201/9780203749319.

[64] M. Beul and S. Behnke. „Fast full state trajectory generation for multirotors“. In:

2017 International Conference on Unmanned Aircraft Systems (ICUAS). 2017, pp. 408–
416. doi: https://doi.org/10.1109/ICUAS.2017.7991304.

[65] M. Hehn and R. D’Andrea. „Real-Time Trajectory Generation for Quadrocopters“.

In: IEEE Transactions on Robotics 31.4 (2015), pp. 877–892. doi: https://doi.org/
10.1109/TRO.2015.2432611.

[66] R. Pěnička and D. Scaramuzza. „Minimum-Time Quadrotor Waypoint Flight in Clut-

tered Environments“. In: IEEE Robotics and Automation Letters 7.2 (2022), pp. 5719–
5726. doi: 10.1109/LRA.2022.3154013.

[67] F. Meyer. TOP-UAV: Open-Source Time-optimal Trajectory Planner for Point-Masses
under Acceleration and Velocity Constraints (C++). Online; accessed 11. February

2024. 2023. url: https://github.com/fzi-forschungszentrum-informatik/top_

uav_cpp.

[68] F. Meyer. TOP-UAV: Open-Source Time-optimal Trajectory Planner for Point-Masses
under Acceleration and Velocity Constraints (Python). Online; accessed 11. February

2024. 2023. url: https://github.com/fzi-forschungszentrum-informatik/top_

uav_py.

146

https://doi.org/https://doi.org/10.23919/ECC.2013.6669415
https://doi.org/https://doi.org/10.23919/ACC.2019.8815191
https://doi.org/https://doi.org/10.1109/CCA.2015.7320769
https://doi.org/https://doi.org/10.23919/ECC54610.2021.9654841
https://doi.org/https://doi.org/10.23919/ECC54610.2021.9654841
https://doi.org/https://doi.org/10.1109/MED.2018.8442967
https://doi.org/https://doi.org/10.1109/MED.2018.8442967
https://doi.org/https://doi.org/10.1109/LRA.2022.3151157
https://doi.org/https://doi.org/10.1109/LRA.2022.3151157
https://doi.org/https://doi.org/10.1201/9780203749319
https://doi.org/https://doi.org/10.1109/ICUAS.2017.7991304
https://doi.org/https://doi.org/10.1109/TRO.2015.2432611
https://doi.org/https://doi.org/10.1109/TRO.2015.2432611
https://doi.org/10.1109/LRA.2022.3154013
https://github.com/fzi-forschungszentrum-informatik/top_uav_cpp
https://github.com/fzi-forschungszentrum-informatik/top_uav_cpp
https://github.com/fzi-forschungszentrum-informatik/top_uav_py
https://github.com/fzi-forschungszentrum-informatik/top_uav_py

References

[69] I. E. Grossmann and F. Trespalacios. „Systematic modeling of discrete-continuous

optimization models through generalized disjunctive programming“. In: AIChE
Journal 59.9 (2013), pp. 3276–3295. doi: https://doi.org/10.1002/aic.14088.

[70] C. E. Miller, A. W. Tucker, and R. A. Zemlin. „Integer Programming Formulation of

Traveling Salesman Problems“. In: J. ACM 7.4 (1960), pp. 326–329. issn: 0004-5411.

doi: https://doi.org/10.1145/321043.321046.

[71] B. Golden, L. Levy, and R. Vohra. „The orienteering problem“. In: Naval Research
Logistics (NRL) 34.3 (1987), pp. 307–318. doi: https://doi.org/10.1002/1520-
6750(198706)34:3<307::AID-NAV3220340302>3.0.CO;2-D.

[72] A. Thibbotuwawa et al. „Unmanned Aerial Vehicle Routing Problems: A Literature

Review“. In: Applied Sciences 10.13 (2020). issn: 2076-3417. doi: https://doi.org/
10.3390/app10134504.

[73] G. S. C. Avellar et al. „Multi-UAV Routing for Area Coverage and Remote Sensing

with Minimum Time“. In: Sensors 15.11 (2015), pp. 27783–27803. issn: 1424-8220.
doi: https://doi.org/10.3390/s151127783.

[74] S. Poikonen and B. Golden. „Multi-visit drone routing problem“. In: Computers &
Operations Research 113 (2020), p. 104802. issn: 0305-0548. doi: https://doi.org/

10.1016/j.cor.2019.104802.

[75] S. Wang et al. „Multi-UAV Route Planning for Data Collection from Heterogeneous

IoT Devices“. In: 2022 IEEE International Conference on Industrial Engineering and
Engineering Management (IEEM). 2022, pp. 1556–1560. doi: https://doi.org/10.
1109/IEEM55944.2022.9989729.

[76] S. K. K. Hari et al. „Optimal UAVRoute Planning for PersistentMonitoringMissions“.

In: IEEE Transactions on Robotics 37.2 (2021), pp. 550–566. doi: https://doi.org/
10.1109/TRO.2020.3032171.

[77] I. Cohen, C. Epstein, and T. Shima. „On the Discretized Dubins Traveling Salesman

Problem“. In: IISE Transactions 49.2 (2017), pp. 238–254. doi: https://doi.org/10.
1080/0740817X.2016.1217101.

[78] L. Babel. „Curvature-constrained traveling salesman tours for aerial surveillance

in scenarios with obstacles“. In: European Journal of Operational Research 262.1

(2017), pp. 335–346. issn: 0377-2217. doi: https://doi.org/10.1016/j.ejor.2017.

03.067.

[79] L. Babel. „New heuristic algorithms for the Dubins traveling salesman problem“.

In: Journal of Heuristics 26 (2020), pp. 503–530. doi: https://doi.org/10.1007/
s10732-020-09440-2.

[80] K. Savla, E. Frazzoli, and F. Bullo. „Traveling Salesperson Problems for the Dubins

Vehicle“. In: IEEE Transactions on Automatic Control 53.6 (2008), pp. 1378–1391. doi:
https://doi.org/10.1109/TAC.2008.925814.

[81] J. Ny, E. Feron, and E. Frazzoli. „On the Dubins Traveling Salesman Problem“.

In: IEEE Transactions on Automatic Control 57.1 (2012), pp. 265–270. doi: https:
//doi.org/10.1109/TAC.2011.2166311.

147

https://doi.org/https://doi.org/10.1002/aic.14088
https://doi.org/https://doi.org/10.1145/321043.321046
https://doi.org/https://doi.org/10.1002/1520-6750(198706)34:3<307::AID-NAV3220340302>3.0.CO;2-D
https://doi.org/https://doi.org/10.1002/1520-6750(198706)34:3<307::AID-NAV3220340302>3.0.CO;2-D
https://doi.org/https://doi.org/10.3390/app10134504
https://doi.org/https://doi.org/10.3390/app10134504
https://doi.org/https://doi.org/10.3390/s151127783
https://doi.org/https://doi.org/10.1016/j.cor.2019.104802
https://doi.org/https://doi.org/10.1016/j.cor.2019.104802
https://doi.org/https://doi.org/10.1109/IEEM55944.2022.9989729
https://doi.org/https://doi.org/10.1109/IEEM55944.2022.9989729
https://doi.org/https://doi.org/10.1109/TRO.2020.3032171
https://doi.org/https://doi.org/10.1109/TRO.2020.3032171
https://doi.org/https://doi.org/10.1080/0740817X.2016.1217101
https://doi.org/https://doi.org/10.1080/0740817X.2016.1217101
https://doi.org/https://doi.org/10.1016/j.ejor.2017.03.067
https://doi.org/https://doi.org/10.1016/j.ejor.2017.03.067
https://doi.org/https://doi.org/10.1007/s10732-020-09440-2
https://doi.org/https://doi.org/10.1007/s10732-020-09440-2
https://doi.org/https://doi.org/10.1109/TAC.2008.925814
https://doi.org/https://doi.org/10.1109/TAC.2011.2166311
https://doi.org/https://doi.org/10.1109/TAC.2011.2166311

References

[82] X. Yu and J. Y. Hung. „A genetic algorithm for the Dubins Traveling Salesman

Problem“. In: 2012 IEEE International Symposium on Industrial Electronics. 2012,
pp. 1256–1261. doi: https://doi.org/10.1109/ISIE.2012.6237270.

[83] P. Isaiah and T. Shima. „Motion planning algorithms for the Dubins Travelling

Salesperson Problem“. In: Automatica 53 (2015), pp. 247–255. issn: 0005-1098. doi:
https://doi.org/10.1016/j.automatica.2014.12.041.

[84] K. Sundar, S. Sanjeevi, and C. Montez. „A branch-and-price algorithm for a team

orienteering problem with fixed-wing-drones“. In: EURO Journal on Transportation
and Logistics 11 (2022). doi: https://doi.org/10.1016/j.ejtl.2021.100070.

[85] N. Tsiogkas and D. M. Lane. „DOCP: Dubins Correlated Orienteering Problem Op-

timizing Sensing Missions of a Nonholonomic Vehicle under Budget Constraints“.

In: IEEE Robotics and Automation Letters 3.4 (2018), p. 2926. doi: https://doi.org/
19.1109/LRA.2018.2847719.

[86] K. Kučerová, P. Váňa, and J. Faigl. „Variable-Speed Traveling Salesman Problem for

Vehicles with Curvature Constrained Trajectories“. In: 2021 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). 2021, pp. 4714–4719. doi:
https://doi.org/10.1109/IROS51168.2021.9636762.

[87] Tim Knissel. „Dubins Team Orienteering Problem in a post-earthquake scenario“.

MA thesis. Karlsruher Institute of Technology, 2022.

[88] F. Nekovář, J. Faigl, and M. Saska. „Multi-Vehicle Dynamic Water Surface Moni-

toring“. In: IEEE Robotics and Automation Letters 8.10 (2023), pp. 6323–6330. doi:
https://doi.org/10.1109/LRA.2023.3304533.

[89] A. Fügenschuh, D. Müllenstedt, and J. Schmidt. „Flight Planning for Unmanned

Aerial Vehicles“. In: Military Operations Research 26.3 (2021), pp. 49–71. doi: https:

//www.jstor.org/stable/27070890.

[90] J. Schmidt and A. Fügenschuh. „A two-time-level model for mission and flight plan-

ning of an inhomogeneous fleet of unmanned aerial vehicles“. In: Computational
Optimization and Applications 85 (2023), pp. 292–335. doi: https://doi.org/10.
1007/s10589-023-00450-x.

[91] O. V. Stryk and M. Glocker. „Numerical mixed-integer optimal control and motor-

ized traveling salesmen problems“. In: APII – JESA (Journal européen des systèmes
automatisés – European Journal of Control) 35.4 (2001), pp. 519–533.

[92] M. Glocker and O. V. Stryk. „Hybrid Optimal Control of Motorized Traveling

Salesmen and beyond“. In: vol. 35. July 2002, pp. 987–992. doi: 10.3182/20020721-

6-ES-1901.00561.

[93] G. Schrimpf et al. „Record Breaking Optimization Results Using the Ruin and

Recreate Principle“. In: Journal of Computational Physics 159.2 (2000), pp. 139–171.
issn: 0021-9991. doi: https://doi.org/10.1006/jcph.1999.6413.

148

https://doi.org/https://doi.org/10.1109/ISIE.2012.6237270
https://doi.org/https://doi.org/10.1016/j.automatica.2014.12.041
https://doi.org/https://doi.org/10.1016/j.ejtl.2021.100070
https://doi.org/https://doi.org/19.1109/LRA.2018.2847719
https://doi.org/https://doi.org/19.1109/LRA.2018.2847719
https://doi.org/https://doi.org/10.1109/IROS51168.2021.9636762
https://doi.org/https://doi.org/10.1109/LRA.2023.3304533
https://doi.org/https://www.jstor.org/stable/27070890
https://doi.org/https://www.jstor.org/stable/27070890
https://doi.org/https://doi.org/10.1007/s10589-023-00450-x
https://doi.org/https://doi.org/10.1007/s10589-023-00450-x
https://doi.org/10.3182/20020721-6-ES-1901.00561
https://doi.org/10.3182/20020721-6-ES-1901.00561
https://doi.org/https://doi.org/10.1006/jcph.1999.6413

References

[94] D. Pisinger and S. Ropke. „Large Neighborhood Search“. In:Handbook of Metaheuris-
tics. Ed. by M. Gendreau and J.-Y. Potvin. Cham: Springer International Publishing,

2019, pp. 99–127. isbn: 978-3-319-91086-4. doi: https://doi.org/10.1007/978-3-

319-91086-4_4.

[95] S. T. W. Mara et al. „A survey of adaptive large neighborhood search algorithms

and applications“. In: Computers & Operations Research 146 (2022), p. 105903. issn:

0305-0548. doi: https://doi.org/10.1016/j.cor.2022.105903.

[96] M. Desrochers and G. Laporte. „Improvements and extensions to the Miller-Tucker-

Zemlin subtour elimination constraints“. In: Operations Research Letters 10.1 (1991),
pp. 27–36. issn: 0167-6377. doi: https://doi.org/10.1016/0167-6377(91)90083-

2.

[97] P. Vansteenwegen, W. Souffiau, and D. V. Oudheusden. „The orienteering problem:

A survey“. In: European Journal of Operational Research 209.1 (2011), pp. 1–10. issn:

0377-2217. doi: https://doi.org/10.1016/j.ejor.2010.03.045.

[98] D. Pisinger and S. Ropke. „A general heuristic for vehicle routing problems“. In:

Computers and Operations Research 34.8 (2007), pp. 2403–2435. doi: https://doi.

org/10.1016/j.cor.2005.09.012.

[99] P. Shaw. „Using Constraint Programming and Local Search Methods to Solve

Vehicle Routing Problems“. In: (1998). Ed. by M. Maher and J.-F. Puget, pp. 417–431.

doi: https://doi.org/10.1007/3-540-49481-2_30.

[100] R. Turkeš, K. Sörensen, and L. M. Hvattum. „Meta-analysis of metaheuristics:

Quantifying the effect of adaptiveness in adaptive large neighborhood search“. In:

European Journal of Operational Research 292.2 (2021), pp. 423–442. doi: https:

//doi.org/10.1016/j.ejor.2020.10.045.

[101] P. A. Tu, N. T. Dat, and P. Q. Dung. „Traveling Salesman Problem with Multi-

ple Drones“. In: Proceedings of the 9th International Symposium on Information
and Communication Technology. SoICT ’18. Danang City, Viet Nam: Association

for Computing Machinery, 2018, pp. 46–53. isbn: 9781450365390. doi: 10.1145/

3287921.3287932.

[102] A. A. Kovacs, S. N. Parragh, and K. F. Doerner. „Adaptive large neighborhood search

for service technician routing and scheduling problems“. In: Journal of Scheduling
15 (2012), pp. 579–600. doi: https://doi.org/10.1007/s10951-011-0246-9.

[103] D. Sacramento, D. Pisinger, and S. Ropke. „An adaptive large neighborhood search

metaheuristic for the vehicle routing problem with drones“. In: Transportation
Research Part C: Emerging Technologies 102 (2019), pp. 289–315. doi: https://doi.
org/10.1016/j.trc.2019.02.018.

[104] A. Santini. „An adaptive large neighbourhood search algorithm for the orienteering

problem“. In: Expert Systems with Applications 123 (2019), pp. 154–167. doi: https:
//doi.org/10.1016/j.eswa.2018.12.050.

149

https://doi.org/https://doi.org/10.1007/978-3-319-91086-4_4
https://doi.org/https://doi.org/10.1007/978-3-319-91086-4_4
https://doi.org/https://doi.org/10.1016/j.cor.2022.105903
https://doi.org/https://doi.org/10.1016/0167-6377(91)90083-2
https://doi.org/https://doi.org/10.1016/0167-6377(91)90083-2
https://doi.org/https://doi.org/10.1016/j.ejor.2010.03.045
https://doi.org/https://doi.org/10.1016/j.cor.2005.09.012
https://doi.org/https://doi.org/10.1016/j.cor.2005.09.012
https://doi.org/https://doi.org/10.1007/3-540-49481-2_30
https://doi.org/https://doi.org/10.1016/j.ejor.2020.10.045
https://doi.org/https://doi.org/10.1016/j.ejor.2020.10.045
https://doi.org/10.1145/3287921.3287932
https://doi.org/10.1145/3287921.3287932
https://doi.org/https://doi.org/10.1007/s10951-011-0246-9
https://doi.org/https://doi.org/10.1016/j.trc.2019.02.018
https://doi.org/https://doi.org/10.1016/j.trc.2019.02.018
https://doi.org/https://doi.org/10.1016/j.eswa.2018.12.050
https://doi.org/https://doi.org/10.1016/j.eswa.2018.12.050

References

[105] R. Bellman. „The theory of dynamic programming“. In: Bulletin of the American
Mathematical Society 60 (1954), pp. 503–515. doi: https://doi.org/10.1090/

S0002-9904-1954-09848-8.

[106] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. „Optimization by Simulated Anneal-

ing“. In: Science 220.4598 (1983), pp. 671–680. doi: https://doi.org/10.1126/

science.220.4598.671.

[107] F. Glover. „Tabu search-part I“. In: ORSA Journal on Computing 1.3 (1989), pp. 190–

206. doi: https://doi.org/10.1287/ijoc.1.3.190.

[108] M. Gendreau and J.-Y. Potvin. „Tabu Search“. In: Search Methodologies: Introductory
Tutorials in Optimization and Decision Support Techniques. Ed. by E. K. Burke and

G. Kendall. Boston, MA: Springer US, 2005, pp. 165–186. isbn: 978-0-387-28356-2.

doi: https://doi.org/10.1007/0-387-28356-0_6.

[109] R. Martí et al. „Intelligent Multi-Start Methods“. In: Handbook of Metaheuristics.
Ed. by M. Gendreau and J. Y. Potvin. Cham: Springer International Publishing, 2019,

pp. 221–243. isbn: 978-3-319-91086-4. doi: https://doi.org/10.1007/978-3-319-

91086-4_7.

[110] T. Tsiligirides. „Heuristic methods applied to orienteering“. In: Journal of the Oper-
ational Research Society 35.9 (1984), pp. 797–809. doi: https://doi.org/10.1057/

jors.1984.162.

[111] F. Meyer. Problem instances for the KTSP. Online; accessed 22. January 2024. 2023.

url: https://github.com/fameyer94/KinematicRoutingInstances/tree/main/

KTSP/BENCHMARK.

[112] F. Meyer. Problem instances for the KTSP. Online; accessed 22. January 2024. 2023.

url: https://github.com/fameyer94/KinematicRoutingInstances/tree/main/

KTSP/HPT.

[113] F. Meyer. Problem instances for the KTSP. Online; accessed 22. January 2024. 2023.

url: https://github.com/fameyer94/KinematicRoutingInstances/tree/main/

KTSP/RUNTIME.

[114] F. Meyer. Problem instances for the KTSP. Online; accessed 22. January 2024. 2023.

url: https://github.com/fameyer94/KinematicRoutingInstances/tree/main/

KOP/BENCHMARK.

[115] F. Meyer. Problem instances for the KTSP. Online; accessed 22. January 2024. 2023.

url: https://github.com/fameyer94/KinematicRoutingInstances/tree/main/

KOP/HPT.

[116] F. Meyer. Problem instances for the KTSP. Online; accessed 22. January 2024. 2023.

url: https://github.com/fameyer94/KinematicRoutingInstances/tree/main/

KOP/RUNTIME.

[117] B. Bischl et al. „Hyperparameter optimization: Foundations, algorithms, best prac-

tices, and open challenges“. In: WIREs Data Mining and Knowledge Discovery 13.2

(2023), e1484. doi: https://doi.org/10.1002/widm.1484.

150

https://doi.org/https://doi.org/10.1090/S0002-9904-1954-09848-8
https://doi.org/https://doi.org/10.1090/S0002-9904-1954-09848-8
https://doi.org/https://doi.org/10.1126/science.220.4598.671
https://doi.org/https://doi.org/10.1126/science.220.4598.671
https://doi.org/https://doi.org/10.1287/ijoc.1.3.190
https://doi.org/https://doi.org/10.1007/0-387-28356-0_6
https://doi.org/https://doi.org/10.1007/978-3-319-91086-4_7
https://doi.org/https://doi.org/10.1007/978-3-319-91086-4_7
https://doi.org/https://doi.org/10.1057/jors.1984.162
https://doi.org/https://doi.org/10.1057/jors.1984.162
https://github.com/fameyer94/KinematicRoutingInstances/tree/main/KTSP/BENCHMARK
https://github.com/fameyer94/KinematicRoutingInstances/tree/main/KTSP/BENCHMARK
https://github.com/fameyer94/KinematicRoutingInstances/tree/main/KTSP/HPT
https://github.com/fameyer94/KinematicRoutingInstances/tree/main/KTSP/HPT
https://github.com/fameyer94/KinematicRoutingInstances/tree/main/KTSP/RUNTIME
https://github.com/fameyer94/KinematicRoutingInstances/tree/main/KTSP/RUNTIME
https://github.com/fameyer94/KinematicRoutingInstances/tree/main/KOP/BENCHMARK
https://github.com/fameyer94/KinematicRoutingInstances/tree/main/KOP/BENCHMARK
https://github.com/fameyer94/KinematicRoutingInstances/tree/main/KOP/HPT
https://github.com/fameyer94/KinematicRoutingInstances/tree/main/KOP/HPT
https://github.com/fameyer94/KinematicRoutingInstances/tree/main/KOP/RUNTIME
https://github.com/fameyer94/KinematicRoutingInstances/tree/main/KOP/RUNTIME
https://doi.org/https://doi.org/10.1002/widm.1484

References

[118] J. Bengstra and Y. Bengio. „Random Search for Hyper-Parameter Optimization“.

In: Journal of Machine Learning Research 13.10 (2012), pp. 281–305. url: http:

//jmlr.org/papers/v13/bergstra12a.html.

[119] R. Liu, Y. Tao, and X. Xie. „An adaptive large neighborhood search heuristic for the

vehicle routing problemwith time windows and synchronized visits“. In: Computers
& Operations Research 101 (2019), pp. 250–262. issn: 0305-0548. doi: https://doi.

org/10.1016/j.cor.2018.08.002.

[120] Gurobi. tsp.py. Online; accessed 19. October 2023. 2023. url: https://www.gurobi.

com/documentation/current/examples/tsp_py.html.

[121] A. J. LaValle, B. Sakcak, and S. M. LaValle. „Bang-Bang Boosting of RRTs“. In: 2023
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 2023,
pp. 2869–2876. doi: https://doi.org/10.1109/IROS55552.2023.10341760.

[122] H. Yeung et al. „Laser path planning and power control strategies for powder bed

fusion systems“. In: 2016 International Solid Freeform Fabrication Symposium. 2016.

url: https://hdl.handle.net/2152/89543.

[123] H. Yeung et al. „Implementation of Advanced Laser Control Strategies for Powder

Bed Fusion Systems“. In: Procedia Manufacturing 26 (2018). 46th SME North Amer-

ican Manufacturing Research Conference, NAMRC 46, Texas, USA, pp. 871–879.

issn: 2351-9789. doi: https://doi.org/10.1016/j.promfg.2018.07.112.

[124] N. Ganganath et al. „Trajectory planning for 3D printing: A revisit to traveling

salesman problem“. In: 2016 2nd International Conference on Control, Automation
and Robotics (ICCAR). 2016, pp. 287–290. doi: https://doi.org/10.1109/ICCAR.
2016.7486742.

[125] F. Xie et al. „Path smoothing and feed rate planning for robotic curved layer additive

manufacturing“. In: Robotics and Computer-Integrated Manufacturing 65 (2020),

p. 101967. issn: 0736-5845. doi: https://doi.org/10.1016/j.rcim.2020.101967.

[126] R. Guamán-Rivera et al. „Recent Developments and Challenges of 3D-Printed

Construction: A Review of Research Fronts“. In: Buildings 12.2 (2022). issn: 2075-
5309. doi: https://doi.org/10.3390/buildings12020229.

[127] H. Giberti, L. Sbaglia, and M. Urgo. „A path planning algorithm for industrial

processes under velocity constraints with an application to additive manufacturing“.

In: Journal of Manufacturing Systems 43 (2017), pp. 160–167. issn: 0278-6125. doi:
https://doi.org/10.1016/j.jmsy.2017.03.003.

151

http://jmlr.org/papers/v13/bergstra12a.html
http://jmlr.org/papers/v13/bergstra12a.html
https://doi.org/https://doi.org/10.1016/j.cor.2018.08.002
https://doi.org/https://doi.org/10.1016/j.cor.2018.08.002
https://www.gurobi.com/documentation/current/examples/tsp_py.html
https://www.gurobi.com/documentation/current/examples/tsp_py.html
https://doi.org/https://doi.org/10.1109/IROS55552.2023.10341760
https://hdl.handle.net/2152/89543
https://doi.org/https://doi.org/10.1016/j.promfg.2018.07.112
https://doi.org/https://doi.org/10.1109/ICCAR.2016.7486742
https://doi.org/https://doi.org/10.1109/ICCAR.2016.7486742
https://doi.org/https://doi.org/10.1016/j.rcim.2020.101967
https://doi.org/https://doi.org/10.3390/buildings12020229
https://doi.org/https://doi.org/10.1016/j.jmsy.2017.03.003

	Title
	Abstract
	Contents
	1 Introduction
	1.1 Surveillance and Data Collection
	1.1.1 The Impact of Inertia - A Motivating Example
	1.1.2 Research Gap

	1.2 Scope and Contribution of this Thesis
	1.3 Outline

	2 Time-Optimal Trajectory Generation for Point-Masses
	2.1 Trajectory Planning for Inertia-based Routing
	2.2 State-of-the-Art and Research Gap
	2.2.1 Related Work
	2.2.2 Problem Definition and State-of-the-Art Approach
	2.2.3 Research Gap and Contributions

	2.3 Time-Optimal Trajectory Generation in One Dimension
	2.4 Time-Optimal Trajectory Generation in Multiple Dimensions
	2.4.1 Required Control Input Patterns
	2.4.2 Structural Analysis of Optimal Solutions to the TOT-PMAV
	2.4.3 General Algorithmic Framework TOP-UAVMeyer.2022
	2.4.4 Improved Algorithmic Framework TOP-UAV++Meyer.2023

	2.5 Computational Study
	2.5.1 Computational Study Setup
	2.5.2 Occurance of Insynchronizabilities
	2.5.3 Extent of Discrepancy between SOTA and TOP-UAV
	2.5.4 Improved Exploitation of Kinematic Properties
	2.5.5 Computation Times

	2.6 Conclusion

	3 Inertia-based Routing
	3.1 Related Work
	3.1.1 Overview of Inertia-based Route Planning Problems
	3.1.2 Research Gap and Contributions

	3.2 Inertia-based Routing Models
	3.2.1 Inertia-based Traveling Salesman Problem Models
	3.2.2 Inertia-based Orienteering Problem Models

	3.3 Heuristic Solution Frameworks
	3.3.1 The General ALNS Solution Framework
	3.3.2 Removal Heuristics
	3.3.3 Insertion Heuristics
	3.3.4 Waypoint Traversal Optimization via Dynamic Programming
	3.3.5 Acceptance Criteria
	3.3.6 Multistart Initial Solution Construction
	3.3.7 Adaptive Large Neighborhood Search for the KTSP
	3.3.8 Adaptive Large Neighborhood Search for the KOP

	3.4 Computational Study
	3.4.1 General Computational Study Setup
	3.4.2 Problem Instances
	3.4.3 Performance Indicators
	3.4.4 Hyperparameter Optimization
	3.4.5 Computational Results for the KTSP
	3.4.6 Computational Results for the KOP

	3.5 Conclusion

	4 Conclusions and Outlook
	4.1 Summary and Results
	4.2 Future Work and Outlook

	Appendices
	A Hover-to-Hover Trajectories
	B Trajectory Tracking in 2D
	B.1 Full-Kinematic System Model
	B.2 Restricted-Kinematic System Model

	C Original Computational Results
	List of Figures
	List of Tables
	Glossary
	References

